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Abstract

Human growth is a complex non-linear process that occurs in several stages, including the

foetal, infancy, childhood, and adolescence phases. Different patterns of growth and underlying

mechanisms characterise each of these stages. In this thesis, we examined various aspects of

physiological growth in childhood and adolescence in the Indian population. Initially, we looked at

two measures of growth that show high levels of adaptability: metabolism and body composition.

We found that Indian children have significantly lower energy expenditure (at rest) compared

to Western children, and we provide a potential explanation based on differences in organ mass

and body composition. We further studied height growth during adolescence and characterised

the pubertal growth spurt using serial measurements of height over eight years using the SITAR

(SuperImposition by Translation and Rotation) model. Finally, we investigated the impact of

a metabolic disorder, Type-1 Diabetes Mellitus (T1DM), on otherwise canalised height growth

programming. We found that it leads to a delay and extension of the pubertal growth spurt,

resulting in compromised height in children with T1DM. However, once the resulting SITAR

model is parameterized by size, timing and intensity of pubertal growth, the underlying growth

pattern in children with T1DM was indistinguishable from those without. Our study shows how

the underlying growth mechanism is robust to a persisting metabolic insult. Our study adds to

the knowledge for researchers, policymakers and clinicians to understand the optimal modes for

personalised interventions to address the many non-communicable diseases, including the double

burden of malnutrition, while considering the long-term health implications of growth.

xii



CHAPTER 1

Introduction

“I have hitherto sometimes spoken as if the variations - so common and multiform with organic beings

under domestication, and in a lesser degree with those under nature - were due to chance. This, of

course is a wholly incorrect expression, but it serves to acknowledge plainly our ignorance of the cause of

each particular variation.”
- On the origin of species, Charles Darwin

Growth is a fundamental process inherent to all living organisms. So are the variations in the

physiological features they exhibit. Moreover, both are rarely random: growth follows a definite

underlying developmental program; and the biological variations are (often) due to a definite

underlying cause. This thesis explores the variations in two key features, energy requirement and

size, during a period of growth in humans. Specifically, we use the tools of observational studies

to investigate the determinants of intra-species variation in metabolism at rest and height growth

during childhood and adolescence. Metabolism is thought to be a more adaptable component

whereas height growth less so. Initially, we study the changes in height growth and metabolism

separately, and later look at how height growth is influenced under a metabolic disorder Type-1

diabetes mellitus (T1DM). We conclude with a discussion emphasising the sexual dimorphisms

observed in metabolism and size followed by a brief discussion on the implications of the current

study for future research.

The period of growth in humans spans around two decades. It is generally categorised into

multiple phases, namely, fetal, infancy, childhood and adolescence. The duration of each phase

and the timing of transition from each are of importance in terms of the form and physiology
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of the mature adult (Tanner 1981). The timing and duration of adolescent growth play a

pivotal role in shaping body composition changes, such as body fat and bone mineralization.

Moreover, understanding the significance of timing and duration becomes even more essential

when considering the potential link between early growth variations and later chronic disease

risks through telomeric attrition, which affects growth rate, cellular senescence, and age-related

degenerative processes (Cameron and Demerath 2002). Here we focus on the final stages of

growth: childhood and adolescence. As early as 1994, childhood and adolescence has been

identified as one of the three critical periods for the development of obesity (Dietz 1994).

Multiple physiological features undergo sudden changes during childhood and adolescence.

However, here we focus on the changes in metabolism and height growth. Specifically, we study

the metabolism through the resting metabolic rate (RMR) which measures the resting energy

expenditure at rest (De B. Weir 1949). The RMR represents the physiology of the child in contrast

to total energy expenditure (TEE) which includes the energy expenditure for physical activity,

thermic effect of feeding etc Hall et al. (2011); and hence more suitable to study the underlying

physiological factors. Further, height growth is analysed here based on serial measurements of

height from childhood through adolescence known as height growth curves. Height growth curves

captures the history of a child’s growth, the path taken from childhood to adulthood. Thus,

we study how RMR and height growth curves change through the milestone event of pubertal

growth spurt which is a period of of rapid growth driven by multiple hormones.

Earlier research focused on the earliest windows of interventions in case of growth disorders.

Fetal, neonatal and infancy had been given a lot of attention indeed for the right reasons. Growth

is thought to be programmed by the end of 2 years, with little to no windows available for later

intervention. However, the last possible window of intervention also demands similar attention.

Pubertal growth spurts may aid to identify the possible windows of intervention (or the last

opportunity) in terms of growth disorders or overweight management in children and adolescents.

Hence it is important to study how the metabolism influences pubertal growth spurt and vice

versa.

There are three broad objectives that are studies in this thesis, described in detail in the next

three chapters, are: i) how RMR is distributed across age and what factors contribute to the

variation observed in RMR in the Indian children. ii) how does height vary with age in Indian

children by characterising the average as well as individual patterns of growth. iii) how height is

influenced in children diagnosed with a metabolic disorder T1DM in comparison to growth in
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children without T1DM. Further, how individual variations in growth can be explained using

parental height and disease severity.

Chapter 2 offers a concise overview of the relevant literature, spanning more than a century,

on three key topics: resting metabolic rate, height growth centiles, and height growth curves.

Resting metabolic rate, as a measure of minimal energy expenditure for vital bodily functions,

has been widely investigated in the context of understanding the energy requirements of a

population. Height growth centiles and growth curves have played crucial roles in monitoring

and understanding children’s growth patterns. By reviewing the existing literature, this chapter

establishes the foundation for the current study, identifying research gaps and emphasising the

need for further investigation in the specific context of the thesis.

In Chapter 3, we aim to assess whether a previously established model for resting metabolic

rate (RMR) in Caucasian adolescents can be applied to Indian children. This study will help

determine the suitability of the existing RMR model for Indian children and contribute to better

understanding metabolic differences in this population.

Chapter 4 focuses on comparing two methods for analyzing child anthropometry: growth

centiles and growth curves. Growth centiles involve plotting percentile values based on age and

height, while growth curves capture the trajectory of growth over time. The objective of this

research is to specifically examine height growth centiles and curves in Indian children. By

comparing these two approaches, the study aims to gain insights into the growth patterns and

variations in height among Indian children. The findings will contribute to a deeper understanding

of child development in this population, potentially informing healthcare interventions and

monitoring practices.

In Chapter 5, we examines the impact of Type-1 diabetes mellitus (T1DM) on height growth

in Indian children. By comparing growth curves between children with T1DM and a control

group, while considering parental height and disease severity, valuable insights into the effects of

a persistent metabolic insult on height growth patterns can be gained.

In Chapter 6, we summarise the main finding of the thesis with an emphasis on the sex

specific differences observed during childhood and adolescence in resting metabolic rate and

height growth. We also discuss the strengths and limitations of the study followed by future

prospects and a brief concluding remark.
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Energy (crisis) was an important factor in the evolution of size in humans in the past (Hochberg

and Albertsson-Wikland 2008); and is a leading factor in the rise of non-communicable disorders

in the present (Popkin et al. 2020; Mathers and Loncar 2006). Interventions to address the

problems of size, such as stunting, wasting, overweight, underweight, etc. would need to be

personalised on the energy requirement of an individual in the future. Thus, understanding the

inter-workings of metabolism and height is an important problem in current biology.
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CHAPTER 2

A physiological and public health

perspective of resting metabolic

rate, growth centiles and growth

curves.
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2.1 Resting Metabolic Rate

2.1.1 Intraspecific variation in RMR

Life sustains on energy released from a set of chemical reactions in the cells of an organism.

The minimal amount of such chemical reactions necessary to sustain the vital body functions

comprises basal metabolism and the energy output per unit time by the basal metabolism is the

basal metabolic rate (BMR) (Harris and Benedict 1918). Earlies studies of human metabolism

(or nutrition) reported BMR which measured the energy expenditure of an organism at rest, in

wakefulness following strict, rigorous conditions prior to and during BMR measurement to ensure

basal metabolism (McMurray et al. 2014). Later studies measured the energy expenditure under

relatively milder conditions at rest and is commonly referred to as resting metabolic rate (RMR)

or resting energy expenditure (REE). It is measured after 8 hrs fast (ranged between 3 to 12

hrs in previous studies), in the absence of any physical activity (8-24 h prior measurement) and

diseases, minimal emotional disturbances, thermo-neutral environment (22-26°C), at rest (15–60

min prior) and in wakefulness (McMurray et al. 2014). We hitherto use RMR to refer to the

energy expenditure measured at rest in the previous studies, including studies that reported REE

and BMR.

RMR can be not only be measured through direct or indirect calorimetry but also estimated

from predictive equations. Equation based models are typically developed for some specific

population (Henry 2005). In direct calorimetry, the subject enclosed within a closed chamber and

one measures the heat produced through temperature differences. Indirect calorimetry measures

the oxygen consumption and carbon dioxide elimination of each subject and predicts the caloric

output based on the De B. Weir (1949) equations. RMR measurement through calorimetry

requires laboratory conditions, trained technicians and expensive equipments. Due to practical

difficulties to measure RMR for a large number of patients, predictive equations were developed

from sample populations to serve as a reference.

Here we will review the factors leading to intraspecific variation in RMR based on the

physiological and phenomenological research on RMR/REE/BMR chosen from the literature.

RMR and REE are equivalent to BMR but is measured under less stringent conditions than

BMR (McMurray et al. 2014). The functional ecology views on RMR, the allometric scaling of

metabolic rate to bodymass and the interspecies variation of RMR are not discussed here.
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2.1.2 The evolution of RMR research over a century

The basal metabolic rate was introduced as a clinical parameter in the nineteenth century. In

1895, Magnus Levi showed a dependence of metabolic rate on the thyroid gland secretions in

humans (Henry 2005). BMR was the only reliable diagnostic measure for thyroid malfunctions

till the early 19th century. Diagnosis of growth disorders, metabolic disorders like diabetes, and

nutritional problems were also based on BMR measurements. After 1950, BMR usage decreased

with the introduction of Iodine-metabolism based diagnostic tests in thyroid dysfunction. But,

having a strict standardised measurement made it of interest to researchers as it helps in the direct

comparison of energy utilisation by different organisms. In the 20th century began the use of RMR

to estimate the energy expenditure of an organism. In 1922, Bedale used BMR measurements

of 100 school children to estimate the energy expenditure to suggest food requirements for

children at school (Bedale 1923). Later, the Food and Agriculture Organization (FAO) of the

United Nations, World Health Organization (WHO) and United Nations University (UNU),

proposed to estimate energy requirements for a population-based on energy expenditure of the

sample sub-population (FAO/WHO/UNU 1985). Predictive equations are developed from RMR

measurements of a sample subpopulation based on easy to measure anthropometric factors and

later applied to individuals of similar characteristics. These FAO/WHO/UNU recommendations

are used by governments and organisations under the United Nations (UN) to devise nutritional

policies especially in the interest of the eradication of poverty and malnutrition. In the present,

understanding the physiological variation in RMR plays a pivotal role to study and management

of many non-communicable diseases.

2.1.3 Factors leading to the variation in RMR

The energy expenditure of an organism is the sum of energy utilised by its living cells. This

can be looked from different levels of organisation: molecular, cellular, tissue-organ or whole

organism. Studies over the years on variation in RMR are categorised and presented based on

the organisation level it addresses.

2.1.3.1 Organism level approaches in RMR studies

The attempts to understand the metabolism of humans were always centred around clinical

applications rather than a pure exploratory view. This clinical and nutritional use attracted
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Authors Model Remarks

Aub and Du Bois (1917) 𝐸 = 𝐴0(𝑊 0.425𝐻0.71571.84)2/3 n=10

Harris and Benedict (1918) 𝐸𝑚𝑎𝑙𝑒 = 66.4730 + 13.7516𝑊 + 5.0033𝐻 − 6.7550𝑎 n=136, 𝑅2=0.8

𝐸𝑓𝑒𝑚𝑎𝑙𝑒 = 655.0955 + 9.5634𝑊 + 1.8496𝐻 − 4.6756𝑎 n=103, 𝑅2=0.6

Kleiber (1932) 𝐸(𝑚) = 71.2𝑊 3/4[1 + 0.004(30 − 𝑎) + 0.010(𝐻 − 43.4)] n=136

𝐸(𝑓) = 67.4𝑊 3/4[1 + 0.004(30 − 𝑎) + 0.018(𝐻 − 43.4)] n=103

Quenouilie et al. (1951) 𝐸 = 2.975𝐻 + 8𝑊 + 11.7𝑆 + 3.0ℎ − 4.0𝑡 + 293.8 n=8600

Energy et al. (1985) 𝐸𝑚𝑎𝑙𝑒 = 152𝑊 0.73, 𝐸𝑓𝑒𝑚𝑎𝑙𝑒 = 123.4𝑊 0.75 2238

𝐸𝑚𝑎𝑙𝑒 = 815 + 36.6𝑊, 𝐸𝑓𝑒𝑚𝑎𝑙𝑒 = 580 + 31.1𝑊 2238

Schofield (1985) 𝐸𝑚𝑎𝑙𝑒 = 11.472𝑊 + 873.1 30-60 yrs

𝐸𝑓𝑒𝑚𝑎𝑙𝑒 = 8.126 × 𝑊 + 845.6 n=7173

Henry (2005) 𝐸𝑚𝑎𝑙𝑒 = 14.2𝑊 + 593 30-60yrs, 𝑅2=0.7

𝐸𝑓𝑒𝑚𝑎𝑙𝑒 = 9.74𝑊 + 694 n=10552

Mifflin et al. (1990b) 𝐸𝑚𝑎𝑙𝑒 = 10𝑊 + 6.25𝐻 − 5𝑎 + 5 n=251, 𝑅2=0.71

𝐸𝑓𝑒𝑚𝑎𝑙𝑒 = 10𝑊 + 6.25𝐻 − 5𝑎 − 161 n=247

Table 2.1: Phenomenological models for BMR. E= BMR in kcal/day, a=age (year), f=female,
m=male, W=weight (kg), H=height (cm), h=humidity, t=temperature

large number of population based studies in BMR. Thus, different phenomenological models

were created from the easy to measure anthropometric factors in those population studies. The

evolution of phenomenological models are explained in this section. Table 2.1 shows a set of

selected RMR predictive equations.

The early studies of BMR reasoned that the energy expenditure of an organism must depend

on the energy dissipated as heat, which increases with surface area of an organism. In 1917, Aub

and Du Bois (1917b,a) created a standard reference chart of BMR per unit area per unit time

for men and women in different age groups (14-80 yrs). But these were based on BMR and

surface area measurements of 10 subjects. Since it is difficult to measure the surface area of

an individual, Du Bois and Du Bois (1989) based it on height and weight. Later several more

BMR equations are reported based on surface area (Boyd 1935; Brody and Lardy 1946; Haycock

et al. 1978; Breitman 1932; von Schelling 1954; Isacksson 1958). But the variation in surface

area could not explain many observations like high BMR of children of age 6-18 months with

less surface area and later reduction in BMR in adults and then onto elderly. There is also a

difference in the BMR of individuals in different temperature zones with the same surface area.

Since the surface area is not directly measurable but predicted from weight and height, this is a

double-step estimation which adds up the error.

In 1918, Harris and Benedict in their classic paper titled “A biometric study of Human Basal

Metabolism”, developed two equations from BMR measurements of 239 healthy subjects (136

males and 103 females) and reported that 80% variation in males and 60% variation in females
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could be explained by weight, height and age (Harris and Benedict 1918). The Harris-Benedict

equations for male and female BMR values, E, are given as:

𝐸𝑚𝑎𝑙𝑒 = 66.4730 + 13.7516𝑊 + 5.0033𝐻 − 6.7550𝑎,

𝐸𝑓𝑒𝑚𝑎𝑙𝑒 = 655.0955 + 9.5634𝑊 + 1.8496𝐻 − 4.6756𝑎,
(2.1)

where W is the weight in kg, H is the height in centimetres and a is the age in yrs. This equation

was reference standard used widely around the world for a long time. To reduce the measurement

error, the average of BMR measurements taken multiple times and on multiple days were used,

and pneumograph was used to confirm the absence of any muscular activity.

Later in the 1957, Durnin et al. proposed the idea of using BMR to estimate energy require-

ments instead of using energy intake (Energy et al. 1985). They surveyed the existing literature

and presented two sets of equations to FAO/WHO/UNU as,

𝐸𝑚𝑎𝑙𝑒 = 152𝑊 0.73 &

𝐸𝑓𝑒𝑚𝑎𝑙𝑒 = 123.4𝑊 0.75,
(2.2)

where W is the weight of the subject. Eq. 2.2 was simplified into:

𝐸𝑚𝑎𝑙𝑒 = 815 + 36.6𝑊 &

𝐸𝑓𝑒𝑚𝑎𝑙𝑒 = 580 + 31.1𝑊,
(2.3)

but only applicable to the physiological rage of observed covariates.

Later FAO assigned Schofield to extend the survey and develop new equations applicable to a

larger population. Thus the Schofield database of 7173 subjects were formed. Schofield developed

equations for different age groups based on the weight and sex of an individual, and the equations

for males and females in 30-60 yr age group are shown in Table 2.1. These equations are adopted

by FAO/WHO/UNU in 1985 to propose human energy requirements and are still in use.

Hayter and Henry (1993) reported that the Schofield equations are over predictive in tropical

populations. An over estimation of RMR in children was reported by Ho et al. (1988) (Min and

Ho 1991) and (Spurr et al. 1992) reported overestimation in children of 2-18 yrs. It was later

found that more than 50% of data points (> 3000) in Schofield database consists of Italian male

subjects between the age 20-50 with high BMR values that elevated the predictions in other

populations.
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In 2001, due to arising concerns over the applicability of Schofield equations globally, FAO

assigned CJK Henry to develop new equations for RMR predictions (Henry 2005). CJK Henry

collected 10552 data points from the literature including more number of subjects from the tropics

and removed all Italian subjects. Equations for male and female belonging to the 30-60 yrs age

group are given in 2.1. The equations were better predictive but not significantly different from

the performance of Schofield equations, hence FAO suggested continuing the use of Schofield

equation until significantly different new equations are developed. The FAO equations developed

over the years on a large dataset used age, sex and weight of the subjects to explain the variation

between individuals, but could only explain 70% of the variation.

2.1.3.2 Organ-tissue level approaches in RMR studies

Prediction BMR based on body weight assumes an equal metabolic output of its constitutes.

Body mass consists of different tissues and organs with different energy usage. The total body

mass consists of metabolically less active fat mass (FM) and rest of the mass that is metabolically

active, termed as fat-free mass (FFM). Owen et al. (Owen et al. 1986, 1987) in 1986 analysed

the relationship of FFM and FM to resting metabolic rate (RMR) in 44 healthy, lean and obese

women (16-65 yrs) and 60 lean and obese men. The body composition (FM and FFM) was

measured through densitometry and RMR through indirect calorimetry. It was found that BMR

is correlated with FFM (R> 0.74) but still not a better predictor than the weight (𝑅2=0.8). In

1990, Mifflin et al. (Mifflin et al. 1990a) analysed body composition in a larger dataset of 498

healthy subjects including normal weight (n=264) and obese (n=234) individuals. They reported

FFM is the single best predictor of BMR (𝑅2=0.64).

Several models based on body composition were reported later (Cunningham 1980; McNeill

et al. 1987; Heymsfield et al. 1988; Ravussin and of genetics 1989; Ravussin et al. 1982; Jensen et al.

1988; Garby et al. 1988; Bernstein et al. 1983; Katch et al. 1990). Frankenfield et al. Frankenfield

et al. (2005) analysed all notable predictive equations developed till 2005 and observed Mifflin- St

Jeor Mifflin et al. (1990a) equations to be the best predictor for the current population, (within

±10% of measured BMR in 82% of the data). It might be partly because the body composition

of the population has evolved and Mifflin data points are representative of the most recent

population. Further, Mifflin-St Jeor data points are heterogeneous consisting of both obese and

normal individual with body mass index ranging from 17 to 42. Older RMR studies included

only healthy subject data points to develop a standard reference value.
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Over the past century, BMR predictive equations have evolved through improvement in

equipment, sample collection, and analysis procedures. But, even the most accurate model

available (Frankenfield et al. 2005; Mifflin et al. 1990a) could explain only 70-80 percentage of the

variation in RMR. The remaining 20 per cent are not found to be explained by anthropometric

factors. Since FFM comprises of tissues and organs with different energy utilisation, more insights

can be visible from tissue-organ level approaches to understand RMR

Elia (1992) analysed the specific metabolic rate of organs and their relative contribution to

the total metabolism. They measured the in vivo metabolic rate of individual tissues by, “making

measurements of the arteriovenous concentration difference of oxygen across tissue in conjunction

with measurements of blood flow” (Elia 1992). The metabolic rate per unit mass per unit time

is defined as the specific metabolic rate of an organ (𝐾𝑖 values). 𝐾𝑖 values in kcal per kg per

day, for the liver is 200, the brain is 240, the heart is 440, the kidney is 440, the muscle mass is

13, the adipose tissue is 4.5, and 12 for other tissues including bone, skin, intestines, glands etc.

Gallagher et al. (1998) in 1998 modelled the basal metabolic rate of an organism by summing

the metabolic rates of individual organs. Using the dual-energy X-ray absorptiometry (DXA) for

FM and FFM, and magnetic resonance imaging (MRI) and echocardiography, they calculated

the organ and tissue masses. Further, the metabolic rate of individual organs are calculated

as the product of the mass and specific metabolic rate of each organ. The specific metabolic

rate of organs are taken from Elia (1992). Resting metabolic rate is measured through indirect

calorimetry. The energy expenditure at rest, E (kJ/kg/day), is given as,

𝐸 = 1008𝑀𝑏𝑟𝑎𝑖𝑛 + 840𝑀𝑙𝑖𝑣𝑒𝑟 + 1848𝑀ℎ𝑒𝑎𝑟𝑡 + 1848𝑀𝑘𝑖𝑑𝑛𝑒𝑦𝑠

+ 55𝑀𝑠𝑘𝑒𝑙𝑒𝑡𝑎𝑙𝑚𝑢𝑠𝑐𝑙𝑒 + 19𝑀𝑎𝑑𝑖𝑝𝑜𝑠𝑒𝑡𝑖𝑠𝑠𝑢𝑒 + 50𝑀𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑚𝑎𝑠𝑠,
(2.4)

where M is the mass of respective organs. The model is validated in only 13 subjects, but with

92% accuracy between measured and predicted resting metabolic rate. Here the limitation in

this approach is the unavailability of an equipment to measure in vivo metabolic rate or specific

metabolic rate of an organ.

Wang et al. 2010 reported an over estimation of the specific metabolic rate of organs by 3%

in adults (n=37) but well correlated in young and middle-age group. Later, Wang et al. 2011

compared Elia’s specific metabolic rate values in 49 men and 57 women aged 29-49 yrs. The

measured resting metabolic rate is compared to Gallagher model predictions, and highly correlated

with the observed BMR in men (𝑅2=0.87) and women (𝑅2=0.86). So assuming Elia’s reference
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values are applicable, Gallagher model can explain more than 86% of the variation in BMR.

Further, the presence of brown adipose tissue (BAT), which has a high metabolic activity,

was also reported to be associated with RMR. BAT is a high metabolic active tissue, and due to

difficulty in characterising BAT in the adult body, variation in its presence can add up variations

in BMR. Saito et al. (2009) reported the presence of BAT in 76 of 1013 and 30 of 959 men they

sampled. Cypess et al. (2009) in 2009 reported a substantial amount of BAT in adults. Elia’s

study report only 13 kcal/kg/day 𝐾𝑖 value for skeletal muscle mass. But, the skeletal muscle

mass metabolism is shown to be a major determinant of RMR (𝑅2=0.72, after adjusting for

FFM, FM, age, sex) by Zurlo et al. (1990) by measuring forearm oxygen uptake and comparing

it with BMR measured through indirect calorimetry in 14 subjects (7 men and 7 women).

2.1.3.3 Cellular and molecular level approaches

Organ and tissue metabolic rate and RMR can vary between individuals if cellular and

molecular determinants of RMR varies. Hence it is important to understand the smaller molecules

involved in the metabolic pathways as well. Notable studies on such molecules and cellular

components are presented here.

Leptin is a cell signalling protein produced by adipose tissue and its levels in the body

is representative of body fat mass. Studies report both positive (Jol et al. 1998; Nicklas

et al. 1997; Toth et al. 1997) and negative (Roberts et al. 1997; Kennedy et al. 1997; Nagy

et al. 1997) relationship between leptin concentration and BMR. Loos et al. (2006) identified

polymorphisms in the leptin receptor gene, LEPR-K6556N correlated with BMR from Single

Nucleotide Polymorphism (SNP) analysis of 678 subjects. It was known from the 19th century

that thyroid dysfunction leads to changes in BMR. Some studies reported links of circulating

thyroxine (T4) and triiodothyronine (T3) (Svendsen et al. 1993; Astrup et al. 1992). Bernstein

et al. (Bernstein et al. 1983), Westphal et al. (Bosy-Westphal et al. 2008) and Welle et al. (Welle

et al. 1990) reported no dependence of T3 to RMR.

In 2004 Johnstone reported that circulating T4 explained the 25% of the the residual variation

of RMR in men after adjusting for FFM,FM and age, but not significant in women. There was

26% unexplained variation in RMR after accounting for FFM, FM, age, within-subject variability

and analytic error.

FFM is the main determinants of BMR at the molecular level (Owen et al. 1986; Mifflin et al.

12



1990a; Owen et al. 1987). Some studies reported fat mass contribution (Nelson et al. 1992) to

the BMR but not all (Bogardus et al. 1986; Segal et al. 1987).

A study by Larsen et al. (2011) looked at the oxygen affinity of mitochondrial respiration

(p50𝑚𝑖𝑡𝑜), which is defined as the the partial pressure of oxygen (𝑝𝑂2) at which mitochondrial

oxygen affinity is half maximal. By measuring p50𝑚𝑖𝑡𝑜 values in isolated skeletal muscle mito-

chondria and RMR through indirect calorimetry in 14 subjects, they reported high correlation

(𝑅2=0.66) between p50𝑚𝑖𝑡𝑜 and BMR. They reported no correlation of BMR to mitochondrial

density or proton leak through the membrane. And partial inhibition of cytochrome-C-oxidase

(COX) lead to 5-fold increase in p50𝑚𝑖𝑡𝑜 suggesting a possible regulatory mechanism of p50𝑚𝑖𝑡𝑜

by COX.

Westphal et al. 2008 reported a significant correlation between RMR and metabolic risk

factors. They analysed RMR and plasma insulin, C-reactive protein, glucose and blood pressure,

in 149 families. Residual variation in RMR after adjusting FFM, FM, sex, age is found to be

correlated with blood pressure, insulin resistance, plasma insulin and glucose concentrations

(𝑅2 = 0.14 - 0.31). Westphal also reported heritability for thyroid hormones thyroptropin,

tryiodothyronine, and thyroxine. A more extensive review on metabolic pathways and their

components are required to understand more on cellular and molecular determinants of RMR.

2.1.4 RMR during childhood and adolescence

RMR in children vary non-linearly with age. It is often thought to be because of the non-linear

changes in growth, especially due to the uneven changes in mass of organs and tissues of varying

metabolic rate. For a detailed review on the RMR in children and adolescents please refer

to Son’kin and Tambovtseva (2012). Urlacher (2023) outlines the current views of energetics of

childhood majorly from an evolutionary perspective and it’s implications on human variation

and health.

2.2 Growth centiles and growth curves

Height growth centiles (or percentiles) describe the distribution of height (as me(di)an and

the dispersion) with respect to age in a population. They are drawn as percentile curves defined

by the percentage of the population below each curve. As early as 1885, Galton utilised centile
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curves to show an account of the distribution of anthropometric factors(Galton 1885). Centiles

have since been used widely, especially in the form of charts for the clinical assessment of growth

related disorders. Widely used growth charts include the World Health Organisation’s (WHO)

infant growth charts from birth to 5 years (World Health Organization 2006; de Onis 2006).

It is crucial to differentiate between growth curves and centiles. While they appear to serve

identical functions clinically, the underlying principles of their construction are entirely different.

Growth centiles are developed using cross-sectional data, which are independent measurements

obtained once per subjects, together spanning the entire age range. Development of growth

curves involves longitudinal data, which comprises consecutive measurements taken for each

child over a prolonged duration. While growth curves describe the longitudinal trend of height

(individual-specific or the average population curve), growth centiles provides an account of the

height distribution (average trend and the spread around it). The methods of their construction

differ owing to the fact that cross-sectional data consists independent samples, whereas the

longitudinal data are correlated.

Developing growth centiles requires modelling the height progression with age as well as the

spread of height distribution at every age. Early growth centiles computed means and standard

deviation’s (SD) of height in narrow age ranges and the resulting average growth curve was

characterised using smoothing methods to model the horizontal progression. To describe evenly

spaced centiles to capture the spread of data, initial methods assumed height to be normally

distributed throughout childhood. This enables to specify spacing between the curves, based only

on the mean and SD. However, the height is not found to be distributed normally during childhood.

Moreover, the height data is found be high skewed towards the later stages of childhood. The

Lambda-Mu-Sigma (LMS) method due to Cole (1988), later modified in Cole and Green (1992),

overcomes this by consdiering a transformations of the response variable which then follows a

normal distribution. The LMS method parameterise the median, coefficient of variation and the

skewness of the distribution and uses splines to smooth the centile curves. A most recent method,

Generalized Additive Model for Location, Scale and Shape (GAMLSS), extends the LMS method

to include a kurtosis parameter as well (Rigby and Stasinopoulos 2004, 2005, 2006).

Describing the shape of the individual or the mean growth curves were first attempted using

simple polynomial or logistic models. Jenss and Bayley described growth in the first six years

using a four-parameter logistic model (Jenss and Bayley 1937), and Gompertz curves (Benjamin

1825) were used to describe growth from six years to maturity. A triple–logistic model (Bock
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and Thissen 1976) was able to parameterize growth from birth to maturity by modifying a

previous double–logistic model (Bock et al. 1973), which partitioned growth into pre-pubertal and

adolescent components (El Lozy 1978). The family of polynomial models for infant growth were

proposed by Royston and Altman (1994), but they lack flexibility in shape compared to logistic

model. The Infant–Childhood–Pubertal (ICP) model by Karlberg (Karlberg 1989) considers

three separate phases of growth. The five-parameter Preece-Baines model that describes growth

from birth to adulthood is still widely used (Preece and Baines 1978). The parameters estimated

in these methods are shown to have physiological interpretability.

Other attempts to model non-linear growth curves were based on splines and kernel estimations

(Gasser et al. 1984; Goldstein 1991; Altman 1992). Here, the optimal number of parameters to

describe the shape and the variation of the curves are estimated from the data at hand and thus

provides high flexibility but lacks biological interpretability. In the widely used mixed-effects

models, a few parameters are fixed for the entire population, called the fixed effects, and some

parameters are allowed to vary between the individual, called the random effects. They are able

to capture the individual variation as well the population trend in a concise manner. A recent

mixed-effects model named SuperImposition by Translation And Rotation (SITAR) by (Cole

et al. 2010) describes individual curves as a transformation of the average growth curves using

only three random effects parameters. These parameters are also found to be physiologically

relevant.

Growth curves are used clinically to assess landmark physiological events during growth and

development. A major event during childhood and adolescence is the pubertal growth spurt; this

is prominent in the height velocity curves. Pubertal spurts are generally characterised by two

components: one is the peak height velocity (PV) and the other is the age at peak height velocity

(APV), with a very distinct shape in boys and girls (Tanner 1962). A smaller growth spurt is

also observed before puberty in many children between 5 to 9 years (mid-growth spurt), (Tanner

1962; Tanner and Cameron 1980). Recently, Cole (2020) reported similar growth spurt in the

Avon longitudinal study of parents and children (ALSPAC) (Boyd et al. 2012), in a subgroup of

boys with late APV at 9 years. However, it is not clear whether this is a model artefact or a

biologically relevant observation. While a few studies report a mid–growth spurt in both sexes,

they are often more pronounced in boys (Molinari et al. 1980). It is useful to note that while

pubertal growth peaks are well characterised by SITAR and GAMLSS (Cole 2020; Kelly et al.

2014; de Onis et al. 2011; Khadilkar et al. 2019), mid-growth spurt has not been fitted with these
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models previously.

In this thesis, we construct growth curves and charts using the SITAR (Cole et al. 2010) and

GAMLSS (Rigby and Stasinopoulos 2005) models using a longitudinal height data set of Indian

children and adolescents. The SITAR model describes the shape of growth curve and is geared

up to detect subtle changes in growth. The GAMLSS model describes how we can characterise

the distribution of height in the given population.
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Commentary

In this chapter, we introduce two models describing the lower RMR/BM observed in the

Indian population. Model 1 predicts a lowered relative mass of four major organs explaining the

observed RMR/BM in the Indian population. The theoretical predictions for liver and kidney

mass were assessed in a pilot validation study. When tested for significant difference between the

Indian and Caucasian population, although the relative kidney mass was lower, the relative liver

mass was not. Further, we present an alternate model (Model 2) to show that the Indian data

can be explained by the changes in body composition alone. In this section we discuss some of

the comments raised by an external examiner in detail.

The pilot validation study for Model 1 was carried out in children aged 6 to 8 years by

measuring their liver and kidney mass using ultrasonography. Prior research indicates that when

individuals experience early-life stress during critical periods of growth, for instance, during fetal

growth due to maternal malnutrition or oxygen deprivation, there’s often a hierarchical trade-off

observed in organ growth. For instance, growth of organs such as liver, kidney or pancreas are

sacrificed to spare the growth of critical organs like the brain (Hales and Barker 1992; Latini

et al. 2004; Barker 2004; Baker et al. 2010). This trade-off is generally irreversible later, and

becomes a part of the physiological phenotype. For example, the number of nephrons in the

kidneys is established at birth, irrespective of the later growth (Luyckx and Brenner 2005). This

hierarchical preservation of tissues and organs under stress, which may be pre-natal in origin,

can be observed during early childhood and adolescence as well. Thus, in our pilot study, we

examined the compromise in growth of sensitive organs like the liver and kidney between Indian

and Caucasian children. Since the evidence so far suggests that there is a protective mechanism in

place for critical organs, excluding the brain from the validation study is unlikely to substantially

impact the conclusions drawn in the current study.

Further, from Figure 3.1, we observe that the relative organ mass of the kidney and liver

remains relatively constant from 6 to 20 years of age, which suggests that the results from the

pilot study with subjects aged 6 to 8 years (RMR-USG dataset) could be extrapolated to the

older age groups (9 to 18 years) in the MCS dataset used to develop the model.

Relative cellularity is the ratio of cellularity (TBK/FFM) in children to that of adults. Fomon

et al. (1982) suggests that the TBK values in children younger than 10 years differed from the
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adult TBK values. However, Pierson (2005) (based on the table provided by Wang (2012))

suggests that the TBK levels for children older than 11 years and adults remained the same.

Based on the data compiled by Wang (2012), it can be observed that the relative cellularity rises

from 0.83 to 0.99 throughout childhood, eventually matching the adult level (i.e., 1.0) in early

adolescence.

The organ mass values used in our study were obtained from Wang (2012), which, regrettably,

did not provide additional characteristics of the subjects. Unfortunately, despite our diligent

efforts, we were unable to access the original article by Altman and Dittmer (1962).

With respect to the Model 2, a lower RMR/BM in Indian children could arise from different

proportions of lean to fat mass in the Indian population. For instance, previous studies have

shown differences in the body composition of the Indian population, with a tendency for Indian

adults to exhibit elevated levels of overall and abdominal body fat in individuals who may

outwardly appear ‘thin’. This phenotype could stem from prenatal factors and continue through

childhood and adolescence, potentially increasing the risk for insulin resistance syndrome in the

Indian population (Lubree et al. 2002; Yajnik et al. 2003).

From an evolutionary point of view, the higher adiposity could be a predictive adaptive

response. Theories proposed by Hales and Barker (1992) and Wells (2011) suggest that this

could be an adaptive response that emerges in expectation of an unfavorable adult environment

that has an influence on fetal growth, which is likely to be imprinted on development during

childhood.

An altered body composition with higher fat reserves is expected to play a protective role in

nutrition poor situations; however, is found to have a deleterious effect in the modern obesogenic

environments leading to higher risk for metabolic and cardiovascular diseases (Hales and Barker

1992; Wells 2011). For instance, Indian babies who were born small but relatively fat are found

to have increased risk for insulin resistance and cardiovascular risks (Yajnik 2002).

However, future studies need to evaluate if there are any protective aspects of the fat

reserves on body composition in the context of modern nutritional sources with low quality

fat. Furthermore, the effect of the type of fat tissue, brown adipose tissue versus white adipose

tissue also needs to be considered to ascribe a protective or deleterious role of the altered body

composition.
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3.1 Introduction

Malnutrition in developing countries, such as India, is often paradoxically characterized

the simultaneous prevalence of undernutrition and rising overweight and obesity in children

and adolescents (WHO 2016; NCD Risk Factor Collaboration (NCD-RisC) et al. 2017). One

approach to studying malnourishment is through assessing the energy intake and expenditure of a

population. Energy expenditure, in particular, is predominantly determined by the physiology of

the individual and varies significantly,both within and across populations (Henry 2005; Johnstone

et al. 2005). For instance, a 200 kcal per day difference in energy intake was sufficient to explain

the excess weight of US children in 2003-2006 compared to 1976-1980 (Hall et al. 2013). It is

necessary to understand factors leading to variation in energy expenditure to create personalised

interventions to tackle the double burden of malnutrition. We note that the World Health

Organisation’s (WHO) recommendations for energy requirements (FAO/WHO/UNU 2004) are

based on studies that overestimate energy expenditure by 12% in Indian population (Henry

2005). Here we are interested in developing models that accurately describe the (resting) energy

expenditure in Indian children.

A primary component of energy expenditure is the resting energy expenditure (REE) or the

resting metabolic rate (RMR), which measures the energy required to maintain the vital body

functions at rest. RMR is measured through direct or indirect calorimetry (De B. Weir 1949) under

standard conditions such as in the post-absorptive state, in wakefulness, in the absence of any

physical activity and diseases, minimal emotional disturbance and in a thermoneutral environment

(22-26 °C). Phenomenological models developed on a sample population are frequently used to

estimate RMR. A large number of regression models for RMR have been based on anthropometric

and body composition factors for nearly a century (FAO/WHO/UNU 1985; Aub and Du Bois

1917; Cunningham 1980; Harris and Benedict 1918; Henry 2005; Katch et al. 1990; McMurray

et al. 2014; Kleiber 1932; Bedale 1923; Owen et al. 1986, 1987; Schofield 1985; Mifflin et al. 1990).

These models find that fat free mass (FFM) is the single largest predictor of RMR, followed by

28



fat mass (FM), age, and sex. However, RMR is found to be highly variable between individuals

in a population (Henry 2005; Johnstone et al. 2005). Overall models based on body composition

have been of limited success, as they are able to explain only about 60 − 80% variation in RMR.

An alternate strategy for modelling is to challenge the assumption that the body mass is

metabolically homogeneous, as is inherent in predicting RMR from linear models of FFM or

body mass. FFM or body mass is composed of organs and tissues of varying metabolic activity,

which together contribute to whole-body RMR. Gallagher et al. (1998) partition RMR as the

sum of metabolic rates of a number of major organs and tissues constituting the body mass. The

metabolic rates of individual organs were calculated as the product of measured organ mass and

the metabolic rate per unit mass (specific metabolic rate) of each organ, which was estimated in

vivo by Elia (1992). The Gallagher model was able to explain 80-98% variation of RMR in several

studies in adults (Bosy-Westphal et al. 2004, 2008; Wang et al. 2001, 2005, 2010a; Wang 2012;

Wang et al. 2010b; Müller et al. 2011). However, the Gallagher model was found to under-predict

RMR in children (Wang et al. 2010a; Hsu et al. 2003). Wang (2012) modified the Gallagher

model to study how RMR/BM varies in children from birth to adulthood, and described the

mean RMR/BM (𝑅2 = 0.99) in a reference Caucasian dataset (Talbot 1938). Here we ask if the

Wang model can describe RMR/BM in an Indian population?

Studies on metabolic rates in Indian children are scarce (Patil and Bharadwaj 2013; Swami-

nathan et al. 2018). Predictive equations developed for Caucasian populations (Harris and

Benedict 1918; FAO/WHO/UNU 1985) have been reported to overpredict metabolic rates in

Indian adults (Soares et al. 1998; Henry 2005), however, they continue to be used to predict

RMR in Indian children (Srivastava et al. 2017; Esht et al. 2018; Indian Council of Medical

Research (ICMR) 2010). Previous studies in Indian adults (Mason and Benedict 1931; Mason

et al. 1963; Mukherjee and Gupta 1931; Krishnan and Vareed 1932; Rahman 1936; Rajagopal

1938; Niyogi et al. 1939; Kumar et al. 1961) have shown that the measured RMR per unit body

surface area in Indian population is 5-18% lower than the Harris-Benedict (Harris and Benedict

1918) standards. On the other hand, Soares et al. (1998) has reported no significant difference in

RMR adjusted for FFM in males and RMR adjusted for FFM and FM in females, between 18

to 30 years old Indian and Australian population. Moreover, Soares et al. (1998) had observed

a higher RMR/FFM in Indian population than the Australian population; and the reason was

speculated to be due to a higher proportion of organ mass within FFM compared to muscle mass,

but this has not been verified. There is a clear absence of literature on RMR in current Indian
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population. We study the influential model of RMR/BM due to Wang in Caucasian children

closely to understand the determinants of RMR in Indian children.

In our study, a naive application of the Wang model clearly overestimates the mean RMR/BM

observed in Indian children. We assess two major modifications of the model aimed at revealing

the mechanistic basis of the lower RMR/BM. We first calibrate the relative masses of the four

major organs to the observed RMR/BM, followed by a pilot study to validate organ mass

predictions. Organ sizes were not found to be uniformly small, as predicted by model fits. Next

we vary the residual mass, to show that this can equivalently explain whole-body RMR/BM.

In other words, our paper re-evaluates the role of the relative mass of four major organs and

the metabolic contribution of residual mass in determining RMR/BM in an Indian population.

We conclude that either model is useful as phenomenological descriptions of RMR varying with

age in Indian children. However, identifying the physiological determinants of variation in RMR

continues to be an elusive problem.

3.2 Methods

3.2.1 Datasets

The following datasets were used in the study:

3.2.1.1 Multi-Centre Study (MCS) dataset

MCS is a dataset on 495 healthy school going children (235 girls) aged 9 to 19 years from

multiple centres in India, which is a subset of data collected as a part of a previous study (Khadilkar

et al. 2019). Anthropometric, body composition and metabolic variables such as the height,

weight, fat mass (FM), fat-free mass (FFM) and RMR of the subjects were measured. Fitmate

GS (COSMED Srl - Italy) was used to measure RMR by indirect calorimetery. Fitmate GS

has been previously validated in healthy adults by Nieman et al. (2006) and Vandarakis et al.

(2013). The machine was routinely calibrated according to manufacturer recommendations, and

automatic oxygen sensor calibration was carried out before each measurement. Throughout the

measurement, the child remained seated, and he/she was asked to relax, and it was ensured

that the child remained awake. The test was considered complete after achieving steady state.

Body composition was assessed using Bioelectrical Impedance Analyzer (BIA; Tanita Model
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BC-420MA), and the child was asked to void before the measurement (Chiplonkar et al. 2017;

Kyle et al. 2004). The physical characteristics of the subjects are given in Table. 3.1.

Written consent was obtained from parents of the children and subjects above 18 years, and

assent was obtained from children above 7 years. Deidentified data were used for all the analyses.

Ethics permission for conducting this multicentric study was granted by the Ethics Committee,

Jehangir Clinical Development Centre Pune. A waiver for secondary data analysis was issued

by the Ethics Committee for Human Research at the Indian Institute of Science Education and

Research Pune.

3.2.1.2 RMR-USG dataset

In this study, we measured anthropometry, RMR and organ mass (liver and kidney) of nine

healthy girls and boys in the age group 6 to 8 years recruited from a school in Western India. The

age group 6 to 8 years was selected so that variation in RMR due to pubertal growth spurt can be

avoided. Written consent was obtained from parents of the children. Deidentified data were used

for all the analyses. RMR is measured using indirect calorimetry (Fitmate GS, COSMED Srl -

Italy) under the standard conditions (see above). The liver and kidney volume in the subjects were

measured using ultrasonography (Voluson P8 BT 16, GE Healthcare). The liver volume was ex-

amined in the supine position and kidney volume in lateral decubitus position. The measurements

were taken during deep inspiration. The measured organ volume was converted to mass as density

× volume. The density of liver and kidney in the Indian population is assumed to be 1.162 and 1.05

(𝑘𝑔/𝑐𝑚3) respectively (Menzel et al. 2009). A summary of RMR-USG dataset is given in Table 3.2.

The MCS (3.2.1.1) and RMR-USG (3.2.1.2) studies were carried out as per relevant guidelines

and regulations.

Variables Boys Girls
𝑛 Mean ± SD Range 𝑛 Mean ± SD Range

Age (𝑦𝑒𝑎𝑟𝑠) 260 13 ± 2 9.2 - 19.8 235 13 ± 2 9 - 18.9
Weight (𝑘𝑔) 260 43.5 ± 14.7 20.2 - 95 235 41.8 ± 11.9 18-76
Height (𝑐𝑚𝑠) 260 152.6 ± 13.4 125.5-184.2 235 149.2 ± 9.5 122.8-173.7
BMI (𝑘𝑔 𝑚−2) 260 18.2 ± 3.9 9.8 - 31.4 235 18.5 ±3.7 10.3 - 30.6
RMR (𝑘𝑐𝑎𝑙 𝑑𝑎𝑦−1) 260 1212 ± 263 716 - 2370 232 1066 - 203 612 - 1846
RMR/BM 260 29.5 ± 6.7 15.6 - 51.5 232 26.8 ± 6.3 14.2 - 52.1
(𝑘𝑐𝑎𝑙 𝑘𝑔−1𝑑𝑎𝑦−1)
Fat mass (𝑘𝑔) 257 8.1 ± 7.8 0.6 - 40.3 234 11.1 ± 7.1 0.5 - 38.2
Fat free mass (𝑘𝑔) 257 35.8 ± 9.3 20.8 - 63.9 234 31.2 ± 6.0 17.5 -51.7

Table 3.1: Mean ± standard deviation and the observed range of physical characteristics of the
subjects in the MCS dataset. The sample size (𝑛) is given for each variable. BMI: body mass
index.
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Variables Boys (𝑛=9) Girls (𝑛=9)

Mean ± SD Range Mean ± SD Range

Age (𝑦𝑒𝑎𝑟𝑠) 7.1 ± 0.8 6.3 - 8.1 7.6 ± 0.8 6.5 - 8.7

Weight (𝑘𝑔) 20.2 ± 3.2 17.5 - 26.5 18.3 ± 2.3 15.0 - 22.4

Height (𝑐𝑚𝑠) 119.0 ± 7.6 109.5 - 128.4 119.7 ± 8.0 104.9 - 131.9

BMI (𝑘𝑔 𝑚−2) 14.2 ± 1.3 12.7 - 16.3 12.8 ± 0.9 11.5 - 14.2

RMR (𝑘𝑐𝑎𝑙 𝑑𝑎𝑦−1) 1004 ± 189 771 - 1366 835 ± 187 552 - 1128

RMR/BM (𝑘𝑐𝑎𝑙 𝑘𝑔−1𝑑𝑎𝑦−1) 50.5 ± 11.0 37.1 - 70.4 45.8 ± 9.1 28.9 - 58.2

Liver mass (𝑘𝑔) 0.66 ± 0.14 0.47 - 0.92 0.53 ± 0.12 0.40 - 0.78

Kidney mass (𝑘𝑔) 0.09 ± 0.02 0.07 - 0.12 0.08 ± 0.01 0.06 -0.10

Table 3.2: Mean ± standard deviation and the observed range of physical characteristics of
subjects in the RMR-USG dataset.

3.2.1.3 Relative organ mass (𝑀𝑖/𝐵𝑀) data

A prominent dataset for reference physiological variables in North American population

compiled by Altman and Dittmer (1962) was used for organ weights from birth to maturity. To

the best of our knowledge, this was the only dataset that provided liver, brain, heart and kidney

weights of children in age groups one year apart from birth to adulthood. The reference relative

mass (𝑀𝑖/𝐵𝑀) of liver, kidney, heart and brain is illustrated in Figure 3.1.
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Figure 3.1: Relative organ mass (𝑀𝑖/𝐵𝑀) of brain, liver, heart and kidney reported by Altman
and Dittmer (1962) in North American children.

3.2.2 Model

A mechanistic model for RMR/BM in children and adolescents due to Wang (2012) can be

written as
𝑅𝑀𝑅
𝐵𝑀

= 𝑅𝑐 ∑ 𝐾𝑖
𝑀𝑖
𝐵𝑀

, (3.1)
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where 𝑅𝑐 is the relative cellularity, 𝐾𝑖 is the specific metabolic rate of an organ (𝑖 for brain,

heart, kidney, liver and the residual mass) and 𝑀𝑖/𝐵𝑀 is the relative mass of the organ ‘𝑖’ with

respect to the body mass (𝐵𝑀). Residual mass is obtained by subtracting the sum of the mass

of four organs from the body mass. These physiological parameters in Eq. 3.1 are described in

detail as follows:

3.2.2.1 Relative cellularity (𝑅𝑐)

The ratio of body cell mass (BCM) to fat-free mass (FFM) is defined as the whole body

cellularity, which quantifies the metabolically active portion of FFM. Whole body cellularity

is thought to change in the course of life and is assumed to be smaller in children than young

adults (Wang et al. 2005, 2010a). Hence the factor ‘relative cellularity’ (𝑅𝑐), which is defined as

the ratio of 𝐵𝐶𝑀/𝐹𝐹𝑀 in children to that of adults, is incorporated in Eq. 3.1. Here, 𝐵𝐶𝑀 is

assumed to be proportional to the total body potassium (TBK) and the change in 𝐵𝐶𝑀/𝐹𝐹𝑀

in children is estimated through 𝑇 𝐵𝐾/𝐹𝐹𝑀. In the reference Caucasian adults, (Snyder et al.

1975) 𝑇 𝐵𝐾/𝐹𝐹𝑀 (mmol/kg) is reported to be 68.1 for men and 64.2 for women (Forbes 1987).

Thus in children, 𝑅𝑐 is approximated as (𝑇 𝐵𝐾/𝐹𝐹𝑀)/68.1 in boys and (𝑇 𝐵𝐾/𝐹𝐹𝑀)/64.2 in

girls, in a given age group. Data on 𝑅𝑐 from birth to adulthood were compiled by Wang (Wang

2012) based on age-related changes in total body potassium (TBK) relative to FFM, from studies

by Fomon et al. (1982) and Pierson (2005).

3.2.2.2 Specific metabolic rate (𝐾𝑖)

Specific metabolic rate (kcal/kg/day) of an organ ‘𝑖’ is the metabolic rate per unit mass of

that organ, denoted as 𝐾𝑖. The specific metabolic rate (𝐾𝑖) of organs in adults was measured

in vivo by Elia (1992). Elia estimated the oxygen consumption of organs in vivo by measuring

the difference in arterio-venous oxygen concentration across tissue and the blood flow rate. The

𝐾𝑖 (𝑘𝑐𝑎𝑙 𝑘𝑔−1𝑑𝑎𝑦−1) values are reported as 200 for liver, 240 for the brain, 440 for heart and

kidneys, 13 for skeletal muscle mass, 4 for fat mass and 12 for residual mass in adults. 𝐾𝑖 values

are thought to be higher in children (Chugani et al. 1987; Wang et al. 2005). Hence the adult

𝐾𝑖 values estimated in vivo by Elia (Elia 1992) are adjusted in the Wang model with an age

depending factor ‘relative 𝐾𝑖’ (Wang 2012), which is the ratio of 𝐾𝑖 values in children to that of

adults. Relative 𝐾𝑖 values are assumed from surrogate physiological parameters (Wang 2012)

such as brain oxygen consumption (Chugani et al. 1987), heartbeat rates, and other physiological

parameters.
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3.2.3 Modified model of RMR/BM in Indian children.

Eq. 3.1 suggests that relative mass of organs (and tissues) and their specific metabolic rates

are the two major factors that determine the RMR/BM in children and adolescents. In this study,

we look at two particular sources of variation influencing the whole body RMR/BM. First, we

consider the variation in the relative mass of major organs, assuming the specific metabolic rates

of organs are constant (Elia 1992). Secondly, we consider the composition of residual mass and

its effect on the metabolic rate of relative residual mass and in turn on RMR/BM. We propose

two models for RMR/BM in Indian children as follows:

3.2.3.1 Model 1: adjusting the relative mass of high metabolic rate organs.

We modified Eq. 3.1 by adjusting the relative organ mass of four major organs (liver, kidney,

brain and heart) by a fraction 𝛿𝑖. We define 𝛿𝑖 as the ratio of relative organ mass (𝑀𝑖/𝐵𝑀) in

the Indian population to the 𝑀𝑖/𝐵𝑀 in the Caucasian population. Assuming 𝑀𝑖/𝐵𝑀 of major

organs (liver, brain, kidney, heart) are adjusted by the same fraction 𝛿, Eq. 3.1 can be written

for the Indian population as

𝑅𝑀𝑅𝛿/𝐵𝑀 = ( 𝛿 (𝐾𝑙𝑖𝑣𝑒𝑟
𝑀𝑙𝑖𝑣𝑒𝑟
𝐵𝑀

+ 𝐾ℎ𝑒𝑎𝑟𝑡
𝑀ℎ𝑒𝑎𝑟𝑡

𝐵𝑀
+ 𝐾𝑏𝑟𝑎𝑖𝑛

𝑀𝑏𝑟𝑎𝑖𝑛
𝐵𝑀

+ 𝐾𝑘𝑖𝑑𝑛𝑒𝑦
𝑀𝑘𝑖𝑑𝑛𝑒𝑦

𝐵𝑀
) + 𝐾𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑚𝑎𝑠𝑠

𝑀 ′
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑚𝑎𝑠𝑠

𝐵𝑀
) 𝑅𝑐,

(3.2)

where
𝑀 ′

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑚𝑎𝑠𝑠
𝐵𝑀

= 1 − 𝛿 (𝑀𝑙𝑖𝑣𝑒𝑟
𝐵𝑀

+ 𝑀ℎ𝑒𝑎𝑟𝑡
𝐵𝑀

+ 𝑀𝑏𝑟𝑎𝑖𝑛
𝐵𝑀

+
𝑀𝑘𝑖𝑑𝑛𝑒𝑦

𝐵𝑀
), (3.3)

𝑀 ′
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑚𝑎𝑠𝑠

𝐵𝑀
is the residual mass after adjusting the relative mass of major organs by a factor

𝛿, 𝑅𝑐 is the relative cellularity, and 𝐾𝑖 is the specific metabolic rate of an organ.

3.2.3.2 Model 2: adjusting the metabolic contribution from relative residual mass

In Model 2, RMR/BM in Eq. 3.1 is modified under the assumption that the metabolic

contribution from residual mass in the Indian population is lower by factor 𝛿′ compared to the

Caucasian population. Thus, the alternate model for RMR/BM can be written as

𝑅𝑀𝑅𝛿′/𝐵𝑀 = ( 𝐾𝑙𝑖𝑣𝑒𝑟
𝑀𝑙𝑖𝑣𝑒𝑟
𝐵𝑀

+ 𝐾ℎ𝑒𝑎𝑟𝑡
𝑀ℎ𝑒𝑎𝑟𝑡

𝐵𝑀
+ 𝐾𝑏𝑟𝑎𝑖𝑛

𝑀𝑏𝑟𝑎𝑖𝑛
𝐵𝑀

+𝐾𝑘𝑖𝑑𝑛𝑒𝑦
𝑀𝑘𝑖𝑑𝑛𝑒𝑦

𝐵𝑀
+ 𝛿′ 𝐾𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑚𝑎𝑠𝑠

𝑀𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑚𝑎𝑠𝑠
𝐵𝑀

) 𝑅𝑐,
(3.4)
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where
𝑀𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑚𝑎𝑠𝑠

𝐵𝑀
= 1 − (𝑀𝑙𝑖𝑣𝑒𝑟

𝐵𝑀
+ 𝑀ℎ𝑒𝑎𝑟𝑡

𝐵𝑀
+ 𝑀𝑏𝑟𝑎𝑖𝑛

𝐵𝑀
+

𝑀𝑘𝑖𝑑𝑛𝑒𝑦

𝐵𝑀
), (3.5)

𝑅𝑐 is the relative cellularity, 𝐾𝑖 is the specific metabolic rate and 𝑀𝑖/𝐵𝑀 is the relative mass of

respective organs.

3.2.4 Statistical analysis

All descriptive data are reported as the mean ± standard deviation (SD). The measured

and the theoretical values were compared using the paired t-test with the significance level

set at 𝛼 = 0.05. The relative organ mass between the two population was compared through

non-parametric Wilcoxon signed-rank test, with the significance level set at 𝛼 = 0.05. All the

analyses were carried out using MATLAB R2019b (MATLAB 2019) and R version 3.6.2 (R Core

Team 2019).

3.3 Results

The measured RMR per unit body mass (𝑘𝑐𝑎𝑙 𝑘𝑔−1𝑑𝑎𝑦−1) in Indian children is denoted

as 𝑅𝑀𝑅𝑀/𝐵𝑀. 𝑅𝑀𝑅𝑇/𝐵𝑀 represents the theoretical expectation calculated from the Wang

model (Eq. 3.1) with the reference organ weights data reported by Altman and Dittmer (1962).

Similarly, RMR/BM calculated from Model 1 (Eq. 3.2) is denoted as 𝑅𝑀𝑅𝛿/𝐵𝑀 and from

Model 2 (Eq. 3.4) as 𝑅𝑀𝑅𝛿′/𝐵𝑀. Subjects are grouped one year apart in the analysis. We

employ the following notation: Children above the age of 10 years but less than 11 are denoted

for brevity as age group 10, and so on.

3.3.1 RMR/BM in Indian children is significantly lower than

Caucasian children

We studied RMR/BM in Indian children using a mechanistic model due to Wang (2012)

(Eq. 3.1), which partitions total body mass into four major organs and residual mass.

The mean 𝑅𝑀𝑅𝑀/𝐵𝑀 measured in the MCS cohort, stratified by age, was compared with

the theoretical 𝑅𝑀𝑅𝑇/𝐵𝑀 from Eq. 3.1 calculated with the relative mass of the four major
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organs reported for the Caucasian population (Altman and Dittmer 1962). In Figure 3.2a

and 3.2b the solid curve shows the mean measured 𝑅𝑀𝑅𝑀/𝐵𝑀 (𝜇±𝑆𝐷); the dotted curve is the

theoretical 𝑅𝑀𝑅𝑇/𝐵𝑀 (Wang model) and is representative of the mean RMR/BM in Caucasian

children (Talbot 1938; Wang 2012). In boys, the measured 𝑅𝑀𝑅𝑀/𝐵𝑀 is significantly lower

than the theoretical 𝑅𝑀𝑅𝑇/𝐵𝑀 in the age groups 11, 13, 14, 15 and 16 years (𝑃 < 0.05); but

not at 10 and 12 years (𝑃 = 0.7 and 0.09, respectively). In girls, 𝑅𝑀𝑅𝑀/𝐵𝑀 is significantly

lower than 𝑅𝑀𝑅𝑇/𝐵𝑀 in all the age groups from 10 years to 16 years; 𝑃 < 0.05 for 10 years

and 𝑃 < 0.001 for 11 to 16 years.

We thus observe a significantly lower mean RMR/BM in Indian adolescents (232 girls and

260 boys) compared to the reference Caucasian adolescents (Talbot 1938), except in boys aged 9

to 11 years and 12 to 13 years.
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Figure 3.2: The solid curve shows the mean (±𝑆𝐷) RMR/BM measured in each age group,
and the dotted line shows the mean theoretical 𝑅𝑀𝑅𝑇/𝐵𝑀 based on Eq. 3.1 for the Caucasian
population in boys (3.2a) and girls (3.2b). ns: not significant, *: 𝑃 < 0.05, **: 𝑃 < 0.01 and
***: 𝑃 < 0.001. 9 and 10 years groups were combined for the statistical tests. The analysis is
not done when the number of samples was less than 10 (17 years and above).

3.3.2 A modified Wang model of RMR/BM for Indian children

Measured 𝑅𝑀𝑅𝑀/𝐵𝑀 in the MCS dataset is significantly lower than the mean 𝑅𝑀𝑅𝑇/𝐵𝑀

in the Caucasian population. In accordance with Eq. 3.1, 𝑅𝑀𝑅𝑇/𝐵𝑀 is determined by the

relative mass of four major organs, with smaller (larger) 𝑀𝑖/𝐵𝑀 leading to smaller (larger)

𝑅𝑀𝑅𝑇/𝐵𝑀. Thus, we hypothesise that the lower mean RMR/BM between the Indian and the

Caucasian children is due to a lower mean relative mass of the four major organs in the Indian

population.
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We define 𝛿𝑖 (see Section 3.2.3.1 below) as the ratio of relative organ mass (𝑀𝑖/𝐵𝑀) in the

Indian population to the 𝑀𝑖/𝐵𝑀 in the Caucasian population. Eq. 3.1 is modified to Eq. 3.2 by

adjusting the mass of major organs by a fraction 𝛿 (Model 1). We optimised 𝛿 by minimising the

mean squared error (MSE) between the measured and the model (Eq. 3.2), for 𝛿 varying from 0

to 1. The optimal 𝛿 values corresponding to the least MSE was found to be 𝛿 = 0.90 in boys and

𝛿 = 0.77 in girls.

Model 1 (Eq. 3.2) evaluated with optimal 𝛿 was then compared with the measured 𝑅𝑀𝑅𝑀/𝐵𝑀,

as shown in Figure 3.3. The dotted curve shows the mean 𝑅𝑀𝑅𝛿/𝐵𝑀 calculated from Eq. 3.2

with 𝛿 = 0.90 in boys (Figure 3.3a) and 𝛿 = 0.77 in girls (Figure 3.3b). The solid curve shows

the measured 𝑅𝑀𝑅𝑀/𝐵𝑀 (𝜇± SD). We verify that the model is not significantly different from

the measured values, except in the age groups 10 and 15 years in boys and 15 years in girls.

Our modified Wang model (Eq. 3.2) is thus better suited to predicting RMR/BM in Indian

children compared to the naive Wang model (Eq. 3.1). Physiologically this implies that the

relative organ masses in the Indian population ought to lower by a factor 0.90 in boys and 0.77

in girls compared to reference relative organ mass in the Caucasian population (Altman and

Dittmer 1962).
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Figure 3.3: The dotted curve is the adjusted RMR/BM calculated from Eq. 3.2 assuming that
the relative mass (𝑀𝑖/𝐵𝑀) of all the organs (liver, brain, kidney, heart) are smaller by a fraction
of 0.77 in girls and 0.90 in boys compared to that of Caucasian population (Altman and Dittmer
1962), that is with 𝛿 = 0.90 and 0.77 in Eq. 3.2 in boys and girls respectively. The solid curve
shows the mean measured 𝑅𝑀𝑅𝑀/𝐵𝑀 in MCS dataset. ns: not significant, *: 𝑝 < 0.05, **:
𝑝 < 0.01 and ***: 𝑝 < 0.001 (Compare Fig. 3.2)
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3.3.3 Relative kidney mass in 6 to 8 years old Indian children is

significantly lower but not relative liver mass.

Model 1 (Eq. 3.2) predicts that the relative mass of major organs in the Indian population is

lower by 10% in boys and 23% in girls compared to the Caucasian population. We measured

the liver and kidney masses in 9 girls and 9 boys aged 6 to 8 year in the RMR-USG children to

validate the Model 1 predictions. The ratio of relative liver and relative kidney mass (𝑀𝑖/𝐵𝑀)

measured in the RMR-USG dataset compared to the corresponding 𝑀𝑖/𝐵𝑀 in the Caucasian

counterparts (Altman and Dittmer 1962) are denoted as 𝛿𝑙𝑖𝑣𝑒𝑟 and 𝛿𝑘𝑖𝑑𝑛𝑒𝑦, respectively. Figure 3.4

shows the 𝛿𝑙𝑖𝑣𝑒𝑟 and 𝛿𝑘𝑖𝑑𝑛𝑒𝑦 observed in the RMR-USG dataset. The mean (±𝑆𝐷) observed 𝛿𝑙𝑖𝑣𝑒𝑟

is 1.19 ± 0.28 in boys and 1.0 ± 0.16 in girls, and 𝛿𝑘𝑖𝑑𝑛𝑒𝑦 is 0.90 ± 0.097 in boys and 0.87 ± 0.10

in girls.

The 𝛿𝑘𝑖𝑑𝑛𝑒𝑦 observed in the RMR-USG dataset is significantly lower (P=0.009 in boys and

P=0.009 in girls; one-sided Wilcoxon signed-rank test). Consistent with Eq. 3.2 predictions, the

relative kidney mass measured in Indian children is found to be lower than that of reference

Caucasian children in the respective age groups. However, we failed to find any significant

difference in the observed 𝛿𝑙𝑖𝑣𝑒𝑟 (boys P=0.45 and girls P=0.91).

It is noteworthy that the 𝛿𝑘𝑖𝑑𝑛𝑒𝑦 predicted by Eq. 3.2 was close to the observed 𝛿𝑘𝑖𝑑𝑛𝑒𝑦:

𝛿𝑘𝑖𝑑𝑛𝑒𝑦 was observed to be 0.90 ± 0.097 compared to the prediction 0.9 in boys; in girls 𝛿𝑘𝑖𝑑𝑛𝑒𝑦

was observed to be 0.87 ± 0.10 compared to the predicted 0.77). However, the 𝛿𝑙𝑖𝑣𝑒𝑟 in both girls

and boys is higher than the optimal 𝛿 predicted by Eq. 3.2.

3.3.4 Alternate model of RMR/BM in Indian children based on

residual mass

Residual mass (the mass remaining after subtracting liver, brain, heart and kidney mass from

total body mass) constitutes a much larger part of the body mass compared to the sum of masses

of four major organs. The residual mass is composed mainly of skeletal muscle mass and fat

mass, along with lungs, spleen, gastrointestinal tract, connective tissue etc. Broadly, speaking,

skeletal muscle mass and the fat mass are the more malleable components of the body compared

to the sizes of the major organs. Moreover, the fat and muscle mass per cent in Indian children
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Figure 3.4: 𝛿𝑘𝑖𝑑𝑛𝑒𝑦 and 𝛿𝑙𝑖𝑣𝑒𝑟 observed in Indian children (9 girls and 9 boys), where 𝛿𝑖 denotes
the ratio of the relative mass of the organ 𝑖 measured in RMR-USG dataset to that of their
Caucasian counterparts (Altman and Dittmer 1962). The lower and upper whiskers indicate the
minimum and the maximum values; and the lower edge, middle line and the upper edge of the
box indicates the 25th percentile, median and the 75th percentile values, respectively. The dots
show the observed individual 𝛿 values.

is characteristically different from the Western population (Chiplonkar et al. 2017). This can

potentially account for the wide variation in RMR between children. To examine this possibility,

we next studied an alternate model of RMR/BM (Model 2) which takes into account the variation

in the metabolically active constituents of residual mass.

We modified Eq. 3.1 to Eq. 3.4 (Model 2), by incorporating a factor 𝛿′ which adjusts the

metabolic rate of relative residual mass in the Indian population. An optimal 𝛿′ was obtained by

minimising the mean squared error between the measured 𝑅𝑀𝑅𝑀/𝐵𝑀 and the 𝑅𝑀𝑅𝛿′/𝐵𝑀

calculated by Eq. 3.4 in the MCS dataset, for 𝛿′ ranging from 0 to 1. The 𝛿′ corresponding to

the least MSE is found to be 0.85 in boys and 0.65 in girls.

In Figure 3.5, the dotted curve shows the 𝑅𝑀𝑅𝛿′/𝐵𝑀 calculated from Model 2, with 𝛿′ = 0.85

in boys and 𝛿′ = 0.65 in girls (Figure 3.5b); and the solid curve shows the measured RMR/BM

(𝜇 ± 𝑆𝐷) in MCS dataset. In boys (Figure 3.5a), the dotted curve is not significantly different

from the mean measured 𝑅𝑀𝑅𝑀/𝐵𝑀 in the MCS dataset (solid curve), except in the age

groups 11 and 15 years (P=0.03 and 0.02, respectively). Similarly, in girls the solid curve is not

significantly different from the dotted curve, except in the age group 15 years (P=0.001).

𝛿′ can be interpreted physiologically as the effect of body composition differences on RMR/BM.

Thus Model 2 raises the hypothesis that the metabolic contribution from the relative residual

mass is reduced in the Indian children, lower by 15% in boys and 35% in girls, if the relative mass

of major organs is assumed to be similar in the two populations. This indicates that variation in

body composition could play a considerable role in determining RMR in Indian children.
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Figure 3.5: Measured RMR/BM (𝜇 ± 𝑆𝐷)is shown as the solid curve, and the dotted curve shows
the RMR/BM calculated from Eq. 3.4 with 𝛿′ = 0.85 in boys and 𝛿′ = 0.65 in girls, and reference
relative organ mass for the Caucasian population (Altman and Dittmer 1962).

3.4 Discussion

Resting metabolic rate (RMR) is a significant factor in determining energy balance, which

in turn critically influences the energy available for growth from birth to adulthood. The mean

RMR per unit body mass (RMR/BM) is not uniform across populations; Indian children have

significantly lower RMR/BM compared to their Caucasian counterparts. Not only are these

population differences not understood from a physiological standpoint, but inter-individual

variations are also poorly explained. Several models have been proposed over the years to try to

explain RMR through various anthropometric variables such as height, weight, fat and fat-free

mass. One such prominent model is the Katch-McArdle equation (Katch et al. 1990) which

computes RMR as due to fat-free mass: 𝑅𝑀𝑅 = 370 + (21.6𝐹𝐹𝑀). However, such models have

been reported to explain only about 60-80% of the intraspecific variation. An alternate strategy

is to explain the mean RMR of children clustered into one-year age groups. A very successful

model in this class is the Wang model, which achieves an 𝑅2 = 0.99. On the other hand, it is

unclear if the Wang model is readily applicable to other populations. In particular, the Caucasian

dataset modelled in the Wang study shows little variation in the age-stratified data, whereas a

much wider variability is expected, in general, in Indian children. In this study, we attempt to

modify the Wang class of models for application to Indian children. It is worth pointing out that

using linear regression models based on body composition, such as the Katch-McArdle equation,

we could only explain about 70% variation in the mean RMR/BM in an age group. We also

explored several other regression models based on body composition and anthropometry, but

they each explained only 30-60% of the inter-individual variation in RMR observed in Indian
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children (analysis not shown).

In this work we construct two models of RMR/BM in Indian children based on the Wang

model (Wang 2012), which describe the mean RMR/BM stratified by age phenomenologically. In

Model 1, we assume lower organ masses are responsible for the lower observed RMR; in Model 2,

residual masses are calibrated to the observed RMR. The coefficients of determination (𝑅2) in

explaining the mean measured RMR/BM for Model 1 and Model 2 are 0.84 and 0.85 in boys

and 0.95 and 0.97 in girls, respectively. The lower accuracy of these models in describing the

RMR/BM in Indian children compared to the Caucasian children (𝑅2 = 0.99) is consistent with

high variation in the observed RMR (ranging from 612 to 2370 𝑘𝑐𝑎𝑙 𝑑𝑎𝑦−1). It seems unlikely

that larger sample sizes would substantially improve the accuracy of the model.

Next, we ask if these models provide a physiological understanding of the lower RMR/BM

observed in Indian children. If the lower RMR/BM is due to a lower relative mass of four major

organs (liver, kidney, heart, brain) through a modified Wang model, Model 1 (Eq. 3.2) predicted

that the relative masses of the four major organs should be lower by 10% in boys and 23% in

girls. Our pilot study designed to test these predictions showed the relative kidney mass was

significantly lower but failed to find any significant difference in the relative liver mass. It is

interesting to note that a lower relative kidney mass in Indian children is consistent with the

Barker hypothesis (Almond and Currie 2011) and the observation of fewer nephrons in low birth

weight babies (Wlodek et al. 2008). On the other hand, failure to observe a significant difference

in relative liver weight could suggest a lower 𝐾𝑙𝑖𝑣𝑒𝑟 instead, which is consistent with lower 𝐾𝑖

values reported in South Asian females (Shirley et al. 2019). This challenges the applicability of

specific metabolic rates estimated, in particular, in Elia (1992), across racially and ethnically

diverse populations. One limitation of the current study is the assumption that brain and heart

masses are likely to be relatively conserved within an age group; due to practical difficulties,

these were not measured in our study.

To provide further contrast, we constructed Model 2, which analyses the influence of metabol-

ically active constituents of residual mass on RMR/BM. Model 2 predicts that the metabolic rate

of residual mass is lower by 15% in boys and 35% in girls in the Indian population compared to the

Caucasian population. Model 2 re-emphasizes the importance of body composition in explaining

variation in RMR. It is interesting that a century-long attempt to decipher the relationship

between body composition and RMR has not been very successful (FAO/WHO/UNU 1985; Aub

and Du Bois 1917; Cunningham 1980; Harris and Benedict 1918; Henry 2005; Katch et al. 1990;

41



McMurray et al. 2014; Kleiber 1932; Bedale 1923; Owen et al. 1986, 1987; Schofield 1985; Mifflin

et al. 1990; Corrigan et al. 2020). Thus, understanding the physiological underpinnings of Model

2 remains an open problem. Finally, we note that it is plausible that more complex formulations

than basing RMR on either organ mass or residual mass are necessary. One attractive approach

for future work is to employ data-driven machine learning strategies to discover these complex

relations.

We remark on some refinements of our work that might be possible in future studies. In

children, strict standard conditions for RMR measurement are difficult to achieve. The terms

basal metabolic rate (BMR), resting metabolic rate (RMR) and resting energy expenditure

(REE) are different measurements of the resting metabolism and are often used interchangeably;

however, RMR and REE can be 3-10% higher than BMR, as they follow less stringent settings

for the measurements (Psota and Chen 2013). In our study, RMR in children was not measured

following fasting conditions alone; hence RMR measured in our study could be higher than the

basal metabolism; such differences could be up to 100 kcal/day (Haugen et al. 2003). On the other

hand, indirect calorimeters have been reported to underestimate REE in some studies (Purcell

et al. 2020). We argue that the distinct patterns in boys and girls are of prime interest, and these

are less likely to be explained due to measurement bias alone. In the future studies, it will be

interesting to ask how resting metabolic rate measured not at a “pure resting” state will be more

pragmatic measure of RMR compared to the traditional RMR in clinical settings.

The ratio RMR/BM was used to to normalise the RMR with respect to BM. This ratio

has been used by several studies, including Wang (2012); Rahmandad (2014). However, other

authors have critiqued this ratio due to the observation that a linear RMR–BM relationship

extrapolates to a non-zero intercept (Tschöp et al. 2012; Poehlman and Toth 1995). While it is

not immediately clear if RMR should be normlized by BM, in our study, we follow the Wang

(2012) model closely. In other words, since our comparisons are with respect to the Wang model,

the appropriate variable in our work is the normalized RMR/BM.

The significance of our study is that a lower RMR/BM in Indian children can significantly

influence energy balance, and amplify the effects of lower or higher energy intakes. Swinburn

and colleagues (Swinburn et al. 2006) have reported that even a 10% change in total energy

expenditure (TEE; consists of RMR as a component) could lead to a 4.5% difference in mean

weight of children between two populations. The implications of lower RMR/BM in Indian

children on the dynamics of growth and development will be studied in the future, in particular,
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using quantitative models of growth and weight changes (Hall et al. 2013). The present study has

provided that basis through two phenomenological models; either of which can be used to estimate

age-wise mean RMR/BM in Indian adolescents. While predicting individual RMR/BM is far from

complete, the present models are likely to be referred to by clinicians and policymakers to infer

energy expenditure benchmarks in Indian children. Such studies are critical to understanding

the implications of a lower RMR/BM in growth, development, and life-course diseases.

3.5 Preprint

An earlier version of this article is available as a preprint at Areekal et al. (2021), Two Novel

Models Evaluating the Determinants of Resting Metabolic Rate in Indian Children, 16 February

2021, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-

196719/v1].
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CHAPTER 4

Modelling height growth in Indian

children and adolescents

Published as and adapted from:
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Cole (2022) Assessment of height growth in Indian children using growth centiles and growth
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4.1 Introduction

Growth centiles and growth curves represent two distinct ways to assess child growth. Height

centiles (or per-centiles (Galton 1885)) describe the distribution of height in a population with

respect to age; they are typically described through evenly spaced centiles on a growth chart,

where each centile is labelled according to the percentage of the population below it (Bowditch

1891; World Health Organization 2006). In contrast height growth curves show serial changes

in height with age in individuals, providing information on their height velocity as well as their

height attained (Tanner 1962; Komlos et al. 1992).

The two methods have evolved separately and they have different aims. Primarily they differ

in the type of data used for their construction. Growth centiles are based on cross-sectional

data, where the measurements—usually one per subject—are treated as independent, covering

the age range under study (Cole 2012). Growth curves, on the other hand, are developed from

longitudinal data, utilising repeated measurements for each child (Johnson 2015; Crozier et al.

2019).

The construction of growth centiles requires modelling the frequency distribution of the

measurement at each age and smoothing the centiles across age. The World Health Organiza-

tion (Borghi et al. 2006) recommends using Generalized Additive Models for Location Scale

and Shape (GAMLSS) (Rigby and Stasinopoulos 2005a) to construct the centiles, which models

moments of the distribution as smooth curves in age.

Growth curve modelling involves summarising the shape of individual curves as a mean curve.

Early methods—known as parametric or structural models—used parametric functions applied to

data for individuals to describe the curve shape (Jenss and Bayley 1937; Preece and Baines 1978;

Karlberg 1989). Later, semi-parametric or non-structural models were developed using fractional

polynomials or cubic splines to estimate the curve shape, optimising the number of parameters

based on the data—this provides extra flexibility but can lack biological interpretability (Hauspie

et al. 2004; Chirwa et al. 2014).

In the 1980s hierarchical mixed-effects models including fixed effects and random effects

became available, capturing both individual variation and the population trend in a unified

framework (Goldstein 1986). The growth curve model SuperImposition by Translation And

Rotation (SITAR) (Cole et al. 2010) is a semi-parametric hierarchical model with three subject-
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specific random effects that together explain up to 99% of the variance in longitudinal height

growth.

Even though growth centiles and growth curves are different, the GAMLSS and SITAR models

to fit them have some similarities; both are semi-parametric, using cubic splines to estimate

curve shape, and both—in their most common form—involve three underlying summary statistics

(three moments for GAMLSS and three random effects for SITAR). It is useful to fit the two

models to the same data, both to compare the shapes of the resulting centiles and curves, and to

emphasise their different purpose. A few previous studies have applied the two methods to the

same data (Blackwell et al. 2017; Spencer et al. 2018), but none have directly compared them.

Height centiles for Indian children have been available and regularly updated since 1992 (Agar-

wal et al. 1992; Khadilkar et al. 2007; Indian Academy Of Pediatrics Growth Charts Committee

et al. 2015; Khadikar et al. 2020). However there have been only small studies of Indian height

growth curves (Hauspie et al. 1980; Satyanarayana et al. 1989; de Onis et al. 2001; Mirzaei and

Sengupta 2012).

The motivation behind this study is threefold: i) to construct growth centiles and growth

curves using the GAMLSS and SITAR models, respectively, using a large, recent longitudinal

height dataset of Indian children aged between 6 and 18 years; ii) to compare the shapes of the

resulting curves, highlighting particularly the pubertal growth spurt, summarised as the mean

peak height velocity (PV) and the mean age at peak height velocity (APV), and iii) to compare

the centiles with others published for Indian children.

4.2 Methods

4.2.1 Data sets

The data came from the Pune School Children Growth study (PSCG), consisting of age and

height measurements of 1472 affluent urban children (798 boys and 674 girls) aged 3 to 18 years

living in Pune, Western India (Khadilkar et al. 2019). The data were collected annually between

2007 and 2013, with a median of 6 (range 1 to 6) measurements per subject. Height was measured

using a portable stadiometer (Leicester Height Meter; Child Growth Foundation, London, UK)

calibrated with a standard height rod. Further details of the PSCG data collection can be found
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in Khadilkar et al. (2019). Written informed consent was obtained from the parents of the

subjects, and verbal assent was obtained from subjects aged over 7 years. The data collection

was approved by the Ethics Committee of the Jehangir Clinical Development Centre Pune (dated

26th June 2007). Permission for secondary data analysis was obtained from the Ethics Committee

of the Indian Institute of Science Education and Research Pune (IECHR/Admin/2021/001).

4.2.2 Models

4.2.2.1 Cross-sectional GAMLSS model for growth centiles

Growth centiles are traditionally created using cross-sectional data, independent observations,

𝑦𝑖, for 𝑖 ∈ { 1, 2, …, 𝑁}. The state of the art method to construct growth centiles is Generalized

Additive Models for Location, Scale and Shape (GAMLSS) (Rigby and Stasinopoulos 2005a). The

data are assumed to come from a distribution 𝑓𝑌(𝑦) whose first four moments are the mean (𝜇),

standard deviation or coefficient of variation (𝜎), skewness (𝜈) and kurtosis (𝜏). Classical linear

regression assumes a normal distribution for 𝑓𝑌(𝑦), with 𝜇 linearly related to the explanatory

variable (here age), constant 𝜎, zero 𝜈 and 𝜏 fixed at 3. GAMLSS by contrast allows 𝑓𝑌(𝑦) to

be selected from a wide range of available distributions, and the moments can be specified as

functions of age or more generally.

The normal distribution (called NO in GAMLSS) estimates 𝜇 and 𝜎 as curves in age, and

ignores skewness and kurtosis. But for other distributions 𝜈 and/or 𝜏 can be explicitly estimated

from the data. For centile estimation GAMLSS has three distributions, which all raise 𝑦 to

Box-Cox power 𝜈. To model skewness, there is the Box-Cox Cole and Green distribution (BCCG),

while if both skewness and kurtosis are present, it has the Box-Cox power exponential (BCPE)

and Box-Cox 𝑡 (BCT) distributions (Cole and Green 1992; Rigby and Stasinopoulos 2004, 2006).

Note that the BCCG distribution is equivalent to the LMS method (Cole and Green 1992), where

𝜈 is called 𝜆 and transformed 𝑦 is standard normally distributed. With BCPE, transformed

𝑦 assumes a standard power exponential distribution, and with BCT it follows a Student’s 𝑡

distribution. GAMLSS fits the three distributions with identity links for 𝜇 and 𝜈, and a log link

for 𝜎. The distributions can also be fitted with a log link for 𝜇, denoted by GAMLSS as BCCGo,

BCPEo, and BCTo, respectively. The spline curves in age for each moment were fitted using

penalised B-splines or P-splines (Eilers and Marx 1996), with the default degrees of freedom (𝑑𝑓)

estimated by cross-validation.
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Pseudo-velocity curves were constructed for the GAMLSS models by differentiating the

median (𝜇) curves, and APV and PV were identified as the age and value of peak “velocity”;

note that this does not represent true velocity as the data are cross-sectional, but for simplicity

it is referred to here as velocity.

Despite being longitudinal, the PSCG data were treated as cross-sectional for the GAMLSS

analysis. With balanced data such as the PSCG this works fine, as the centiles are unbiased.

However they are less precise than for cross-sectional data, being based on fewer subjects.

4.2.2.2 Longitudinal SITAR model for growth curves

The SuperImposition by Translation And Rotation (SITAR) model (Cole et al. 2010) describes

the height 𝑦𝑖,𝑗 of individual 𝑖 (where 𝑖 ∈ { 1, 2, …, 𝑛}) at time 𝑡𝑗 as,

𝑦𝑖,𝑗 = 𝑎0 + 𝛼𝑖 + 𝐻(
𝑔(𝑡𝑗) − 𝑏0 − 𝛽𝑖

exp(−𝑐0 − 𝛾𝑖)
) + 𝜖𝑖, (4.1)

where 𝑎0, 𝑏0, and 𝑐0 are fixed effects, 𝛼𝑖, 𝛽𝑖 and 𝛾𝑖 are subject-specific random effects named

size, timing and intensity, respectively, 𝑔(𝑡) denotes a link function for age such as the log or

power transformation, 𝐻(𝑡) is the population average height curve fitted using a natural cubic

B-spline and 𝜖 is the independent and identically distributed (i.i.d.) random error term. The

random effects are assumed to be normally distributed with SD estimated from the sample. The

B-spline curve 𝐻(𝑡) has a number of knots which can be tuned by optimising their number and

position on the age scale—this defines the degrees of freedom (𝑑𝑓) of the curve.

The three subject-specific random effects can be interpreted biologically as follows: size 𝛼𝑖

represents the subject’s offset compared to mean height, that is, by how much they are taller

or shorter than average, adjusted for age. Timing of the pubertal growth spurt 𝛽𝑖 measures

by how much the subject’s age at peak height velocity (APV) occurs earlier or later than the

population–average APV (the velocity curve is estimated as the first derivative of 𝐻(𝑡)). Intensity

of the growth spurt 𝛾𝑖 indicates by how much the subject’s peak height velocity (PV) is higher

or lower than the average PV, measured as a proportion.
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4.2.3 Data analysis

Boys and girls were analysed separately using the packages gamlss (version 5.3.4) (Rigby and

Stasinopoulos 2005b) and sitar (version 1.2.0) (Cole 2021) available in the statistical language R

(version 4.0.5) (R Core Team 2021). Growth velocity in early life is much higher and more variable

than later in childhood, and to avoid this dominating the analysis the data were restricted to the

age range 6 to 18 years.

The data were initially cleaned by removing obvious errors using conditional plots of height

on age (3 points in boys and 3 in girls). All subjects with at least one measurement were included

in the analysis. A preliminary SITAR model was fitted, and points with standardised residuals

beyond ±4 SD were considered as outliers and excluded from the analysis (10 in boys and 4 in

girls). The final analysis included 796 boys with 4242 measurements and 672 girls with 3539

measurements (0.3% and 0.2% excluded respectively).

Multiple plausible GAMLSS models of height on age were fitted: comparing the NO, BCCGo,

BCPEo and BCTo distributions; and trying square root and log transformations for height and

age. Similarly, different SITAR models were fitted varying the 𝑑𝑓 of the spline curve from 4 to 9;

omitting the fixed effects 𝑏0 and/or 𝑐0, and with log transformations for height and age. The

optimal model was selected by minimising the Bayesian Information Criterion (BIC) (Schwarz

1978).

Standard errors (SE) for mean APV and mean PV based on GAMLSS and SITAR were

obtained with the bootstrap (500 samples). Diagnostic plots for the optimal models are given in

supplementary figures 4.7 and 4.8.

4.3 Results

4.3.1 Height centiles in Indian children using GAMLSS

Height centiles for the PSCG data set are constructed using GAMLSS with the BCCGo

distribution. However the distribution for girls is not skew at any age, so the Box-Cox power 𝜈 is

constrained to 1, equivalent to a normal distribution. The fitted centiles are shown by sex in

Figure 4.1: the nine curves are spaced two-thirds of a z-score apart, extending from the 0.4𝑡ℎ
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to the 99.6𝑡ℎ centile (Cole 1994). The individual heights are also shown as grey points. Each
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Figure 4.1: GAMLSS-fitted height centile curves based on the BCCGo distribution in boys
and the normal distribution in girls. The nine centiles are equally spaced on the z-score scale.
Individual heights are shown in grey (𝑛 = 4242 for boys and 𝑛 = 3539 for girls).

6 8 10 12 14 16 18

0
.0

3
5

0
.0

4
0

0
.0

4
5

0
.0

5
0

Age (years)

C
o

e
ff

ic
ie

n
t 

o
f 

va
ri

a
ti
o

n

Boys
Girls

6 8 10 12 14 16 18

0
1

2
3

4

Age (years)

B
o
x
−

C
o
x
 P

o
w

e
r

Boys
Girls

Figure 4.2: Fitted age trends for the BCCGo coefficient of variation (𝜎) and skewness (𝜈) for
boys (solid lines) and girls (dashed lines). The vertical dotted lines indicate APV by sex based
on the median (𝜇) curve.

median curve corresponds to the age trend for 𝜇, while the age trends for 𝜎 and 𝜈 are shown in

Figure 4.2.

The 𝜎 curves peak at around 13 years in boys and 10 years in girls, similar to APV as based

on the 𝜇 curve. In boys the 𝜈 curve rises steeply through puberty, indicating increasing left
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skewness.

4.3.2 Height growth curves in Indian children using SITAR

Individual height growth curves in the PSCG data set are best described by SITAR models

of height on log age, with 6 𝑑𝑓 in boys and fixed effects for size, timing, and intensity; and 5

𝑑𝑓 in girls with fixed effects for size and intensity - the models explain 98.7% of the variance in

boys and 98.8% in girls. Figure 4.3 shows the individual height curves in grey. Each grey curve,
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Figure 4.3: Individual height growth curves for 796 boys and 672 girls from the PSCG data
set. Unadjusted curves are in grey, and curves adjusted using subject-specific SITAR random
effects are in colour. The fitted mean curve is superimposed on the coloured curves and partially
obscures them. Four unadjusted curves in colour show the PSCG study design.

when adjusted by the individual’s fitted random effects, provides an estimate of the mean curve,

and the adjusted curves appear colour-coded in Figure 4.3 with the mean curve in white. Four

unadjusted curves are shown in colour to highlight the PSCG study design, where individuals

had no more than six annual measurements, yet SITAR was able to estimate the entire mean

curve from 6 to 18 years. The fitted mean curves by sex are shown in Figure 4.4 along with the

mean height velocity curves, calculated as the first derivative of the mean curve.

In boys, mean APV (95% CI) is 13.1 (13.0, 13.3) years, and mean PV is 9.0 (8.7, 9.3)

cm/year. A small peak similar to a mid-growth spurt (Tanner and Cameron 1980) is seen at

8.6 years with mean PV 5.7 cm/year. In girls, mean APV occurs at 11.0 (10.8, 11.2) years with

mean PV 8.0 (7.8, 8.2) cm/year. Summary statistics of the SITAR models are shown by sex in
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Figure 4.4: SITAR-fitted mean height growth curves (solid) and height velocity curves (dashed)
by sex in the PSCG data set. The vertical dotted lines indicate the ages at peak height velocity
(at 13.1 years in boys and 11.0 years in girls) and the boys’ mid-growth spurt (at 8.6 years).

Table 4.1. Quantile-quantile (Q-Q) plots of the three random effects show that size is normally

distributed; however, timing and intensity deviate from normality in the lower tail (Figure 4.8).

The correlations between random effects are shown in Table 4.2. A scatter plot matrix showing

these correlations appears in Figure 4.9.

Table 4.1: Standard deviations of SITAR ran-
dom effects and the residual standard deviation
by sex.

Boys Girls
(𝑛 = 796) (𝑛 = 672)

Size (cm) 6.85 6.14
Timing (fractional) 0.084 0.085
Intensity (fractional) 0.15 0.14
Residual (cm) 0.76 0.67

Table 4.2: Correlations between SITAR ran-
dom effects by sex. See Figure 4.9 for the
scatter plot matrix.

Boys (𝑛 = 796) Girls (𝑛 = 672)

Size Timing Size Timing

Timing 0.31 0.34
Intensity 0.48 0.45 0.44 0.31

Figure 4.5 shows mean height velocity curves for GAMLSS (dashed lines) and SITAR (solid

lines) by sex, estimated as derivatives of the mean and median curves, respectively, with 95%

confidence bands. There is a small peak in boys around 8 years in both curves. APV and PV for

the curves are shown in Table 4.3; the APVs are similar, but the PVs are appreciably smaller

for GAMLSS, and the confidence intervals do not overlap, due to GAMLSS being based on

cross-sectionally analysed data.

Figure 4.6 compares height centiles recommended for Indian children by the Indian Academy

60



Figure 4.5: Mean height velocity curves and 95% bootstrap confidence interval bands as estimated
by SITAR (dark gray) and GAMLSS (light gray) by sex (boys left, girls right).

Table 4.3: APV and PV as estimated from the SITAR and GAMLSS velocity curves by sex.

Boys Girls

SITAR GAMLSS SITAR GAMLSS

APV (95% CI) years 13.1 (13.0, 13.3) 13.1 (12.4, 13.6) 11.0 (10.8, 11.2) 10.3 (8.3, 11.2)
PV (95% CI) cm/year 9.0 (8.7, 9.3) 7.1 (6.5, 7.7) 8.0 (7.8, 8.2) 6.6 (6.2, 7.0)

of Pediatrics (IAP) (Indian Academy Of Pediatrics Growth Charts Committee et al. 2015) with

the GAMLSS-estimated PSCG centiles. The IAP centiles were constructed using the LMS

method on a much larger cross-sectional data set. The 3𝑟𝑑, 50𝑡ℎ and 97𝑡ℎ IAP centiles are drawn

as dashed red curves superimposed on the 3𝑟𝑑, 50𝑡ℎ and 97𝑡ℎ PSCG centiles shown in black. The

IAP and PSCG medians match fairly well, but the outer centiles less so.

4.4 Discussion

Growth centiles and growth curves provide two distinct perspectives on individual and

population growth. In this study, we analysed height growth in the PSCG data set to contrast

the two tools in an Indian context. We constructed growth centiles with GAMLSS and growth

curves with SITAR based on Indian children aged 6 to 18 years. The distribution of height in

the population is well captured by the GAMLSS BCCGo centiles (Figure 4.1), which show the

coefficient of variation peaking at around 13 years in boys and 10 years in girls (Figure 4.2).
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Figure 4.6: Comparing height centiles based on the PSCG data set and those recommended for
the Indian population by the IAP (Indian Academy Of Pediatrics Growth Charts Committee
et al. 2015). The black curves show the PSCG 3𝑟𝑑, 50𝑡ℎ, and 97𝑡ℎ centiles, while the red dashed
lines are the IAP 3𝑟𝑑, 50𝑡ℎ, and 97𝑡ℎ centiles.

There is increasing left skewness in the boys’ data (but not the girls’) after 10 years, suggesting

that a minority of boys fall behind progressively in height during puberty, extending the lower

tail of the distribution. SITAR models the pubertal growth spurt effectively and explains 98.7%

of the observed variance in boys and 98.8% in girls, shrinking the height SD from 7 cm to 0.7 cm.

Boys also show a small mid-growth spurt, peaking at 8.6 years.

SITAR works well with the PSCG study design in that even though individuals are followed

for no more than six years, the mean growth curve is estimated over the twelve-year period from

6 to 18 years—-SITAR is able to combine the individual growth curves to obtain the bigger

picture.

The two methods, GAMLSS and SITAR, when applied to the same data, provide distinct

information that is relevant in different contexts. Centile charts are useful in clinical medicine as

they illustrate the child’s recent growth as compared to their contemporaries, and this helps the

clinician to make decisions about their management. The chart can also be used to see how fast

the child has been growing and predict how fast they will grow in the future, depending on their

treatment.

SITAR in contrast is of little value in clinical medicine—it works with the child’s entire

growth curve, and so it cannot provide ”real time” growth information relevant for management.
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Instead it is valuable in two other contexts: experimental medicine and life course epidemiology.

The SITAR mean growth curve is useful in experimental studies such as randomised clinical trials

investigating the effect of a growth promoting agent such as oxandrolone in Turner Syndrome or

calcium supplementation in rural Gambian children (Gault et al. 2011; Prentice et al. 2012). The

SITAR model can test whether the intervention affects the size and/or timing and/or intensity of

the mean curve. Separately, the SITAR subject random effects summarise individual pubertal

growth patterns which can be related to individual-level stressors and adverse outcomes later in

the life course (Johnson et al. 2014; Pizzi et al. 2014; Filteau et al. 2019). For example Kuh et al.

(2016) have shown that early puberty is associated with better bone health in later life.

The height velocity curves estimated by GAMLSS and SITAR provide insights into the timing

and intensity of the growth spurt. The APVs are comparable, but the PVs are appreciably smaller

with GAMLSS. Mean APV was 13.1/10.3 years for boys/girls with GAMLSS and 13.1/11.0

years with SITAR, respectively 2.7 and 2.1 years apart (Figure 4.4). However mean PV was only

7.1/6.6 cm/year by sex with GAMLSS, some 20% smaller compared to 9.0/8.0 cm/year with

SITAR. Similar results were observed by Blackwell et al. (2017), who applied the two methods to

the same mixed longitudinal data set. Merrell (1931) and Cole et al. (2008) have explained this

discrepancy algebraically: when individuals vary in their APV (i.e. the SD of the timing random

effect is greater than zero), the mean PV based on cross-sectional data is attenuated compared

to that based on longitudinal data. Note too that the velocity confidence bands for SITAR in

Figure 4.4 are narrower than for GAMLSS, showing that the variance explained by SITAR is

higher than for GAMLSS due to its longitudinal analysis.

Another estimate of PV came from the Indian height velocity charts of Khadilkar et al. (2019)

based on annual height measurements: they reported median APV (PV) in boys and girls as 13.5

years (6.8 cm/year) and 10.5 years (PV 6.6 cm/year). The APVs are slightly later than for PSCG

GAMLSS, while the PVs are similar. The Khadilkar et al. (2019) charts were constructed based

on individual height velocity, i.e. year-wise differences in height used to construct the median

height velocity centile, whereas GAMLSS here uses the median height centile. In practice the two

should be similar, since the mean height increment is equal to the difference in the mean heights.

Reference height centile charts for Indian children have been developed by the IAP (Indian

Academy Of Pediatrics Growth Charts Committee et al. 2015). They are useful for documenting

the high prevalence of stunting in India (Hemalatha et al. 2020; Kumar et al. 2021). We compared

the IAP charts, which are recommended for clinical use, with the GAMLSS-modelled PSCG
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centiles. The median curves are in good agreement throughout the age range in girls and until

puberty in boys. However, the 3𝑟𝑑 and 97𝑡ℎ centiles match less well, especially the 3𝑟𝑑 centile,

which is the formal cut-off to define stunting in India. The percentages of PSCG children below

the IAP 3𝑟𝑑 centile are 1.5% of boys and 1.4% of girls, about half the expected rate. This

discrepancy is due mainly to the smaller 𝑑𝑓 used for the IAP 𝜇 curve, leading to the IAP centiles

being stiffer and hence more linear, particularly during puberty. In addition the IAP charts were

based on a nationally representative sample (unlike the PSCG children living in Pune) and hence

were more heterogeneous, and this could explain the IAP outer centiles being more widely spaced.

A small growth spurt before puberty, called the mid-growth spurt, was previously reported in

boys between 5.9 and 8.5 years (El Lozy 1978; Tanner 1962; Tanner and Cameron 1980; Molinari

et al. 1980; Gasser et al. 1985; Remer and Manz 2001; Virani 2005). In particular Virani (2005)

reported a mid-growth spurt in Indian boys at 6.2 years. There was also a mid-growth spurt at 9

years in a subgroup of boys with late puberty in the Harpenden Growth Study (Cole 2020). We

observe a small peak in height velocity around 8 years in both the GAMLSS and SITAR models.

Note that the SITAR confidence band in Figure 4.5 is wider at 8 years, which may indicate

variation in the timing of the mid-growth spurt.

In boys, the GAMLSS median curve and the SITAR mean curve have not yet plateaued by

the age of 18 years. Further, their height velocity is appreciably greater than zero at 18 years

(Figure 4.5). Conversely for girls at 18 years, the height curves are flat and the mean velocity

is zero. This indicates that unlike girls, boys continue growing after 18 years, and ideally the

reference sample should extend into the third decade of life to document this growth period

properly.

A strength of our study is that we provide a comparative analysis of two widely used methods

of growth curve and growth centile analysis. We show that the height velocity curves estimated

from the two methods are appreciably different. Further, while the GAMLSS model has been

used to develop growth centiles in the Indian population, SITAR has not been previously applied.

However there are also some limitations. Our analysis is restricted to a population in Western

India, and GAMLSS is applied to longitudinal rather than cross-sectional data, which limits

the number of subjects included in the analysis. The centiles created from longitudinal data

should be unbiased as the measurements were made annually within a fixed protocol (Wade and

Kurmanavicius 2009), but less precise.
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In conclusion, we have shown different aspects of growth centile and growth curve analysis

that are used widely to analyse growth from birth to maturity. The GAMLSS model captures

the distribution of height by age which can be displayed as a growth chart, whereas the SITAR

model estimates the shape of the mean height growth curve, which also applies to individuals .

The pubertal peak in height velocity is shallower in GAMLSS centiles compared to SITAR curves.

We believe that the two analyses add usefully to knowledge about growth in contemporary Indian

children.

Software

The growth centiles and curves developed here are made available as a web application

accessible at https://digimed.acads.iiserpune.ac.in/growth-charts.
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5.1 Introduction

Type-1 diabetes mellitus (T1DM) is a chronic disorder characterised by a deficiency in insulin

production. It is the major form of diabetes diagnosed in children and is commonly referred to

as “childhood-onset” diabetes. The worldwide prevalence of T1DM in children under the age of

20 years in 2021 was estimated to be 1.2 million cases (149,500 incident cases), with the highest

prevalence in India (Ogle et al. 2022).

Growth has previously been reported to be impaired in children with diabetes (Brown et al.

1994; Bognetti et al. 1998; Ahmed et al. 1998). However, recent reports suggest that with

improved diabetes control, height growth can be within the normal range (Bizzarri et al. 2018;

Santi et al. 2019; Koren 2022). Previous studies have used height-for-age z-score (HAZ) to study

height growth in children with diabetes (Brown et al. 1994; Ahmed et al. 1998; Khadilkar et al.

2013; Vollbach et al. 2021). HAZ is appropriate for analysing height data treated cross-sectionally,

where it adjusts for age and ensures that mean HAZ is relatively constant across age. However,

for longitudinal data in individuals, it performs less well. The age adjustment fails to cater for

individual differences in the timing of the pubertal growth spurt, so that for early maturers, HAZ

rises with age and then falls again, while for late maturers, it falls then rises. These individual

age trends in HAZ are both complex and hard to interpret.

A better approach with longitudinal data is to model untransformed height using, for example,

the non-linear mixed effects model SuperImposition by Rotation and Translation (SITAR) (Cole

et al. 2010). SITAR estimates i) differential trends in height growth in two groups, e.g. in

children with and without diabetes, as mean differences in size, timing and intensity (Gault

et al. 2011; Prentice et al. 2012), and ii) individual-level differences in the pattern of growth as

subject-specific random effects for size, timing and intensity (Johnson et al. 2014; Pizzi et al.

2014; Filteau et al. 2019). These methods have not previously been applied to growth in children

with diabetes.

Metabolic control is known to be affected by both behavioural and physiological changes

during adolescence. Previous studies have not distinguished between behavioural and physiological

factors influencing growth in children and adolescents with T1DM. Using SITAR, individual-level

growth differences can be related to information relevant to each child’s condition, such as their

degree of metabolic control and diabetes duration. By characterising individual variation in

75



size, timing and intensity of pubertal growth, SITAR provides a way to distinguish between

physiological and behavioural influences on metabolically stressed growth.

Here we use the SITAR model to characterise height growth in children with diabetes compared

to a local control population and to explore how i) mean height growth is affected by T1DM;

and ii) individual growth during puberty is related to disease severity.

5.2 Methods and Subjects

5.2.1 Data sets

The data came from two studies in Western India, namely the Sweetlings Type-1 Diabetes

Mellitus study (STDM) and the Pune School-Children Growth study (PSCG). The PSCG study

here acts as a control group for the diabetes study. This study adhered to the STROBE guidelines

for reporting observational studies von Schelling (1954).

5.2.1.1 Sweetlings Type-1 Diabetes Mellitus (STDM)

The STDM study involved 490 children (222 boys and 268 girls) aged 1 to 26 years diagnosed

with T1DM and visiting a tertiary healthcare centre in Pune, India. Each subject was seen

between one and six times (median 3, interquartile range 2 to 5) between 2013 and 2021.

Height and glycated haemoglobin (HbA1c) were recorded on each occasion. Height was

measured using a Seca stadiometer (Hamburg, Germany) and calibrated with standard rods,

while HbA1c was measured using high-performance liquid chromatography (HPLC, BIO-RAD,

Germany). Age at diabetes diagnosis was obtained from clinic records, and the mean duration

of diabetes (i.e. mean age minus age at diagnosis) was calculated. Parental heights were

measured at the time of the child’s diagnosis, while birth weight was obtained from the birth

card (where available) or parental report. Mid-parental height z-score was calculated as the

mean of internally-calculated height z-scores for mother and father. The data have been analysed

previously (Parthasarathy et al. 2016; Oza et al. 2022).

Written informed consent was obtained from parents, and verbal assent was obtained from

children above the age of 7 years. The Ethics Committee of the Jehangir Clinical Development

Centre Pune approved the study (dated March 22, 2013).
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5.2.1.2 Pune School-Children Growth (PSCG)

The control group from the PSCG study consisted of 1472 children (798 boys and 674 girls)

aged 3 to 18 years recruited from three randomly selected schools catering to middle class children

from Pune, as used in a previous study (Khadilkar et al. 2019). Each child was seen annually,

between one and six times (median 6, interquartile range 5 to 6) between 2007 and 2013.

Height was measured using a portable stadiometer (Leicester Height Meter; Child Growth

Foundation, London) and calibrated with standard rods. Growth curves and growth centiles

based on the data have been published previously (Areekal et al. 2022).

Written informed consent was obtained from parents, and verbal assent was obtained from

children above the age of 7 years. The Ethics Committee of the Jehangir Clinical Development

Centre Pune approved the data collection (dated June 26, 2007). In addition the Ethics Committee

of the Indian Institute of Science Education and Research Pune approved secondary data analysis

of the STDM and PSCG data sets (IECHR/Admin/2021/001).

Note that the STDM and PSCG data sets differed in their design; STDM had median

three measurements per child, covering a period of two years, whereas PSCG had median six

measurements per child, covering five years. Thus PSCG had more longitudinal information per

child, leading to a more precise mean growth curve. PSCG children were recruited from private

schools, which could be a potential source of bias. However, since these schools take middle class

children, PSCG was a valid control for STDM.

5.2.2 Methods

5.2.2.1 SITAR model for height growth curves

Height growth curves were fitted using SuperImposition by Translation and Rotation (SITAR) (Cole

et al. 2010). SITAR is a mixed effects growth curve model that estimates the mean height curve

as a natural cubic B-spline with degrees of freedom (𝑑𝑓) chosen to optimise the fit. Subject

deviations from the mean curve are captured in three subject-specific random effects: (i) 𝑆𝑖𝑧𝑒,

which distinguishes the final height attained, (ii) 𝑇 𝑖𝑚𝑖𝑛𝑔, which captures the timing of puberty

and (iii) 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦, which provides information on the rate of pubertal growth.

The three random effects are assumed normally distributed and the residual error term is
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considered to be independently and identically distributed (i.i.d.). The fitted mean curve is also

called the height distance curve, and its first derivative is the mean height velocity curve.

5.2.2.2 Diabetes and control height growth curves

The mean curves for the diabetes and control children were estimated in two different ways:

first by fitting a single SITAR model to the two data sets pooled, including fixed effects for size,

timing and intensity to distinguish between the data sets; and second by fitting separate SITAR

models to each data set. The pooled model constrains the two mean curves to be the same shape

(adjusted for the fixed effect differences) whereas the separate model allows the mean curves to

differ; this allows the equality of the two mean curves to be tested for.

Both ways, variants of the SITAR model were explored by considering spline curve 𝑑𝑓 from 4

to 8. Models with log-transformed age and/or height scales and combinations of fixed effects

(size and timing, size and intensity, and size, timing and intensity) were also considered. The

optimal model was the one minimising the Bayesian Information Criterion (BIC) (Schwarz 1978).

Bootstrap confidence intervals (CI) for the mean age at peak height velocity (APV in years) and

peak height velocity (PV in cm/year) were obtained using 500 re-samples. The percentage of

variance explained by the model was calculated as described in Patcas et al. (2022).

The optimal models fitted height versus log age, where the random and fixed effects for

timing can be multiplied by 100 and viewed as percentage differences (Cole and Altman 2017).

Alternatively they can be multiplied by mean APV to express them in units of months or years.

The data were analysed using the package sitar (version 1.2.0.9000) (Cole 2022) in the

statistical language R (version 4.2.2) (R Core Team 2021). Prior data cleaning removed obviously

errant points based on plots of height versus age (STDM: 10 points in boys and 9 in girls; PSCG:

11 points in boys and 3 in girls). SITAR models were then fitted, and standardised residuals

exceeding 4 in absolute value were excluded (STDM: 3 in boys; PSCG: 12 in girls). 95% CI

bands were obtained for the average SITAR curves using 500 bootstrap re-samples. The mean

and standard deviation by age of the bootstrapped curves were summarised as smooth curves by

fitting the normal distribution family in GAMLSS (version 5.4.10 ) (Rigby and Stasinopoulos

2005).
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5.2.2.3 Modelling serial HbA1c measurements by age

Longitudinal trends in HbA1c were also modelled using SITAR, with the sexes pooled and a

fixed effect included to distinguish between them. The random effects for timing and intensity

did not improve the fit, so the model included just the random effect for size, i.e. a random

intercept model.

5.2.2.4 Relating SITAR random effects to subject-specific covariates

The optimal SITAR height model was extended to explore how the three subject-specific

random effects related to the following physiological covariates: mid-parental height z-score,

birth weight, age at diabetes diagnosis, diabetes duration, and mean HbA1c (size random effect

from section 5.2.2.3). For this, the SITAR height model was extended to predict each of the

three random effects as linear functions of the covariates, included as fixed effects. Subjects with

no HbA1c measurements were assumed to have mean HbA1c (i.e. random intercept 0). The

significance level for the analysis was set at 𝛼 = 0.01.

5.3 Results

The data sets were cleaned and analysed separately by sex. The age range for the study

was restricted to 4 to 19 years since the height growth pattern in infancy is distinct from that

in childhood and adolescence. The final analysis included: in STDM, 460 subjects (208/252

boys/girls) with 1598 height measurements (732/866 in boys/girls); and in PSCG, 1470 subjects

(797/673 boys/girls) with 8140 height measurements (4455/3685 in boys/girls).

5.3.1 Average growth curves

5.3.1.1 Pooled models of diabetes and control growth curves

Figure 5.1 shows the SITAR mean distance and velocity curves (95% CI) for STDM and

PSCG estimated from the pooled data with 6 and 5 𝑑𝑓 in boys and girls respectively (variance

explained 99.0% and 99.1%). Table 5.1 shows the mean differences between STDM and PSCG in

size, timing, and intensity. The children with diabetes were shorter than the control children, by

4.9 cm in boys and 3.8 cm in girls. Their timing of pubertal growth was also later, by 1.5 months

in boys and 6.1 months in girls. Further, their intensity of pubertal growth was lower by 9.8% in
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boys and 4.8% in girls.
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Figure 5.1: SITAR mean height growth curves and height velocity curves by sex in the diabetes
(STDM) and control (PSCG) children with 95% CI bands.

Table 5.1: Differences in the fixed effects for mean size, timing and intensity in STDM compared
to PSCG, with standard errors (SE) and p-values (P).

Boys Girls
Difference SE P Difference SE P

Size (cm) -4.9 0.6 0.001 -3.8 0.6 0.001
Timing (%) 1.0 0.9 0.3 4.6 0.9 0.001
Timing (months) 1.5 1.5 0.3 6.1 1.1 0.001
Intensity (%) -9.8 1.7 0.001 -4.8 1.7 0.006

5.3.1.2 Separate models of diabetes and control growth curves

SITAR height models were also fitted to each data set separately. The optimal mean STDM

curves had 6 and 5 𝑑𝑓 in boys and girls respectively (variance explained 99.4% and 99.5%), while

the mean PSCG curves had 6 and 4 𝑑𝑓 in boys and girls (variance explained 98.8% in both sexes).

Mean APV and PV in the two groups are given in Table 5.2. Note that the values for PSCG

differ slightly from before (Areekal et al. 2022) due to the differing age ranges. The BIC of the

pooled model was 29 units smaller than the sum of BIC for the two separate models in boys, but
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20 units greater in girls. Thus, based on BIC, the pooled model fitted better in boys but the

separate model was better in girls.

The mean STDM distance and velocity curves estimated the two ways (with 95% CI bands

for the separate models) are compared in Figure 5.2, with the pooled and separate models shown

as solid blue and dotted grey curves respectively. The two sets of curves are very similar in shape,

showing that pooling with the control data did not materially affect the diabetes curves.

Table 5.2: Mean (95% CI) age at peak height velocity (APV) and peak velocity (PV) estimated
separately for STDM and PSCG by sex.

Boys Girls
APV (years) PV (cm/year) APV (years) PV (cm/year)

STDM 13.8 (13.4, 14.1) 8.1 (7.6, 8.7) 11.2 (10.7, 11.6) 6.8 (6.4, 7.2)
PSCG 13.1 (12.9, 13.2) 8.9 (8.7, 9.2) 10.9 (10.8, 11.0) 7.9 (7.8, 8.1)
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Figure 5.2: SITAR mean height growth curves and height velocity curves by sex with 95% CI
bands for STDM pooled (solid blue) and separate (dotted grey).
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Figure 5.3: The mean HbA1c growth curve (and 95% CI band) with a peak at 10.5% at age 14.6
years.

5.3.2 Modelling longitudinal HbA1c measurements

The subject-specific HbA1c curves were summarised using SITAR with a random intercept

and cubic B-spline with 3 𝑑𝑓 (variance explained 43%). The SD of the random intercept (mean

individual HbA1c) was 0.14% and the residual SD was 0.15%. Figure 5.3 shows the mean curve

and 95% CI band, with HbA1c rising to 10.5% at 14.6 years and then falling again. The sexes

did not differ (mean difference -0.01, 95% CI -0.04 to 0.02).

5.3.3 Individual variation in height growth

We examined associations among the STDM children of the SITAR random effects size,

timing and intensity with mid-parental height, birth weight, age at diabetes diagnosis, diabetes

duration, and mean HbA1c (the random intercept from section 5.3.2). Summary statistics for

the covariates are in Table 5.3, while the regression coefficients of the random effects on the

covariates are in Table 5.4, where the models include all the covariates so they are mutually

adjusted. Note that since birth weight proved to be unrelated to any of the random effects, it

was omitted from the models.

Size was highly significantly positively associated with mid-parental height, age at diagnosis

and diabetes duration in both sexes. Boys and girls with a 1 SD greater mid-parental height were

respectively 3.4 and 3.5 cm taller. Among children who had had diabetes for the same length of
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Table 5.3: Summary statistics of covariates in the STDM data set. N is the number of subjects
with measurements and SD is the sample standard deviation.

Boys Girls
Variable N Mean SD N Mean SD
Maternal height (cm) 184 153.8 5.2 234 153.7 5.8
Paternal height (cm) 185 166.5 6.4 206 166.8 6.7
Mid-parental height (z-score) 185 0.0 1.0 235 0.0 1.0
Birth weight (kg) 208 2.7 0.8 252 2.7 0.6
Age at Diagnosis (years) 208 7.5 4.1 249 7.5 3.9
Diabetes duration (years) 208 4.9 3.4 249 4.5 3.0

Table 5.4: Regression coefficients 𝛽 (SE) of size, timing, and intensity on the covariates. N
denotes the number of subjects included in the analysis.

Boys (𝑁 = 182) Girls (𝑁 = 226)
𝛽 (SE) P 𝛽 (SE) P

Size (cm)
Mid-parental height (z-score) 3.4 (0.7) <0.001 3.5 (0.5) <0.001
Age at diabetes diagnosis (years) 1.6 (0.2) <0.001 1.2 (0.2) <0.001
Diabetes duration (years) 0.8 (0.2) 0.001 0.9 (0.2) <0.001
Mean HbA1c (%) -3.2 (6) 0.9 -15 (5) 0.001

Timing (months)
Mid-parental height (z-score) 3.1 (1.4) 0.03 0.9 (1.0) 0.4
Age at diabetes diagnosis (years) 5.2 (0.5) <0.001 4.2 (0.4) <0.001
Diabetes duration (years) 5.4 (0.6) <0.001 4.6 (0.4) <0.001
Mean HbA1c (%) 11 (11) 0.1 -20 (9) 0.03

Intensity (%)
Mid-parental height (z-score) 6.0 (2.8) 0.03 3.9 (2.3) 0.1
Age at diabetes diagnosis (years) 2.4 (0.9) 0.01 1.8 (0.9) 0.05
Diabetes duration (years) 1.7 (1.0) 0.1 1.9 (1.1) 0.09
Mean HbA1c (%) 3 (23) 0.9 -34 (24) 0.2

time, boys/girls diagnosed a year later were 1.6/1.2 cm taller. Among those diagnosed at the

same age, those who had had diabetes one year longer were 0.8/0.9 cm taller. In girls, though

not in boys, mean HbA1c was strongly negatively associated with mean height; a 1% higher

mean HbA1c (SD 0.14%) corresponded to being 15 cm shorter, or 2 cm shorter for a 1 SD higher

HbA1c.

Timing was highly significantly positively associated with both age at diagnosis and duration,

with similar effects in the two sexes. Adjusted for duration, diagnosis one year later was associated

with 5.2/4.2 months delay in age at peak velocity. Similarly, adjusted for age at diagnosis, one

extra year of diabetes was associated with 5.4/4.6 months delay. Adjusted for diabetes duration,
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being diagnosed one year later corresponded to 2.4% faster pubertal growth in boys, and rather

less in girls.

All three HbA1c coefficients were larger in girls than boys, and significantly so for timing

(P < 0.03), showing the greater impact of HbA1c on growth in girls. No other coefficients in

Table 5.4 differed significantly by sex. Parental heights were also analysed separately; however,

the coefficients for paternal and maternal height did not differ significantly for any SITAR

parameters. In addition there were no significant interactions between age at diabetes diagnosis

and diabetes duration.

5.4 Discussion

We studied height growth in two groups of children aged 4 to 19 years from Pune, India; one

diagnosed with and undergoing treatment for T1DM, and the other school-children acting as

controls, to explore how a metabolic disorder such as T1DM affects height growth. Historically,

Indian children are reported to have poor metabolic control (Khadilkar et al. 2013; Chowdhury

2015; Parthasarathy et al. 2016). It is possible that persistent insulin deficiency despite treatment

leads to impaired growth. Previous literature on growth in Indian children with T1DM, based on

HAZ comparisons, has reported short stature (Khadilkar et al. 2013) and lowered pubertal growth

velocity (Parthasarathy et al. 2016). Moreover, a 15.7% prevalence of stunting was also reported

in Indian children with T1DM (Bhor et al. 2022). In this work, SITAR was used to model height

and estimate an average curve for each group. Children with diabetes were comparatively shorter

at all ages, and their pubertal growth was both delayed and extended compared to the control

group.

SITAR assumes that height growth in individuals can be summarised by their attained height

(size) and the timing and intensity of their pubertal growth spurt; hence after adjusting for these

the shape of the average growth curve ought to be the same in the two groups. Growth curves in

diabetes were first estimated by pooling the data to have the same underlying shape as the control

group curves. Next, the two sets of curves were estimated separately; this allowed the pooled and

separate curves to be compared. For boys the pooled curves fitted slightly better; the opposite

was true for girls. In practical terms the shapes of the diabetes curves were indistinguishable

from those of the control curves after SITAR adjustment – only subtle differences were visible in

the height velocity curves (Figure 2). This shows that the mechanism whereby T1DM affects
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growth is accurately modelled by SITAR: the underlying growth process is invariant, robustly

independent of disease status. The effect of diabetes is to slow and delay growth, which leads to

reduced height overall.

A SITAR model fitted to HbA1c with age shows that it rises through childhood, peaks in

puberty and then falls again (Figure 3). The pubertal peak in HbA1c is likely due not only to

physiological changes, such as increased insulin resistance during puberty (Moran et al. 1999),

but also to behavioural resistance to lifestyle change (Elbalshy et al. 2022).

We also analysed how individual differences in pubertal height growth relate to child-specific

physiological characteristics. We found, unsurprisingly, that children with taller parents were

taller. The course of disease, in particular the age at diagnosis and the time since diagnosis,

affected mean height and the timing of the growth spurt – later diagnosis and longer duration

were independently associated with greater height and later puberty. However there was an

important sex difference: girls were affected more in terms of size, particularly with mean HbA1c,

where a 1 SD increase in HbA1c was associated with being 2 cm shorter. Boys were affected more

in terms of timing and intensity, which was positively associated with age at diagnosis. Thus,

broadly speaking, the impact of T1DM was to reduce height in girls, whereas in boys it slowed

and delayed growth. The dependence of pubertal growth on growth hormone and testosterone

in girls and boys, respectively, may be be important for this observed difference as suggested

by Dunger et al. (2002).

SITAR has previously been used in an experimental paradigm in life course epidemiology,

with growth as the exposure being related to a later life outcome (Gault et al. 2011; Prentice

et al. 2012). Here we shift to a different paradigm where diabetes is the early exposure and

growth in puberty is the outcome. We observe that children with diabetes grow in a different

way from control children, and it is useful to put this observation into a life history framework,

which deals with how individuals organise themselves in the context of scarce resources to

optimise their life experiences. The transitions between different stages of growth, such as from

childhood to adolescence, have been described as a period of “adaptive plasticity”, which denotes

the trade-offs adopted by an organism under adverse conditions, by Hochberg and Albertsson-

Wikland (Hochberg and Albertsson-Wikland 2008). An organism under stress, either external

(environmental) or internal (physiological), has to make the choice whether to push for fecundity,

that is, to have more children, or longevity, that is, to live longer. We see that the effect of

diabetes is to make the children progressively shorter through childhood; and simultaneously to
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delay the pubertal growth spurt and extend it. In this way the child with diabetes responds to

the diabetic insult by investing fewer of its resources in growth.

A limitation of our study is the difference in design of the two studies, with median three

measurements per child in STDM compared to six measurements in PSCG. So the individual

STDM growth curves were less precisely specified than those in PSCG. However, a strength of

our study is that it contrasts data on a substantial number of children with diabetes followed

over time with a group of control children from broadly the same environment.

Finally, we remark that the COVID-19 pandemic signalled an urgent need for early and

timely diagnosis of T1DM, flagged by studies showing a higher incidence of T1DM in children

and adolescents (Guo et al. 2022) and a higher prevalence of complications during diagnosis

and management such as diabetic ketoacidosis (Birkebaek et al. 2022; Shah et al. 2022). Viral

infections are associated with an increased risk for T1DM in genetically susceptible children (Shi

et al. 2022). These studies highlight the need for longitudinal cohorts to examine how the

pandemic has affected growth in children with T1DM. As we have shown, SITAR is an excellent

tool to study how diabetes affects growth.
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CHAPTER 6

Discussion and Conclusion

Metabolism and height growth are two important aspects of child growth. We studied how

these two aspects are influenced during a period known to show high inter-individual variability,

namely the childhood and adolescence, in the Indian population. In this thesis, we describe

the curvilinear trend in metabolism and height growth in the Indian children and show that

Indian children have significantly lower resting energy expenditure compared to their western

counterparts. We further discuss the plausible explanations for this lowered metabolism. We also

show that the underlying height growth pattern is invariant, but the children differ in the time

and rate of pubertal growth and the final height. Moreover, the underlying growth pattern is not

influenced in children diagnosed with Type-1 diabetes, once adjusted for the size (final height),

timing and intensity of pubertal growth.

6.1 Sexual differences in metabolism and height growth during

childhood and adolescence.

Sexual differences in physiological and behavioural traits, apart from the trivial differences in

reproductive traits, have been documented at different scales and periods during growth - from

molecular to organismal (Mank and Rideout 2021) and from perinatal to adolescence (Thurstans

et al. 2022). Understanding these sex difference helps to develop well targeted therapeutics and

improve personalised interventions (Miguel-Aliaga 2022). Here we discuss the sex differences

observed, or the lack there of, in metabolism and height growth in Indian children and adolescents.
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It is known that the absolute RMR values are different between the two sexes. Previous

studies have shown that the difference in absolute values of RMR between the two sexes were

explained as due to their difference in lean body mass (Buchholz et al. 2001). In chapter one, we

find that the RMR/BM in Indian children are lower than their Western counterparts. However,

the observed differences are greater in girls at all ages compared to the boys. In the two models

that have been proposed to explain the lowered RMR/BM in Indian children, we predicted

differential adjustments in boys and girls: The first model predicts that the organ masses are

lower by 23% in girls but only by 10% in boys; Similarly, in the second model, the residual mass

-including fat mass and muscle mass - has been been lowered by 35% in girls and by 10% in boys.

Further, the RMR/BM reduces drastically after puberty (11 years) in girls. This needs to be

considered while assessing the risk of developing overweight or obese phenotypes in adolescents

females, and especially in the context of increasing incidence of metabolic disorders such as the

polycystic ovarian syndrome (Bharali et al. 2022) and other non-communicable diseases.

Sexual differences in the shape of the height growth curves has been well established in

previous studies (Tanner and Cameron 1980; Tanner and Whitehouse 1976), which was evident

in our study as well. The pubertal growth spurt starts earlier in girls around the age of 9 years

and peaks at 11 years (height velocity at 8.0 cm/year) and then decelerates and stops by the age

of 18 years (height velocity = 0). In contrast, boys show a mid-growth spurt at the age of 8.6

years which decelerates until around 11 years when the pubertal growth spurt takes off. Boys

peaks in height velocity is at 13.1 years (with peak height velocity = 9 cm/year), decelerates

then on but continues to grow even at the age of 18 years (height velocity > 0).

Further, the boys’ height distribution is more skewed after puberty compared to girls (Fig-

ure 4.1 ). This is also evident in the spacing between the centiles at the age 18 years: 0.4𝑡ℎ

to 10𝑡ℎ centiles are wider compared to the 90𝑡ℎ to 99.6𝑡ℎ centiles in boys; however, the centiles

evenly distributed in girls. This suggests that there is a subset of boys who’s height growth have

been compromised more than other. This is in line with the recent reports of differential effects

in height growth in boys, compared to girls (Thurstans et al. 2022).

In chapter 3, we find a differential response to T1DM in height growth which affects the final

height and timing of pubertal growth in girls, but to delay the timing and reduce the intensity of

pubertal growth in boys.

Lack of any sexual differences is observed in the HbA1c growth curves. A non-linear trend in
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HbA1c during adolescence has previously been reported by Clements et al. (2016) who analysed

age trends in HbA1c data from a T1DM exchange directory. We observed a similar trend wherein

the HbA1c growth curve rises after puberty (at 15 years in both sexes) and falls thereof. This

trend is found to be independent of sex. The rise in HbA1c during puberty is attributed to both

behavioural and physiological changes during puberty (Moran et al. 1999; Elbalshy et al. 2022).

Most importantly, poor metabolic control is observed to reduce final height in girls but

not in boys. Our study shows that the metabolic control, measured as mean HbA1c values, is

significantly associated to the size (or final height) in girls, but we failed to observe any significant

relationship with any of the growth parameters in the boys. Instead, the boys were more affected

in the timing and rate of pubertal growth. We also looked at the effect of individual variability

in the HbA1c measurements with the height growth parameters; however, we failed to observe

any significant associations.

The role of insulin as a growth hormone and the differential dependence of male and female

pubertal growth on insulin vs testosterone might be of relevance in this scenario and needs to be

evaluated further.

Adolescence is a period of major sexual differentiation in humans. Hence, the major changes

in reproductive traits been studied very well in the past. However, the subtle sex effects in other

physiological traits are only being uncovered in the recent past. It is necessary to understand such

differences in metabolism and growth so that interventions for metabolic and growth disorders

can be personalised well.

6.2 Strengths and limitations of the study

One limitation of our study is that we could provide only correlational arguments and no causal

relationship was explored here. Further, there is difference in the study designs of three major

data sets analysed here: MCS is a cross-sectional study, and PSCG and STDM are longitudinal.

The models developed for RMR in Indian children needs to be validated in a larger sample to

provide more conclusive explanation. The difficulties in comparing body composition differences

could be resolved through future studies that utilise image analysis of body composition images.

A major strength of our study is that we look at one of the largest cross-sectional data set of

resting metabolic rate in children and the largest longitudinal data set of height growth in Indian
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population. We are also pioneering a departure from the conventional approach of employing

z-scores analysis to investigate the impact of a disease on growth utilizing SITAR. This method

is unique in that it considers both individual variations and population-level differences in its key

parameters: size, timing, and intensity of pubertal growth in a single framework. Furthermore,

compared to other parametric models of growth which utilises a combination of exponential

functions to capture the non-linearity of the shape of the growth curves (Preece and Baines 1978;

Karlberg 1989), SITAR learns the shape of the growth curve from the data.

6.3 Conclusion

The thesis provides fresh perspectives to the study of growth offering promising avenues for

further exploration in research on non-communicable diseases and the ”developmental origins of

health and diseases (DOHAD)” (Barker 2004).

Broadly, in this thesis we study that the variation in two physiological traits, metabolism and

height, and show that they vary considerably between different ethnic groups and individuals.

Every individual has a unique height growth trajectory, but once the difference in the size, timing

and intensity of growth are accounted, the underlying height growth pattern is invariant or same

for everyone. The underlying growth pattern of children diagnosed with T1DM are not found

to be significantly different from children without diabetes, once the difference in size, timing

and intensity is accounted for. It is surprising that the underlying height growth programme is

robust to a persistent metabolic insult as in the case of T1DM. The role in insulin in growth as

well as the metabolism is of interest here and needs to be better studied in the future.
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Appendix A

Model optimisation

A.1 Introduction

In this appendix section, we discuss the details of the model selection procedures used in
Chapter 3, Chapter 4, and Chapter 5 as below.

1. Modelling resting metabolic rate in Indian children and adolescents

2. Modelling height growth in Indian children

3. Modelling height growth under a persisting metabolic insult.

Each appendix section briefly discusses the data set used in the study, data cleaning, model
optimisation and model selection procedures.

A.2 Modelling resting metabolic rate in Indian children and
adolescents

Resting metabolic rate (RMR) a standard measure of energy expenditure at rest and allows
comparison of metabolism between individuals as well as populations. Over the last century, many
phenomenological models have been developed to predict RMR from anthropometry and body
composition. However, they have been able to explain only 60-80% of the observed variations
in RMR in adults. RMR studies in Indian children are sparse. Here we discuss the inference
procedures involved in the earlier chapter titled “Modelling resting metabolic rate in Indian
children”.

This chapter initially discusses the data sets analysed in the study, different linear regression
models for RMR based on anthropometry and body composition and later discusses development
of two novel models for RMR in Indian children by modifying the Wang model for RMR/BM in
North American children.
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A.2.1 Datasets

A.2.1.1 Multi-centre study (MCS) data set on RMR in Indian children.

The MCS data set contains anthropometric and body composition measurements of 495
children from multiple centres in India. The variables that are analysed in the present study are
given below in Table A.1.

Table A.1: The summary statistics of the MCS dataset.

Characteristic Boys, N = 2601 Girls, N = 2351

Age (years) 13.25 (11.67, 14.80) 13.00 (11.30, 14.55)
Height (cm) 152 (142, 164) 150 (143, 156)
Weight (kg) 42 (32, 51) 40 (33, 49)
RMR (kcal/day) 1,172 (1,030, 1,333) 1,043 (928, 1,168)
    (Missing) 0 3
FM (kg) 5 (3, 12) 10 (6, 14)
    (Missing) 3 1
FFM (kg) 35 (28, 43) 31 (27, 35)
    (Missing) 3 1

1Median (IQR); n (%)
Resting metabolic rate (RMR); Fat mass (FM); and Fat-free mass (FFM)

A.2.1.2 Altman and Dittmer Dataset

The reference organ mass reported for brain, heart, liver and kidney initially compiled by
Altman and Dittmer (1962) provided in Table 1 in Wang (2012) are reproduced in Figure A.1.
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Figure A.1: The organ mass data set for the North American children compiled by Altman and
Dittmer (1962) adapted from Table 1 in Wang (2012).
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A.3 Preliminary Data analysis

A large number of previous studies had modelled RMR as a linear combination of age, and
anthropometric measurements such as age, height, and weight. Later studies have looked at body
composition measures such as FM and FFM. We thus, initially analysed the extend of variation
in RMR explained by age, weight, height, gender, fat-free mass, and fat mass.

Weight, height, age and gender are significant predictors of RMR, but can only explain 58%
of the observed variation in RMR.

m1 <- lm(RMRkcal_day ~ Height_cms + Weight_kg + Age_yrs +
Gender, data = MCS)

summary(m1)

Call:
lm(formula = RMRkcal_day ~ Height_cms + Weight_kg + Age_yrs +

Gender, data = MCS)

Residuals:
Min 1Q Median 3Q Max

-447.07 -98.07 -18.60 90.11 717.42

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 182.3939 132.4192 1.377 0.169
Height_cms 5.6415 1.1924 4.731 2.93e-06 ***
Weight_kg 10.6303 0.9085 11.701 < 2e-16 ***
Age_yrs -22.0342 4.7132 -4.675 3.81e-06 ***
GenderGirls -114.7119 14.7101 -7.798 3.85e-14 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 160.2 on 487 degrees of freedom
(3 observations deleted due to missingness)

Multiple R-squared: 0.5849, Adjusted R-squared: 0.5815
F-statistic: 171.5 on 4 and 487 DF, p-value: < 2.2e-16

Moreover, once FFM and fat mass (FATM) are included in the model, Height and weight are
no longer significant. Further, the explained variation is marginally increased to 61%.

m2 <- lm(RMRkcal_day ~ Height_cms + Weight_kg + Age_yrs +
Gender + FFM + FATM, data = MCS)

summary(m2)

Call:
lm(formula = RMRkcal_day ~ Height_cms + Weight_kg + Age_yrs +

Gender + FFM + FATM, data = MCS)

Residuals:
Min 1Q Median 3Q Max

-427.05 -99.19 -9.11 80.02 672.19

Coefficients:
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 870.312 174.725 4.981 8.83e-07 ***
Height_cms -1.542 1.687 -0.914 0.361158
Weight_kg -3.302 4.456 -0.741 0.459091
Age_yrs -28.761 4.753 -6.052 2.89e-09 ***
GenderGirls -61.169 17.303 -3.535 0.000447 ***
FFM 28.709 5.240 5.479 6.92e-08 ***
FATM 9.607 4.429 2.169 0.030571 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 154.5 on 481 degrees of freedom
(7 observations deleted due to missingness)

Multiple R-squared: 0.6169, Adjusted R-squared: 0.6122
F-statistic: 129.1 on 6 and 481 DF, p-value: < 2.2e-16

A.3.0.1 Linear model for RMR with Age, sex, FFM and FATM

Age, sex, FFM and FATM are found to explain 61% of the variation observed in RMR in
Indian children.

m3 <- lm(RMRkcal_day ~ Age_yrs + Gender + FFM + FATM,
data = MCS)

summary(m3)

Call:
lm(formula = RMRkcal_day ~ Age_yrs + Gender + FFM + FATM, data = MCS)

Residuals:
Min 1Q Median 3Q Max

-431.17 -96.14 -10.80 79.59 668.04

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 718.313 45.449 15.805 < 2e-16 ***
Age_yrs -29.456 4.709 -6.255 8.76e-10 ***
GenderGirls -66.240 16.397 -4.040 6.22e-05 ***
FFM 23.310 1.470 15.855 < 2e-16 ***
FATM 6.556 1.146 5.723 1.84e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 154.4 on 483 degrees of freedom
(7 observations deleted due to missingness)

Multiple R-squared: 0.6158, Adjusted R-squared: 0.6127
F-statistic: 193.6 on 4 and 483 DF, p-value: < 2.2e-16

A.3.1 Wang model for RMR

Please refer to the Section 3.2 for the details on the Wang model, relative cellularity, relative
organ mass, and relative specific metabolic rate.
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A.3.1.1 Relative cellularity (Rc)

The values of Rc is 1 for the age range 9 to 18 years as given in Figure A.2.
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Figure A.2: Relative cellularity (Rc) adapted from Table 2 in Wang (2012).

A.3.1.2 Relative specific metabolic rate

The Figure A.3 shows the relative specific metabolic rate for the age range 9 to 18 years.
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Figure A.3: Relative specific metabolic rate adapted from Table 3 in Wang (2012).

A.3.2 Results

Wang model predictions for RMR in Indian children is given below.
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# A function to calculate the wang predicted
# values of rmr if given the relative mass, and
# relative cellularity values for (both varies
# for each age group).

rmr_wang <- function(data) {
data <- data
rmr <- data$Rel_cell * ((200 * data$relmass_Liver *
data$K_others) + (240 * data$relmass_Brain *
data$K_brain) + (400 * data$relmass_Heart *
data$K_heart) + (400 * data$relmass_Kidneys *
data$K_others) + (12 * (1 - (data$relmass_Liver +
data$relmass_Brain + data$relmass_Heart + data$relmass_Kidneys)) *
data$K_others))

}

A.3.3 Predicting RMR in MCS data set.

The age groups 9 and 10 years are considered as one for the statistical tests.
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Figure A.4: The mean meaured RMR/BM (± SE) measured in each age group (solid line), and
the Wang model predicted RMR/BM (dotted line) reproduced here for continuity. Compare to
Figure 3.2 in Chapter 3 or Figures 3 and 4 in Areekal et al. (2023).Note that this figure reports
SE instead of SD.

The measured RMR/BM (± standard error(SE)) in Indian children is lower compared to the
RMR/BM in North American children.
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A.3.4 Modified Wang model of RMR/BM for Indian children

Assuming that the relative organ mass is constant for a given age, we adjust the organ mass
of four major organs with by a factor 𝛿 in Model 1 (see chapter 3 ). The optimal delta is chosen
as the one with minimum mean squared error between the Model 1 predicted RMR/BM and the
measured RMR/BM.

# Minimize MSE for delta without residual mass
d <- seq(0, 1, 0.01)
err <- rep(0, length(d))

min_delta <- function(d, data) {

for (i in 1:length(d)) {
# calculate residual mass for a given delta
# value
rel_resid <- 1 - (d[i] * (data$relmass_Brain +
data$relmass_Heart + data$relmass_Liver +
data$relmass_Kidneys))

# predict rmr based on the new residual mass
rmrbm_new <- ((d[i] * ((data$relmass_Liver *
data$K_others * 200) + (data$relmass_Kidneys *
data$K_others * 440) + (data$relmass_Brain *
data$K_brain * 240) + (data$relmass_Heart *
data$K_heart * 440)) + (rel_resid * data$K_others *
12)) * data$Rel_cell)

err[i] <- sum((rmrbm_new - data$RMRBM_meas)^2)/length(data$RMRBM_meas)
}

#
min_err <- min(err)
min_err_index <- which(err == min_err)
delta <- d[min_err_index]

# plot(d, err, type = 'l', xlab = 'delta', ylab
# = 'Mean square error')

out <- list(cbind(d, err), delta)

}

A.3.4.1 Optimal delta for Model 1 in Boys

d <- seq(0, 1.5, 0.01)
err <- rep(0, length(d))

boys_rmrdata <- mcs_wang_agegrp2 %>%
unnest(c(Age_group, Gender, data)) %>%
filter(Gender == "Boys")

boys_delmod1 <- min_delta(d, boys_rmrdata)
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# par(pty = 's') plot(boys_delmod1[[1]], type =
# 'l', xlab = 'delta', ylab = 'Mean squared
# error', main = 'Optimal delta for Model 1 in
# Boys') abline(v= boys_delmod1[[2]], lty = 2)

boys_delmod1[[2]]

[1] 0.9

ggplot(data = boys_delmod1[[1]] %>%
as_tibble, aes(x = d, y = err)) + geom_line() +
geom_point() + theme(aspect.ratio = 1) + scale_y_continuous(n.breaks = 8) +
labs(x = "Delta", y = "Mean squared error")
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Figure A.5: Optimal delta for Model 1 in Girls is 0.90 used to generate Figure 3.3 in Chapter 3
or Figure 5 in Areekal et al. (2023).

A.3.4.2 Optimal delta for Model 1 in Girls

girls_rmrdata <- mcs_wang_agegrp2 %>%
unnest(c(Age_group, Gender, data)) %>%
filter(Gender == "Girls")

girls_delmod1 <- min_delta(d, girls_rmrdata)

girls_delmod1[[2]]

[1] 0.77

ggplot(data = girls_delmod1[[1]] %>%
as_tibble, aes(x = d, y = err)) + geom_line() +
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geom_point() + theme(aspect.ratio = 1) + scale_y_continuous(n.breaks = 8) +
labs(x = "Delta", y = "Mean squared error")
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Figure A.6: Optimal delta for Model 1 in Girls is 0.77. Used to generate Figure 3.3 in Chapter 3
or Figure 6 in Areekal et al. (2023).

A.3.4.3 Model 1 predicted RMR/BM in Indian children

Model1 <- function(delta1, data) {
# predict residual mass for the given delta
rel_resid <- 1 - (delta1 * (data$relmass_Brain +
data$relmass_Heart + data$relmass_Liver + data$relmass_Kidneys))

# predict rmr based on the new residual mass
rmrbm_new <- ((delta1 * ((data$relmass_Liver *
data$K_others * 200) + (data$relmass_Kidneys *
data$K_others * 440) + (data$relmass_Brain *
data$K_brain * 240) + (data$relmass_Heart *
data$K_heart * 440)) + (rel_resid * data$K_others *
12)) * data$Rel_cell)

}

A.3.5 An alternate model for RMR in Indian children

# Minimize MSE for delta without residual mass
d <- seq(0, 1, 0.01)
err <- rep(0, length(d))
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Figure A.7: Mean (±SE) RMR/BM measured (solid line) in each age group compared to the
Model 1 predicted RMR/BM (dotted line) for the Caucasian population. Compare to Figure 3.3
in chapter 3 or Figure 5 and 6 in Areekal et al. (2023). Note that the bars represent SE here
instead of SD.

min_delta_2 <- function(d, data) {

for (i in 1:length(d)) {
# calculate residual mass for a given delta
# value
rel_resid <- 1 - (data$relmass_Brain + data$relmass_Heart +
data$relmass_Liver + data$relmass_Kidneys)

# predict rmr based on the new residual mass
rmrbm_new <- (((data$relmass_Liver * data$K_others *
200) + (data$relmass_Kidneys * data$K_others *
440) + (data$relmass_Brain * data$K_brain *
240) + (data$relmass_Heart * data$K_heart *
440) + (d[i] * rel_resid * data$K_others *
12)) * data$Rel_cell)

err[i] <- sum((rmrbm_new - data$RMRBM_meas)^2)/length(data$RMRBM_meas)
}

#
min_err <- min(err)
min_err_index <- which(err == min_err)
delta <- d[min_err_index]

# plot(d, err, type = 'l', xlab = 'delta', ylab
# = 'Mean square error')

out <- list(cbind(d, err), delta)
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}

A.3.5.1 Optimal delta for Model 2 in boys

d <- seq(0, 1, 0.01)
err <- rep(0, length(d))

boys_delmod2 <- min_delta_2(d, boys_rmrdata)

# par(pty = 's') plot(boys_delmod2[[1]], type =
# 'l', xlab = 'delta', ylab = 'Mean squared
# error', main = 'Optimal delta for Model 2 in
# Boys') abline(v= boys_delmod2[[2]], lty = 2)

boys_delmod2[[2]]

[1] 0.85

ggplot(data = boys_delmod2[[1]] %>%
as_tibble, aes(x = d, y = err)) + geom_line() +
geom_point() + theme(aspect.ratio = 1) + scale_y_continuous(n.breaks = 8) +
labs(x = "Delta", y = "Mean squared error")
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Figure A.8: Optimal delta for Model 2 in boys is 0.85, which is used produce Figure 3.5 in
Chapter 3 or Figure 8 in Areekal et al. (2023).

A.3.5.2 Optimal delta for Model 2 in Girls

girls_delmod2 <- min_delta_2(d, girls_rmrdata)

# par(pty = 's') plot(girls_delmod2[[1]], type =
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# 'l', xlab = 'delta', ylab = 'Mean squared
# error', main = 'Optimal delta for Model 2 in
# Girls') abline(v = girls_delmod2[[2]], lty = 2)

girls_delmod2[[2]]

[1] 0.64

ggplot(data = girls_delmod2[[1]] %>%
as_tibble, aes(x = d, y = err)) + geom_line() +
geom_point() + theme(aspect.ratio = 1) + scale_y_continuous(n.breaks = 8) +
labs(x = "Delta", y = "Mean squared error")
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Figure A.9: Optimal delta for Model 2 in girls is 0.64, which is used produce Figure 3.5 in chapter
3 or Figure 9 in Areekal et al. (2023).

A.3.6 Model 2 predicted RMR/BM in Indian children

Model2 <- function(delta2, data) {
# predict residual mass for the given delta
rel_resid <- 1 - (data$relmass_Brain + data$relmass_Heart +
data$relmass_Liver + data$relmass_Kidneys)

# predict rmr based on the new residual mass
rmrbm_new <- (((data$relmass_Liver * data$K_others *
200) + (data$relmass_Kidneys * data$K_others *
440) + (data$relmass_Brain * data$K_brain *
240) + (data$relmass_Heart * data$K_heart *
440) + (delta2 * rel_resid * data$K_others *
12)) * data$Rel_cell)

}
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Figure A.10: The mean (± SE) RMR/BM measured (solid lines) and the Model 2 predicted
RMR/BM (dotted line). Comparable to Figure 3.5 in Chapter 3 or Figures 8 and 9 in Areekal
et al. (2023) which reports the mean measured RMR/BM (± SD).

A.4 Modelling height growth in Indian children

Traditionally, height growth in children are studied using two major frameworks, namely
centiles using cross-sectional data and curves using longitudinal data. Here we study the PSCG
data set with longitudinal height measurements Khadilkar et al. (2019). The growth centiles
are constructed using the Generalised Additive Model for Location Scale and Shape (Rigby and
Stasinopoulos 2005) and growth curves using the SuperImposition by Translation and Rotation
model (Cole et al. 2010).

A.4.1 Dataset

A.4.1.1 PSCG data set

The age range for the analysis is restricted to 6 to 19 years. The number of measurements
per subject in shown in Figure A.11. The height measurements in the PSCG data are shown in
Figure A.12 and the growth curves of the subjects are shown in Figure A.13

Table A.2: Height measurements in the PSCG dataset.

Characteristic Boys, N = 4,252 Girls, N = 3,543
Age (years) 11.30 (9.00, 13.60) 11.50 (9.20, 13.60)
Height (cm) 143 (131, 158) 145 (131, 154)
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Figure A.11: PSCG study data described in section 4.2.1.
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Figure A.12: Heights measured in the PSCG dataset described in section 4.2.1.

A.4.1.2 Initial SITAR model fitting

The sitar() argument from the package sitar (Cole 2022) takes age, height and id of each
subject in the long format. The degrees of freedom of the spline curve determines its shape. The
age and height axis can be scaled using logarithmic transformation to consider multiplicative
nature of the growth process.

One can choose and any model with x scale as age or log(age), y scale as height or log height,
df ranging from 4 to 8, with or without an fixed effects. All SITAR models are fitted with the
fixed effect size, denoted by 𝑎 in the sitar package. The fixed effects 𝑏 and 𝑐 are assumed to
be normally distributed around mean = 0 by default. If specified separately in the model, for
instance as fixed = "a+b+c", 𝑏 and 𝑐 are can be distributed around the non-zero sample mean.
SITAR models with four combinations of fixed effects can be fitted: with fixed=c("a", "a+b",
"a+c", "a+b+c".
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Figure A.13: Individual growth curves in the PSCG dataset comparable to Figure 4.3 in chapter
4 and Figure 3 in Areekal et al. (2022).

The initial SITAR model in boys is fitted in log(age) and height scale with degrees of freedom
(df) for the spline curves set as 6.

# boys
boys_2$htok <- TRUE
F1_B <- sitar(log(age), height, ID, boys_2[boys_2$htok ==
TRUE, ], 6)

F1_B$ok <- boys_2$htok
# number of iterations
F1_B$num

[1] 16

summary(F1_B)

SITAR nonlinear mixed-effects model fit by maximum likelihood
Call: sitar(x = log(age), y = height, id = ID, data = boys_2[boys_2$htok ==
TRUE, ], df = 6)
AIC BIC logLik

17987.4 18089.09 -8977.702

Random effects:
Formula: list(a ~ 1, b ~ 1, c ~ 1)
Level: id
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
a 6.80889711 a b
b 0.08486528 0.457
c 0.14602401 0.527 0.531
Residual 0.83054263

Fixed effects: s1 + s2 + s3 + s4 + s5 + s6 + a + b + c ~ 1
Value Std.Error DF t-value p-value
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s1 21.80769 0.4251856 3448 51.28982 0.0000
s2 28.65730 0.7416036 3448 38.64235 0.0000
s3 35.02615 0.6708226 3448 52.21373 0.0000
s4 53.22042 1.1859311 3448 44.87649 0.0000
s5 68.24102 1.3674500 3448 49.90385 0.0000
s6 53.92083 0.9908962 3448 54.41622 0.0000
a 113.29651 1.0342721 3448 109.54227 0.0000
b -0.01389 0.0082492 3448 -1.68322 0.0924
c 0.07689 0.0302193 3448 2.54436 0.0110
Correlation:
s1 s2 s3 s4 s5 s6 a b

s2 0.960
s3 0.972 0.944
s4 0.955 0.973 0.963
s5 0.963 0.987 0.959 0.984
s6 0.933 0.965 0.932 0.975 0.981
a -0.925 -0.961 -0.907 -0.946 -0.955 -0.947
b -0.778 -0.853 -0.749 -0.834 -0.841 -0.857 0.906
c -0.933 -0.963 -0.933 -0.977 -0.966 -0.966 0.966 0.889

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-6.55395059 -0.39942791 0.01271697 0.41761598 5.56313478

Number of Observations: 4252
Number of Groups: 796

The initial sitar model in girls is fitted in log(age) and height scale with df = 5, and fixed
effects “a+c”.

SITAR nonlinear mixed-effects model fit by maximum likelihood
Call:

sitar(x = log(age), y = height, id = ID, data = Girls_2[Girls_2$htok ==
TRUE, ], df = 5, fixed = "a+c")

AIC BIC logLik
14196.56 14282.98 -7084.28

Random effects:
Formula: list(a ~ 1, b ~ 1, c ~ 1)
Level: id
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
a 6.15008329 a b
b 0.08494961 0.419
c 0.14218422 0.424 0.345
Residual 0.69315900

Fixed effects: s1 + s2 + s3 + s4 + s5 + a + c ~ 1
Value Std.Error DF t-value p-value

s1 24.71263 0.7945272 2865 31.10357 0.0000
s2 40.28785 1.4063276 2865 28.64756 0.0000
s3 39.77952 0.9849336 2865 40.38802 0.0000
s4 55.40859 1.6059349 2865 34.50239 0.0000
s5 37.41178 0.8274197 2865 45.21501 0.0000
a 112.70934 1.0940097 2865 103.02407 0.0000
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c 0.05157 0.0423617 2865 1.21743 0.2235
Correlation:
s1 s2 s3 s4 s5 a

s2 0.990
s3 0.972 0.981
s4 0.981 0.988 0.987
s5 0.965 0.976 0.981 0.980
a -0.970 -0.976 -0.967 -0.976 -0.957
c -0.975 -0.987 -0.972 -0.971 -0.962 0.970

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-5.900228636 -0.377054883 -0.005894336 0.386052444 5.815822506

Number of Observations: 3543
Number of Groups: 672

A.4.1.3 Plotting outliers beyond 4 SD

par(pty = "s")

## boys
plot.lme(F1_B, id = pnorm(-4), idlabel = getGroups(F1_B),
pch = "o")

## girls
plot.lme(Fit1_G, id = pnorm(-4), idlabel = getGroups(Fit1_G),
pch = "o")
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Figure A.14: Residuals from the initial SITAR model in boys.
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Figure A.15: Residuals from the initial SITAR model in girls.

A.4.1.4 Remove the points beyond 4SD and refit the SITAR model

Boys

boys_2$htok[boys_2$htok == TRUE] <- abs(residuals(F1_B,
type = "p")) < 4

F2_B <- update(F1_B)
F2_B$ok <- boys_2$htok
summary(F2_B)

SITAR nonlinear mixed-effects model fit by maximum likelihood
Call: sitar(x = log(age), y = height, id = ID, data = boys_2[boys_2$htok ==
TRUE, ], df = 6)

AIC BIC logLik
17495.11 17596.74 -8731.554

Random effects:
Formula: list(a ~ 1, b ~ 1, c ~ 1)
Level: id
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
a 6.84919618 a b
b 0.08381081 0.461
c 0.14648099 0.508 0.508
Residual 0.75178565

Fixed effects: s1 + s2 + s3 + s4 + s5 + s6 + a + b + c ~ 1
Value Std.Error DF t-value p-value

s1 21.40214 0.3651492 3435 58.61204 0.0000
s2 27.94903 0.6480191 3435 43.12994 0.0000
s3 34.46174 0.5680840 3435 60.66311 0.0000
s4 52.34031 1.0402736 3435 50.31398 0.0000
s5 67.03076 1.1949388 3435 56.09556 0.0000
s6 53.24436 0.8960362 3435 59.42211 0.0000
a 114.18935 0.9184247 3435 124.33176 0.0000
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b -0.00831 0.0076221 3435 -1.08967 0.2759
c 0.09966 0.0273633 3435 3.64220 0.0003
Correlation:
s1 s2 s3 s4 s5 s6 a b

s2 0.954
s3 0.966 0.930
s4 0.949 0.971 0.953
s5 0.957 0.985 0.948 0.985
s6 0.928 0.964 0.919 0.976 0.982
a -0.908 -0.951 -0.881 -0.935 -0.944 -0.938
b -0.746 -0.833 -0.704 -0.813 -0.819 -0.837 0.894
c -0.924 -0.959 -0.916 -0.972 -0.963 -0.962 0.959 0.874

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-3.86688200 -0.41968201 0.01611758 0.44055470 3.80117913

Number of Observations: 4239
Number of Groups: 796

Girls

Girls_2$htok[Girls_2$htok == TRUE] <- abs(residuals(Fit1_G,
type = "p")) < 4

Fit2_G <- update(Fit1_G)
Fit2_G$ok <- Girls_2$htok
summary(Fit2_G)

SITAR nonlinear mixed-effects model fit by maximum likelihood
Call:

sitar(x = log(age), y = height, id = ID, data = Girls_2[Girls_2$htok ==
TRUE, ], df = 5, fixed = "a+c")

AIC BIC logLik
14036.62 14123.02 -7004.31

Random effects:
Formula: list(a ~ 1, b ~ 1, c ~ 1)
Level: id
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
a 6.12987170 a b
b 0.08486755 0.415
c 0.14321221 0.414 0.340
Residual 0.66655667

Fixed effects: s1 + s2 + s3 + s4 + s5 + a + c ~ 1
Value Std.Error DF t-value p-value

s1 24.65585 0.7836250 2861 31.46383 0.0000
s2 40.05495 1.3890995 2861 28.83520 0.0000
s3 39.59661 0.9788386 2861 40.45264 0.0000
s4 55.12976 1.5834952 2861 34.81523 0.0000
s5 37.25403 0.8203838 2861 45.41049 0.0000
a 112.86387 1.0821011 2861 104.30068 0.0000
c 0.05792 0.0422145 2861 1.37210 0.1701
Correlation:
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s1 s2 s3 s4 s5 a
s2 0.991
s3 0.972 0.982
s4 0.981 0.989 0.988
s5 0.966 0.977 0.982 0.981
a -0.970 -0.976 -0.967 -0.976 -0.957
c -0.976 -0.987 -0.972 -0.972 -0.963 0.969

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-4.0790845178 -0.3890507233 0.0004300837 0.4001396725 4.0526308530

Number of Observations: 3539
Number of Groups: 672

A.4.1.5 Summary of cleaned data set

Table A.3: Summary of the cleaned PSCG dataset.

Characteristic Boys, N = 4,239 Girls, N = 3,539
Age (years) 11.30 (9.00, 13.60) 11.50 (9.20, 13.60)
Height (cm) 143 (131, 158) 145 (131, 154)

A.4.1.6 SITAR model optimisation

We fitted multiple SITAR models using logarithmic and power transformations of age and
height scales. Four combinations of fixed effects are also studied. Note that all SITAR models fix
with the size fixed effect. If no fixed effect is defined in the model, the mean is assumed to be
distributed around 0.
The model with the least BIC is chosen as the optimal model. The BIC values for multiple
models were given by the dfpower argument in the sitar package Cole (2022). The -ve values
denote models that were fitted with a warning.

dfb <- dfpower(F2_B, df = 4:8, xpowers = 0:1, ypowers = 0:1,
fixed = c("a", "a+b", "a+c", "a+b+c"))

dfb

df_g <- dfpower(Fit2_G, df = 4:8, xpowers = 0:1, ypowers = 0:1,
fixed = c("a", "a+b", "a+c", "a+b+c"))

df_g

# not run here due to computational load

Boys:

dfb

, , log(height), log(age)

a a+b a+c a+b+c
4 -18403.5 -17907.9 -18346.4 -17574.5
5 -17601.8 -17600.3 -17611.4 -17541.8
6 -17551.3 -17532.7 -17556.4 -17573.4
7 -17650.4 -17662.8 -17521.6 -17602.1
8 -17605.3 -17653.8 -17637.7 -18225.1
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, , height, log(age)

a a+b a+c a+b+c
4 -18625.7 18099.9 -18618.3 17829.8
5 17702.7 17766.3 17824.6 17740.7
6 17701.3 17623.2 17656.3 17609.9
7 17789.2 17711.9 -17709.1 17728.9
8 17747.7 17784.3 17766.7 18335.4

, , log(height), age

a a+b a+c a+b+c
4 -18231.5 -17917.5 -18162.8 -17797.4
5 -17811.4 -17825.7 -17742.6 -17746.4
6 -17771.4 -17765.4 -17667.6 -17677.4
7 -17929.7 -17791.6 -17679.1 -17702.5
8 -17815.1 -17964.1 -17844.7 -17775.1

, , height, age

a a+b a+c a+b+c
4 18438.2 -18041.6 18298.7 -17787.9
5 17843.7 17855.0 -17814.1 17728.7
6 17826.6 17792.2 17722.5 17731.5
7 -17986.6 17864.6 17789.5 17748.2
8 17868.0 -18015.9 17891.1 -18416.3

sort(dfb)

[1] -18625.7 -18618.3 -18416.3 -18403.5 -18346.4 -18231.5 -18225.1 -18162.8
[9] -18041.6 -18015.9 -17986.6 -17964.1 -17929.7 -17917.5 -17907.9 -17844.7
[17] -17825.7 -17815.1 -17814.1 -17811.4 -17797.4 -17791.6 -17787.9 -17775.1
[25] -17771.4 -17765.4 -17746.4 -17742.6 -17709.1 -17702.5 -17679.1 -17677.4
[33] -17667.6 -17662.8 -17653.8 -17650.4 -17637.7 -17611.4 -17605.3 -17602.1
[41] -17601.8 -17600.3 -17574.5 -17573.4 -17556.4 -17551.3 -17541.8 -17532.7
[49] -17521.6 17609.9 17623.2 17656.3 17701.3 17702.7 17711.9 17722.5
[57] 17728.7 17728.9 17731.5 17740.7 17747.7 17748.2 17766.3 17766.7
[65] 17784.3 17789.2 17789.5 17792.2 17824.6 17826.6 17829.8 17843.7
[73] 17855.0 17864.6 17868.0 17891.1 18099.9 18298.7 18335.4 18438.2

The lowest positive BIC (17609.9 ) corresponds to the model with x=log(age), y=height,
df=6 and fixed effects a, b and c.

Girls:

df_g

, , log(height), log(age)

a a+b a+c a+b+c
4 -14831.8 -14409.4 -14323.5 -14265.1
5 -14232.2 -14242.7 -14234.2 -14255.2
6 -14346.4 -14283.3 -14267.2 -14280.1
7 -14282.9 -14253.7 -14274.1 -14284.5
8 -14276.5 -14257.1 -14401.5 -14272.7
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, , height, log(age)

a a+b a+c a+b+c
4 14751.3 14330.4 14219.7 -14160.4
5 -14122.4 14136.0 14123.9 -14126.4
6 14239.9 14152.9 14148.2 14145.5
7 14154.8 14158.3 14163.5 14169.6
8 14164.6 14155.4 14158.9 14165.4

, , log(height), age

a a+b a+c a+b+c
4 -14817.1 -14505.3 -14440.1 -14408.5
5 -14297.4 -14285.0 -14304.4 -14293.5
6 -14346.6 -14324.5 -14324.1 -14321.8
7 -14312.6 -14322.1 -14315.7 -14331.5
8 -14310.8 -14322.3 -14339.0 -14356.7

, , height, age

a a+b a+c a+b+c
4 14681.2 14322.0 14233.9 -14188.2
5 14147.4 14160.9 -14158.5 14176.6
6 14255.5 14205.4 14182.8 14182.9
7 -14189.5 -14198.1 14199.2 -14287.0
8 -14205.3 -14213.8 14209.8 14219.8

sort(df_g)

[1] -14831.8 -14817.1 -14505.3 -14440.1 -14409.4 -14408.5 -14401.5 -14356.7
[9] -14346.6 -14346.4 -14339.0 -14331.5 -14324.5 -14324.1 -14323.5 -14322.3
[17] -14322.1 -14321.8 -14315.7 -14312.6 -14310.8 -14304.4 -14297.4 -14293.5
[25] -14287.0 -14285.0 -14284.5 -14283.3 -14282.9 -14280.1 -14276.5 -14274.1
[33] -14272.7 -14267.2 -14265.1 -14257.1 -14255.2 -14253.7 -14242.7 -14234.2
[41] -14232.2 -14213.8 -14205.3 -14198.1 -14189.5 -14188.2 -14160.4 -14158.5
[49] -14126.4 -14122.4 14123.9 14136.0 14145.5 14147.4 14148.2 14152.9
[57] 14154.8 14155.4 14158.3 14158.9 14160.9 14163.5 14164.6 14165.4
[65] 14169.6 14176.6 14182.8 14182.9 14199.2 14205.4 14209.8 14219.7
[73] 14219.8 14233.9 14239.9 14255.5 14322.0 14330.4 14681.2 14751.3

The lowest positive BIC (14123.9 ) corresponds to the model with x=log(age) vs height, df=5,
fixed effects =a+c

A.4.1.7 Optimal model in boys

log(age) vs height, df=6, fixed effects =a+b+c

SITAR nonlinear mixed-effects model fit by maximum likelihood
Call: sitar(x = log(age), y = height, id = ID, data = boys_final, df = 6)

AIC BIC logLik
17495.11 17596.74 -8731.554

Random effects:
Formula: list(a ~ 1, b ~ 1, c ~ 1)
Level: id
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Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr

a 6.84919618 a b
b 0.08381081 0.461
c 0.14648099 0.508 0.508
Residual 0.75178565

Fixed effects: s1 + s2 + s3 + s4 + s5 + s6 + a + b + c ~ 1
Value Std.Error DF t-value p-value

s1 21.40214 0.3651492 3435 58.61204 0.0000
s2 27.94903 0.6480191 3435 43.12994 0.0000
s3 34.46174 0.5680840 3435 60.66311 0.0000
s4 52.34031 1.0402736 3435 50.31398 0.0000
s5 67.03076 1.1949388 3435 56.09556 0.0000
s6 53.24436 0.8960362 3435 59.42211 0.0000
a 114.18935 0.9184247 3435 124.33176 0.0000
b -0.00831 0.0076221 3435 -1.08967 0.2759
c 0.09966 0.0273633 3435 3.64220 0.0003
Correlation:
s1 s2 s3 s4 s5 s6 a b

s2 0.954
s3 0.966 0.930
s4 0.949 0.971 0.953
s5 0.957 0.985 0.948 0.985
s6 0.928 0.964 0.919 0.976 0.982
a -0.908 -0.951 -0.881 -0.935 -0.944 -0.938
b -0.746 -0.833 -0.704 -0.813 -0.819 -0.837 0.894
c -0.924 -0.959 -0.916 -0.972 -0.963 -0.962 0.959 0.874

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-3.86688200 -0.41968201 0.01611758 0.44055470 3.80117913

Number of Observations: 4239
Number of Groups: 796

A.4.1.8 The optimal model in girls

log(age) vs height, df=5, fixed effects =a+c

SITAR nonlinear mixed-effects model fit by maximum likelihood
Call: sitar(x = log(age), y = height, id = ID, data = girls_final,
df = 5, fixed = "a+c")

AIC BIC logLik
14036.62 14123.02 -7004.31

Random effects:
Formula: list(a ~ 1, b ~ 1, c ~ 1)
Level: id
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
a 6.12987170 a b
b 0.08486755 0.415
c 0.14321221 0.414 0.340
Residual 0.66655667
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Fixed effects: s1 + s2 + s3 + s4 + s5 + a + c ~ 1
Value Std.Error DF t-value p-value

s1 24.65585 0.7836250 2861 31.46383 0.0000
s2 40.05495 1.3890995 2861 28.83520 0.0000
s3 39.59661 0.9788386 2861 40.45264 0.0000
s4 55.12976 1.5834952 2861 34.81523 0.0000
s5 37.25403 0.8203838 2861 45.41049 0.0000
a 112.86387 1.0821011 2861 104.30068 0.0000
c 0.05792 0.0422145 2861 1.37210 0.1701
Correlation:
s1 s2 s3 s4 s5 a

s2 0.991
s3 0.972 0.982
s4 0.981 0.989 0.988
s5 0.966 0.977 0.982 0.981
a -0.970 -0.976 -0.967 -0.976 -0.957
c -0.976 -0.987 -0.972 -0.972 -0.963 0.969

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-4.0790845178 -0.3890507233 0.0004300837 0.4001396725 4.0526308530

Number of Observations: 3539
Number of Groups: 672

A.4.2 GAMLSS analysis

Please refer to the section 4.2.2.1, for more details.

GAMLSS Rigby and Stasinopoulos (2005) introduces multiple distributions capable of ac-
commodating distributions that are asymmetric. These distributions leverage the Box-Cox
transformation of a variable (𝑦) regulated by a power parameter 𝜈.

The Box-Cox Cole and Green distribution (BCCG), is employed to account for skewness in
the data, enabling the modeling of asymmetric characteristics. When both skewness and kurtosis
are present, two additional distributions: Box-Cox power exponential (BCPE) and Box-Cox
(BCT) distributions are available. These distributions can capture the complex data shapes
encountered in real-world scenarios.

The parameter estimation for these distributions assumes a linear relationship between mean
(𝜇) and the Box-Cox parameter (𝜈), whereas the relationship between standard deviation (𝜎)
and 𝜈 follows a logarithmic curve. However, an alternative approach allowing a logarithmic
relationship between 𝜇 and 𝜈 is also explored (as in the case of BCCGo, BPEo, and BCTo
distributions).

To estimate moment curves (mean, SD), the model employs penalized B-splines or P-splines.
These flexible curves effectively capture intricate relationships between variables. The model
employs cross-validation is to find the appropriate level of degrees of freedom of the curve.

The global deviance of gamlss models under different distributions (NO, BCCGo, BPEo,
BCTo)are given below (for the final iteration). The the centiles under the optimal model is shown
in Figure A.16 and Figure A.17. A table showing the portion of the sample that fall under each
theoretical centile is also given.
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A.4.2.1 Boys

gml_b <- lms(height, age, k = log(nrow(boys_final)),
data = boys_final)

*** Initial fit***
GAMLSS-RS iteration 2: Global Deviance = 28044.15
*** Fitting BCCGo ***
GAMLSS-RS iteration 6: Global Deviance = 27877.58
*** Fitting BCPEo ***
GAMLSS-RS iteration 8: Global Deviance = 27869.76
*** Fitting BCTo ***
GAMLSS-RS iteration 18: Global Deviance = 27877.26
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Centile curves using BCCGo

Figure A.16: Centiles estimated for boys under BCCGo distribution for height with age. Compa-
rable to Figure 4.1 in chapter 4 or Figure 1 in Areekal et al. (2022).

target calib. sample
0.4% 0.4 0.423 0.401
2% 2.0 1.654 2.005
10% 10.0 10.175 10.002
25% 25.0 24.831 25.006
50% 50.0 50.542 50.035
75% 75.0 74.551 74.994
90% 90.0 89.810 89.998
98% 98.0 98.214 97.995
99.6% 99.6 99.442 99.599

The boys data is well described by the BCCGo distribution.

A.4.2.2 Girls

gml_g <- lms(height, age, k = log(nrow(girls_final)),
data = girls_final)

*** Initial fit***
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GAMLSS-RS iteration 2: Global Deviance = 22701.42
*** Fitting BCCGo ***
GAMLSS-RS iteration 1: Global Deviance = 22684.87
*** Fitting BCPEo ***
GAMLSS-RS iteration 1: Global Deviance = 22764.89
*** Fitting BCTo ***
GAMLSS-RS iteration 12: Global Deviance = 22644.67
*** Refitting NO ***
GAMLSS-RS iteration 3: Global Deviance = 22654.87
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Figure A.17: Centiles estimated for girls under NO distribution for height with age. Comparable
to Figure 4.1 in chapter 4 or Figure 1 in Areekal et al. (2022).

target calib. sample
0.4% 0.4 0.388 0.424
2% 2.0 1.771 2.006
10% 10.0 11.276 10.003
25% 25.0 24.579 25.007
50% 50.0 49.387 50.014
75% 75.0 74.944 74.993
90% 90.0 90.266 89.997
98% 98.0 97.848 97.994
99.6% 99.6 99.640 99.576

The girls data is well described by the normal distribution (NO).

Other models with square root and log transformation of the age variable was also explored
(not shown here).
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A.5 Modelling height growth in children with Type-1 diabetes

A.5.1 Datasets

Two data sets on longitudinal height growth are analysed in this study:

1. The Sweetlings Type-1 Diabetes Mellitus (STDM) dataset consists of anthropometric
measurements in 490 (269 girls) subjects aged 1 to 29 years diagnosed with T1DM recruited
from a tertiary healthcare centre in Pune, India.

2. The Pune School Children Growth (PSCG) dataset consists of longitudinal height
measurements in 2949 (1268 girls) school going children from Pune, India.

A summary of longitudinal measurements in the study is given in the Table A.4.

Table A.4: Summary of the longitudinal measurements in STDM and the PSCG dataset.

Characteristic STDM, N = 1,598 PSCG, N = 8,158
Gender
Boys 732 (46%) 4,461 (55%)
Girls 866 (54%) 3,697 (45%)
Age (years) 12.2 (3.8) 11.1 (3.1)
Height zscore -1.25 (1.20) -0.35 (0.97)
HbA1C (%) 9.80 (8.60, 11.30) -

A.5.2 Model Optimisation

We analysed the data in two frameworks: Separate and Pooled. In the Separate framework,
the two separate SITAR models are fitted to each data set. In the Pooled, a single model is fitted
to two data sets pooled.

A.5.3 1. Separate models

Initial models are fitted as described in the section A.4.1.2 through A.4.1.4. Multiple plausible
models are explored for STDM and PSCG dataset in each sex separately.

A.5.3.1 BIC of plausible models in separate framework - boys

STDM:

stdm_boys_dfpower

, , log(Height), log(Age)

a a+b a+c a+b+c
4 -3555.0 -3560.4 -3549.7 3514.8
5 -3540.1 3514.6 -3507.7 -3518.9
6 -3513.2 3499.0 3547.3 -3549.9
7 -3536.2 -3544.1 -3545.1 -3560.0
8 -3552.7 3591.7 -3565.3 -3590.1
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, , Height, log(Age)

a a+b a+c a+b+c
4 3545.4 3551.8 3536.4 3515.3
5 3499.9 -3500.3 3481.9 -3523.0
6 3494.1 -3454.1 3495.3 -3466.1
7 3492.3 3508.1 3503.1 3551.7
8 3471.6 3494.4 3555.8 3543.8

, , log(Height), Age

a a+b a+c a+b+c
4 -3541.1 -3551.5 -3529.7 -3540.5
5 -3563.6 -3551.5 -3532.8 -3552.2
6 -3540.7 -3537.7 -3524.8 -3546.8
7 -3548.2 -3570.4 -3575.9 -3577.0
8 -3532.4 -3542.3 -3553.8 -3585.1

, , Height, Age

a a+b a+c a+b+c
4 3519.6 3526.1 3491.1 3488.5
5 -3525.2 3529.7 -3486.1 3557.0
6 3509.8 3511.4 3490.9 3531.8
7 3551.4 3570.2 -3570.8 3497.0
8 3519.1 3558.2 3599.3 3581.4

PSCG:

pscg_boys_dfpower

, , log(height), log(age)

5 6 7 8
a -18152.3 -17975.5 -18140.8 -18068.7
a+b -18079.4 -17998.6 -17946.9 -18033.1
a+c -18158.7 -17949.4 -17908.7 -17907.5
a+b+c -17972.7 -17919.4 -17940.5 -18023.9

, , height, log(age)

5 6 7 8
a -18219.1 18020.5 18161.0 18152.5
a+b -18157.9 18035.9 18058.8 18051.3
a+c 18255.1 17987.6 18017.8 18068.0
a+b+c 18067.0 17976.1 18051.5 18078.1

, , log(height), age

5 6 7 8
a -18420.0 -18298.8 -18394.6 -18239.9
a+b -18403.4 -18305.2 -18194.4 -18247.1
a+c -18423.4 -18253.8 -18244.6 -18337.2
a+b+c -18350.4 -18265.8 -18219.5 -18308.6
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, , height, age

5 6 7 8
a 18385.1 18292.6 18473.6 18352.8
a+b 18403.6 18279.5 18254.8 18297.9
a+c 18415.7 18164.6 18208.5 18283.9
a+b+c 18168.5 -18202.5 18228.6 18337.1

A.5.3.2 BIC of plausible models models in separate framework - girls

STDM:

stdm_girls_dfpower

, , log(Height), log(Age)

a a+b a+c a+b+c
4 -4079.2 -3974.9 3927.8 -3931.3
5 -3937.7 3944.8 -3935.2 -4105.8
6 -3952.7 -3955.4 -3952.5 -3969.6
7 3952.0 -3959.9 -3958.6 3977.5
8 -3961.0 -3982.7 4035.7 -4076.5

, , Height, log(Age)

a a+b a+c a+b+c
4 4065.2 3945.0 3881.6 3892.5
5 -3894.7 3898.5 3900.9 3908.9
6 3921.2 3910.9 3904.8 -3918.7
7 3917.2 3920.9 3910.1 3927.5
8 3924.5 3939.8 3987.5 3946.9

, , log(Height), Age

a a+b a+c a+b+c
4 -4061.3 -4012.7 -4054.5 -3970.9
5 -3976.1 -3971.0 -4208.6 -3965.2
6 -3971.6 -3967.0 -3976.8 -3994.1
7 -3978.3 -3972.0 -3986.6 -3983.3
8 -3991.8 -4096.6 -4003.5 -4012.5

, , Height, Age

a a+b a+c a+b+c
4 4004.1 3941.4 3915.0 3913.0
5 3918.0 3915.5 4122.0 4049.0
6 3928.8 3930.4 3928.5 3952.0
7 3935.4 3934.2 3946.9 3953.1
8 3940.2 -4149.2 3947.4 -3974.0

PSCG:

pscg_girls_dfpower

, , log(height), log(age)
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4 5 6 7
a -15207.1 -14502.8 -14612.9 -14516.3
a+b -14709.2 -14484.6 -14516.4 -14518.6
a+c -14555.7 -14498.2 -14517.8 -14524.5
a+b+c -14499.5 -14506.9 -14525.1 -14536.0

, , height, log(age)

4 5 6 7
a 15119.0 14368.6 14503.6 14375.1
a+b 14614.6 14374.4 14382.9 14381.4
a+c 14424.6 -14369.0 14396.9 14389.0
a+b+c 14354.2 14369.5 14388.2 14390.3

, , log(height), age

4 5 6 7
a -15744.3 -14583.3 -14670.0 -14606.5
a+b -15031.4 -14591.6 -14597.0 -14607.3
a+c -15132.4 -14576.1 -14650.8 -14598.1
a+b+c -15109.9 -14569.6 -14604.6 -14608.4

, , height, age

4 5 6 7
a 15457.7 14412.8 14541.6 14433.8
a+b 14897.0 14423.3 14434.8 -14446.6
a+c 14660.4 14426.4 14455.7 -14439.6
a+b+c 14554.9 14432.9 -14446.3 14460.5

A.5.3.3 Model selection

A.5.3.4 Optimal model selected in boys

A.5.3.4.1 STDM

SITAR nonlinear mixed-effects model fit by maximum likelihood
Call: sitar(x = log(Age), y = Height, id = ID, data = ht_B_2[ht_B_2$htok ==
TRUE, ], df = 6, fixed = "a+b")
AIC BIC logLik

3385.26 3454.136 -1677.63

Random effects:
Formula: list(a ~ 1, b ~ 1, c ~ 1)
Level: id
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
a 8.10076021 a b
b 0.09683062 0.470
c 0.22690417 0.649 0.513
Residual 0.66019327

Fixed effects: s1 + s2 + s3 + s4 + s5 + s6 + a + b ~ 1
Value Std.Error DF t-value p-value

s1 37.61776 0.8871846 514 42.40128 0
s2 45.88729 1.0074689 514 45.54711 0
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s3 51.31230 0.9956636 514 51.53578 0
s4 66.31601 0.9392346 514 70.60643 0
s5 88.35162 1.7212197 514 51.33082 0
s6 63.94581 0.8662506 514 73.81907 0
a 92.97789 0.9770983 514 95.15714 0
b -0.10277 0.0086060 514 -11.94127 0
Correlation:
s1 s2 s3 s4 s5 s6 a

s2 0.855
s3 0.911 0.875
s4 0.698 0.809 0.816
s5 0.864 0.898 0.881 0.783
s6 0.569 0.717 0.694 0.923 0.654
a -0.774 -0.825 -0.756 -0.631 -0.804 -0.561
b 0.198 -0.003 0.198 0.044 0.062 -0.060 0.135

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-2.9051540 -0.3569736 -0.0019481 0.3420396 2.6962918

Number of Observations: 729
Number of Groups: 208

A.5.3.4.2 PSCG

SITAR nonlinear mixed-effects model fit by maximum likelihood
Call:

sitar(x = log(age), y = height, id = ID, data = P_ht_B_2[P_ht_B_2$htok ==
TRUE, ], df = 6, fixed = "a+c")

AIC BIC logLik
17891.56 17987.59 -8930.78

Random effects:
Formula: list(a ~ 1, b ~ 1, c ~ 1)
Level: id
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
a 6.78332199 a b
b 0.08801212 0.467
c 0.14504449 0.509 0.550
Residual 0.71135506

Fixed effects: s1 + s2 + s3 + s4 + s5 + s6 + a + c ~ 1
Value Std.Error DF t-value p-value

s1 34.21639 0.3431685 3651 99.70728 0
s2 41.47956 0.4575220 3651 90.66134 0
s3 47.88522 0.4961811 3651 96.50753 0
s4 64.88246 0.6898710 3651 94.05013 0
s5 87.02190 0.8174766 3651 106.45185 0
s6 64.20619 0.5308078 3651 120.95940 0
a 99.74442 0.4950880 3651 201.46805 0
c 0.11133 0.0125456 3651 8.87443 0
Correlation:
s1 s2 s3 s4 s5 s6 a

s2 0.950

127



s3 0.955 0.936
s4 0.879 0.918 0.935
s5 0.945 0.967 0.942 0.927
s6 0.828 0.879 0.869 0.922 0.912
a -0.875 -0.892 -0.868 -0.839 -0.882 -0.809
c -0.792 -0.834 -0.860 -0.924 -0.833 -0.860 0.812

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-3.03224009 -0.45460971 0.02426882 0.47103476 3.07987956

Number of Observations: 4455
Number of Groups: 797

A.5.3.5 Optimal model selected in girls

A.5.3.5.1 STDM

SITAR nonlinear mixed-effects model fit by maximum likelihood
Call: sitar(x = log(Age), y = Height, id = ID, data = .data., df = 5,
fixed = "a+b")

AIC BIC logLik
3849.882 3916.577 -1910.941

Random effects:
Formula: list(a ~ 1, b ~ 1, c ~ 1)
Level: id
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
a 7.5295989 a b
b 0.1189044 0.309
c 0.2376369 0.558 0.319
Residual 0.5793913

Fixed effects: s1 + s2 + s3 + s4 + s5 + a + b ~ 1
Value Std.Error DF t-value p-value

s1 39.07891 1.0682417 607 36.58246 0.0000
s2 58.26626 1.2332177 607 47.24734 0.0000
s3 53.80469 0.9688206 607 55.53628 0.0000
s4 81.62245 2.1356068 607 38.21979 0.0000
s5 49.09669 0.8121735 607 60.45099 0.0000
a 91.23600 1.2031645 607 75.83003 0.0000
b -0.03236 0.0111040 607 -2.91425 0.0037
Correlation:
s1 s2 s3 s4 s5 a

s2 0.919
s3 0.778 0.832
s4 0.902 0.903 0.869
s5 0.698 0.794 0.921 0.766
a -0.833 -0.795 -0.796 -0.907 -0.700
b 0.060 0.097 -0.135 -0.126 -0.113 0.263

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-3.333222407 -0.335210960 -0.003927598 0.363667253 2.740354354
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Number of Observations: 866
Number of Groups: 253

A.5.3.5.2 PSCG

SITAR nonlinear mixed-effects model fit by maximum likelihood
Call:

sitar(x = log(age), y = height, id = ID, data = P_girls_clean2[P_girls_clean2$htok ==
TRUE, ], df = 4)

AIC BIC logLik
14267.19 14354.16 -7119.595

Random effects:
Formula: list(a ~ 1, b ~ 1, c ~ 1)
Level: id
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
a 6.00106604 a b
b 0.09255551 0.443
c 0.13943815 0.386 0.468
Residual 0.63613525

Fixed effects: s1 + s2 + s3 + s4 + a + b + c ~ 1
Value Std.Error DF t-value p-value

s1 32.12255 0.4644654 3006 69.16027 0
s2 44.77673 0.6229220 3006 71.88176 0
s3 66.06426 1.0062411 3006 65.65451 0
s4 42.51310 0.5316496 3006 79.96452 0
a 104.81674 0.6986175 3006 150.03451 0
b -0.06241 0.0050399 3006 -12.38373 0
c 0.31502 0.0192112 3006 16.39757 0
Correlation:
s1 s2 s3 s4 a b

s2 0.956
s3 0.968 0.971
s4 0.936 0.987 0.956
a -0.906 -0.912 -0.936 -0.903
b -0.507 -0.556 -0.581 -0.569 0.683
c -0.884 -0.937 -0.909 -0.927 0.900 0.663

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-3.11848674 -0.41565094 0.01146134 0.41865869 2.99682778

Number of Observations: 3685
Number of Groups: 673

A.5.4 2. Pooled models

A.5.4.1 Model optimisation

Multiple plausible models are explored by pooling STDM and PSCG dataset in each sex. All
the models in the pooled framework is fitted with all the fixed effects. Hence, the combinations
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of possible models with varying dfs and transformations of the age and height scale are only
explored.

A.5.4.2 Boys

boys_pooled_df

, , log(age)

log(height) height
4 -21599.3 21774.0
5 -21469.4 -21518.1
6 -21412.8 -21412.9
7 -21493.9 21460.3
8 -21564.7 21593.9

, , age

log(height) height
4 -22079.0 -21801.0
5 -21864.3 21651.0
6 -21760.8 21602.0
7 -21716.2 21688.0
8 -21831.2 21909.4

A.5.4.3 Girls

girls_pooled

, , log(age)

log(height) height
4 -18601.0 18295.6
5 -18500.0 18290.2
6 -18495.5 18307.8
7 -18504.2 18311.6
8 -18517.4 18829.4

, , age

log(height) height
4 -19262.8 -18518.9
5 -18586.3 -18374.5
6 -18619.6 18372.6
7 -19010.1 18483.2
8 -18778.3 -18667.0

A.5.4.4 Optimal models

A.5.4.5 Boys

SITAR nonlinear mixed-effects model fit by maximum likelihood
Call:

sitar(x = log(age), y = height, id = ID, data = bigdata_boys[bigdata_boys$htok ==
TRUE, ], df = 6, a.formula = ~flag, b.formula = ~flag, c.formula = ~flag)
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AIC BIC logLik
21288.45 21412.94 -10625.23

Random effects:
Formula: list(a ~ 1, b ~ 1, c ~ 1)
Level: id
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
a 7.07402883 a b
b 0.08734763 0.450
c 0.15526079 0.529 0.491
Residual 0.70698564

Fixed effects: s1 + s2 + s3 + s4 + s5 + s6 + a.flagSTDM + a + b.flagSTDM + b +
c.flagSTDM + c ~ 1

Value Std.Error DF t-value p-value
s1 33.36173 0.4181310 4162 79.78775 0.0000
s2 39.89504 0.6442640 4162 61.92342 0.0000
s3 46.35919 0.5796801 4162 79.97375 0.0000
s4 62.66738 0.9614141 4162 65.18250 0.0000
s5 84.26544 1.1031444 4162 76.38660 0.0000
s6 61.87838 0.7917075 4162 78.15813 0.0000
a.flagSTDM -4.92872 0.6356249 4162 -7.75413 0.0000
a 101.60360 0.8386468 4162 121.15184 0.0000
b.flagSTDM 0.00971 0.0093999 4162 1.03260 0.3018
b 0.00664 0.0064440 4162 1.02964 0.3032
c.flagSTDM -0.09856 0.0170977 4162 -5.76436 0.0000
c 0.18259 0.0220639 4162 8.27529 0.0000
Correlation:

s1 s2 s3 s4 s5 s6 a.STDM a b.STDM
s2 0.963
s3 0.972 0.944
s4 0.931 0.967 0.946
s5 0.962 0.984 0.953 0.971
s6 0.903 0.952 0.905 0.967 0.964
a.flagSTDM -0.020 -0.012 -0.023 -0.018 -0.023 -0.022
a -0.904 -0.950 -0.888 -0.933 -0.941 -0.931 -0.022
b.flagSTDM -0.074 -0.070 -0.070 -0.068 -0.078 -0.077 0.589 0.059
b -0.653 -0.763 -0.631 -0.763 -0.745 -0.793 -0.014 0.842 0.032
c.flagSTDM 0.008 0.009 0.008 0.005 0.001 0.007 0.511 -0.018 0.580
c -0.877 -0.933 -0.887 -0.960 -0.929 -0.945 0.003 0.948 0.069

b c.STDM
s2
s3
s4
s5
s6
a.flagSTDM
a
b.flagSTDM
b
c.flagSTDM 0.002
c 0.843 0.003

Standardized Within-Group Residuals:
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Min Q1 Med Q3 Max
-3.05589880 -0.44420946 0.02340478 0.45910534 2.91864061

Number of Observations: 5178
Number of Groups: 1005

A.5.4.6 Girls

SITAR nonlinear mixed-effects model fit by maximum likelihood
Call:

sitar(x = log(age), y = height, id = ID, data = bigdata[bigdata$htok ==
TRUE, ], df = 5, a.formula = ~flag, b.formula = ~flag, c.formula = ~flag)

AIC BIC logLik
18174.57 18290.18 -9069.287

Random effects:
Formula: list(a ~ 1, b ~ 1, c ~ 1)
Level: id
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
a 6.5559583 a b
b 0.0921528 0.370
c 0.1627782 0.474 0.345
Residual 0.6266788

Fixed effects: s1 + s2 + s3 + s4 + s5 + a.flagSTDM + a + b.flagSTDM + b +
c.flagSTDM + c ~ 1

Value Std.Error DF t-value p-value
s1 34.10254 0.8496389 3612 40.13769 0.0000
s2 49.68471 1.2951733 3612 38.36144 0.0000
s3 47.53833 0.9405313 3612 50.54412 0.0000
s4 69.77077 1.5705228 3612 44.42519 0.0000
s5 44.45684 0.7870713 3612 56.48388 0.0000
a.flagSTDM -3.76517 0.5470406 3612 -6.88280 0.0000
a 102.02282 1.0889803 3612 93.68656 0.0000
b.flagSTDM 0.04604 0.0087177 3612 5.28095 0.0000
b 0.00984 0.0039983 3612 2.46060 0.0139
c.flagSTDM -0.04858 0.0177331 3612 -2.73939 0.0062
c 0.15815 0.0326273 3612 4.84732 0.0000
Correlation:

s1 s2 s3 s4 s5 a.STDM a b.STDM b
s2 0.992
s3 0.972 0.981
s4 0.983 0.985 0.984
s5 0.964 0.976 0.983 0.976
a.flagSTDM 0.007 0.006 0.004 0.006 0.000
a -0.964 -0.967 -0.966 -0.976 -0.954 -0.030
b.flagSTDM -0.005 -0.004 -0.006 -0.005 -0.014 0.501 0.006
b -0.161 -0.171 -0.234 -0.240 -0.225 0.006 0.306 -0.008
c.flagSTDM 0.011 0.019 0.022 0.011 0.024 0.410 -0.019 0.347 -0.004
c -0.959 -0.974 -0.965 -0.955 -0.954 -0.011 0.959 0.002 0.236

c.STDM
s2
s3
s4
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s5
a.flagSTDM
a
b.flagSTDM
b
c.flagSTDM
c -0.018

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-2.9479917558 -0.3917843270 -0.0005056974 0.4002058845 2.8478345017

Number of Observations: 4548
Number of Groups: 926

A.5.5 Comparison of separate vs pooled models

A.5.5.1 Boys

BICs of the models are:

df BIC
STDM separate 15 3454.136
PSCG separate 15 17987.586
Pooled 19 21412.942

The difference between the sum of the BICs of the two separate models and the BIC of the
pooled model is:

[1] 28.77998

A.5.5.2

df BIC
STDM_separate 14 3916.577
PSCG_separate 14 14354.157
Pooled 18 18290.179

The difference between the sum of the BICs of the two separate models and the BIC of the
pooled model is:

[1] -19.44472

A.5.6 Covariate analysis

A.5.6.1 HbA1c modelling

There is no significant sex effect (P = 0.1 ).

hb_gb <- STDM_nest %>%
unnest(data) %>%
dplyr::select(ID, Age, Gender, HbA1C_pc) %>%
drop_na() %>%
# mutate(sex = as.numeric(Gender) ) %>%
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sitar(Age, log(HbA1C_pc), ID, data = ., df = 3, random = "a",
a.formula = ~Gender)

summary(hb_gb)

SITAR nonlinear mixed-effects model fit by maximum likelihood
Call: sitar(x = Age, y = log(HbA1C_pc), id = ID, data = ., df = 3,
random = "a", a.formula = ~Gender)

AIC BIC logLik
-755.9331 -719.1837 384.9666

Random effects:
Formula: a ~ 1 | id

a Residual
StdDev: 0.1362259 0.1527894

Fixed effects: s1 + s2 + s3 + a.GenderGirls + a ~ 1
Value Std.Error DF t-value p-value

s1 0.1598948 0.02546180 956 6.27979 0.0000
s2 0.0338851 0.06732539 956 0.50330 0.6149
s3 -0.0047260 0.02791114 956 -0.16932 0.8656
a.GenderGirls 0.0257322 0.01591955 956 1.61639 0.1063
a 2.2452662 0.02940491 956 76.35686 0.0000
Correlation:

s1 s2 s3 a.GndG
s2 0.321
s3 0.101 0.518
a.GenderGirls 0.043 0.025 0.027
a -0.487 -0.939 -0.399 -0.032

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-3.267786885 -0.586210264 -0.009067741 0.562193878 3.345783891

Number of Observations: 1408
Number of Groups: 448

HbA1c model without sex effect:

hb_gb2 <- STDM_nest %>%
unnest(data) %>%
dplyr::select(ID, Age, Gender, HbA1C_pc) %>%
drop_na() %>%
# mutate(sex = as.numeric(Gender) ) %>%

sitar(Age, log(HbA1C_pc), ID, data = ., df = 3, random = "a")

summary(hb_gb2)

SITAR nonlinear mixed-effects model fit by maximum likelihood
Call: sitar(x = Age, y = log(HbA1C_pc), id = ID, data = ., df = 3,
random = "a")

AIC BIC logLik
-755.3148 -723.8152 383.6574

Random effects:
Formula: a ~ 1 | id
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a Residual
StdDev: 0.136591 0.1528601

Fixed effects: s1 + s2 + s3 + a ~ 1
Value Std.Error DF t-value p-value

s1 0.1581809 0.02546163 957 6.21252 0.0000
s2 0.0312504 0.06734959 957 0.46400 0.6428
s3 -0.0058957 0.02792365 957 -0.21114 0.8328
a 2.2467471 0.02941399 957 76.38362 0.0000
Correlation:
s1 s2 s3

s2 0.321
s3 0.101 0.517
a -0.486 -0.939 -0.399

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-3.25305200 -0.57567834 -0.01735663 0.55909508 3.35774831

Number of Observations: 1408
Number of Groups: 448

A.5.6.2 Covariate analysis using SITAR

Summary of the covariates

df <- NA
df = c(6, 5)
fixed <- NA
fixed = c("a+b", "a+b")
# for covariate analysis, all three fixed effects will be
# used anyways.

data1 <- stdm_par_ln %>%
dplyr::select(ID, Gender, meanDdur_yr, AgeDiagnosis_new,

a.hb, mph_zz, Height, Age, htok) %>%
filter(AgeDiagnosis_new > 0) %>%
drop_na() %>%
nest_by(Gender)

# bind df and fixed columns with the df
data2 <- data1
data2$df <- df
data2$fixed <- fixed

# without birth weight

data2 %>%
rowwise() %>%
mutate(model = list(sitar(log(Age), Height, ID, data[data$htok ==

TRUE, ], df = df, fixed = fixed, a.formula = ~(mph_zz +
AgeDiagnosis_new + meanDdur_yr + a.hb), b.formula = ~(mph_zz +
AgeDiagnosis_new + meanDdur_yr + a.hb), c.formula = ~(mph_zz +
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AgeDiagnosis_new + meanDdur_yr + a.hb)))) %>%
identity -> stdm_cov

Covariates in boys when associated with size (cm), timing (fraction), intensity (fraction).

Value Std.Error DF t-value p-value
a.mph_zz 3.33 0.57 464 5.86 0.00
a.AgeDiagnosis_new 1.15 0.20 464 5.86 0.00
a.meanDdur_yr 0.43 0.21 464 2.06 0.04
a.a.hb -7.90 4.76 464 -1.66 0.10
a 97.62 4.80 464 20.34 0.00
b.mph_zz 0.02 0.01 464 2.48 0.01
b.AgeDiagnosis_new 0.03 0.00 464 7.95 0.00
b.meanDdur_yr 0.03 0.00 464 8.48 0.00
b.a.hb -0.05 0.07 464 -0.80 0.43
b -0.13 0.02 464 -6.96 0.00
c.mph_zz 0.06 0.02 464 2.96 0.00
c.AgeDiagnosis_new 0.05 0.01 464 5.79 0.00
c.meanDdur_yr 0.04 0.01 464 4.28 0.00
c.a.hb -0.17 0.17 464 -0.99 0.32
c -0.09 0.06 464 -1.52 0.13

Regression coefficients of each covariates in girls when associated with size (cm), timing
(fraction), intensity (fraction).

Value Std.Error DF t-value p-value
a.mph_zz 3.43 0.49 563 6.96 0.00
a.AgeDiagnosis_new 1.12 0.17 563 6.59 0.00
a.meanDdur_yr 0.79 0.20 563 3.90 0.00
a.a.hb -15.04 4.53 563 -3.32 0.00
a 103.41 3.09 563 33.47 0.00
b.mph_zz 0.00 0.01 563 0.45 0.65
b.AgeDiagnosis_new 0.03 0.00 563 9.62 0.00
b.meanDdur_yr 0.03 0.00 563 9.87 0.00
b.a.hb -0.15 0.07 563 -2.23 0.03
b -0.02 0.01 563 -2.20 0.03
c.mph_zz 0.03 0.02 563 1.58 0.11
c.AgeDiagnosis_new 0.02 0.01 563 2.12 0.03
c.meanDdur_yr 0.02 0.01 563 2.19 0.03
c.a.hb -0.39 0.23 563 -1.71 0.09
c 0.40 0.10 563 4.06 0.00
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Figure B.1: Copyrights information for including the article Areekal et al. (2023) in chapter 3.
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Figure B.2: Copyrights information for including Areekal et al. (2023) in chapter 5.

Figure B.3: Copyrights information for including Areekal et al. (2022) in chapter 4.
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Appendix C

Ethics statement

The ethics committee at IISER Pune approved the study (Ref: IECHR/Admin/2019/002
dated 28th February 2019 and Ref: IECHR/Admin/2021/001 dated 17th February 2021).
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Appendix D

Software

Figure D.1 shows a snapshot of the software described in Chapter 3.

Figure D.1: A height growth monitoring app for Indian children named growHT
(https://digimed.acads.iiserpune.ac.in/growth-charts).

142

https://digimed.acads.iiserpune.ac.in/growth-charts

	Acknowledgments
	Introduction 
	A physiological and public health perspective of resting metabolic rate, growth centiles and growth curves.
	Resting Metabolic Rate
	Growth centiles and growth curves

	Modelling resting metabolic rate in Indian children
	Introduction
	Methods
	Results
	Discussion
	Preprint

	Modelling height growth in Indian children and adolescents
	Introduction
	Methods
	Results
	Discussion

	Height growth under a persisting metabolic insult
	Introduction
	Methods and Subjects
	Results
	Discussion

	Discussion and Conclusion 
	Sexual differences in metabolism and height growth during childhood and adolescence.
	Strengths and limitations of the study
	Conclusion 

	Model optimisation
	Introduction

	Modelling resting metabolic rate in Indian children and adolescents
	Preliminary Data analysis
	Modelling height growth in Indian children
	Modelling height growth in children with Type-1 diabetes
	List of publications
	Copyrights and Licence

	Ethics statement
	Software

