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Abstract

In his 1956 paper, Selberg proved the famous Trace Formula for a semisimple Lie group

G and its discrete subgroup Γ. The case when G = SL2(R) is quite well-known. In this

thesis, we look at the decomposition of L2(Γ\G) into irreducible unitary representations of

G. The multiplicities of the spherical representations correspond to the eigenvalues of the

Laplacian on the locally symmetric space Γ\G/K. Our aim will be to find a finite threshold

on the multiplicity spectrum, or equivalently for the eigenvalue spectrum, which determines

the entire spectrum.
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Introduction

The main goal of this project is to study a problem which lies in the intersection of repre-
sentation theory, harmonic analysis and the theory of automorphic forms.

The theory of automorphic forms, pioneered by Klein, Poincare etc., was brought into the
limelight by the works of Maass, Selberg, Roelcke etc. In particular, Selberg introduced
new techniques from representation theory and spectral theory of self-adjoint operators on
Hilbert spaces. The Selberg Trace Formula, which will be discussed here, is a remarkable re-
sult which culminated out of these techniques and has found applications in number theory,
harmonic analysis and mathematical physics.

Here is a concrete description of the problem we’re trying to solve:
Let G be SL(2,R), K be the maximal compact subgroup of G, which is SO(2) and Γ be a
cocompact discrete subgroup of G. Let X be the Hilbert space L2(Γ\G) and consider the
right regular representation R of G on X. R breaks up as a Hilbert direct sum of irreducible
unitary representations of G as follows:

R = ⊕̂mππ, where mπ is the multiplicity of π and 0 ≤ mπ <∞.

We are interested in the relation between the multiplicities of the spherical representaions
occurring in this decomposition and the spectrum of the non-Euclidean Laplacian acting
on the space of smooth functions on the locally symmetric space Γ\G/K. We would like
to investigate whether there is a threshold of finitely many eigenvalues which determine the
entire spectrum of the Laplacian. More precisely, our goal is to prove a result of the following
kind:

Theorem 0.1. Let Γ1 and Γ2 be two discrete cocompact subgroups of G. Let m(πs,Γi) be the
multiplicity with which the spherical representation πs occurs in the L2(Γi\G) decomposition
(i = 1 or 2).
Then, there exists an M > 0 such that if

m(πs,Γ1) = m(πs,Γ2)
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for all s = it such that t ≤M , then,

m(πs,Γ1) = m(πs,Γ2)

for all πs.

Two techniques that we intend to use in attacking this problem are: Selberg Trace For-
mula for compact quotient and Paley-Wiener theory.
Here’s how the thesis is structured. Chapters 1 and 2 serve as an introduction to the subject
of harmonic analysis and representation theory. Chapter 3 is about Bargamnn’s classifica-
tion of irreducible unitary representations of SL2(R) and the principal series representations,
which are our spherical representations. In Chapter 4, we discuss the Selberg Trace formula
for compact quotient. Chapter 5 gives us the relation between the multiplicities of spherical
represenations and eigenvalues of Laplacian on Γ\G/K. In Chapter 6, we discuss the clas-
sical theorems of Paley-Wiener in Fourier analysis. Chapter 7 talks about Harish-Chandra
transform which relates bi-K-invariant functions on G and even compactly supported smooth
functions on the real line. In Chpater 8, we discuss our strategy in solving the problem. In
Chapter 9, we conclude the thesis.
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Chapter 1

Preliminaries

In this chapter, we will discuss some general definitions and aspects regarding SL2(R).
G = SL2(R), the group of 2 × 2 real matrices with determinant 1, is a locally compact
topological group. Every locally compact topological group has a Haar measure. We will
use the Iwasawa decomposition of G to define a Haar measure on G. Let A,N and K be the
following subgroups of G:

A =

{ [
eu/2 0

0 e−u/2

]
: u ∈ R

}

N =

{ [
1 x

0 1

]
: x ∈ R

}

K =

{ [
cosθ sinθ

−sinθ cosθ

]
: θ ∈ [0, 2π]

}
A and N are isomorphic to the group R (under addition) and K is isomorphic to S1. Both R
and S1 have Lebesgue measure as a Haar measure. So, we can pull it back to the groups A,
N and K. Thus, we get a Haar measure on G using the Iwasawa decomposition G = ANK
as

dg =
1

2π
du dn dθ

The measure dg is both a left as well as a right Haar measure on G. Hence, G is unimodular.
We note the following lemma. See [SL] for a proof of this.

Lemma 1.1. Let G be a locally compact unimodular topological group with Haar measure
dg. Let K be a closed subgroup of G which is also unimodular with Haar measure dk. We
form the quotient space K\G. Then, there exists a unique invariant measure dg′ on K\G
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such that for any f ∈ Cc(G),∫
G

f(g)dg =

∫
K\G

(∫
K

f(kg′)dk

)
dg′

We also have the Cartan decomposition G = KAK.

Classification of elements in G: Let g ∈ G\{±I}. Then, we have the following clas-
sification of elements in G.

1. g is called parabolic if |Tr g| = 2 or g is conjugate to some element in ±N .

2. g is called hyperbolic if |Tr g| > 2 or g is conjugate to some element in ±A.

3. g is called elliptic if |Tr g| < 2 or g is conjugate to some element in K.

We will now discuss some general representation theory definitions.

Definition 1.1. Let G be a locally compact group. Let H be a Hilbert space over C and
GL(H) be the group of all invertible linear operators on H. A representation (π,H) of the
group G is a continuous homomorphism π : G → GL(H) such that the map v 7→ π(g)v is
continuous for all x ∈ G and v ∈ H. A representation is called unitary if π(g) is unitary for
all g ∈ G.

Definition 1.2. Let (π1, H1) and (π2, H2) be two representations of G. Then, π1 and π2 are
said to be isomorphic if there exists a continuous linear isomorphism T of H1 onto H2 such
that

Tπ1(g) = π2(g)T ∀g ∈ G

Definition 1.3. Let (π,H) be a representation of G. A closed subspace M of H is said to
be an invariant subspace of π if π(g)x ∈M ∀x ∈M, ∀g ∈ G.

Definition 1.4. A representation (π,H) of G is said to be irreducible if there are no non-
trivial proper π-invariant closed subspaces of H.

Definition 1.5. A unitary representation (π,H) of G is said to be completely reducible if
there exists a family {Hi} of closed mutually orthogonal π-invariant subspaces such that each
(πi, Hi) is irreducible where πi = π|Hi and H = ⊕̂Hi where ⊕̂ is the Hilbert space direct sum.
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Chapter 2

Harmonic analysis on upper half-plane

We consider H = {z = x + iy : y > 0} which is the upper half-plane as a model for the
hyperbolic plane with the Riemannian metric given by,

ds2 =
dx2 + dy2

y2

The hyperbolic measure on H is given by,

dz =
dx dy

y2

The non-euclidean Laplacian is defined as

∆ = y2
( ∂2

∂x2
+

∂2

∂y2

)
∆ acts on the space C∞(H) of all smooth functions on H.
The group G = SL2(R) acts on the upper-half planeH by Mobius transformations. Precisely,

an element g =

[
a b
c d

]
defines a map Tg as follows:

Tg(z) :=
az + b

cz + d

One can easily check that the Mobius transformations are orientation-preserving isome-
tries of the upper-half plane H. In fact, the full group of orientation-preserving isometries
of H is PSL2(R) = SL2(R)/{±I}.
If we think of H as embedded in the Riemann sphere Ĉ = C ∪ {∞} then we can extend
this action of G to whole of Ĉ. Under such an action, the upper half-plane H, the lower
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half-plane H and the boundary of the upper half-plane R̂ = R ∪ {∞} are the three distinct
orbits.
We get an equivalent classification of elements of G using above as follows:

1. g is parabolic iff Tg has one fixed point on R̂.

2. g is hyperbolic iff Tg has two fixed points on R̂.

3. g is elliptic iff Tg has one fixed point in H and one in H.

Lemma 2.1. Tg preserves the hyperbolic metric and the hyperbolic measure on H. Also, the
Laplacian commutes with the action of G i.e.,

∆(f ◦ Tg)(z) = (∆f)(Tg(z))

The action of G on H is transitive and the stabilizer of the point i is the group K =
SO(2). So, we can identify H with the quotient space G/K and this identification is a
homeomorphism.
Also, we have the following:

Lemma 2.2. Let Γ be a subgroup of G. Then, the following are equivalent:

1. Γ is a discrete subgroup of G.

2. Γ acts discontinuously on H. i.e. for every z ∈ H, the orbit of z under Γ has no limit
point.

3. For any compact subsets A and B of H, the set {γ ∈ Γ : γA ∩B 6= φ} is finite.

A discrete subgroup Γ of G is called a Fuchsian group. A Fuchsian group of the first kind
is a Fuchsian group such that the quotient Γ\H has finite volume. A fundamental domain
for a Fuchsian group is a connected open set F ⊂ H such that:

1. No two points of F are equivalent mod Γ.

2. Any point of H lies in the orbit of some z ∈ F .

A cusp for Γ (or F) is a point which lies in F ∩ R̂. Our interest is in Fuchsian groups with
compact quotient, which is equivalent to saying that the fundamental domain (or rather its
closure) is compact. So, the quotient Γ\H is compact iff Γ has no cusps. Any cusp of Γ is
fixed by a parabolic element of Γ. Also, if we choose the fundamental domain so that no two
cusps of Γ are equivalent mod Γ, then we have a bijection between the set of cusps and the
set {z ∈ R̂ : γz = z for some parabolic γ ∈ Γ}. So, we have the following:
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Lemma 2.3. Let Γ be a Fuchsian group of the first kind. Then, Γ\H is compact iff Γ has
no parabolic elements.

Let C∞(Γ\H) be the space of all smoooth functions on H which are left invariant under
Γ. Then, because of lemma 2.1, φ ∈ C∞(Γ\H) implies ∆φ ∈ C∞(Γ\H). Hence, ∆ acts on
C∞(Γ\H).
One can define an inner product on this space C∞(Γ\H) by

〈f, g〉 :=

∫
Γ\H

f(z)g(z)dz (2.0.1)

Then, we have the following:

Lemma 2.4. The Laplacian ∆ acts on C∞(Γ\H) and:

1. 〈∆f, g〉 = 〈f,∆g〉 i.e Laplacian is a symmetric operator.

2. 〈−∆f, f〉 ≥ 0

Note that Laplacian is not a bounded operator though.

7
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Chapter 3

Representation Theory of SL2(R)

In this chapter, we will classify the irreducible unitary representations of G = SL2(R), due
to Bargmann, and then discuss an important class of representations known as Principal
Series representations. Refer [KE] or [BD] for more details.
Classification of irreducible unitary representations of SL(2,R) : Any irreducible
unitary representation of SL(2,R) is equivalent to exactly one of the following:

1. The principal series representations πεt , where ε is either 0 or 1 and t ∈ R, and t ≥ 0
if ε = 0 and t > 0 if ε = 1.

2. The two mock discrete series representations.

3. The discrete series representations πn or π̃n for n ∈ Z and n ≥ 2.

4. The complementary series representations ρs for 0 < s < 1.

5. The trivial representation.

We will now give a construction of the principal series representations.
Consider the Borel subgroup B of all upper-triangular matrices in G.

B =

{[
α β

0 α−1

]
: α ∈ R×, β ∈ R

}

The only-finite dimensional unitary representations of B are the one-dimensional characters
given by [

α β

0 α−1

]
7→ χ(α)
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where χ is a character of R×. Any character of R× is of the form

χε,t(α) = sgn(α)ε|α|it, ε = 0 or 1 and t ∈ R

We define principal series representations to be the representations unitarily induced from
these characters to the whole group G. More precisely, we consider the following space of
functions Vχ on which the group G acts by right translation.

Vχ = {f : G→ C : f(bg) = χ(b)δ(b)f(g) ∀b ∈ B, ∀g ∈ G and ||f ||2 <∞}

Here, δ is the following homomorphism from B to C

δ :

[
α β

0 β−1

]
7→ |α|

and,

||f ||2 :=

∫
K

|f(x)|2dx

This condition is to make the induced representations unitary. We let πε,t denote IndGB(χε,t).
Then,

Proposition 3.1.

1. πε,t is irreducible iff χ is not the character given by ε = 1 and t = 0.

2. πε1,t1
∼= πε2,t2 iff (ε1, t1) = (ε2, t2) or (ε1, t1) = (ε2,−t2)

Note that, if we have PSL2(R) instead of SL2(R), then there will be no dependence on
ε and hence, there will be just a single class of representations indexed by s = it, t ≥ 0.
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Chapter 4

Selberg Trace Formula for Compact
Quotient

The Selberg Trace Formula is a beautiful result expressing the equality of certain geometric
data (conjugacy classes) and certain spectral data. In this chapter, we will discuss the
Selberg Trace Formula when Γ\G is compact. Later, in Chapter 8, we will see how Trace
Formula can be used to solve our problem.
Our main references for this chapter are [WD] and [BD].
Let G be a unimodular locally compact topological group. e.g SL2(R). Let Γ be a discrete
subgroup of G such that Γ\G is compact. We take the Haar measure on G to be dg and
counting measure on Γ. By lemma 1.1, we have a unique measure dḡ on the quotient space
Γ\G. We consider the right regular representation R on the space of all square-integrable
functions on Γ\G, L2(Γ\G). The action is by right translation as follows:

(R(g)φ)(x) := φ(xg)

Let Cc(G) be the space of all continuous functions on G. Given a representation (π,H) and

a function f ∈ Cc(G) we can define a linear operator π(f) on H by:

(π(f))(v) :=

∫
G

f(g)(π(g)v)dg

Cc(G) is an algebra under convolution operation given by:

(f1 ∗ f2)(g) =

∫
G

f1(gh−1)f2(h)dh

11



The map f 7→ π(f) is an algebra homomorphism from Cc(G) to the space of bounded
operators on H. That is,

π(f1 ∗ f2) = π(f1) ◦ π(f2)

Also, for the regular representation R we get

(R(f)φ)(x) =

∫
G

f(z)φ(xz)dz

Like matrices, we can calculate the trace of a class of operators called trace-class operators.
To understand them, we need a few definitions first.

Definition 4.1. Let A : H → H be a bounded linear operator. The quantity∑
v∈B

||Ab||2

is independent of the choice of basis B. If it is finite, we say A is Hilbert-Schmidt operator
and set the Hilbert-Schmidt norm ||.||2 as

||A||2 :=

√∑
v∈B

||Ab||2

Definition 4.2. Let A : H → H be a bounded linear operator. A is called trace-class if∑
v∈B

|〈Av, v〉|

converges for every orthonormal basis B of H.

Lemma 4.1. Let A : H → H be a trace-class operator. Then, the quantity∑
v∈B

〈Av, v〉

is absolutely convergent independent of the choice of orthonormal basis B.

Thus, we can define the trace of a trace-class operator in the following manner:

Definition 4.3. Let A : H → H be a trace class operator. We define the trace of A as:

TrA :=
∑
v∈B

〈Av, v〉

where B is any orthornormal basis.

We note the following:
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Proposition 4.2. 1. A trace-class operator is Hilbert-Schmidt.

2. A Hilbert-Schmidt operator is compact.

3. If A and B are two Hilbert-Schmidt operators, then AB is of trace class and TrAB =
TrBA.

4. |TrAB| ≤ ||A||2 ||B||2

5. If A is a trace-class operator, then A∗ is also a trace-class operator and TrA∗ = TrA

Next, we will define integral operators.

Lemma 4.3. Let (X,µ) be a locally compact measure space. Let H = L2(X,µ). Assume
H is separable. Let K(x, y) ∈ L2(X ×X,µ ⊗ µ). Then we say AK : H → H is an integral
operator with kernel K where AK is defined as:

(AKf)(x) :=

∫
X

K(x, y)f(y)dy

for f ∈ L2(X,µ). We note that AK is a Hilbert-Schmidt operator and ||AK ||2 = ||K||L2

where ||.||L2 denotes the L2-norm.

Now, we can realize the operator R(f) defined earlier as an integral operator in the
following way:

(R(f)φ)(x) =

∫
G

f(z)φ(xz)dz

=

∫
G

f(x−1y)φ(y)dy

=

∫
Γ\G

∑
γ∈Γ

f(x−1γy)φ(γy)dy

Hence, R(f) is an integral operator with kernel Kf (x, y) =
∑

γ∈Γ f(x−1γy). f vanishes
outside a compact set and only finitely many γ would lie in a compact set. So, there are
only finitely many terms in the sum. So, K(x, y) is continuous and hence square-integrable.
Therefore, R(f) is a Hilbert-Schmidt operator on L2(Γ\G) because of Lemma 4.3.

Lemma 4.4. Let f = f1 ∗ f2 where f1, f2 ∈ Cc(G). Then,

R(f) = R(f1) ◦ R(f2)

13



Since, R(f1) and R(f2) are Hilbert-Schmidt operators, R(f) is a trace-class operator with
trace as

TrR(f) =

∫
Γ\G

Kf (x, x)dx

Also R(f) is given by the kernel,

Kf (x, y) =

∫
Γ\G

Kf1(x, z)Kf2(z, y)dz

We now calculate the geometric side of the trace formula. Let {Γ} denote a set of
representatives of conjugacy classes in Γ. Let Γγ be the centralizer of an element γ in Γ and
Gγ be the centralizer of an element γ in G. Then, we have:

Proposition 4.5. Let f = f1∗f2 where f1, f2 ∈ Cc(G). Assume, Gγ is unimodular for every
γ ∈ Γ. Then,

TrR(f) =
∑
γ∈{Γ}

Vol(Γγ\Gγ)

∫
Gγ\G

f(x−1γx)dx

Any C∞ function with compact support on a Lie group can be written as a finite sum of
convolutions of continuous functions with compact support. Thus, the geometric side of the
trace formula holds for any C∞c function on G = SL2(R).

We will now discuss the spectral side of the trace formula.

Theorem 4.6. The right regular representation of G, L2(Γ\G) decomposes into a discrete
Hilbert direct sum of irreducible unitary representations of G with each of them occurring
with finite multiplicities i.e.

L2(Γ\G) ∼=
⊕̂
π∈Ĝ

mππ, 0 ≤ mπ <∞

We present the proof of the above theorem as given in [BD]. The proof uses the following
lemma:

Lemma 4.7. Let (π,H) be a unitary representation of G. Then, there exists an f ∈ Cc(G)
such that π(f) is non-zero on H and π(f) is self-adjoint.

Here’s a proof of Theorem 4.6.

Proof. Let H be a closed non-zero G-invariant subspace of L2(Γ\G). We will show that H
contains a closed irreducible subspace.

14



Then, by lemma 4.7, there exists an f ∈ Cc(G) such that the operator R(f) is non-zero
when restricted to H and is self-adjoint. Now, R(f) is a Hilbert-Schmidt operator on H and
hence compact. So, by the spectral theorem for compact self-adjoint operators, R(f) has a
nonzero eigenvalue, say λ, on H and let the correspnding eigenspace be H(λ) which is finite
dimensional.
Consider the set of all invariant subspaces M of H. We choose a subspace from this set
such that dim(M ∩H(λ)) is positive but minimal. Let us call it M0. The existence of M0 is
assured by the fact that H(λ) is finite dimensional.
Let V be the intersection of all closed invariant subspaces M of H such that M0 = M∩H(λ).
We will show that V is irreducible.
Let us assume to the contrary. Then, V = V1⊕V2. Let v ∈ H(λ) be a non-zero vector. Then,
v ∈ V . Suppose, v = v1 + v2 where v1 ∈ V1 and v2 ∈ V2. Since, V1 and V2 are G-invariant
subspaces, they are also invariant under R(f). So, R(f)v1−λv1 ∈ V1 and R(f)v2−λv2 ∈ V2.
Then,

(R(f)v1 − λv1) + (R(f)v2 − λv2) = R(f)v − λv = 0

Hence, v1 and v2 are eigenvectors ofR(f). Let us assume v1 6= 0. Then, v1 ∈ H(λ)∩V1 ⊂M0.
Since, M0 is minimal with respect to this property, H(λ) ∩ V1 = M0. But, V was defined to
be the intersection of all closed invariant subspaces M of H such that M0 = M ∩H(λ) and
V1 is a proper subspace of V . Hence, we arrived at a contradiction.
Now, by Zorn’s lemma, choose a maximal element S0 in the set of all sets S of closed
irreducible invariant subspaces of L2(Γ\G) such that elements in S are orthogonal to each

other. Then, L2(Γ\G) =
⊕̂
V∈S0

V because otherwise, if it is proper, we can consider the

orthogonal complement and by the previous argument, it contains an irreducible closed
subspace contradicting the maximality of S0.
The finiteness of the multiplicities mπ follows from the fact that every eigenvalue of R(f)
has finite multiplicity.

As a corollary of Theorem 4.6 , we get the spectral side of the trace formula:

Corollary 4.8. We have

L2(Γ\G) ∼=
⊕̂
π∈Ĝ

mππ, 0 ≤ mπ <∞

Thus, for R(f) in trace-class, we get

Tr R(f) =
∑
π∈Ĝ

mπTr π(f)

15



From Proposition 4.5 and Corollary 4.8, we get the trace formula.

Theorem 4.9. Let f ∈ C∞c (G). Then R(f) is of trace-class and,∑
π∈Ĝ

mπTr π(f) = Tr R(f) =
∑
γ∈{Γ}

Vol(Γγ\Gγ)

∫
Gγ\G

f(x−1γx)dx (4.0.1)
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Chapter 5

Spherical representations and duality
theorem

In this chapter we will demonstrate the duality between the representation spectrum of
L2(Γ\G) and the eigenvalue spectrum of the Laplacian on Γ\G/K. Our references are [WD]
and [BD].

Definition 5.1. Let π be an irreducible unitary representation of G. Then, π is said to be
spherical if there exists a non-zero K-fixed vector v i.e. π(k)v = v ∀k ∈ K.

The only spherical representations of G = SL2(R) are the trivial representation and the
principal series representations. We discuss the following result:

Theorem 5.1. Let H be a closed, irreducible G-invariant subspace of L2(Γ\G). Let, HK

be the subspace of H which is K-fixed. Then, HK is at most one-dimensional. Also, if
0 6= φ ∈ HK, then φ ∈ C∞(Γ\G). As a function on Γ\H, φ satisfies

∆φ = −λφ

where λ ∈ R depends only on the isomorphism class of H.

A function f on G is said to bi-K-invariant if f(k1xk2) = f(x) ∀k1, k2 ∈ K and x ∈ G. We
denote by C∞c (G//K) the space of all smooth, compactly supported bi-K-invariant functions
on G. C∞c (G//K) forms an algebra under convolution. To prove the theorem, we will need
the following lemmas:

Lemma 5.2. Let f ∈ C∞c (G//K). Then,

f(g) = f(gT )
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for all g ∈ G. (gT means the transpose of g).

Lemma 5.3. The algebra C∞c (G//K) is commutative.

Lemma 5.4. Let (π,H) be a unitary representation of G. Suppose there exists a K-fixed
vector v in H. Then, there exists an f ∈ C∞c (G//K) such that π(f) is self-adjoint and
π(f)v 6= 0.

Definition 5.2. Let (π,H) be a representation of G. Then, π is called admissible if,

π|K =
⊕
ρ∈K̂

mρρ

with 0 ≤ mρ <∞

Proposition 5.5. Let (π,H) be an irreducible representation of G appearing in L2(Γ\G).
Then, π is admissible and HK is at most one-dimensional.

We will now give a representation theoretic definition of the Laplacian. The Lie algebra
g of the group G = SL2(R) consists of all 2 × 2 matrices with trace zero. The Lie bracket
operation is given by,

[X, Y ] = XY − Y X

G acts on C∞(G) by right translations. Similarly, g acts on C∞(G) as follows:

(dXf)(g) :=
d

dt
f(getX)

∣∣∣∣
t=0

Thus, the elements of the Lie algebra can be thought of as differential operators on the space
of smooth functions on G. The action of g on C∞(G) satisfies the following:

dX ◦ dY − dY ◦ dX = d[X, Y ]

We will now extend this definition to the universal enveloping algebra U(g) of g.
The construction of U(g) is as follows: Let T (g) be the tensor algebra of g. i.e.

T (g) :=
∞⊕
k=0

⊗k g

Here the multiplication is given by,

(v1 ⊗ v2 ⊗ ...⊗ vk)× (w1 ⊗ w2...⊗ wl) = v1 ⊗ v2 ⊗ ...⊗ vk ⊗ w1 ⊗ w2...⊗ wl
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Let I be the ideal of T (g) generated by elements of the form

X ⊗ Y − Y ⊗X − [X, Y ]

for X, Y ∈ g.
Then we define,

U(g) := T (g)/I

Thus, we can define the action of U(g) on C∞(G) by

d(X1 ⊗X2 ⊗ ...⊗Xn)f := d(X1) ◦ d(X2) ◦ ... ◦ d(Xn)f

This enables us to realize the elements in the universal enveloping algebra to be left-invariant
differential operators on G. Also, an element in the center of U(g can be realized as a right-
invariant differential operator.
Now, consider the following elements of g:

R =

[
0 1

0 0

]
, L =

[
0 0

1 0

]
, H =

[
1 0

0 −1

]

These form a basis of g. Define an element C called as the Casismir element to be

C = −1

4
(H ⊗H + 2R⊗ L+ 2L⊗R)

Then, we note the following:

Lemma 5.6. The element C lies in the center of U(g).

Let (π,H) be a representation of G. A vector v ∈ H is said to be C1 if

dπ(X)v =
d

dt
π(etX)v

∣∣∣∣
t=0

exists for all X ∈ g. We say v is Ck if v is C1 and dπ(X)v is Ck−1 for all X ∈ g. v is called
a smooth vector if v is Ck for all k. Let H∞ denote the space of all smooth vectors in H.
Then, the following lemma tells us that H∞ is stable under the action of G.:

Lemma 5.7. H∞ is invariant under the action of G.

In particular, forH = L2(Γ\G), the space of smooth vectorsH∞ coincides with C∞(Γ\G),
the space of smooth funcions on Γ\G.

Lemma 5.8. Let R be the representation of G on L2(Γ\G). Then, v ∈ L2(Γ\G)∞ iff
v ∈ C∞(Γ\G).
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We also have the following:

Lemma 5.9. Let (π,H) be a representation of G. Then, we have a Lie algebra representation
of g on the space H∞. More precisely, we have dπ : g→ End(H∞) such that

dπ(X) ◦ dπ(Y )v − dπ(Y ) ◦ dπ(X)v = dπ([X, Y ])v

for all X, Y ∈ g and all v ∈ H∞.
Also, for g ∈ G, X ∈ g and v ∈ H∞, we have

π(g)dπ(X)π(g)−1v = dπ(Ad(g)X)v

where Ad(g)X = gXg−1.
So, for g ∈ G and D in the center of U(g), we have

π(g) ◦ dπ(D)v = dπ(D) ◦ π(g)v

for all v ∈ H∞.

Lemma 5.10. Let G act on C∞(G) by right translations. Suppose φ ∈ C∞(G) is right
invariant under K. Then, we can consider φ to be a function on H and we have,

∆φ = −Cφ

where ∆ is the non-Euclidean Laplacian on H and C is the Casimir element.

We now present the proof of theorem 5.1. We follow [WD].

Proof. Let H be a closed, irreducible G-invariant subspace of L2(Γ\G). Then, by Proposition
5.5, HK is atmost one dimensional. Let 0 6= φ ∈ HK . By lemma 5.4, there exists f ∈
C∞c (G//K) such that R(f)φ 6= 0. Since, f is smooth, R(f)φ smooth. Also, for f ∈
C∞c (G//K), R(f) preserves HK . Therefore, R(f)φ = λφ for some non-zero λ. Hence, φ is
also smooth.
Now, by lemma 5.9, we can show that Cφ ∈ HK . Hence, we have, Cφ = λφ for some λ ∈ C.
φ ∈ HK and hence, we can think of φ as a smooth function on Γ\H. Then, by lemma 5.10,
we get ∆φ+ λφ = 0.

We will now give an explicit relation between the multiplicities of the spherical repre-
sentations occurring in L2(Γ\G) and the multiplicities of the eigenvalues of Laplacian on
Γ\G/K. We know that the only non-trivial spherical representations of G are the principal
series representations.
The principal series representations of G = PSL2(R) are indexed by s = it where t ≥ 0. So,
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let πs be a spherical representation. We will compute the action of the Casimir element on
the K-fixed vector of πs, say φ. Assume that φ is normalized so that φ(k) = 1 for all k ∈ K.
Then,

φ

([
α β

0 α−1

]
k

)
= |α|s+1

Next, if we consider φ as a function on the upper-half plane, we have,

φ(x+ iy) = y
s+1
2

By lemma 5.10, Casimir acts as −∆ on the functions on uppper-half plane. Therefore,

∆φ = y2∂
2φ

∂y2
=
s2 − 1

4
y
s+1
2 =

s2 − 1

4
φ

Thus, we have the following:

Theorem 5.11. Let Γ be a discrete cocompact subgroup of G. Then,

L2(Γ\G) ∼=
⊕̂
π∈Ĝ

mππ, 0 ≤ mπ <∞

For s ∈ C, we take λs = 1−s2
4

. Then,

Dim{φ ∈ C∞(Γ\H) : ∆φ+ λsφ = 0} = mπs

Now, the following lemma gives an expression for the trace formula for any f ∈ C∞c (G//K).

Lemma 5.12. Let s ∈ C and f ∈ C∞c (G//K). Then,

Tr πs(f) =

∞∫
∞

∞∫
∞

f

([
eu/2 x

0 e−u/2

])
eus/2 du dx
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Chapter 6

Paley-Wiener theorems

In this chapter we will discuss the classical theorems of Paley-Wiener in Fourier analysis.
We hope to use some version of Paley-Wiener theorem in solving the problem. Our main
reference is [SR].
The Fourier transform of an integrable (L1) function f on R is defined as follows:

f̂(x) =

∞∫
−∞

f(t)e−ixtdt

The Schwartz space S(R) is the space of all smooth functions on R such that the function
and all its derivatives tend to zero at infinity more rapidly than any inverse power of x. More
rigorously,

S(R) = {f : R→ C : sup
x∈R
|xmf (n)(x)| <∞ ∀m,n ≥ 0}

Fourier transform is an isometry on the Schwartz space S(R) with respect to the L2 norm.
In fact, by Plancherel’s theorem, the Fourier transform extends to an isometry on the space
of all square-integrable functions on R.

As we know, the Fourier transform reverses differentiation and multiplication (by poly-
nomials, for example). Thus, smoother the function, more rapidly decreasing it’s Fourier
transform will be and vice versa.
Compact support is like the ultimate in rapidly decreasing nature while analyticity is the ul-
timate in smoothness. The classical theorems of Paley-Wiener deal with support conditions
on f to ensure analyticity of f̂ .
Let us first try to define a complex Fourier transform of f ∈ L1(R). If we define it by just
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replacing the real variable x by a complex variable z = x+ iy, then

f̂(z) = f̂(x+ iy) =

∞∫
∞

f(t)e−it(x+iy)dt

=

∞∫
∞

f(t)e−itxetydt

= ĝ(x)

where, g(t) = etyf(t). Since, ety grows rapidly at infinity, the integral won’t converge. So,
we will take f to be compactly supported in which case the complex Fourier transform is
defined as above.
It can be easily verified that f̂(z) satisfies the Cauchy-Riemann equations and hence, f̂(z)
is an entire function. But, not every entire function can be written as the complex Fourier
transform of a compactly supported function because f̂ satisfies certain estimates.
Take f to be an integrable function supported in the interval [−A,A] where A ≥ 0. Then,

|f̂(z)| =
∣∣∣∣
∞∫
∞

f(t)e−it(x+iy)dt

∣∣∣∣ =

∣∣∣∣
A∫

−A

f(t)e−it(x+iy)dt

∣∣∣∣
≤

A∫
−A

|f(t)e−it(x+iy)|dt

=

A∫
−A

|f(t)ety|dt

≤ eA|y|
A∫

−A

|f(t)|dt = CeA|y|

Thus, |f̂(z)| ≤ CeA|y|. We say f̂ is an entire function of exponential type A.
The important content in the Paley-Wiener theorems is that the converse of the above is
also true. Here, we state two versions of Paley-Wiener theorem without proof. See [SR] for
more details.

Theorem 6.1. Let f be a complex-valued square-integrable function with support as [−A,A].
Define f̂(z) = f̂(x+ iy) :=

∫∞
−∞ f(t)e−it(x+iy)dt.

Then, f̂(z) is an entire function of exponential type A and f̂(x) is a square-integrable func-
tion.
Conversely, if F (z) is an entire function of exponential type A and if F (x) is a square-
integrable function, then F = f̂ for some such function f .
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Theorem 6.2. Let f be a smooth function with support as [−A,A]. Then, f̂(z), as defined
above, is an entire function of exponential type A and f̂(x) lies in the Schwartz space i.e.
f̂(x) is also rapidly decreasing.
Conversely, if F (z) is an entire function of exponential type A and F (x) is rapidly decreasing,
then F = f̂ for some such function f .
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Chapter 7

Plancherel Formula and Weyl’s Law

The aim of this chapter will be to give a concrete realization of C∞c (G//K) using the Harish-
Chandra transform and give a version of Plancherel formula. Please refer [WD] for more
details.
We have set,

A =

{ [
a 0

0 a−1

]
: a ∈ R>0

}
Let f ∈ C∞c (G//K). We define the Harish-Chandra transform Hf ∈ C∞c (A) as follows:

Hf

[
a 0

0 a−1

]
=

∫
R
f

([
a x

0 a−1

])
dx

We let w =

[
0 1
−1 0

]
. Then,

w−1

[
a x

0 a−1

]
w =

[
a−1 0

−x a

]

Since, w ∈ K,

f

([
a x

0 a−1

])
= f

([
a−1 0

−x a

])
Also, by lemma 5.2, f(g) = f(gT ). Hence,

f

([
a x

0 a−1

])
= f

([
a−1 −x
0 a

])
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Thus,

Hf

([
a 0

0 a−1

])
= Hf

([
a−1 0

0 a

])
We will denote this as Hf ∈ C∞c (A)w.

Theorem 7.1. The map H : C∞c (G//K)→ C∞c (A)w is an algebra isomorphism.

The proof of this theorem uses the following lemmas:

Lemma 7.2. Let f ∈ C∞c (R>0) such that f(x) = f(x−1). Define F on Cc(R≥1) by,

F

(
x2 + x−2

2

)
= f(x)

Then, F ∈ C∞c (R≥1).

Lemma 7.3. Let f ∈ C∞c (G//K). Then, there exists Ff ∈ C∞c (R≥1) such that,

f(g) = Ff (
1

2
Tr gTg)

Conversely, given F ∈ C∞c (R≥1), if we define f by f(g) = F (1
2
Tr gTg), then f ∈ C∞c (G//K).

So, by the previous lemma, we have,

Hf

([
a 0

0 a−1

])
=

∫
R
f

([
a x

0 a−1

])
dx

=

∫
R
Ff

(
a2 + a−2 + x2

2

)
dx

Lemma 7.4. Let F ∈ C∞c (R≥1). Define, for a ≥ 1,

H(a) =

∫
R
F (a+

x2

2
)dx

Then, H ∈ C∞c (R≥1) and

F (a) = − 1

2π

∫
R
H ′(a+

x2

2
)dx

The converse is also true.

Theorem 7.1 now follows from the above lemmas.
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So, given f ∈ C∞c (G//K), Harish-Chandra transform gives us Hf ∈ C∞c (A)w and using
the above lemmas, we get,

Hf

([
a 0

0 a−1

])
= hf

(
a2 + a−2

2

)
Let us now define gf ∈ C∞c (R)even by,

gf (u) = Hf

([
eu/2 0

0 e−u/2

])
= hf

(
eu + e−u

2

)
= hf (cosh(u))

Thus, we get the following version of Plancherel formula:

Theorem 7.5. Let f ∈ C∞c (G//K). Then,

f

([
1 0

0 1

])
=

1

2π

∞∫
0

ĝf (u)u tanh(πu)du

where, ĝf (u) =
∫
R gf (t)e

−iutdt is the Fourier transform of gf .

We also have the following:

Lemma 7.6. Let f ∈ C∞c (G//K) and s = it ∈ C. Then,

Tr πs(f) = ĝf (−s/2i)

We now briefly discuss Weyl’s law.

Let S be a bounded domain in R2 with smooth boundary ∂S. Consider the Euclidean
Laplacian given by,

∆ =
∂2

∂x2
+

∂2

∂x2

We look for functions φ on S satisfying

∆φ+ λφ = 0

and φ|∂S ≡ 0. Let N(T ) be the number of linearly independent solutions with λ ≤ T . Note
that λ ≥ 0. Weyl proved that,

N(T ) ∼ Area(S)

4π
T
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as T →∞.
Using the trace formula, one can extend the Weyl’s law to the quotients of upper-half plane.
More precisely, we have,

N(T ) ∼ Area(Γ\H)

4π
T

as T →∞.
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Chapter 8

The Problem

We now finally come to the problem we intended to solve.
Let G = PSL2(R). We consider PSL2(R) instead of SL2(R) because in this case, the
spherical representations are indexed by s = it and there is no dependence on ε. We know,

L2(Γ\G) ∼=
⊕̂
π∈Ĝ

mππ, 0 ≤ mπ <∞

We consider the spherical spectrum i.e the multiplicities of the spherical representations
πs in the above decomposition. In [BR], Chandrasheel Bhagwat and C.S. Rajan prove an
analogous result of strong multiplicity one theorem in the case of spherical spectrum. They
conclude that if all but finitely many multiplicities of spherical representations agree, then
the spectra are same.
Along similar lines, we ask the following question - Does there exist a threshold, say M > 0,
such that if the spherical spectrum of two different discrete cocompact subgroups Γ1 and
Γ2 of G agree till M , then the entire spherical spectra is the same? The threshold we are
looking for should ideally be independent of the subgroups Γ1 and Γ2.
Equivalently, if we consider the setting of Γ\G/K, then we are looking for a threshold M
such that if the multiplicities of the eigenvalues of the non-Euclidean Laplacian ∆ for two
different Γ1\G/K and Γ2\G/K agree until M , then both the Laplacian spectra should be
identical.

In more precise terms, we would like to establish a result of the following kind:

Theorem 8.1. Let Γ1 and Γ2 be two discrete cocompact subgroups of G. Let m(πs,Γi) be the
multiplicity with which the spherical representation πs occurs in the L2(Γi\G) decomposition
(i = 1 or 2).
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Then, there exists an M > 0 such that if

m(πs,Γ1) = m(πs,Γ2)

for all s = it such that t ≤M , then,

m(πs,Γ1) = m(πs,Γ2)

for all πs.

Since, L2(Γ\G) decomposes into a discrete sum, only finitely many πs will be there such
that t ≤M .
Our approach is to use the trace formula and the Paley-Wiener estimates to find such an
M . Let us write down the trace formula.∑

π∈Ĝ

mπTr π(f) = Tr R(f) =
∑
γ∈{Γ}

Vol(Γγ\Gγ)

∫
Gγ\G

f(x−1γx)dx

Let us choose f ∈ C∞c (G//K). Then, Trπ(f) = 0 if π is not spherical. Hence,∑
πs∈Ĝs

mπTr πs(f) =
∑
γ∈{Γ}

Vol(Γγ\Gγ)

∫
Gγ\G

f(x−1γx)dx

where Ĝs denotes the set of all equivalence classes of irreducible unitary spherical represen-
tations of G. Now, comparing the equations for Γ1 and Γ2, we get,∑

πs∈Ĝs

(m(πs,Γ1)−m(πs,Γ2))Tr πs(f) =
∑

γ∈{Γ1}∪{Γ2}

Vol(Γγ\Gγ)

∫
Gγ\G

f(x−1γx)dx

Now, let S be the set of all πs such that s = it and t > M . Then, by our assumption we
have, ∑

πs∈S

(m(πs,Γ1)−m(πs,Γ2))Tr πs(f) =
∑

γ∈{Γ1}∪{Γ2}

Vol(Γγ\Gγ)

∫
Gγ\G

f(x−1γx)dx

Then, by lemma 9.6, we get,∑
πs∈S

(m(πs,Γ1)−m(πs,Γ2))ĝf (−s/2i) =
∑

γ∈{Γ1}∪{Γ2}

Vol(Γγ\Gγ)

∫
Gγ\G

f(x−1γx)dx

Our next step is to construct an f ∈ C∞c (G//K) whose support contains exactly one
of the conjugacy classes from {Γ1} ∪ {Γ2}. Then, the right hand side would be a constant
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while on the left hand side, we have a convergent series. Our approach then would be to use
Paley-Wiener estimates or using Weyl’s law to help us in estimating the left hand side. But,
we have not yet succeeded in finding a suitable function f as desired.

33



34



Chapter 9

Conclusion

We have studied here the Selberg Trace Formula in the compact quotient case, the duality
of spherical representations and the Laplacian spectrum on Γ\G/K and briefly discussed
Paley-Wiener theorems.
We haven’t been successful in solving the problem yet but we hope to use the techniques as
outlined in the last chapter to establish Theorem 8.1 or its appropriate modification.
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