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Abstract

Hyperglycemia-induced oxidative stress leads to the development and pro-

gression of complications associated with type 2 diabetes (T2D). The cellular

antioxidant glutathione (GSH) is crucial in maintaining systemic redox bal-

ances. Studies have reported low GSH concentration in individuals with T2D,

and alleviating systemic oxidative stress through GSH supplementation could

help control the complications. A six-month-long pragmatic prospective clin-

ical trial was conducted to investigate the effect of oral GSH supplementation

on erythrocytic GSH stores and glucose homeostasis in individuals with T2D

undergoing anti-diabetic treatment. GSH supplementation was observed to

improve body stores of GSH and offered protection from oxidative damage in

these individuals. It also helped maintain lower HbA1c and improved fasting

insulin in elder individuals with T2D. Inter-individual variations of biochemi-

cal changes were observed to be very evident in this clinical study. In order to

understand the dynamics of biochemical responses and their inter-individual

variation for elucidating effective personalized interventions with GSH, we an-

alyzed the clinical trial data with the framework of linear mixed-effects (LME)

models. We modeled longitudinal changes in individuals with T2D and ob-

tained the distribution of subject-wise trajectories and overall rates of changes

across various study groups of GSH supplementation. We modeled the serial

changes in elder and younger individuals with T2D during the study period
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separately to investigate the variations in their progression. The model-derived

average linear trajectories elucidate the progression of biochemical parameters

in individuals with T2D over the six-month study period. The response to

GSH supplementation was observed to differ between elder and younger in-

dividuals with T2D. GSH was observed to replenish faster in younger than

in elder individuals with T2D. It enhances the reduction rates in HbA1c and

boosts fasting insulin levels in elder individuals with T2D. The reduction in 8-

OHdG occurred at a faster rate in older individuals compared to their younger

counterparts. Further, we monitored imbalances in cellular GSH and their

turnover to provide quantitative insights into the recovery path of individuals

with T2D. We propose a minimal mathematical model based on physiology

for describing erythrocytic GSH turnover under varying extracellular condi-

tions. This model was used to understand the glutathione response profiles

in erythrocytic treatment experiments conducted in nondiabetic, prediabetic,

and diabetic individuals. Model estimates of relevant parameters described

the restoration of cellular GSH pools and stress under varying extracellular

conditions, thereby allowing us to demonstrate patient recovery as a quantal

response to GSH supplementation. Therefore, the research conducted in this

thesis indicates that oral GSH supplementation has the potential to comple-

ment anti-diabetic therapy, leading to improved glycemic targets, particularly

in the elderly. Model results and predictions assist in evaluating treatment

progress and personalizing treatment goals for using oral GSH supplementa-

tion as an adjunct therapy in T2D.
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Chapter 1

Introduction

Diabetes mellitus is a non-communicable metabolic disorder characterized by

elevated levels of glucose in the bloodstream (ADA [1], Rockefeller [2], De-

Fronzo et al. [3]). It has already become a global epidemic, with the number

of diabetic adults already exceeding 415 million and projected to rise to cross

642 million in the next two decades (CDC [4], NCD Risk Factor Collabora-

tion [5], IDF Diabetes Atlas [6], Saklayen et al. [7], Unnikrishnan et al. [8],

Wild et al. [9], Saeedi et al. [10]). Notably, India is outracing other countries

to become an epicenter of diabetes worldwide (Shetty [11], Kaveeshwar and

Cornwall [12]). Diabetes is primarily classified into three types: type 1 and

type 2, both representing the chronic forms of diabetes, and gestational dia-

betes, a short-term condition. Among them, type 2 diabetes (T2D) is the most

prevalent, and it has detrimental effects on various bodily systems, potentially

leading to severe and life-threatening complications, including atherosclerosis,

neuropathy, retinopathy, coronary artery diseases, etc. Due to the complex-

ity of disease conditions, multiple strategies are also required for the efficient

management of diabetes (Mart́ın-Timón et al. [13], Rask-Madsen and King

[14]).
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Over six decades after the discovery of reactive oxygen species (ROS) in

skeletal muscles (Commoner et al. [15]), the scientific community has been

comprehending the effect of the unpaired electron of ROS molecules in phys-

iological pathways (Juan et al. [16], Zorov et al. [17], Roy et al. [18]). ROS

plays various roles as secondary messengers and influences normal physiolog-

ical functions in the body (Valko et al. [19], Bardaweel et al. [20], Magder

[21]). Several clinical and experimental reports have shown beneficial and

detrimental characteristics of ROS which help it in performing its specific

roles at T2D conditions in different biological compartments (Mero et al. [22],

Bardaweel et al. [20], Giacco et al. [23], Marchioli et al. [24]). The excessive

production of superoxides triggers five different pathways predominant in the

progression of complications. These pathways not only included the increase

in polyol pathway flux and advanced glycation end-products (AGEs) but also

enhanced AGE receptor expressions, activation of protein kinase C (PKC) iso-

forms, and excessive activity in the hexosamine pathways (Lazo-de-la-Vega et

al. [25], Evans et al. [26], Espinosa-Diez et al. [27]). The state of imbalance

between ROS production and their neutralization in the presence of antiox-

idants is known as oxidative stress. Notably, this leads to a disruption of

oxidation-reduction (redox) reactions and redox control that are fundamental

in cell signaling and physiological regulation (Baynes [28], Birben et al. [29],

Kurutas et al. [30]). Oxidative stress tremendously affects health in individu-

als with T2D, as it causes inflammation and migration of smooth muscle cells

and impacts the function of vascular wall cells. These subsequently contribute

to both microvascular and macrovascular complications (Pizzino et al. [31],

Bennett et al. [32]).

Glutathione is the most abundant cellular endogenous antioxidant, which

plays a vital role in determining their redox status (Wu et al. [33], Sies [34]).
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Glutathione forms a prominent redox couple with reduced and oxidized species,

GSH and GSSG, respectively. The glutathione reductase enzyme reduces oxi-

dized glutathione (GSSG) to GSH, whereas the glutathione peroxidase enzyme

(GPx) catalyzes the reverse reaction. The development of oxidative stress in-

creases GSSG, which stimulates reductase and regenerates glutathione using

reducing equivalents from NADPH (Wu et al. [33]). GSH is mainly synthesized

from glutamate, cysteine, and glycine amino acids with the help of two cytoso-

lic enzymes, γ-glutamylcysteine synthetase and GSH synthetase. The activity

of γ-glutamylcysteine synthetase enzyme, availability of cysteine pools, and

feedback inhibition are the major regulators of GSH synthesis (Townsend et

al. [35], Lu [36]). Glutathione is compartmentalized in the cell, with the ma-

jority found in the cytoplasmic pool functioning in detoxification (Griffith et

al. [37]). Several reports have shown that erythrocyte stores of GSH are sig-

nificantly low in individuals with T2D (Lutchmansingh et al. [38], Gawlik et

al. [39], Thornalley et al. [40]). These studies have indicated that a decrease

in the concentration of GSH makes individuals with T2D more susceptible

to oxidative damage and leads to the formation of glycation products, which

are the primary precursors of T2D complications. Additionally, Acharya et

al. [41] showed that controlling hyperglycemia over two months increased

GSH stores and reduced oxidative damage significantly regardless of the anti-

diabetic treatment. When different oxidative stress markers were measured,

GSH best explained the glucose recovery, which was apparently exhibiting a

rapid response within eight weeks to variations in HbA1c levels (Kulkarni et

al. [42]). This data indicated that altering hyperglycemia leads to changes

in GSH. So, it is essential to ask whether changes in GSH would impact glu-

cose homeostasis in T2D. Furthermore, there is a need to investigate the role

of these factors in the emergence of T2D complications and the possibility
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of preventing them by administering GSH supplements. It is reasonable to

believe that replenishing GSH could be a potentially promising strategy to

improve systemic redox status in individuals with T2D (Forman et al. [43]).

Strong clinical evidence is still lacking on the effects of GSH supplemen-

tation, and this is an important open area in improving T2D care. Clinical

trials are designed to answer these questions about GSH-based interventions

and improve health and quality of life. Only after well-designed trials have

established the evidence will it be possible to claim whether a GSH-assisted

treatment is effective and safe for individuals with T2D. Without that, there

is a great risk that people will be given treatments that do not work and

may even be harmful. American Diabetes Association (ADA) also shares the

same view towards the use of antioxidant supplementation in their standards

of diabetes care (ADA, [44]). So, taking antioxidant supplements may not be

advisable for everyone. However, it is also important to examine the effects

of supplementation in T2D, and if it does benefit, who might benefit better,

and what effective ways or doses of administration are. Well-designed and

adequately powered clinical trials are necessary to determine whether GSH

supplementation has any harmful effects or is beneficial for individuals with

T2D. Moreover, biochemical changes in individuals with T2D are shown to

have inter-individual variations in their response to interventions due to dif-

ferences in their physiology and T2D conditions (Kulkarni et al. [42]).

The progression and pathophysiology of T2D are unique in individuals,

and it is crucial to address these differences while designing the treatment and

care (Shrivastava et al. [45], Adu et al. [46], Chiou and Shang-Jyh [47]). This

indicates personalized management plans are essential to address the specific

needs of each individual with T2D. A personalized approach considering fac-

tors such as age, lifestyle, and overall health status to create a tailored diabetes
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management plan can potentially work best for them and can achieve better

health treatment outcomes (Inzucchi et al. [48]). Quantitatively analyzing the

imbalances in cellular GSH stores, their restoration patterns, and responses

to other blood biochemical parameters can potentially provide insights into

the recovery path of individuals with T2D from the complications. Statis-

tically modeling longitudinal changes of individuals with T2D in a clinical

trial would help analyze and quantify the outcomes of GSH supplementation

and forecast the individual trajectories and variation between individuals in

the different study arms. This would be necessary for clinicians to customize

treatment strategies by understanding the patient response and improving it

efficiently. Moreover, developing effective GSH supplementation strategies to

improve health and interventions in T2D requires a thorough quantitative un-

derstanding of GSH metabolism. Mechanistic models, which are predictive in

nature, can be utilized to describe these dynamics, evaluate a cellular response

in individuals with T2D compared to average population-level responses, and

further determine the effectiveness of a treatment strategy. Model-derived in-

sights about the parameters and model predictions can be incorporated while

designing personalized anti-diabetic therapies based on the redox status of

individual patients.

We primarily designed this project to study GSH metabolism in diabetes

and how controlling redox status influences and improves anti-diabetic treat-

ment outcomes. Our objectives are to evaluate the effectiveness of GSH sup-

plementation in regulating the redox status and improving the efficiency of

treatment, with a particular focus on personalized goals, by exploring adequate

quantitative approaches. Our lab at IISER Pune has been collaborating with

the group led by Prof. Saroj Ghaskadbi from SPPU Pune for over a decade

on various aspects of diabetes and the impacts of glutathione on healthcare in
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T2D. In this thesis project, we mainly work with datasets collected from two

major studies in this collaboration. These datasets are described in the section

below. To develop effective strategies for GSH-assisted anti-diabetic

interventions with personalization goals, we adopted a comprehen-

sive multiscale modeling framework that utilizes these two datasets.

Firstly, we performed a population-level analysis to examine the

effects of GSH supplementation on the biochemical parameters of

individuals with T2D. Further, we formulated statistical models for

the longitudinal analysis of biochemical changes observed in T2D

patients during the clinical trial duration. These models provided

estimates to predict the trajectory of progression of individuals with

T2D and the impact of GSH supplementation, which further facil-

itates personalized treatment goal setting. These results establish

new standards of GSH supplementation that are directly useful for

clinical applications in T2D. Secondly, we formulated mathematical

models for describing the dynamics of cellular GSH turnover and

examining how it responds to extracellular stimuli under different

diabetic conditions. These model estimates and insights derived

from these models help identify the individual-specific recovery on

GSH supplementation in T2D patients. Overall, these findings, de-

rived from the clinical trial and modeling approaches to improving

the standards of personalized T2D care with GSH, are the main

outcomes of this thesis research.
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1.1 Datasets

The datasets utilized in this thesis are briefly described below.

1. A randomized controlled clinical trial was conducted on Indian diabetic

patients who were already under anti-diabetic treatment and recruited by

physician Dr. Uma Divate from JCDC at Jehangir Hospital, Pune. All

subjects provided signed informed consent upon enrollment in the study.

Serial collection of blood samples was performed by Dr. Divate and col-

leagues on the study subjects at the first visit, three months, and six

months after the first visit. Ghaskadbi group measured blood biochem-

ical parameters, erythrocytic glutathione, and oxidative DNA damage

markers (8-OHdG) from these samples. After the data collection, the

de-identified data was shared with us for analysis. These datasets have

been utilized for the research work conducted in Chapters 3 and 4. Refer

to Appendix Section C for the ethical clearance document and details

for this study (numbered 1).

2. A study with cellular treatment experiments was conducted to study

the response behavior of erythrocytic glutathione-dependent systems on

different extracellular conditions. Nondiabetic, prediabetic, and dia-

betic subjects were recruited from the Savitribai Phule Pune Univer-

sity (SPPU) health center, Pune. Signed informed consent was obtained

from the subjects for participating in the study. In vitro experiments on

the collected blood samples were conducted by Prof. Ghasbkadbi and

colleagues. The blood samples were treated with different doses of GSH

a and hydrogen peroxide extracellularly. The de-identified datasets were

shared for modeling and analysis. These datasets have been used for the

research work conducted in Chapter 5. Refer to Appendix Section C for
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the ethical clearance details (numbered 2).

1.2 Thesis Outline

This research is carried out to investigate GSH metabolism in T2D condi-

tions and gain a deeper understanding of how the redox state plays a role

in improving anti-diabetic interventions. This research can shed light on en-

hancing treatment options, ultimately developing more effective approaches

to managing T2D. The project utilized a systematic framework incorporating

various quantitative modeling approaches to analyze clinical and experimental

data at population-, patient-, and cellular-levels. This thesis aims to evaluate

the effectiveness of GSH-based interventions in diabetic patients and develop

personalized treatment goals through a population-level analysis of extensive

clinical trial data, a longitudinal analysis of patient-level data, and mechanis-

tic modeling of cellular behavior related to GSH systems in different chapters.

The underlying rationale and motivation for different parts of the project are

presented below. A detailed introduction with technical aspects is provided

before the corresponding chapter.

In Chapter 2, we begin by reviewing the existing literature to understand

the theories underlying the development of oxidative stress arising from exces-

sive ROS production. We emphasize how it plays a central role in the patho-

physiology of complications arising from hyperglycemia in T2D. We thoroughly

examine the evidence about the effectiveness of antioxidant supplementation

in T2D. It is highlighted that the standards of diabetes care by the ADA do not

recommend routine antioxidant supplementation due to insufficient evidence

about their safety and efficacy. We motivate the role of the most vital and

abundant endogenous antioxidant, GSH, in T2D complications. We also stress
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the previous studies in the literature that attempted GSH supplementation

and the limited evidence available. With strong literature support, we em-

phasize the potential of using GSH as a viable strategy for relieving oxidative

stress and managing complications in T2D. We have developed fundamental

directions for this project by thoroughly reviewing the relevant literature. We

ask whether changes in GSH could affect glucose homeostasis in individuals

with T2D. Evaluating the impact of oral GSH supplementation on body GSH

stores and the regulation of glucose homeostasis among T2D patients through

a well-designed clinical trial would help greatly resolve the literature gap and

provide evidence. By identifying specific phenotypes that may benefit most

from GSH supplementation during the trial, we hope to understand better the

potential utility of this approach for managing T2D. More importantly, the ef-

fects of supplementation in T2D benefit patients differently. So, we elaborate

on why identifying effective and safer ways of administration in a patient-

centered manner is the key to achieving efficient T2D care. Furthermore, we

review previous studies to understand the relevance of quantitative approaches

toward developing personalization goals. We emphasize some of the previous

models of GSH metabolism in the literature. We specifically motivate the

scope and potential of mechanistic modeling to obtain insights for predicting

personalized treatment targets and interventions in T2D.

In Chapter 3, we present the randomized controlled clinical trial con-

ducted in our collaboration with the Ghaskadbi lab from SPPU Pune to inves-

tigate the effects of oral GSH supplementation on improving GSH stores and

glucose homeostasis in T2D patients. This is the most extensive longitudinal

study on the effects of GSH supplementation reported in the literature. We

provide the results from a detailed population-level effect size analysis of the

biochemical data from the clinical trial subjects and offer compelling evidence
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of the beneficial effects of GSH supplementation. Results from this study

show a systemic improvement of the redox state in diabetes on GSH supple-

mentation, and further, the augmented antioxidant reserves may help relieve

oxidative assault. We also inquire whether supplementing with GSH enhances

the efficacy of standard anti-diabetic treatment for maintaining normoglycemia

in individuals with T2D. Important evidence shows that supplemented GSH

is tolerated very well by patients, making it a beneficial therapeutic strategy

to add to the clinician’s arsenal. Additionally, it is known in the literature

that elder T2D subjects are prone to have more complications. We have also

conducted a posthoc analysis to find differences in the effects of GSH sup-

plementation between subgroups of individuals above and below the median

age. Our study will be a milestone study of GSH supplementation in clinical

practices. Not only do we believe that our results can be directly used clini-

cally, but we also outline ways in which GSH supplementation can potentially

be personalized. We point out that factors such as age, type of anti-diabetic

interventions or medications, and dietary modifications may influence the ef-

fectiveness of GSH supplementation. Therefore, the development of more per-

sonalized strategies that take into account these factors is essential. Our study

can serve as the foundation for future studies investigating the finer nuances

of supplementation in different patient populations.

In Chapter 4, we present a longitudinal analysis of the biochemical changes

in the participants in the clinical trial with diabetes. To the best of our knowl-

edge, this marks the first inter-individual examination of the impacts

of GSH supplementation in individuals with T2D. The primary findings

of this study involve delineating the variability in inter-individual biochemical

responses, notably influenced by an individual’s age group. We studied how

T2D individuals responded to oral GSH supplementation and estimated the
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effects brought in by the particular dose of GSH supplementation. A class of

statistical models known as linear mixed effects (LME) models are used here to

analyze and investigate the longitudinal data available from the clinical trial.

These models allow consideration of a subject as an individual with unique

characteristics and not just as a population member with an average value

to estimate. Using mixed effects models, we assess the individual trajectories

of GSH supplementation and estimate the average treatment effects of GSH

supplementation. We provide model estimates of the effect of GSH supplemen-

tation on different blood biochemical parameters in T2D individuals. We also

examine the differential effects of GSH supplementation in different age groups

independently using LME models. We provide clinically helpful schemes for

making predictions about the response of T2D individuals to GSH supple-

mentation. This chapter focuses on developing approaches to addressing more

personalized goals of GSH supplementation.

In Chapter 5, we formulate mathematical models for the dynamics of

cellular-level GSH turnover under extracellular stimuli on different diabetic

conditions. We present our approaches to developing a minimal mathemat-

ical model for the dynamics of erythrocytic GSH turnover. To support our

cellular-level observations in the clinical trial, an experimental study of cel-

lular treatments was further designed in collaboration with the Ghaskadbi

group. Data of erythrocytic GSH response was collected from extracellular

treatments with different concentrations of H2O2 and reduced, oxidized forms

of glutathione in the three study groups in control, prediabetic, and diabetic

individuals. We formulate physiology-based models and analyze cellular glu-

tathione response profiles from these treatments. By modeling the cellular

treatment data, we describe how erythrocytic GSH is altered under different

conditions and how GSH supplementation affects this turnover in T2D. Re-
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sults from these analyses help monitor the dynamics of cellular changes and

further identify personalized strategies for employing GSH supplementation in

anti-diabetic interventions.

In Chapter 6, we summarize the major findings and outcomes from dif-

ferent parts of this project. We then elaborate on the results and how the

findings of our study contribute to an overall improvement in the standards of

personalized care in Type 2 Diabetes. Our clinical study provides conclusive

evidence of the effect of GSH supplementation on improving the body stores

of GSH and their potential benefits in attaining glucose control targets in di-

abetic patients. Results from the population-level analysis of the clinical trial

data are further investigated through inter-individual analysis at the patient

level with LME models. This provides more robust evidence on the effects of

GSH supplementation and studies how individuals respond relatively to the

average population responses. LME models capture longitudinal biochemical

changes in diabetic patients due to GSH supplementation. The prediction

schemes using LME model estimates can predict individual-specific trajecto-

ries expected for newly recruited subjects with diabetes. These schemes will

be of great translational potential for academic and clinical uses in forecast-

ing the average time for patient responses and the extent of their responses.

Further, the cellular-level model described how GSH turnover responds to dif-

ferent conditions. The analysis of the experimental data supports the evidence

on the effects of GSH supplementation obtained from the clinical trial. By un-

derstanding the mechanisms of biochemical changes and the dynamics of their

imbalances under different diabetic conditions, we can determine how recov-

ery progresses in individuals. The model estimates and insights are pivotal

in advancing the personalized treatment of T2D, providing valuable insights

for clinical decision-making and improving patient outcomes. Together, the
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results at these three levels establish the effects of GSH supplementation in

T2D and provide ways to personalize and improve anti-diabetic interventions

with it.

By comprehending how oxidants act and the potential and restrictions of

antioxidant treatments, this work provides evidence and formulation of rea-

sonable approaches with GSH to enhance therapeutic interventions in T2D.

The framework of quantitative tools in this thesis project at different scales,

including mechanistic components based on physiology, represent a promis-

ing form of decision support that can predict outcomes and patient progress

in T2D treatment. The unifying theme of the chapters in this thesis is to

investigate the effects of GSH-mediated interventions with quantitative ap-

proaches on improving the standards of personalized care for T2D. Moreover,

this thesis ensures tangible outcomes with clinical utility in T2D, for which

ready-to-deploy methods for digital tools can be formulated based on our find-

ings.

1.3 Methodological Approaches

Throughout this research, we have attempted to constitute the problem into

a part of the coherent multi-scale framework. This framework consists of

conducting a clinical trial, analyzing different trends in the clinical data at the

population level, understanding the dynamics down to their basic mechanisms

at the individual levels, and then connecting them to fundamental ideas of

metabolic dynamics at cellular levels.

The clinical study was conducted as a pragmatic-prospective random-

ized clinical trial designed in a case-control setting. This study carefully

and rigorously adhered to the principles of randomization in trials to correctly

31



attribute the effects to the intervention of GSH supplementation alone. We

confirmed the baseline covariate balance once randomization had been carried

out. Thus, we emphasize that there is no bias in recruiting subjects to either

the intervention arm or the diabetic control group. The metabolic conditions

of these groups are very nearly identical. Various mathematical and statis-

tical models are used to make better quantitative insights into the problem,

namely a class of mixed-effects models for modeling longitudinal biochem-

ical changes of diabetic patients in the clinical trial (Sections 4.2.3). Further,

we formulate mechanistic models of cellular-level biochemical changes (Sec-

tion 5.2.3) in individuals with different T2D conditions. However, there are

both positive aspects and drawbacks to the use of each of these methods.

Firstly, we acknowledge some limitations of the clinical study, such as that

although anti-diabetic treatments were not changed during the study period,

patients used different medications. We have examined the complexity of com-

bining treatments, but some may lack sufficient statistical power. Secondly,

we note that for some variables in the dataset, nonlinear mixed-effect models

could have been suitable to describe the dynamics of changes, probably for

a longer time duration. However, we specifically used a simple, ‘linear’ class

of mixed-effects models to describe average linear trajectories over six months

for all variables. These linear ME models were also used to obtain clinically

transferable estimates of the treatment effect of intervention and correlation

analysis to establish the association between different biochemical changes.

We consider LME estimates, which predict model trajectories within the in-

terquartile ranges of the data at all visits, to be good descriptions of the data.

The linear models were also a suitable choice, considering the limited data

points. Thirdly, the minimal mathematical models used for describing mecha-

nistic pathways of GSH turnover offer possibilities for the analytical treatment
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of the problem and theory development based on observations from cellular

treatment experiments and the clinical trial of GSH supplementation. How-

ever, constructing these models required significant intuition to accurately de-

pict the requisite physiology and incorporate sufficient complexity to account

for the constrained experimental data.

The research findings presented in this work will establish a solid founda-

tion and evidence for developing new strategies for GSH-mediated interven-

tions in patients with T2D. This accomplishment has been made possible by

integrating insights gained from clinical observations, data obtained from lab-

oratory experiments, and their comprehensive modeling using mathematical

and statistical methods with the coherent framework in this study.
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Chapter 2

Problem foundations:

Understanding GSH metabolism

and oxidative stress in T2D

Despite advancements in clinical treatments and medications, the occurrence

of T2D has witnessed a substantial rise over the past few decades. Current clin-

ical practices primarily aim to slow the progression of hyperglycemia but lack

sufficient guidance on preventing complications associated with T2D. There

is an urgent need to gain better insights into efficient preventive measures for

controlling oxidative stress-lead complications for T2D care and to develop

clinical and theoretical strategies focusing on optimizing interventions. In this

thesis, we attempt to investigate GSH metabolism in T2D and, particularly,

the role of redox status in facilitating personalized anti-diabetic interventions

with the help of quantitative approaches. This thesis research plays a critical

role in bridging this gap and improving the standards of T2D care.

To provide context for this research, we discuss the literature linking ox-

idative stress to the major T2D complications caused by hyperglycemia. The
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activation of various metabolic signaling pathways by hyperglycemia can lead

to diabetic complications such as inflammation in the vessels and nerves,

nephropathy, retinopathy, and cardiovascular diseases (Rask-Madsen et al.

[14], Giri et al. [49], Volpe et al. [50], Demir et al. [51]). Therefore, man-

aging diabetes is challenging due to its complex nature involving multiple

metabolic pathways, and effective strategies to regulate these pathways and

prevent complications are scarce. Factors such as diet, physical activity, and

weight management can influence diabetes and must be considered when tai-

loring anti-diabetic therapy for individuals.

The physiological relevance of antioxidants is still uncertain in treating

diabetes in the light of ADA position (ADA [52]). So, taking antioxidant sup-

plements may not be advisable for everyone. However, it is also important

to investigate the role of GSH, the master antioxidant in cellular systems,

in redox status and in improving the standards of personalized anti-diabetic

interventions. Our research aims to investigate the evidence on the role of

GSH and its relevance in the context of T2D care. Defining individualized

treatment targets to manage diabetic complications could be more efficient,

however challenging. It involves understanding patient-specific factors that

impact intervention efficacy and the mechanistic behavior of antioxidant pools

that affect cellular redox status and hyperglycemia-mediated diabetic compli-

cations. The current approach to managing hyperglycemia relies on utilizing

existing knowledge of the underlying mechanisms, and glucose targets in pa-

tients are also determined by the progression toward diabetic complications.

This thesis is about a quantitative understanding of the fundamental phys-

iology of GSH actions in controlling hyperglycemia-induced oxidative stress

associated with T2D complications. Additionally, our approaches enable for

development of tailored diabetes management plans to utilize GSH supplemen-
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tation as a protection against hyperglycemia-induced complications triggered

by oxidative stress.

We begin this chapter by attempting to understand how hyperglycemia-

lead ROS production and the development of OS act as the central cause of

complications in diabetes (Section 2.1). Substantial evidence supports the no-

tion that controlling increased glucose levels may not be enough to mitigate

diabetic complications. Consequently, we intend to question whether current

interventions adequately address the root cause of diabetic complications while

focusing only on glucose targets. In addition, we elaborate on the evidence

that supports the possible uses of GSH in advancing diabetic complications

(Section 2.2). It is important to emphasize that utilizing GSH to regulate OS

could be a significant therapeutic objective in managing these complications.

Additionally, we emphasize the requirement to reassess the conventional ap-

proaches in treating T2D with the help of model-based, data-driven insights

and implementing personalized intervention strategies with GSH to target OS-

lead complications specifically (Section 2.3).

In summary, by providing an overview of the causal relationships between

hyperglycemia and OS, mechanisms by which it contributes to diabetes-related

complications, functions of antioxidant defenses, methods for boosting it by re-

plenishing GSH stores, potentials of GSH-based interventions and motivations

behind personalized approaches needs, this lays the foundation for rationales

behind aims of this research project. Before going into the role of GSH and its

potential in regulating redox balances and mitigating T2D complications, we

begin by describing oxidative stress in the pathophysiology of diabetes itself.

This will give an understanding and motivation for discussing the need for ef-

fective antioxidant-based interventions in achieving T2D treatment objectives.
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2.1 Roles of ROS in the pathophysiology of

T2D complications

The imbalance between the generation of oxidizing agents and antioxidant

defenses in cellular systems was coined as oxidative stress (OS) and popu-

larized by Helmut Sies in several works for more than three decades ([53], [54],

[55], [56], [57], [58], [59], [60]). The increased ROS production leads to the OS.

ROS not only include reactive molecules derived from O2 such as superoxide

(O−
2 ), singlet oxygen but also derivatives like hydrogen peroxide (H2O2), and

hydroxyl radical (OH) (Giacco and Brownlee [23], Collin [61], Nordberg et al.

[62]). OS arise from both endogenous and exogenous agents. Oxidative stress

has been extensively studied in both basic and applied fields of biology and

medicine (Storey [63], Jones and Sies [64], Islam [65], Lushchak [66], Cadenas

et al. [67]). The field of redox biology has advanced from studying the concept

of oxidative stress in pathology to exploring redox signaling in physiology for

various diseases.

Figure 2.1 illustrates how hyperglycemia leads to reactive oxygen species

production through various pathways and further impact, resulting in the mod-

ification and damage of proteins, apoptosis, impairing mitochondrial function,

oxidative DNA damage, and diabetic complications. These effects are known

to disrupt various signaling pathways and often lead to an acceleration of

pathological progression and increased expressions of disease symptoms (For-

man and Zhang [43], Halliwell [68], Halliwell [69]). Hyperglycemia causes

tissue damage through different mechanisms, as depicted in Figure 2.1. These

routes primarily stem from increased glucose flux via the polyol pathway and

cellular production of AGEs. Additionally, the enhanced activation of PKC

isoforms and the activity of the hexosamine pathway also act as links, lead-
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ing to complications (Giacco and Brownlee [23], Lazo-de-la-Vega et al. [25]).

Evidence shows that all of these mechanisms are triggered by ROS overproduc-

tion. ROS readily reacts with most biomolecules, which leads to free radical

formation reactions. To control these reactions, these free radicals should en-

gage in reactions to eliminate the unpaired electrons or with any antioxidants

(Nordberg et al. [62]). The current approaches for managing T2D are not

Figure 2.1: Oxidative stress pathways involved in T2D complications. This
figure is adapted from Lazo-de-la-Vega et al. [25]. The overproduction of
superoxides acts as the central causal link between hyperglycemia, leading to
complications.

effective in preventing complications caused by oxidative stress. The excessive

production of superoxides triggered by hyperglycemia is a continuous process

with individual variations in its dynamics, making those practices unlikely to

effectively counteract the detrimental effects of ROS molecules.

Evidence in the literature suggests that antioxidant-based approaches can
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be crucial in relieving oxidative stress. Their ability to counteract the harmful

effects of reactive oxygen species (ROS) and, thereby, oxidative stress could

control the progression of T2D complications. Several animal studies have

shown that antioxidants and antioxidant enzyme expressions have beneficial

effects in inhibiting hyperglycemia-induced ROS production in diabetes. In

turn this could prevent the progressions to diabetic retinopathy, nephropathy,

and cardiomyopathy (Salvemini et al. [70], Vincent et al. [71]), Otero et al.

[72], Zhang et al. [73], Kowluru et al. [74], DeRubertis et al. [75]). Several

dietary constituents have been proposed to be major free radical scavengers

inside the cellular systems; however, conclusive evidence is still lacking.

Developing effective antioxidant therapies is essential in managing T2D

complications, given that oxidative stress is the major contributing factor. It

is now widely recognized that the goal of antioxidant defense should not solely

focus on preventing the formation of harmful ROS such as .OH, ONOO-, etc.

H2O2 is a major precursor for ROS. Hence, a more nuanced approach would

be needed to consider its importance in redox signaling. Increased awareness

of this fact is crucial for developing effective antioxidant strategies. Here, we

briefly reviewed the history and characteristics of ROS molecules and how

they can adversely affect individuals with T2D. We also highlighted how this

knowledge has contributed to our understanding of the pathophysiology of

oxidative stress-induced T2D complications.

Additionally, we point out that the effectiveness of antioxidant therapies

in T2D is complex and context-dependent, and detailed research is needed to

understand their uses to tackle ROS developed in cellular systems. Neverthe-

less, incorporating antioxidant strategies into personalized T2D care plans is

promising as a therapeutic approach to mitigate oxidative stress and improve

overall patient outcomes.
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2.2 GSH: the master antioxidant and implica-

tions in T2D care

The most common non-protein thiol observed in mammalian tissues, γ-glutamyl-

cysteinyl-glycine, which is also known as GSH, acts as a molecule that performs

various vital functions within the body (Meister and Anderson [76], Lu [77]).

GSH is synthesized from glutamate, cysteine, and glycine amino acids, two

consecutive reactions of γ-glutamyl cysteine synthase and glutathione syn-

thase enzymes in the γ-glutamyl cycle (often referred to as the Meister cycle

in the literature). The breakdown of GSH back into its constituent amino

acids happens mainly through γ-glutamyl transpeptidase and cysteinyl-glycine

dipeptidase (Lu [77], Sies [34], Wu et al. [33]). The antioxidant functions of

GSH rely on GPx-catalyzed reactions that decrease hydrogen peroxide and

lipid peroxide while GSH is oxidized to GSSG. This process creates a redox

cycle in which GSSG is transformed back to GSH by GSSG reductase, requir-

ing NADPH. Catalase can also reduce hydrogen peroxide but is exclusively

in the peroxisome. Consequently, GSH is particularly crucial in protecting

against oxidative stress generated. On severe OS conditions, if the conversion

of GSSG into GSH gets difficult, GSSG may either be transported out of cells

or combined with protein sulphydryl groups to avoid significant shifts in the

redox balance. This can cause depletion of cellular GSH supply. GSH plays

a crucial role in redox signaling as it transfers electrons between molecules in

the body and helps maintain a balanced cellular environment. Additionally,

GSH detoxifies xenobiotics, which are foreign substances that can harm the

body (Meister and Anderson [76], Lu [77]). It also modulates cell prolifera-

tion, apoptosis, immune function, and fibrogenesis, etc. Overall, glutathione

is a critical component of many physiological processes and is essential for
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maintaining optimal health (Meister and Anderson [76], Lu [77]).

Individuals with T2D are reported to have lower GSH levels in their red

blood cells and plasma, which is associated with reduced expression of en-

zymes, including GCL, GS, and GGT (Lagman et al. [78]). The impaired

synthesis of GSH contributes to its deficiency in patients with T2D, which is

more pronounced in individuals with diabetic complications. There could have

been elevated non-glycemic consumption of GSH, leading to its irreversible

utilization. Furthermore, substrate availability also plays a role in controlling

GSH synthesis rates, as demonstrated by another study that showed partial

restoration of GSH pools and synthesis rates after supplementation (Sekhar

[79]). Studies have also found that small pools of these compounds in individu-

als with T2D can undergo a higher turnover rate, similar to proteins (Gougeon

et al. [80], Halvatsiotis et al. [81]). In cases of increased demand, augmenting

the availability of GSH or its precursors could be crucial for managing the

metabolism of diabetic patients. This approach was found to improve glucose

disposal rate and insulin sensitivity (Nguyen et al. [82]). Additionally, GSH

may prevent an increase in plasma cytokines induced by hyperglycemia (Es-

posito et al. [83]). Gaining a deeper understanding of the regulation of GSH

metabolism is crucial for identifying effective approaches to enhance overall

well-being and manage these T2D health conditions.

Studies have provided robust evidence about the potential benefits of GSH

in managing T2D. However, precise mechanisms that affect GSH metabolism

and turnover in patients with T2D complications remain unclear. This neces-

sitates further investigations to evaluate the observed deficiency and establish

new rationales for enhancing personalized T2D care.
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2.2.1 Targeting OS in T2D: can GSH-based therapy be

promising?

Extensive literature highlights that cellular defensive mechanisms mainly rely

on antioxidant enzymes, supplying their substrates and repairing injury to pro-

tect themselves against oxidative injury. These defenses increase in response

to oxidants and enhance the capacity to detoxify and repair oxidative damage

(Forman and Zhang [43]). Consequently, the primary strategy for antioxidant

therapy should be to enhance these defenses and thereby target OS-lead com-

plications in individuals with T2D. However, due to a lack of evidence about

the long-term safety and efficacy, routine anti-oxidant supplementation for

treating diabetes is not recommended by the American Diabetes Association

(ADA, [84]).

Despite cells generally having a millimolar range concentration of GSH, ox-

idative stress often leads to a significant decrease in these levels (Ballatori et

al. [85], Waggiallah et al. [86]). Notably, methods to restore GSH through the

supplementation of GSH or supply of precursor amino acids of GSH synthesis

have demonstrated efficacy in treating diverse diseases (Sekhar et al. [87]).

There have been several previous clinical and experimental studies to examine

the effect of GSH supplementation with different doses and modes of admin-

istration (Paolisso et al. [88], Paolisso et al. [89], Sekhar et al. [79], Richie et

al. [90], Allen and Bradley [91], Buonocore et al. [92], Bruggman et al. [93]).

Paolisso et al. [88] demonstrated that 10mg/min GSH infusion potentiated

beta-cell response in patients having impaired glucose tolerance, leading to

increased glucose disposal. This highlighted the role of GSH in glucose home-

ostasis. Allen and Bradly [91] reported that oral GSH supplementation does

not alter intracellular GSH levels. In addition, they have shown no changes

in oxidative stress markers such as 8-OHdG and F2-isoprostanes. On the con-
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trary, Richie et al. [90] used a range of oral GSH doses from 250 to 1000 mg

for a longer duration and reported that oral GSH supplementation in not only

dose- but also time-dependent manner increases intracellular GSH in healthy

adult subjects. Studies carried out on different animal models demonstrated

that the treatment of antioxidants partly improves glucose homeostasis and

ameliorates diabetic complications (Ueno et al. [94]). Studies investigating

the use of GSH for treating certain medical conditions have tested different

dosages. However, the optimal dosage for GSH remains undetermined due

to insufficient evidence. Several factors, such as age, sex, and medical his-

tory, may influence the appropriate dosage for an individual. There needs to

be more information on potential interactions between glutathione, specific

medications, and other supplements.

In light of these studies, supplementation of GSH, GSH precursors, and an-

tioxidant enzyme mimics could be a major strategy to enhance the synthesis of

antioxidant enzymes and cellular GSH synthesis. Therefore, formulating anti-

diabetic treatment effectively could be promising to replenish cellular GSH lev-

els and provide protection against hyperglycemia induced by oxidative stress.

We note that GSH dietary supplements are not subject to the same regulatory

standards as drugs, which means the Food and Drug Administration (FDA)

does not assess their safety and efficacy prior to their release on the market

(Dwyer et al. [95]). Nonetheless, opting for supplements that have undergone

testing by reputable third-party organizations like USP or NSF can offer a

safer alternative (Dwyer et al. [95]). Glutathione supplements are considered

safe for consumption, but their potential side effects are not well-established

due to insufficient research. However, it is worth noting that no adverse ef-

fects have been documented with regard to a high GSH intake from dietary

sources alone. Notably, there is an alarming requirement for more compelling
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evidence to confirm the efficacy of GSH supplementation-based interventions

in addressing the rising graphs of diabetic complications.

2.3 Quantitative approaches for T2D care

The utilization of quantitative approaches has become essential for compre-

hending diverse aspects of diabetes, such as the glucose-insulin dynamics,

complications associated with diabetes, and the effectiveness of treatment ap-

proaches (Bergman et al. [96], De Gaetano and Arino [97], Topp et al. [98],

Cobelli et al. [99], Jauslin et al. [100], Malka et al. [101], Ackerman et al. [102],

Corte et al. [103], Segre et al. [104], Srinivasan et al. [105]). A range of math-

ematical, statistical, and computational models have studied the biochemical

mechanisms underlying diabetes pathophysiology and the effectiveness of dif-

ferent interventions. These models are mechanistic or phenomenological in

nature and capable of generating physiologically realistic descriptions in T2D.

Cobelli et al. developed approaches for mathematically modeling endocrine

systems ([106]) and blood glucose control ([107]). The FDA has approved this

model as a replacement for animal testing in preclinical trials due to its high

physiological accuracy. Topp et al. [98] provided a mathematical model for

describing β cell mass and glucose-insulin dynamics, which theoretically pre-

dicted the pathways in prolonged hyperglycemia. These models offered more

quantified insights into medicine prescription and a better understanding of

designing trials to test the efficacy of drugs to delay or prevent T2D.

By focusing on clinical significance, analyses of these models have signif-

icantly aided in uncovering insights towards improving patient responses to

glucose-control therapy. Furthermore, these models have even been utilized for

the personalized prescription tool as Continuous Glucose Monitoring (CGM) in
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T2D management research (Goel et al. [108], Goel [109], Kulkarni et al. [42]).

This evidence supports our perspectives on developing quantitative models

to create a structural depiction of the relevant physiological processes in the

development of T2D complications and their heterogeneity, which aid in com-

prehending the fundamental mechanisms resulting in different characteristics

of T2D individuals.

Getting precise parameter estimates to describe the evolution of these sys-

tems in T2D and resulting patient-specific characteristics is very difficult. This

is because of the long time scales associated with the phenomenon, difficulties

with longitudinal studies, and the ethical concerns that arise with the pro-

gression of T2D severity (Fritzen et al. [110]). However, the availability of

more clinical data is rising, and it holds promises for better understanding

in both diagnosis and patient-specific therapy. Modeling approaches must be

employed adequately to support a functional understanding of the mechanisms

and factors driving certain T2D complications. They aptly enable the design

of personalized treatment strategies to address key clinical questions in T2D.

Before going further into the modeling approaches to tailor individual-

ized targets for GSH supplementation in controlling T2D complications, we

describe modeling attempts for understanding metabolic pathways involving

GSH in the next section. Our main focus here is on Red blood cells (RBCs) due

to their crucial role in inter-organ communication functions, such as regulating

systemic nitric oxide metabolism, redox cycles, and blood rheology. As pre-

viously mentioned, measurements of erythrocytic GSH stores are a significant

component of this research. We provide a brief overview of modeling studies

conducted to replicate molecular processes in erythrocytic systems based on

the kinetics of metabolic pathways. This provides a current understanding of

the field and the scope of modeling GSH metabolism in erythrocytes.

45



2.3.1 Modeling GSH metabolism in erythrocytes

Several studies have employed mathematical modeling and computational sim-

ulations to elucidate the functions and dynamic behaviors of cellular biochem-

ical changes (Bailey et al. [111], Fell [112], and Reich and Sel’kov [113]).

Developing quantitative models for the metabolism of erythrocytes has gar-

nered significant attention over the years due to relative simplicity and knowl-

edge of their functioning metabolic networks. Detailed models of erythrocyte

metabolism have been developed over several studies with varying levels of

abstraction (Rapoport et al. [114], Ataullakhanov et al. [115], Holzhutter et

al., Jamshidi et al. [116], Palsson and Joshi [117], Nakayama et al. [118]).

Many of these models have utilized ordinary differential equations to describe

the systems and elucidate various functions in erythrocyte metabolism. For

instance, Rapoport et al. [114] proposed a model for glycolytic pathways,

which was modified later by Ataullakhanov et al. [115] by combining model

descriptions for pentose phosphate pathways as well. Further, Holzhutter et al.

[119] mathematically modeled glycolysis, pentose phosphate pathway, and 2,3-

BPG shunts for explaining the experimental data from patients with pyruvate

kinase deficiency.

Palsson and Joshi proposed the most comprehensive model of RBC metabolism

in a series of articles to investigate different metabolic networks and proper-

ties of erythrocytes, such as components and characteristics of membranes,

electroneutrality, osmotic regulations, interactions with the environment and

enzyme kinetics, etc. ([117], [120], [121], [122]). This detailed model of differ-

ential equations comprising 33 dynamic mass balances and 41 reaction rates

provided a theoretical framework for integrating and consistently interpreting

data from the literature. In 1996, the E-cell project built a sophisticated plat-

form for modeling whole-cell level biochemical changes ([123]). Several studies
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utilized E-cell with different focuses to explain problems related to metabolic

dynamics in erythrocytes. Nakayama et al. [118] modified the model proposed

by Palsson and Joshi ([117]) on the E-cell platform by including the GSH syn-

thesis and transport pathways to explain the disease conditions that arise due

to glucose-6-phosphate deficiency. Modeling erythrocytic metabolism has also

been shown useful in realistic predictions at the cellular level of changes and

different pathological conditions (Jamshidi et al. [116], Mulquiney et al. [124]).

Only a few reported studies theoretically investigated the dynamics of cel-

lular GSH metabolism and its role in maintaining the cellular redox balance.

Notably, Reed et al. [125] formulated a model for GSH metabolism in hepatic

cells by combining the reaction kinetics of enzymes involved in one-carbon

metabolism, trans-sulfuration pathway and breakdown to amino acids. This

model consisted of 34 differential equations formulated from these mass bal-

ances, which were further used to explain the regulation of GSH synthesis and

its fluctuations on amino acid inputs. Later, Raftos et al. [126] published a de-

piction of GSH metabolism in human erythrocytes with a mathematical model

encompassing the major enzymatic pathways helped in gaining better insights

into its synthesis and turnover. This model was able to capture the experimen-

tal erythrocyte data decently. To the best of our knowledge, models for the

aspects of GSH turnover relevant to T2D conditions of high oxidative load that

could describe diabetes clinical data are lacking in the literature. Elucidation

of the models for specific components of GSH turnover metabolism in T2D

is required to explain the erythrocytic GSH relevant to planning therapeutic

interventions. Model-derived insights can also help develop GSH strategies

based on oxidative stress status in T2D.

We understand that obtaining an accurate and comprehensive understand-

ing of the experimental data using model parameterization can be challenging
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sometimes, primarily due to limited data points and the highly complex and

dynamic nature of these metabolic networks, which are subject to various reg-

ulatory mechanisms. We also note that there is a general agreement in the field

about using models for system dynamics with minimal complexity, and sev-

eral identifiable parameters are recommended (Bergman et al. [96], Bergman

[127]). Developing simple and minimal mathematical models is favored to

effectively capture the essential dynamics of GSH turnover. The insights de-

rived from such models are our first-hand choice to interpret the data for direct

clinical uses.

Next, we attempt to understand the scope and potential of modeling meth-

ods in planning personalized goals for GSH supplementation, aiming to en-

hance T2D management efficiency.

2.3.2 Modeling to tailor individualized targets for GSH

supplementation in T2D treatment

Developing effective T2D care plans that consider individual requirements,

including factors such as age, lifestyle, and overall health status, to improve

health outcomes for individuals with T2D under treatment (Davidson et al.

[128], Galaviz et al. [129], and Inzucchi et al. [48]). As evidenced by several

works in the literature, quantitative approaches and analysis have played a

pivotal role in advancing T2D care, especially in the context of personalized

goals.

Modeling studies undoubtedly benefit the transition of T2D healthcare

from conventional population-based approaches to personalized treatment strate-

gies. This is primarily because such models assist in quantifying the physi-

ological differences and dynamics of systems involved in the progression of

T2D complications. Identifying model-derived estimates specific to patients
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also helps set an appropriate treatment target for patients in the progress of

therapy in T2D. Formulating physiology-based models with meaningful in-

terpretations and parameters, which can also be estimated with reasonable

precision, is of great interest. Notably, Graham and Adler [130] provided a

foundation for comprehending the chronic development of insulin resistance

and T2D, revealing that glucose overload-induced oxidative stress slows irre-

versible mitochondrial impairment. There have been approaches that utilize

the model knowledge to effectively target intervention strategies in individuals

([130]). Kulkarni et al. [42] developed a mechanistic model to mathematically

describe serial changes in oxidative stress over time with the measurements

of glutathione in newly diagnosed type 2 diabetes patients undergoing anti-

diabetic treatment. By employing this model [42], distinct recovery paths for

each individual characterized by a quantal response were identified. Kulkarni

et al. demonstrated the potential of model-derived estimates in assessing the

extent of individual patient response to treatment and reevaluating treatment

strategies.

Additionally, we understand that designing personalized treatments is com-

plex and involves multiple factors affecting disease progression in T2D; lever-

aging insights from the model may help ease some of its complexities. Here, we

believe those modeling methods are important when they successfully combine

mathematical sophistication with practical applications for analyzing data in

T2D and provide clinically useful outcomes. This is especially because it high-

lights the ability of mathematical modeling to offer insightful explanations for

T2D complications and the ways of recovery. Earlier, we discussed how ad-

ministering GSH to diabetic patients could be a beneficial strategy to protect

them from DNA damage and oxidative stress-induced T2D complications. A

subsequent analysis of the underlying systems with mechanistic models would
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help to understand intracellular GSH response profiles and how they can be

used for clinical uses better. Model simulations can be performed to obtain a

theoretical understanding of the behavior in GSH systems under different ex-

tracellular conditions arising from stress, interventions, etc. This also allows

us to ask how GSH responses alter under different T2D conditions. Using

these models and their estimations could potentially assist in creating person-

alized approaches for managing diabetes through GSH-based interventions by

tracking recovery.

To summarize, this chapter provided a concise literature review and dis-

cussed the experimental and clinical significance of oxidative stress in the

pathophysiology of T2D and the importance to continue exploring the field of

oxidative stress and GSH-based treatments to customize medical management

based on individual T2D patient characteristics with the help of quantitative

approaches. This chapter supports the idea that restoring GSH levels can ef-

fectively enhance overall redox status and mitigate oxidative stress during the

progression of diabetic complications associated with hyperglycemia. Further-

more, we highlighted the necessity for individualized treatments and examined

the literature on quantitative approaches for anti-diabetic intervention goals.

We outline the development of evidence-based modeling methods for com-

prehending the effects of GSH-mediated interventions toward achieving person-

alized T2D targets, aiming to improve the efficiency of anti-diabetic therapy.

We believe that the concepts presented in this chapter will help elucidate the

rationale behind our approaches in the subsequent chapters of this work.
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Chapter 3

Investigating the effect of GSH

supplementation on individuals

with T2D: a randomized

controlled trial

Published as and adapted from:

Kalamkar, S.; Acharya, J.; Kolappurath Madathil, A.; Gajjar, V.; Di-

vate, U.; Karandikar Iyer, S.; Goel, P.; Ghaskadbi, S. Randomized Clinical

Trial of How Long-Term Glutathione Supplementation Offers Protection from

Oxidative Damage and Improves HbA1c in Elderly Type 2 Diabetic Patients.

Antioxidants 2022, 11, 1026. doi:10.3390/antiox11051026.

Results in the paper were revised by correcting for a typographical error in

the dataset, and the details are given in section 3.1.

51



3.1 Introduction

Persistent hyperglycemia in T2D leads to oxidative stress, which further re-

sults in microvascular and macrovascular complications (Brownlee [131], Volpe

et al. [50], Giacco and Brownlee [23], Marchioli et al. [24]). The ADA position

statement suggests that using antioxidant supplements is not advisable for ev-

eryone due to insufficient evidence of their long-term safety and effectiveness

in T2D (ADA [44]). Despite being the most abundant cellular endogenous

antioxidant, studies have indicated low levels of GSH in T2D make them more

susceptible to the formation of AGEs, oxidative damage, and T2D complica-

tions (Lutchmansingh et al., 2018, Gawlik et al., 2016, Thornalley et al., 1996).

GSH was also shown to be the best covariate of glucose recovery, and their

body stores were increased while controlling hyperglycemia over two months

(Acharya et al. [41], Kulkarni et al. [42]). So, it is important to understand

whether changes in GSH would impact glucose homeostasis in T2D. Replen-

ishing GSH may be a promising approach to improving the overall redox status

in individuals with T2D. However, stronger evidence needs to be established

on the effective ways of administration and also on the effects of GSH supple-

mentation in T2D.

Various studies have explored different approaches to the administration of

GSH, including variations in dosage, duration, and method of administration,

such as oral administration in different forms, such as sublingual (Schmitt et

al. [132]), orobuccal (Buonocore et al. [92]), Bruggeman et al. [93]) and li-

posomal (Sinha et al. [133]) for rapid absorption. We note that these forms

of GSH are not only not easily available commercially but also sublingual and

orobuccal formulations that include GSH as one of the (primary) ingredients,

which makes it difficult to attribute the effects to GSH alone. Richie et al.

[90] demonstrated that oral GSH supplementation in 20 healthy individuals
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significantly increased blood GSH. In a somewhat larger study conducted on

40 healthy American adults, however, Allen and Bradly [91] reported that

oral GSH supplementation did not change GSH levels and biomarkers of ox-

idative stress. Precursor amino acids of GSH administered orally have also

demonstrated enhanced body stores of GSH (Sekhar et al. [87]) in humans.

GSH has an added advantage over its precursor amino acids, for instance, cys-

teine, which has an unpleasant taste, in ensuring better patient compliance.

Paolisso et al. [88] reported that GSH infusion led to increased GSH and total

body glucose disposal in 10 Italian diabetic subjects; this effect was more pro-

nounced in elderly individuals with impaired glucose tolerance (Paolisso et al.

[89]). Infusion is clearly difficult to implement in clinical practice. Despite ef-

forts in the literature, the effects of GSH supplementation are not sufficiently

understood, especially in the context of T2D. In addition to that, we note

most of these clinical studies have been carried out with small sample sizes

and are often inconclusive. Discrepancies in the outcomes of these studies

could be due to differences in the dose and duration of GSH and the site of

measurement of GSH being plasma instead of an erythrocyte fraction. Con-

sequently, conducting a stronger-powered study to investigate the

potential benefits of GSH supplementation is crucial for generating

empirical evidence on its effectiveness in individuals with T2D.

In this chapter, we present an investigation conducted as a clinical trial

conducted in our collaboration with the Ghaskadbi group from SPPU Pune

and Jehangir Hospital, Pune, to assess the effect of oral GSH supplementation

on improving body stores of GSH and glucose homeostasis in individuals with

T2D. We claim this is the most extensive longitudinal clinical study to date

reported for examining the effects of GSH supplementation in individuals with

T2D. We begin this chapter by briefly describing the design of this clinical trial
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and the biochemical data measured from the participants. We then present the

population-level analysis of this data and assess the effectiveness of GSH sup-

plementation on the blood biochemical parameters in individuals with T2D.

Previous reports in the literature have indicated that the levels of GSH decline

with age in humans. As a posthoc analysis, we further investigated whether the

response to oral GSH supplementation differed between different age groups,

younger and older sub-groups of individuals with T2D. These findings poten-

tially answer whether oral GSH administration can complement anti-diabetic

treatments and help achieve better glycemic targets, particularly among the

elderly population. We also analyze the effect of GSH supplementation on

the subgroup of individuals with T2D who are receiving different anti-diabetic

treatments. This chapter provides evidence on the impact of GSH supple-

mentation on individuals with T2D under anti-diabetic treatment, elucidates

safer administration methods, and determines which phenotypes may benefit

better.

Presented here is also a commentary on the work which has already been

published in the Antioxidants journal under the title ”Randomized Clinical

Trial of How Long-Term Glutathione Supplementation Offers Protection from

Oxidative Damage and Improves HbA1c in Elderly Type 2 Diabetic Patients”

(Kalamkar et al. [134]). A medRxiv version of this paper is also available

online (Kalamkar et al. [135]). We hereby report a typographical error

in the datasheet while entering the patient test reports for a subject

ID of DG50. In the dataset used for analysis, Fasting Insulin (FPI)

for this patient DG50 was found to be entered incorrectly as 222.7

µU/mL instead of 18.3 µU/mL. We have made this correction during

analysis, and the updated results are incorporated in the revised

figures presented here. The figures presented in this chapter are reproduced
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under the Creative Commons attribution license.

3.2 Methodology

We carried out a pragmatic-prospective clinical trial to investigate the effect

of oral GSH supplementation in restoring body GSH levels and maintaining

glucose homeostasis in Indian Type 2 diabetes patients who were already on

anti-diabetic treatment at Jehangir Hospital, Pune. This trial was registered

with Clinical Trials Registry-India (CTRI/2018/01/011257) and approved by

the Institutional Ethical Committee of Jehangir Hospital Development Center,

Pune, Institutional Biosafety Committee of SPPU, Pune, and the Institutional

Ethics Committee of IISER, Pune, India. The clinical study details and results

are briefly described next.

3.2.1 The design of clinical trial

This study was a pragmatic-prospective clinical trial designed as a case-control

cohort study to assess the effect of oral GSH supplementation in individuals

with T2D. The study design is depicted in Figure 3.1. Healthy nondiabetic

controls (n = 104) with HbA1c < 6.5%, and known T2D subjects (n = 250)

with HbA1c ≥ 6.5% visiting Jehangir Hospital and Iyer clinic, Pune were

recruited for this study. Pregnant women, heavy smokers, individuals with ex-

cessive alcohol intake, individuals with any clinical infection or a history of a

recent cardiovascular event, and those receiving antioxidants or herbal formu-

lations were excluded from the study. We recruited known diabetic subjects

(n = 250) already on an anti-diabetic regimen. The study physician randomly

categorized them into two groups based on a coin-toss method: 125 diabetic

patients were advised to continue with their anti-diabetic regimen (Group D),
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and the other 125 diabetic patients were given oral 500 mg glutathione (Jarrow

Formulas, USA) supplementation once daily in addition to their anti-diabetic

treatment for a period of six months (Group DG) (Figure 3.1). At the time

of randomization, concentrations of covariates, fasting and postprandial glu-

cose, fasting, postprandial insulin, HbA1c, reduced and oxidized glutathione

(GSSG), and 8-OHdG were unavailable. They, therefore, did not influence the

assignment of diabetic patients in D or DG groups.

Compliance with medical treatment by patients of the D and DG groups

and consumption of GSH by patients of the DG was emphasized by maintain-

ing continuous communication between the physician and patients. Out of 125

diabetic patients in D and DG groups, 23 were lost to follow-up in the D group

and 21 in the DG group for not complying with the treatment regimen. We

also recruited healthy, nondiabetic control subjects who were followed for six

months and were advised to continue their regular diet and exercise regimen.

Blood samples were collected at the time of enrollment 0 (α-visit), 3 (β-visit),

and 6 (γ-visit) months after the date of enrollment. Sample Size (n = 100) is

calculated based on a two-sided t-test, at 0.1 type 1 error and 80% power, to

detect a mean difference of 35 in GSH with a standard deviation of 100.

Details of participants in the clinical trial and biochemical data measured

are described further.

3.2.2 Clinical trial participants and measured data

The study consisted of known type 2 diabetic subjects visiting Jehangir Hospi-

tal, Pune, and Iyer Clinic, Pune. During the study, we recruited 250 diabetic

subjects undergoing anti-diabetic treatment and assigned them randomly into

two groups. Diabetic subjects in one group (Group D, n=125) were asked to

pursue their anti-diabetic treatment, while subjects in the other group (Group
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Figure 3.1: Depiction of the clinical study design. This figure is reproduced
from Kalamkar et al. [134], published as Figure 1 in the main text.
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DG, n=125) were given 500mg glutathione supplementation daily in conjunc-

tion with their anti-diabetic treatment for six months. nondiabetic healthy

subjects were also recruited as the control group and asked to continue their

diet and exercise. Subjects in D and DG groups maintained continuous com-

munication with the physicians during the study period. Twenty-three sub-

jects in the D group and 21 subjects in the DG group were lost to follow-up

during this period. Details of the sample collection, measurements of various

biochemical parameters, and further analysis are described next.

Demographic information like age, height, weight, and sex from subjects

was recorded at the first visit. Blood samples from all subjects were collected

at the time of enrollment (α visit), 3 (β visit), and 6 (γ visit) months after the

enrollment date. S. Ghaskadbi et al. planned and carried out the measure-

ments of fasting and post-prandial glucose, fasting and post-prandial insulin,

glycated hemoglobin (HbA1c), erythrocytic levels of glutathione (GSH), and

oxidized glutathione (GSSG) from the collected blood samples.

We analyzed this measured biochemical data and examined the effects of

GSH supplementation during the clinical trial. Details of the analysis are

described below.

3.2.3 Statistical analysis of the clinical data

Biochemical levels at different visits are compared using permutation tests in R

with the “Coin” package (Hothorn et al. [136]). Two-sample, two-sided t-tests

were used to confirm the comparison results with permutation tests. The sta-

tistical significance of comparisons was set at a p-value < 0.05. The difference

between biochemical changes in D and DG groups during the 6-month period

was quantified using effect sizes. Comparisons and effect size calculations were

also performed between elder subgroups of D and DG subjects with an age
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of more than 55 years. All effect size calculations and parametric t-tests for

comparisons were carried out using Matlab version 2019. All figures shown

in this report consist of significance levels based on permutation test results

(p-values of comparisons are not shown). Corresponding figures with t-test

results and their p-values are also not shown in this report.

3.2.4 Effect size analysis between D and DG groups

Measurements of a biochemical variable, X at α, β and γ visits of the D group

subjects are represented by XD
α , XD

β , XD
γ and measurements from DG group

subjects by XDG
α , XDG

β , XDG
γ , respectively. The variables, X are HbA1c, FPG

(Fasting glucose), FPI (Fasting insulin), PPG (PP glucose), PPI (PP insulin),

GSH, and GSSG. Changes from α visit to γ visit in the D group were estimated

using their paired differences as XD
γ−α = XD

γ −XD
α . Similarly, XDG

γ−α represents

the paired changes from α to γ visit (6 month period). The group-wise mean

of paired difference in D and DG groups are X
D

γ−α and X
DG

γ−α respectively.

The effect size between 6-month changes in the concentration of a particular

biochemical variable, X, in D and DG groups are estimated using Cohen’s d

as

d =
X

D

γ−αG−X
D

γ−α

s
(3.1)

where the pooled standard deviation of biochemical changes in D and DG (s)

is given by

s =

√
(
(ND − 1)s21 + (NDG − 1)s22

ND + NDG − 2)
(3.2)

where s1 is the standard deviation of XD
γ−α, s2 is the standard deviation of

XDG
γ−α. Where NC , ND, NDG are the number of individuals in control, D, and

DG groups, respectively. Cohen [137] described an effect size of 0.2, 0.5, and

0.8 as “Small,” “Medium,” and “Large” effects, respectively, and Sawilowsky
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[138] classified an effect of size 1.2 as “Very large” and 2 as a “Huge” effect.

Next, we analyzed the blood biochemical parameters at the baseline to

verify the covariate balance and serial changes across different visits. We also

performed an effect-size analysis on the clinical trial study arms for estimating

the effects of GSH supplementation. We also performed post hoc analyses of

clinically relevant subgroups in the study to identify the evidence about GSH

supplementation. We present the results from this analysis in the next section

below.

3.3 Results

3.3.1 Covariate balance between the study arms

The study population consisted of diabetic participants who had an average

age of 54 years and a BMI of 26.9 kg/m2. The Control group comprised

individuals with an average age of 41 years and a BMI of 26 kg/m2. The

D group had 57 male and 45 female participants, while the DG group had

49 male and 55 female participants. The Control group had 62 male and

42 female participants. Table 3.1 displays the baseline characteristics of each

group. The study found that compared to the Control group (p < 0.001, for all

parameters), D and DG groups had significantly higher levels of FPG, PPG,

FPI, HbA1c, and 8-OHdG, and significantly lower levels of GSH. However,

the levels of PPI were not significantly different among the groups (Table

3.1). Additionally, no significant differences in FPG, PPG, FPI, PPI, HbA1c,

and GSH were observed within the D and DG groups, indicating a covariate

balance between the two groups at baseline (Table 3.1).
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Variable Control Group
Age (years) 39.5 (33.5–49)

BMI (kg/m2) 26.1 (23.5–28.2)
HbA1c (%) 5.6 (5.4–5.8)

Fasting Glucose (mg/dL) 90 (85–95)
Fasting Insulin (µU/mL) 9.4 (6.8–12.3)

PP Glucose (mg/dL) 104 (96–117)
PP Insulin (µU/mL) 36 (18.1–71.7)

GSH (µ M) 801 (548–1068)
GSSG (µ M) 205 (124–303)

8-OHdG (ng/µg DNA) 129.97 (97.2–175.2)

Variable D Group
Age (years) 55.5 (47–61)***

BMI (kg/m2) 26.3 (22.7–29.2)
HbA1c (%) 8.1 (7.1–9.6) ***

Fasting Glucose (mg/dL) 147 (120–190) ***
Fasting Insulin (µU/mL) 11.9 (7.4–17.1)**

PP Glucose (mg/dL) 220 (169–285) ***
PP Insulin (µU/mL) 36.2 (24–54.8)

GSH (µ M) 379 (243–533)∗ ∗ ∗
GSSG (µ M) 215 (139–326)

8-OHdG (ng/µg DNA) 442.33 (340.26–514)***

Variable t DG Group
Age (years) 56 (48–61)***

BMI (kg/m2) 26.8 (23.8–29.8)
HbA1c (%) 8 (7.1–9.7) ***

Fasting Glucose (mg/dL) 140.5 (109–182) ***
Fasting Insulin (µU/mL) 10.4 (7.5–16.1)*

PP Glucose (mg/dL) 209 (168–258)***
PP Insulin (µU/mL) 32.4 (18.1–60.4)

GSH (µ M) 440 (176–635)∗ ∗ ∗
GSSG (µ M) 137 (89-209) ***,###

8-OHdG (ng/µg DNA) 481.71 (412.23–535.11) ∗∗,##

Table 3.1: Baseline characteristics of Control, D, and DG groups.
Data from each group at three visits are presented here as median and inter-
quartile ranges (25th –75th percentile). Significance levels of Control versus
D comparisons are ∗p < 0.05, ∗ ∗ p < 0.01, and ∗ ∗ ∗p < 0.001. Similarly,
comparisons between D versus DG groups are denoted with ##, or ### for
p < 0.05, p < 0.01, and p < 0.001, respectively. This table is adapted from
Kalamkar et al. [134]. 61



3.3.2 Effect of GSH supplementation on 6-month bio-

chemical changes

We conducted an analysis of the effect size of GSH supplementation within the

diabetic groups, which revealed a ”Large” effect size (Cohen’s d = 1.01; p <

0.001), indicating a significant increase in GSH levels in the DG group com-

pared to the D group (Figure 3.2). Similarly, GSSG was increased in DG

compared to D (Cohen’s d = 0.61, p < 0.001). Additionally, we observed a

significant decrease in 8-OHdG concentrations from the α to γ visit with a

“Large” effect in DG (Cohen’s d = −1.07; p < 0.001), but not in the D and

Control groups (p > 0.05) (Figure 3.2). We then examined the effect of oral

GSH supplementation on glycemic parameters in diabetic patients. We found

that while HbA1c levels decreased significantly over six months in both D and

DG groups, the extent of decrease in DG was comparable to the D group, with

a small Cohen’s d = −0.16(p > 0.05) (Figure 3.2). Furthermore, FPG, PPG,

FPI, and PPI all decreased over six months in D and DG, with no significant

difference between the two groups (p > 0.05, Cohen’s d < 0.2, all parameters).

Our results demonstrate that GSH supplementation leads to a significant in-

crease in erythrocyte GSH and GSSG levels and a decrease in 8-OHdG in

diabetic patients but has similar effects on glycemic parameters in both D and

DG groups.

3.3.3 Serial biochemical changes in the study groups

We examined whether GSH supplementation had an immediate and sustained

effect or if the changes in GSH levels occurred gradually over the six-month

study period. Figure 3.3 illustrates the changes in GSH and GSSG concen-

trations in the three study groups at visits α, β, and γ. The Control group
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Figure 3.2: Effect size of changes in blood biochemical parameters.
Six-month changes in the biochemical parameters of D and DG groups were
compared here on a forest plot with effect size and corresponding 95% con-
fidence intervals (CI). Effect size (Cohen’s d) calculated between six-month
changes in the concentration of biochemical variables are denoted on the x-
axis. The groupwise means of 6-month changes in the concentration of these
variables were compared using two-sample permutation tests. The signifi-
cance of these comparisons is denoted by the p values mentioned to the right
of horizontal lines for CI. The significance level for respective comparisons is
∗∗∗p < 0.001. Effect size takes either a positive or negative sign based on the
direction of change: a positive effect size increases towards the right, and a
negative effect towards the left. Vertical dotted lines represent different clas-
sifications of effect size. In particular, Medium effects are labeled at 0.5 and
-0.5, and Large effects at 0.8 and -0.8. Abbreviations used here are HbA1c -
glycated hemoglobin, GSH - reduced glutathione, PP glucose - postprandial
glucose, PP insulin - postprandial insulin, and 8-OHdG- 8-hydroxy-2-deoxy
guanosine. This figure is reproduced from Kalamkar et al. [134], published as
Figure 2 in the main text after incorporating the correction for Fasting Insulin.
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showed no significant change in GSH and GSSG over the six-month period.

In the DG group, oral GSH supplementation resulted in a significant increase

in GSH within three months (p < 0.001), which remained stable for up to

six months (Figure 3.3a). On the other hand, the D group only exhibited a

slight increase in GSH at three and six months. GSSG levels also significantly

increased within the first three months of oral GSH supplementation in the

DG group (p < 0.001) but did not change further (Figure 3.3b). Meanwhile,

GSSG levels in the D group remained unchanged throughout the study. These

findings suggest that oral GSH supplementation can significantly en-

hance GSH levels within three months and maintain them for up to

six months in diabetic patients. In contrast, anti-diabetic therapy alone

resulted in only a minor increase in GSH levels.

While the concentrations of 8-OHdG remained unchanged over six months

in the Control group, the supplementation of GSH in diabetic patients caused

a significant reduction in 8-OHdG within the initial three months, and this

effect continued to decrease significantly thereafter (p < 0.001) (Figure 3.4a).

Conversely, in the D group, the concentrations of 8-OHdG did not change

significantly.

We conducted a detailed analysis of changes in glycemic parameters in the

D and DG groups. Within three months, FPG levels significantly decreased

in both groups (p < 0.01 for D and p = 0.05 for DG), but they returned to

baseline by the end of six months (Figure 3.5a). However, PPG levels did not

change significantly in either group over the six-month study period (p > 0.05

for both) (Figure 3.6a). HbA1c levels rapidly decreased from 0 to 3 months in

both groups (p < 0.01 for D and p < 0.001 for DG) (Figure 3.4b), and in the

DG group, they remained stable up to six months. In contrast, HbA1c levels in

the D group returned to baseline. FPI levels changed significantly from 0 to 3
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Figure 3.3: Longitudinal changes in the concentration of (a) GSH
and (b) GSSG in different groups. The measured data for (a) GSH and
(b) GSSG concentrations from Control, D, and DG groups at α, β, and γ
visits are shown here with box and whiskers plots. The mean data (black
circles for Control, blue for D, and red for DG groups, respectively) and inter-
quartile ranges (IQR) are overlaid over the corresponding box plots. The
group-wise means at different visits are connected using solid lines with the
same color. Significance levels displayed above β and γ and visits denote
the comparisons with α visits using permutation tests. Significance level are
∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001 for respective comparisons. This figure is
reproduced from Kalamkar et al.[134], published as Figure 3 in the main text.
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and 6 months in the D group (p < 0.05), while they remained unchanged in the

DG group (p > 0.05) (Figure 3.5b). PPI levels remained unchanged in both

groups throughout the study period (Figure 3.6b). Overall, our findings

suggest that oral GSH supplementation has a stabilizing effect on

HbA1c, meaning that it rapidly decreases within three months and

remains low thereafter.

3.3.4 Effect size analysis in different age groups

Previous studies have reported a decline in GSH concentration with age in

healthy adults (Sekhar et al. [79], Erden-Inal et al. [139]). Therefore, we aimed

to investigate the impact of GSH supplementation on elderly diabetic patients,

as the age range of our study participants was from 31 to 78 years old. The

median age of the diabetic patients in the D and DG groups was approximately

55 years. To further explore the response to oral GSH supplementation in the

elderly subgroup, we used the age of 55 as a threshold to isolate this group

and re-evaluated the effect of GSH supplementation.

Mean values for all the biochemical parameters and serial changes from 0

to 3 and 6 months in their concentrations in the D (n = 44) and DG (n =

54) groups are shown in the appendix (Figure 3.9-3.11). As observed in the

overall diabetic population, the concentration of GSH and GSSG increased

significantly over six months in both D and DG subgroups (Figure 3.7a). Ad-

ditionally, the mean changes in GSH and GSSG concentrations over six months

were significantly higher in the DG group compared to the D group (Cohen’s

d = 1.14 and 0.67 for GSH and GSSG, respectively, p < 0.001) (Figure 3.7).

Oral GSH supplementation in the elderly sub-group of diabetic patients

showed a ”Very large” effect (Cohen’s d = -1.45, p < 0.001) in reducing the

accumulation of oxidative DNA damage, as evidenced by a significant reduc-
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Figure 3.4: Longitudinal changes in the concentration of (a) 8-OHdG
and (b) HbA1c in different groups. The measured data for (a) 8-OHdG
and (b) HbA1c concentrations from Control, D, and DG groups at α, β and
γ visits are shown here with box and whiskers plots. Significance levels are
∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001 for respective comparisons. Abbreviations
used here are 8-OHdG - 8-hydroxy-2-deoxy guanosine and HbA1c - glycated
hemoglobin. This figure is reproduced from Kalamkar et al. [134], published
as Figure 4 in the main text.
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Figure 3.5: Longitudinal changes in the concentration of (a) Fasting
Glucose and (b) Fasting Insulin in different groups. The measured data
for (a) Fasting Glucose and (b) Fasting Insulin concentrations from Control,
D, and DG groups at α, β and γ visits are shown here with box and whiskers
plots. Significance level are ∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001 for respective
comparisons. Abbreviations used here are FPG - fasting glucose and FPI -
fasting insulin. This figure is reproduced from Kalamkar et al. [134], published
as Figure 4 in the main text after incorporating the correction for Fasting
Insulin.
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Figure 3.6: Longitudinal changes in the concentration of (a) Post-
prandial Glucose and (b) Postprandial Insulin in different groups.
The measured data for (a) Postprandial Glucose and (b) Postprandial In-
sulin concentrations from Control, D, and DG groups at α, β and γ vis-
its are shown here with box and whiskers plots. Significance level are
∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001 for respective comparisons. Abbreviations
used here are PPG - postprandial glucose and PPI - postprandial insulin. This
figure is reproduced from Kalamkar et al. [134], published as Figure 4 in the
main text.
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Figure 3.7: The effect size of changes in blood biochemical parameters of (a)
elder and (b) younger diabetic adults. Six-month changes in the biochemical
parameters of those in D and DG subgroups were compared here on a for-
est plot with effect size and 95 % confidence intervals. Effect size (Cohen’s
d) calculated between six-month changes in the concentration of biochemical
variables are denoted on the x-axis. Groupwise means of six-month changes
in the concentration of these variables were compared using two sample per-
mutation tests. The significance of these comparisons is denoted by the p
values mentioned to the right of horizontal lines for CI. Significance level are
∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001 for respective comparisons. This figure is
reproduced from Kalamkar et al. [134], published as Figure 5 in the main text
and Figure S5 in the supplementary data after incorporating the correction
for Fasting Insulin.
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tion in 8-OHdG (Figure 3.7a). Furthermore, we investigated the effect of GSH

supplementation on blood glycemic parameters in the elderly sub-group of

diabetic patients (Figure 3.7a). Unlike the findings observed in the overall

diabetic population, GSH supplementation resulted in a significant reduction

in HbA1c over a period of 6 months in the DG sub-group compared to D

(Cohen’s d = -0.41, p < 0.05).

Intriguingly, the DG sub-group showed a significant increase in FPI levels

from the α to γ visit compared to D (Cohen’s d = 0.56, p < 0.05). GSH

supplementation had a minimal effect on FPG, PPG, and PPI levels in the

DG sub-group (Cohen’s d < 0.2, p < 0.05, all parameters). Consequently,

the administration of GSH in conjunction with anti-diabetic therapy led to

a noteworthy elevation in erythrocyte GSH, GSSG, and FPI levels and a de-

crease in HbA1c and 8-OHdG levels in the elderly diabetic sub-group (Figure

3.7a), implying that the elderly diabetic population is more responsive to GSH

supplementation.

Furthermore, we evaluated the effect of GSH supplementation in the younger

sub-groups of D and DG, and the outcomes are presented in Figure 3.7b. Al-

though HbA1c levels changed significantly in the younger sub-group of DG

from the baseline (Figure 3.7b), the 6-month changes in the younger sub-group

of DG were not significantly different from those in the younger sub-group of

D following GSH supplementation (Figure 3.7b).

3.3.5 Effect size analysis on treatment subgroups

In this study, the diabetic patients were receiving different anti-diabetic treat-

ments as prescribed by their physicians. A post-hoc analysis was performed

to examine the effect size of biochemical changes between the D and DG sub-

groups receiving different anti-diabetic treatments. The two major types of
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treatments were Biguanides alone (B subgroup) and Biguanide-Sulphonylurease

combination (BS subgroup). The results of this analysis are presented in Fig-

ure 3.8. The analysis of the B subgroup indicated significant changes in GSH,

GSSG, 8-OHdG, and FPI as a result of GSH supplementation (Figure 3.8a).

However, significant effects were only observed for the BS subgroup on GSH

and 8-OHdG (Figure 3.8b).
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Figure 3.8: The effect size of changes in blood biochemical parameters
of in diabetic subjects with (a) biguanides and sulphonylureas and
(b) biguanides alone treatments. Six-month changes in the biochemical
parameters of those in D and DG subgroups were compared here on a for-
est plot with effect size and 95% confidence intervals. Effect size (Cohen’s
d) calculated between six-month changes in the concentration of biochemi-
cal variables are denoted on the x-axis. The group-wise means of six-month
changes in the concentration of these variables were compared using two sam-
ple permutation tests. The significance of these comparisons is denoted by the
p values mentioned to the right of horizontal lines for CI. Significance levels
are ∗∗∗p < 0.001 for respective comparisons
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3.4 Discussion

The primary approach to treating individuals with T2D has been controlling

hyperglycemia. Previous research from our group has shown GSH to have

a strong correlation with changes in HbA1c among various oxidative stress

markers (Kulkarni et al. [42]), and GSH levels changing rapidly in response to

hyperglycemia modifications. However, it was uncertain whether improving

the redox status with GSH supplementation could counteract the oxidative

stress induced by hyperglycemia. Although clinical trials examining the im-

pact of oral GSH supplementation have produced conflicting and controversial

results, our recent clinical study [134] offers conclusive evidence that long-term

oral GSH supplementation not only increases the body GSH stores of GSH but

also significantly reduces oxidative DNA damage in Indian T2D patients. It

enhances the efficiency of anti-diabetic treatment in maintaining normal blood

glucose levels in diabetic patients.

The design of the clinical trial was planned and carried out by our clini-

cal collaborators to investigate the effect of long-term GSH supplementation

on various biomarkers in T2D patients already under antidiabetic treatment.

The duration of the clinical trial and between visits were decided based on

the physiology and understanding of previous studies in the field. In partic-

ular, very few studies describe GSH supplementation of T2D patients in the

literature. Most studies in the literature were typically conducted for short

durations, such as 2-4 weeks. To the best of our knowledge, the only previous

study to be carried out for six months was Richie et al. [90]; however, this

was not comparable to this study as it included only healthy, non-diabetic

subjects.

HbA1c was measured as a primary marker in the study, which shows the

average blood sugar (glucose) level for the past two to three months. The RBC
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lifespan is typically known as 120 days. The overall study duration was chosen

to be six months, which allowed two measurements of change in HbA1c three

months apart. This allowed the investigators to establish long-term effects and

study the stability of the observations to prolonged supplementation.

It is known that GSH can be transported intact from intestinal epithelial

cells into the blood lumen (Nolan et al. [140]), or it can be broken down

into its constituent amino acids by gamma-glutamyl transferase (Hanigman et

al. [141]). However, it remains unclear whether GSH is absorbed directly or

broken down and then re-synthesized by glutathione synthetase. In addition,

our study found a significant increase in the concentration of erythrocytic

GSSG, possibly due to the conversion of erythrocytic GSH into GSSG, as

reported in previous studies. For example, Nolan et al. [140] demonstrated

that GSH administered to mice is rapidly converted to GSSG and accumulates

in red blood cells and the liver. Therefore, oral GSH supplementation increases

the body stores of GSH and stores a portion as GSSG. Our findings are strongly

indicating GSH supplementation leads to a systemic improvement in the redox

state of individuals with T2D. By augmenting antioxidant reserves through

elevated GSH, a significant reduction in the accumulation of oxidative DNA

damage is attained, which indicates an improvement in the pathophysiology

of T2D complications. Despite regular anti-diabetic treatment, HbA1c levels

in diabetic patients usually fluctuate. However, our study found that GSH

supplementation over three months helped to maintain lowered HbA1c levels,

particularly in elderly patients over 55 years of age. The characteristics of

the glycemic state, including FPG, PPG, FPI, and PPI, did not change in

the diabetic patients as a whole. However, we observed an increase in FPI

levels in elderly diabetic patients, which was an interesting finding. The exact

mechanism by which GSH helps maintain normoglycemia in diabetic patients
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remains unclear and requires further investigation.

Preserving adequate β-cell function is crucial for controlling glucose levels

in diabetic patients, as their ability to secrete insulin in response to glucose

depends on intracellular thiols (Anjaneyulu et al. [142]). Due to their low an-

tioxidant capacity and poor ability to repair oxidatively damaged DNA, β-cells

are particularly vulnerable to ROS, and thus, providing antioxidant support to

pancreatic β-cells is a potential strategy for improving β-cell function (Modak

et al. [143], Lenzen et al. [144]). Extracellular GSH levels have been shown to

enhance β-cell response to glucose in rats (Ammon et al. [145]) and improve

glucose disposal in patients with impaired glucose tolerance (Bruggeman et al.

[93]). Our results also suggest that oral GSH supplementation can support

anti-diabetic treatment in reducing hyperglycemia, particularly in elderly pa-

tients. However, the exact mechanism underlying these observations requires

further investigation. It is worth noting that while Southeast Asian diabetic

patients are believed to exhibit poor insulin resistance, recent reports indicate

that a significant subgroup of patients has insulin deficiency (Prasad et al.

[146]). Additionally, as only a small number of patients in our study were

on insulin, it remains unclear if our observations apply to those with severe

insulin insufficiency.

The concentration of GSH is known to decrease with age, and this decline

may be even more pronounced in elderly diabetic patients, as indicated by

previous research (Sekhar et al. [79], Erdennal et al. [139]). Our study found

that GSH supplementation significantly reduced oxidative DNA damage and

improved glycemic control in elderly diabetic patients. Interestingly, we also

observed a significant increase in FPI in these patients. Recent research by

Zhang et al. [147] demonstrated that oral GSH administration improved β-cell

function and reduced oxidative damage markers in diabetic rats. Similarly,
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treating islets from T2D cadaveric organ donors with GSH improved their

functionality and reduced oxidative damage markers (Del Guerra et al. [148]),

suggesting that reducing OS in islets may be a viable approach to treating

diabetes. Our findings suggest that the systemic increase in GSH levels may

have reduced oxidative DNA damage, improved pancreatic β-cell function, and

lowered HbA1c, especially in elderly diabetic patients. We recognize that the

study was not designed to evaluate this analysis explicitly, and as such, it is

a weaker form of evidence. Independent clinical trials need to be designed to

understand and provide stronger evidence with sufficient statistical power on

the age effects for the effectiveness of GSH supplementation.

We have recruited 250 diabetic subjects in our study. Even larger stud-

ies can be designed if we are to stratify various subgroups to understand the

specific effects of GSH supplementation. We feel that the clues to the effec-

tiveness of GSH supplementation may lie in diet, physical activity, the stage,

and nature (if any) of pathology. It is not prudent in the present study to

analyze our data based on factors such as diet, physical activity, weight reduc-

tion, etc., since such subdivisions of the data would lead to loss of statistical

power due to insufficient sample size and, therefore, weaken the analysis. In

the present study, we have chosen to remain modest in our description of the

study results. We now remark in some detail on the several ways in which the

present work can be extended to personalize GSH therapy. Therefore, further

clinical trials must be designed to investigate these effects and obtain stronger

evidence with sufficient statistical power.

It would be valuable to investigate the duration of the effects of GSH inter-

vention, as individual antioxidant status can vary greatly, potentially affecting

the efficacy of exogenous supplementation. This might even explain why the

changes in HbA1c observed in DG have shown limited effect sizes. It is also
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conceivable that longer intervention with GSH may show further improvements

in glycemic parameters such as fasting glycemia. In our study, due to sample

size limitations, we do not have enough statistical power to do such analyses.

However, our results lay the foundation for further studies with various

population cohorts to understand these effects better. Our findings provide

evidence of GSH supplementation’s significant yet modest effects on HbA1c.

This is very important, especially in light of the ADA position (Inzucchi et al.

[48], which highlights the importance of personalizing anti-diabetic therapy

to achieve successful glycemic targets, instead of relying on a one-size-fits-all

approach. However, few algorithms exist to facilitate this complex objective

despite the need for personalized therapy. Consequently, GSH supplementa-

tion is a safe and valuable treatment option that clinicians should consider,

despite the lack of algorithms to guide this effort.
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3.5 Appendix

The longitudinal biochemical changes in elder individuals with T2D are de-

tailed in the next section below.

3.5.1 Biochemical changes in elder diabetic individuals

Figure 3.9: Serial changes in the concentration of (A) GSH and (B) GSSG of
elderly diabetic subjects in D (blue) and DG (red) groups are shown here with
box and whiskers plots. Significance levels shown here are ∗p < 0.05,∗∗ p <
0.01,∗∗∗ p < 0.001 for respective comparisons. This figure is reproduced from
Kalamkar et al. [134], published as Figure S1 in the supplementary data.
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Figure 3.10: Serial changes in the concentration of (A) 8-OHdG and (B) HbA1c
of elderly diabetic subjects in D (blue) and DG (red) groups are shown here
with box and whiskers plots. Significance levels shown here are ∗p < 0.05,∗∗ p <
0.01,∗∗∗ p < 0.001 for respective comparisons. This figure is reproduced from
Kalamkar et al. [134], published as Figure S2 in the supplementary data.
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Figure 3.11: Serial changes in the concentration of (A) FPG and (B) FPI in
elderly diabetic subjects in D (blue) and DG (red) groups are shown here with
box and whiskers plots. Significance levels shown here are ∗p < 0.05,∗∗ p <
0.01,∗∗∗ p < 0.001 for respective comparisons. This figure is reproduced from
Kalamkar et al. [134], published as Figure S2 in the supplementary data.
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Figure 3.12: Longitudinal changes in the concentration of (A) PPG and
(B) PPI in elderly diabetic subjects in D (blue) and DG (red) groups are
shown here with box and whiskers plots. Significance levels shown here are
∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001 for respective comparisons. This figure is
reproduced from Kalamkar et al. [134], published as Figure S2 in the supple-
mentary data.
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Chapter 4

Multilevel modeling of

longitudinal biochemical

changes in individuals with T2D

on GSH supplementation

Published as and adapted from:

Kolappurath Madathil, A.; Ghaskadbi, S.; Kalamkar, S.; Goel, P. Pune

GSH supplementation study: Analyzing longitudinal changes in type 2 diabetic

patients using linear mixed-effects models. Frontiers in Pharmacology 2023,

14:1139673. doi:10.3389/fphar.2023.1139673.
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4.1 Introduction

The clinical trial results presented in the previous chapter showed that GSH

supplementation for six months improved erythrocytic stores of GSH and of-

fered protection from oxidative damage in individuals with T2D. We have

shown the benefits of GSH supplementation on HbA1c and fasting insulin in

elder individuals with T2D. With this evidence, we proposed using GSH sup-

plementation as an adjunct therapy during regular anti-diabetic treatment for

individuals with T2D. Notably, our data reveals significant variations in indi-

vidual responses to GSH supplementation, which may be influenced by factors

such as age, diet, physical activity, dosage, duration of intervention, baseline

levels of endogenous GSH, etc. Based on these factors, we emphasize the im-

portance of personalizing GSH supplementation for T2D patients, as this could

be a valuable addition to current clinical practices. ADA has also recognized

the need for personalized anti-diabetic therapy, rather than a one-size-fits-all

treatment approach, to achieve optimal glycemic targets (Inzucchi et al. [48]).

However, limited algorithms are available to guide the implementation of such

personalized approaches in T2D care.

Quantitative models for quantification identifying personalized treatment

goals are becoming increasingly important in modern healthcare (Mathur and

Sutton [149], Johnson et al. [150], Gasparini et al. [151]). Models can be

designed to incorporate a wide range of patient-specific data, including physi-

ological measurements and medical history, to create a personalized treatment

plan tailored to the unique needs of each patient. By accounting for individ-

ual differences, these models can help healthcare providers make more accurate

predictions about personalized treatment outcomes, identify potential risks or

complications, and optimize treatment strategies to improve patient outcomes.

Additionally, personalized models can help reduce healthcare costs by mini-
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mizing the need for trial-and-error approaches to treatment and identifying

the most effective treatment options early on in the process. As such, models

for personalization goals are rapidly becoming essential in modern healthcare,

potentially transforming how we approach disease prevention, diagnosis, and

treatment.

Repeatedly examining the same subjects to identify the changes that oc-

cured occur over a period of time is an integral part of designing clinical

research. In this chapter, we use the terminology of ’longitudinal data’ to in-

dicate repeated observations of the same variables over a period of time. Lon-

gitudinal studies have designs that involve correlational research with these

repeated observations (Laird and Ware [152], Brown and Prescott [153], Ver-

beke et al. [154]). We note that understanding the dynamics of longitudinal

biochemical change and variations in individual response to GSH supplemen-

tation is critical for developing effective personalized interventions for GSH

with anti-diabetic treatment. This would be largely useful in evaluating the

progress of treatment and understanding the glucose control targets for dia-

betic individuals. Longitudinal studies are necessary to monitor the changes

in GSH concentration and other relevant blood biochemical markers over time

to identify whether GSH supplementation has a long-lasting effect on glucose

control or if its effects diminish over time. Therefore, personalized interven-

tions should be designed with careful consideration of the individual’s specific

needs and health status. Developing algorithms that can predict an individ-

ual’s response to GSH supplementation would be beneficial, enabling clinicians

to develop more personalized treatment plans based on their unique charac-

teristics and needs.

In this chapter, we present the Pune Glutathione Supplementation

Study carried out for examining finer nuances of individualized GSH sup-
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plementation by analyzing the longitudinal data collected from the clinical

trial (Kalamkar et al.[134]) using a framework of multilevel models. We par-

ticularly focus on developing the goals of using GSH supplementation as an

adjunct therapy in a personalized manner for individuals with T2D in this

chapter. We formulated multilevel models, also known as mixed-effects mod-

els, to analyze the clinical data of diabetic individuals. Our mixed-effects (ME)

models are hierarchical models, where the units of analysis are subject-level

predictors (level two) with fixed and random effects (Laird and Ware [152],

Brown and Prescott [153], Verbeke et al. [154]). The framework of linear

mixed-effects (LME) models also performs ‘shrinkage’ for estimating model

parameters; that is, individual estimates obtained from mixed-effects models

are shrunk towards a grand mean of the population level estimate compared

to fitting separate linear models to each subject’s data (Gelman et al. [155],

Bell et al. [156]). Mixed-effects models have a long history of use in health and

medicine since these models treat each patient not only as a member of a pop-

ulation but as an individual with unique characteristics (Gelman et al. [155],

Barr et al. [157], Baldwin et al. [158], Wang et al. [159], Schober and Vet-

ter [160]). Thereby mixed-effects models allow estimating model parameters

that describe between- and within-subject variability of individual responses.

A two-level mixed-effects model will be able to provide reliable estimates in

absolute, not just relative, physical units of the variables.

Further, we addressed our insights from our earlier study, suggesting that

age is a very important covariate of the effectiveness of GSH supplementation.

We analyzed how the longitudinal changes in biochemical parameters of elder

and younger diabetic individuals differ with GSH supplementation indepen-

dently using LME models. Center for Disease Control (CDC) reports indicate

that as the average world population ages, the number of older adults affected
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by diabetes also increases [4]. It is, therefore, necessary to improve the under-

standing of effective interventions, especially in elder individuals with T2D.

Elderly adults often have one or more co-existing disease conditions or micro-

vascular complications that might impact their diabetes control. Therefore,

special considerations should be given to support their overall health. The pre-

dictability of glycemic variables and markers for oxidative DNA damage gives

more information about the physiology and treatment to be tailored for each

individual with time. This also helps in deciding the interventions for elder in-

dividuals with T2D better. Considering the translational aspects of our results

and their direct clinical and academic uses, we formulate a basic scheme for

making predictions of the trajectory of individuals on GSH supplementation

using the fitted LME models.

The work presented in this chapter has been published as Madathil et al.

[161] under the title, Pune GSH supplementation study: Analyzing

longitudinal changes in type 2 diabetic patients using linear mixed-

effects models in the Frontiers in Pharmacology journal. The figures in this

chapter are reproduced under the creative commons attribution license.

4.2 Methodology

Next, we describe the methods and analysis used in the multilevel modeling

of longitudinal biochemical changes in T2D.

4.2.1 Summary of clinical trial data

The dataset published in the trial comprised 250 known Indian diabetic indi-

viduals recruited between February 2016 and January 2018 who were already

on anti-diabetic treatment. The clinical trial consisted of three groups: a con-
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trol group comprising healthy, nondiabetic subjects and two groups of diabetic

patients; in one of those, GSH supplementation (500 mg/day for six months)

was carried out, namely the DG group, and the other group without supple-

mentation, the D group. The only difference between this D and DG group

is the intervention and supplementation with GSH. More importantly, D and

DG are similar in nearly all respects, and covariate balance at the baseline

has already been observed Kalamkar et al. [134]. As shown in Figure 4.1,

inter-individual variation is evident in both groups’ longitudinal data of GSH

concentration. Similar depictions for other measured variables are not shown

in the thesis.
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Figure 4.1: Longitudinal biochemical changes of individuals with T2D
in the clinical trial. GSH measurements from subjects in D (n=100) and DG
(n=101) groups at three visits in the study are depicted here. The individual
lines connecting three visits represent the trajectory of each subject during the
clinical trial.
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4.2.2 Linear mixed-effects models

Mixed effects models, which are also known as hierarchical or multilevel mod-

els, have a fairly long history and have been widely used in the health and

medicine fields (Laird and Ware [152], Brown and Prescott [153], Verbeke et

al. [154]). These models consist of both fixed and random effects. Fixed

effects in these models are often used to obtain the groupwise or population-

level fits. In contrast, random effects are used to explain the subject-specific

distribution of parameters and residual errors. The framework of mixed effects

models allows considering that the observations within a subject may be cor-

related and estimate the model parameter along with estimates of between-

and within-subject variability. These models identify different levels in the

data by allowing for residual components at each level in the structure. Thus,

the residual variance is partitioned into a between-subject component and a

within-subject component. The unobserved variables also lead to a correlation

between outcomes from the same subjects. Thus, the residual variance is par-

titioned into a between-subject component and within-subject components in

mixed-effects models (Bates et al. [162]). Therefore, the methods are suitable

for assessing and comparing the individual effects of treatments rather than

just the average effects (Gelman et al. [155]).

A feature of mixed effects models, which allows the consideration of ran-

dom coefficients for parametrizing the characteristic of a particular patient,

is so useful for personalizing an intervention. This variability in a coefficient

across patients could also result from real variation arising from biological or

experimental factors. These models allow consideration of a subject as an

individual with unique characteristics and not just as a population member

with an average value to estimate. Therefore, estimates of treatment effects

obtained from these mixed effects models are more reliable and with direct
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clinical uses than the population-level estimate (Gelman et al. [155]).

4.2.3 Modeling clinical trial data with LME models

We use mixed-effects models for analyzing the clinical data over classic regression-

based models, which treat the units of analysis as independent observations.

Data available from diabetic subjects have a hierarchical or clustered structure.

For instance, subjects in the same group might change longitudinally similar

in their biochemical characteristics compared to individuals chosen randomly

from the population in general. Individuals may be further nested within dif-

ferent treatment types. We understand that the classical regression models

fail to recognize hierarchical structures, and the standard errors of regression

coefficients will be underestimated. This might lead to an overstatement of

the statistical significance of interested model parameters. We think classical

regression models are a good choice to make inferences beyond average popu-

lation estimates through fixed-effect models. The units of analysis are treated

as independent observations in conventional multiple regression approaches.

Hierarchical structures are not considered, so the standard errors of regression

coefficients could be underestimated. This can cause the statistical significance

of the relevant model parameters to be overstated. At the same time, mixed

effects models recognize different levels in the data by allowing for residual

components at each level in the structure.

The formulation of these models and further analysis are detailed next.

4.2.4 Formulation of linear mixed-effects models

Linear mixed-effect (LME) models were formulated independently for bio-

chemical response variables, GSH, GSSG, HbA1c, 8-OHdG, FPG, FPI, PPG,

and PPI by assuming fixed effect and random effect parameters at different
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levels (Level 1: time, Level 2: individuals). Then the composite form of the

model equations was obtained by substituting the Level 2 equations with Level

1. This form of the model was further used to study the dependency of each

effect at different levels and their nested structure in one another. Now, the

response variable Y from subject i on the jth visit can be modeled with a

Random Intercept and Random Slope (RIRS) model as

Level 1: Yij = b∗i0 + b∗i1 × tij + ϵij (4.1)

The random variables for slope or intercepts in the model can be written as

Level 2: b∗i0 = β0 + bi0

b∗i1 = β1 + β2 × Ti + bi1

Where the treatment indicator variable Ti takes the value 0 for the D group,

and 1 for the DG group, and bi0, bi1 are distributed as

bi0

bi1

 ∼ N
(0

0

 ,

 σ0 σ01

σ01 σ1

)
(4.2)

Here in this model, fixed effects are β0, β1, β2 and random effects are bi0, bi1.

The RIRS model equation can be rewritten as

Yij = β0 + bi0 + (β1 + β2 × Ti + bi1) × tij + ϵij (4.3)

Similarly, a Random Intercept and Fixed Slope (RIRS) model can be formu-

lated at two levels as

Level 1: Yij = b∗i0 + b∗i1 × tij + ϵij (4.4)
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at level 2, random intercept and fixed slope are given by

Level 2: b∗i0 = β0 + bi0

b∗i1 = β1 + β2 × Ti

bi0 are distributed as

bi0 ∼ N(0, σ0) (4.5)

Here the fixed effects are β0, β1, β2 and random effect is bi0. The RIFS model

equation can be written as

Yij = β0 + bi0 + (β1 + β2 × Ti + bi1) × tij + ϵij (4.6)

Parameters from these RIRS and RIFS formulations can be interpreted as:

β0: Overall intercept (Mean expected GSH) when all predictors are 0

β1: Average rate of change in GSH in for the control group (D)

β2: Difference in the rate of change between D and DG (treatment effect)

bi0: Random effect for person-specific differences at baseline

bi1: Random effect for person-specific differences in the rate of change

We express the individual-specific parameters and data points in the form of

matrices for writing the model equations in matrix forms. The descriptions of

design matrices are given next.

4.2.5 Design matrix of model equations

The matrix version of the model equations was used to explain the estimates

for all subjects

Y = Xβ + Zb + ϵ (4.7)
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where the data column vector (Y ) and matrices X,Z, β, b, ϵ for RIRS models

are of the form

Y =



Y11

Y12

Y13

Y21

Y22

Y23

..

..

YN1

YN2

YN3



X =



1 t11 T1 × t11

1 t12 T1 × t12

1 t13 T1 × t13

1 t21 T2 × t11

1 t22 T2 × t12

1 t23 T2 × t13

.. .. ..

.. .. ..

1 tN1 TN × t11

1 tN2 TN × t12

1 tN3 TN × t13



β =


β0

β1

β2



Z =



1 t11 0 0 .. 0 0

1 t12 0 0 .. 0 0

1 t13 0 0 .. 0 0

0 0 1 t21 .. 0 0

0 0 1 t22 .. 0 0

0 0 1 t23 .. 0 0

.. .. .. .. .. .. ..

.. .. .. .. .. .. ..

0 0 0 0 .. 1 tN1

0 0 0 0 .. 1 tN2

0 0 0 0 .. 1 tN3



b =



b10

b11

b20

b21

..

..

bN0

bN1



ϵ =



ϵ11

ϵ12

ϵ13

ϵ21

ϵ22

..

..

ϵN1

ϵN2

ϵN3


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Similarly, the design matrices for RIFS models, Y,X, β, will be similar to those

for RIRS models. But b, Z, ϵ are different. They are of the form

Z =



1 0 .. 0 0

1 0 .. 0 0

1 0 .. 0 0

0 1 .. 0 0

0 1 .. 0 0

0 1 .. 0 0

.. .. .. .. ..

.. .. .. .. ..

0 0 0 .. 1

0 0 0 .. 1

0 0 0 .. 1



b =



b10

b20

..

..

bN0


ϵ =



ϵ11

ϵ12

ϵ13

ϵ21

ϵ22

..

..

ϵN1

ϵN2

ϵN3



Further, we formulate the expressions for the covariance matrix using these

matrix forms in the next section.

4.2.6 Covariance matrices in the model

The covariance matrix for the data vector Y (from N subjects), V for an LME

model of the form Y = Xβ + Zb + ϵ, is obtained as V = ZGZT + R, where

E(b) = 0, E(ϵ) = 0, covariance matrix of random effects, V ar(b) = G, and

the covariance matrix for residual error, V ar(ϵ) = R (Laird and Ware [152],
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Henderson [163]). The variance matrix of G is of a block diagonal matrix form

G =



σ2
0 σ01 0 0 .. .. 0 0

σ01 σ2
1 0 0 .. .. 0 0

0 0 σ2
0 σ01 .. .. 0 0

0 0 σ01 σ2
1 .. .. 0 0

.. .. .. .. .. .. .. ..

.. .. .. .. .. .. .. ..

0 0 0 0 .. .. σ2
0 σ01

0 0 0 0 .. .. σ01 σ2
1



This matrix is composed of N identical blocks

σ2
0 σ01

σ01 σ2
1

 corresponding ran-

dom effects from N subjects. Similarly, the structure of the covariance matrices

for the RIFS model looks like

G =



σ2
0 0 0 .. .. 0

0 σ2
0 .. .. 0 0

.. .. .. .. .. ..

.. .. .. .. .. ..

0 0 0 .. .. σ2
0



which was composed of N identical blocks of

(
σ2
0

)
. The structure of R was

assumed to be a diagonal matrix, with R = σ2
eI3N×3N , where I3N×3N is a block

diagonal matrix with N identical blocks of identity matrices for N subjects

with 3 × 3 dimension. The individual entries of the variance matrix (V ) for
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an RIRS model are of the following form:

cov(yij, yij′) = cov(β0 + bi0 + β1 × tij + β2 × Ti × tij + bi1 × tij + ϵij, β0 + bi0

+ β1 × tij′ + β2 × Ti × tij′ + bi1 × tij′ + ϵij′)

= cov(bi0 + bi1 × tij, bi0 + bi1 × tij′) + cov(ϵij, ϵij′)

= cov(bi0, bi0) + cov(bi0, bi1 × tij) + cov(bi0, bi1 × tij)

+ cov(bi1 × tij, bi1 × tij′)

= V ar(bi0) + cov(bi0, bi1) × (tij + tij′) + V ar(bi1) × tijtij′

cov(yij, yij′) = σ2
0 + (tij + tij′) × σ01 + tijtij′σ

2
1 + cov(ϵij, ϵij′)

(4.8)

which can be written as

1. For j = j′, cov(yij, yij′) = V ar(yij) = σ2
0 + 2tij × σ01 + t2ijσ

2
1 + σ2

e

2. For j ̸= j′, cov(yij, yij′) = σ2
0 + (tij + tij′) × σ01 + tijtij′σ

2
1

Next, we discuss how these formulations derive model estimates and further

analyze the datasets.

4.2.7 Model derivation for BLUE and BLUP

The Maximum Likelihood-based derivations obtain expressions for the model

estimates for β and b given by Henderson equations or Mixed Model Equations

(Henderson [163]). The details are described below.

For the model equations of the form Y = Xβ+Zb+ϵ with covariance matrices

described in section 3.2.1, the joint likelihood for Y can be written in terms of

probability densities of b and ϵ, g(.) and h(.) respectively, as

f(Y, b) = g(Y/b)h(b) = g(ϵ)h(b) (4.9)
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Therefore, f(Y, b) has the form

f(Y, b) = (
1

2π
)
N
2 |R|−1/2e−

1
2
ϵTR−1ϵ × (

1

2π
)
N
2 |G|−1/2e−

1
2
bTG−1b (4.10)

Then likelihood function (L) can be written as

L = f(Y, b) = ce−
1
2
ϵTR−1ϵe−

1
2
bTG−1b

Log-likelihood function will be given by

ln(L) = ln(f(Y, b))

= ln(c) −−1

2
ϵTR−1ϵ− 1

2
bTG−1b

= ln(c) − 1

2
(Y −Xβ − Zb)TR−1(Y −Xβ − Zb) − 1

2
bTG−1b

(4.11)

Taking the partial derivatives of ln(L) with respect to β, b and setting them

to zero provides

∂(lnL)

∂β
= 0 and

∂(lnL)

∂b
= 0

=⇒
− 2XTR−1Xβ + 2XTR−1Zb = XTR−1Y

ZTR−1Xβ + ZTR−1Zb + G−1b = Y TR−1Z

(4.12)

These equations are known as Henderson equations or Mixed Model

Equations (Henderson [163]) for the estimation of the parameters and are

written in matrix form below.XTR−1X XTR−1Z

ZTR−1X G−1 + ZTR−1Z


β

b

 =

XTR−1y

ZTR−1y

 (4.13)
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The solutions of these equations are BLUE (Best Linear Unbiased Estimator)

of β̂, and BLUE (Best Linear Unbiased Predictor) of b̂.

β̂ = (XTV −1X)−1XTV −1Y (4.14)

b̂ = GZTV −1(Y −Xβ) (4.15)

Further, we provide a description of how a sequential optimization for esti-

mating β̂ and b̂ from the data is performed.

4.2.8 Iterative schemes of optimization

The variance matrix was unknown and can be assumed as V (θ), a function

of θ, the parameter vector from the covariance matrices, G and R. A brief

description of the steps involved in the steps of iterative optimization is the

following:

1. Set the iteration counter k = 0. Assign initial values to covariance

parameters for θ(0) = (θ1, ...., θn)T

2. At each mth iteration, substitute θ(m−1) and obtain V̂ = V (θ(m−1)). Then

obtain

β(m) = (XTV −1X)−1XTV −1Y

3. Obtain θ(m) by maximizing the likelihood function

L(θ; y) = −1

2
[log(|V (θ)|) + (Y −Xβ

(m)
θ )V (θ−1)(Y −Xβ

(m)
θ )

4. Repeat steps 1, 2, and 3 until convergence or a predetermined number

of iterations k.
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5. Keep θ(k) fixed. Use them to obtain the estimates β̂(k) of β̂ and b̂(k) of b̂

using the equations

β̂ = (XTV −1X)−1XTV −1Y

The details of model parameter optimization and fitting tools are described in

the next section.

4.2.9 Model parameters and fitting

RIFS and RIRS models were fitted for GSH, GSSG, 8-OHdG, HbA1c, FPG,

FPI, PPG, and PPI and compared based on best AIC values and by avoiding

the singularity arising while model fitting (Barr et al. [157]). RIFS models

were fitted to obtain five parameters, β0, β1, β2, σ0, σe, and RIRS models were

fitted with seven parameters, β0, β1, β2, σ0, σ1, σ01, σe. The fitted estimates for

β and b are given by the BLUE of β̂, and BLUP of b̂ Henderson [164] can be

written as

β̂BLUE = (XTV −1X)−1XTV −1Y (4.16)

b̂BLUP = GZTV −1(Y −Xβ̂BLUE) (4.17)

The components of b̂, bi0, and bi1, random effects represent person-specific

intercepts (in both RIFS and RIRS) at the baseline and person-specific dif-

ferences in the rate of change in the slopes (in RIRS only), respectively. The

formulated models have been tested and fitted using the lme4 package in R

[165]; these calculations were confirmed using the fitlme package in Matlab

and the mimosa package (Titz et al. [166]) for mixed effects models. Other

packages, ggplot2 and tidyverse in R were used for analysis and plots. A suit-

able RIFS or RIRS model was selected for each response variable using the
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best AIC and non-singularity criteria (Bates et al.[162]).

The statistical significance of the results of the LME estimates was deter-

mined as p < 0.05. We have followed the uncorrected p-value to interpret the

results throughout. To ensure completeness, we have performed corrections

for multiple comparisons using the Bonferroni method (Bonferroni [167]). We

applied these corrections for the estimates from LME models for each variable

and across all main and supplementary analysis results. Those results, which

continued to be statistically significant even after the corrections, were marked

with a # in the corresponding tables. The reader should consider this when

evaluating the statistical findings.

The details of the data preparation for fitting with LME models are de-

scribed next.

4.2.10 Data preparation for fitting with LME models

A sample structure of the long format of the data from the GSH clinical trial

prepared for fitting with the LME model is shown in Table 4.10. A depiction of

the GSH measurements from D (N=102) and DG group (N=104) subjects on

the first, second, and third visits (0, 3, and 6 months of the study) are shown

below. Measurements from an individual are connected with solid lines. The

Group IDs, 0 for the D group and 1 for the DG group, are encoded on each

panel. RIRS and RIFS models were used independently to fit datasets for

different variables. Notably, these trajectories have evident inter-individual

and intra-individual variations.

Further, we describe LME models formulated in the subsequent analyses

to study the age-related effects of GSH supplementation on individuals with

T2D. We begin by analyzing the two age classes discussed in the previous

chapter using independent LME models in the next section.
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4.2.11 Independent LME models for two age classes

Diabetes is an age-onset disease; an early diagnosis leads to an increased chance

for complications to set in relatively early. We subdivided the DG population

above and below age 55, namely that this is the median age of either group.

This is purely a statistical criterion and does not reflect any value judgments

on our part. Thus, we coined the term ‘elder’ subgroup for subjects above the

median age. We note that our criterion of the age of 55 coincides with a similar

choice in the literature (Kannel and McGee [168], Duckworth et al. [169]),

which reports diabetes-related complications in elder individuals; individuals

of age around 55 years are reported to have a markedly increased risk. We have

earlier demonstrated that the effectiveness of GSH supplementation differed

between the younger and elder populations using an age cutoff of 55 years,

which was the median age of the study population (Kalamkar et al. [134]).

This was done through a post hoc subgroup analysis in our study. LME models

provided a more formal way of comparing their differential responses in the

two age classes.

We assumed two independent LME models to analyze the treatment effects

of GSH supplementation in the elder and younger adults of D and DG sepa-

rately. An RIRS model for elder adults (EA) was formulated at the subject

level as

Level 1: Yij = b∗i0 + b∗i1 × tij + ϵij (4.18)

with a random slope and intercepts in the model given by

Level 2: b∗i0 = β0 + bi0

b∗i1 = β1 + β2 × Ti + bi1
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where the treatment indicator variable, Ti takes a value of 0 for EA of D D

group and 1 for EA of DG group. The assumptions on the random effects

and covariance parameters are similar to the model formulations in (model 4).

Similarly, we formulated the model for YA subgroups as well. We fit a separate

LME for each of these two age groups. Model estimates obtained by fitting

LME models independently for EA and YA will be presented in the results.

Next, we formulate different LME models for studying the effects of age

considered as model variables.

4.2.12 LME models to study age effects

We studied the effects of the age of individuals on the outcome variables Y

with different LME models by incorporating age in two ways: (i) a continuous

variable for the age of individuals at the recruitment and (ii) a categorical

variable for elder and younger age groups. To do this, we formulated four

different models described below.

Model 1: The original RIRS model in the study without age variables

The outcome (Y) was modeled as

Yij = b∗i0 + b∗i1 × tij + ϵij (4.19)

where subject-specific random slopes and intercepts b∗i0 and b∗i1 defined by

b∗i0 = β0 + bi0

b∗i1 = β1 + β2 × Ti + bi1
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Model 2: RIRS model with a treatment-time interaction term and three-way

interaction term with age, treatment indicator, and time at the patient level.

The outcome (Y) was modeled with a three-way interaction term of age (Agei),

treatment (Ti), and time (tij) below as:

Yij = b∗i0 + b∗i1 × tij + ϵij (4.20)

where subject-specific random slopes and intercepts b∗i0 and b∗i1 defined by

b∗i0 = β0 + bi0

b∗i1 = β1 + β2 × TiAgei + bi1

Model 3: RIRS model with a three-way interaction term with age, treatment

indicator, and time at the patient level (Level 2).

The outcome (Y) was modeled with a treatment and time interaction term

and a three-way interaction term of age (Agei), treatment (Ti), and time (tij)

below as:

Yij = b∗i0 + b∗i1 × tij + ϵij (4.21)

where subject-specific random slopes and intercepts b∗i0 and b∗i1 defined by

b∗i0 = β0 + bi0

b∗i1 = β1 + β2 × Ti + β3 × TiAgei + bi1
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Model 4: RIRS model with age groups as a categorical variable for pooling

EA and YA at the patient level.

The outcome (Y) was modeled with categorical treatment variables for Age ≥

55 and Age < 55 as

Yij = b∗i0 + b∗i1 × tij + ϵij (4.22)

where subject-specific random slopes and intercepts b∗i0 and b∗i1 defined by

b∗i0 = β0 + bi0

b∗i1 = β1 + β2 × TAge≥55
i + β3 × TAge<55

i + bi1

These four models are used to fit GSH, GSSG, 8-OHdG, HbA1c, FPG, FPI,

PPG, and PPI data, and fit results were further compared using AIC and BIC

estimates to identify best-fit models for the longitudinal data. The model-fit

results and comparisons are presented in the Results section.

4.2.13 Correlation analysis with LME models

The correlation between individual-specific slopes of variables obtained from

RIRS models was estimated using the Pearson correlation coefficient (Pear-

son [170]). Correlation diagrams were obtained between all variables using

the slopes for RIRS models fitted with (i) the whole data sets and (ii) the un-

pooled data sets from elder and younger individuals. The circle size in each cell

of the correlation diagram represents the extent of correlation between com-

pared variables. Blue represents a positive correlation, and brown represents

a negative correlation.
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Further, we describe possible ways to utilize the formulated LME models

for making predictions with clinical potentials.

4.2.14 Making predictions for new individuals

The fitted model estimates were utilized to predict responses in virtual indi-

viduals with diabetes. We considered three new virtual individuals (V1, V2,

and V3) and assumed arbitrary but reasonable baseline measurements of GSH,

8-OHdG, and HbA1c. We thus predicted trajectories in these subjects over

six months.

We make predictions for the trajectories of new virtual subjects by as-

suming their baseline measurements of GSH, 8-OHdG, and HbA1c using the

following steps.

1. Obtain the model estimates of fixed-effects, β̂ = (β0, β1, β2), random

effects and covariance parameters σ0, σe.

2. Random-intercepts for new subjects estimated based on the baseline data

(Y New) for subjects VS1, VS2, and VS3 as

bNew
i = GZTV −1(Y New −Xβ̂) (4.23)

3. Predict the average trajectories for new subjects using the subject-specific

random-effects bNew and design matrices, XPred and ZPred with fixed-

effects and random-effects parameters, respectively, as

Y Pred = XPredβ + ZPredbNew (4.24)

In this scheme, the baseline values assumed for virtual subjects are shrunk to-

wards the average intercept estimated by the LME model, and the individual-
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specific random effects are obtained. Further, using the model estimates of the

average intercept, the random effect of the intercept, and the rate of changes in

the slopes, we obtain the average linear trajectory for each virtual individual

in the presence and absence of GSH supplementation.

Results obtained from the LME analysis of biochemical changes in individ-

uals with T2D on GSH supplementation during the clinical trial are presented

in the next section.

4.3 Results

4.3.1 Results from LME models

We fit RIRS and RIFS models for GSH, GSSG, 8-OHdG, HbA1c, FPG, PPG,

FPI, and PPI (as described in Model parameters and fitting). These subject-

wise trajectories obtained from RIRS models are shown in Figure 4.1. Indi-

vidual trajectories are distributed around the group-wise average trajectory.

Group-wise average intercepts are determined by β0; these are equal for both

D and DG. The average slopes in D and DG are β1 and β1 + β2, respectively.

This β2 denotes the difference between the average slopes in the two groups:

the treatment effect of GSH supplementation on outcomes. These estimates

(β0, β1, and β2) and estimated random effects are given in Table 4.1.

We find that β2 is significant for GSH, GSSG, and 8-OHdG Table4.1.

Among the glycemic variables, β2 is significant only for FPI and PPI but

not for HbA1c, FPG, and PPG. The mean erythrocytic GSH is estimated as

492 µM in individuals with diabetes. It increased slightly, at an average rate

of 0.04 µM per month from the baseline during the study period in D. In

DG, GSH increased at an average rate of 107.7 µM per month. Therefore,

GSH supplementation significantly improved GSH by about 22 percent (107.7
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µM, p < 0.001) per month relative to baseline. Mean GSSG is estimated as

221 µM. In D and DG, GSSG increased at average rates of 4.7 and 17.7 µM

per month, respectively, from the baseline (Figure 4.2). Thus, GSSG rates

are significantly improved (p < 0.001) by about six percent per month of the

baseline (13.02 µM, p < 0.001). 8-OHdG is estimated to be 442 ng/µg DNA in

diabetic individuals. It decreased in D and DG at average rates of 2.8 and 21.3

ng/µg DNA per month, respectively. Thus the effect of GSH supplementation

significantly reduced 8-OHdG by four percent per month of the baseline (18.5

ng/µg DNA, p < 0.001).

HbA1c, FPG, and PPG changed at similar rates in D and DG (Figure

4.3), suggesting that the effect was negligible (p > 0.05). FPI and PPI are

found to be affected significantly. Mean FPI is estimated as 13.4 µU/mL. FPI

decreased at an average rate of 0.3 µU/mL per month in D. GSH supplemen-

tation significantly improved FPI at a rate of 0.2 µU/mL in DG. The average

PPI is estimated as 48.8 µU/mL in individuals with diabetes. It decreased

at average rates of 0.8 and 4.9 µU/mL per month in D and DG, respectively

(Figure 4.3). GSH supplementation significantly enhanced FPI by four percent

(0.5 µU/mL, p < 0.001) and reduced PPI rates by eight percent (4.1 µU/mL,

p < 0.001) of the baseline per month.

Results obtained from RIFS models are shown in Table 4.11 and Table

4.12. The parameter estimates of β2 from RIFS models are also found to

be significant for GSH, GSSG, 8-OHdG, FPI, and PPI, leading to similar

conclusions about the effects of GSH supplementation as in RIRS models. We

note that these results largely coincide with the results from previous work

(Kalamkar et al. [134]). However, FPI and PPI, which were earlier reported

not to be affected by GSH supplementation, are found to have a significant

effect through the LME model-based analysis.
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Variables β0 (SE) β1 (SE) β2 (SE)
GSH 492.2(27.4)∗∗∗# 0.04 (8.6) 107.7(10.3)∗∗∗#

GSSG 221(10.1)∗∗∗# 4.7 (3.3) 13.02(4.2)∗∗∗#
8-OHdG 442.02(7.5)∗∗∗# -2.8 (2.6) −18.5(2.9)∗∗∗#
HbA1c 8.4(0.1)∗∗∗# -0.06 (0.03) -0.05 (0.04)
FPG 152.9(3.9)∗∗∗# -1.33 (1.09) 0.4 (1.3)
FPI 13.4(0.66)∗∗∗# −0.3(0.14)∗ 0.5(0.2)∗∗

PPG 224.4(5.4)∗∗∗# -1.6 (1.6) 0.3 (2)
PPI 48.8(2.8)∗∗∗# -0.8 (0.6) −4.1(0.6)∗∗∗#

(A) Fixed-effects parameter estimates

Variables σ0 σ1 σ01 σe

GSH 162.3 14.1 2286.3 386.8
GSSG 66.3 9.4 621.3 139.6

8 −OHdG 55.95 17.04 -551.2 98.5
HbA1c 1.53 0.21 -0.17 0.96
FPG 46.07 8.71 -215.2 33.2
FPI 7.8 0.07 0.53 5.7
PPG 59.68 11.38 -296 51.6
PPI 32.54 3.31 -107.9 23.8

(B) Random-effects parameter estimates

Table 4.1: Results from LME Model analysis Fixed-effects and random-
effects parameter values obtained by fitting LME models of RIRS form for
GSH, GSSG, 8-OHdG, HbA1c, FPG, FPI, PPG, and PPI variables are pre-
sented here with standard error associated with the estimates. The fitted
results from the corresponding RIFS model are shown in Table 4.11 and Table
4.12. The average treatment effects (β2) of GSH supplementation were signif-
icant on the rate of changes (slopes) for GSH, GSSG, 8-OHdG, FPI, and PPI
levels. Significance levels shown here are ∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001 for
respective comparisons. Statistically, significance after Bonferroni corrections
are marked with # symbols here. This table is adapted from Madathil et al.
[161], published as Table 2 in the main text and Table S2 in the supplementary
data.
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Figure 4.2: Treatment effects of GSH supplementation on biochemical
changes estimated using LME Models. The fitted results of RIRS models
for GSH, GSSG, 8-OHdG, and HbA1c in D and DG groups (figure panels
marked with titles D and DG) are overlaid here with the longitudinal data
from 201 individuals (100 D subjects in blue circles, 101 DG subjects in red
circles) at three visits (RIFS model fits are shown in Figure 4.10). Solid blue
and red lines depict the fitted subject-specific mean trajectories in the D and
DG groups, respectively. The black dotted and solid lines represent the group-
wise means for D and DG, respectively. Interquartile ranges of the data for
D and DG groups are shown with vertical interval plots (25th-75th quartiles)
at each visit. The average treatment effects of GSH supplementation (β2) are
denoted on top of each panel corresponding to the DG group. Significance of
these parameter estimates are given by ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.
This figure is reproduced from Madathil et al. [161], published as Figure 2 in
the main text.
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Figure 4.3: Treatment effects of GSH supplementation on glycemia
estimated using LME Models. The fitted results of RIRS models for
glycemic variables, FPG, FPI, PPG, and PPI in D and DG groups (figure
panels marked with titles D and DG) are overlaid here with the longitudinal
data from 201 individuals (100 D subjects in blue circles, 101 DG subjects in
red circles) at three visits (RIFS model fits are shown in Figure 4.10). Solid
blue and red lines depict the fitted subject-specific mean trajectories in the
D and DG groups. The black dotted and solid lines represent the group-wise
means for D and DG, respectively. Interquartile ranges of the data for D and
DG groups are shown with vertical interval plots (25th-75th quartiles) at each
visit. The average treatment effects of GSH supplementation (β2) are denoted
on top of each panel corresponding to the DG group. Significance of these
parameter estimates are given by ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.
This figure is reproduced from Madathil et al. [161], published as Figure 2 in
the main text.
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In the next section, we describe the results obtained from analyzing the

two age classes, namely, elder and younger adults, using two independent LME

models.

4.3.2 Results from the analysis of two independent age

classes

Diabetes is an age-onset disease; an early diagnosis leads to an increased chance

for complications to set in relatively early. We have earlier demonstrated that

the effectiveness of GSH supplementation differed between the younger and

elder populations using an age cutoff of 55 years, which was the median age of

the study population (Kalamkar et al. [134]). We fit a separate LME for each

of these two age groups. Model estimates obtained by fitting LME models

independently for EA and YA are detailed in Table 4.2 and Table 4.3, respec-

tively.

GSH supplementation significantly affected GSH, 8-OHdG, HbA1c, FPI, and

PPI in EA, and GSH, GSSG, 8-OHdG, and PPI in YA (β2 in Table 4.2,

p < 0.001).

GSH: Mean erythrocytic GSH in EA (488 µM) is estimated to be less than

YA (497 µM). In YA of D, GSH decreased at an average rate of 6.9 µM per

month, whereas in DG, GSH increased at an average rate of 104 µM per month

(Figure 4.4). In EA of D and DG, GSH increased at average rates of 6.5 and

111 µM per month, respectively (Figure 4.5). This clearly indicates that GSH

supplementation resulted in a significant improvement in GSH by about 21

percent per month of their baseline in YA (111 µM, p < 0.001) and 22 percent

per month in EA (105 µM, p < 0.001) with diabetes.

111



0
5

0
0

1
0

0
0

2
0

0
0

3
0

0
0

 

Time (Months)

G
S

H
 (

µ
M

)

0 3 6

β2=111***

0
5

0
0

1
0

0
0

1
5

0
0

 

 

G
S

S
G

 (
µ

M
)

0 3 6

β2=17**

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0

Time (Months)

O
H

d
G

 (
n

g
/µ

g
 D

N
A

)

0 3 6

β2=−12***

4
6

8
1

0
1

2
1

4
1

6

Time (Months)

H
b

A
1

c
 (

%
)

0 3 6

β2=0.03
5

0
1

0
0

2
0

0
3

0
0

4
0

0

Time (Months)

F
G

 (
m

g
/d

L
)

0 3 6

β2=0.5

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

Time (Months)

P
P

G
 (

m
g

/d
L

)

0 3 6

β2=3.5

0
5

0
1

0
0

1
5

0

Time (Months)

F
I 

(µ
U

/m
L

)

0 3 6

β2=0.3

0
1

0
0

2
0

0
3

0
0

4
0

0
Time (Months)

P
P

I 
(µ

U
/m

L
)

0 3 6

β2=−4.9***

Figure 4.4: Average treatment effects of GSH supplementation in
younger diabetic subjects. The fitted results of RIRS models for GSH,
GSSG, 8-OHdG, HbA1c, FPG, FPI, PPG, and PPI variables of younger adults
(YA) with diabetes are shown on different panels here with the longitudinal
data (blue circles for D individuals and red circles for DG individuals) at
different visits. The data from 107 elder adults (52 from D and 55 from
DG) are overlaid with group-wise mean trajectories for D and DG groups
represented by black dotted lines and solid lines, respectively. Interquartile
data ranges for individuals (from D and DG) are shown with vertical interval
plots (25th-75th quartiles) at each visit. The average treatment effects of
GSH supplementation (β2) on the rate of changes (slope) denoted on top of
corresponding panels which are significant on GSH(β2 = 105µM per month),
8-OHdG (β2 = −24ng/µg DNA per month), HbA1c (β2 = −0.6% per month),
FPI (β2 = 0.6µU/mL per month) and PPI (β2 = −4.9µU/mL per month)
levels of younger adults. Significance of these parameter estimates are given
by ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001. This figure is reproduced from
Madathil et al. [161], published as Figure S2 in the supplementary data.
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Figure 4.5: Average treatment effects of GSH supplementation in el-
der diabetic subjects. The fitted results of RIRS models for GSH, GSSG,
8-OHdG, HbA1c, FPG, FPI, PPG, and PPI variables of elder adults (EA) with
diabetes are shown on different panels here with the longitudinal data (blue
circles for D individuals and red circles for DG individuals) at different visits.
The data from 107 elder adults (52 from D and 55 from DG) are overlaid with
group-wise mean trajectories for D and DG groups represented by black dot-
ted lines and solid lines, respectively. Interquartile data ranges for individuals
(from D and DG) are shown with vertical interval plots (25th-75th quartiles)
at each visit. The average treatment effects of GSH supplementation (β2)
on the rate of changes (slope) denoted on top of corresponding panels which
are significant on GSH(β2 = 105µM per month), 8-OHdG (β2 = −24ng/µg
DNA per month), HbA1c (β2 = −0.6% per month), FPI (β2 = 0.6µU/mL per
month) and PPI (β2 = −4.9µU/mL per month) levels of younger adults. Sig-
nificance of these parameter estimates are given by ∗p < 0.05, ∗∗p < 0.01, and
∗∗∗p < 0.001. This figure is reproduced from Madathil et al. [161], published
as Figure 2 in the main text.
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GSSG: Interestingly, the effect on GSSG was significant in YA (p < 0.01)

but not in EA. The mean GSSG in EA (231 µM) was estimated to be higher

than YA (209 µM). When YA of D and DG were examined, GSSG increased

at average rates of 1.9 and 18.4 µM per month, respectively (Figure 4.4). It

increased at average rates of 7.6 and 17.1 µM per month in EA of D and

DG, respectively. (Figure 4.5). This shows that GSH supplementation en-

hanced GSSG significantly per month by eight percent of the baseline (17.5

µM, p < 0.001) per month only in YA.

8-OHdG: The average 8-OHdG estimate is higher in EA (445 ng/µg DNA)

than in YA (438 ng/µ g DNA). In EA of both D and DG, 8-OHdG decreased

at average rates of 3.3 and 27 ng/µg DNA per month during the study period

(Figure 4.5). Similarly, it decreased at average rates of 2.1 and 14.16 ng/µ g

DNA per month in the YA of D and DG groups (Figure 4.3). Thus, we find

that GSH supplementation significantly reduced 8-OHdG from the baseline

by 12.06 ng/µg DNA per month (3%) in YA and 23.7 ng/µg DNA per month

(5%) in EA. These results suggest that oral GSH administration rapidly offers

better protection from oxidative DNA damage in EA compared to YA.

HbA1c: GSH supplementation was earlier reported to affect the HbA1c in

the elder cohort significantly (Kalamkar et al. [134]). We examined LME

estimates of both YA and EA to quantify the effect on HbA1c. The average

HbA1c is estimated at 8.3% and 8.4% in YA and EA, respectively. In EA of

D, HbA1c decreased at an average rate of 0.02% per month, while in DG, it

decreased at an average rate of 0.12% per month (Figure 4.5), suggesting that

GSH supplementation improved HbA1c rates significantly by about 0.1% per

month in EA. Estimated HbA1c rates are not significantly different between
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YA of D and DG (Figure 4.4).

Fasting Insulin: Our earlier work [134] found that oral GSH supplemen-

tation significantly changed FPI in elder patients. We quantitated the effect

on FPI using LME model estimates (Table 4.2). The average FPI is estimated

to be 12.9 µU/mL in YA and 14 µU/mL in EA. In both EA and YA of D,

FPI decreased at rates of 0.4 µ U/mL and 0.1 µU/mL per month, respec-

tively (Figure 4.5). The estimated rates were similar between the YA of the

D and DG, indicating that the effect on FPI is negligible (p > 0.05). On the

other hand, in EA of DG, FPI increased at a rate of 0.2 µU/mL per month,

suggesting that GSH supplementation improved FPI rates significantly by 0.6

µU/mL per month. FPI increased by 4.3 % of the baseline per month in EA

and negligibly in YA.

Postprandial Insulin: Using LME models to fit the data, PPI was found to

decrease in both YA and EA. The average PPI in YA and EA is estimated

to be 46 and 51 µU/mL, respectively. In YA of D, PPI increased at a rate of

0.1 µU/mL per month, whereas in DG, it decreased at a rate of 4.7 µU/mL

per month. PPI decreased at average rates of 1.6 µU/mL and 5.2 µU/mL per

month in EA of D and DG, respectively.

Fasting and Postprandial Glucose: The average FPG estimated in YA

and EA are 156 and 150 mg/dL, respectively. In both YA and EA, the GSH

supplementation effect wasn’t found to be significant. In both EAs of D and

DG, FPG decreased at average rates of 1.7 and 0.9 mg/dL per month, re-

spectively. Similarly, YAs of D and DG decreased at average rates of 1.3 and

0.8 mg/dL per month, respectively. PPG estimated in YA and EA at the
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time of recruitment is 227 and 223 mg/dL, respectively. GSH supplementa-

tion decreased PPG by 2.5 mg/dL per month in EAs and increased PPG by

3.5 mg/dL per month in YA.

Variable Fixed effect parameters (YA)
β0 (SE) β1 (SE) β2 (SE)

GSH 496.6(44.9)∗∗∗# -6.9 (13.07) 111(15.3)∗∗∗#
GSSG 209.4(14.03)∗∗∗# 1.9 (4.9) 16.5(6.2)∗∗

8-OHdG 438.3(11)∗∗∗# -2.1 (3.6) −12.06(4.2)∗∗#
HbA1c 8.3(0.2)∗∗∗# −0.1(0.04)∗ 0.03(0.06)
FPG 156.4(5.9)∗∗∗# -1.3 (1.8) 0.5(2.1)
FPI 12.9(0.9)∗∗∗# -0.12 (0.15) 0.3(0.2)
PPG 226.8(8.3)∗∗∗# -3.7 (2.5) 3.5(3.1)
PPI 45.7(3.3)∗∗∗# 0.1 (0.7) −4.8(0.9)∗∗∗#

Table 4.2: Results from LME models for younger adults The fixed-
effect parameter values were obtained by fitting the data from the subgroup
of younger adults (YA) using the RIRS models for GSH, GSSG, 8-OHdG,
HbA1c, FPG, FPI, PPG, and PPI variables are shown here with the stan-
dard errors (SE). The average treatment effects (β2) of GSH supplementation
are significant on GSH, GSSG, 8-OHdG, and PPI levels for YA. Significance
levels shown here are ∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001 for respective com-
parisons. Statistical significance continued after Bonferroni corrections were
marked with # symbols here. This table is adapted from Madathil et al. [161],
published as Table S4 in the supplementary data.

Next, we describe the results obtained from different LME models for ana-

lyzing the age effects on the observed biochemical changes during the clinical

trial.

4.3.3 Results from analyzing age effects

For exploratory purposes, we also analyzed the effects of the age using new

candidate models as incorporated with age as a model variable (Model 2,

Model 3, and Model 4) for GSH, GSSG, 8-OHdG, HbA1c, FPG, FPI, PPG,

and PPI. Results obtained by fitting with these models are shown in Table 4.4,
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Variable Fixed effect parameters (EA)
β0 (SE) β1 (SE) β2 (SE

GSH 488.1(33.4)∗∗∗# 6.5 (11.5) 104(14.05)∗∗∗#
GSSG 231(14.5)∗∗∗# 7.6 (4.5) 9.5 (5.6)

8-OHdG 445.3(10.2)∗∗∗# -3.3 (3.5) −23.7(3.9)∗∗∗#
HbA1c 8.4(0.2)∗∗∗# -0.02 (0.04) −0.1(0.05)∗

FPG 150.1(5.2)∗∗∗# -1.7 (1.2) 0.6 (1.6)
FPI 14(1.002)∗∗∗# -0.4 (0.2) 0.6(0.3)∗

PPG 222.5(6.9)∗∗∗# 0.14 (1.97) -2.5 (2.4)
PPI 51.4(4.3)∗∗∗# −1.6(0.82)∗ −3.6(0.77)∗∗∗#

Table 4.3: Results from LME models for elder adults. The fixed-effect
parameter values were obtained by fitting the data from the subgroup of elder
adults (EA) using the RIRS models for GSH, GSSG, 8-OHdG, HbA1c, FPG,
FPI, PPG, and PPI variables are shown here with the standard errors (SE).
The average treatment effects (β2) of GSH supplementation are significant on
GSH, 8-OHdG, HbA1c, FPI, and PPI levels for EA. Significance levels shown
here are ∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001 for respective comparisons. Statis-
tical significance continued after Bonferroni corrections were marked with #
symbols here. This table is adapted from Madathil et al. [161], published as
Table S4 in the supplementary data.
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Table 4.5, and Table 4.6. When we compared model fits from all four models

using AIC and BIC estimates, our original RIRS model (Model 1) was found

to be the better-fit model for all variables (Table 4.7, Table 4.8).

Variable Fixed effect parameters
β0 (SE) β1 (SE) β2 (SE)

GSH 492.1(27.5)∗∗∗# 3.4 (8.5) 1.9(0.2)∗∗∗#
GSSG 221(10.1)∗∗∗# 5.1 (3.2) 0.2(0.07)∗∗

8-OHdG 442(7.5)∗∗∗# -2.5 (2.5) −0.3(0.05)∗∗∗#
HbA1c 8.4(0.1)∗∗∗# -0.05 (0.03) -1.05 (0.0006)
FPG 152.9(3.9)∗∗∗# -1.1 (1.07) 2(0.02)
FPI 13.4(0.7)∗∗∗# −0.3(0.13)∗ 0.008(0.003)∗∗

PPG 224.4(5.4)∗∗∗# -1.2 (1.5) -0.009 (0.03)
PPI 48.8(2.8)∗∗∗# -1 (0.6) −0.07(0.01)∗∗∗#

Table 4.4: Results from Model 2 for analyzing age-effects.The fixed-
effect parameter values were obtained by fitting Model 2 for GSH, GSSG,
8-OHdG, HbA1c, FPG, FPI, PPG, and PPI variables are shown here with
the standard errors (SE). Significance levels shown here are ∗p < 0.05,∗∗ p <
0.01,∗∗∗ p < 0.001 for respective comparisons. Statistical significance continued
after Bonferroni corrections were marked with # symbols here. This table is
adapted from Madathil et al. [161], published as Table S5 in the supplementary
data.

Results obtained from the correlation analysis of slopes from the fitted

LME models are discussed next.

4.3.4 Results of correlation analysis with LME models

We estimated pairwise correlations between subject-specific slopes of GSH,

GSSG, 8-OHdG, HbA1c, FPG, FPI, PPG, and PPI obtained from RIRS mod-

els. These correlation diagrams for the full population (pooled data) are shown

in Figure 4.6. Changes in GSH are found to be strongly correlated positively

with GSSG (r > 0.6) and FPI (r > 0.9). Changes in GSH correlated nega-

tively with 8-OHdG and PPI (r < −0.6). The other correlations are found to

be relatively weaker.
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Variable Fixed effect parameters
β0 (SE) β1 (SE) β2 (SE) β3 (SE)

GSH 492.2(27.4)∗∗∗# -0.03 (8.6) 82.1(38.5)∗ 0.5 (0.7)
GSSG 221(10.1)∗∗∗# 4.7 (3.3) 9.7(15.6) 0.06 (0.3)

8-OHdG 442(7.5)∗∗∗# -2.7 (2.5) 3.9(10.8)∗∗∗# −0.4(0.2)∗

HbA1c 8.4(0.1)∗∗∗# -0.06 (0.03) 0.1 (0.14) -0.003 (0.002)
FPG 152.9(3.9)∗∗∗# -1.3 (1.1) 5.5 (4.9) -0.09 (0.09)
FPI 13.4(0.7)∗∗∗# −0.3(0.13)∗ 0.2 (0.7) 0.005 (0.01)
PPG 224.4(5.4)∗∗∗# -1.6 (1.6) 10.7 (7.3) -0.2 (0.1)
PPI 48.8(2.8)∗∗∗# -0.8 (0.6) -3.8 (2.1) -0.007 (0.04)

Table 4.5: Results from Model 3 for analyzing age-effects The fixed-
effect parameter values were obtained by fitting Model 3 for GSH, GSSG,
8-OHdG, HbA1c, FPG, FPI, PPG, and PPI variables are shown here with
the standard errors (SE). Significance levels shown here are ∗p < 0.05,∗∗ p <
0.01,∗∗∗ p < 0.001 for respective comparisons. Statistical significance continued
after Bonferroni corrections were marked with # symbols here. This table is
adapted from Madathil et al. [161], published as Table S5 in the supplementary
data.

Variable Fixed effect parameters
β0 (SE) β1 (SE) β2 (SE) β3 (SE)

GSH 492.2(27.4)∗∗∗# 0.08 (8.6) 110.8(12.2)∗∗∗# 104(12.9)∗∗∗#
GSSG 221(10.1)∗∗∗# 4.7 (3.3) 13.7(4.9)∗∗ 12.2(5.2)∗

8-OHdG 442(7.5)∗∗∗# -2.6 (2.5) −24.5(3.4)∗∗∗# −12.2(3.6)∗∗∗#
HbA1c 8.4(0.1)∗∗∗# -0.06 (0.03) -0.08 (0.04) -0.01 (0.05)
FPG 152.9(3.9)∗∗∗# -1.3 (1.09) -0.19 (1.6) 1.1 (1.7)
FPI 13.4(0.7)∗∗∗# −0.3(0.1)∗ 0.4(0.2)∗ 0.5(0.2)∗

PPG 224.4(5.4)∗∗∗# -1.6 (1.6) -1 (2.3) 1.7 (2.4)
PPI 48.8(2.8)∗∗∗# -0.8 (0.6) −4.1(0.7)∗∗∗# −4.2(0.7)∗∗∗#

Table 4.6: Results from Model 4 for analyzing age-effects The fixed-
effect parameter values were obtained by fitting Model 4 for GSH, GSSG,
8-OHdG, HbA1c, FPG, FPI, PPG, and PPI variables are shown here with
the standard errors (SE). Significance levels shown here are ∗p < 0.05,∗∗ p <
0.01,∗∗∗ p < 0.001 for respective comparisons. Statistical significance continued
after Bonferroni corrections were marked with # symbols here. This table is
adapted from Madathil et al. [161], published as Table S5 in the supplementary
data.
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Variable AIC
Model 1 Model 2 Model 3 Model 4

GSH 8870.5 8874.5 8872 8872.3
GSSG 7718.1 7718.4 7720 7720

8-OHdG 7331.1 7326.6 7328.5 7323.8
HbA1c 2149 2148.2 2149.7 2149.3
FPG 6323 6323.1 6323.9 6324.5
FPI 4139.6 4139.5 4141.4 4141.5
PPG 6740.8 6740.8 6740.6 6741.8
PPI 5708.9 5712 5710.9 5710.9

Table 4.7: Comparison between four models for studying age-effects (Model 1,
Model 2, Model 3, and Model 4) using their AIC estimates. Model 1 was found
to be the better-fit model across all eight endpoints. This table is adapted from
Madathil et al. [161], published as Table S5 in the supplementary data.

Variable BIC
Model 1 Model 2 Model 3 Model 4

GSH 8901.2 8905.2 8907.1 8907.3
GSSG 7748.8 7749.1 7755.1 7755.1

8-OHdG 7361.8 7357.3 7363.6 7358.9
HbA1c 2179.7 2178.9 2184.8 2184.4
FPG 6353.7 6353.8 6359 6359.6
FPI 4170.3 4170.1 4176.4 4176.6
PPG 6771.5 6771.4 6775.6 6776.9
PPI 5739.6 5742.6 5745.9 5745.9

Table 4.8: Comparison between four models to study age-effects (Model 1,
Model 2, Model 3, Model 4) using their BIC estimates. Model 1 was found to
be the better-fit model across all eight endpoints. This table is adapted from
Madathil et al. [161], published as Table S5 in the supplementary data.
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Correlation plots for EAs alone are shown in Figure 4.7. GSH slopes are

strongly negatively correlated with 8-OHdG slopes (r = −0.71) and HbA1c

slopes at moderate levels (r = −0.43). GSH slopes are strongly negatively

correlated with PPI slopes (r = −0.74, Figure 4.7); however, they are strongly

positively correlated with FPI (r = 0.75). In YAs (Figure 4.8), GSH slopes are

negatively correlated at moderate levels with 8-OHdG (r = −0.43) and PPI

(r = −0.57) slopes. The correlation between GSH slopes and HbA1c slopes is

negligibly small. Taken together, the strengths of the correlations between the

changes in GSH and outcome variables are evidently different between EAs

and YAs. We next use LME model estimates to help quantify the overall rates

of changes that individuals can expect.

We further present the results of sample predictions made with LME mod-

els for virtual individuals.

4.3.5 Predictions for virtual individuals

We make sample predictions obtained for three virtual individuals (V1, V2,

and V3) using RIFS models. Baseline values assumed for these virtual indi-

viduals are given in Table 4.9.

SubID V1 V2 V3
GSH (µM) 200 500 10

8-OHdG (ng/µg DNA) 500 400 8
HbA1c (%) 800 300 6

Table 4.9: The baseline values of three virtual subjects (VS1, VS2, and VS3)
assumed for predictions. This table is adapted from Madathil et al. [161],
published as Table 3 in the main text.

The trajectories of GSH, 8-OHdG and HbA1c obtained if they were with or

without GSH supplementation are shown in Figure 4.9. RIFS models predicted
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Figure 4.6: The correlation diagrams obtained between subject-specific ran-
dom slopes from fitted RIRS models for different biochemical measures (GSH,
GSSG, 8-OHdG, HbA1c, FPG, FPI, PPG, and PPI) are shown here. The
strength and direction of correlation between subject-specific slopes are re-
flected in both the color and size of the circular markers. The scales of Pear-
son’s correlation coefficient have been classified as low (r < 0.4), moderate
(r < 0.6), strong (r > 0.6), or very strong (r > 0.8). Blue indicates a strong
positive correlation, and red indicates a strong negative correlation. This fig-
ure is reproduced from Madathil et al. [161], published as Figure 3 in the main
text.
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Figure 4.7: Correlation diagram between subject-specific random slopes fitted
for outcome measures in elder diabetic subjects. The strength and direction of
correlation between subject-specific slopes are reflected in both the color and
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been classified as low (r < 0.4), moderate (r < 0.6), strong (r > 0.6), or very
strong (r > 0.8). Blue indicates a strong positive correlation, and red indicates
a strong negative correlation. This figure is reproduced from Madathil et al.
[161], published as Figure 3 in the main text.
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the GSH of V1 close to 429 µ M by the end of 6 months, whereas, on GSH

supplementation, V1 ended up at 1079 µ M. Similar predictions were made for

8-OHdG and HbA1c for all these individuals (Figure 4.9). This can also be

modified to estimate (i) the average time required for a recruited individual to

reach a particular level of a biochemical parameter given the baseline value and

(ii) the expected change in the level of a particular biochemical parameter with

time. Finding a patient’s potential trajectory has direct clinical and academic

uses. This method, therefore, can be used on newly added subjects to predict

different outcomes during six months, with or without GSH supplementation.
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Figure 4.9: Model predictions for virtual individuals. Average trajecto-
ries of the concentration of (A) GSH, (B) 8-OHdG, and (C) HbA1c predicted
using RIFS models in virtual individuals (V1, V2, and V3) if they were to be
followed up with GSH supplementation (red) and without GSH supplementa-
tion (blue) are shown for six months are depicted here. The baseline values
assumed and values predicted after six months are also marked for V1, V2,
and V3. This figure is reproduced from Madathil et al. [161], published as
Figure 4 in the main text.
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4.4 Discussion

Results from our clinical trial in the Chapter 3 demonstrated population-

level changes in GSH, GSSG, HbA1c, 8-OHdG, FPG, FPI, PPG, and PPI;

these changes were further studied for younger and elder subgroups of the

patients. The response in individual patients is, unsurprisingly, considerably

varied; however, analyzing individual responses was beyond the scope of that

study. This chapter focused on studying individual-level responses to GSH

supplementation over the full study period of six months using mixed-effects

models. The major results here are to characterize the variability in the inter-

individual biochemical response, in particular, determined by an individual’s

age group. To the best of our knowledge, this is the first inter-individual

analysis of the effects of GSH supplementation in patients with diabetes.

The response to GSH supplementation was analyzed in the previous chap-

ter by comparing 6-month changes in D and DG groups through population-

level Cohen’s-d-based estimates. GSH supplementation significantly affected

GSH, GSSG, and 8-OHdG levels (at moderate levels of Cohen’s d > 0.6) and

not for HbA1c, FPG, FPI, and PPG variables. The LME model framework

helped analyze biochemical responses longitudinally and obtain more refined

estimates for inter-individual and within-individual variations at two levels of

hierarchy. We note that LME models describe linear trajectories over a six-

month duration. The estimates show that D and DG average trajectories lie

between the 25th and 75th percentiles of the data at all visits; these mod-

els are a good description of the data. Model estimates were consistent with

the effect size estimates in the study Kalamkar et al. [134] for GSH, GSSG,

8-OHdG, HbA1c, FPG, FPI, and PPG variables but not for PPI. LME esti-

mates determined that the GSH supplementation markedly enhanced the rate

of replenishments in erythrocytic GSH stores by about 22%, GSSG stores by
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about 6%, and reduced oxidative DNA damage by about 4% of the baseline

month in diabetic patients. Importantly, these estimates are in the actual

(not relative) physical units and are, therefore, directly interpretable for use

in clinical applications.

We identified an older subgroup separate from a younger diabetic pop-

ulation that benefits better from GSH supplementation through a post hoc

subgroup analysis in our previous chapter. That clinical study was not pre-

designed to evaluate this analysis explicitly, and as such, it was a weaker form

of evidence. LME models provided a formal way of comparing their differen-

tial responses; two independent models described the responses in each age

class. GSH supplementation improved the rates of 8-OHdG and HbA1c re-

duction in elder diabetic individuals more than in younger diabetic cohorts.

LME models estimated the effect to be significant for FPI in elderly patients,

supporting our claims of a beneficial elder cohort. Model estimates for GSSG

suggested a significant effect of GSH supplementation in younger patients (by

17 µM per month) but not in elder ones. In contrast to the earlier results, PPI

model estimates were found to be significant in both elder and younger cohorts.

Thus, our model-based analysis describes the extent to which diabetic patients

above 55 can be expected to benefit from GSH supplementation. LME model

estimates further allow for examining the strength of the association between

covariates. The results of the correlation analysis show to what extent GSH

intervention improves erythrocytic GSH stores and reduces DNA damage. Es-

timates from the elder and younger individuals also revealed that GSH changes

were correlated strongly with changes in HbA1c and 8-OHdG in elder adults.

Finally, we have formulated a scheme that makes individual-specific predic-

tions for newly recruited subjects with diabetes, given a baseline measurement

by using the LME model estimates of the fixed-effects and random-effects pa-
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rameters. In particular, this scheme can be utilized to predict what changes

might be expected in the biochemical levels. Alternatively, the average time

required for a recruited patient to reach a particular range of biochemical

parameters in diabetic subjects can be estimated. The fitted LME model es-

timates can be used to identify the extent of each subject’s response, whether

they are in a better or worse condition than the average population response

(Kirkman et al. ([171], Inzucchi et al. [48]). These schemes are of direct clinical

and academic use to predict prospective trajectories, which can be a powerful

addition to the clinician’s toolbox.

The strengths of these results include that it is based on the data avail-

able from diabetic individuals on a well-conducted, randomized control trial,

which is one of the most extensive GSH supplementation studies so far. Using

LME models, we evaluated the individual trajectories and associated varia-

tions within and between individuals, which has yet to be done before in GSH

intervention studies.

It is particularly important to remember that our understanding of the

results is based on the uncorrected p-values. The practice of correcting for

multiple comparisons has been a topic of debate among statisticians for sev-

eral years now. Various opinions were found in the literature in opposition

regarding the conditions under which a correction for multiple testing should

be applied. We note that several highly cited reports over the years (Poole

[172], Perneger [173], Cabin and Mitchell [174]) recommend dismissing the

usage of corrections with multiple comparisons. It was shown that trying to

reduce the rate of false positives (Type I error) for null associations often leads

to an increase in the rate of false negatives (Type II error) for those that are

not null (Rothman [175] ). Also, these comparisons were often complained of

being unnecessarily conservative, making this approach frequently fail to iden-
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tify actual differences. However, for the interest of all readers, we have also

incorporated significance levels after corrections for each comparison. Those

readers who prefer statistically corrected results should follow the correspond-

ing tables to determine which findings still retain significance and which did

not after correction for multiple comparisons.

We had earlier identified the differential effects of GSH supplementation in

elder and younger subgroups (Kalamkar et al. [134]). This study analyzed the

longitudinal responses of GSH supplementation observed in these subgroups

of diabetic individuals rigorously with a framework of the LME models. The

subgroup of subjects above the median age of 55 years is consistent with pre-

vious studies that show an increased risk of diabetes-related complications

in individuals around this age. Several organizations have already developed

guidelines specific to, or including, older adults on their annual Standards of

Medical Care in Diabetes (ADA [84]). These reports also discuss the severity

of diabetes complications in elders and the lack of high-level evidence on the

effectiveness of different medications in diabetics. We think the onset of dia-

betes and complications should be addressed differently for elder and younger

diabetic individuals, and treatments need to be planned separately from each

other. The two independent LME models formulated for analyzing the lon-

gitudinal trajectories of elder, and younger adults provided estimates of the

treatment effect of GSH supplementation on each endpoint separately. This

helps identify their extent of recovery and examine whether individuals are

in a better or worse condition than the average profile in these subgroups on

GSH supplementation for direct clinical use. We recommend planning large-

scale clinical trials to examine these insights about GSH supplementation,

especially in elder diabetic individuals. This could help in establishing novel

benchmarks for caring for elder patients with diabetes. We have also ana-
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lyzed different possible models to study the effect of the age of individuals

on GSH supplementation. This will form the basis and motivate a number

of future studies to examine many of the finer nuances of the effect of age on

supplementation.

Although anti-diabetic treatments were not changed during the study pe-

riod, patients used different medication types. We have not analyzed the com-

plexity of the different combinations of all treatments further due to a lack of

sufficient statistical power for such analysis. This we point out as a limitation

of the clinical study. However, we have provided the results of LME analysis

on two major subgroups of the study, individuals with Biguanides alone and

(ii) Biguanides and Sulphonylureas treatment. It is possible that future work

and larger clinical trials may uncover if GSH supplementation is particularly

more effective with certain treatments than others. The results presented here

can be the basis for future GSH intervention studies that advance precision

diabetes research.

With the available three-point dataset, we designed our approaches to

understand the effect of GSH supplementation on the observed biochemical

changes. A preliminary effect size analysis was carried out earlier in Chap-

ter 3, using the data from the baseline visit and visit after six months to

estimate the size of the effects at the population level. In this chapter, we

used LME (linear mixed-effects) models to study the dynamics of longitudinal

biochemical changes. The LME framework allowed us to estimate GSH sup-

plementation effects after accounting for inter- and intra-individual variability

in the observed changes. LME framework-based analysis adequately captured

the average trend in the trajectories of different study groups and subject-

specific trajectories. The correlation estimates from model-fitted biochemical

parameters provided stronger evidence of the effect of GSH supplementation.
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In summary, the three-point data was sufficient for the analysis designed to

address the goals of this study.

However, we think that if more measurements were available in addition to

the three-point datasets, it would have been beneficial for achieving the per-

sonalization goals of GSH supplementation. Analyzing more frequent measure-

ments in addition to the available datasets may be for longer durations could

unravel the nonlinearities associated with the biochemical changes resulting

from GSH supplementation. For instance, the biochemical changes driven by

several enzymes and other key players in the system follow Michaelis Menten-

like kinetics. In addition to that, the thesis has already discussed various

covariates influencing the effects of GSH supplementation. So, by employing

Nonlinear Mixed Effects Modeling frameworks on rich longitudinal datasets,

we might gain deeper insights into the dynamics associated with the biochem-

ical changes and these interaction effects of covariates, ultimately aiding in the

pursuit of personalized GSH therapy objectives.
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4.5 Appendix

4.5.1 Sample structure of the data for LME analysis

Subject ID Time Groups Age Y (eg: GSH in µM)
1 0 0 56 408
1 3 0 56 860
1 6 0 56 608
.. .. .. .. ..
.. .. .. .. ..

102 0 0 48 434
102 3 0 48 655
102 6 0 48 533
103 0 1 55 ..
103 3 1 55 ..
103 6 1 55 ..
.. .. .. .. ..
.. .. .. .. ..

206 0 1 47 ..
206 3 1 47 ..
206 6 1 47 ..

Table 4.10: The structure of sample data from D and DG groups.
The available data consists of measurements from 102 subjects in D and 104
subjects in DG on three visits during the study period (0, 3, and 6 months of
the study). The Group IDs for subjects in D and DG are encoded as 0 and
1. The models are fitted using these data sets. This table is adapted from
Madathil et al. [161], published as Table S1 in the supplementary data.
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4.5.2 Results of RIFS models

Results from RIFS models are shown below.

Variable Fixed effect parameters
β0 (SE) β1 (SE) β2 (SE)

GSH 492.2(28.9)∗∗∗# -0.2 (8.4) 108.2(9.8)∗∗∗#
GSSG 221(11.3)∗∗∗# 4.9 (3.1) 12.7(3.8)∗∗∗#

8-OHdG 441.9(7.7)∗∗∗# -2.04 (2.3) −19.8(2.6)∗∗∗#
HbA1c 8.4(0.1)∗∗∗# -0.06 (0.03) -0.05 (0.04)
FPG 152.9(3.7)∗∗∗# -1.3 (0.95) 0.46 (1.2)
FPI 13.4(0.7)∗∗∗# -0.3 (0.13) 0.48(0.2)∗∗#
PPG 224.4(5.4)∗∗∗# -1.6 (1.4) 0.37 (1.7)
PPI 48.8(2.3)∗∗∗# -0.7 (0.6) −4.4(0.7)∗∗∗#

Table 4.11: The estimated fixed effect parameters obtained by fitting RIFS
models are given here. Significance of parameter estimates are given by ∗p <
0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001. Statistical significance continued after
Bonferroni corrections marked with # symbols. This table is adapted from
Madathil et al. [161], published as Table S3 in the supplementary data.

Variable Random-effect parameters
σ0 σe

GSH 200.9 389.9
GSSG 91.82 142.8

8-OHdG 40.35 110.6
HbA1c 1.27 1.15
FPG 35.95 42.17
FPI 8.01 5.7
PPG 50.68 61.72
PPI 22 25.86

Table 4.12: The estimated random effects parameters obtained by fitting RIFS
models are given here. This table is adapted from Madathil et al. [161],
published as Table S3 in the supplementary data.
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Figure 4.10: The fitted results of RIFS models for GSH, GSSG, 8-OHdG,
HbA1c, FPG, FPI, PPG, and PPI variables in D group and DG groups. The
average treatment effects of GSH supplementation (β2) are denoted on each
panel corresponding to the DG group. The estimated β2 was significant on
the rate of changes in GSH (β2 = 108µM per month), GSSG (β2 = 13µM per
month), 8-OHdG (β2 = −12.1ng/µg DNA per month), FPI (β2 = 0.5µU/mL
per month) and PPI (β2 = −4.4µU/mL per month) levels. Significance levels
shown here are ∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001. This figure is reproduced
from Madathil et al.. [161], published as Figure S1 in the main text.
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4.5.3 Results of RIFS models for different age classes

Variable Fixed effect parameters (EA)
β0 (SE)) β1 (SE) β2 (SE)

GSH 488.1(37.1)∗∗∗# 6.5 (10.8) 105(12.6)∗∗∗#
GSSG 230.9(15.6)∗∗∗# 7.9 (4.3) 9.04 (5.2)

8-OHdG 445.2(10.3)∗∗∗# -2.2 (3.5) −25.8(3.5)∗∗∗#
HbA1c 8.4(0.2)∗∗∗# -0.02 (0.04) −0.1(0.05)∗∗

FPG 150.1(4.9)∗∗∗# -1.7 (1.1) 0.7 (1.5)
FPI 14(1.002)∗∗∗# -0.4 (0.2) 0.6(0.3)∗

PPG 222.5(6.8)∗∗∗# 0.1 (1.8) -2.5 (2.2)
PPI 51.4(3.4)∗∗∗# -1.3 (0.9) −4.1(1.07)∗∗∗#

Table 4.13: Results from RIFS models fitted for elderly diabetic sub-
jects The fixed-effects parameter values obtained by fitting RIFS models for
GSH, GSSG, 8-OHdG, HbA1c, FPG, FPI, PPG, PPI variables are shown here
with the standard errors (SE). The average treatment effects (β2) of GSH sup-
plementation are significant on GSH, 8-OHdG, HbA1c, FPI, and PPI levels
for EA. Significance of parameter estimates are given by ∗p < 0.05, ∗∗p < 0.01,
and ∗∗∗p < 0.001. Statistical significance continued after Bonferroni correc-
tions marked with # symbols. This table is adapted from Madathil et al.
[161], published as Table S4 in the supplementary data.
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Variable Fixed effect parameters (YA)
β0 (SE) β1 (SE) β2 (SE)

GSH 496.6(45)∗∗∗# -6.9 (13.06) 110.8(15.3)∗∗∗#
GSSG 209.5(16.06)∗∗∗# 1.8 (4.5) 16.5(5.4)∗∗

8-OHdG 438.3(11.2)∗∗∗# -1.8 (3.3) −12.5(3.8)∗∗#
HbA1c 8.3(0.2)∗∗∗# −0.1(0.04)∗ 0.03(0.05)
FPG 156.2(5.6)∗∗∗# -1.1 (1.5) 0.4 (1.9)
FPI 12.9(0.9)∗∗∗# -0.12 (0.14) 0.3(0.2)
PPG 226.6(8.3)∗∗∗# -3.6 (2.1) 3.5 (2.7)
PPI 45.7(3)∗∗∗# 0.1 (0.8) −4.9(1)∗∗∗#

Table 4.14: Results from RIFS models fitted for younger diabetic
subjects The fixed-effects parameter values obtained by fitting the data from
the subgroup of younger adults (YA) using the RIFS models for GSH, GSSG,
8-OHdG, HbA1c, FPG, FPI, PPG, PPI variables are shown here with the stan-
dard errors (SE). The average treatment effects (β2) of GSH supplementation
are significant on GSH, GSSG, 8-OHdG, and PPI levels for YA. Significance
of parameter estimates are given by ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.
Statistical significance continued after Bonferroni corrections marked with #
symbols. This table is adapted from Madathil et al. [161], published as Table
S4 in the supplementary data.

4.5.4 RIRS models for anti-diabetic treatment groups
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Variable Fixed effect parameters (B) Fixed effect parameters (BS)
β0 β1 β2 β0 β1 β2

GSH 502.83∗∗∗ -2.35 114.47∗∗∗ 517.83∗∗∗ -20.81 146.59∗∗∗

GSSG 227.71∗∗∗ -1.57 15.4 229.4∗∗∗ 8.59 3.96
8-OHdG 446.22∗∗∗ -7.07 −13.26∗ 439.38∗∗∗ -1.41 −16.57∗

HbA1c 8.52∗∗∗ −0.11 −0.002 8.23∗∗∗ 0.016 −0.19∗

FPG 163.56∗∗∗ −5.62∗ 2.048 148.44∗∗∗ 0.90 -3.64
FPI 13.08∗∗∗ -0.12 0.23 12.98∗∗∗ −0.54∗∗ 0.69∗∗

PPG 234.64∗∗∗ −8.37∗∗∗ 4.93 218.10∗∗∗ 3.36 −10.28∗∗∗

PPI 49.64∗∗∗ -1.93 -3.55 47.87∗∗∗ -1.24 -4.01

Table 4.15: Results from RIRS models fitted for B and BS subgroups
The fixed-effects parameter values obtained by fitting the data from the sub-
group of subjects with Biguanides only (B) and Biguanides-Sulphonylurease
(BS) treatments using the RIRS models for GSH, GSSG, 8-OHdG, HbA1c,
FPG, FPI, PPG, PPI variables are shown here with the standard errors (SE).
The average treatment effects (β2) of GSH supplementation are significant on
GSH and 8-OHdG for B and on GSH, 8-OHdG, HbA1c, FPI, and PPG for
BS subgroups. Significance of parameter estimates are given by ∗p < 0.05,
∗∗p < 0.01, and ∗∗∗p < 0.001. Statistical significances after Bonferroni correc-
tion is marked with # symbols.
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Chapter 5

Mathematical modeling of

erythrocytic glutathione

turnover in T2D

5.1 Introduction

As discussed earlier in Chapter 3 and Chapter 4, several prior studies have

indicated that prolonged hyperglycemia causes OS, which subsequently results

in complications associated with T2D (Brownlee [131], Volpe et al. [50], Giacco

and Brownlee [23], Marchioli et al. [24]). We re-emphasize that it is crucial to

understand the mechanisms and pathophysiology of oxidative stress in T2D

to prevent or minimize its complications. We provided evidence in Chapter

3 that compensating for a deficiency in GSH through supplementation im-

proves erythrocytic glutathione stores and helps to enhance the redox state

and slow the progression of complications in T2D individuals (Kalamkar et al.

[134], Madathil et al. [161]). Our clinical trial data have revealed significant

variations in cellular biochemical responses between individuals, highlighting

138



the complexity of the underlying biological processes. Therefore, understand-

ing the dynamics of cellular-level biochemical changes and the regulation of

GSH metabolism is crucial for developing effective, personalized anti-diabetic

treatments that incorporate GSH and are tailored to individual patients.

As discussed earlier in Chapter 2, mechanistic models play a pivotal role

in advancing the personalized treatment of diabetes by providing valuable

knowledge for optimizing strategies for T2D management and care. Models

can quantitatively describe how cellular and systemic responses differ in sub-

jects with different diabetic conditions, providing insights into the production,

utilization, and degradation of GSH. These models can identify key enzymes

and pathways involved in GSH metabolism, predicting how changes in these

pathways may affect GSH stores and, thereby, oxidative conditions in cells.

These models can also be used to study the recovery progress of individuals

and determine if their cellular response is better or worse than the average

population, allowing for the evaluation of treatment progress and setting per-

sonalized targets for patients. Model-derived insights can be used to optimize

treatment plans for maximum effectiveness and improved patient outcomes by

targeting GSH metabolism to control oxidative stress-related complications in

individuals with T2D.

Cellular pathways for GSH turnover are complex as they encompass dif-

ferent syntheses, interconversions, and transport processes, and their dynam-

ics are susceptible to changes with disease conditions. This complexity is a

challenge in modeling the dynamics of GSH within the body. While existing

erythrocytic models such as Palsson and Joshi [176] and Reed et al. [125]

outline various GSH-dependent metabolic pathways, the complexity of these

models makes it difficult to determine their parameters and understand GSH

turnover in situations where data is limited. Furthermore, despite their high
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relevance, there is a lack of comprehensive models in the literature that can

elucidate cellular GSH metabolism in the context of T2D conditions.

In this chapter, our main focus is to develop mathematical models of cellu-

lar and systemic level changes and explain the clinical observations, thereby,

the role of redox status in hyperglycemia. We specifically aim to obtain model

estimates that help identify the extent of response in individuals with T2D

compared to the average population and to plan effective anti-diabetic inter-

ventions. To support the clinical observations, S. Ghaskadbi and collabora-

tors designed an experimental study entitled “Estimation of the threshold for

GSH/GSSG transport in erythrocytes.” This study was performed to analyze

the thresholds for the transport of GSH and GSSG supplied extracellularly con-

sisting of five nondiabetic control subjects, five prediabetic subjects, and five

diabetic individuals from our previous study. We analyze the erythrocytic glu-

tathione profiles of the subjects from control, prediabetic, and diabetic groups,

thereby understanding the effect of extracellular treatments with GSH, GSSG,

and Hydrogen peroxide. By applying the formulated model to the measured

data from these experiments, we assess the impact of external stimuli on the

oxidized and reduced forms of intracellular glutathione. This model obtains

cellular parameters that measure the amount of available GSH and their ability

to clear H2O2-induced stress under various external conditions. We compute

these crucial cellular parameters for describing GSH supply and H2O2 clear-

ance capacity in erythrocytic GSH stores and compare them between normal

and diabetic cases. This chapter provides a minimal mathematical model of

GSH turnover that could help to understand how the intracellular metabolism

of GSH is affected by extracellular conditions in diabetes and is potentially

useful in developing personalized goals.

Furthermore, we used this model to analyze the erythrocytic GSH mea-
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sured from our GSH supplementation clinical trial (Kalamkar et al. [134]).

We estimated GSH influx and H2O2 values in the model at different visits

for individuals in control and treatment groups of GSH supplementation and,

thereby, obtaining the trajectory of changes in these individuals during the

study period. This approach is of great clinical significance as it can assist in

identifying individual trajectories of improvements and tailoring treatment ob-

jectives to improve cellular redox status through GSH. Moreover, these model

findings can potentially assess individuals relative to the average population

and indicate whether more effective interventions are required to alter GSH

stores or H2O2 clearance capacity, leading to better cellular redox health.

During this work, we have also formulated and studied mathematical mod-

els for different components of GSH-dependent systems and enzymatic path-

ways in human cells. This modeling approach aimed to investigate questions

raised by experiments or experimentalists on GSH metabolism and turnover

mechanisms. Although these models were not the main focus of our work,

brief descriptions are given in the appendix for the reader. Given the limited

availability of experimental data, we have utilized the minimal model that

incorporates essential components.

5.2 Methodology

5.2.1 Statement of contribution

Prof. Saroj Ghaskadbi and Dr. Saurabh Kalamkar from the Department of

Zoology, Savitribai Phule Pune University, Pune, India, recruited the subjects

and conducted the erythrocyte experiments for this study. Ghaskadbi group

provided us with the anonymized data after data collection. These datasets

were utilized for the analysis presented in this chapter. Arjun K M, Dr. Pranay
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Goel, and Prof. James Sneyd designed the modeling study and performed the

computations. All the above collaborators have contributed to the analysis

and results emerging from this work.

5.2.2 Funding

During the study, A.K.M. received financial support through a Senior Re-

search Fellowship provided by DST-Inspire, Government of India. The Senior

Research Fellowship from CSIR, Government of India supported S.K.

5.2.3 Ethics Statement

This study was approved by the Institutional Ethical Committee (IEC) of

SPPU Pune (Ref. No.: SPPU/IEC/2020/85), Institutional Biosafety Com-

mittee of SPPU Pune (IBSC20120235) and Institutional Ethical Committee

of IISER Pune (IECHR/Admin/2021/009).

5.2.4 Data Availability Statement

All datasets used for the analysis in this study can be obtained from the

following figshare link: https://figshare.com/s/25af0855061f1a468d1b

5.2.5 Acknowledgments

We express our sincere gratitude to the mentioned funding agencies for their

financial support during the study.

5.2.6 Conflict of Interest

The authors of this article declare no conflict of interest. The funding sources

had no role in the design or execution of this study, in the analyses or data

142



interpretation, in the manuscript preparation, or in the decision to publish the

results.

5.2.7 Erythrocyte experiments

In order to study the response behavior of erythrocytic glutathione-dependent

systems on different extracellular conditions, we collaborated with the Ghaskadbi

group from SPPU Pune and conducted different cellular treatment experi-

ments. The details of the experiments and measured data are described below.

Five healthy nondiabetic individuals (ND) with HbA1c < 5.7%, five predia-

betic individuals (PD) with HbA1c between 5.7 to 6.4 %, and five T2D dia-

betic patients (D) with HbA1c ≥ 6.5% (ADA, [52]) visiting the health center

of Savitribai Phule Pune University (SPPU), Pune during February to March

2021 were recruited for this study. The study excluded pregnant women, in-

dividuals with alcohol consumption, smokers, those with any clinical infection

or recent cardiovascular event history, and individuals receiving antioxidants.

These exclusion criteria aimed to ensure a more homogeneous study popula-

tion. The intention was to eliminate potential confounding factors associated

with these specific characteristics or conditions. The study excluded pregnant

women, individuals with alcohol consumption, smokers, those with any clini-

cal infection or recent cardiovascular event history, and individuals receiving

antioxidants. These exclusion criteria aimed to ensure a more homogeneous

study population. The intention was to avoid potential confounding factors

associated with these specific characteristics or conditions. Complete medical

history of all individuals was noted, including their anti-diabetic treatment,

exercise regimen, and family history of diabetes. Anthropometric parameters

such as body weight, height, and waist: hip ratio were also recorded for all

individuals.
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5.2.8 Measured data from erythrocyte experiments

A trained phlebotomist collected 10 ml of blood from each study participant.

Biochemical tests were performed on an autoanalyzer at AG Diagnostics Pvt.

Ltd, Pune, following Clinical and Laboratory Standards, USA guidelines. 2

ml of whole blood was incubated in the presence of different concentrations

of GSH (10, 100, and 1000 µM), or GSSG (1, 10, and 100 µM) for 30 min.

at 37◦ C or H2O2 (1, 10, and 100 µM) for 10 minutes at 37◦C. The blood

samples underwent centrifugation at 3000 rpm for 10 minutes. This facilitated

the separation of plasma and erythrocyte fractions. Concentrations of GSH,

GSSG, and NADP+ from erythrocyte lysate were measured by following the

protocols of Veskoukis et al. [177] and Baker et al. [178].

5.2.9 Modelling GSH turnover in human erythrocytes

As seen in Chapter 2, there are various pathways that influence GSH turnover

in different physiological and pathological conditions. Including all these re-

actions was beyond the scope of this modeling study. We adopted a mini-

mal model approach for representing the dynamics of the erythrocytic GSH

turnover by incorporating the following reactions: Firstly, a constant flux into

the intracellular pool of GSH resulting from intracellular GSH synthesis using

precursor amino acids. Secondly, GSH oxidation into GSSG on reaction with

H2O2, lead by glutathione peroxidase (GPx) enzyme. Thirdly, GSSG reduc-

tion into GSH on reaction with NADPH, lead by glutathione reductase (GR)

enzyme. Lastly, an export for GSSG outwards the cell through membrane-

bound transporters. The model formulations and parameters are described

next.
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2GSH GSSG

H2O2 H2O
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Figure 5.1: Reaction diagram for building the minimal mathematical model
for glutathione turnover. The four major reactions considered here are GSH
influx, GSH oxidation to GSSG, GSSG to GSH reduction, and GSSG export
reactions. The parameters Km1, Km2, γ1, γ2, and β are marked on the associ-
ated reactions.

5.2.10 Minimal mathematical model for GSH turnover

An illustration of the reactions considered is shown in Figure 5.1. The model

describes a constant GSH influx into the pool, denoted by α, which acts as

the primary source for intracellular GSH. The oxidation of GSH to GSSG was

assumed to follow Michaelis Menten (MM) kinetics with parameters Km1 and

γ1. Similarly, the reduction of GSSG to GSH was modeled with parameters

Km2 and γ2. GSSG export was assumed to be a concentration-dependent

reaction through first-order kinetics with a constant β. The dynamic behavior

of species involved in Figure 5.1 is described by a set of non-linear ordinary

differential equations (Eq 5.1-5.2). The rates of changes in the concentration

of species are given by

d[GSH]

dt
= α− 2

γ1[GSH].[H2O2]

Km1 + GSH
+ 2

γ2[GSSG].[NADPH]

Km2 + GSSG
(5.1)

d[GSSG]

dt
=

γ1[GSH].[H2O2]

Km1 + GSH
− γ2[GSSG].[NADPH]

Km2 + GSSG
− β[GSSG] (5.2)
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Using steady state assumptions, d[GSH]
dt

= 0 and d[GSSG]
dt

= 0, we obtained

expressions for GSH and GSSG steady states, GSH∗ and GSSG∗ respectively,

as

[GSH]∗ =
Km1

γ1
[H2O2]
(α)

1

( 1
2
+

γ2[NADPH]
2βKm2+(α)

)
− 1

(5.3)

[GSSG]∗ =
α

2β
(5.4)

These model equations (5.4-5.3) are further used for the optimization and

parameter fitting in the next section.

5.2.11 Model parameters

The model optimization was performed independently for different study groups.

The goals of optimization procedures were primarily to obtain the best fit for

the parameters Km1, Km2, α, β, γ1, γ2, and H2O2 which estimates predicts the

model steady states close to the data available from different treatments in

each group. The physiological conditions and prolonged glycemic stress lev-

els could have altered enzymatic activities and transporters across different

groups. Therefore, it was reasonable to allow different values for these pa-

rameters across the study groups with different diabetic statuses. However,

we assumed the same values for the enzymatic parameters Km1, Km2, γ1, γ2

and the constant of GSSG export, β for different treatments in a group. The

trends in the observed data across different treatments could possibly be result-

ing from the combined effects of available GSH and their efficiency in clearing

the H2O2 induced stress in erythrocytes. Therefore, we allowed only α and

H2O2 to vary across different treatments, and the other parameters were kept

the same. Further, the trends observed in GSH and GSSG steady states were

analyzed through the fitted values for α and H2O2. It is particularly important
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to note that the conditions with high α and low H2O2 levels could be used to

qualitatively indicate low stress.

5.2.12 Model fitting and parameter optimization

The parameter optimization was performed individually for each group. This

optimization determines the fitted values for the parameters Km1, Km2, α, β, γ1, γ2,

and H2O2 based on the data available from different treatments in a group.

Let the parameter vector of interest be,

d = [Km1, Km2, α, β, γ1, γ2, H2O2]

The optimization problem for finding the fitted parameters d for a group, g

where (g : Control, Prediabetic, Diabetic) can be stated as

dgmin = min
d

Costg (5.5)

Costg =
∑

Treatments

(CostGSH + CostGSSG) (5.6)

where the cost function in a group, Costg, is calculated as the sum of CostGSH

and CostGSSG, which are defined as the squared differences between the data

and model-predicted steady states of GSH and GSSG in different treatments

respectively. These individual cost functions are calculated

CostGSH =
∣∣∣∣∣∣[GSH]data −GSH∗

model

∣∣∣∣∣∣2 (5.7)

CostGSSG =
∣∣∣∣∣∣[GSSG]data −GSSG∗

model

∣∣∣∣∣∣2 (5.8)

where [GSH]data and [GSSG]data are GSH, GSSG measurements from the dif-

ferent experiments. These data vectors, [GSH]data and [GSSG]data consist of
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different treatments in a group; control sample, treatments with 1, 10, 100

µM of H2O2, treatments with 10, 100, 1000 µM of GSH, treatments with 1,

10, 100µM of GSSG. The corresponding vectors of the model steady state,

GSH∗
model, and GSSG∗

model are obtained by running the model equations un-

til the steady states. The parameter optimization and model fitting using

the available datasets have been performed using fmincon and patternsearch

algorithms in Matlab software, version 2022.

5.2.13 GSH influx and H2O2 estimates from clinical trial

data

The data from the clinical trial consisted of nondiabetic control individuals

and a total of 250 known T2D individuals under anti-diabetic treatment in two

groups. Namely, the DG group with GSH supplementation and the D group

without supplementation. This dataset consists of GSH and GSSG measure-

ments from all individuals at three different visits during the study period. In

order to understand the effect of GSH supplementation using the formulated

model, we analyzed GSH and GSSG measurements available from the control

diabetic subjects with and without GSH supplementation at different visits

during the study period. We used Km1, Km2, γ1, γ2, β, and NADPH values

for these groups from the fitted results and estimated GSH influx (α) and

H2O2 from the steady state equations. Further, we analyzed the longitudinal

changes in α and H2O2 in these study groups during the study period.
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5.3 Results

5.3.1 Fitted model parameters and steady states

The fitted values of the model parameters, Km1, Km2, γ1, γ2, β for different

groups are listed in Table 5.1. The measured levels of erythrocytic GSH and

GSSG model were depicted with estimated values for GSH and GSSG steady

states at different treatments on the top and middle panels (Figure 5.2-5.11).

These model predictions were successful in capturing the trends in the mea-

sured GSH and GSSG levels on different extracellular GSH stimuli. The steady

states observed from the model lie close to the measured experimental data

of GSH and GSSG. The fitted estimates of GSH influx and H2O2 for different

treatments in these samples were analyzed further.

Parameter (Unit) Nondiabetic Prediabetic Diabetic
Km1 (M) 2.64 × 10−2 1.21 × 10−2 0.84 × 10−2

Km2 (M) 2.94 × 10−2 2.54 × 10−2 3.63 × 10−2

γ1 (s−1) 136.59 87.9 121.7
γ2 (s−1) 152.67 130.34 254.81
β (s−1) 2.29 × 10−4 2.30 × 10−4 1.83 × 10−4

Table 5.1: Parameter values obtained from model optimization for nondiabetic,
prediabetic, and diabetic study groups.

5.3.2 Geometry of minimal model and implications

The steady-state GSH and GSSG relationships in different groups were de-

termined by the parameter estimates (Table 5.1) obtained from the model

optimization. In Figure 5.2, these are represented geometrically as differ-

ent surfaces for nondiabetic, prediabetic, and diabetic groups. The shapes

of these surfaces for different groups were primarily characterized by their

Km1, Km2, γ1, γ2, β, and NADPH values.
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(a) Model predicted GSH surface

(b) Model predicted GSSG surface

Figure 5.2: The geometry of minimal GSH model and implications
for different groups. Simulated surfaces describing the effect of GSH influx
(α) and H2O2 on erythrocytic glutathione for nondiabetic (ND), prediabetic
(PD), and diabetic (D) individuals are shown here with predicted erythrocytic
GSH (a) and GSSG (b) steady states. These surfaces are plotted for α values
in a range of 50-200 nM/s and H2O2 values in a 5-15 nM range. NADPH
values of 17.5, 16.6, and 14.9 nM are used for simulating the surfaces for ND,
PD, and D groups, respectively. GSH and GSSG steady states obtained by
the model with an α value of 100 nM/s and varying H2O2 are marked (solid
black curves) on these surfaces for the three groups. Similarly, steady states
for fixed H2O2 of 10 nM for varying α values are also marked.
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The data showed that erythrocytic GSH was larger in nondiabetic indi-

viduals than in prediabetic individuals and the lowest in diabetic individuals.

Measured GSSG was larger in diabetic individuals than in prediabetic and

diabetic individuals. This could be indicative of enzymatic activities prone to

change under different diabetic conditions. As depicted in Figure 5.2, the pa-

rameter estimates were successful in capturing these trends in the basal GSH

and GSSG from nondiabetic to prediabetic and then diabetic individuals.

Physiologically feasible ranges of GSH (Figure 5.2a) and GSSG (Figure

5.2b) steady states are simulated as surfaces for feasible ranges of α (50-200

nM/s) and H2O2 (5-15 nM). A given pair of values of α and H2O2 uniquely

determines GSH and GSSG steady states on the surface corresponding to the

diabetic status. To demonstrate the combinational effects of α and H2O2, we

have also shown the curves representing GSH and GSSG steady states with

respect to one fixed and another varying parameter for all three groups. For

instance, GSH steady states obtained by the model with a fixed α value (100

nM/s) are marked (solid black curves) on these surfaces and are observed to

decrease with increasing H2O2. Similarly, steady states for fixed H2O2 of 10

nM are also marked in the α direction, which is observed to increase with

increasing α.

The geometrical representation of the model illustration describes the effect

of changing extracellular conditions seen on GSH and GSSG steady states,

primarily as changing GSH influx and H2O2 values on the surfaces. We used

these surfaces for GSH and GSSG to describe their trajectories with estimates

α and H2O2 for different treatments in the later section (Figure 5.3-5.5).
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5.3.3 Results of stimulation with extracellular GSH

We fit the formulated GSH model with the data obtained from treatments

with 10, 100, and 1000 µM of GSH. The simulation results obtained are shown

in Figure 5.3. The measured and model-predicted levels of GSH and GSSG

in response to these treatments are described in nondiabetic (Figure 5.3a),

prediabetic (Figure 5.4a), and diabetic (Figure 5.5a) groups with the estimated

results of GSH influx (α) and H2O2.

To geometrically understand the impact of changing α and H2O2 under

different GSH treatments, we have also simulated 3-dimensional surfaces and

highlighted the trace connecting model estimates of α and H2O2 with the pre-

dicted GSH and GSSG levels in nondiabetic (Figure 5.3b), prediabetic (Figure

5.4b), and diabetic (Figure 5.5b) erythrocytes.

We estimated α values of 117, 111, and 103 nM/s in the control samples

for nondiabetic, prediabetic, and diabetic subjects, respectively. Interestingly,

similar trends were observed in the fitted values of α and H2O2 with increasing

extracellular GSH. Estimated GSH influx increased steadily in nondiabetic

(100, 117 to 130 nM/s), prediabetic (112, 144 to 161 nM/s), and diabetic

(119, 146 to 162 nM/s) samples with 10, 100, and 1000 µM GSH respectively.

The fitted values for H2O2 were found to be steadily declining with increas-

ing extracellular GSH (10, 100, and 1000 µM) in nondiabetic (9.24, 8.69, and

7.52 nM), prediabetic (11.2, 11.04, and 9.6 nM) and diabetic (10.51, 9.9, to

6.72 nM) respectively. Notably, the trends observed in the fitted H2O2 were

seen to be closer in the nondiabetic and diabetic erythrocytes.

5.3.4 Results of stimulation with extracellular H2O2

Next, we fitted the model with the data obtained from extracellular treatments

with 1, 10, and 100 µM of H2O2. The measured and model-predicted levels
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(a) Measured data and model predictions

(b) Geometry of model-predicted values of GSH influx and H2O2

Figure 5.3: Effects of extracellular GSH treatments in nondiabetic
individuals. The effects of extracellular treatments with 10, 100, and 1000
µM of GSH on erythrocytic GSH and GSSG concentrations are plotted here
for nondiabetic individuals. (a) Box and whisker plots with data points are
used to represent the median and interquartile ranges of the data (n=5) at
each treatment. The mean measured (black circles) and model-predicted (red
circle) concentrations of GSH (top panel) and GSSG (middle panel) are plotted
against the concentration of treated GSH (10, 100, and 1000 µM). The model-
fitted values GSH influx (α) and H2O2 are plotted on the left y-axis and
right y-axis on the bottom panel against the treatment dose. (b) The model-
simulated effect of GSH influx and H2O2 on the steady-state concentrations of
erythrocytic GSH (blue surface) and GSSG (red surface) are shown. Red lines
connect the points C, GSH10, GSH100, and GSH1000 representing the model
estimates on treatments with 10, 100, 1000 µM GSH, respectively.
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(a) Measured data and model predictions

(b) Geometry of model-predicted values of GSH influx and H2O2

Figure 5.4: Effects of extracellular GSH treatments in prediabetic
individuals. The effects of extracellular treatments with 10, 100, and 1000
µM of GSH on erythrocytic GSH and GSSG concentrations are plotted here
for prediabetic individuals. (a) Box and whisker plots with data points are
used to represent the median and interquartile ranges of the data (n=5) at
each treatment. The mean measured (black circles) and model-predicted (red
circle) concentrations of GSH (top panel) and GSSG (middle panel) are plotted
against the concentration of treated GSH (10, 100, and 1000 µM). The model-
fitted values GSH influx (α) and H2O2 are plotted on the left y-axis and
right y-axis on the bottom panel against the treatment dose. (b) The model-
simulated effect of GSH influx and H2O2 on the steady-state concentrations of
erythrocytic GSH (blue surface) and GSSG (red surface) are shown. Red lines
connect the points C, GSH10, GSH100, and GSH1000 representing the model
estimates on treatments with 10, 100, 1000 µM GSH, respectively.
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(a) Measured data and model predictions

(b) Geometry of model-predicted values of GSH influx and H2O2

Figure 5.5: Effects of extracellular GSH treatments in diabetic indi-
viduals. The effects of extracellular treatments with 10, 100, and 1000 µM
of GSH on erythrocytic GSH and GSSG concentrations are plotted here for
diabetic individuals. (a) Box and whisker plots with data points are used
to represent the median and interquartile ranges of the data (n=5) at each
treatment. The mean measured (black circles) and model-predicted (red cir-
cle) concentrations of GSH (top panel) and GSSG (middle panel) are plotted
against the concentration of treated GSH (10, 100, and 1000 µM). The model-
fitted values GSH influx (α) and H2O2 are plotted on the left y-axis and
right y-axis on the bottom panel against the treatment dose. (b) The model-
simulated effect of GSH influx and H2O2 on the steady-state concentrations of
erythrocytic GSH (blue surface) and GSSG (red surface) are shown. Red lines
connect the points C, GSH10, GSH100, and GSH1000 representing the model
estimates on treatments with 10, 100, 1000 µM GSH respectively.
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of GSH and GSSG on these treatments are described in nondiabetic (Figure

5.6a), prediabetic (Figure 5.7a), and diabetic (Figure 5.8a) erythrocytes with

the estimated results of GSH influx (α) and H2O2.

The model-simulated surface plots are shown here with a highlighted trace

connecting model estimates of α, H2O2, and predicted GSH and GSSG levels

for different treatments in nondiabetic (Figure 5.6b), prediabetic (Figure 5.7b),

and diabetic (Figure 5.8b) groups. Different patterns in the fitted values of

GSH influx and H2O2 were observed across these erythrocytes with increasing

extracellular H2O2. Estimated GSH influx was observed to steadily decrease

in nondiabetic (111, 110 to 104 nM/s) and increase in diabetic (89, 95 to 117

nM/s) erythrocytes with increasing extracellular H2O2 (1, 10, and 100 µM)

respectively. In the prediabetic erythrocytes, GSH influx was estimated to be

118, 112 to 119 nM/s for 1, 10, and 100 µM, respectively. The fitted values for

intracellular H2O2 were found to be steadily declining in nondiabetic samples

(10.9, 9.8 to 9 nM). At the same time, they steadily increased in prediabetic

samples (11.8, 11.5 to 12.5 nM) in response to increasing extracellular H2O2 (1,

10, and 100 µM), respectively. The fitted H2O2 values of diabetic erythrocytes

were found to be 9.1, 8.3, and 17.1 nM, respectively.

5.3.5 Results of stimulation with extracellular GSSG

Next, we fitted the data obtained for extracellular treatments with 1, 10, and

100 µM of GSSG. The simulation results obtained are shown for nondiabetic

(Figure 5.9), prediabetic (Figure 5.10), and diabetic (Figure 5.11) erythro-

cytes.

Different patterns in the fitted values of GSH influx and H2O2 were ob-

served. Notably, we did not observe any steady changes as a result of increas-

ing concentrations of GSSG. Estimated GSH influx increased in nondiabetic
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(a) Measured data and model predictions

(b) Geometry of model-predicted values of GSH influx and H2O2

Figure 5.6: Effects of extracellular H2O2 treatments in nondiabetic
individuals. The effects of extracellular treatments with 1, 10, and 100 µM
of H2O2 on erythrocytic GSH and GSSG concentrations are plotted here for
nondiabetic individuals. (a) Box and whisker plots with data points are used
to represent the median and interquartile ranges of the data (n=5) at each
treatment. The mean measured (black circles) and model-predicted (red cir-
cle) concentrations of GSH (top panel) and GSSG (middle panel) are plotted
against the concentration of treated GSH (10, 100, and 1000 µM). The model-
fitted values GSH influx (α) and H2O2 are plotted on the left y-axis and
right y-axis on the bottom panel against the treatment dose. (b) The model-
simulated effect of GSH influx and H2O2 on the steady-state concentrations of
erythrocytic GSH (blue surface) and GSSG (red surface) are shown. Red lines
connect the points C, H1, H10, and H100 representing the model estimates on
treatments with 1, 10, 100 µM of H2O2 respectively
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(a) Measured data and model predictions

(b) Geometry of model-predicted values of GSH influx and H2O2

Figure 5.7: Effects of extracellular H2O2 treatments in prediabetic
individuals. The effects of extracellular treatments with 1, 10, and 100 µM
of H2O2 on erythrocytic GSH and GSSG concentrations are plotted here for
prediabetic individuals. (a) Box and whiskers plots with data points are used
to represent the median and interquartile ranges of the data (n=5) at each
treatment. The mean measured (black circles) and model-predicted (red cir-
cle) concentrations of GSH (top panel) and GSSG (middle panel) are plotted
against the concentration of treated GSH (10, 100, and 1000 µM). The model-
fitted values GSH influx (α) and H2O2 are plotted on the left y-axis and
right y-axis on the bottom panel against the treatment dose. (b) The model-
simulated effect of GSH influx and H2O2 on the steady-state concentrations of
erythrocytic GSH (blue surface) and GSSG (red surface) are shown. Red lines
connect the points C, H1, H10, and H100 representing the model estimates on
treatments with 1, 10, 100 µM of H2O2 respectively
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(a) Measured data and model predictions

(b) Geometry of model-predicted values of GSH influx and H2O2

Figure 5.8: Effects of extracellular H2O2 diabetic individuals. The
effects of extracellular treatments with 1, 10, and 100 µM of H2O2 on erythro-
cytic GSH and GSSG concentrations are plotted here for diabetic individuals.
(a) Box and whiskers plots with data points are used to represent the median
and interquartile ranges of the data (n=5) at each treatment. The mean mea-
sured (black circles) and model-predicted (red circle) concentrations of GSH
(top panel) and GSSG (middle panel) are plotted against the concentration of
treated GSH (10, 100, and 1000 µM). The model-fitted values GSH influx (α)
and H2O2 are plotted on the left y-axis and right y-axis on the bottom panel
against the treatment dose. (b) The model-simulated effect of GSH influx and
H2O2 on the steady-state concentrations of erythrocytic GSH (blue surface)
and GSSG (red surface) are shown. Red lines connect the points C, H1, H10,
and H100 representing the model estimates on treatments with 1, 10, 100 µM
H2O2 respectively
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(135, 110, 132 nM/s), prediabetic (119, 108, 106 nM/s), and diabetic (101,

115, 100 nM/s) samples with increasing extracellular GSSG (1, 10, and 100

µM) respectively. The fitted values for H2O2 showed nonsteady trends in non-

diabetic (13.3, 10.7, 11.9 nM), prediabetic (12.1, 11, 10.6 nM), and diabetic

(9.4, 11.1, 10.3 nM) erythrocytes with increasing extracellular GSSG (1, 10,

and 100 µM) respectively.

5.3.6 Estimated α - H2O2 traces on GSH supplementa-

tion and clinical implications

We further analyzed the clinical trial data from the study groups in the clinical

trial (Kalamkar et al. [134]). The estimated GSH influx (α) and H2O2 values

at three visits with connecting traces for each subject in control, D, and DG

groups are shown in Figure 5.12. Over the period of six months, the model-

estimated values of GSH influx and H2O2 did not change significantly in the

Control and D groups. GSH influx in the DG group was observed to increase

significantly within the first three months (p < 0.001). But the change was

not significant for the next three months. In the DG group, estimated H2O2

did not change significantly within the first three months but was observed to

have a significant decrease by the end of 6 months of GSH supplementation

(p < 0.001). Additionally, 6-month changes in GSH influx were significantly

larger in DG group individuals than in the D group individuals (Cohen’s d

effect size = 0.61 (large), p < 0.001). The effect of GSH supplementation on

elder diabetic subjects is described in Figure 5.13. 6-month changes in GSH

influx were significantly large in elder DG individuals than that in the D group

individuals (Cohen’s d = 0.66 (large), p < 0.001).

We analyzed the individual trajectories of all participants in the clinical

trial. We note inter-individual variability in the trajectory during the clinical

160



(a) Measured data and model predictions

(b) Geometry of model-predicted values of GSH influx and H2O2

Figure 5.9: Effects of extracellular GSSG treatments in nondiabetic
individuals. The effects of extracellular treatments with 1, 10, and 100 µM
of GSSG on erythrocytic GSH and GSSG concentrations are plotted here for
nondiabetic individuals. (a) Box and whiskers plots with data points are
used to represent the median and interquartile ranges of the data (n=5) at
each treatment. The mean measured (black circles) and model-predicted (red
circle) concentrations of GSH (top panel) and GSSG (middle panel) are plotted
against the concentration of treated GSH (10, 100, and 1000 µM). The model-
fitted values GSH influx (α) and H2O2 are plotted on the left y-axis and
right y-axis on the bottom panel against the treatment dose. (b) The model-
simulated effect of GSH influx and H2O2 on the steady-state concentrations of
erythrocytic GSH (blue surface) and GSSG (red surface) are shown. Red lines
connect the points C, GSSG1, GSSG10, and GSSG100 representing the model
estimates on treatments with 1, 10, 100 µM GSSG respectively
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(a) Measured data and model predictions

(b) Geometry of model-predicted values of GSH influx and H2O2

Figure 5.10: Effects of extracellular GSSG treatments in prediabetic
individuals. The effects of extracellular treatments with 1, 10, and 100 µM
of GSSG on erythrocytic GSH and GSSG concentrations are plotted here for
prediabetic individuals. (a) Box and whiskers plots with data points are used
to represent the median and interquartile ranges of the data (n=5) at each
treatment. The mean measured (black circles) and model-predicted (red cir-
cle) concentrations of GSH (top panel) and GSSG (middle panel) are plot-
ted against the concentration of treated GSH (10, 100, and 1000 µM). The
model-fitted values GSH influx (α) and H2O2 are plotted on the left y-axis and
right y-axis on the bottom panel against the treatment dose. (b) The model-
simulated effect of GSH influx and H2O2 on the steady-state concentrations of
erythrocytic GSH (blue surface) and GSSG (red surface) are shown. Red lines
connect the points C, GSSG1, GSSG10, and GSSG100 representing the model
estimates on treatments with 1, 10, 100 µM GSSG respectively
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(a) Measured data and model predictions

(b) Geometry of model-predicted values of GSH influx and H2O2

Figure 5.11: Effects of extracellular GSSG treatments in diabetic in-
dividuals. The effects of extracellular treatments with 1, 10, and 100 µM
of GSSG on erythrocytic GSH and GSSG concentrations are plotted here for
diabetic individuals. (a) Box and whiskers plots with data points are used
to represent the median and interquartile ranges of the data (n=5) at each
treatment. The mean measured (black circles) and model-predicted (red cir-
cle) concentrations of GSH (top panel) and GSSG (middle panel) are plot-
ted against the concentration of treated GSH (10, 100, and 1000 µM). The
model-fitted values GSH influx (α) and H2O2 are plotted on the left y-axis and
right y-axis on the bottom panel against the treatment dose. (b) The model-
simulated effect of GSH influx and H2O2 on the steady-state concentrations of
erythrocytic GSH (blue surface) and GSSG (red surface) are shown. Red lines
connect the points C, GSSG1, GSSG10, and GSSG100 representing the model
estimates on treatments with 1, 10, 100 µM GSSG respectively

163



trial period. Sample trajectories obtained for a few individuals from different

groups are shown in Figure 5.14-5.16. Individuals with GSH supplementation

(DG1, DG44, DG255) showed trajectories of gradual improvements in terms of

GSH levels, GSH influx (α), and H2O2 during the clinical period (Figure 5.16)

as compared to the trends observed in control (C1, C52, C96 in Figure 5.14),

D groups (D1, D10, D12 in Figure 5.15). Improvements with high α and low

H2O2 levels qualitatively indicate the improvement in stress conditions. The

potential trajectory of subjects on the respective surface has direct clinical and

academic uses in evaluating the effectiveness of clinical interventions and the

extent of recovery.

164



(a) Estimated GSH influx in the study groups

(b) Estimated H2O2 in the study groups

Figure 5.12: Longitudinal changes in the GSH influx and H2O2 in dif-
ferent groups. The model-fitted values for (a) GSH influx and (b) H2O2 from
Control, D, and DG groups at the first, second, and third different visits are
shown here in the box plots. The representations of the data and comparison
between visits are similar to those in Figure 3.3.
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(a) Estimated GSH influx in the elder study groups

(b) Estimated H2O2 in the elder study groups

Figure 5.13: Longitudinal changes in the GSH influx and H2O2 in elder
diabetic subjects. The model estimated values for (a) GSH influx and (b)
H2O2 from elder diabetic subjects in D, and DG groups at the first, second,
and third different visits are shown here in the box plots. The representations
of the data and comparison between visits are similar as in Figure 3.3.
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Figure 5.14: Trajectories of control group individuals in the clini-
cal trial. The model predicted surface for erythrocytic GSH is plotted here
against α (range of 50-200 nM/s) and H2O2 values (range of 2-60 nM) for
control group individuals. Measured erythrocytic GSH with model-estimated
GSH influx and H2O2 are marked for the first (red circle), second (black circle),
and third (blue circle) visits for (n=3) individuals from each group. Trajec-
tories connecting these steady-state points during the clinical trial period are
overlaid on these surfaces here, representing the individual’s recovery path.
The subject IDs of these individuals in the clinical trial for control (C1, C52,
C96) are also marked on the corresponding trajectory.

167



Figure 5.15: Trajectories of D group individuals in the clinical trial.
The model predicted surface for erythrocytic GSH is plotted here against a α
(range of 50-200 nM/s) and H2O2 values (range of 2-60 nM) for D group in-
dividuals. Measured erythrocytic GSH with model-estimated GSH influx and
H2O2 are marked for the first (red circle), second (black circle), and third (blue
circle) visits for (n=3) individuals from each group. Trajectories connecting
these steady-state points during the clinical trial period are overlaid on these
surfaces here, representing the individual’s recovery path. The subject IDs of
these individuals in the clinical trial diabetic without GSH supplementation
(D1, D10, D12) are also marked on the corresponding trajectory.
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Figure 5.16: Trajectories of DG group individuals in the clinical trial.
The model predicted surface for erythrocytic GSH is plotted here against a α
(range of 50-200 nM/s) and H2O2 values (range of 2-60 nM) for DG group in-
dividuals. Measured erythrocytic GSH with model-estimated GSH influx and
H2O2 are marked for the first (red circle), second (black circle), and third (blue
circle) visits for (n=3) individuals from each group. Trajectories connecting
these steady-state points during the clinical trial period are overlaid on these
surfaces here, representing the individual’s recovery path. The subject IDs of
these individuals in the clinical trial with GSH supplementation (DG1, DG44,
DG255) are also marked on the corresponding trajectory.
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5.4 Discussion

In this chapter, we formulated a minimal mathematical model for the dynamics

of GSH turnover in erythrocytes to understand their dose-response behaviors.

We utilized this model to study how intracellular GSH respond to different

extracellular treatment conditions and how their dynamics differ with different

diabetic status. We further explained the experimentally measured effects of

different extracellular stimuli with GSH, GSSG, and H2O2 in nondiabetic,

prediabetic, and diabetic individuals.

Glutathione turnover in erythrocytes is driven by various enzymes in-

volved in the glutamyl cycle and GSH synthesis pathways, namely, γ-glutamyl

transpeptidases, glutamate-cysteine ligase, glutathione synthase (GS), oxo-

prolinase, glutathione peroxidase, glutathione reductase enzymes, membrane

transporters of precursor amino acids, and GSSG transporters, etc. (Meister

and Anderson, [76], Meister [179], Wu et al. [33], Bachhawat and Yadav [180]).

While there are some existing modeling studies on glutathione turnover (Reed

et al. [125], Adimora et al. [181], Raftos et al. [126]), there is a scarcity

of research in the literature focused on using models to understand the data

and physiology, especially in T2D conditions. Here, we proposed a minimal

model for comprehending the GSH turnover on the basis of some of the major

reactions directly involved, namely GSH influx, GSH, GSSG interconversions,

and GSSG export reaction in erythrocytes. The model needed to be able to

accurately predict erythrocytic GSH responses in order for it to be consid-

ered valid based on the physiology of the processes and experimental observa-

tions. Our model was constructed sequentially from the bottom up, beginning

with the kinetic descriptions of these relevant processes in GSH turnover for

which reasonable descriptions are given. Then, we added new components

and assumptions to simulate the biochemical patterns observed in treatment
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experiments performed on human erythrocytes.

We assumed constant GSH influxes as the primary source for intracellular

GSH into the cellular pool. Interconversions between reduced and oxidized

forms of glutathione were majorly driven by GPx and GR enzymes, for which

Michaelis-Menten kinetics was a suitable choice to describe the kinetics of these

reactions. The cellular export of GSSG was known to be a concentration-

dependent reaction for which the rate increases with the increasing concentra-

tion of GSSG. Therefore, we modeled this export through first-order kinetics

with a constant. The model parameters were optimized carefully to fit the

model with data available from treatment experiments. This obtained an op-

timal best fit for the parameters that predict the model steady states close

to the data available from different treatments in each group with different

diabetic status. The optimization was performed independently for different

study groups by fitting for the parameter values and predicted steady states of

GSH and GSSG. The optimization results for the model fitted with the data

indicated that the construction of the model was reasonably well to be able to

capture both the physiology and give a good description of the data.

The physiological conditions and prolonged glycemic stress levels could al-

ter enzymatic activities and transporters across different groups. Therefore,

it was reasonable to allow different values for these parameters in the opti-

mization across the study groups with different diabetic status. The results

obtained by fitting the model for GSH influx and intracellular H2O2 levels at

different treatments describe that the intracellular GSH and GSSG responses

were influenced by available GSH and their efficiency in clearing the H2O2-

induced stress in erythrocytes.

While analyzing the fitted results from treatment experiments, we observed

interesting trends in GSH influx and H2O2 values that explain the differences in
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their physiology under different diabetic conditions. We expect these estimates

can be explored clinically in understanding the effectiveness of extracellular

stimulus, especially in planning treatments in diabetic conditions.

The model estimated GSH influx in the untreated control samples of the

diabetic group to be lower than in the control and prediabetic groups. This

might have been observed due to the increased oxidative stress in the dia-

betic group. On examining the effects of an increased dose of extracellular

GSH, the influx of GSH improved in all erythrocytes. It also resulted in an

improvement in their H2O2 clearance capacity. Fitted H2O2 levels in the dia-

betic erythrocytes were observed to have similar trends as in the nondiabetic

erythrocytes when treated with increasing extracellular GSH. The diabetic in-

dividuals were already on glucose control treatment, possibly altering H2O2

clearance to almost similar levels as to nondiabetic samples.

Increasing extracellular H2O2 also seemed to have altered GSH influx and

H2O2 clearance at different extents depending on the diabetic conditions. GSH

influx was observed to be decreasing with increasing extracellular H2O2 in the

nondiabetic samples. There are known membrane-bound aquaporin proteins

on RBCs that help H2O2 molecules diffuse across membranes. As a result,

extracellular H2O2 treatment can directly influence the redox balance between

GSH and GSSG couple inside the cells. The control group subjects are rela-

tively rich in their erythrocytic GSH stores. The transported H2O2 could be

involved in the oxidation of precursor amino acids for GSH synthesis, which

further results in a reduced GSH influx and a decrease in the intracellular

H2O2. Thus, extracellular H2O2 could be inhibiting the GSH influx of the

control group. However, to meet the need for oxidative challenges induced by

H2O2, the other routes of GSH production could be becoming more active.

For instance, GSSG is getting reduced easily by GR with the help of readily
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available NADPH in the RBCs of control group individuals.

Interestingly, in nondiabetic erythrocytes, intracellular H2O2 is cleared

even when they are exposed to high concentrations of extracellular H2O2.

Whereas in prediabetic erythrocytes, intracellular H2O2 is gradually increas-

ing in response to extracellular H2O2. This clearly indicated that while non-

diabetic erythrocytes protect themselves by clearing intracellular H2O2, pre-

diabetic erythrocytes failed to do that. Diabetic erythrocytes could clear in-

tracellular H2O2 in response to 1, 10 µM of extracellular H2O2, possibly due

to the glucose control treatments but failed to do so at 100 µM H2O2.

The effects of changing external conditions on the model steady states were

possible to comprehend carefully through the 3-dimensional surfaces presented.

We interpret this representation of the model in such a way that each surface

describes GSH steady states for an individual with a particular diabetic status

can move along the corresponding surface under the changing extracellular

conditions. The trace of this movement with changing conditions is deter-

mined by GSH influx and H2O2. This can be further explored to understand

the recovery path from low GSH and stress conditions, especially in diabetic

individuals.

Although, we have observed steady increases in GSH influx and a decrease

in H2O2 with increasing doses of GSH in all three study groups. The observed

trajectories were not showing steady changes as a result of GSSG treatments

for different groups. Additional treatment experiments with different doses will

provide more data to understand and strengthen the evidence about the effect

of changes in GSH influx and H2O2 with different conditions. The presented

model is not the best representation of the GSH turnover, however, it provides

a decent description of the systems involved. The model formulated needs to

be refined further if additional cellular measurements are available. We can

173



incorporate the GSH synthesis reactions from component amino acids into the

model to improve the understanding.

In the extended analysis, we analyzed the erythrocytic GSH data pub-

lished earlier to examine the effect of oral GSH supplementation in altering

erythrocytic GSH stores in diabetic patients. By using the fitted model, we

intended to estimate how oral GSH supplementation affects diabetic subjects

in terms of their GSH influx and H2O2. This analysis also provided a way

to sequentially trace the progression of individual subjects throughout the pe-

riod of GSH supplementation. This approach can be extended to examine the

trajectory corresponding to a patient under any interventions. By tracking

the progression of estimates from the diabetic individuals through the surface

determined, the GSH model is used to examine the effectiveness of clinical

interventions. This approach is crucial for understanding disease conditions,

particularly the dynamics of GSH-mediated cellular redox status in diabetes,

and will greatly influence future clinical interventions with GSH.

To summarize, we have developed an evidence-based model, which is a

simplified analytical description of processes relevant to GSH turnover in ery-

throcytes. We demonstrated the use of this model to generate predictions for

experimental observations on intracellular GSH and GSG in subjects with dif-

ferent diabetic conditions. This model is helpful for analyzing the mechanisms

of cellular-level GSH turnover in diabetes and planning clinical interventions

to understand improvement in systemic redox status on extracellular stim-

uli. Tracking improvements through the fitted trajectories gives a large scope

to extend them to continuous assessment of the clinical interventions. The

methodology we present here can potentially aid in easing personal therapy

design. However, we emphasize that individualized treatment designs have to

involve multiple considerations. This work also supports the development of

174



similar cellular-systemic models and reinforces their utility as a foundation for

further exploration in GSH-mediated interventions.
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5.5 Appendix

5.5.1 Detailed models for GPx and GR enzyme kinetics

As discussed earlier, the interconversion of reduced and oxidized forms of glu-

tathione is driven by glutathione peroxidase (GPx) and glutathione reductase

(GR) enzymes. These enzymes play crucial roles in maintaining the redox sta-

tus of cells, and therefore, it is worth looking at the detailed kinetics of these

enzymes for the dynamics of these reactions involved. We have attempted to

formulate a detailed theoretical model for the mechanism involved in these en-

zymatic reactions and to ask how erythrocytic GSH and GSSG concentrations

may change in diabetic subjects. The derivations of this alternate model for

GPx and GR systems and model equations are described here for the com-

pleteness of this work report.

2GSH GSSG

ROOH ROH

GPx

NADP NADPH

GR

Figure 5.17: Reaction pathways for GSH turnover in RBCs.

An alternative model derived here could be used in identifying the role of

individual reaction steps or possible rate-determining steps in the enzymatic

mechanism of GPx and GR theoretically. However, our primary objectives for

the analysis were not addressed using this model, considering the limited data
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sets and model complexities. The reaction schemes of GPx and GR enzymes

are shown below in Figure 5.17. The model equations for this will be derived

further. In order to do this, we formulate the models for GPx and GR enzyme

kinetics individually further.

5.5.2 Glutathione Reductase

A scheme for reactions with glutathione reductase (GR) is shown below. The

enzyme GR is represented with the symbol E1 in this scheme. The intermedi-

ates formed as the complex of enzymes with X reactant are denoted as E1.X

in the following representation. The rate of change in species concentrations

E1.N

E1.GSH.N

E1.GSH.GSH.N E1.H.GSSG

E1.H

E1

k6

k−6

k
−
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k
5

k
−
4

k
4

k−3

k3

k
−
2

k
2

k
−
1

k
1

GSH

GSH GSSG

H

N

Figure 5.18: Enzymatic kinetics for Glutathione Reductase.

in this scheme is given by following differential equations

d[E1]

dt
= −k1.[E1].[H] + k−1.[E1.H] + k6.[E1.N ] − k−6.[E1].[N ]

d[E1.H]

dt
= k1.[E1].[H] − k−1.[E1.H] − k2.[E1.H].[GSSG] + k−2.[E1.H.GSSG]
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d[E1.H.GSSG]

dt
= k2.[E1.H].[GSSG] − k−2.[E1.H.GSSG] − k3.[E1.H.GSSG]

+ k3.E1.GSH.GSH.N

d[E1.GSH.GSH.N ]

dt
= k3.[E1.H.GSSG] − k−3.[E1.GSH.GSH.N ]

− k4.[E1.GSH.GSH.N ] + k−4.[E1.GSH.N ].[GSH]

d[E1.GSH.N ]

dt
= k4.[E1.GSH.GSH.N ] − k−4.[E1.GSH.N ].[GSH]

− k5.[E1.GSH.N ] + k−5.[E1.N ].[GSH]

where the total enzyme

[E1]+[E1.H]+[E1.H.GSSG]+[E1.GSH.GSH.N ]+[E1.GSH.N ]+[E1.N ] = E0
1

(5.9)

The steady-state solution of the flux (JGR) in this system of equations is ob-

tained as

JGR = k6[E1.N ] − k−6[E1].[N ]

JGR =

(
k1k2k3k4k5k6[GSSG].[H] − k−1k−2k−3k−4k−5k−6[GSH]2.[N ]

)
E0

1

DEN1
(5.10)
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where

DEN1 = k−1k3k4k5k6 + k−1k−2k4k5k6 + k−1k−2k−3k5k6 + k−1k−2k−3k−4k−5[GSH]2

+ k2k3k4k5k6[GSSG] + k−1k−2k−3k−4k6.[GSH] + k1k3k4k5k6[H] + k1k−2k4k5k6[H]

+ k1k−2k−3k5k6[H] + k−1k3k4k5k−6[N ] + k−1k−2k4k5k−6[N ] + k−1k−2k−3k5k−6[N ]

+ k1k2k3k4k5[GSSG].[H] + k1k2k3k4k6[GSSG].[H] + k1k2k4k5k6[GSSG].[H]

+ k1k2k−3k5k6[GSSG].[H] + k1k−2k−3k−4k6[GSH].[H] + k2k3k4k5k−6[GSSG].[N ]

+ k−1k3k4k−5k−6[GSH].[N ] + k−1k−2k4k−5k−6[GSH].[N ] + k−1k−2k−3k−4k−6[GSH].[N ]

+ k−1k−2k−3k−5k−6[GSH].[N ] + k−1k−2k−3k−4k−5[GSH]2.[H] + k−1k3k−4k−5k−6[GSH]2.[N ]

+ k−1k−2k−4k−5k−6[GSH]2.[N ] + k−1k−3k−4k−5k−6[GSH]2.[N ] + k−2k−3k−4k−5k−6[GSH]2.[N ]

+ k1k2k3k4k−5[GSH].[GSSG].[H] + k1k2k3k−4k6[GSH].[GSSG].[H]

+ k1k2k−3k−4k6[GSH].[GSSG].[H] + k2k3k4k−5k−6[GSH].[GSSG].[N ]

+ k1k2k3k−4k−5[GSH]2.[GSSG].[H] + k1k2k−3k−4k−5[GSH]2.[GSSG].[H]

+ k2k3k−4k−5k−6[GSH]2.[GSSG].[N ] + k2k−3k−4k−5k−6[GSH]2.[GSSG].[N ]

(5.11)

5.5.3 Glutathione Peroxidase

In the presence of reactive oxygen species (eg: ROOH), GSH gets oxidized into

GSSG with the help of the enzyme glutathione peroxidase (GPx) enzyme.

2GSH + ROOH GSSG + ROH

This reaction takes place in three steps. In the first step, oxidation of the

selenocysteine residue of the GPx enzyme takes place. In the next two steps,

GSH molecules react with the intermediates and produce GSSG. A scheme for

reactions is shown below. Here, E2 denotes the enzyme in the ground state,

F denotes the intermediate formed after the first step of oxidation, and G
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is a half-reduced intermediate. The intermediates formed as the complex of

enzymes with X reactant are denoted as E2.X in the following representation.

The rate of change in species concentrations in this scheme is given by

G.GSH

E2.GSSG

E2 F

F.GSH

G
k−4

k4

k1

k−1

k
2

k
−
2

k
3

k
−
3k

5

k
−
5

k
6

k
−
6

GSSG GSH

ROOH ROH

H2O

GSH

Figure 5.19: Enzymatic kinetics for Glutathione Peroxidase.

d[E2]

dt
= −k1.[E2].[ROOH]+k−1.[F ].[ROH]+k6.[E2.GSSG]−k−6.[E2].[GSSG]

d[F ]

dt
= k1.[E2].[ROOH] − k−1.[F ].[ROH] − k2.[F ].[GSH] + k−2.[F.GSH]

d[F.GSH]

dt
= k2.[F ].[GSH] − k−2.[F.GSH] − k3.[F.GSH] + k−3.[H2O].[G]

d[G]

dt
= k3.[F.GSH] − k−3.[H2O].[G] − k4.[G].[GSH] + k−4.[G.GSH]

d[G.GSH]

dt
= k4.[G].[GSH] − k−4.[G.GSH] − k5.[G.GSH] + k−5.[E2.GSSG]
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where the total enzyme concentration is given by

[E2] + [F ] + [F.GSH] + [G] + [G.GSH] + [E2.GSSG] = E0
2

The steady-state solution of the flux (JGPx) in this system of equations is

obtained as

JGPx = k′
1[E2].[ROOH] − k′

−1[F ].[ROH]

JGPx =

(
k′
1k

′
2k

′
3k

′
4k

′
5k

′
6.[GSH]2.[ROOH] − k′

−1k
′
−2k

′
−3k

′
−4k

′
−5k

′
−6.[GSSG].[ROH].[H2O]

)
E0

2

DEN2
(5.12)
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where the denominator is given by

DEN2 = k′
2k

′
3k

′
4k

′
5k6[GSH]2 + k′

2k
′
3k

′
−4k

′
−5k

′
−6[GSH].[GSSG]

+ k′
−2k

′
−3k

′
−4k

′
−5k

′
−6.[GSSG].[H2O] + k′

1k
′
2k

′
3k

′
5k

′
6[GSH].[ROOH]

+ k′
1k

′
3k

′
4k

′
5k

′
6.[GSH].[ROOH] + k′

−1k
′
3k

′
4k

′
5k

′
6.[GSH].[ROH]

+ k′
1k

′
2k

′
3k

′
−4k

′
6.[GSH].[ROOH] + k′

1k
′
−2k

′
4k

′
5k

′
6.[GSH].[ROOH]

+ k′
−1k

′
−2k

′
4k

′
5k

′
6.[GSH].[ROH] + k′

1k
′
2k

′
3k

′
−4k

′
−5.[GSH].[ROOH]

+ k′
−1k

′
3k

′
−4k

′
−5k

′
6.[GSSG].[ROH] + k′

−1k
′
−2k

′
−4k

′
−5k

′
−6.[GSSG].[ROH]

+ k′
1k

′
−2k

′
−3k

′
5k

′
6.[H2O].[ROOH] + k′

−1k
′
−2k

′
−3k

′
5k

′
6.[H2O].[ROH]

+ k′
1k

′
−2k

′
−3k

′
−4k

′
6[H2O].[ROOH] + k′

−1k
′
−2k

′
−3k

′
−4k

′
6[H2O].[ROOH]

+ k′
1k

′
−2k

′
−3k

′
−4k

′
−5[H2O].[ROOH] + k′

−1k
′
−2k

′
−3k

′
−4k

′
−5[H2O].[ROH]

+ k′
2k

′
3k

′
4k

′
5k

′
−6[GSH]2[GSSG] + k′

2k
′
3k

′
4k

′
−5k

′
−6[GSH]2[GSSG] + k′

1k
′
2k

′
3k

′
4k

′
5[GSH]2[ROOH]

+ k′
1k

′
2k

′
3k

′
4k

′
6[GSH]2[ROOH] + k′

1k
′
2k

′
4k

′
5k

′
6[GSH]2[ROOH] + k′

1k
′
2k

′
3k

′
4k

′
−5[GSH]2.[ROOH]

+ k′
2k

′
−3k

′
−4k

′
−5k

′
−6[GSH].[GSSG].[H2O] + k′

−1k
′
3k

′
4k

′
5k

′
−6[GSH].[GSSG].[ROH]

+ k′
−1k

′
−2k

′
4k

′
5k

′
−6[GSH].[GSSG].[ROH] + k′

−1k
′
3k

′
4k

′
−5k−6[GSH].[GSSG].[ROH]

+ k′
−1k

′
−2k

′
4k

′
−5k

′
−6[GSH].[GSSG].[ROH] + k′

1k
′
2k

′
−3k

′
5k

′
6[GSH].[H2O].[ROOH]

+ k′
1k

′
2k

′
−3k

′
−4k

′
6[GSH].[H2O].[ROOH] + k′

1k
′
2k

′
−3k

′
−4k

′
−5[GSH].[H2O].[ROOH]

+ k′
−1k

′
−2k

′
−3k

′
5k

′
−6[GSSG].[H2O].[ROOH] + k′

−1k
′
−2k

′
−3k

′
−4k

′
−6[GSSG].[H2O].[ROOH]

+ k′
−1k

′
−2k

′
−3k

′
−5k

′
−6[GSSG].[H2O].[ROOH] + k′

−1k
′
−3k

′
−4k

′
−5k

′
−6[GSSG].[H2O].[ROOH]

(5.13)

Based on the flux balances, the rate of changes in GSH and GSSG can be

written in terms of steady-state fluxes of GPx and GR enzymes (JGPx and

JGR) as

d[GSH]

dt
= 2JGR − 2JGPx (5.14)

d[GSSG]

dt
= JGPx − 2JGR (5.15)
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This model was used to conduct an initial theoretical analysis, and we tried to

optimize the model using our clinical data and relevant literature. However,

the complexity of the model made it challenging to obtain any meaningful

results. As a result, we have decided not to include these findings in the main

text of the thesis.

5.5.4 Use of GSSG
GSH2 ratio: perspectives

The relative ratio between the reduced and oxidized forms, GSH and GSSG

based on redox potentials, is frequently used to explain redox regulation and

other biological processes (Sarsour et al. [182], Jones [183], Millis et al. [184]).

GSH is a significant reactant for reactive oxygen species; therefore, redox sta-

tus is expressed as the ratio of the concentrations of GSH and GSSG. These

studies support that GSH-GSSG redox potential drives several cellular biolog-

ical processes (Zitika, [185]). It is often used in the literature as one of the

markers for explaining oxidative stress in several disease conditions. The total

concentration of GSH couple was reported to be present in normal cells in

the ranges of 1-10 mM (Zitika, [185]). In normal conditions, the GSH: GSSG

ratio was found to be of the order of 100:1, whereas the ratio values were of

the order of 10:1 or 1:1 under the oxidative stress conditions.

We highlight the rationale behind the use of relative ratio between the

concentrations does not address the contribution of enzymes and enzyme ki-

netics. There is consensus in the literature pointing out the drawbacks of this

approach only based on the thermodynamic principles (Flohe et al. [186]).

Redox potential can not be used directly to explain the extent of reactions

involved or their velocities. These GPx and GR activities contribute to the

cellular defense against different stress conditions. Therefore, we think a suffi-

cient understanding needs to be obtained from the models of enzyme kinetics.
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The redox potential of a reaction can be expressed as the Nernst equation,

which is given by

∆Ecell = ∆E0
cell −

RT

zF
logQ

where Ecell is the cell potential and Q is the reaction quotient. For the following

conversion reaction

2GSH + H2O2 GSSG + 2H2O

the reaction quotient will be given by Q = GSSG
GSH2H2O2

. We define a variable

called G-ratio, which is given by GSSG
GSH2 , which will be used for the further

analysis below.

5.5.5 Model-derived relationships for GSSG
GSH2 ratio

The expressions for fluxes, JGPx and JGR obtained using steady-state assump-

tions are given in 5.14-5.15. Here ki, i = 1, .., 6 and k′
i, i = 1, .., 6 are unitary

rate constants. Rewriting JGPx and JGR using Ki = k−i

ki
and K ′

i =
k′−i

k′i
as

JGPx =
k′
1k

′
2k

′
3k

′
4k

′
5k

′
6.
(

[GSH]2.[ROOH] −K ′
1K

′
2K

′
3K

′
4K

′
5K

′
6.[GSSG].[ROH].[H2O]

)
E0

2

DEN2
(5.16)

JGR =
k1k2k3k4k5k6

(
[GSSG].[H] −K1K2K3K4K5K6[GSH]2.[N ]

)
E0

1

DEN1
(5.17)
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Steady-state assumptions d[GSH]
dt

= 0 and d[GSSG]
dt

= 0, gives JGPx = JGR,

thereby,

k′
1k

′
2k

′
3k

′
4k

′
5k

′
6.
(

[GSH]2.[H2O2] −K ′
1K

′
2K

′
3K

′
4K

′
5K

′
6.[GSSG].[H2O]

)
E0

2

DEN2

=
k1k2k3k4k5k6

(
[GSSG].[H] −K1K2K3K4K5K6[GSH]2.[N ]

)
E0

1

DEN1
(5.18)

=⇒

(
[GSH]2.[H2O2] −K ′

1K
′
2K

′
3K

′
4K

′
5K

′
6.[GSSG].[H2O].[H2O]

)
=

(k1k2k3k4k5k6
k′
1k

′
2k

′
3k

′
4k

′
5k

′
6

)(DEN2

DEN1

)E0
1

E0
2

(
[GSSG].[H] −K1K2K3K4K5K6[GSH]2.[N ]

)
(5.19)

Which can be divided with GSH2 on both sides and rearranged to obtain

(
[H2O2] −K ′

1K
′
2K

′
3K

′
4K

′
5K

′
6.

[GSSG]

[GSH]2
.[H2O].[H2O]

)
=

(
k1k2k3k4k5k6E0

1

DEN1

)
(

k′1k
′
2k

′
3k

′
4k

′
5k

′
6E

0
2

DEN2

)( [GSSG]

[GSH]2
.[H] −K1K2K3K4K5K6.[N ]

) (5.20)

The most abundant ROOH species in cells are hydrogen peroxide (H2O2).

The expression will be rewritten by replacing ROOH with H2O2 and ROH

with H2O below. The concentration for water will be assumed to be unity

([H2O] = 1). Therefore, we rewrite the expression as

(
[H2O2] −K ′

1K
′
2K

′
3K

′
4K

′
5K

′
6.

[GSSG]

[GSH]2

)
=

(k1k2k3k4k5k6E0
1

k′
1k

′
2k

′
3k

′
4k

′
5k

′
6E

0
2

)
(
DEN2

DEN1

)( [GSSG]

[GSH]2
.[H] −K1K2K3K4K5K6.[N ]

)
(5.21)

Studying the behavior of [GSSG]
[GSH]2

ratio on different conditions, using the esti-

mates of the unitary rate constants for GPx and GR enzymes, can be beneficial

in understanding the kinetics and rate-limiting steps in detail, if any.
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5.5.6 8-OHdG and G-ratio comparisons

We further attempted to understand the relevance of the G-ratio between GSH

and GSSG concentrations in erythrocytes using the insights from the clinical

trial data. In agreement with Flohe et al. [186], we think it is not obvious to

expect a relation between G-ratio and 8-OHdG. 8-OHdG is an oxidized de-oxy-

guanosine derivative known to be the major product of DNA oxidation. Their

cellular concentration has been widely used as an alternative measurement of

oxidative stress. 8-OHdG has been measured for subjects from each group in

the clinical trial at all three visits. We obtained G-ratio and analyzed them

with the measured 8-OHdG for individuals from all three study groups at

different visits through regressions. We asked whether a relationship exists

between oxidative stress marker 8-OHdG and whether the G-ratio of GSH

and GSSG are related.

We performed both OLS and robust regressions to understand the rela-

tionships between 8-OHdG and G-ratio for each control, D, and D group visit

from the data. Results of these comparisons are shown in Figure A.2-5.22

below. We note that linear regression with ordinary least squares (OLS) gives

a model with poor R2 values. This could be happening due to outliers in

the data. Linear regressions were also performed by considering the threshold

Cook’s distance for being an outlier at 4/sample size. These fit as well, pro-

ducing poor R2 values for all groups. However, robust regressions provided fit

with higher R2 values here. 95% CI for the slope of the regression line contains

zero in all fits. The slope is not significantly different from zero. Together,

this could be suggestive that 8-OHdG levels have no effect on G-ratio.

The clinical data reveals a counterintuitive observation: the correlation

between the marker for oxidative stress, 8-OHdG, and the GSSG
GSH2 values is

weak, contrary to popular belief and the traditional use of GSH to GSSG
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Figure 5.20: Regression between 8-OHdG and G-ratio in the control
group at the first and third visits. Results of ordinary least squares and
robust regressions first (left), third (middle), and pooled (right) visits between
8-OHdG and G-ratio are plotted here for individuals in the control group.

Figure 5.21: Regression between 8-OHdG and G-ratio in the D group
at the first and third visits. Results of ordinary least squares and robust
regressions first (left), third (middle), and pooled (right) visits between 8-
OHdG and G-ratio are plotted here for individuals in the D group.
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Figure 5.22: Regression between 8-OHdG and G-ratio in the DG
group at the first and third visits. Results of ordinary least squares
and robust regressions first (left), third (middle), and pooled (right) visits be-
tween 8-OHdG and G-ratio are plotted here for individuals in the DG group.

ratios. This observation challenges the consensus and is in line with Flohe

et al. [186]. To better understand the ratio and relative concentrations of

GSH and GSSG and their relevance in tracking various disease conditions, we

propose constructing detailed models based on the enzyme kinetics involved

in their interconversions.
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Chapter 6

Conclusions and future

directions

Interventions aimed at controlling hyperglycemia have been the primary line of

treatment for individuals with T2D. Several studies have reported the critical

roles of GSH in maintaining adequate cellular redox status. It is also known

from earlier studies that low GSH is associated with different pathological

conditions in T2D. In light of the ADA position, routine supplementation of

antioxidants has not been recommended due to insufficient evidence about

their safety and efficacy in T2D, and therefore, antioxidant supplements may

not be advisable for everyone. It is very important to understand the effects

of supplementation in T2D, and if it does benefit, who might benefit better,

and what effective ways/doses of administration also need to be established.

Considering the potential benefits of restoring redox balance, exploring the

effects of GSH supplementation in counteracting the detrimental impact of

hyperglycemia-induced oxidative stress is worthwhile.

In this thesis, we have utilized diverse approaches to comprehensively in-

vestigate the role of GSH metabolism in T2D and gain a deeper understanding
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of the significance of redox balance in diabetes treatment, and potentially un-

cover novel targets for therapeutic interventions. Our research has focused

explicitly on developing strategies to evaluate the impact of GSH supplemen-

tation, with the goal of enhancing personalized care for individuals with T2D.

In Chapter 3, we study the effect of oral GSH supplementation in in-

dividuals with T2D by conducting an extensive longitudinal and randomized

controlled clinical trial. We provide evidence that oral supplementation of

GSH restores the body’s GSH stores and markedly diminishes oxidative DNA

damage in individuals with T2D. GSH supplementation showed a stabiliza-

tion effect, reducing HbA1c within three months and maintaining it thereafter

in the diabetic population. Results from the clinical trial strongly suggest

that GSH supplementation leads to a systemic redox improvement in T2D.

Further, the augmented antioxidant reserves may help in relieving oxidative

assault. Thus, we demonstrate that supplementing with GSH improves the ef-

fectiveness of standard anti-diabetic treatment for maintaining normoglycemia

in individuals with T2D. The subgroup of elder individuals with T2D appears

to experience substantial benefits compared to the overall diabetic population,

demonstrated by a significant reduction in HbA1c. Moreover, we believe an in-

crease in insulin secretion by β-cells was also achieved over a six-month period.

A clinical application arising from our study suggests that orally administering

GSH can serve as a supplementary therapy alongside anti-diabetic treatment,

contributing to the efficient attainment of targets, particularly in the elderly

population. These findings provide substantial evidence for the use of GSH

supplementation as an adjunct therapy benefitting the regular anti-diabetic

treatment in individuals with T2D.

We point out that age, type of interventions, and additionally diet mod-

ifications, etc., could be important factors determining the effectiveness of
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GSH supplementation in T2D. Customized anti-diabetic treatment is neces-

sary to achieve efficient glycemic targets rather than a one-size-fits-all ap-

proach. However, limited algorithms are available to describe how to achieve

this goal. Adding GSH supplementation to the clinician’s toolkit is crucial, as

it has been shown to have significant positive effects and is well-tolerated by

patients. It would be necessary to understand how long the effect of GSH in-

tervention lasts since individual antioxidant status can significantly affect the

effectiveness of exogenous supplementation. Longer intervention with GSH

might result in additional enhancements in glycemic parameters, such as fast-

ing glycemia. Further research involving diverse population cohorts is needed

to gain a better understanding of these effects. The insights from Chapter

3 motivate in developing more personalized strategies for GSH supplementa-

tion considering the relevant factors, which are addressed through modeling

approaches in the succeeding chapters.

In Chapter 4, we studied the dynamics of individual responses to oral GSH

supplementation with mix-effects models to explain the longitudinal responses

in patients with T2D. We modeled the average linear trajectories to explain

how biochemical parameters progress during the clinical trial. Further, the

model estimated the effects of GSH supply on the rate of biochemical changes

after accounting for inter-individual and intra-individual variations. To the

best of our understanding, this is the first model-based analysis of the inter-

individual impacts of GSH supplementation in individuals with T2D. The

primary findings of this study are centered around identifying the differences

in biochemical responses between individuals, particularly influenced by their

age group. The model findings strongly suggest that GSH supplementation

improves the rate of replenishments in erythrocytic GSH stores and the rate

of reduction in oxidative DNA damage in individuals with diabetes.
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Furthermore, we modeled the trajectories for elder and younger diabetics

independently and examined their differences in the early onset of diabetes in

response to GSH supplementation. Elder and younger individuals with T2D

responded differently to GSH supplementation. Notably, GSH supplementa-

tion improves the HbA1c reduction rates and fasting insulin secretion in elder

individuals with T2D. The changes in GSH correlated strongly and beneficially

to HbA1c, 8-OHdG, and fasting insulin changes in elder individuals with T2D.

Results in this chapter also provide a way to make predictions of the recov-

ery trajectory for individuals undergoing GSH supplementation. Furthermore,

this aids in identifying the extent of recovery and examines whether individu-

als in these subgroups on GSH supplementation are in a better or worse regime

than the average profile. This analysis could establish novel benchmarks with

direct clinical use in individuals with T2D. By providing clinicians with model

predictions and results, this study can assist in personalizing treatment objec-

tives for employing oral GSH supplementation as a supplementary therapy for

T2D.

In Chapter 5, we propose a minimal mathematical model to describe the

dynamics of erythrocytic GSH turnover in response to varying extracellular

conditions in T2D. We demonstrate that this model can accurately capture

GSH response profiles in experimental data by conducting various cellular

treatment experiments in nondiabetic, prediabetic, and diabetic individuals.

The model allows straightforward estimation of relevant parameters to de-

scribe the restoration of cellular GSH pools and H2O2 clearance under varying

conditions. Later in this chapter, we used this model to describe how different

extracellular conditions affect intracellular GSH, which can help plan appro-

priate interventions. Using this model, we demonstrate recovery from stress

and oxidative conditions in T2D as a quantal response to GSH supplementa-
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tion. This model enables personalizing interventions by tracking cellular-level

responses through model-parameter estimates. Our analysis of data from the

GSH supplementation clinical trial showcases this capability of the model. The

work done in this chapter serves as a foundation for future studies aimed at

understanding interventions for improving the cellular redox state in diabetes.

The minimal model describing GSH turnover in erythrocytes has some

drawbacks, as it oversimplifies the process and physiology. The observed

relationships between external conditions and steady states inside cells may

be influenced by multiple mechanisms involving amino acid transporters, γ-

glutamyl cycle, GSH synthase, γ-glutamate cysteine ligase enzymes, etc. Nev-

ertheless, due to its simple, functional form, the minimal model remains useful

for predicting steady states. Both modeling procedures showed robustness to

small but significant perturbations in GSH and GSSG concentrations. A ma-

jor strength of this modeling and optimization is that from the measurements

of GSH and GSSG, we provided a quantitative measure of cellular GSH in-

flux and H2O2 at steady states inside erythrocytes of nondiabetic, prediabetic,

and diabetic individuals. However, the study is limited by the availability of

only a few data points from treatment experiments, which is why the mini-

mal model was used for the data analysis to avoid overfitting. An approach

with detailed models will require more frequent measurements of GSH over a

longer duration to obtain model estimates and make precise inferences about

dose-response relationships under different extracellular conditions.

Chapter 6 summarizes key findings, conclusions, and deliverables from

this thesis study. We brief the outcomes of our clinical trial and its strong

positioning in the T2D research to establish the effectiveness of GSH sup-

plementation in individuals with T2D. The evidence from the clinical trial

demonstrated GSH supplementation could improve erythrocytic GSH stores,
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enhance antioxidant defenses, and expedite the achievement of normoglycemia

in individuals with T2D. The results of our statistical and mathematical mod-

els formulated in Chapter 4 and Chapter 5 help in planning glutathione-

based strategies with personalization goals in the development and progression

of T2D. Our rigorous approaches with patient-level and cellular-level models

show how biochemical and pathophysiological characteristics of patients can

be used in guiding the personalization of their anti-diabetic therapy with GSH

supplementation. The mixed-effects modeling approaches help decipher indi-

vidual differences in the effects of GSH supplementation in individuals with

T2D. We showed how GSH supplementation influences intrinsic responses to

their anti-diabetic treatment through trajectories describing recovery paths

and model estimates in individuals with T2D. The mathematical models for-

mulated for describing erythrocytic GSH turnover at extracellular conditions

obtained relevant model estimates in individuals with different diabetic sta-

tuses. Despite some limitations, this modeling work reveals the potential to

develop complex physiological models that can differentiate between individual

variations at the cellular and biochemical levels in the efficacy of GSH sup-

plementation. We emphasize that our models informed these insights and can

be used in guiding the development of more effective GSH-based interventions

for diabetes management.

By gaining a comprehensive understanding of GSH turnover, we under-

stand that there is scope to explain the redox balances and the impact of

various sources of GSH, which could contribute to developing models for mon-

itoring continuous redox status in individuals with T2D. Based on the insights

from this study, we also propose to further investigate cellular GSH turnover

by studying detailed enzymatic pathways in future research for a better un-

derstanding. A depiction of the reaction pathways, which can be modeled for
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an improved description of GSH turnover in erythrocytes, is constructed in

Figure 6.1 below. As the complexity of the model increases, obtaining the

necessary experimental data for parameter estimations will also become dif-

ficult. Nevertheless, it is worthy to thoroughly examine the theory behind

cellular GSH turnover and its responses in T2D conditions. Various studies

Figure 6.1: Reaction diagram for transport, intracellular synthesis, and
turnover of GSH in RBCs. The enzymes involved here are glutathione perox-
idase (GPx), glutathione reductase (GR), γ-glutamyl transpeptidase (GGT),
glutathione synthase (GS), glutamyl-cysteine ligase (GCL), dipeptidases (DP).
There are membrane-bound transporters for amino acids and glutathione ex-
port. The other abbreviations for amino acids used in the figure are glutamate
(Glu), glycine (Gly), and cysteine (Cys). The reaction diagram in this figure
was primarily formulated based on the concepts of [76] and [53]

have indicated that GSH depletion in individuals with diabetes can cause ROS-

mediated apoptosis of β-cells, resulting in the accumulation of reactive oxygen

species (ROS) that inhibit insulin secretion (Franco et al. [187]). To examine
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the impact of GSH supplementation on systemic changes, future studies must

be planned to develop compartmental models in a framework that incorporates

both the dynamics of systemic glucose-insulin levels and cellular biochemical

changes. The dynamics of systemic variables like glucose and insulin are pop-

ularly modeled with the Topp model (Topp et al. [98]). This model has been

further developed to explain the physiological basis of Type 2 diabetes, for

instance, hyper-secretion theory, continuous glucose, insulin monitoring, etc.

(Goel [109]). A possible approach by using Topp-like models to study the

mechanism of how cellular GSH status modifies the systemic measurements

of individuals with T2D. This could be used to answer how GSH supplemen-

tation helped significantly lower HbA1c and increase fasting insulin levels in

elder individuals with T2D.

In conclusion, our quantitative approaches have yielded results that can be

readily applied in a clinical setting to define therapeutic targets using GSH-

based interventions for treating individuals with T2D. Our model predictions

provide valuable insights for defining personalized treatment targets and opti-

mizing recovery. Understanding the role of GSH-mediated redox regulation in

controlling the development and progression of complications and preventive

measures against oxidative damage are shown to have the potential to improve

T2D treatments. While our model-informed insights are intriguing and show

promise for personalized diabetes target setting, further research is needed to

evaluate and refine the effectiveness of our approach. Gaining a better quanti-

tative understanding of the role of GSH in redox regulation in diabetes through

this work opens ways to personalize targets in T2D treatment more effectively.

Our simple yet powerful models for profiling changes in GSH metabolism at

different levels stand out as significant to help in personalizing anti-diabetic

interventions.
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Abstract: Complications in type 2 diabetes (T2D) arise from hyperglycemia-induced oxidative
stress. Here, we examined the effectiveness of supplementation with the endogenous antioxidant
glutathione (GSH) during anti-diabetic treatment. A total of 104 non-diabetic and 250 diabetic
individuals on anti-diabetic therapy, of either sex and aged between 30 and 78 years, were recruited.
A total of 125 diabetic patients were additionally given 500 mg oral GSH supplementation daily
for a period of six months. Fasting and PP glucose, insulin, HbA1c, GSH, oxidized glutathione
(GSSG), and 8-hydroxy-2-deoxy guanosine (8-OHdG) were measured upon recruitment and after
three and six months of supplementation. Statistical significance and effect size were assessed
longitudinally across all arms. Blood GSH increased (Cohen’s d = 1.01) and 8-OHdG decreased
(Cohen’s d = −1.07) significantly within three months (p < 0.001) in diabetic individuals. A post
hoc sub-group analysis showed that HbA1c (Cohen’s d = −0.41; p < 0.05) and fasting insulin levels
(Cohen’s d = 0.56; p < 0.05) changed significantly in diabetic individuals above 55 years. GSH
supplementation caused a significant increase in blood GSH and helped maintain the baseline
HbA1c overall. These results suggest GSH supplementation is of considerable benefit to patients
above 55 years, not only supporting decreased glycated hemoglobin (HbA1c) and 8-OHdG but also
increasing fasting insulin. The clinical implication of our study is that the oral administration of GSH
potentially complements anti-diabetic therapy in achieving better glycemic targets, especially in the
elderly population.

Keywords: GSH supplementation; type 2 diabetes; HbA1c; oxidative stress; 8-OHdG; elderly
diabetic population

1. Introduction

Hyperglycemia causes micro- and macrovascular complications in type 2 diabetes
(T2D) through oxidative stress. This is mediated by the overproduction of reactive oxy-
gen species (ROS) through four pathways, namely advanced glycation end products,
polyol, hexosamine, and protein kinase C [1]. Animal studies have shown that scavenging
hyperglycemia-mediated ROS with antioxidants such as N-acetyl-cysteine (NAC), lipoic
acid, and glutathione (GSH), or precursors of GSH, such as glycine and cysteine [2–5],
not only partially improved blood glucose levels, the functionality of β-cells, and insulin
sensitivity, but also reduced diabetic complications. However, there are few human studies
that confirm the role of antioxidants as a potential supplementary treatment in diabetes.
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Clinical trials of GSH supplementation, in particular, have received a great deal of
attention. GSH is an endogenous antioxidant necessary to detoxify free radicals and
maintain the redox homeostasis of the cell. Low levels of GSH are associated with many
pathological conditions, such as cancer, arthritis, cardiovascular and neurodegenerative
diseases, and diabetes [6]. Several reports, including work from our lab, have confirmed that
GSH levels are significantly lower in diabetic patients [7–9], and controlling hyperglycemia
over a period of two months increases blood GSH levels and reduces oxidative damage
significantly [8]. The compensation of GSH insufficiency through supplementation may
help in further arresting the development of complications in T2D by improving the
redox state.

GSH has been orally administered in forms such as sublingual [10], orobuccal [11,12],
and liposomal [13] for rapid absorption. We note that these forms of GSH are not only not
easily available commercially but also sublingual and orobuccal formulations include GSH
as one of the (primary) ingredients, which makes it difficult to attribute the effects to GSH
alone. Richie et al. (2015) [14] demonstrated that oral GSH supplementation in 20 healthy
individuals led to a significant increase in blood GSH. In a somewhat larger study conducted
on 40 healthy American adults, however, Allen and Bradly (2011) [15] reported that oral GSH
supplementation did not change GSH levels and biomarkers of oxidative stress. Precursor
amino acids of GSH administered orally have also demonstrated enhanced body stores
of GSH [16] in humans. Sekhar et al. [17] showed that dietary supplementation with
cysteine and glycine, precursors of GSH, increased the rate of GSH synthesis and reduced
lipid peroxidation in 12 American diabetic individuals without any change in glycated
hemoglobin (HbA1c). They claimed that the deficient synthesis of GSH was restored by the
oral supplementation with cysteine and glycine in eight older patients, but not in young
individuals [17]. GSH has an added advantage over its precursor amino acids, for instance,
cysteine, which has an unpleasant taste, in ensuring better patient compliance. Paolisso
et al. [18] reported that GSH infusion led to increased GSH and total body glucose disposal
in 10 Italian diabetic subjects; this effect was more pronounced in elderly individuals with
impaired glucose tolerance [19]. Infusion is clearly difficult to implement in clinical practice.
Most of these clinical studies have been carried out with small sample sizes and are often
inconclusive. Discrepancies in the outcomes of these studies could be due to differences in
the dose and duration of GSH, and the site of measurement of GSH being plasma instead of
an erythrocyte fraction. Moreover, while most of these studies have focused on restoring
body stores of GSH in both healthy and diabetic individuals, few have reported their effects
on alleviating oxidative stress, or for that matter, glycemic stress itself. A detailed summary
of all these trials is provided in Table S1.

Since we intended to measure HbA1c as a marker in our study (RBC lifespan is typically
taken as 120 days), the overall study duration was chosen to be 6 months, which allowed two
measurements of change in HbA1c, 3 months apart. This allowed us to establish long-term
effects and study the stability of the observations to prolonged supplementation.

We conducted a pragmatic clinical trial prospectively in 200 Indian diabetic patients
to assess whether supplementation with oral GSH improves body stores of GSH. We
further asked if GSH supplementation for a relatively prolonged duration (six months)
co-administered with ongoing anti-diabetic treatment supports glycemic control by mini-
mizing oxidative damage. We serially measured concentrations of GSH, 8-hydroxy-2-deoxy
guanosine (8-OHdG; an oxidative damage marker), and glycemic parameters in diabetic pa-
tients receiving GSH supplementation in addition to anti-diabetic treatment, and compared
them with serial measurements in those receiving anti-diabetic treatment alone. Our study
results show that oral GSH supplementation not only improved body stores of GSH and
significantly reduced oxidative damage but also helped maintain lower HbA1c in elderly
diabetic patients. We noted that this effect of GSH supplementation was more pronounced
in elderly individuals.
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2. Subjects, Materials, and Methods
2.1. Ethical Approval

This study was approved by the Institutional Ethical Committee of Jehangir Hospital
Development Center, Pune (JCDC ECN- ECR/352/Inst/NIH/2013); Institutional Biosafety
Committee of SPPU (Bot/27A/15), Pune; and the Institutional Ethical Committee of IISER,
Pune (IECHR/Admin/2019/001). Signed informed consent was obtained from all the
subjects at the time of enrollment in the study after explaining the purpose and nature
of the study. All participants in this study were de-identified using a numbered code.
This study is registered with the Clinical Trials Registry—India (CTRI/2018/01/011257).
This study was conducted in compliance with CONSORT guidelines and guidelines of the
Helsinki declaration.

2.2. Study Design

We conducted a pragmatic clinical trial designed as a case-control cohort study to
assess the effect of oral GSH supplementation on blood GSH levels and glucose homeostasis
in diabetic patients.

2.3. Inclusion/Exclusion Criteria for Study Participants

We recruited healthy non-diabetic controls (n = 104) with HbA1c < 6.5%, and known
T2D subjects (n = 250) with HbA1c ≥ 6.5% [20] visiting Jehangir Hospital and Iyer clinic,
Pune. Pregnant women, heavy smokers, individuals with excessive alcohol intake, individ-
uals with any clinical infection or with a history of a recent cardiovascular event, and those
receiving antioxidants or herbal formulations were excluded from the study. Body weight,
height, anti-diabetic treatment, and family history of diabetes were noted for each subject.

2.4. Recruitment and Randomization for GSH Intervention

We recruited known diabetic subjects (n = 250) who were already on anti-diabetic
regimen and study physician randomly categorized them into two groups based on coin-
toss method: 125 diabetic patients were advised to continue with their anti-diabetic regimen
(Group D), and the other 125 diabetic patients were given oral 500 mg glutathione (Jarrow
Formulas, Los Angeles, CA, USA) supplementation once daily in addition to their anti-
diabetic treatment (Table S2A,B) for a period of six months (Group DG) (Figure 1). At
the time of randomization, concentrations of covariates, fasting and postprandial (PP)
glucose and insulin, HbA1c, GSH and oxidized glutathione (GSSG), and 8-OHdG were
not available, and therefore did not influence the assignment of diabetic patients in D
or DG groups. Compliance to medical treatment by patients of D and DG group and
consumption of GSH by patients of the DG was emphasized by maintaining continuous
communication between the physician and patients. Out of 125 diabetic patients in D and
DG group, 23 were lost to follow-up in the D group and 21 in DG group for not complying
with the treatment regimen. We also recruited healthy non-diabetic control subjects who
were followed for six months, during which they were advised to continue with their
regular diet and exercise regimen. Blood samples were collected at the time of enrollment 0
(α visit), 3 (β visit), and 6 (γ visit) months after the date of enrollment.

2.4.1. Sample Size Calculation

Sample Size (n = 100) is calculated based on a two-sided t-test, at 0.1 type 1 error and
80% power, to detect a mean difference of 35 in GSH with a standard deviation of 100.

2.4.2. Sample Collection

At each visit, a total of 10 mL fasting and postprandial (PP) blood samples were col-
lected from all the subjects at Golwilkar Metropolis, Pune. Blood samples were centrifuged
at 4000 rpm for 10 min to separate erythrocyte fraction from whole blood. Plasma was
stored at −80 ◦C (Thermo Fisher Scientific, Asheville, NC, USA) for further analysis.
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2.5. Estimation of Blood Biochemical Parameters

Measurement of fasting plasma glucose (FPG), postprandial blood glucose (PPG),
fasting plasma insulin (FPI), postprandial insulin (PPI), and HbA1c was performed on an
automated analyzer at Golwilkar Metropolis, Pune, following CLSI (Clinical and Laboratory
Standards Institute, Malvern, PA, USA) guidelines. Erythrocyte hemolysate was prepared
by washing it twice with cold saline and hemolyzing by adding ice-cold ultrapure water [8].
This was stored at −80 ◦C for further analysis.

2.6. Estimation of GSH and GSSG

Reduced and total glutathione content in erythrocyte hemolysate was estimated using
glutathione assay kit (Cayman Chemical, Ann Arbor, MI, USA). This kit follows DTNB (5,5′-
dithio-bis-2 nitrobenzoic acid, Ellman’s reagent) method for estimation of GSH [21], where
DTNB reacts with reduced GSH, yielding yellow-colored 2-nitro-5-thiobenzoate, which is
read at 405 nm on ELISA reader. Briefly, 50 µL of erythrocyte lysate was deproteinized using
an equal volume of metaphosphoric acid at 4 ◦C. After vigorous vortexing, the resulting
mixture was centrifuged at 2000× g for 2 min at 4 ◦C. The supernatant was separated and
aliquoted in two parts and used for estimation of total GSH (TGSH) and GSSG. The pH of
the samples was adjusted to 8 by addition of triethanolamine (5 µL/100 µL of the sample).
One of the aliquots was diluted 50 times with 1×MES buffer (0.4 M (N-morpholino) ethane-
sulphonic acid, 0.1 M phosphate buffer, and 2 mM EDTA ph 6) and used for estimation
of TGSH. In the second aliquot, 2 µL of vinyl pyridine was added and diluted 25 times
with 1× MES buffer and 50 µL of this sample was used for estimation of GSSG. Both
the aliquots were then incubated for 1 h at room temperature. The reaction was started
by adding 150 µL assay cocktail (11.25 mL MES (N-morpholino) ethanesulphonic acid,
0.1 M phosphate buffer, and 2 mM EDTA ph 6) buffer, 0.45 mL cofactor mixture containing
NADP+ and glucose-6-phosphate, 2.1 mL enzyme mixture containing glutathione reductase
and glucose-6-phosphate dehydrogenase, 2.3 mL water, and 0.45 mL DTNB. Increase in
TNB formation was determined by measuring absorbance at 405 nm at 5 min interval for
30 min. GSSG was used as a standard for estimating the concentration of TGSH and GSSG
in samples. Absorbance values of samples and standard (0, 0.5, 1.0, 2.0, 4.0, 8.0, 12.0, and
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16.0 µM) were plotted as a function of time, and slope for each sample was calculated.
This was called i-slope. The i-slope of each concentration of standard was plotted against
the concentration of GSH and the slope of this curve was called f-slope. Values for total
GSH and GSSG were calculated by using the formula given below. GSH concentration was
determined by subtracting GSSG from total GSH.

GSH (µM) =
(i− slope for sample)− (y intercept)

f− slope
× sample dilution

2.7. Estimation of 8-OHdG

DNA was isolated from whole blood by standard phenol–chloroform isoamyl alcohol
extraction method and quantitated on nanodrop. Amount of 8-OHdG in DNA was deter-
mined by competitive enzyme-linked immunosorbent assay using standard protocol of
Modak et al. (2009) [22]. Briefly, 96-well plate was coated with 100 µL 0.003% protamine
sulphate (Sigma, St. Louis, MO, USA) and then incubated at 37 ◦C for 5–6 h. Protamine
sulphate solution was removed and 100 ng of 8-OHdG was added to each well and in-
cubated at 4 ◦C overnight. The plate was washed with phosphate-buffered saline (PBS)
and incubated with monoclonal antibody against 8-OHdG (1 mg/mL) (1:5000) already
mixed with either standard 8-OHdG or experimental DNA samples and incubated for
3–4 h at 37 ◦C. Experimental samples consisted of 100 ng genomic DNA of the individuals
from three study groups (C, D, and DG) at α, β, and γ visits. After washing the plate
with PBS containing Tween-20 (PBST) 5 times, it was incubated with 100 µL (1:2500) of
goat anti-mouse antibody conjugated with a biotin FAb fragment per well at 37 ◦C for
30 min. The plate was then washed 5 times with PBST and incubated with 100 µL (1:5000)
of avidin conjugated with horseradish peroxidase enzyme at 37 ◦C for 30 min. Finally, after
3 washings of PBST and 3 washings of phosphate citrate buffer, pH 5, 100 µL of ABTS
substrate solution containing 0.06% H2O2 was added to each well incubated for 10 min and
the absorbance was measured at 405 nm using Multiskan plate reader (Thermo scientific,
Shanghai, China) and expressed as ng 8-OHdG/µL DNA.

Statistical Methods
Biochemical parameters of subjects in Control, D, and DG groups at the first visit were

represented using the descriptive statistics (Median, 25th percentile, and 75th percentile).
All intra- and inter-group comparisons of biochemical parameters at different visits were
performed using permutation tests, using the “Coin” package in R [23]. Statistical signif-
icance was set at p-value < 0.05. The results of permutation tests were confirmed with
two-sample, two-sided t-tests. The results obtained from permutation tests were presented
here. Effect size analysis was used to quantify the difference between 6-month biochemical
changes in D and DG groups. All calculations and parametric t-tests were carried out using
Matlab version 2019.

Effect Size Calculations
Biochemical measurements of variables are available at α, β, and γ visits. Changes in

the biochemical variables, HbA1c, fasting glucose (FPG), fasting insulin (FPI), PP glucose
(PPG), PP insulin (PPI), GSH, GSSG, and 8-OHdG in during the study period from α to γ

visit (6 months) in a group were estimated by taking their paired differences between those
visits. Let the 6-month changes in D for a variable x be denoted by Dx, and similarly for
DG group by DGx. The effect size of 6-month changes in the concentration of a particular
biochemical variable x (x can be HbA1c, FPG, FPI, PPG, PPI, GSH, GSSG, and 8-OHdG)
between D and DG groups is estimated using Cohen’s d [24] as

d =
mean of DGx −mean of Dx

s

where, s is the pooled standard deviation of changes in the x variable in D and DG groups.
Cohen (1969) described an effect size of 0.2, 0.5, and 0.8 as “Small”, “Medium”, and “Large”
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effects respectively, and Sawilowsky [25] classified an effect of sizes 1.2 and 2 as “Huge”
and “Very large” effects, respectively.

3. Results
3.1. Baseline Characteristics

The study population included diabetic subjects with a mean age of 54 years and
a BMI of 26.9 kg/m2, and the Control group included individuals with a mean age of
41 years and a BMI of 26 kg/m2. The D group consisted of 57 males and 45 females, the DG
group consisted of 49 males and 55 females, and the Control group consisted of 62 males
and 42 females.

The baseline characteristics of subjects in each group are presented in Table 1. Concen-
trations of FPG, PPG, FPI, HbA1c, and 8-OHdG were significantly high and that of GSH
was significantly low in D and DG compared to Control (p < 0.001, all parameters). Levels
of PPI in D and DG were not found to be significantly different compared to the Control
group (Table 1).

Table 1. Baseline characteristics of Control, D, and DG groups. Data from each group at the α

visit are presented here as median and IQR, inter-quartile ranges (25th percentile–75th percentile).
* indicates the significance of the comparison between baseline measurements of Control versus
D or Control versus DG groups. Significance levels are * p < 0.05, ** p < 0.01, and *** p < 0.001.
Similarly, significance levels for comparisons between D versus DG groups are denoted with ##, or
### for p < 0.05, p < 0.01, and p < 0.001, respectively. We did not observe any significant differences in
the levels of FPG, PPG, FPI, PPI, HbA1c, and GSH within the D and DG groups, thus confirming
covariate balance in the two groups at baseline (Table S4). Abbreviations used here are BMI—body
mass index, HbA1c—glycated hemoglobin, GSH—reduced glutathione, PP glucose—postprandial
glucose, PP insulin—postprandial insulin, and 8-OHdG—8-hydroxy-2-deoxy guanosine.

Biochemical Variables

Control
- - - - - - - - - - - - - - - - -

Median (25th–75th
Percentile)

D
- - - - - - - - - - - - - - - - -

Median (25th–75th
Percentile)

DG
- - - - - - - - - - - - - - - - -

Median (25th–75th
Percentile)

Age (years) 39.5 (33.5–49) 55.5 (47–61) *** 56 (48–61) ***

BMI (kg/m2) 26.1 (23.5–28.2) 26.3 (22.7–29.2) 26.8 (23.8–29.8)

HbA1c (%) 5.6 (5.4–5.8) 8.1 (7.1–9.6) *** 8 (7.1–9.7) ***

Fasting Glucose (mg/dL) 90 (85–95) 147 (120–190) *** 140.5 (109–182) ***

Fasting Insulin (µU/mL) 9.4 (6.8–12.3) 11.9 (7.4–17.1) ** 10.4 (7.5–16.1) *

PP Glucose (mg/dL) 104 (96–117) 220 (169–285) *** 209 (168–258) ***

PP Insulin (µU/mL) 36 (18.1–71.7) 36.2 (24–54.8) 32.4 (18.1–60.4)

GSH (µM) 801 (548–1068) 379 (243–533) *** 440 (176–635) ***

GSSG (µM) 205 (124–303) 215 (139–326) 137 (89–209) ***,###

8-OHdG (ng/µg DNA) 129.97 (97.2–175.2) 442.33 (340.26–514) *** 481.71 (412.23–535.11) **,##

3.2. Oral GSH Supplementation Increases Erythrocyte GSH and Decreases Oxidative Damage to
DNA but Does Not Alter Glycemia in Diabetic Patients over a Period of Six Months

GSH levels increased significantly over a period of six months, from the α to γ visit
in both DG (p < 0.001) and D (p < 0.001) groups, while they remained unchanged in the
Control. We further estimated the effect size of GSH supplementation within the diabetic
groups: A “Large” effect (Cohen’s d = 1.01; p < 0.001) indicated that the increase in GSH is
significantly high in DG compared to D (Figure 2). GSSG was similarly increased in DG
compared to D (Cohen’s d = 0.61, p < 0.001).
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We also observed a significant decrease in the concentrations of 8-OHdG from the α

to γ visit with a “Large” effect in DG (Cohen’s d = −1.07; p < 0.001) but not in the D and
Control groups (p > 0.05) (Figure 2).

We then analyzed the effect of oral GSH supplementation on the glycemic parameters
in diabetic patients. We observed that HbA1c levels decreased significantly over six months
in both D and DG; however, the extent to which it decreased in DG was comparable to the
D group, as indicated by a small Cohen’s d = −0.16 (p > 0.05) (Figure 2). FPG, PPG, FPI,
and PPI decreased over a period of six months in D and DG; however, changes in DG were
comparable to those in D (p > 0.05, Cohen’s d < 0.2, all parameters).

Overall, our results indicate that GSH supplementation leads to a significant increase
in the erythrocyte GSH and GSSG and a decrease in 8-OHdG in diabetic patients. However,
the changes in the glycemic parameters of D and DG were to similar extents.

Next, we investigated whether the effect of GSH supplementation is accomplished
rapidly and stabilized thereafter, or whether their levels change gradually over a period of
six months (Table S1).

3.3. Oral GSH Supplementation Enhances Erythrocyte GSH in Diabetic Subjects within
Three Months

Figure 3a,b show serial changes in the concentrations of GSH and GSSG, respectively,
from the α to β and γ visits in the three study groups. In Control, GSH and GSSG remained
unchanged over a period of six months. GSH supplementation in DG led to a significant
increase in GSH within the first three months (p < 0.001) and remained stable thereafter for
up to six months (Figure 3a). In the D group, on the other hand, GSH increased marginally
from 0 to 3 and 6 months. In the DG group (Figure 3b), GSSG also increased significantly
within the first three months (p < 0.001), and did not change further. In D, GSSG remained
unchanged during the study period. Thus, oral GSH supplementation in diabetic patients
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increased GSH significantly within three months and stabilized it thereafter. On the other
hand, in D, anti-diabetic therapy alone led to a small increase in GSH.
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Figure 3. Longitudinal changes in the concentration of (a) GSH and (b) GSSG in different groups.
The measured data for (a) GSH and (b) GSSG concentrations from Control, D, and DG groups at α,
β, and γ visits are shown here with box and whiskers plots. Mean (black circles for Control, blue
for D, and red for DG groups, respectively) and inter-quartile ranges (IQR) of the data are overlaid
over the corresponding box plots. The group-wise means at different visits are connected using solid
lines with the same color. Significance levels displayed above β, and γ visits denote the comparisons
with α visit using permutation tests. Significance level is *** p < 0.001 for respective comparisons.
Abbreviations used here are, GSH—reduced glutathione, and GSSG—oxidized glutathione.

3.4. Oral GSH Supplementation Significantly Reduces 8-OHdG in Diabetic Subjects

In the Control group, concentrations of 8-OHdG remained unchanged over a period
of six months, while GSH supplementation in diabetic patients led to a significant de-
crease in 8-OHdG within the first three months, which continued to reduce significantly
thereafter (p < 0.001) (Figure 4a). However, in the D group, its concentrations did not
change significantly.

3.5. HbA1c Levels Are Stabilized by Oral GSH Supplementation in Diabetic Patients

We examined serial changes in the levels of glycemic parameters in D and DG groups
in greater detail. FPG levels lowered significantly within three months in D (p < 0.01) and
DG (p = 0.05); however, they recovered to the baseline levels by the end of six months
(Figure 4b). PPG levels, on the other hand, did not change significantly in D and DG
over a period of six months (p > 0.05, all) (Figure 4c). HbA1c rapidly decreased from 0 to
3 months in both D (p < 0.01) and DG (p < 0.001) (Figure 4d). Thereafter, HbA1c levels were
maintained until 6 months in DG, while they appear to have returned to the baseline in the
D group.
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Figure 4. Longitudinal changes in glycemic parameters. The measured data for (a) 8-OHdG,
(b) fasting glucose, (c) PP glucose, (d) HbA1c, (e) fasting insulin, and (f) PP insulin concentrations
from Control, D, and DG groups at α, β, and γ visits are shown here with box and whiskers
plots. Mean (black circles for Control, blue for D, and red for DG groups) and IQR of the data are
overlaid over the corresponding box plot. The group-wise means at different visits of a group are
connected using solid lines with the same color. Significance levels (*) displayed above β, and γ

visits denote the comparisons with α visit using permutation tests. Significance levels are * p < 0.05,
** p < 0.01, and *** p < 0.001 for respective comparisons. Abbreviations used here are, 8-OHdG—8-
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insulin—postprandial Insulin.

FPI levels changed significantly from 0 to 3 and 6 months in D (p < 0.05), while they
remained unchanged in DG (p > 0.05) (Figure 4e). PPI levels remained unaltered in D and
DG throughout the study period (Figure 4f). Taken together, oral GSH supplementation in
diabetic patients appears to have a “stabilizing effect” on HbA1c, i.e., it decreases rapidly
within three months and continues thereafter.

3.6. A Oral GSH Supplementation Significantly Reduces HbA1c in Elderly Diabetic Patients

Earlier reports suggest that the concentration of GSH decreases with age in healthy
adults [17,26]. Therefore, we assessed the effect of GSH supplementation in elderly
diabetic patients.

Diabetic patients in our study ranged from 31 to 78 years of age. The median age in
these cohorts is about 55 years in the D and DG groups. We used this age as a threshold
to isolate an elder sub-group. We then re-examined the effect of GSH supplementation in
this sub-group diabetic population to assess whether they respond differently to oral GSH
supplementation compared to the younger population.

Mean values for all the biochemical parameters and serial changes from 0 to 3 and
6 months in their concentrations in the D (n = 44) and DG (n = 54) groups are shown in
Figures S1 and S2, respectively. Similar to results obtained for diabetic patients overall, the
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concentration of GSH and GSSG increased significantly over a period of 6 months in both
the D and DG sub-groups (Figure S1). Changes in the mean GSH and GSSG over a period
of 6 months in the DG group (Figure 5) were significantly higher compared to the D group
(Cohen’s d = 1.14 and 0.67 for GSH and GSSG, respectively, p < 0.001).
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Six-month changes in the biochemical parameters of those in D and DG sub-groups were compared
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GSH supplementation also resulted in a “Very large” effect (Cohen’s d = −1.45,
p < 0.001) in the reduction of 8-OHdG in the elderly sub-group of diabetic patients (Figure 5),
suggesting that oral GSH supplementation in the elderly diabetic population results in a
significant reduction in the accumulation of oxidative DNA damage.

Next, we examined the effect size of blood glycemic parameters in response to oral
GSH supplementation in the elderly sub-group of diabetic patients (Figure 5). In contrast
to the results observed in the diabetic population overall, GSH supplementation in the DG
sub-group led to a significant reduction in HbA1c over a period of 6 months compared to
D (Cohen’s d = −0.41, p < 0.05).

Interestingly, FPI levels also increased significantly in the DG sub-group from the α

to γ visit compared to D (Cohen’s d = 0.56, p < 0.05). GSH supplementation had a small
effect on levels of FPG, PPG, and PPI in the DG sub-group (Cohen’s d < 0.2, p < 0.05,
all parameters).

Thus, GSH supplementation in the DG sub-group of elderly diabetic patients over
a period of 6 months led to a significant increase in the erythrocyte GSH, GSSG, and
FPI and a decrease in HbA1c and 8-OHdG levels (Figure S2), suggesting that the elderly
diabetic population responds better to GSH supplementation in conjunction with anti-
diabetic therapy. The effect of GSH supplementation has been also analyzed in the younger
sub-groups of D and DG and the results are shown in the supplementary documents
(Figures S3–S5).

HbA1c levels changed significantly from the baseline in the younger sub-group of
DG (Figure S3D); however, the 6-month changes in the younger sub-group of DG did not
show any significant difference when compared to the 6-month changes in the younger
sub-group of D as a result of GSH supplementation (Figure S5).
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4. Discussion

GSH, a water-soluble tri-peptide, is an important endogenous antioxidant required for
maintaining the redox homeostasis of the cell. It is synthesized by glutathione synthetase
and utilized by glutathione peroxidase and glutaredoxin to detoxify free radicals. Several
studies have reported low levels of GSH in different pathological conditions [6]. GSH insuf-
ficiency can be due to increased exposure to oxidants, drugs, excess nutrients, or decreased
rate of synthesis of GSH. In our earlier studies, we found a significant decrease in GSH
in T2D individuals, and among 12 different markers of OS measured, GSH impressively
correlated with changes in HbA1c [27], suggesting that altering hyperglycemia rapidly
results in changes in GSH.

Interventions aiming at controlling hyperglycemia are the primary line of treatment for
diabetic patients. It is interesting to ask if improving redox status by GSH supplementation
can help counteract the deleterious effects of hyperglycemia-induced OS. Results from
earlier clinical trials of oral GSH supplementation have been contrasting and debatable.
Our study provides clear evidence that long-term oral GSH supplementation not only
improves body stores of GSH but significantly decreases the accumulation of oxidative
DNA damage in Indian T2D patients. It also helps increase the efficiency of anti-diabetic
treatment in maintaining normoglycemia in diabetic patients.

GSH is known to be either transported in its intact form from the intestinal epithelial
cells into the blood lumen [28] or broken down by gamma-glutamyl transferase to its
constituent amino acids [29]. It is unclear whether GSH was either directly absorbed or
broken down into its constituent amino acids and re-synthesized by glutathione synthetase.
Additionally, we find a significant increase in the concentration of erythrocytic GSSG. This is
possibly due to the conversion of erythrocytic GSH into GSSG, in line with previous reports;
for instance, Nolan et al. [28] show that 13C-GSH administered to mice is rapidly converted
to GSSG and accumulated in red blood cells and liver. Thus, oral GSH supplementation not
only increases body stores of GSH but a fraction is stored as GSSG. These results strongly
suggest that GSH supplementation results in a systemic improvement of the redox state in
diabetic individuals. The augmentation of antioxidant reserves, by elevating GSH levels,
also resulted in a significant reduction in the accumulation of oxidative DNA damage
implicated in the pathophysiology of diabetic complications.

HbA1c levels typically fluctuate despite regular anti-diabetic treatment in diabetic
patients. We found that GSH supplementation helped maintain lowered HbA1c within
three months. This effect was more pronounced in elderly patients over 55 years of age.
Other characteristics of the glycemic state, such as FPG, PPG, FPI, and PPI, did not change
in the diabetic patients overall; however, interestingly, we observed an increase in FPI levels
in elderly diabetic patients. The exact mechanism by which GSH helps in maintaining
normoglycemia in diabetic patients requires further investigation.

Preserving β-cell function is essential to glucose control in diabetic patients. It is crucial
to maintain a healthy redox state of pancreatic β-cells, as their ability to secrete insulin
in response to glucose is dependent on intracellular thiols [30]. It is well established that
β-cells are more vulnerable to ROS due to their low antioxidant capacity and poor ability to
repair oxidatively damaged DNA [22,31]. Thus, one potential strategy for improving β-cell
function is to provide antioxidant support to pancreatic β-cells. Enhancing extracellular
GSH levels improved β-cell response to glucose in rats [32]. Infusion with GSH [12] also
enhanced β-cell function and consequently improved glucose disposal in patients with
impaired glucose tolerance. Our results also indicate that oral GSH supplementation
supports anti-diabetic treatment in reducing hyperglycemia. It is difficult at this stage to
establish a causal sequence of events that underlie these observations. For instance, while
it is generally believed that the etiology of diabetes in Southeast Asian diabetic patients
points to especially poor insulin resistance [33], recent reports have indicated that a large
sub-group of patients belong to an insulin-deficient phenotype [34]. We note, in particular,
that HOMA indices were only one component of a more comprehensive clustering pattern
that included age at diagnosis, HbA1c, HOMA2-ß, HOMA2-IR, and BMI. We further point
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out that there are there few patients in this study (n = 7) who were on insulin, hence it is
unclear if the observations described here extend to those in whom insulin insufficiency
is severe.

It is known that concentration of GSH declines with aging [17,26] and this could be
further aggravated in elderly diabetic patients. We indeed observed that elderly diabetic
patients benefited more from GSH supplementation both in terms of reducing oxidative
DNA damage and improving glycemic status. Interestingly, we also observed a significant
increase in FPI in these elderly patients. Recently Zhang et al. [35] reported restoration
of β-cell function by administration of oral GSH in diabetic rats. Islets isolated from T2D
cadaveric organ donors showed impaired insulin secretion in response to glucose and
increased levels of oxidative damage markers. Treating these islets with GSH led to an
improvement in their functionality and also alleviated oxidative damage markers [36],
suggesting that reducing OS in islets could be a potential target for treating diabetes. We
speculate that a systemic increase in GSH in diabetic patients resulted in a significant reduc-
tion in oxidative DNA damage, improved the pancreatic β-cell function, and concomitantly
reduced HbA1c, prominently so in elderly diabetic individuals. However, these results
need to be further validated in large clinical settings.

T2D is a multifactorial, complex disease and can be controlled by diet modifications,
control of physical activity, weight reduction, etc. These factors need to be considered for
the personalization of therapy. It would also be interesting to see how long the effect of
GSH intervention persists; since the antioxidant status of an individual varies widely, it
is plausible that this can significantly influence the effect of exogenous supplementation.
This might even explain why the changes in HbA1c observed in DG have shown limited
effect sizes. It is also conceivable that longer intervention with GSH may show further
improvements in glycemic parameters, such as fasting glycemia. In our study, due to
sample size limitations, we do not have enough statistical power to perform such analyses.
However, our work lays the foundation for further studies with various population cohorts
to understand these effects better.

Our results have provided support for significant, if modest, effects of GSH supplemen-
tation on HbA1c. This is very important, especially in light of the ADA position [37], which
recognizes that the personalization of anti-diabetic therapy—rather than a one-size-fits-all
treatment—is necessary to achieve successful glycemic targets. However, few algorithms
exist that describe how to achieve this ambitious goal. For this reason, we reiterate that
GSH supplementation is an important addition to this toolbox. We have shown significant
positive benefits of GSH, and importantly, it is tolerated very well by patients; this makes it
a very useful therapeutic agent to add to the clinician’s arsenal.

5. Conclusions

Our results strongly suggest that oral GSH supplementation replenishes the body’s
stores of GSH and significantly reduces oxidative DNA damage in Indian T2D patients.
It also reduces HbA1c within three months and maintains it thereafter in the diabetic
population overall. An elderly sub-group seems to benefit greatly, as evidenced by a
significant decrease in HbA1c and an increase in insulin secretion by β-cells over a period
of six months. A clinical implication of our study is that the oral administration of GSH
can be used as an adjunct therapy to anti-diabetic treatment in achieving better glycemic
targets, especially in the elderly population.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox11051026/s1, Figure S1: Serial changes in the concentration
of (A) GSH and (B) GSSG in elderly diabetic subjects. Figure S2: Longitudinal changes in the con-
centration of biochemical parameters (A) 8-OHdG, (B) Fasting Glucose, (C) PP Glucose, (D) HbA1c,
(E) Fasting Insulin, and (F) PP Insulin in elderly diabetic subjects. Figure S3: Serial changes in the con-
centration of (A) GSH and (B) GSSG in diabetic subjects younger than 55 years. Figure S4: Longitudinal
changes in the concentration of biochemical parameters (A) 8-OHdG, (B) Fasting Glucose, (C) PP
Glucose, (D) HbA1c, (E) Fasting Insulin, and (F) PP Insulin in subjects younger than 55 years of
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age. Figure S5: The effect size of changes in blood biochemical parameters of subjects younger than
55 years of age. Figure S6: The effect size of changes in blood biochemical parameters in (A) females
and (B) males in the study. Figure S7: The effect size of changes in blood biochemical parameters,
HOMA IR and HOMA β (A) between D and DG groups and (B) elder sub-groups of D and DG.
Table S1: Summary of clinical trials conducted using GSH/different forms of GSH/precursors of
GSH. Table S2: Number of subjects in (A) D and (B) DG groups with different types of anti-diabetic
treatment. Table S3: Biochemical measurements at different visits in Control, D, and DG groups.
Table S4: Inter-group comparisons of baseline characteristics.
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Oral GSH supplementation along with antidiabetic treatment was shown to
restore the body stores of GSH significantly and reduce oxidative DNA damage
(8-OHdG) in Indian Type 2 diabetic (T2D) patients over 6 months in our recent
clinical study. Post hoc analysis of the data also suggested that elder patients
benefit from improved HbA1c and fasting insulin. We modeled longitudinal
changes in diabetic individuals using a linear mixed-effects (LME) framework
and obtained i) the distribution of individual trajectories with and without GSH
supplementation and ii) the overall rates of changes in the different study arms.
Serial changes in elder and younger diabetic individuals were also modeled
independently to examine differences in their progression. The average linear
trajectories obtained from the model explain how biochemical parameters in T2D
patients progress over 6 months on GSH supplementation. Model estimates show
improvements in erythrocytic GSH of 108 µM per month and a reduction in 8-
OHdG at a rate of 18.5 ng/μg DNA per month in T2D patients. GSH replenishes
faster in younger people than in the elder. 8-OHdG reduced more rapidly in the
elder (24 ng/μg DNA per month) than in younger (12 ng/μg DNA per month)
individuals. Interestingly, elder individuals show a substantial reduction in HbA1c
(0.1% per month) and increased fasting insulin (0.6 µU/mL per month). Changes in
GSH correlate strongly with changes in HbA1c, 8-OHdG, and fasting insulin in the
elder cohort. The model estimates strongly suggest it improves the rate of
replenishment in erythrocytic GSH stores and reduces oxidative DNA damage.
Elder and younger T2D patients respond differently to GSH supplementation: It
improves the rate of reduction in HbA1c and increases fasting insulin in elder
patients. These model forecasts have clinical implications that aid in personalizing
treatment targets for using oral GSH as adjuvant therapy in diabetes.
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Introduction

A large number of clinical and experimental studies have
demonstrated the role of oxidative stress in developing type
2 diabetes (T2D) complications (Brownlee, 2005; Volpe et al.,
2018; Burgos-Morón et al., 2019). However, the use of
antioxidants as therapy isn’t recommended in healthcare practice
due to the lack of evidence about their long-term safety and efficacy.
Glutathione (GSH) is a major endogenous antioxidant in all cells
and determines their redox status and is significantly low in T2D
individuals (Townsend et al., 2003). Therefore, replenishing GSH
should be a good strategy to improve systemic redox status.
However, few clinical trials with GSH supplementation have been
conducted in healthy and diabetic individuals. Most of these studies
have concentrated on the effect of GSH supplementation on
replenishing body stores of GSH; few have studied its impact on
reducing oxidative stress, and even fewer on glycemic stress. Results
of these trials (Allen and Bradley, 2011; Sekhar et al., 2011; Ritchie
et al., 2015) have been difficult to interpret due to differences in the
dose and duration of GSH supplementation and the site of outcome
measurements, making the clinical recommendations difficult.

Our recent work (Kalamkar et al., 2022) has provided the most
conclusive evidence regarding the effects of GSH supplementation in
conjunction with antidiabetic treatment. The evidence from this clinical
trial suggested that the long-term GSH supplementation offered
protection from oxidative damage and improved HbA1c and fasting
insulin, especially in elderly T2D patients. We, therefore, believe that
GSH should be used as an adjunct therapy for T2D individuals. In our
data, we observed significant differences in how individuals respond to
GSH intervention. In addition to the factors such as age, diet, physical
activity, dose, and length of GSH intervention, the basal amount of
endogenous GSH is also responsible for this differential response among
individuals. Therefore, we feel that the personalization of GSH
supplementation based on endogenous GSH for T2D individuals
could be an important addition to current clinical practices. To
formulate effective personalized interventions of GSH with
antidiabetic treatment, it is essential to understand the dynamics of
longitudinal biochemical change and the variations between individual
responses toGSH supplementation in detail. This would be largely useful
in evaluating the progress of treatment and understanding the glucose
control targets for diabetic individuals.

In this work, we have formulated longitudinal mixed-effects models
(Laird andWare, 1982; Brown and Prescott, 2006) to analyze the clinical
data of diabetic individuals. Our mixed-effects (ME) models are
hierarchical models, where the units of analysis are subject-level
predictors (level two) with fixed and random effects. The framework
of LME models also performs ‘shrinkage’ for estimating model
parameters; that is, individual estimates obtained from LME models
are shrunk towards a grand mean of the population level estimate
compared to fitting separate linear models to each subject’s data (Bell
et al., 2019). ME models have a long history of use in health and
medicine since thesemodels treat each patient not only as amember of a
population but as an individual with unique characteristics (Gelman
et al., 2012; Barr et al., 2013; Baldwin et al., 2014; Wang et al., 2019;
Schober and Vetter, 2021). ME models thus allow estimating model
parameters that describe between- and within-subject variability of
individual responses. A two-level LME model provides reliable
estimates in absolute, not just relative, physical units of the variables.

This is beneficial for direct clinical use rather than the effect-size-based
estimates of treatment effects obtained in our earlier work. We
formulated two different LME models, namely, 1) with random
intercepts and fixed slopes and 2) random intercepts and random
slopes for each variable. These models were evaluated using best
likelihood by Akaike’s Information Criteria (AIC) and non-
singularity criteria and selected for optimal performance (Bates D. M.
et al., 2015).

In our earlier study, we pointed out that the response in elder
and younger cohorts was markedly different. We, therefore,
analyzed these data separately with LME models.

Materials and methods

Clinical trial data

This study has been carried out using the data published in our work
(Kalamkar et al., 2022), whichwas collected from the clinical trial entitled
“Effect of glutathione supplementation on glucose homeostasis in
diabetic patients” and registered with the Clinical Trials Registry
-India (CTRI/2018/01/011257). The data set is freely available online
(on the link: https://figshare.com/s/0803267e1d38c054cee6). The
analysis of the clinical trial data was conducted with ethical approvals
from the Institutional Ethical Committee (IEC) of Jehangir Hospital
DevelopmentCenter, Pune (JCDCECN-ECR/352/Inst/NIH/2013), IEC
of IISER Pune (IECHR/Admin/2019/001); and the Institutional
Biosafety Committee (IBC) of SPPU (Bot/27A/15).

The dataset published in the trial comprised 250 known Indian
diabetic individuals recruited between February 2016 and January
2018 who were already on anti-diabetic treatment. The clinical trial
consisted of three groups: A control group comprising healthy, non-
diabetic subjects and two groups of diabetic patients; in one of those,
GSH supplementation (500mg/day for 6 months) was carried out,
namely, the DG group, and the other group without
supplementation, the D group. The only difference between this D
and DG group is the intervention, that is, supplementation with GSH.
More importantly, D and DG are similar in nearly all respects, and
covariate balance at the baseline has already been shown (Kalamkar et al.,
2022).

Measured variables and follow-up visits

Blood samples of each individual were collected at the time of
recruitment and three and 6 months post-GSH supplementation.
The dataset used in this study consists of the amounts of reduced
(GSH) and oxidized (GSSG) glutathione, fasting and postprandial
glucose (FPG and PPG), fasting and postprandial insulin (FPI and
PPI), HbA1c, and 8-hydroxy-deoxy-guanosine (8-OHdG), a marker
of oxidative DNA damage measured from all individuals.

Statistical analysis

Descriptive statistics with the mean and standard deviation (SD)
were used to describe different study groups in terms of metabolic
outcomes at baseline and each subsequent follow-up. Biochemical
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parameters at different visits were compared using two-sample
t-tests. The statistical significance of the comparisons was set at a
p-value less than 0.05.

Formulation of linear mixed-effect models

The formulation of linear mixed-effect (LME) models for each
biochemical variable (GSH, GSSG, HbA1c, 8-OHdG, FPG, FPI,
PPG, and PPI) assumed fixed and random effect parameters at
different levels (Level 1: time, Level 2: individuals) in the study. The
composite form of the model was written by combining the model
equations from these different levels. This form of the model was
further used to study the dependency of each effect at different levels
and their nested structure in one another. The response variable Yij

from subject i on the jth visit was modeled with subject-specific
intercepts (bi0 ) and subject-specific slopes (bi1 ) against treatment
time tij (where tij = 0, 3, 6 months for j = 1, 2, 3 visits respectively).
An indicator variable Ti was assumed to take a value of 0 for the D
group and one for the DG group (control and treatment with GSH
supplementation, respectively). We denote the average intercept of
diabetic individuals when all predictors are 0 by β0 (mean expected
value of the response variable Y). β1 represents the average rate of
change in Y during the treatment for the D group. β1 + β2 represnts
the average rate of change in the DG group. The difference in the
rates of change between D and DG β2 represents the average
treatment effect of GSH supplementation on Y.

We considered two candidate models of biochemical variables,
namely, 1) random intercept and random slope (RIRS) model and 2)
random intercept and fixed slope (RIFS) model for explaining the
measured longitudinal data. We formulated RIRS models for the
outcome variable Yij as Yij = bi0 + bi1 × tij + ϵij with subject-
specific random slopes and intercepts bi0 and bi1 defined by bi0 = β0
+ bi0 and bi1 = β1 + β2 ×Ti + bi1 where bi0 , and bi1 were assumed to be
distributed asN (0; σ02) andN (0, σ12), with covariance σ01, respectively.
In the RIRSmodel, fixed effects are β0, β1, β2 and random effects are bi0,
bi1. The residual errors were assumed to be normally distributed with a
variance of σe2 . The composite form of the RIRS model for Yij is given
by, Yij = β0 + bi0 + (β1 + β2 × Ti + bi1) × tij + ϵij.

RIFS models for outcome variable Yij were formulated with
random intercepts and fixed slopes at subject level (level 2) defined
by intercept, bi0 = β0 + bi0 and slope; bi1 = β1 + β2 × Ti. The random
intercepts bi0 in the model were assumed to be distributed as bi0 ~ N
(0; σ02). The composite forms of the RIFS model for Yij is given by
Yij = β0 + bi0 + (β1 + β2 × Ti) × tij + ϵij.

The design matrices for model equations and covariance
matrices are described in further detail in Supplementary
Sections S1.1, S1.2.

Model parameters and fitting

The formulated models have been tested and fitted using the lme4
package in R (Bates D. et al., 2015); these calculations were confirmed
using thefitlme package inMatlab and themimosa package (Titz, 2020)
for mixed effects models. Other packages, ggplot2, and tidyverse in R,
were used for analysis and plots. RIFS and RIRS models were fitted for
GSH, GSSG, 8-OHdG,HbA1c, FPG, FPI, PPG, and PPI. A suitable RIFS

or RIRSmodel was selected for each response variable using the best AIC
and non-singularity criteria (Bates D. M. et al., 2015).

RIFS models were fitted for five parameters, β0, β1, β2, σ0, σe and
RIRSmodels were fittedwith seven parameters, β0, β1, β2, σ0, σ1, σ01, σe.
The fitted estimates for β and b, the vectors of fixed effect parameters,
random effect parameters, respectively, are given by the Best Linear
Unbiased Estimator (BLUE) of β̂, and Best Linear Unbiased Predictor
(BLUP) of b̂, (Refer to Supplementary Section S1.3 for further details).
The components of b̂, bi0, and bi1, random effects represent person-
specific intercepts (in both RIFS and RIRS) at the baseline and person-
specific differences in the rate of change in the slopes (in RIRS only),
respectively.

The statistical significance of the results of the LME estimates was
determined as p < 0.05. We have followed the uncorrected p-value to
interpret the results through. To ensure completeness, we have
performed corrections for multiple comparisons using the Bonferroni
method. We applied these corrections for the estimates from LME
models for each variable and across all results in both main and
supplementary analyses. Those results, which continued to be
statistically significant even after the corrections, were marked with a
“#” in the corresponding tables. The reader should take this into
consideration when evaluating the statistical findings.

Analysis of elder and younger patients

The variation in response to GSH supplementation with age was
studied as follows: The data was divided into 1) a subgroup of elder
adults (EA) above 55 years and 2) the subgroup of younger adults
(YA) below 55 years.

Themodel for EA is given byYij = β0 + bi0 + (β1 + β2 ×Ti) × tij +
ϵij. The treatment variable Ti takes the value of 0 for EA in the D
group and one for the EA in the DG group. The model was
formulated similarly for YA as well.

Analysing the age effects on outcomes

We studied the effects of the age of individuals on the outcome
variables Y with different LME models by incorporating 1)
continuous variable for the age of individuals at the recruitment
and 2) categorical variable for elder and younger age groups. These
model formulations are described in Supplementary Section S1.4.

The models considered in this analysis are the following:

(i) Model 1: The original RIRS model in the study without age
variables

(ii) Model 2: RIRS model with a treatment-time interaction term,
and three-way interaction term with age, treatment indicator,
and time at the patient level (Level 2)

(iii) Model 3: RIRS model with a three-way interaction term with
age, treatment indicator, and time at the patient level (Level 2)

(iv) Model 4: RIRS model with age groups as a categorical variable
for pooling EA and YA at the patient level (Level 2)

These models were fitted for all eight variables, and their
performances were compared using AIC and BIC estimates after
the likelihood ratio test.
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The structure of the data from the D and DG
groups

A sample structure of the data from the clinical trial is given in
Supplementary Table S1. This data format was prepared for analysis
using the lme4 package. The dataset consisted of eight different
measured variables of 201 individuals (100 in D, 101 in DG) who
completed both the follow-up visits (3 and 6 months post-GSH
supplementation). The Group IDs are encoded as 0 for D and one
for DG.

Estimating correlations between
longitudinal changes in different variables

The correlation between individual-specific slopes of variables
obtained from RIRS models was estimated using the Pearson
correlation coefficient (Pearson, 1895). Correlation diagrams were
obtained between all variables using the slopes for RIRS models
fitted with 1) the whole data sets and 2) the unpooled data sets from
elder individuals and younger individuals. The size of the circle in
each cell of the correlation diagram represents the extent of
correlation between compared variables. The blue color
represents a positive correlation, and the brown represents a
negative correlation.

Making predictions for virtual individuals

The fitted model estimates were utilized to predict responses in
virtual individuals with diabetes. We considered three new virtual
individuals (V1, V2, and V3) and assumed arbitrary but reasonable
baseline measurements of GSH, 8-OHdG, and HbA1c. We thus
predicted trajectories in these subjects over 6 months. The scheme
used for this purpose is described in Supplementary Section S1.5.
The steps in this scheme perform the following:

(i) The baseline values assumed for virtual subjects are shrunk
towards the average intercept estimated by our LMEmodel, and
the individual specific random effects are obtained.

(ii) Using the LME model estimates of the average intercept,
random effect of the intercept, and the rate of changes in the
slopes, we obtained the average linear trajectory for each virtual
individual in the presence and absence of GSH
supplementation.

Results

Observational summary of longitudinal
changes in the D and DG groups

Group-wise statistics (mean and standard deviation) of the
measured variables (GSH, GSSG, 8-OHdG, HbA1c, FPG, FPI,
PPG, and PPI) for both D and DG in each of the three visits are
described in Kalamkar et al. (2022); these are summarized here for
completeness in Table 1.

GSH and GSSG were significantly increased, and 8-OHdG and
HbA1c significantly decreased (p < 0.001) within 3 months in DG
and continued to be so at 6 months as well. FPI of DG increased
significantly within 6 months (p < 0.001). FPG, PPG, and PPI didn’t
show significant changes. GSH in the third visit was also significantly
increased in D, but not as much compared to the corresponding
change in DG.

LME estimates of the rates of change for the
whole population

We fit RIRS and RIFS models for GSH, GSSG, 8-OHdG, HbA1c,
FPG, PPG, FPI, and PPI (as described in Model parameters and
fitting). These subject-wise trajectories obtained from RIRS models
are shown in Figure 1. Individual trajectories are distributed around
the group-wise average trajectory. Group-wise average intercepts are
determined by β0; these are equal for both D and DG. The average
slopes in D and DG are β1 and β1 + β2, respectively. This β2 denotes
the difference between the average slopes in the two groups, that is,
the treatment effect of GSH supplementation on outcomes. These
estimates (β0; β1, and β2) are detailed in Table 2. Estimated random
effects, that is, within-individual and between-individual variations,
are described in Supplementary Tables S2, S3.

We find that β2 is significant for GSH, GSSG, and 8-OHdG
(Table 2). Among the glycemic variables, β2 is significant only for
FPI, and PPI but not for HbA1c, FPG, and PPG.

The mean erythrocytic GSH is estimated as 492 µM in
individuals with diabetes. It increased slightly, at an average rate
of 0.04 µM per month from the baseline during the study period in
D. In DG, GSH increased at an average rate of 107.7 µM per month.
Therefore GSH supplementation significantly improved GSH by
about 22 percent (107.7 µM, p < 0.001) per month relative to
baseline. Mean GSSG is estimated as 221 µM. In D and DG,
GSSG increased at average rates of 4.7 and 17.7 µM per month,
respectively, from the baseline (Figure 1). Thus GSSG rates are
significantly improved (p < 0.001) by about six percent per month of
the baseline (13.02 µM, p < 0.001). 8-OHdG is estimated to be
442 ng/μg DNA in diabetic individuals. It decreased in D and DG at
average rates of 2.8 and 21.3 ng/μg DNA per month, respectively.
Thus the effect of GSH supplementation significantly reduced 8-
OHdG by four percent per month of the baseline (18.5 ng/μg DNA,
p < 0.001).

HbA1c, FPG, and PPG changed at similar rates in D and DG
(Figure 1), suggesting that the effect was negligible (p > 0.05). FPI
and PPI are found to be affected significantly. Mean FPI is estimated
as 13.4 µU/mL. FPI decreased at an average rate of 0.3 µU/mL per
month in D. GSH supplementation significantly improved FPI at a
rate of 0.2 µU/mL in DG. The average PPI is estimated as 48.8 µU/
mL in individuals with diabetes. It decreased at average rates of
0.8 and 4.9 µU/mL per month in D and DG, respectively (Figure 1).
GSH supplementation significantly enhanced FPI by four percent
(0.5 µU/mL, p < 0.001) and reduced PPI rates by eight percent
(4.1 µU/mL, p < 0.001) of the baseline per month.

Results obtained from RIFS models are shown in Supplementary
Figure S1 and Supplementary Table S3. The parameter estimates of
β2 from RIFS models are also found to be significant for GSH, GSSG,
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8-OHdG, FPI, and PPI, leading to similar conclusions about the
effects of GSH supplementation as in RIRS models.

We note that these results largely coincide with the results from
previous work (Kalamkar et al., 2022). However, FPI and PPI, which
were earlier reported not to be affected by GSH supplementation, are
found to have a significant effect through the LME model-based
analysis.

Independent LME model estimates for ages
above and below 55 years

Diabetes is an age-onset disease; an early diagnosis leads to an
increased chance for complications to set in relatively early. We have
earlier demonstrated that the effectiveness of GSH supplementation
differed between the younger and elder populations using an age
cutoff of 55 years, which was the median age of the study population
(Kalamkar et al., 2022). We fit a separate LME for each of these two
age groups. Model estimates obtained by fitting LME models
independently for EA and YA are detailed in Supplementary
Table S4.

GSH supplementation significantly affected GSH, 8-OHdG,
HbA1c, FPI, and PPI in EA, and GSH, GSSG, 8-OHdG, and PPI
in YA (β2 in Table 3, p < 0.001).

GSH
Mean erythrocytic GSH in EA (488 µM) is estimated to be less

than YA (497 µM). In YA of D, it decreased at an average rate of
6.9 µM per month, whereas in DG, GSH increased at an average rate
of 104 µM per month (Supplementary Figure S2). In EA of D and
DG, GSH increased at average rates of 6.5 and 111 µM per month,
respectively (Figure 2). This clearly indicates that GSH
supplementation resulted in a significant improvement in GSH
by about 21 percent per month of their baseline in YA (111 μM,
p < 0.001) and 22 percent per month in EA (105 μM, p < 0.001) with
diabetes.

GSSG
Interestingly, the effect on GSSG was significant in YA (p < 0.01)

but not in EA. The mean GSSG in EA (231 µM) was estimated to be
higher than YA (209 µM). When YA of D and DG were examined,
GSSG increased at average rates of 1.9 and 18.4 µM per month,
respectively (Supplementary Figure S2). It increased at average rates
of 7.6 and 17.1 µM per month in EA of D and DG, respectively
(Figure 2). This shows that GSH supplementation enhanced GSSG
significantly per month by eight percent of the baseline (17.5 µM, p <
0.001) per month only in YA.

8-OHdG
The average 8-OHdG estimate is higher in EA (445 ng/μg DNA)

than in YA (438 ng/μg DNA). In EA of both D and DG, 8-OHdG
decreased at average rates of 3.3 and 27 ng/μg DNA per month
during the study period (Figure 2). Similarly, it decreased at average
rates of 2.1 and 14.16 ng/μg DNA per month in the YA of D and DG
groups (Supplementary Figure S2). Thus, we find that GSH
supplementation significantly reduced 8-OHdG from the baseline
by 12.06 ng/μg DNA per month (3%) in YA and 23.7 ng/μg DNA
per month (5%) in EA. These results suggest that oral GSH
administration rapidly offers better protection from oxidative
DNA damage in EA compared to YA.

HbA1c
GSH supplementation was earlier reported to affect the

HbA1c in the elder cohort significantly (Kalamkar et al.,
2022). We examined LME estimates of both YA and EA to
quantitate the effect on HbA1c. The average HbA1c is estimated
at 8.3% and 8.4% in YA and EA, respectively. In EA of D, HbA1c
decreased at an average rate of 0.02% per month, while in DG, it
decreased at an average rate of 0.12% per month (Figure 2),
suggesting that GSH supplementation improved HbA1c rates
significantly by about 0.1% per month in EA. Estimated HbA1c
rates are not significantly different between YA of D and DG
(Supplementary Figure S2).

TABLE 1 0−, 3− and 6−month changes of subjects in D and DG groups. Group-wise means and standard deviations (SD) of blood concentrations of GSH, GSSG, 8-
OHdG, HbA1c, FPG, FPI, PPG, and PPI are shown for D and DG groups at different visits. The significance of change is determined for the second (3 months from the
first visit) and third visits (6 months from the first visit) relative to the first visit using two-sample t-tests. The significance levels used are pp < 0.05, ppp < 0.01, and
pppp < 0.001. Abbreviations of the variables used here are: HbA1c—glycated hemoglobin, GSH—reduced glutathione, GSSG—oxidized glutathione, PP
glucose—postprandial glucose, PP insulin—postprandial insulin, and 8-OHdG–8-hydroxy-2-deoxy guanosine.

Variable Mean (SD) in the D group Mean (SD) in the DG group

Baseline visit Second visit Third visit Baseline visit Second visit Third visit

GSH (μM) 395 (225) 428 (263) 484 (255)ppp 465 (352) 1,129 (668)ppp 1,021 (518)ppp

GSSG (μM) 249 (150) 236 (157) 262 (137) 163 (104) 333 (214)ppp 286 (204)ppp

8-OHdG (ng/μg DNA) 422 (124) 404 (124) 443 (110) 471 (83) 387 (112)ppp 313 (135)ppp

HbA1c (%) 8.4 (1.9) 7.9 (1.7)pp 8.2 (1.8) 8.5 (1.9) 7.7 (1.5)ppp 7.9 (1.5)ppp

FPG (mg/dL) 160 (61) 143 (47)p 151 (58)p 153 (59) 141 (47) 150 (59)

FPI (μU/mL) 14.2 (10.4) 12.7 (6.8) 12.1 (7.7) 12.6 (8.06) 14.6 (13.8) 13.9 (10.5)ppp

PPG (mg/dL) 233.6 (84.1) 216.9 (70.9) 220.3 (83.6) 221.9 (77) 211 (80.4) 218 (83.2)

PPI (μU/mL) 43.4 (26.9) 47.03 (33.3) 40.5 (29.9) 48.3 (47.7) 49.5 (39.6) 52.3 (43.8)
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FIGURE 1
Average treatment effects of GSH supplementation on biochemical changes estimated using LMEModels. The fitted results of RIRSmodels for GSH,
GSSG, 8-OHdG, HbA1c, FPG, FPI, PPG, and PPI (RIFS model fits are shown in Supplementary Figure S1) in D group and DG groups (figure panels marked
with titles D and DG) are overlaid here with the longitudinal data from 201 individuals (100 D subjects in blue circles, 101 DG subjects in red circles) at
different visits. Solid blue and red lines depict the fitted subject-specific mean trajectories in the D group and the DG group, respectively. The black
dotted and solid lines represent the group-wise means for D and DG, respectively. Interquartile ranges of the data for D and DG groups are shown with
vertical interval plots (25th-75th quartiles) at each visit. The average treatment effects of GSH supplementation (β2) are denoted on top of each panel
corresponding to the DG group. The estimated β2 was significant on the rate of changes in GSH (β2 = 107.7 µM per month), GSSG (β2 = 13.02 µM per
month), 8-OHdG (β2 = −18.5 ng/μg DNA per month), FPI (β2 = 0.5 µU/mL per month) and PPI (β2 = −4.1 µU/mL per month) levels. The significance levels
of parameter estimate are given by pp < 0.05, ppp < 0.01, and pppp < 0.001. Abbreviations of the variables used here are HbA1c—glycated hemoglobin,
GSH—reduced glutathione, GSSG—oxidized glutathione, PP glucose—postprandial glucose, PP insulin—postprandial insulin, and 8-OHdG—8-hydroxy-
2-deoxy guanosine.
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Fasting Insulin
Our earlier work (Kalamkar et al., 2022) found that oral GSH

supplementation significantly changed FPI in elder patients. We
quantitated the effect on FPI using LME model estimates
(Supplementary Table S4). The average FPI is estimated to be
12.9 µU/mL in YA and 14 µU/mL in EA. In both EA and YA of
D, FPI decreased at rates of 0.4 µU/mL and 0.1 µU/mL per month,
respectively (Figure 2). The estimated rates were similar between the
YA of the D and DG, indicating that the effect on FPI is negligible
(p > 0.05). On the other hand, in EA of DG, FPI increased at a rate of
0.2 µU/mL per month, suggesting that GSH supplementation
improved FPI rates significantly by 0.6 µU/mL per month. FPI
increased by 4.3% of the baseline per month in EA and
negligibly in YA.

Postprandial Insulin
Using LME models to fit the data, PPI was found to decrease in

both YA and EA. The average PPI in YA and EA is estimated to be
46 and 51 µU/mL, respectively. In YA of D, PPI increased at a rate of
0.1 µU/mL per month, whereas in DG, it decreased at a rate of
4.7 µU/mL per month. PPI decreased at average rates of 1.6 µU/mL
and 5.2 µU/mL per month in EA of D and DG, respectively.

Fasting and Postprandial Glucose
The average FPG estimated in YA and EA are 156 and 150 mg/

dL, respectively. In both YA and EA, the GSH supplementation
effect wasn’t found to be significant. In both EAs of D and DG, FPG
decreased at average rates of 1.7 and 0.9 mg/dL per month,
respectively. Similarly, in YAs of D and DG, it decreased at
average rates of 1.3 and 0.8 mg/dL per month, respectively. PPG
estimated in YA and EA at the time of recruitment is 227 and
223 mg/dL, respectively. GSH supplementation decreased PPG by
2.5 mg/dL per month in EAs and increased PPG by 3.5 mg/dL per
month in YA.

For exploratory purposes, we also analyzed the effects of the age
using new candidate models as incorporated with age as a model
variable (Model 2, Model 3, and Model four in Supplementary
Section S1.4) for GSH, GSSG, 8-OHdG, HbA1c, FPG, FPI, PPG, and
PPI. Results obtained by fitting with these models are shown in
Supplementary Tables S5A–C. When we compared model fits from
all four models using AIC and BIC estimates, our original RIRS
model (Model 1) was found to be the better-fit model for all variables
(Supplementary Table S5D).

Changes in GSH correlate strongly with
changes in HbA1c and 8-OHdG in EA

We estimated pairwise correlations between subject-specific
slopes of GSH, GSSG, 8-OHdG, HbA1c, FPG, FPI, PPG, and PPI
obtained from RIRS models. These correlation diagrams for the full
population (pooled data) are shown in Figure 3A. Changes in GSH
are found to be strongly correlated positively with GSSG (r > 0.6)
and FPI (r > 0.9). Changes in GSH correlated negatively with 8-
OHdG and PPI (r < −0.6). The other correlations are found to be
relatively weaker.

Correlation plots for EAs alone are shown in Figure 3B. GSH
slopes are strongly negatively correlated with 8-OHdG slopes
(r = −0.71) and HbA1c slopes at moderate levels (r = −0.43).
GSH slopes are strongly negatively correlated with PPI slopes
(r = −0.74, Figure 3B); however, they are strongly positively
correlated with FPI (r = 0.75).

In YAs (Supplementary Figure S3), GSH slopes are negatively
correlated at moderate levels with 8-OHdG (r = −0.43) and PPI
(r = −0.57) slopes. The correlation between GSH slopes and HbA1c
slopes is negligibly small.

Taken together, the strengths of the correlations between the
changes in GSH and outcome variables are evidently different
between EAs and YAs.

We next use LME model estimates to help quantify the overall
rates of changes that can be expected of individuals.

Predicted trajectories for virtual diabetic
individuals

Next, we describe the sample predictions obtained for three
virtual individuals (V1, V2, and V3) using RIFS models. Baseline
values assumed for these virtual individuals are given in Table 3.

The trajectories of GSH, 8-OHdG, and HbA1c obtained if they
were with or without GSH supplementation are shown in Figure 4.

TABLE 2 Fixed-effects parameter values obtained by fitting LMEmodels of RIRS
form for GSH, GSSG, 8-OHdG, HbA1c, FPG, FPI, PPG, and PPI variables are
presented here with standard error associated with the estimates. Random-
effects parameter values are given in Supplementary Table S2. The fitted
results from the corresponding RIFS model are shown in Supplementary Table
S3. Average treatment effects (β2) of GSH supplementation were observed to
be significant on the rate of changes (slopes) for GSH, GSSG, 8-OHdG, FPI, and
PPI levels. Statistical significance levels of parameter estimates are given by
pp < 0.05, ppp < 0.01, and pppp < 0.001. Abbreviations of the variables used here
are the same as in Table 1.

Variable Fixed effect parameters

β0 (SE) β1 (SE) β2 (SE)

GSH (μM) 492.2 (27.4)ppp# 0.04 (8.6) 107.8 (10.3)ppp#

GSSG (μM) 221 (11.3)ppp# 4.9 (3.1) 12.7 (3.8)ppp#

8-OHdG (ng/μg DNA) 442 (7.5)ppp# −2.8 (2.6) −18.5 (2.9)ppp #

HbA1c (%) 8.4 (0.1)ppp # −0.06 (0.03) −0.05 (0.04)

FPG (mg/dL) 152.9 (3.9)ppp# −1.33 (1.09) 0.4 (1.3)

FPI (μU/mL) 13.4 (0.66)ppp# −0.3 (0.14)p 0.5 (0.2)pp

PPG (mg/dL) 224.4 (5.4)ppp# −1.6 (1.6) 0.3 (1.9)

PPI (μU/mL) 48.8 (2.3)ppp# −0.7 (0.6) −4.4 (0.7)ppp#

TABLE 3 Baseline assumptions for virtual individuals. The concentrations of
GSH, 8-OHdG, and HbA1c assumed at the baseline for virtual individuals (V1,
V2, and V3) to make predictions using RIFS models are shown in the table.

Subject ID GSH (μM) 8-OHdG (ng/μg DNA) HbA1c (%)

V1 200 500 10

V2 500 400 8

V3 800 300 6
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FIGURE 2
Average treatment effects of GSH supplementation in elder diabetics. The fitted results of RIRS models for GSH, GSSG, 8-OHdG, HbA1c, FPG, FPI,
PPG, and PPI variables (RIFSmodel fits are shown in Supplementary Figure S4) of elder adults (EA) are shown on different panels here with the longitudinal
data (blue circles for D individuals and red circles for DG individuals) at different visits. The data from 107 elder adults (52 from D and 55 from DG) are
overlaid with group-wise mean trajectories for D and DG groups represented by black dotted lines and solid lines, respectively. Interquartile data
ranges for individuals (from D and DG) are shown with vertical interval plots (25th-75th quartiles) at each visit. The average treatment effects of GSH
supplementation (β2) on the rate of changes (slope) denoted on top of corresponding panels which are significant on GSH (β2 = 104 µM per month), 8-
OHdG (β2 = −23.7 ng/μg DNA per month), HbA1c (β2 = −0.1% per month), FPI (β2 = 0.6 µU/mL per month), and PPI (β2 = −3.6 µU/mL per month) in elder
adults. The significance of these parameter estimates and abbreviations of the variables are the same as in Figure 1.

FIGURE 3
Correlation diagram between subject-specific changes (A) for the whole population and (B) for EAs. The correlation diagrams obtained between
subject-specific random slopes from fitted RIRS models for different biochemical measures (GSH, GSSG, 8-OHdG, HbA1c, FPG, FPI, PPG, and PPI) are
shown here. The strength and direction of correlation between subject-specific slopes are reflected in both color and size of the circular markers. The
scales of Pearson’s correlation coefficient have been classified as low (r < 0.4), moderate (r < 0.6), strong (r > 0.6), or very strong (r > 0.8). Blue
indicates a strong positive correlation, and red indicates a strong negative correlation. Abbreviations of the variables are the same as in Figure 1.

Frontiers in Pharmacology frontiersin.org08

Madathil et al. 10.3389/fphar.2023.1139673



RIFS models predicted the GSH of V1 close to 429 µM by the end of
6 months, whereas, on GSH supplementation, V1 ended up at
1,079 µM. Similar predictions were made for 8-OHdG and
HbA1c for all these individuals (Figure 4).

This can also be modified to estimate 1) the average time
required for a recruited individual to reach a particular level of a
biochemical parameter given the baseline value and 2) the expected
change in the level of a particular biochemical parameter with time.

Finding a patient’s potential trajectory has direct clinical and
academic uses. This method, therefore, can be used on newly added
subjects to predict different outcomes during 6 months, with or
without GSH supplementation.

Discussion

Our earlier study demonstrated population-level changes in
GSH, GSSG, HbA1c, 8-OHdG, FPG, FPI, PPG, and PPI; these
changes were further studied for younger and elder subgroups of
the patients. The response in individual patients is, unsurprisingly,
considerably varied; however, analyzing individual responses was
beyond the scope of that study. In the present study, we are focused
on explaining individual-level responses to GSH supplementation
over the full study period of 6 months. We addressed this through a
linear mixed-effects model framework. The major results of this
study are to characterize the variability in the inter-individual
biochemical response, in particular, determined by the age group
of an individual. To the best of our knowledge, this is the first inter-
individual analysis of the effects of GSH supplementation in patients
with diabetes.

The response to GSH supplementation was analyzed in the
earlier work (Kalamkar et al., 2022) by comparing 6-month changes
in D and DG groups through population-level Cohen’s-d-based
estimates. GSH supplementation was found to significantly affect
GSH, GSSG, and 8-OHdG levels (at moderate levels of Cohen’s d >
0.6) and not for HbA1c, FPG, FPI, and PPG variables. The LME
model framework helped analyze biochemical responses
longitudinally and obtain more refined estimates that account for
inter-individual and within-individual variations at two levels of
hierarchy. We note that LME models describe linear trajectories
over a 6-month duration. The estimates show that D and DG
average trajectories lie between the 25th and 75th percentiles of
the data at all visits; that is, these models are a good description of
the data.

Model estimates were consistent with the effect size estimates in
the earlier study (Kalamkar et al., 2022) for GSH, GSSG, 8-OHdG,
HbA1c, FPG, FPI, and PPG variables but not for PPI. LME estimates
determined that the GSH supplementation markedly enhanced the
rate of replenishments in erythrocytic GSH stores by about 22%,
GSSG stores by about 6%, and reduced oxidative DNA damage by
about 4% of the baseline month in diabetic patients. Importantly,
these estimates are in the actual (not relative) physical units and are,
therefore, directly interpretable for use in clinical applications.

We had identified an older subgroup separate from a younger
diabetic population that benefits better from GSH supplementation
through a post hoc subgroup analysis in our earlier study. That study
wasn’t designed to evaluate this analysis explicitly, and as such, it
was a weaker form of evidence. LMEmodels provided a more formal
way of comparing their differential responses; that is, two
independent models described the responses in each of these two

FIGURE 4
Model predictions for virtual individuals. Average trajectories of the concentration of GSH, 8-OHdG, and HbA1c predicted using RIFS models in
virtual individuals (V1, V2, and V3) if they were to be followed up with GSH supplementation (red) and without GSH supplementation (blue) are shown for
6 months are depicted here. The baseline values assumed and the values predicted after 6 months are alsomarked for V1, V2, and V3. Abbreviations of the
variables are the same as in Figure 1.
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age classes. GSH supplementation improved the rates of 8-OHdG
and HbA1c reduction in elder diabetic individuals more than in
younger diabetic cohorts. LME models estimated the effect to be
significant for FPI in elder patients, which supported our claims of a
beneficial elder cohort. Model estimates for GSSG suggested a
significant effect of GSH supplementation in younger patients (by
17 µM per month) but not in elder ones. In contrast to the earlier
results, PPI model estimates were found to be significant in both
elder and younger cohorts. Thus, ourmodel-based analysis describes
the extent to which diabetic patients above 55 can be expected to
benefit from GSH supplementation.

LME model estimates further allow for examining the strength
of the association between covariates. The results of the correlation
analysis (in Figure 3; Supplementary Figure S3) show to what extent
GSH intervention improves erythrocytic GSH stores and reduces
DNA damage. Estimates from the elder and younger individuals also
revealed that GSH changes were correlated strongly with changes in
HbA1c and 8-OHdG in elder adults.

Finally, we have formulated a scheme (in Supplementary Section
S1.5) that makes individual-specific predictions for newly recruited
subjects with diabetes, given a baseline measurement by using the
LME model estimates of the fixed-effects and random-effects
parameters. In particular, this scheme can be utilized to make
predictions of what changes might be expected in the
biochemical levels. Alternatively, the average time required for a
recruited patient to reach a particular range of biochemical
parameters in diabetic subjects can be estimated. The fitted LME
model estimates can be used to identify the extent of each subject’s
response, whether they are in a better or worse condition than the
average population response (Inzucchi et al., 2012; Kirkman et al.,
2012). These schemes are of direct clinical and academic use to
predict prospective trajectories, which can be a powerful addition to
the clinician’s toolbox.

Strengths of this study include that it is based on the data
available from diabetic individuals on a well-conducted, randomized
control trial, which is one of the most extensive GSH
supplementation studies so far. Using LME models, we evaluated
the individual trajectories and associated variations within
individuals and between individuals, which has not been done
before in GSH intervention studies.

It is particularly important to keep in mind that our
understanding of the results is based on the uncorrected p values.
The practice of correcting for multiple comparisons has been a topic
of debate among statisticians for several years now. Various
opinions were found in the literature in opposition regarding the
conditions under which a correction for multiple testing should be
applied. We note that several highly cited reports over the years
(Poole, 1991; Perneger, 1998; Cabin andMitchell, 2000) recommend
dismissing the usage of corrections with multiple comparisons. It
was shown that when trying to reduce the rate of false positives
(Type I error) for null associations, often leads to an increase in the
rate of false negatives (Type II error) for those that are not null
(Rothman, 1990). Also, these comparisons were often complained of
being unnecessarily conservative, which makes this approach
frequently fails to identify actual differences. However, for the
interest of all readers, we have also incorporated significance
levels after corrections for each comparison. Those readers who
prefer statistically corrected results should follow the corresponding

tables to determine which findings still retain significance and which
did not after correction for multiple comparisons.

We had earlier identified the differential effects of GSH
supplementation in elder and younger subgroups (Kalamkar et al.,
2022). This study analyzed the longitudinal responses of GSH
supplementation observed in these subgroups of diabetic individuals
rigorously with a framework of the LME models. The subgroup of
subjects above the median age of 55 is consistent with previous studies
that show an increased risk of diabetes-related complications in
individuals around this age. Several organizations have already
developed guidelines specific to, or including, older adults on their
annual Standards of Medical Care in Diabetes (American Diabetes
Association, 2012). These reports also discuss the severity of diabetes
complications in elders and the lack of high-level evidence on the
effectiveness of different medications in diabetics (Leung et al., 2018).
We think the onset of diabetes and complications should be addressed
differently for elder and younger diabetic individuals, and treatments
need to be planned separately from each other. The two independent
LME models formulated for analyzing the longitudinal trajectories of
elder and younger adults provided estimates of the treatment effect of
GSH supplementation on each endpoint separately. This helps in
identifying their extent of recovery and examining whether
individuals are in a better or worse condition than the average
profile in these subgroups on GSH supplementation for direct
clinical use. We recommend planning large-scale clinical trials to
examine these insights about GSH supplementation, especially in
elder diabetic individuals. This could help in establishing novel
benchmarks for caring for elder patients with diabetes. We have also
analyzed different possible models to study the effect of the age of
individuals on GSH supplementation. This will form the basis and
motivate a number of future studies to examine many of the finer
nuances of the effect of age on supplementation.

Some limitations of this study also need to be considered.
Although antidiabetic treatments were not changed during the
period of the study, patients did use different types of
medication. We have not analyzed the combinatorial complexity
of treatments further due to a lack of sufficient statistical power. It is
possible that future work may uncover if GSH supplementation is
particularly more effective with certain treatments than others. The
results presented here can be the basis for future GSH intervention
studies that advance precision diabetes research.
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