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1

Abstract

Seifert fiber spaces are compact 3-dimensional manifolds that are foliated
by circles. Seifert fiber spaces with isolated singular fibers have been well
studied. In this thesis, we focus on Seifert fiber spaces which have singular
surfaces and extend known results to such manifolds.

Two-sided incompressible surfaces in Seifert fiber spaces with isolated sin-
gular fibers can be isotoped to become either horizontal or vertical. Frohman
and Rannard have shown that one-sided incompressible surfaces in such man-
ifolds are either pseudo-horizontal or pseudo-vertical. We extend their result
to characterize essential surfaces in Seifert fiber spaces which may contain
singular surfaces. We also give a complete criterion for the existence of hor-
izontal surfaces in Seifert fiber spaces which may have singular surfaces.

We introduce prism complexes as an analogue of simplicial complexes.
And show that while every compact 3-dimensional manifold admits a prism
complex structure, it admits a special prism complex structure if and only if
it is a Seifert fiber space which has either non-empty boundary or singular
surfaces or it is a closed Seifert fiber space with Euler number zero. In
particular, a compact 3-dimensional manifold with boundary is a Seifert fiber
space if and only if it admits a special prism complex structure.

We will also briefly discuss our future work towards finding families of
manifolds that provide evidence for the L-space Conjecture.

2
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Introduction

The classification of 3-dimensional manifolds has become one of the central
ideas in low dimensional topology research since Thurston [Thu82] proposed
the Geometrization Conjecture in 1982. This conjecture was successfully
resolved by Perelman in 2002 . Geometrization is an analogue of the uni-
formization theorem for surfaces for dimension 3. But unlike the case of
surfaces, 3-manifolds cannot be classified by themselves but they do admit a
canonical decomposition into pieces that possess nice geometric structures.
These are the eight geometries described by Thurston. See [Sco83] for a
detailed description. Compact 3-manifolds admitting six out of the eight ge-
ometries (all except hyperbolic and Sol) have the structure of a special class
of 3-manifolds called the Seifert fiber spaces.

Seifert fiber spaces were first studied by Seifert in his paper [Sei33]. They
rose to prominence when Johannson [Joh79], Jaco and Shalen [JS79] found
these manifolds to be the only examples for non- uniqueness statement of
torus decomposition. Study of Seifert fiber spaces are important in their own
right for two reasons. Firstly, they coincide with the class of all compact 3-
manifolds foliated by circles [Eps72] and secondly they admit a combinatorial
description comprising of easily understood invariants.

The objects of study for the most part of this thesis are Seifert fiber
spaces. The orientable manifolds in this class have been extensively studied
since their discovery in the 1930s. But non-orientable Seifert fiber spaces,
especially the ones containing singular surfaces have been largely ignored.
Here, we extend some well-known results about orientable Seifert fiber spaces
to the non-orientable class and also provide a new way of looking at Seifert
fiber spaces via prism complexes.

3
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In Chapter 3, we recall the preliminary definitions and theorems pertain-
ing to 3-manifold topology, triangulations, knot theory and the basic theory
of Seifert fiber spaces required to understand the subsequent chapters. There
is no original work in this chapter.

In Chapter 4, we introduce the notion of prism complexes as discrete
structures to study Seifert fiber spaces akin to cube complexes for hyperbolic
manifolds. We also give a combinatorial criterion on such a complex to
ensure that the underlying manifold is a Seifert fiber space. Along the way, we
extend a well-known criterion for existence of horizontal surfaces in orientable
Seifert fiber spaces to the non-orientable cases as well. This chapter is based
on our paper [KN23b].

Essential surfaces play a pivotal role in 3-manifold topology. We cut
along them to obtain ‘simpler’ manifolds. It is well known that two-sided
essential surfaces in Seifert fiber spaces with isolated singular fibers may be
isotoped to a particularly nice form. They can either be isotoped to become
transverse to all the circle fibers or to a union of circle fibers. One-sided
incompressible surfaces in Seifert manifolds with isolated singular fibers were
studied much later by Frohman [Fro86] and Rannard [Ran96]. Rannard
showed that any incompressible surface in a Seifert fiber space with only
isolated singular fibers can be isotoped to become pseudo-vertical or pseudo
horizontal. In Chapter 5, we prove a similar structure theorem for essential
surfaces in Seifert fiber spaces which may have singular surfaces not just
isolated singular fibers. Along the way we also compile a complete list of
incompressible surfaces in a solid Klein bottle. This chapter is based on our
paper [KN23a].

In Chapter 6, we discuss ongoing work with Rachel Roberts and her stu-
dent Je↵rey Norton. There are no original results here. Our objective is
to provide evidence for the L-space Conjecture [6.1.3] by constructing taut
foliations in an infinite family of non-L-spaces. Based on the work of Tao Li
in [Li02], we attempt to construct laminar branched surfaces in torus knot
exteriors which carry essential laminations that may be extended to taut foli-
ations in the knot exterior. These can be further extended to the Dehn filled
manifold. Torus knot complements are Seifert fibered. Although the L-space
conjecture is known to be true for Seifert fiber spaces by the combined work
of a number of mathematicians (see [BC17], [BGW13], [BNR97], [CLW13],
[HRRW20], [EHN81], [LS09], [BC15]), no algorithm is known for constructing
taut foliations in such spaces. So, we hope that a laminar branched surface
in torus knot exterior can be modified to construct a branched surface in
the exterior of positive n-braids. In this chapter, we show how a potential



Chapter 2. Introduction 5

candidate fails to satisfy the conditions required to apply Li’s results about
laminar branched surfaces. Our aim is to find a suitable branched surface
where such results can be used to construct taut foliations. This constitutes
future work.



3

Preliminaries

3.1 Basic definitions and results

In this section, we discuss the basic notions and concepts that are frequently
used in the upcoming chapters. Most of the material covered here is based on
the books by Schultens [Sch14] and Hatcher [Hat]. Note that all manifolds
mentioned in this thesis are compact, connected and of dimension 3 unless
stated otherwise. Two dimensional manifolds will be referred to as surfaces.
Many of the definitions and theorems in this chapter could be generalised to
all manifolds but we will state them only for dimension 3.

Notation 3.1.1. 1. I denotes the closed unit interval [0, 1].

2. B
n = {x 2 R

n| ||x|| < 1} denotes the open unit ball in R
n.

3. D
n denotes the closure of Bn.

4. S
n = {x 2 R

n+1| ||x|| = 1} denotes the unit sphere in R
n+1.

Definition 3.1.2. Let M and N be 3-manifolds and gi : M �! N , i = 0, 1
be continuous maps. The maps g0 and g1 are said to be homotopic if there
exists a continuous map G : M ⇥ [0, 1] �! N such that G(x, 0) = g0(x) and
G(x, 1) = g1(x) for all x 2 M . The map G is said to be a homotopy between
g0 and g1.

Definition 3.1.3. Two embeddings gi : M �! N , i = 0, 1 are said to be
isotopic if there exists a continuous map G : M ⇥ [0, 1] �! N such that
G(x, 0) = g0(x) and G(x, 1) = g1(x) for all x 2 M and for each t 2 [0, 1], the

6
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map gt defined by G(., t) is an embedding. The map G is called an isotopy
between g0 and g1.

Two submanifolds are said to be isotopic if their inclusion maps are
isotopic.

Definition 3.1.4. Two smooth submanifolds M1 and M2 of a smooth man-
ifold M are transverse at the point x 2 M1 \ M2 if Tx(M1) and Tx(M2)
span Tx(M). The submanifolds are said to be transverse if it is transverse at
all x 2 M1 \M2.

Let f : K �! M be a smooth map and M2 be a smooth submanifold of M .
Then f is said to be transverse to M2 if for all a 2 K, f⇤(Ta(K))+Tp(M2) =
Tp(M) where f(a) = p and f⇤ : Ta(K) �! Tp(M) .

The theorem below says that transversality can be achieved via small
isotopies.

Theorem 3.1.5 (See [GP10]). Let f : M1 �! M be a smooth map and
let M2 be any smooth submanifold of M . Then there exists a smooth map
f
0 : M1 �! M homotopic to f and transverse to M2. Also, suppose F :

M1 ⇥ I �! M is a homotopy between f and f
0, then 8✏ > 0, the map

f✏(z) = F (z, ✏) is transverse to M2.

Next we give the definition of bundles. They give an interesting decom-
position of a given manifold in terms of manifolds of smaller dimensions.

Definition 3.1.6. A bundle is a quartet (M,F,B, p) where M , F , B are
manifolds and p : M �! B is a continuous map such that the following
holds:

1. for every b 2 B, p�1(b) is homeomorphic to F

2. there is an atlas {U↵} for B such that for every ↵ there is a homeo-
morphism f↵ : p�1(U↵) �! U↵ ⇥ F

3. the following diagram commutes:

p
�1(U↵) U↵ ⇥ F

U↵ U↵

h↵

p

id

Here M is called the total space, F is called the fiber and B is the base
space and p is the projection. The quartet (M,F,B, p) is referred to as an
F -bundle over B.
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Definition 3.1.7. Two bundles (M,F,B, p) and (M 0
, F

0
, B

0
, p

0) are said to be
isomorphic if there exist homeomorphisms h : M �! M

0 and g : B �! B
0

such that the following diagram commutes:

M M
0

B B
0

h

p p
0

g

Definition 3.1.8. A bundle isomorphic to a product bundle i.e. F ⇥ B

is called trivial bundle. Any other bundle is said to be non-trivial or
twisted.

Definition 3.1.9. A section of a bundle (M,F,B, p) is a continuous map
� : B �! M such that p � � = idB.

The following definition give an important class of bundles that frequently
appear in the later part of this thesis.

Definition 3.1.10. Let M be a 3-manifold and let f : M �! M be a
homeomorphism. The manifold obtained from M ⇥ [0, 1] by identifying (x, 0)
to (f(x), 1) for all x 2 M is called the mapping torus of f . The mapping
torus of f is a bundle with fiber M and base space S

1.

This is a related construction to the previous definition.

Definition 3.1.11. Let f : M �! N be a continuous map. The mapping
cylinder of f is the manifold obtained from M ⇥ I

`
N by identifying

(x, 0) 2 M ⇥ I to f(x) 2 N for all x 2 M .

In the remainder of this subsection we define some frequently used terms
and mention some relevant results.

Definition 3.1.12. Let M be a 3-manifold. Let K be a submanifold with
dim(K) = m. A regular neighborhood of K is an open submanifold N(K)
of dimension 3 that is the total space of a bundle over K with fiber B

3�m.
A regular neighborhood of a 1-manifold in a 3-manifold is called a tubular
neighborhood.

Theorem 3.1.13 (See [RS82]). For any submanifold K of M , there exists
a regular neighborhood N(K) in M . Also, any two regular neighborhoods of
K in M are isotopic.

Definition 3.1.14. A surface F in a 3-manifold M is said to be 2-sided if
a regular neighborhood of F in M is a trivial I-bundle and F is 1-sided if
it is twisted.
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Figure 3.1: The shaded disk is a compressing disk

Definition 3.1.15. Let M be a manifold and F be a properly embedded
surface. To cut M along F means to consider the manifold M � N(F ),
where N(F ) is a regular neighborhood of F .

Definition 3.1.16. Let F be a surface and � be a simple arc in F . We call
� an essential arc if there is no simple arc � in @F such that � [ � bounds
a disk in F .

Definition 3.1.17. A surface F 6= S
2 in a 3-manifold M is said to have

a compressing disk if there exists a simple closed curve in F that bounds
a disc in M but does not bounds a disc in F (see Figure 3.1). A surface
F ⇢ M is called incompressible if it has no compressing disk.

Definition 3.1.18. A properly embedded surface F in a 3-manifold M is
said to be boundary incompressible with respect to a surface G if
for every simple arc ↵ in F such that there exists an arc � 2 G with ↵ [ �
bounds a disk in M , ↵ is isotopic to an arc in F \G. When G = @M , F is
simply said to be boundary incompressible.

Definition 3.1.19. Let M be a 3-manifold and F ⇢ M be a surface. We say
F is boundary parallel if there exists an embedding ◆ : F ⇥ [0, 1] �! M

with ◆(F ⇥ {1}) ⇢ @M .

Definition 3.1.20. A surface F in M is called essential if it is incom-
pressible, boundary incompressible, and not boundary parallel.

The loop theorem is one of the most celebrated results in 3-manifold
topology. Loop theorem is in some sense a weaker generalization of Dehn’s
lemma. Papakyriakopoulos proved these theorems along with Dehn’s lemma
in his seminal paper [Pap57].

Theorem 3.1.21 (Dehn’s Lemma, [Pap57]). If an embedded circle in @M is
nullhomotopic in M , it bounds a disk in M .

Theorem 3.1.22 (The Loop Theorem [Sta60],[Pap57]). Let M be a con-
nected 3-manifold. If there is a map f : (D, @D) �! (M, @M) with f |@D not
nullhomotopic in @M , then there is an embedding with the same property.
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Corollary 3.1.23. Let F ⇢ M be a 2-sided surface. Then F is incompress-
ible if and only if ◆⇤ : ⇡1(F ) �! ⇡1(M) is injective.

The loop theorem fails for one-sided surfaces, as shown by Stallings in
[Sta60]. He constructs an incompressible Klein bottle inside the lens space
L(6, 1). Clearly the inclusion map is not ⇡1-injective. One-sided incompress-
ible surfaces are harder to work as this condition fails.

3.1.1 Manifold Decompositions

The first stage in decomposition of 3-manifolds is prime decomposition where
a 3-manifold is repeatedly cut along embedded 2-spheres so that they sepa-
rate into two ‘simpler’ 3-manifolds none of which is a 3-ball, and then gluing
3-balls along the resulting boundaries. Kneser [Kne29] showed this process
terminates after a finite number of steps and Milnor [Mil62] showed that such
a decomposition is unique upto a homeomorphism of the manifold.

The following theorem by Gugenhiem [Gug53] is central to the manifold
decomposition described next.

Theorem 3.1.24 ([Gug53]). An orientation preserving homeomorphism of
B

3 or S
3 is isotopic to identity.

Definition 3.1.25. Let M and M
0 be two oriented 3-manifolds. Remove

open 3-balls B and B
0 from M and M

0 respectively. Identify M and M
0 along

the S
2 boundary components via an orientation reversing homeomorphism

and the resulting 3-manifold is called the connected sum of M and M
0 and

is denoted by M#M
0.

A connected sum of any two manifolds is well-defined due to Theorem
3.1.24.

Definition 3.1.26. A manifold M is said to be prime if M = M1#M2

implies that one of the Mi’s is homeomorphic to S
3.

Theorem 3.1.27 (Prime Decomposition, [Kne29], [Mil62] ). Let M be a
compact, connected, orientable manifold. Then there exits a decomposition
of M into a connected sum of prime manifolds and this decomposition is
unique upto components that are S

3.

Definition 3.1.28. A 3-manifold M is said to irreducible if each sphere
in M bounds a ball.

Remark 3.1.29. A closed connected prime 3-manifold is either irreducible
or S

2 ⇥ S
1 or S

2⇥̃S
1 where the latter is a mapping torus of the antipodal

map of S2. See Proposition 1.4 in [Hat] for a proof.
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The next step in the decomposition of 3-manifolds involved cutting along
incompressible tori and Klein bottles.

Definition 3.1.30. An irreducible 3-manifold is said to be atoroidal if every
incompressible torus and Klein bottle is boundary parallel.

Theorem 3.1.31 (Torus Decomposition, See [Hat]). Let M be a connected,
irreducible, compact, orientable 3-manifold. Then there exists a finite col-
lection of disjoint incompressible tori T such that M cut along T has only
atoroidal components.

But, such a decomposition is not unique. See [Hat] for a counterexample.
The astonishing part is that Seifert fiber spaces account for all counterexam-
ples to the uniqueness statement as evident from the next theorem.

Theorem 3.1.32 (JSJ Decomposition, [Joh79], [JS79]). Let M be a compact,
orientable, irreducible 3-manifold. Then there exists a collection T ⇢ M

of disjoint incompressible tori such that each component of M |T is either
atoroidal or a Seifert fiber space and a minimal such collection is unique
upto isotopy.

Thurston’s geometrization also involves cutting along incompressible tori
into atoroidal and Seifert pieces but is not exactly the same as JSJ decom-
position, because some pieces in the JSJ decomposition might not admit
finite volume geometric structures.

Definition 3.1.33. A model geometry is a tuple (X,G) where X is a
simply connected manifold with a transitive action by a Lie group G such
that the stabilizer of each point of X is a compact subgroup of G.

Definition 3.1.34. A geometric structure on a 3-manifold M is a di↵eo-
morphism f : M �! X/� where X is a model geometry and � is a discrete
subgroup of G acting freely on X.

Theorem 3.1.35 (Thurston [Thu82], Perelman [Per02],[Per03b],[Per03a] ).
Let M be a compact, connected, irreducible manifold. Then M admits a
canonical decomposition along tori into pieces that possess geometric struc-
tures with finite volume.

Thurston describes eight model geometries that are needed for classify-
ing 3-manifolds. They are S

3, E
3, H

3, S
2 ⇥ R, H

2 ⇥ R, Universal cover

of SL(2,R) denoted by ^SL(2,R), Nil and Sol. Nil is a 3-dimensional Lie
group consisting of upper triangular matrices with real entries of the form
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0

@
1 x y

0 1 y

0 0 1

1

A under multiplication and is also called the Heisenberg group.

These manifolds fiber over E2. Compact manifolds admitting Sol geometry
are either the mapping torus of an Anosov map of a torus or quotients of
these by groups of order atmost 8.

Compact 3-manifolds admitting all but H
3 and Sol geometries admit

Seifert fiber structure. We define Seifert fiber spaces in the next section.

3.1.2 Triangulation

Sometimes introducing combinatorial structures to study manifolds makes
life much easier. Triangulation is one such commonly used tool to study
3-manifolds. We define triangulation using simplicial complexes.

Definition 3.1.36. The standard closed k-simplex is the set

{c0v0 + ...+ ckvk: ci � 0,
P

k

i=0 ci = 1}

where vi is a k + 1-tuple in R
k+1 and is denoted by [v0, ..., vk].

Definition 3.1.37. A k-simplex in a topological space Y is a continuous
map f : [v0, ..., vk] �! Y such that f |int([v0,...,vk]) is a homeomorphism onto
its image. Note that f([v0, ..., vk]) will be referred to as a k-simplex in Y .

Remark 3.1.38. 1. The standard 1-simplex is homeomorphic to a com-
pact interval in R.

2. The standard 2-simplex is homeomorphic to a triangle with vertices
(1, 0, 0), (0, 1, 0) and (0, 0, 1).

Definition 3.1.39. A (k � j) dimensional face of a standard k-simplex is
a subset of [v0, ..., vk] given by

{c0v0 + ...+ ckvk : ci1 = ... = cij = 0}

The faces of a k-simplex f : [v0, ..., vk] �! Y are images of restriction maps
f |[t] where [t] is a face of the standard k-simplex. A 0-dimensional face is
called a vertex and a 1-dimensional face is called an edge.

Definition 3.1.40. A simplicial complex on a topological space Y is a
set of simplices K = {f : [v0, ..., vk] �! Y } satisfying

1. For every simplex f 2 K, all faces of f are also in K
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2. For any two simplices f1, f2 in K, if the images of f1|int[s1] and f2|int[s2]
have non-empty intersection, then they are the same simplex.

Dimension of K is the maximum of dimensions of the simplices in K. The
union of images of simplices in K is called the underlying space of K and is
denoted by |K|.

Definition 3.1.41 ([Sch14]). A triangulated n-manifold is a pair (M,K)
where M is a topological n-manifold and K is a simplicial complex on M such
that

1. |K| = M

2. K is locally finite

3. for f, g 2 K restricted to open simplices, the map g
�1 � f is an a�ne

map on its domain.

K is called a triangulation of M .

It is worthwhile to study triangulations as any manifold with dimension
less than or equal to 3 can infact be triangulated.

Theorem 3.1.42 (Radó, Kerekjarto, Bing, Moise ). Any manifold with di-
mension less than or equal to 3 admits a triangulation.

A proof for dimension 2 can be found in [AS60] and for dimension 3 can
be found in [Moi52].

As we study triangulated manifolds, it makes sense to study interesting
maps between the manifolds that respect the triangulations on them. The
following definition makes this idea precise.

Definition 3.1.43. Let K and  L be simplicial complexes. A continuous map
F : |K| �! | L| is said to simplicial if for any simplex f 2 K, F � f = g is
a simplex in  L. F is a simplicial isomorphism if it is a simplicial map and a
homeomorphism, in which case K and  L are said to be isomorphic.

Definition 3.1.44. Let (Mi,Ki), i = 0, 1 be two triangulated n-manifolds.
They are considered to be equivalent if K0 and K1 are isomorphic.

Definition 3.1.45. A simplicial complex  L is said to be a subcomplex of
a simplicial complex K if every simplex in  L is also a simplex in K.

Definition 3.1.46. For any k-simplex K, an r-skeleton where r  k, de-
noted by Kr is collection of all the simplices in K whose dimension is less
than or equal to r.
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First barycentric subdivision of a triangle

Note that Kr is a subcomplex of K.

Definition 3.1.47. Let [t] = [v0, ..., vk] be the standard k-simplex and let
v 2 [t] be any point. Then v = c0v0 + ... + ckvk for some (k + 1)-tuple
(c0, ..., ck) where ci 2 [0, 1] for i = 1, .., k. This k + 1-tuple is called the
barycentric co-ordinates of v.

Definition 3.1.48. The point b([v0, ..., vk]) =
1

k+1v0+ ...+ 1
k+1vk is called the

barycenter of the standard k-simplex.

Define a partial order on a simplicial complex K as follows: for simplices
[t1], [t2] 2 K, [t1]  [t2] if and only if [t1] is a face of [t2] and write [t1] < [t2]
when [t1]  [t2] and [t1] 6= [t2].

Definition 3.1.49. For a standard k-simplex [t], let [t0], ..., [tm] be a collec-
tion of its faces with [t0] < [t1] < [t2] < ... < [tm]. The first barycentric
subdivision of [t] is the union of all simplices of the form

{[b([t0]), ..., b([tm])]: [t0], ..., [tm] faces of [t] such that
[t0] < [t1] < [t2] < ... < [tm] }

For a simplicial complex K, the first barycentric subdivision denoted by
K(1) is the simplicial complex obtained by taking the union of first barycentric
subdivisions of the standard simplices in K. The n-th barycentric subdi-
vision of K is given by taking the first barycentric division n times denoted
by K(n) = (((K(1))(1))...)(1).

See Figure 3.1.2 for the first barycentric subdivision of a standard 2-
simplex.

3.1.3 Knot Theory

This subsection on elementary knot theory required to follow the succeeding
chapters is primarily based on the books by Schultens [Sch14], Adams [Ada04]
and Rolfsen [Rol90].
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Definition 3.1.50. A knot K in S
3 is a smooth isotopy class of smooth

embeddings k : S1 �! S
3. More generally, K is called a link if it is a smooth

isotopy class of embeddings of a disjoint union of circles in S
3.

Two knots or links K0 and K1 are equivalent if there is an isotopy F :
S
3 ⇥ I �! S

3 such that F (K0, 1) = K1.

Example 3.1.51. 1. The isotopy class of embeddings containing the un-
knotted circle {(x, y, z)|x2 + y

2 = 1, z = 0} is called the unknot or the
trivial knot.

2. Consider the line y = p

q
x in R

2. The image of this line under the

covering map ⇡ : R2 �! S
1 ⇥ S

1 given by ⇡(x, y) = (e2⇡ix, e2⇡iy) is a
simple closed curve on a torus. This curve is called a (p, q)-torus knot
denoted by Tp,q. The knot T2,3 is called a trefoil knot.

Let the exterior of a knot K in S
3 denoted by XK be given by S3 �N(K)

where N(K) is a regular neighborhood of K. Knot complements are an im-
portant class of compact 3-manifolds. One of the most fundamental theorems
in knot theory is the following:

Theorem 3.1.52 (Gordon-Luecke, [GL89]). Let K1 and K2 be two knots in
S
3. If XK1 and XK2 are homeomorphic, then K1 and K2 are equivalent.

Such a result is not true for links.

Definition 3.1.53. Let ↵ and � be two transverse simple closed curves on
a surface. Then

i(↵, �) =
X

p2↵\�

ip(↵, �)

denotes their algebraic intersection number, given by the convention in
Figure 3.2.

Definition 3.1.54. A knot K 2 S
3 is said to be fibered if XK is a map-

ping torus F ⇥ [0, 1]/�, where F is a compact surface, � : F �! F is a
homeomorphism and (x, 0) ⇠ (�(x), 1).

Remark 3.1.55. 1. @XK is a torus. A simple closed curve on @XK that
bounds a disk in N(K) is called a meridian. All meridians are isotopic.
The isotopy class of all meridians is represented by [m] or simply m

when there is no confusion.
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v

wp

Figure 3.2: ip(v, w) = 1

2. Any curve l such that i(l,m) = 1 is called a longitude. All longitudes
are not isotopic. For the unknot, the preferred longitude is the curve l

that bounds a disk in XK.

3. H1(@XK) is generated by the longitude l and the meridian m.

The following construction is used to obtain new 3-manifolds by modifying
the given 3-manifold. It is often thought of as drilling and filling. This is one
of the most important constructions in the theory of 3-manifolds.

Definition 3.1.56. Let M be a compact 3-manifold and L = L1[L2[...[Ln

be a link in its interior.

1. Let Ni be closed tubular neighborhoods of Li in the interior of M

2. Let ci be a specified curve on @Ni.

Let M 0 = (M�(
S
int(Ni))

S
h
(
S

Ni) where h is a union of homeomorphisms
hi : @Ni �! @Ni such that it takes the meridian curve mi to the specified
curve ci. Then M

0 is said to be obtained by Dehn surgery on M along the
link L with surgery description 1 and 2.

When M = S
3, h⇤(mi) = [ci] = pili + qimi where li is the longitude and

mi is the meridian. We call ri =
qi

pi
the surgery co-e�cient associated

with the component Li.

The importance of Dehn surgery is evident from the following theorem
which was first proved by Wallace in 1960 and then a stronger version was
proved independently by Lickorish in 1962.

Theorem 3.1.57 (Lickorish-Wallace, [Wal60],[Lic62]). Every closed, ori-
entable, connected 3-manifold is obtained by Dehn surgery on a link in S

3.
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Figure 3.3: Seifert surface of the trefoil knot.

Definition 3.1.58. Let � be an essential simple closed curve on a torus.
Then the slope of � is i(�,l)

i(m,�) where i(�, l) and i(m,�) is the algebraic inter-
section number of � with l and m respectively.

The following definition gives a way to construct new knots and links in
a manner similar to connected sum.

Definition 3.1.59. Let (M1, N1) and (M2, N2) be two pairs of manifolds such
that Ni is a locally flat submanifold of M1. Remove standard ball pair (Bi, B

0
i
)

from (Mi, Ni) and sew them back by a homeomorphism h : (@B2, @B
0
2) �!

(@B1, @B
0
1) to form a pair connected sum.

In a special case, Let Ki, i = 0, 1 be oriented knots in S
3. Then their

connected sum denoted by K0#K1 is defined to be the pair connected sum
(S3

,K0)#(S3
,K1). This operation is well-defined for oriented knots.

Definition 3.1.60. A knot K is said to be a composite knot if it can be
expressed as a connected sum of two non-trivial knots. A knot that cannot be
expressed a connected sum of non-trivial knots is called prime.

Definition 3.1.61. A Seifert surface of a knot Kin S
3 is a compact,

orientable, connected surface F such that @F = K.

Every knot admits a Seifert surface. Seifert’s algorithm (See Pg. 110
[Sch14] for instance) gives a construction for a Seifert surface for any knot.
See Figure 6.11 for a picture of a Seifert surface of the trefoil knot.

Definition 3.1.62. The genus of a knot K is the minimum possible genus
of a Seifert surface of K. It is denoted by g(K).

Definition 3.1.63. A positive knot in S
3 is an oriented knot whose every

crossing is as shown in Figure 3.4.
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Figure 3.4: Positive crossing

Figure 3.5: �4 as an example of 5-braid

Every knot can be represented as the closure of a closed braid. We define
braids next.

Definition 3.1.64. An n-braid is a collection of n disjoint strings or arcs
that are attached to a horizontal bar at the top and bottom. These strings
monotonically connect the top to the bottom. Two n-braids are said to be
equivalent if they are isotopic relative to their end-points.

Definition 3.1.65. Let �i be the braid consisting of only a single positive
crossing such that the i-th strand crosses over the (i+ 1)-th one as shown in
Figure 3.5.

Two n-braids can be multiplied by placing one on top of the other. This
operation turns n-braids into a group called the braid group with presentation
< �1, ..., �n�1|�i�j = �j�i if |i� j| � 2, �i�i+1�i = �i+1�i�i+1 >.

Definition 3.1.66. The closure of a braid is the knot diagram obtained
from a braid by connecting the top end-points of the strings to the correspond-
ing ones at the bottom by disjoint arcs. Any knot obtained in this fashion is
called a closed braid.

Figure 3.6 represents the trefoil knot as a closed 2-braid.

Murasugi sum or generalized plumbing is an operation that relates to two
oriented surfaces another oriented surface under certain conditions.

Definition 3.1.67 (See [Gab87b]). Let F , F1 and F2 be compact oriented
surfaces in S

3. Then F is said to be a Murasugi Sum of F1 and F2 if
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Figure 3.6: Trefoil knot as a closed braid

F

F

1

2 F

S

Figure 3.7: Local picture of plumbing of two surfaces

1. F = F1 [D F2 where D is a 2n-gon

2. F1 ⇢ B1, F2 ⇢ B2, where B1, B2 are 3-balls and B1 \ B2 = S, S is a
2-sphere, B1 [B2 = S

3 and F1 \ S = F2 \ S = D

When D is a 4-gon, Murasugi sum is known as plumbing (See Figure 3.7).

In [Gab87b], Gabai shows that Murasugi sum is a natural geometric op-
eration which means if F1 and F2 satisfy certain geometric properties, then
so does F . Let Li be the oriented link @Fi and L = @F .

Theorem 3.1.68 (Theorem 1,[Gab87b]). The Murasugi sum of incompress-
ible surfaces is incompressible i.e. if for i = 1, 2, Fi is incompressible in
S
3 � intN(Li) then F is incompressible in S

3 � int(L).
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Theorem 3.1.69 (Theorem 2, [Gab87b]). Murasugi sum of minimal genus
surfaces is minimal genus i.e. if for i = 1, 2 Fi is a minimal genus Seifert
surface for Li then F is the minimal genus Seifert surface for L.

This generalizes Seifert’s result about connected sum of minimal genus
surfaces giving minimal genus Seifert surface for the connected sum of their
boundaries.

Theorem 3.1.70 (Theorem 3, [Gab87b]). The Murasugi sum of fibered links
is fibered i.e. if for 1 = 1, 2 Li are fibered with fiber Fi, then L is fibered with
fiber F . Conversely if L is fibered with fiber F , then so are Li, with fiber Fi.

3.2 Seifert Fiber Space

3.2.1 Introduction

This section deals with basic definitions pertaining to Seifert fiber spaces
and the fiber-preserving classification of these manifolds. The material here
is based mostly on [CMMN20],[Sco83] and [Sch14].

Definition 3.2.1. Let D2 = {re2⇡ix|0  r  1, x 2 [0, 1]}. A fibered solid
torus, denoted by T (p, q) where p, q 2 N[ {0}, 0  q < p and gcd(p, q) = 1,
can be constructed by taking D2⇥[0, 1] and identifying (re2⇡ix, 0) to (re2⇡i(x+

q
p ), 1).

When p = 1, T (p, q) is called the trivial fibered solid torus.

Definition 3.2.2. Let ↵ and � be two simple closed curves on a surface F .
The geometric intersection number, denoted by i(↵, �), is defined as the
minimum cardinality of a \ b over all simple closed curves a isotopic to ↵
and b isotopic to �.

Definition 3.2.3. Let T be a solid torus. A meridian disk in T is a properly
embedded boundary incompressible disk. The boundary of a meridian disk is
referred to as a meridian, denoted by m. Any curve l on @T with i(m, l) = 1
is called a longitude for @T . Upto isotopy there is a unique meridian for
@T .

Remark 3.2.4. Given any curve c on @T , we can express [c] = p[l] +
q[m] therefore referring to c as a ‘(p, q)-curve’. Here we are assuming that
gcd(p, q) = 1 and we mean that c is a representative of the unique isotopy
class of simple closed curves representing p[l] + q[m].

Definition 3.2.5. A fibered solid Klein bottle can be constructed by tak-
ing D

2 ⇥ [0, 1] and identifying (re2⇡ix, 0) to (re2⇡ir(x), 1) where r : D2 �! D
2

is a reflection along some diameter of D2.
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r

Figure 3.8: The shaded annulus is a singular surface in the fibered solid Klein
bottle.

Remark 3.2.6. As opposed to the infinite number of embedded curves on a
torus, there are only four embedded curves on a Klein bottle upto isotopy.

Definition 3.2.7. A fiber-preserving homeomorphism between T1 and
T2 is a homeomorphism f : T1 �! T2 that takes fibers to fibers.

In a fibered solid torus T (p, q) with gcd(p, q) = 1, all the fibers except
the central fiber wind along the generator of ⇡1(T (p, q)) p times and q times
around the central fiber. Hence if there exists a fiber-preserving homeomor-
phism between T (p, q) and T (p0, q0) then p = p

0 and q = q
0 (mod p).

Since all reflections of a disk are isotopic, there is only one fibered solid
Klein bottle upto fiber-preserving homeomorphism.

Definition 3.2.8. A Seifert fiber space is a 3-manifold M with a decom-
position into disjoint circles, called fibers, such that each circle has a regular
neighborhood isomorphic to a fibered solid torus or fibered solid Klein bottle.
The description of M in terms of these fibers is called a Seifert fibration
of M .

Definition 3.2.9. A fiber whose regular neighborhood is a trivial fibered solid
torus is called regular, otherwise the fiber is said to be singular.

A fibered solid torus has at most one singular fiber, namely the central
fiber. A fibered solid Klein bottle on the other hand, has a continuous family
of singular fibers whose union is an annulus as shown in Figure 3.8. Hence
in general, for a Seifert fiber space, singular fibers are either isolated or may
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form subsurfaces. These singular surfaces are either embedded annuli or are
closed surfaces obtained by gluing two annuli along their boundaries, i.e.
either a torus or a Klein bottle. Note that when the manifold is orientable,
it contains no singular surfaces.

Definition 3.2.10. A codimension-p foliation F of an n-manifold is a
smooth atlas with the following properties:

1. for each chart (U↵, h↵), h↵ : U↵ �! R
p ⇥ R

n�p;

2. for every x 2 R
p there exists y 2 R

p such that the transition maps
h↵� : h↵(U↵\U�) �! h�(U↵\U�) satisfy h↵�({x}⇥R

n�p) = {y}⇥R
n�p.

F is co-oriented if its leaves admit locally compatible co-orientations.

A maximal codimension p injectively immersed submanifold N such that
each component of N \ U↵ is {c} ⇥ R

n�p whenever the intersection is non-
empty is called a leaf of the foliation.

Example 3.2.11. Seifert fiber spaces are a special class of codimension-2
foliations in 3-manifolds with circles as leaves.

In the original definition by Seifert in [Sei33], he does not include the fibers
with solid Klein bottle neighborhoods. This is a more general definition as
seen in [Sco83]. Epstein [Eps72] showed that a compact 3-manifold is foliated
by circles if and only if it is a Seifert fiber space. This elegant statement would
not be true with Seifert’s original definition. Also, Epstien’s result tells that
Seifert fiber spaces account for all compact 3-manifolds foliated by circles.

3.2.2 Orbifolds

Let M be a Seifert fiber space and let B denote the quotient space obtained
by collapsing each fiber to a point and p : M �! B denote this map. In
this subsection we shall explore the structure of B, which shall henceforth
be called the base space of M .

Let Zp denote the cyclic group of order p. Zp acts on D
2 by a rotation of

angle 2⇡
p
. The orbit space of this action is topologically a disk, but is not a

smooth quotient manifold. The quotient map q : D2 �! D
2
/Zp is a p-fold

covering map except at 0 2 D
2.

Definition 3.2.12. An n-dimensional orbifold is defined as a Hausdor↵,
paracompact topological space which is locally homeomorphic to the quotient
space of Rn by a finite group action.
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In general an orbifold may not even be homeomorphic to a manifold.
But in dimension 2, any orbifold is homeomorphic to a surface. The only
singularities possible in dimension two are as follows:

1. If G is a cyclic group, the quotient space R
2
/G is a cone C with cone

angle 2⇡
p

where p is the order of G. This space inherits a Riemannian
metric on C � {0} where {0} is the vertex of C. A singularity of this
type is called a cone point.

2. If G = Z2 generated by reflection in a line l ⇢ R
2, then R

2
/G is

isometric to a half-plane whose boundary is the image of l. Here the
quotient space inherits a Riemannian metric away from the image of l.
In this case, all of l is singular and is called a reflector line.

3. If G is the dihedral group of order 2n then R
2
/G is isometric to an

infinite wedge with angle ⇡

n
. Here there are two singular semi-infinite

boundary lines and singular intersection point of these lines. A singular
locus of this kind is called a corner reflector.

The base space B of a Seifert fiber space M admits the first two kinds of
singularities namely cone points corresponding to the projection of singular
fibers in T (p, q) where p > 1 and reflector arcs corresponding to the projection
of singular annuli in fibered solid Klein bottles. It also has reflector circles
corresponding to projection of singular tori and Klein bottles. B does not
have corner reflectors. See Section 2 of [Sco83] for more details.

Let S be the singular locus of B and let N(S) be an open regular neigh-
borhood of S. Then the pre-image of the complement of N(S) is a circle
bundle over the compact surface B �N(S).

3.2.3 A Combinatorial Description

A combinatorial description as well as the classification of closed Seifert fiber
spaces is given in [Fin76] and was extended to include the manifolds with
boundary in [CMMN20]. We briefly discuss the material from Section 2 of
[CMMN20] here.

Let p⇤ : M⇤ �! B
⇤ be a compact Seifert fiber space without any singular

fibers, that is, an S
1-bundle over B

⇤. If @B⇤ 6= ;, then B
⇤ is homotopy

equivalent to a wedge of circles. Over each generator circle there are only
2 circle bundles possible, namely the torus and Klein bottle. Therefore any
circle bundle over B⇤ determines a homomorphism ✓ : H1(B⇤) �! {�1, 1}
defined by ✓(↵) = 1 if and only if the orientation of a fiber in M

⇤ is preserved
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as it traverses through ↵ in B
⇤. This gives a bijection between circle bundles

over B
⇤ and the set of all homomorphisms {✓ : H1(B⇤) �! {�1, 1}}. A

precise classification was done by Fintushel in [Fin76].

IfB⇤ has genus g, n boundary components and is orientable, thenH1(B⇤) =
{a1..., ag, b1, ..., bg, c1, .., cn|c1 + ... + cn = 0}. If B⇤ is non-orientable, then
H1(B⇤) = {v1..., vg, c1, .., cn|c1 + ...+ cn + 2v1 + ...+ 2vg = 0}.

The S
1-bundle p

⇤ : M⇤ �! B
⇤ is said to be of type:

1. o1 if ✓(ai) = ✓(bi) = 1 for all i = 1, ..., g

2. o2 if ✓(ai) = ✓(bi) = �1 for all i = 1, ..., g

3. n1 if ✓(vi) = 1 for all i = 1, ..., g, g � 1

4. n2 if ✓(vi) = �1 for all i = 1, ..., g, g � 1

5. n3 if ✓(v1) = 1 and ✓(vi) = �1 for all i = 2, ..., g, g � 2

6. n4 if ✓(v1) = ✓(v2) = 1 and ✓(vi) = �1 for all i = 3, ..., g, g � 3

Theorem 3.2.13 ([Fin76]). Let B
⇤ be a compact surface with @B

⇤ 6= ;.
The fiber-preserving homeomorphism classes of circle bundles over B⇤ are in
one-to-one correspondence with the pairs (k, ✏), where k 2 2Z+ and counts
the number of cj such that ✓(cj) = �1. If k = 0, then ✏ = o1 or o2 when
B

⇤ is orientable and ✏ = n1, n2, n3 or n4 when B
⇤ is non-orientable. If

k > 0, then ✏ = o with o = o1 = o2 when B
⇤ is orientable and ✏ = n with

n = n1 = n2 = n3 = n4 when B
⇤ is non-orientable.

If B⇤ is a closed surface, then in order to determine a bundle over B
⇤,

along with H1(B⇤) �! {�1, 1} we need an additional invariant b, which is
the obstruction to existence of a section of the bundle. When M

⇤ is ori-
entable, b 2 Z otherwise b = 0, 1. For a detailed discussion, see [Sco83].

The symbols needed for the combinatorial description of compact Seifert
fiber spaces are introduced below.

1. g, t, k,m+,m�, r 2 Z
+ with k +m� 2 2Z+ and k  t;

2. ✏ 2 E where E = {o, o1, o2, n, n1, n2, n3, n4} such that ✏ = o, n if and
only if k +m� > 0, if ✏ = n4 then g � 3, if ✏ = n3 then g � 2 and if
✏ = o2, n, n1, n2 then g � 1;
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3. h1, ..., hm+ , k1, ..., km� 2 Z
+ such that h1  ...  hm+ and k1  ... 

km� ;

4. (pi, qi) be lexicographically ordered pairs of co-prime integers such that
0 < qi < pi if ✏ = o1, n2 and 0 < qi <

pi

2 otherwise, for i = 1, ..., r;

5. b 2 Z be arbitrary if t = m+ = m� = 0 and ✏ = o1, n2; b = 0, 1 if
t = m+ = m� = 0 and ✏ = o2, n3, n4 and no pi = 2; b = 0 otherwise

Let M = {b; (✏, g, (t, k)); (h1, ..., hm+ | k1, ..., km�); ((p1, q1), ..., (pr, qr))}
denote the Seifert fiber space with the above mentioned parameters. A con-
struction of such a manifold is given in [CMMN20] and is described briefly
in Section 2 of the next chapter.

Remark 3.2.14. The manifold M is closed if and only if m+ + m� = 0
and oriented if and only if ✏ = o1 or n2, m� = t = 0 and hi = 0 for all
i = 1, ...,m+.

The classification theorem for Seifert fiber spaces is as follows:

Theorem 3.2.15 (Theorem A of [CMMN20]). Every Seifert fiber space
is uniquely determined, up to fiber-preserving homeomorphism, by the nor-
malised set of parameters

{b; (✏, g, (t, k)); (h1, ..., hm+ | k1, ..., km�); ((p1, q1), ..., (pr, qr))}

Definition 3.2.16. For a closed Seifert fiber space M , the Euler number
of the fibering is given by e(M) =

P
r

i=1
qi

pi
+ b.

Note that if M has no singular fibers, then e(M) is an integer and is the
obstruction to the existence of a section of p : M �! B.

3.2.4 Incompressible surfaces

Essential surfaces in Seifert fiber spaces can be isotoped to a particularly nice
form as given below.

Lemma 3.2.17 (Lemma 1.10,[Hat]). Let F be a connected 2-sided incom-
pressible surface in an irreducible 3-manifold such that @F is contained in a
torus boundary component T of M . Then F is either essential or a boundary
parallel annulus.
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Proof. Let D be a boundary compressing disk for F with @D = ↵[ � where
↵ ⇢ F and � ⇢ T ⇢ @M . The circles of F \ T do not bound disks, for
otherwise F would be a disk and disks are boundary incompressible. Let the
annulus component of T |@F containing � be A. If � cuts o↵ a disk D

0 from A

then D[D
0 is a compressing disk for F . Since, F is incompressible ↵ cuts o↵

a disk from F which contradicts our assumption. Hence, end points of � lie
on distinct components of @A. If @F is a single curve then F is one-sided. So,
end-points of � lie in distinct components of @F . Let N be a neighborhood
of @A [ ↵ in F . Note that @N � @F bounds a disk outside of F namely
D1[D2[D

0 where @N(D) = D1[D2[N(↵) and D
0 = A\N(�). Since F is

incompressible, there is another disk in F with the same boundary turning
F into an annulus. Surgering F [A along D gives a sphere which bounds a
ball. So, F [ A bounds a solid torus and hence F is boundary parallel.

The following lemma shows that most Seifert fiber spaces are irreducible.

Lemma 3.2.18. (Proposition 1.12, [Hat]) A compact Seifert fiber space with
isolated singular fibers is irreducible except when it is S

1 ⇥ S
2, S

1⇥̃S
2 or

RP
3#RP

3.

We extend the result to all Seifert fiber spaces in our paper [KN23a]
detailed in Lemma 5.2.2 of Chapter 5.

The following result is by Waldhausen [Wal67]. The proof mentioned here
is based on the proof of Proposition 1.11 in [Hat].

Theorem 3.2.19 ([Wal67]). In an irreducible connected compact Seifert fiber
space M with no singular surfaces, any 2-sided essential surface F is isotopic
to a surface which is either vertical i.e. union of regular fibers or horizontal
i.e. transverse to each fiber.

Proof. Remove the neighborhoods of singular fibers (or a single regular fiber
if there are no singular ones) from M . We obtain a circle bundle M0 �! B0

where B0 is the compact surface obtained by deleting disk neighborhoods of
points corresponding to the singular fibers. Choose disjoint arcs on B0 such
that deleting those turns it into a disk. Let the collection of annuli that are
pre-images of these arcs be called A. Note that M0 cut along A is a solid
torus M1. Since, F is essential and M is irreducible, @F is non-trivial in @M .
Hence @F may be isotoped to be horizontal or vertical in the torus and Klein
bottle boundary components of M such that vertical circles are disjoint from
A. Since F may be assumed to be transverse to all the singular fibers, it may
be assumed to be transverse to all their regular neighborhoods. So, we have
S0 = M0 \ S also has boundary circles either vertical or horizontal in @M0.
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Now the trivial circles of F \A can be eliminated by using incompressibilty
of F and the irreducibility of M . If F \ A has arcs with both end-points
on the same component of an annulus in A, those can be eliminated too
via an isotopy of F . So, F \A either has vertical circles or horizontal arcs.
Now, in F1 = F0|A, @F1 consists of horizontal or vertical circles in M1.
F1 is incompressible in M1, by using Lemma 3.2.17, it is either essential
or a boundary parallel annuli. So F1 may be isotoped fixing boundary to
a collection of meridian disks or boundary parallel annuli. If the boundary
parallel annulus has a horizontal boundary, then we can find a @-compressing
disk D, cutting along which we obtain arcs with both end-points on the same
boundary components of annuli in A. So, either we have F1 to be a collection
of meridian disks or boundary parallel annuli with vertical boundaries (since
vertical and horizontal circles intersect on @M1). Now, in the former case we
may isotope F1 to be horizontal fixing @F1 thus obtaining an isotopy of F
into a horizontal surface. Similarly, in the other case F may be isotoped to
be vertical.

Vertical surfaces are easy to understand as they are just the union of circle
fibers. But existence of a horizontal surface has interesting implications for
the manifold. The following existence criterion for horizontal surfaces in
orientable Seifert fiber spaces is well-known. We extend this criterion to all
Seifert fiber spaces in Theorem 4.1.5 of [KN23b].

Theorem 3.2.20 (Proposition 2.2, [Hat]). Let M be an orientable Seifert
fiber space.

1. When @M 6= ; then horizontal surfaces exist in M .

2. When @M = ; then horizontal surfaces exist if and only if e(M) = 0.

The existence of horizontal surfaces in an orientable Seifert fiber space
implies that the manifold M is either a surface bundle over circle with fiber
the horizontal surface or it is a union of two twisted I-bundles. We extend
this result to all Seifert fiber spaces in Corollary 4.2.6 of [KN23b].

Corollary 3.2.21. Let M be a compact, orientable 3-manifold and let F

be a compact 2-sided surface properly embedded in M . The following are
equivalent:

1. M is a Seifert fiber space and F is a horizontal surface in M that
intersects each regular fiber of M n times.

2. At least one of the following is true:
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BA

BA

id

Figure 3.9: A one-sided incompressible surface inside a solid torus

(a) There exists a homeomorphism � of F such that M = F ⇥ I/ ⇠,
where (x, 1) ⇠ (�(x), 0) for all x 2 F . Furthermore �n = id.

(b) There exist homeomorphisms  0 and  1 of F such that M =
F ⇥ I/ ⇠, where (x, 0) ⇠ ( 0(x), 0) and (x, 1) ⇠ ( 1(x), 1). Fur-
thermore, n is even, ( 0 1)n/2 = id and both  0 and  1 are fixed-
point free involutions.

The proof of this corollary can be exactly replicated for the general case
as well. We do this verification in Corollary 3.2.6 of [KN23b].

In his paper [Rub78], Rubinstein proved that any two incompressible
surfaces embedded in a lens space L(2k, q) are isotopic. Along the way, he
proved that the only 1-sided incompressible surfaces in a solid torus (D2⇥S

1)
are once-punctured non-orientable surfaces with boundary a (2k, q)-curve.
Figure 3.9 shows a one-sided incompressible surface with boundary a (2, 1)
curve inside a solid torus.

We have the following list of incompressible surfaces inside a solid torus.

Lemma 3.2.22 (Lemma 3.5,[Ran96]). Let M be D2⇥S
1 and F be a properly

embedded connected incompressible surface. Then F is one of the following:

1. a boundary parallel disk

2. a boundary parallel annulus

3. a meridian disk

4. a once-punctured non-orientable surface
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We make a similar list of possible incompressible surfaces in a solid Klein
bottle in Theorem 4.3.10 of our paper [KN23a].

A structure theorem for 1-sided incompressible surfaces in closed Seifert
fiber spaces without singular surfaces was provided by Frohman in [Fro86].

Definition 3.2.23. Let F be an embedded surface in M . Then F is said to
pseudo-vertical if F \ M

⇤ is vertical where M
⇤ is M with neighborhoods of

singular fibers removed , and F \ Ti (where Ti are the neighborhood of the
singular fibers) is either empty or is a once punctured non-orientable surface.

It is said to be pseudo-horizontal if F \ M
⇤ is horizontal and F \ Ti is

either a collection of meridian disks or is a once punctured non-orientable
surface.

Theorem 3.2.24 (Theorem 2.5, [Fro86]). Every closed 1-sided incompress-
ible surface in a compact orientable Seifert fiber space with orientable base is
isotopic to a pseudo-horizontal or pseudo-vertical surface.

He proves this by showing that any 1-sided incompressible surface inside
an orientable circle bundle is boundary compressible. If p : M �! B is
a closed orientable Seifert fiber space, then p

⇤ : M
⇤ �! B

⇤ obtained by
deleting vertical neighborhoods of singular fibers T1, ..., Tk is a circle bundle.
Any 1-sided incompressible surface F can be isotoped so that it intersects
the @Ti transversally and minimally upto isotopy (normal intersection). Let
F

⇤ = M
⇤\F . If F ⇤ is boundary compressible, the compression disk D can be

used to isotope F ⇤ so that the arc ↵ = D\F
⇤ can be absorbed into Ti. Since

ends of the arc complementary to ↵ in @D approaches F \@Ti from opposite
sides, this isotopy does not increase the number of components of F \ @Ti.
Hence, the intersection is still transverse and minimal. Such an isotopy
increases �(F ⇤) by 1. After a finite number of steps, F ⇤ becomes boundary
incompressible and thereby orientable. By Theorem 2.7 of [Wal67], F ⇤ can be
isotoped to horizontal or vertical. Since F \@Ti, i = 1, ..., k is transverse and
minimal, no component of F \ Ti is a boundary parallel annulus. Therefore
F is pseudo-vertical or pseudo-horizontal.

This result was extended by Rannard in [Ran96] by removing orientablity
conditions on M and B.

Theorem 3.2.25 (Theorem 4.1, [Ran96]). Any closed incompressible surface
in a closed Seifert fiber space with isolated singular fibers is isotopic to a
pseudo-horizontal or pseudo-vertical surface.
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Rannard decomposes the manifold into solid tori and shows that the
intersection of any incompressible surface with these solid tori are also in-
compressible. Since, we know all the incompressible surfaces in a solid torus,
he proves the result by considering what happens when each case occurs. He
defines ‘well-embeddedness’ for a surface which is used to provide contradic-
tion in many cases. We extend this definition to incorporate the presence
of singular surfaces and extend the result to all compact Seifert fiber spaces
using similar techniques in our paper [KN23a] which is detailed in Chapter
5.



4

Prism Complexes

In this chapter, we introduce prism complexes as an analogue of
simplicial complexes and characterize Seifert fiber spaces using a special type
of prism complex. Along the way, we also provide a complete criterion for
the existence of horizontal surfaces in Seifert fiber spaces which may contain
singular surfaces. This chapter is based on our paper [KN23b].

4.1 Introduction

Definition 4.1.1. A prism is the product space �⇥I where � is a 2-simplex
and I a closed interval. We call the edges of �⇥@I horizontal and the rest of
the edges of the prism we call vertical. Similarly, we call the faces in �⇥@I

horizontal and faces in @�⇥ I vertical.

Definition 4.1.2. A prism complex is a 3-dimensional cell complex in which
each cell is a prism, the attaching maps are combinatorial isomorphisms and
furthermore, horizontal edges are identified only with horizontal edges.

Definition 4.1.3. We call a prism complex special if each horizontal edge
in the interior of the complex lies in four prisms, each boundary horizontal
edge lies in two prisms and no horizontal face lies on the boundary of the
complex.

We prove in this chapter that a special prism complex can be thought of
as a discrete version of the local fibration of a Seifert fiber space:

31
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Theorem 4.1.4. Every compact 3-manifold M admits a prism complex struc-
ture. Moreover, it admits a special prism complex structure if and only if it
is a Seifert fiber space with @M 6= ; or SE(M) 6= ; or e(M) = 0.

So in particular, if M is a compact 3-manifold with boundary, then it ad-
mits a special prism complex structure if and only if it is a Seifert fiber space.

Most of the literature on Seifert fiber spaces deals only with oriented
Seifert fiber spaces with the corresponding results for non-oriented spaces
being folklore. To prove our result for all Seifert fiber spaces, we explicitly
give a general criteria for existence of horizontal surfaces. A horizontal sur-
face in a Seifert fiber space M is an embedded surface that is transverse to
all the circle fibers of M .

Theorem 4.1.5. Let M be a Seifert fiber space.

1. When @M 6= ; or SE(M) 6= ; then horizontal surfaces exist in M .

2. When @M = ; and SE(M) = ; then horizontal surfaces exist if and
only if e(M) = 0.

4.2 Seifert fiber spaces

This section deals with the construction of Seifert fiber spaces and a proof of
Theorem 4.1.5. A complete combinatorial description for Seifert fiber spaces,
which includes the non-orientable spaces, is explained in detail by Cattabriga
et al [CMMN20]:

Theorem 4.2.1 (Theorem A of [CMMN20]). Every Seifert fiber space is
uniquely determined, up to fiber-preserving homeomorphism, by the normalised
set of parameters {b; (✏, g, (t, k)); (h1, ..., hm+ | k1, ..., km�); ((p1, q1), ..., (pr, qr))}.

See Section 2 of [CMMN20] for a description of the parameters in the
above theorem and for an explicit construction of a Seifert fiber space with
the above parameters. We give below an outline of the construction:
Construction of Seifert fiber space M with given parameters: Let B⇤ be a

compact connected surface of genus g with m+ +m� + (r+ 1) + t boundary
components. B⇤ is orientable if ✏ = o, o1 or o2 and non-orientable otherwise
(i.e. if ✏ = n, n1, n2, n3, n4). Consider B⇤ as a disk D

⇤ with disjoint arcs �i, �0
i

on the boundary identified. As D
⇤ is contractible, a circle bundle over D

⇤

is necessarily the trivial bundle D
⇤ ⇥ S

1. Any circle bundle p : M⇤ ! B
⇤

is then obtained from D
⇤ ⇥ S

1 by identifying the disjoint annuli p�1(�i) and
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a

a

f f

a

Figure 4.1: Di↵erent representations of the same fibered Mobius strip N with
exceptional fiber f and a horizontal arc a

p
�1(�0

i
) fiber preservingly. As any homeomorphism of a circle is isotopic to

the identity or the reflection map so we may assume that these annuli are
identified by the identity or reflection map along the fibers. This pairwise
identification is determined by the symbols for ✏ and such that M⇤ ends up
with (r + 1) + (t � k) +m+ torus boundary components and k +m� Klein
bottle boundary components. As both the identity and the reflection map
on S

1 have a fixed point, so we can identify B
⇤ with a fixed section of this

circle bundle. We now obtain M from M
⇤ via the following steps:

Step 1: Let Ti denote the torus boundary components of M⇤. On each
such boundary component define the meridian µi as the curve Ti \ @B⇤ and
choose a regular boundary fiber of Ti as the longitude �i. Let Vi be solid
tori. Define the meridian on @Vi as the unique curve (up to isotopy) that
bound a disk in Vi. By a Dehn filling of Ti by Vi along the slope qi/pi we
mean the attachment of Vi to M

⇤ via a homeomorphism from @Vi to Ti that
sends the meridian of Vi to the curve piµi+qi�i. Put (pr+1, qr+1) = (1, b). As
the first step in our construction, we Dehn fill the first r+ 1 torus boundary
components Ti with solid tori Vi along the given slopes qi/pi. Let M 0 be the
manifold thus obtained.

Step 2: Let N = I⇥I/(x, 0) ⇠ (1�x, 1) be a mobius strip foliated by the
circles (x⇥ I) [ ((1� x)⇥ I)/ ⇠ as in Figure 4.1(i). Let �i : S1 ⇥ @N ! Ti

be the homeomorphism sending t ⇥ @N to µi(t) ⇥ S
1 in Ti. It is helpful to

consider the model of N with the boundary on one side as in Figure 4.1(ii)
(which can be obtained from the model in Figure 4.1(i) by cutting along the
fiber f , flipping one of the pieces and reattaching along the segment with
the double arrows). As a second step in our construction we attach S

1 ⇥N

to the next (t� k) torus boundary components Ti via the attaching map �i.
We call this process capping o↵ Ti via S

1 ⇥N .

Step 3: In each torus Ti of the remaining m+ torus boundary components
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let {�j}hi
j=1 be hi many disjoint arcs in µi. Let  (i,j) : I ⇥ @N ! p

�1(�j) ⇢ Ti

be the homeomorphism sending t ⇥ @N to �j(t) ⇥ S
1 in Ti. In this step we

attach a copy of (I ⇥N) to each p
�1(�j) ⇢ Ti via the attaching homeomor-

phism  (i,j). So if hi > 0, then the torus boundary Ti of M 0 is replaced by
hi many Klein bottle boundary components.

Step 4 Let Ki denote the Klein bottle boundary components of M 0. We
express Ki as a twisted product S1e⇥S

1 = I ⇥ S
1
/ ⇠ where (0, z) ⇠ (1,�z)

with B
⇤\Ki the curve µi(t) = (t, e⇡it). Let S1e⇥N denote the twisted product

I ⇥ N/ ⇠ where (0, (x, y)) ⇠ (1, (1 � x, 1 � y)) with N = I ⇥ I/(x, 0) ⇠
(1� x, 1). Let �0

i
: S1e⇥@N ! Ki be the homeomorphism sending t⇥ @N to

the fiber above µi(t) in Ki. In this step, we cap o↵ the first k Klein bottle
boundary components of M 0 by S

1e⇥N via the attaching map �0
i
.

Step 5 In each Klein bottleKi of the remainingm� Klein bottle boundary
components let {�0

j
}ki
j=1 be ki many disjoint arcs in µi. Let  0

(i,j) : I ⇥ @N !
p
�1(�0

j
) ⇢ Ki be the homeomorphism sending t⇥@N to the fiber above �0

j
(t)

in Ki. In this final step, we attach a copy of (I⇥N) to each p
�1(�0

j
) ⇢ Ki via

the attaching homeomorphism  
0
(i,j) to obtain M . If ki > 0, then the Klein

bottle boundary Ki of M
0 is replaced by ki many Klein bottle boundary

components.
The manifold M is closed if and only if m+ + m� = 0 and oriented if

and only if ✏ = o1 or n2, m� = t = 0 and hi = 0 for all i = 1, ...,m+.
For a closed Seifert fiber space, the Euler number of the fibering is given by
e(M) =

P
r

i=1
qi

pi
+ b.

Let N be a Mobius strip foliated by circles with one exceptional fiber f
as in Figure 4.1. We give a su�cient condition below on when a set of curves
on the boundary of S1⇥N or S1e⇥N bound a horizontal surface. Recall that
a horizontal surface is an embedded surface that is transverse to all the fibers
of M . Keep Figure 4.2 as reference for Lemma 4.2.2.

Lemma 4.2.2. Let N = [0, 12 ] ⇥ S
1
/ ⇠ with (12 , z) ⇠ (12 ,�z) be a Mobius

strip foliated by the circles t ⇥ S
1 with one exceptional fiber 1

2 ⇥ S
1 as in

Figure 4.1(ii). Let M = I ⇥N be foliated by the fibers s⇥ t⇥ S
1 for s 2 I,

t 2 [0, 12 ], with an exceptional annulus I ⇥ 1
2 ⇥ S

1. Let � be a properly
embedded arc in A = I ⇥ @N = I ⇥ 0 ⇥ S

1 which intersects each fiber
s⇥@N = s⇥0⇥S

1 transversely. � has a parametrisation �(s) = (s, 0, �(s)),
for some arc � : I ! S

1. Let ! : A ! A be the map (s, 0, z) ! (s, 0,�z).
Then there exists a horizontal rectangle R� in M such that R�\A = �[!(�)
and for j = 0, 1, R� \ (j⇥N) = j⇥ [0, 12 ]⇥ (�(j)[��(j))/ ⇠. Furthermore
if �0 is another properly embedded arc in A disjoint from (�[!(�)) then R�

is disjoint from R�0.

Proof. As the arc � is transverse to the foliation s⇥0⇥S
1 of A = I⇥0⇥S

1
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Figure 4.2: M = I ⇥ N depicted as a cube [0, 1] ⇥ [0, 12 ] ⇥ [0, 1] with the
top and bottom faces B identified and the two halves C of a vertical faces
identified. On the annulus A is shown the curves � and w(�), and in the
interior of the cube is the rectangle R�.

so it intersects each fiber exactly once. We can therefore parametrise the
arc as �(s) = (s, 0, �(s)) for some arc � : I ! S

1. Define the embedding
r� : I ⇥ I ! M as follows:

r�(s, t) =

⇢
(s, t, �(s)) if t 2 [0, 12 ]
(s, 1� t,��(s)) if t 2 [12 , 1]

Let R� be the image of r�. Then R�\A is r�(I⇥0)[r�(I⇥1) = �[!(�).
And for j = 0, 1, R�\(j⇥N) = r�(j⇥I) = (j⇥I⇥�(j))[(j⇥I⇥��(j)). If
�0(s) = (s, 0, �0(s)) is disjoint from �[!(�) then for any s 2 I, �0(s) 6= ±�(s).
Hence the images of r� and r�0 are disjoint as required.

Lemma 4.2.3. Let M1 = S
1 ⇥N and let M2 = S

1e⇥N = I ⇥ [0, 12 ]⇥ S
1
/ ⇠

with (0, t, z) ⇠ (1, t, z̄) and (s, 12 , z) ⇠ (s, 12 ,�z), for s 2 I, t 2 [0, 12 ], z 2 S
1.

Take their foliation by the circles s ⇥ t ⇥ S
1 which has an exceptional torus

S
1 ⇥ 1

2 ⇥ S
1 in M1 and exceptional Klein bottle I ⇥ 1

2 ⇥ S
1
/ ⇠ in M2. For

i = 1, 2, let ⇤i be a simple closed curve on @Mi which intersects each fiber
s ⇥ @N transversely. Let ! : @Mi ! @Mi be the map (s, z) ! (s,�z) (as
�z̄ = (�z) so ! is well-defined on @M2). Then there exists a horizontal
annulus or horizontal Mobius strip R⇤i in Mi such that R⇤i \ @Mi = ⇤i [
!(⇤i). Furthermore if ⇤0

i
is another simple closed curve in @Mi disjoint from

⇤i [ !(⇤i) then R⇤i is disjoint from R⇤0
i
.
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Proof. Let M = I ⇥ N = I ⇥ [0, 12 ] ⇥ S
1
/(s, 12 , z) ⇠ (s, 12 ,�z) as in Figure

4.2. Let M1 = S
1 ⇥ N = I ⇥ [0, 12 ] ⇥ S

1
/ ⇠ where (s, 12 , z) ⇠ (s, 12 ,�z)

and (0, t, z) ⇠ (1, t, z). There exists a quotient map q : M ! M1 such that
q(1, t, z) = q(0, t, z). In particular, q(1, 0, z) = q(0, 0, w) if and only if z = w.

The preimage q�1(⇤1) of ⇤1 is a disjoint collection of properly embedded
arcs {�i}ki=0 in A = I ⇥ 0 ⇥ S

1 transverse to the fibers s ⇥ 0 ⇥ S
1. There

exists a parametrisation �i(s) = (s, 0, �i(s)) with �i : I ! S
1. Furthermore,

q(�i(1)) = q(1, 0, �i(1)) = q(0, 0, �i+1(0)) = �i+1(0) (taking i modulo k +
1). So in particular, �i(1) = �i+1(0) in S

1. And therefore q(1, t, �i(1)) =
q(0, t, �i+1(0)) (i mod k + 1).

By Lemma 4.2.2 there exist horizontal rectangles Ri in M such that
Ri \A = �i [!(�i) and for j = 0, 1, Ri \ (j ⇥N) = j ⇥ I ⇥ (�i(j)[��i(j)).
Let R⇤1 = [k

i=0q(Ri) in M1. As q(A) = @M1 and q([k

i=0(�i [ !(�i))) =
⇤1 [ !(⇤1) so R⇤1 \ @M1 = ⇤1 [ !(⇤1). As q(1, t, �i(1)) = q(0, t, �i+1(0)), so
q(Ri \ 1 ⇥ N) = q(Ri+1 \ 0 ⇥ N) (i mod k + 1). Hence the edges of q(Ri)
that lie on the boundary of M1 match up to give the horizontal annulus R⇤1 .

Similarly, M2 = S
1e⇥N = I ⇥ [0, 12 ] ⇥ S

1
/ ⇠ where (s, 12 , z) ⇠ (s, 12 ,�z)

and (0, t, z) ⇠ (1, t, z̄). Let q : M ! M2 be the quotient map so that
q(0, t, z) = q(1, t, z̄). In particular, q(0, 0, z) = q(1, 0, w) if and only if z =
w̄. Let q

�1(⇤2) be a disjoint collection of properly embedded arcs {�i}ki=0

in A with a parametrisation �i(s) = (s, 0, �i(s)). Furthermore, q(�i(1)) =
q(1, 0, �i(1)) = q(0, 0, �i+1(0)) = q(�i+1(0)) (taking i modulo k + 1). So in
particular, �i(1) = �i+1(0) in S

1. And therefore q(1, t, �i(1)) = q(0, t, �i+1(0))
(i mod k+1). Finally using Lemma 4.2.2 as above, there exists a horizontal
annulus or horizontal Mobius strip R⇤2 in M2 such that @R⇤2 = ⇤2 [ !(⇤2)
(note that R⇤2 is a Mobius strip when !(⇤2) = ⇤2).

Lemma 4.2.4. Let n be an even positive number and let ✓0 = 2⇡/n. Let w =
e
i✓0/2 and let P (n) = {wemi✓0 : m 2 Z} = {w,wei✓0 , we2i✓0 , ..., we(n�1)i✓0}.
Let ⇢ : S1 ! S

1 be the reflection map z ! z̄ and let ! : S1 ! S
1 be the

antipodal map z ! �z. Then ⇢(P (n)) = P (n) and !(P (n)) = P (n).

Proof. As e
ni✓0 = 1, so points in P (n) are of the form we

mi✓0 = e
(m+1/2)i✓0

for m 2 Z. In particular ⇢(e(m+1/2)i✓0) = e
�(m+1/2)i✓0 = e

((�m�1)+1/2)i✓0 , so
⇢(P (n)) = P (n). And m✓0+⇡ = m✓0+n✓0/2 = (m+n/2)✓0. So �we

mi✓0 =
we

mi✓0+i⇡ = we
(m+n/2)i✓0 2 P (n) as n is even. Therefore !(P (n)) = P (n).

Lemma 4.2.5. Let 0 < q < p be coprime integers, and let n = kp be an even
number. Let T be a torus S

1 ⇥ S
1 ⇢ C ⇥ C with meridian µ = S

1 ⇥ 1 and
longitude � = 1 ⇥ S

1. Fix a point z0 2 S
1 di↵erent from 1. Let ↵ : I ! S

1
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and � : I ! S
1 be the arcs in anti-clockwise direction from 1 to z0 and from

z0 to 1 respectively. There exists a set of k pairwise disjoint curves ⇤ of
slope q/p such that ⇤ \ (�(s) ⇥ S

1) = �(s) ⇥ P (n) and ⇤ \ (↵(s) ⇥ S
1) =

↵(s)⇥ e
2⇡qsi/p

P (n).

Proof. Let A(s) = ↵(s) ⇥ e
2⇡qsi/p

P (n) and let B(s) = �(s) ⇥ P (n). Let
✓0 = 2⇡/n as in Lemma 4.2.4. Then A(0) = 1 ⇥ P (n) = B(1) and A(1) =
z0 ⇥ e

2⇡iq/p
P (n) = z0 ⇥ e

kqi✓0P (n) = z0 ⇥ P (n) = B(0). So ⇤ = A [ B is a
union of pairwise disjoint curves in T .

Both � and µ intersect ⇤ transversely with the same sign at every inter-
section, so the slope of a curve in ⇤ is given by taking the ratio |⇤\µ|/|⇤\�|.
To see that the slope of these curves is q/p we shall collapse �⇥S

1 to 1⇥S
1

so that the annulus ↵⇥ S
1 becomes a torus T 0 and ⇤ goes to curves of slope

q/p in T
0.

Let z0 = e
i' and let f : T ! T

0 be the quotient map defined as follows:

f(z, w) =

⇢
(z2⇡/', w) if z 2 ↵

(1, w) if z 2 �

As f(A(0)) = f(A(1)) = 1⇥P (n) so f(A) is a pairwise disjoint set of curves
in T

0 parametrised by s ! (ei(2⇡s), ei(2⇡s)q/pP (n)) for s 2 I. Their lifts in R
2

are parallel straight lines with slope q/p, so the curves in f(A) have slope q/p
as required. Let �0 = f(�) and let µ0 = f(µ). Then the slope of f(⇤) = f(A)
is given by |f(⇤) \ µ

0|/|f(⇤) \ �0| = q/p.
Note that f takes both � = 1⇥S

1 and z0⇥S
1 to 1⇥S

1 homeomorphically.
Furthermore, ⇤\ � = ⇤\ (z0 ⇥S

1) = P (n). So |f(⇤)\ f(�)| = |f(⇤\ �)| =
|⇤ \ �|. As µ is disjoint from B, so ⇤ \ µ = A \ µ ⇢ ↵(0, 1) ⇥ S

1. As f

restricted to ↵(0, 1)⇥S
1 is a homeomorphism onto its image and f(⇤) = f(A)

so |f(⇤)\f(µ)| = |f(A)\f(↵(0, 1)⇥0)| = |A\(↵(0, 1)⇥0)| = |A\µ| = |⇤\µ|.
Therefore the slope of curves in ⇤, is |⇤\ µ|/|⇤\ �| = q/p as required. Also
as |⇤ \ �| = |P (n)| = n so there are n/p = k curves in ⇤ as required.

The criteria for existence of horizontal surfaces in orientable Seifert fiber
spaces is well known. We extend this criteria to all Seifert fiber spaces.

Proof of Theorem 4.1.5. To construct the manifold M we proceed as ex-
plained in the construction of Seifert fiber spaces with the given parameters
at the beginning of this section. Let D be a 2-disk and let {�i, �0

i
} be a col-

lection of pairwise disjoint embedded arcs in @D. Let �i : �i(I) ! �
0
i
(I) be a

homeomorphism that is either �i(s) ! �
0
i
(s) for all s 2 I or �i(s) ! �

0
i
(1�s)

for all s 2 I. Let  i : S1 ! S
1 be either the identity map z ! z or the
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conjugation map z ! z̄ for all z 2 S
1 ⇢ C. The number of such arcs �i, �0

i

and the choice of �i and  i is determined by the parameters. See Section 2
of [CMMN20] for details.

Let D ⇥ S
1 be a solid torus foliated by the circle leaves x ⇥ S

1. Let
M

⇤ = D ⇥ S
1
/ ⇠ where (�i(s), z) ⇠ (�i(�i(s)), i(z)), i.e., M⇤ is obtained

from the solid torusD⇥S
1 by identifying the annuli �i(I)⇥S

1 with �0
i
(I)⇥S

1

via the maps �i ⇥ i. As �i and  i send leaves of D⇥S
1 to leaves of D⇥S

1

so they induce a foliation of M⇤ by circle leaves. As  i(1) = 1 for all i, so let
B

⇤ = D ⇥ 1/ ⇠ be the surface obtained by identifying the arcs �i ⇥ 1 with
�
0
i
⇥ 1 via the map �i. By construction, B⇤ intersects each leaf exactly once.

Let f : M⇤ ! B
⇤ be the projection map which collapses each circle leaf of

M
⇤ to a point. This gives a circle bundle structure on M

⇤.
The manifold M is now obtained from the circle bundle M

⇤ as follows:
First Dehn fill r+1 torus boundary components Ti to obtain the manifoldM

0,
as described in Step 1 of the construction. Then cap o↵ some torus boundary
components of M 0 by S

1 ⇥ N and some Klein bottle boundary components
of M 0 by S

1e⇥N as explained in Step 2 and Step 4 of the construction. And
lastly attach copies of I ⇥ N along its boundary to disjoint fibered annuli
I ⇥ S

1 in some of the boundary components of M 0, as detailed in Steps 3
and 5 of the construction.

Case I: @M 6= ;. Let (pr+1, qr+1) = (1, b) and let n = 2p1...pr+1. Our
aim is to construct a horizontal surface S which intersects each regular fiber
of M n times.

Constructing horizontal surface S
⇤ in M

⇤: As @M 6= ;, there exists
an arc d in B

⇤ \ @M . Let P (n) be the set of points e
i(m+1/2)2⇡/n in S

1 for
m 2 Z, as in Lemma 4.2.4. Let D = D ⇥ P (n) ⇢ D ⇥ S

1. By Lemma 4.2.4,
 i(P (n)) = P (n) for all i, so the arcs �i⇥P (n) ⇢ @D are identified with the
arcs �0

i
⇥ P (n) ⇢ @D to give a horizontal surface in M

⇤ that we denote by
S
⇤. The map f : S⇤ ! B

⇤ is an n-to-1 covering projection.
Constructing horizontal surface S

0 in M
0: Let c1, ..., cr+1 be the r + 1

boundary components of B⇤ whose preimages Tj = f
�1(cj) are tori which

are Dehn filled by solid tori Vj. Let �1, ..., �r+1 be disjoint arcs in B
⇤ with

both end points on d which cut out from d disjoint arcs ↵j. Furthermore,
they cut out from B

⇤ annuli with disjoint interiors and with boundary curves
↵j [ �j and cj. Let B0 be the component of B⇤ outside of all these annuli
(i.e, B0 is disjoint from all the cj). Let M0 = p

�1(B0) be its pre-image in
M

⇤. Let T 0
j
= f

�1(↵j [�j) be a torus parallel to Tj = f
�1(cj). As in Lemma

4.2.5 let ⇤j be a set of n/pj pairwise disjoint curves of slope qj/pj in T
0
i
such

that ⇤j \ f
�1(�j) = �j ⇥P (n) and ⇤j \ f

�1(↵j(s)) = ↵j(s)⇥ e
2⇡is(qj/pj)P (n).

In Step 1 of our construction, we obtained M
0 by Dehn filling M

⇤ along the
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B0

c2

�2
↵2

c1

↵1

T1
T

0
1

B
⇤

�1

Figure 4.3: A piece of the section B
⇤ in M

⇤ where T1 is the torus boundary
above c1, T 0

1 is the parallel torus above ↵1 [ �1 and the dotted curve on T
0

represents the surgery slope 1
2 .

slopes qj/pj of Tj. We can instead construct M 0 by attaching the meridians
of the solid tori Vj to T

0
j
along the curves in ⇤j. See Figure 4.3.

Let S0 = M0 \ S
⇤ be a horizontal surface in M0 which intersects each

fiber f�1(b) of the circle bundle f : M0 ! B0 in b⇥ P (n). In particular, S0

intersects each annulus f�1(�i) in �i ⇥ P (n).
Let Di be a union of n/pj disjoint meridian disks in the solid torus Vj. To

construct M 0 from M0 we attach Vj to M0 along f�1(�j) by homeomorphisms
hj from @Vj to T

0
j
that send @Dj to ⇤j. As S0 \ f

�1(�j) = �j ⇥ P (n) =
hj(Dj)\ f

�1(�j) so S
0 = S0 [ hj(Dj) is a horizontal surface in M

0. Let F be
a boundary component of M 0 and let ⌘ be a fiber of F . If ⌘ is a fiber over a
point in some ↵j then S

0 \ ⌘ = e
i✓
P (n) for some angle ✓. By Lemma 4.2.4,

!(ei✓P (n)) = e
i✓
!(P (n)) = e

i✓
P (n). If ⌘ is not a fiber over a point in some

↵j, then ⌘ \ S
0 = P (n). So in either case !(S 0 \ ⌘) = S

0 \ ⌘.
Extending S

0 to a horizontal surface S in M : Let F be a boundary
component of M 0 that is capped o↵ by S

1 ⇥ N (or S1e⇥N) as in Step 2 (or
Step 4) of the construction of Seifert fiber spaces with given parameters.
Let � be the disjoint union of curves � = S

0 \ F . For each fiber ⌘ of F ,
!(� \ ⌘) = � \ ⌘ and so by Lemma 4.2.3, there exists a horizontal surface
AF in S

1 ⇥N (or in S
1e⇥N) such that AF \ F = �.

Let � be an arc in @B
⇤ disjoint from all the ↵i and ci. Assume that

we need to attach a copy of I ⇥ @N along f
�1(�) as in Step 3 or Step

5 of the construction of Seifert fiber spaces with given parameters. Then
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S
0 \ f

�1(�) = � ⇥ P (n). By Lemma 4.2.2, there exists a horizontal surface
A� in I ⇥N such that A� \ f

�1(�) = � ⇥ P (n).
We can therefore extend the surface S

0 to S = S
0 [F AF [� A� where F

varies over all boundary surfaces of M 0 which are capped o↵ by an S
1 ⇥ N

or S1e⇥N and � varies over all arcs in @B⇤ such that an I ⇥N is attached to
f
�1(�). By construction if ⌘ is a fiber of @M then !(S \ ⌘) = S \ ⌘.

Case II: @M = ; and SE(M) 6= ;. If SE(M) has an annulus then @M 6= ;,
as such annuli can only be obtained as the exceptional set of an I ⇥ N

attached to @M 0. So we may assume that SE(M) only has torus and Klein
bottle components. These are obtained as the exceptional sets of S1 ⇥N or
S
1e⇥N attached to M

0 along boundary components.
Assume that SE(M) has a torus exceptional set obtained by attaching

P = S
1⇥N along a torus boundary component T ofM 0. LetW = M\int(P ).

AsW is a Seifert fiber space with boundary T so by Case I,W contains a hor-
izontal surface SW . Furthermore for each fiber ⌘ of T , !(SW \ ⌘) = SW \ ⌘.
So by Lemma 4.2.3, there exists a horizontal surface AP in P such that
AP \T = SW \T . Suppose SE(M) has a Klein bottle exceptional set which
lies in Q = S

1e⇥N attached to a Klein bottle boundary component K of
M

0. Proceeding similarly, we get a horizontal surface AQ in Q such that
AQ \K = SW \K. Therefore either S = SW [T AP or S = SW [K AQ is
the required horizontal surface in M .

Case III: Suppose @M = ; and SE(M) = ;. The proof here is identical
to the closed orientable case (see Pg 26-27 of [Hat]). We reproduce here the
details for completion. Remove a solid torus neighbourhood V of a regular
fiber ofM to get a manifoldW with a torus boundary component T . Proceed
as in Case I, to obtain a horizontal surface SW . It is now enough to show
that SW intersects T in curves of slope e(M) =

P
r+1
i=1 qi/pi: If e(M) = 0, we

can extend the horizontal surface SW to a horizontal surface on all of M by
attaching meridian disks of the solid torus V that we Dehn fill in at T with
slope zero. Conversely, given a horizontal surface S in M , the intersection of
S with T bounds disks in V and hence must have slope zero, so e(M) = 0.

Claim: Slope of S \ T is e(M). As S is horizontal it meets each fiber of
M0 the same number of times, say n times. Intersections of S with B0 on
the boundary we count with sign according to whether the slope of @S at
such an intersection point is positive or negative. The signed total number
of intersections we get is zero as points at the end of an arc of S \ B0

have opposite sign. The slope of S on the torus boundary containing ci is
by definition the ratio of the signed intersection with @B0 and the signed
intersection with a regular fiber. As this slope is qi/pi, it gives the signed
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intersection of S with B0 on ci as n(qi/pi) for i = 1...(r+ 1). So the slope of
S \ T is (

P
r+1
i=1 nqi/pi)/n =

P
r

i=1 qi/pi + b = e(M).

The below Corollary 4.2.6 now follows from standard arguments for hor-
izontal surfaces (see the discussion on Pg 17-18 of [Hat]):

Corollary 4.2.6. Let M be a compact 3-manifold and let F be a compact
2-sided surface properly embedded in M . The following are equivalent:

1. M is a Seifert fiber space and F is a horizontal surface in M that
intersects each regular fiber of M n times.

2. At least one of the following is true:

(a) There exists a homeomorphism � of F such that M = F ⇥ I/ ⇠,
where (x, 1) ⇠ (�(x), 0) for all x 2 F . Furthermore �n = id.

(b) There exist homeomorphisms  0 and  1 of F such that M =
F ⇥ I/ ⇠, where (x, 0) ⇠ ( 0(x), 0) and (x, 1) ⇠ ( 1(x), 1). Fur-
thermore, n is even, ( 0 1)n/2 = id and both  0 and  1 are fixed-
point free involutions.

Proof. Let M be a Seifert fiber space and let F be an embedded 2-sided
horizontal surface in M that intersects each regular fiber n times. Each
fiber ofM has a fibered neighbourhood fiber-preserving homeomorphic to the
fibered solid torusD⇥I/ ⇠ where (x, 1) ⇠ (h(x), 0) for some homeomorphism
h of D. So M \ F is an I-bundle. Let p : M \ F ! G be the I-bundle
projection, with G the base surface. As F is 2-sided, the associated @I-
subbundle is two copies of F . Let N(F ) denote the tubular neighbourhood
of F . Then p : @(M \N(F )) = F tF ! G is a 2-sheeted covering projection.

If M \ F is connected then G is connected and the covering map p :
F [ F ! G is the identity on each copy of F . So M \ F = F ⇥ I and hence
M = F ⇥ I/� for some homeomorphism � : F ! F . Let x 2 F and let ⌘x
be the fiber above x. As F ⇥ 1

2 intersects ⌘x n times, so ⌘x is divided by F

into n segments with end points (�i(x), 12) and (�i+1(x), 12). So in particular,
�
n(x) = x as required.
If M \ F is disconnected then each of the two components of M \ F are

I-bundles with a copy of F as the associated @I-subbundle. The base surface
G has two components G0 and G1 and the projection map restricted to each
copy of F is a 2-sheeted cover pi : F ! Gi for i = 0, 1. Let  i : F ⇥ i ! F ⇥ i

be the non-trivial deck transformation corresponding to pi. As the group of
deck transformations is Z2 so  2

i
= id. As F is 2-sided, by thickening F to
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F⇥I and collapsing the two I bundles along the fibers, we get M = F⇥I/ i

as required. Let x 2 F and let ⌘x be the fiber above x. As before, F ⇥ 1
2

intersects ⌘x n times so ⌘x is divided by F⇥ 1
2 into n segments along the points

(x, 12), ( 1(x),
1
2), ( 0 1(x),

1
2), ( 1 0 1(x),

1
2), ...., ( 1( 0 1)(n/2)�1(x), 12).

In particular, n is even and ( 0 1)n/2(x) = x as required. As  i is a non-
trivial deck transformation so it is fixed-point free.

Conversely, let M = F ⇥ I/� be a surface bundle with periodic mon-
odromy � of period n. F ⇥ I is foliated by the leaves x ⇥ I for x 2 F . For
each x 2 F , let Ux be a neighbourhood of x in F homeomorphic to R

2. Then
Ux ⇥ [0, 12) [ (�(Ux) ⇥ (12 , 1]) is a fibered neighbourhood fiber-wise homeo-
morphic to R

2 ⇥ R with the leaves x ⇥ R. Therefore, the leaves x ⇥ I/�

give a foliation of M with 1-dimensional leaves. As �n(x) = x, so each leaf
[1

i=0(�
i(x)⇥ I) is a circle.

Similarly, assume M = F ⇥ I/ i with  i fixed-point free,  2
i
= id and

( 0 1)n/2 = id. As  i is fixed-point free, for each point (x, i) 2 F ⇥ i, there
exists a neighbourhood U(x,i) ⇢ F homeomorphic to R

2 such that  i(U(x,i))\
U(x,i) = ;. If this were not true we would obtain a sequence of points xn ! x

in F such that  i(xn) ! x. As  i is an involution so it follows that xn !
 i(x) and hence x =  i(x). U(x,1)⇥ (0, 1][ 1(U(x,1))⇥ (0, 1] is then a fibered
neighbourhood fiber-wise homeomorphic to R

2 ⇥ R (with the leaves x⇥ R).
And similarly U(x,0)⇥[0, 1)[ 0(U(x,0))⇥[0, 1) is a fibered neighbourhood fiber-
wise homeomorphic to R2⇥R with the leaves x⇥R. M is therefore foliated by
the circle leaves (x⇥I)[( 1(x)⇥I)[( 0 1(x)⇥I)[...[( 1( 0 1)(n/2)�1⇥I).

We now use a result of Epstein [Eps72] which says that that any compact
3-manifold foliated by circles is a Seifert fiber space to conclude that M is
Seifert fibered. Furthermore, it contains the 2-sided horizontal surface F ⇥ 1

2
which intersects each regular fiber n times. By Theorem 4.1.5, it must have
@M 6= ; or SE(M) 6= ; or be closed with e(M) = 0.

4.3 Prism complexes

Let F be a surface with a Riemannian metric g. We begin this section with
an overview of the existence and uniqueness of a Riemannian center of mass
for small enough convex geodesic polyhedra in (F, g). The Euclidean center
of mass of points p1, ..., pk 2 R

n is the point 1
k

P
pi. The Riemannian center

of mass, also known as the Karcher mean, is a generalisation of this a�ne
notion and was extensively studied by Karcher [Kar77]. We present here the
treatment as in [DVW15].

Definition 4.3.1. For x 2 F , let B(x, r) denote the set of points of F at a
distance less than r from x, and denote by B(x, r) its closure. The injectivity
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radius of M at a point x 2 M is the supremum of the radii r of Euclidean
balls B(0, r) ⇢ Tx(M) that project down di↵eomorphically to balls B(x, r) in
M via the exponential map expx. The injectivity radius of M , denoted by
i(M), is the infimum of the injectivity radius at all points of M .

We call a set B ⇢ M convex if any two points p, q 2 B are connected by
a minimising geodesic that is unique in M and which lies entirely in B.

Lemma 4.3.2 (Theorem IX.6.1 of [Cha06]). Let M be a Riemannian man-
ifold with sectional curvatures bounded above by K+ and let i(M) be its in-
jectivity radius. If

r < min

⇢
i(M)

2
,

⇡

2
p
K+

�

then B(x, r) is a convex set. (If K+  0 then we take 1/
p
K+ to be infinite.)

Let B be an open set in M such that B is convex. Let P ⇢ B be
a geodesic convex polyhedron with vertices {p1, ...pk}. Let d denote the
Riemannian distance function in M . Let ✏ : B ! R be the smooth function

✏(x) =
1

2k

kX

i=1

d(x, pi)
2

The gradient of ✏ is given by

grad(✏)(x) = �1

k

X

i

exp
�1
x
(pi)

At any point x 2 @P , this gradient is therefore a vector pointing outward
from P . And hence a minimum of ✏ lies in the interior of P . Karcher proved
that when B is small enough, ✏ is convex and hence this minimum is unique.
He in fact proved this in more generality for sets of measure 1 (as opposed
to a set of k points with point measure 1/k) and with an explicit bound on
the convexity of ✏. The following lemma follows from Theorem 1.2 of [Kar77]
(see also Lemma 3 of [DVW15]):

Lemma 4.3.3. If {p1, ..., pk} ⇢ B(x, r) ⇢ M with

r < ⇢ = min

⇢
i(M)

2
,

⇡

4
p
K+

�

Then the function ✏ has a unique minimum in B(x, r).

Definition 4.3.4. Given a convex geodesic polyhedron P ⇢ B(x, ⇢) ⇢ M

with vertices {p1, ..., pk}, we call this unique minimum b(P ) of ✏ in P the
barycenter of P .
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Lemma 4.3.5. Let � be an isometry of (F, g), let P ⇢ B(x0, ⇢) be a convex
geodesic polyhedron and let Q = �(P ). Then �(b(P )) = b(Q).

Proof. Let V (P ) = {p1, ..., pk} and V (Q) = {q1, ..., qk} be the set of vertices
of P and Q respectively. Then �(V (P )) = V (Q) and so for all x 2 P ,

✏Q(�(x)) =
1

2k

kX

i=1

d(�(x), qi)
2 =

1

2k

kX

i=1

d(�(x),�(pi))
2

As � is an isometry, so it follows that ✏Q � � = ✏P . Let ✏P (b(P )) = m be the
minimum value of ✏P . So ✏Q(�(b(P ))) = ✏P (b(P )) = m and as ✏Q = ✏P � ��1

so the minimum value of ✏Q is also m. As b(Q) is the unique minima of ✏Q
so �(b(P )) = b(Q).

We show below that a periodic surface automorphism is simplicial with
respect to some triangulation.

Lemma 4.3.6. Let H be a finite subgroup of the group of automorphisms
of a compact surface F . There exists a triangulation ⌧ of F such that each
� 2 H is a simplicial map with respect to ⌧ .

Proof. Let n be the order of H. Let g0 be a Riemannian metric on F and
let g =

P
h2H h

⇤(g0). Any ' 2 H acts on H as '(h) = h �' for all h 2 H to
give a bijection of H. So '⇤

g =
P

h2H(h � ')⇤(g0) = g, i.e., ' is an isometry
of (F, g).

Let ⌧0 be a geodesic triangulation of F such that each simplex lies in a
convex ball of radius less than ⇢ as defined in Lemma 4.3.3. Let ⇧ denote
the polyhedral complex obtained by intersecting the simplexes of h(⌧0) for
h 2 H. In other words, if H = {h1, ..., hn} then each cell P of ⇧ is obtained
by taking n triangles �1, ..., �n in ⌧0 (possibly with repetition) and taking the
intersection P = \n

i=1hi(�i). As each hi(�i) is convex so P is a convex poly-
hedron. As ' induces a permutation of H so ' is a map sending polyhedra
of ⇧ to polyhedra.

For each polyhedron P of ⇧ let V (P ) be its set of vertices and let b(P ) 2
int(P ) denote its Riemannian center of mass. P can be subdivided into
the triangulation ⌧P = b(P ) ? @P by dividing along edges joining b(P ) to
the vertices of P . Let ⌧ be the triangulation obtained by replacing each
polyhedron P 2 ⇧ with the triangulated polyhedron ⌧P .

For any ' 2 H as ' is a polyhedral map on ⇧, so if P is a polyhedron in ⇧
so is Q = '(P ). As '(V (P )) = V (Q) and by Lemma 4.3.5 '(b(P )) = b(Q),
so ' is in fact a simplicial map from ⌧P to ⌧Q. Hence ' is simplicial over ⌧
as required.
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�(�)

�(e)

v

�(F )

a

b

c

d

x(b)

x(c)

(i) (ii)

Figure 4.4: (i) Converting a 3-simplex into a prism (ii) Consistently doing so
in the barycentric subdivision of a 3-simplex

We now prove the main theorem of this chapter:

Proof of 4.1.4. Given a 3-simplex � with vertices a, b, c, d we can convert it to
a prism that we denote as [a; b, c; d] by introducing a vertex x(b) in the edge
[a, b] a vertex x(c) in the edge [a, c] and an edge [x(b), x(c)] that divides the
face [a, b, c] into a triangle which contains a and a quadrilateral which contains
b and c, as shown in Figure 4.4(i). This gives a prism with triangular faces
[a, x(b), x(c)] and [b, c, d] and quadrilateral faces [b, c, x(c), x(b)], [c, d, a, x(c)]
and [d, b, x(b), a].

To change tetrahedra to prisms consistently, we work instead with the
barycentric subdivision �(⌧) of a simplicial triangulation ⌧ of M . Let �(�)
denote the barycenter of a simplex �. Any 3-simplex in �(⌧) is of the form
[�(�), �(F ), �(e), v] where � is a 3-simplex of ⌧ , F a 2-simplex of �, e an
edge of F and v a vertex of e. To obtain a prism complex structure we
change each such simplex to the prism [�(�); �(F ), �(e); v], by introducing a
vertex x(F ) on the edge [�(�), �(F )], a vertex x(e) on the edge [�(�), �(e)]
and by splitting the face [�(�), �(F ), �(e)] along an edge [x(F ), x(e)]. See
Figure 4.4(ii) for such a construction on the 3-simplexes of �(⌧) in � which
contain the 2-simplexes of �(F ), for a fixed face F of �. Such a change
on each 3-simplex of �(⌧) is consistent. Also any horizontal face is either
of the form [�(�), x(F ), x(e)] and lies in the interior of a 3-simplex of ⌧ or
is of the form [�(F ), �(e), v]. Varying �, F 2 � and e 2 F , the union of
the faces [�(F ), �(e), v] gives the barycentric subdivision of the 2-skeleton
of ⌧ . In either case, horizontal edges only meet other horizontal edges, so
this construction transforms a simplicial complex to a prism complex. As
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every compact 3-manifold has a simplicial complex structure it therefore
has a prism complex structure. This construction does not however give a
special prism complex structure, in particular, the interior horizontal edge
[x(F ), x(e)] lies in only two prisms.

Suppose M admits a special prism complex structure. Foliate each prism
�⇥ I by intervals x⇥ I. Each face in the interior of the complex is shared by
exactly two prisms while each boundary face lies in one prism. Furthermore
as horizontal edges are identified only with horizontal edges, so horizontal
faces are identified only with horizontal faces. Therefore points in the interior
of faces have fibered neighborhoods that are fiber-wise homeomorphic to the
fibered productD⇥I if the point is in the interior ofM andD

+⇥I if the point
is on the boundary of M . The star of an edge is the union of all prisms which
contain the edge. The dual graph of the star of an interior edge of the complex
is regular of degree 2 and is therefore a circuit. So points in the interior
of vertical edges have neighborhoods fiber-wise homeomorphic to D ⇥ I.
Similarly points on a vertical edge on the boundary has neighbourhoods fiber-
wise homeomorphic to D

+ ⇥ I. Exactly 4 prisms meet at a horizontal edge
so exactly 2 horizontal faces meet along a horizontal edge. Consequently, the
union of all horizontal faces gives a triangulated surface S. The interior of the
union of all triangles containing a vertex v in S is a disk. All the prisms with
a horizontal face on this disk which lie on the same side of the disk, share the
vertical edge containing v. And so the union of all prisms containing such a
vertex in M contains a fibered neighbourhood of v fiber-wise homeomorphic
to D ⇥ I. Therefore M is foliated by 1-dimensional leaves.

As no horizontal face lies on the boundary so the dual graph of the prism
complex with edges corresponding to horizontal faces and vertices corre-
sponding to the prisms is also a circuit. The union of the corresponding
prisms is then either a solid torus or a solid Klein bottle foliated by circles.
This shows that the 1-dimensional foliation constructed above has only cir-
cle leaves. Epstein [Eps72] has shown that any compact 3-manifold foliated
by circles is a Seifert fiber space. As the surface S consisting of horizontal
faces is transverse to this foliation, so by Theorem 4.1.5 either @M 6= ;,
SE(M) 6= ; or M is closed with e(M) = 0 as required.

Conversely, if M is a Seifert fiber space with @M 6= ;, SE(M) 6= ; or
e(M) = 0 then by Corollary 4.2.6, M = F⇥I/� where � : F⇥{1} ! F⇥{0}
is a periodic monodromy orM = F⇥I/ i i=0,1 where  i : F⇥{i} ! F⇥{i}
is an involution.

If M = F ⇥ I/� then let H be the finite subgroup of Aut(F ) generated
by �. By Lemma 4.3.6, there exists a triangulation ⌧ of F with respect to
which � is simplicial. Let ⌧ ⇥ I be a prism complex structure on F ⇥ I where
each prism is of the form � ⇥ I for � a triangle of ⌧ . Then ⇧ = ⌧ ⇥ I/� is
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the required prism triangulation M . Similarly, if M = F ⇥ I/ i then let H
be the finite subgroup of Aut(F ) generated by  1 and  2. By Lemma 4.3.6,
there exists a triangulation ⌧ of F with respect to which both  1 and  2 are
simplicial. Then ⇧ = ⌧ ⇥ I/ i is the required prism triangulation of M .



5

Essential Surfaces in Seifert Fiber Spaces

This chapter is based on our paper [KN23a] where we prove a structure
theorem for essential surfaces in Seifert fiber spaces. Along the way we
provide a complete list of incompressible surfaces in a solid Klein bottle i.e.
N ⇥ I.

5.1 Introduction

Recall that we call a closed 3-manifold M irreducible if every embed-
ded 2-sphere in M bounds a 3-ball. The prime decomposition phenomenon
of 3-manifolds allows us to uniquely express every closed 3-manifold as a con-
nected sum of manifolds which are either irreducible or S2 ⇥ S

1 or S2⇥̃S
1.

The geometrisation of 3-manifolds further allows us to cut these irreducible
summands along a canonical collection of incompressible tori and Klein bot-
tle into pieces which are one of three possible types: either they are Seifert
fiber spaces or they are finitely covered by torus bundles or they have in-
teriors which admit a complete hyperbolic metric. Seifert fiber spaces are
precisely those compact 3-manifolds which admit a foliation by circles. They
are an important class of 3-manifolds that are fairly well-understood as they
are completely determined by a finite collection of invariants.

Let D = {(x, y) 2 R
2 : x2 + y

2  1} and let D+ = {(x, y) 2 D : x � 0}.
A model fibered solid torus is the monodromy fibering of a solid torus given
by D⇥ I/ ⇠⇢ or D+⇥ I/ ⇠⇢. Where ⇢ : D⇥1 ! D⇥0 is a rational rotation
map (possibly identity) and ⇢ : D

+ ⇥ 1 ! D
+ ⇥ 0 is the identity map.

We call the model fibered solid torus regular if ⇢ is the identity and non-
regular otherwise. Similarly, a model fibered Klein bottle is the monodromy

48
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fibering given by D ⇥ I/ ⇠r or D
+ ⇥ I/ ⇠r where r : D ⇥ 1 ! D ⇥ 0 or

r : D+ ⇥ 1 ! D
+ ⇥ 0 is the reflection along the x-axis.

Epstein [Eps72] has shown that every circle fiber f in a Seifert fiber space
has a fibered neighbourhood isomorphic to a model fibered solid torus or
a model fibered Klein bottle with f identified with the fiber 0 ⇥ S

1 in the
model. We call f regular if it has a fibered neighbourhood that is isomorphic
to a regular model fibered solid torus and singular otherwise. An isolated
singular fiber has a fibered neighbourhood isomorphic to a non-regular model
solid torus while the non-isolated singular fibers have fibered neighbourhoods
isomorphic to a model solid Klein bottle. The union of the non-isolated sin-
gular fibers give a collection of annuli, tori and Klein bottles that we call
singular surfaces. Let N denote a Mobius strip. The model fibered neigh-
bourhood of a singular surface C is either a solid Klein bottle N ⇥ I (when
C is an annulus), N ⇥ S

1 (when C is a torus) or N⇥̃S
1 (when C is a Klein

bottle). A good exposition for Seifert fiber spaces is the survey paper by
Scott [Sco83] and the preprint of a book by Hatcher [Hat]. A good account
of the non-orientable Seifert fibered spaces with singular surfaces is given by
Cattabriga et al [CMMN20].

Let M denote a Seifert fiber space possibly with singular surfaces. Let S
denote a properly embedded surface inM . We call an embedded disk D inM

a compressing disk if D\S = @D which is an essential curve in S. We call an
embedded diskD inM a boundary compressing disk if @D is the union of arcs
↵ and � where ↵ = D\S is an arc in S that is not boundary-parallel and � =
D\@M . For E ⇢ @M , we say that S is boundary-compressible with respect to
E if � lies in E. We say that S is incompressible or boundary-incompressible
if it does not have any compressing disks or boundary-compressing disks
respectively. We say that S is essential if it is neither S

2 nor a boundary-
parallel disk and it is both incompressible and boundary-incompressible in
M . We now define the notions of horizontal, vertical, pseudo-horizontal and
pseudo-vertical below.

Definition 5.1.1. Let C be a fibered annulus, Mobius strip, torus or Klein
bottle. We say that a properly embedded arc or curve in C is horizontal if it
is transverse to the fibration. We say that a curve in C is vertical if it is a
fiber of the fibration.

We say that a properly embedded surface S in M is horizontal if it is
transverse to the fibration of M and we call it vertical if it is composed of a
union of the fibers of M .

Definition 5.1.2. Let S be a properly embedded surface in a Seifert fiber
space M . Let C be an isolated singular fiber or a singular surface of M and
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let W be a model neighbourhood of C. We say that the intersection of S with
W is exceptional if S \W is one of the following:

1. A once-punctured non-orientable surface with horizontal boundary in
@W when C is an isolated fiber.

2. A pair of pants with vertical boundary in @W when C is an annulus.

3. A once-punctured torus with vertical boundary in @W when C is a
torus.

4. A once-punctured Klein bottle with vertical boundary in @W when C is
a Klein bottle.

Definition 5.1.3. Let S be a properly embedded surface in a Seifert fiber
space M . We say that S is pseudo-horizontal if it is a horizontal surface
outside model neighbourhoods of the isolated singular fibers and intersects
the model neighbourhoods of the isolated singular fibers horizontally or excep-
tionally.

We say that S is pseudo-vertical if it is a vertical surface outside model
neighbourhoods of the singular surfaces and isolated singular fibers and it
intersects the model neighbourhoods of the singular surfaces and isolated sin-
gular fibers vertically or exceptionally.

It is well-known that in Seifert fiber spaces without singular surfaces,
any two-sided essential surface can be isotoped to become vertical or hori-
zontal (see Hatcher [Hat]). Frohman [Fro86] showed that a closed one-sided
incompressible surface in an orientable Seifert fiber space with orientable
base can be isotoped to become pseudo-horizontal or pseudo-vertical. Ran-
nard [Ran96] extended this result to closed incompressible surfaces in non-
orientable Seifert fiber spaces without singular surfaces. In this chapter, we
extend Rannard’s proof to Seifert fiber spaces which may have boundary and
singular surfaces by listing out the incompressible surfaces in a solid Klein
bottle. The main theorem we prove in this chapter is the following:

Theorem 5.1.4. Let M be a Seifert fiber space (possibly with singular sur-
faces) which has at least one singular fiber and let S be a connected properly
embedded essential surface in M . Then S can be isotoped to a surface that
is pseudo-horizontal or pseudo-vertical.

If M has no singular fibers, i.e., M is an S
1-bundle over a surface then

Rannard [Ran96] has shown that S can be isotoped either to a vertical sur-
face or to a surface that is horizontal outside the model neighbourhood of one
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regular fiber and intersects the model neighbourhood horizontally or excep-
tionally. Note that if M has singular surfaces then it always has a horizontal
surface (Theorem 1.2 of [KN23b]).

5.2 Properties of Seifert fiber spaces

In this section we prove that most Seifert fibered spaces are irreducible and
have incompressible boundary and we fix a partition of the manifold into
solid tori and solid Klein bottle.

We will reserve the letter N to denote a fibered Mobius strip with mon-
odromy fibering given by [�1, 1]⇥ [�1, 1]/(x, 1) ⇠ (�x,�1). The solid Klein
bottle N ⇥ I has an induced fibering which is the same as that of the model
fibered solid Klein bottle. The boundary Klein bottle has a fibering given
by the cores of the two Mobius strips N ⇥ 0 and N ⇥ 1 that we denote by l1

and l2 and fibers parallel to @N ⇥ t that we denote by d. We denote by m

the boundary of a meridian disk of the solid Klein bottle (see Figure 5.2).
Let M be a Seifert fiber space with base space B and projection map

p : M ! B. Let M1 be the union of disjoint model neighbourhoods of its
singular surfaces, i.e., M1 is a (possibly empty) union of N ⇥ I, N ⇥ S

1

and N⇥̃S
1 components. Let B1 denote the projection of M1 on B. Let

B0 = B \B1 denote the base space of the Seifert fiber space M0 = M \M1

which has only isolated singular fibers.

Lemma 5.2.1. Let M be an irreducible Seifert fiber space with compressible
boundary. Then M is a solid torus or a solid Klein bottle.

Proof. Assume that M has a compressible torus or Klein bottle boundary
component T . Let D be a compressing disk for @M . Let N(D) ' D ⇥ I

be a regular neighbourhood of D in M . Then (T \ (@D ⇥ I)) [ (D ⇥ @I) is
an embedded sphere in M . As M is given to be irreducible so this sphere
bounds a ball that does not contain D⇥(int(I))). Hence M is obtained from
two balls by identifying a pair of disks on their boundaries so M is either a
solid torus or a solid Klein bottle.

The following Theorem 5.2.2 is known for Seifert fibered spaces with
isolated singular fibers (see Proposition 1.12 of Hatcher [Hat]). We extend
this result to Seifert fibered spaces which may have singular surfaces.

Theorem 5.2.2. Let M be a Seifert fibered space (possibly with singular
surfaces). Then M is irreducible unless it is S

2 ⇥ S
1, S2⇥̃S

1 or RP
3#RP

3.
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Proof. Let M0 and M1 be as described above. If M0 is reducible then it
must have a horizontal reducing sphere. So M0 is either an S

2-bundle over
S
1 or an S

2-semibundle over I. Hence M0 is closed and so M = M0 must be
either S2 ⇥ S

1, S2⇥̃S
1 or RP3#RP

3. See Proposition 1.12 of Hatcher [Hat]
for details. We shall henceforth assume that M0 is irreducible.

Let P = M0 \M1 be a union of tori, Klein bottle and annuli. Let S be
a reducing sphere of M that intersects P minimally in its isotopy class. If
S does not intersect P then it lies either in M0 or in an N ⇥ I, N ⇥ S

1 or
N⇥̃S

1 component of M1 all of which are irreducible. Therefore S bounds a
ball in M contradicting the fact that S is reducing.

Let D be an innermost disk of S\P in S. If D lies in a solid Klein bottle
component N ⇥ I of M1 then it is either a meridian disk or it is parallel to
a disk in @N ⇥ I. As D ⇢ S does not intersect N ⇥ @I ⇢ @M so D can
not be a meridian disk. Isotoping D across @N ⇥ I reduces the number of
components of S \ P which is a contradiction. So we may assume that D

does not lie in an N ⇥ I component of M1.
As M0 has only isolated singular fibers so it is not a solid Klein bottle.

Assume that M0 is not a solid torus, so by Lemma 5.2.1 M0 is an irreducible
manifold with incompressible boundary. As fibers are essential in Mi so
the annuli components of P which are all vertical are incompressible in Mi.
Hence all the components of P are incompressible in Mi, so @D bounds a
disk D

0 in P . And as Mi is irreducible so D[D
0 bounds a ball in Mi. There

exists an isotopy which sweeps D across this ball and o↵ D
0 to reduce the

number of components of S \ P , which again contradicts the minimality of
this intersection.

Finally if M0 is a solid torus and D is a compressing disk for @M0 in M0,
then it is a meridian disk of M0 with horizontal boundary. So @M0 lies in the
interior of M and hence M is the union of a solid torus M0 and M1 = N⇥S

1

along their boundary tori. In this case, we claim that M is S2⇥̃S
1. Let D1 be

a horizontal meridian disks of M0. Let �1 be the boundary of D1 in @M1. Let
↵ be a horizontal straight arc in N0 = N ⇥ t0 connecting a point of �1 \ @N0

to a point p of @N0 which is not on �1. Let D2 be another meridian disk of
M0 with a boundary �2 which passes through p and is parallel to �1 on @M1.
Let A be the horizontal annulus in M1 with boundary �1 [ �2 obtained by
sweeping ↵ across �i. Then S = D1[A[D2 is a horizontal sphere in M . The
complement of S in M is an I-bundle so M is an S

2-bundle over S
1 or an

S
2-semibundle over I (see Corollary 2.6 of [KN23b]). As M is non-orientable

so it must be S
2⇥̃S

1.

There are no essential surfaces in S
2 ⇥ S

1, S2⇥̃S
1 and RP

3#RP
3 so we
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⌧0

Figure 5.1: The CW-complex of the base space B obtained by attaching to
⌧0 the rectangles and annuli corresponding to the projection of the model
neighbourhoods of the singular surfaces.

shall henceforth assume that M is a Seifert fibered space which is either a
solid torus, a solid Klein bottle or an irreducible manifold with incompress-
ible boundary.

Partition of M into solid tori and solid Klein bottle. We first give a CW-
complex structure on B. Let ⌧0 be a simplicial triangulation of B0. Assume
that ⌧0 is fine enough so that projections of the singular fibers lie in the
interiors of distinct disjoint triangles which do not meet the boundary of B0.
Each N ⇥ I component of M1 projects down to a rectangle R with one edge
c given by the projection of the singular annulus of N ⇥ I, two edges b1, b2
given by the projection of N ⇥ @I and an edge a given by the projection of
@N ⇥ I to @B0. Attach one such rectangle to ⌧0 for each N ⇥ I component
of M1 by introducing the 2-cell R, the edges b1, b2 and c and the four corner
vertices (see Figure 5.1). Similarly, each N ⇥ S

1 or N⇥̃S
1 component of M1

projects down to an annulus A. Give a cell-structure to A by introducing an
edges b corresponding to the projection of N ⇥ t0 for some fixed t0 2 S

1, a
boundary edge-loop c corresponding to the projection of the singular torus
(in N ⇥ S

1) or singular Klein-bottle (in N⇥̃S
1) and a boundary edge-loop

a that lies in @B0. Let R denote the 2-cell A \ {a, b, c}. For each N ⇥ S
1

and N⇥̃S
1 component of M1, insert such a 2-cell R, the edge b and c and

the two end-vertices of b (see Figure 5.1). Call all the edges corresponding
to b, b1 and b2 as Mobius edges because their pre-images in M are Mobius
strips and call all the edges corresponding to c as singular surface edges as
their pre-images in M are singular surfaces. Let ⌧ be the cell structure of B
obtained by attaching these cells to ⌧0.

We will henceforth ignore the singular-surface edges of ⌧ . Let V , E and
F denote the collection of preimages of the vertices, the edges which are not
singular surface edges and the faces of ⌧ respectively. Each V 2 V is a fiber
of M . Each E 2 E is a vertical Mobius strip when E is a Mobius edge and
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is a vertical annulus otherwise. And each F 2 F is model regular solid torus
when it does not contain any singular fibers, is a model non-regular solid
torus when it contains an isolated singular fiber and is a model solid Klein
bottle N ⇥ I otherwise.

5.3 Essential surfaces

In this section we study the essential surfaces in Seifert fiber spaces and
prove Theorem 5.1.4. The main original contribution here is a list of the
incompressible surfaces in a solid Klein bottle given in Theorem 5.3.10. The
rest of this section extends the proof of Rannard [Ran96] in order to apply
it to the case when M may have singular surfaces and non-empty boundary.

Definition 5.3.1. Let S be a properly embedded surface in M that intersects
all the annuli and mobius strips E 2 E transversely. Define the complexity
⇠(S) of S to be

P
E2E |⇡0(S\E)|. We say that S is minimal if it has minimal

complexity in its isotopy class. We say that S is well-embedded if it is minimal
and it intersects each E 2 E horizontally or vertically.

Applying the below Lemma 5.3.2 to each E 2 E shows that every essential
surface in M can be isotoped to a well-embedded surface. This Lemma 5.3.2
combines the arguments of Lemma 3.1 and Lemma 3.2 of Rannard [Ran96]
and extends it to manifolds with boundary.

Lemma 5.3.2. Let S be a connected essential minimal surface in M . For
each E0 2 E there exists an isotopy of S in an arbitrarily small neighbourhood
of E0 that fixes @E0 and takes S to a minimal surface which intersects E0

horizontally or vertically.

Proof. We study the various possibilities for the intersection of the surface
S with the annulus or Mobius strip E0.
Case I: A component of S \ E0 is a closed curve that bounds a disk in E0.
By taking the innermost such disk D in E0 we may assume that S does not
intersect the interior of D. As S is incompressible there exists a disk D0 ⇢ S

with @D = @D0. As M is irreducible, D [ D0 bounds a ball in M . When
E0 does not lie in @M we may reduce ⇠(S) by isotoping D0 across this ball
and o↵ D. This contradicts the minimality of S. If E ⇢ @M then as S is
connected D0 = S is a boundary parallel disk, which contradicts the fact
that S is essential. So we may assume that no component of S \ E0 is a
trivial closed curve in E0.

Case II: A component of S \ E0 is a boundary-parallel arc in E0. By
taking the outermost disk D cut o↵ by such arcs we may assume that the
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interior of D is disjoint from S. Let � be the arc D \ @E0 which lies in a
component V of @E0.

If V lies in the interior of M or if E0 ⇢ @M then we claim that isotoping
S across D and o↵ � reduces ⇠(S). Let E 2 E be such that E 6= E0 and
V ⇢ @E. Let ↵1 and ↵2 be components of S \ E that meet the end-points
of ↵ (↵1 may be equal to ↵2). After this isotopy, {↵1,↵2} is replaced in the
list of connected components of S \ E by the component ↵1 [ � [ ↵2. So
the number of components of S \E does not increase under such an isotopy
when V ⇢ @E. If E 2 E is such that V does not lie in @E then this local
isotopy does not change S \ E. And lastly, this isotopy reduces the number
of components of S \ E0. Therefore the complexity ⇠(S) of S reduces after
this isotopy, contradicting the minimality of S.

Assume that V lies in @M and E0 does not lie in @M . The disk D can
not be a boundary-compressing disk for S which is given to be essential. So
D \ S is an arc ↵ that is boundary-parallel in S. Hence there exists a disk
D0 ⇢ S with @D0 = ↵[ � where � is an arc in @S. As @M is incompressible
in M so there exists a disk D1 ⇢ @M such that @D1 = @(D [D0) = � [ �.
As � is vertical, so there exists an E1 2 E that lies in @M such that � cuts o↵
a disk D

0
1 ⇢ D1 from E1. By the above argument applied to S\E1 isotoping

S across D0
1 reduces the complexity of S, contradicting the minimality of S.

So we may assume that no component of S \ E0 is a boundary-parallel arc
in E0.

Case III: A component of S \ E0 is an essential closed curve in E0. By
the above cases, there are no trivial closed curves or boundary-parallel arcs
in S \ E0. If some component of S \ E0 is an essential closed curve in the
annulus or Mobius strip E0 then S \E0 is a union of essential closed curves.
There is an isotopy of E0 fixing @E0 which takes these closed curves to fibers
of E0. We can extend this isotopy of E0 to a local isotopy of an arbitrarily
small neighbourhood of E0, which fixes @E0 and does not increase ⇠(S).

Case IV: No component of S\E0 is a closed curve or a boundary-parallel
arc in E0. If there are no closed curves and no boundary-parallel arcs in
S \E0 then there exists a local isotopy of E0 fixing @E0 which takes S \E0

to a union of horizontal arcs. Again, we can extend this isotopy of E0 to
a local isotopy in an arbitrarily small neighbourhood of E0 which fixes @E0

and does not increase ⇠(S).

We now focus on the intersection of an essential surface with the solid
tori and solid Klein-bottles in F . The following lemmas lead up to Theorem
5.3.9 and Theorem 5.3.10. The below Lemma 5.3.3 is an extension of Lemma
3.6 of Rannard [Ran96] to include boundary-parallel Mobius strips in solid
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Klein bottle.

Lemma 5.3.3. Let S be a well-embedded essential surface in M . Fix F 2 F
and let S0 be a component of S \ F . Assume that S0 is a boundary-parallel
annulus or Mobius strip in F . Then S0 can be isotoped fixing @F to a vertical
surface.

Proof. As S0 is boundary-parallel, there exists a surface S 0
0 ⇢ @F isotopic to

S0 in F with @S 0
0 = @S0. As S is well-embedded, @S0 is either horizontal or

vertical in @F . If @S0 is vertical then S
0
0 is a vertical annulus or Mobius strip

in @F . Pushing the interior of S 0
0 into the interior of F we get a properly-

embedded vertical surface as required. Assume henceforth that @S0 = @S
0
0

is horizontal in @F .
If S 0

0 ⇢ @F is a Mobius strip then F is a solid Klein bottle and as @S 0
0 is

an embedded closed curve transverse to the fibration of the Klein bottle so
it must be isotopic to m. But as m is non-zero in H1(@F,Z2) so there can
not exist a Mobius strip in @F with boundary isotopic to m.

If S 0
0 ⇢ @F is an annulus then there exists a solid torus Q in F with

@Q = S0 [ S
0
0. As @S 0

0 is a horizontal curve so it intersects each E 2 E
that lies in @F in horizontal arcs. As there is more than one cell in the
cell-structure ⌧ of the base space B, so @F is not a subset of @M . Take
some E0 2 E that lies in @F and does not lie in @M . As @S 0

0 \ E0 is a
union of horizontal arcs so there exists a vertical arc � ⇢ S

0
0 \ int(E0) with

� \ @S0 = @�. Let ↵ be the arc in S0 isotopic relative boundary to � in Q.
Let D be the meridian disk in the solid torus Q with @D = ↵ [ �. Let �1
and �2 be the horizontal arcs of S0 \E0 which contain @�. Let � ⇥ I denote
a thickening of � in E0 with @� ⇥ I ⇢ �1 [ �2. Isotoping S across D and o↵
� replaces the two components �1 and �2 of S \E0 with the two components
given by (�1 [ �2 [ � ⇥ @I) \ (@� ⇥ int(I)). These arcs cut o↵ disks from
E0, however the complexity of S does not change under such a local isotopy.
As in Lemma 5.3.2 Case II, by isotoping o↵ such a disk cut o↵ from E0 the
complexity ⇠(S) of S can be reduced, contradicting the minimality of S.

Any pair of disjoint essential curves on a torus are isotopic curves. This is
however not true on a Klein bottle. The below Lemma 5.3.4 says that if the
boundary components of a boundary-compressible incompressible surface are
isotopic then the surface must be a boundary-parallel annulus.

Lemma 5.3.4. Let T be a torus or Klein bottle boundary component of M .
Let S be a connected incompressible surface in M and let �1 and �2 be distinct
components of S \T . Let D be a boundary compressing disk of S with D\S
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an arc with endpoints on both �1 and �2. If �1 is isotopic to �2 in T then S

is a boundary-parallel annulus.

Proof. If a component of @S is trivial in T then let D0 be the innermost disk
bounded by @S in T . As S is incompressible, there exists a disk D1 ⇢ S

with @D1 = @D0. As S is connected S = D1. And as M is irreducible so the
sphere D0[D1 bounds a ball in M . Hence S is parallel to the disk D0 ⇢ @M .
This contradicts the fact that @S has at least two components. So we may
assume that �1 and �2 are essential curves in T .

Let @D = ↵[� where ↵ and � are the arcs D\S and D\T respectively.
If T is a torus then the closure of any component of the complement of any
two disjoint essential closed curves in T is an annulus. Assume that T is a
Klein bottle and refer to Figure 5.2 for the labels of the closed embedded
curves on T . Any two curves on a Klein bottle which are isotopic to l1 (or
to l2) must intersect. If the curves �i are isotopic to m then the closure of
any component of their complement in T is an annulus. If the �i are isotopic
to d then the closures of their complementary components gives two Mobius
strips and an annulus. In either case as the endpoints of � are in distinct
components of S\T , so the closure of the component of T \@S which contains
int(�) must be an annulus A with @A = �1 [ �2. Note that if �1 were not
given to be isotopic to �2, for example �1 = l1 and �2 = d, then the int(�)
may lie in an open annulus but its closure will not remain an annulus.

Let N(D) = D⇥ [�1, 1] be a regular neighbourhood of D in M \ S. The
boundary of N(D) decomposes as N(↵)[N(�)[(D⇥{�1, 1}). Let D0 be the
disk obtained by taking the closure of A\N(�). ThenD0 = D

0[(D⇥{�1, 1})
is an embedded disk with boundary in S. As S is incompressible so there
exists a disk D1 ⇢ S with @D1 = @D0. As M is irreducible so D0 [ D1

bounds a ball B in M with B\N(D) = D⇥{�1, 1}. And S = D1[N(↵) is
the union of two disks along a pair of arcs ↵⇥ {�1, 1} on their boundary, so
it is either an annulus or a Mobius strip. But as S has at least two boundary
components so it can not be a Mobius strip. Furthermore S cuts o↵ the solid
torus B [N(D) from M so it is boundary-parallel.

Lemma 5.3.5. Let F be a fibered solid torus or fibered solid Klein bottle.
Let S be a connected incompressible surface in F with horizontal or vertical
boundary. There exists a boundary relative isotopy which takes S to a hori-
zontal disk or to a surface that intersects a horizontal disk transversely in a
non-empty collection of arcs which are not boundary-parallel in S.

Proof. LetD be a meridian disk of F . We claim that there exists a boundary-
relative isotopy, which takes S to a surface that does not intersect the interior
of D in any circles. To see this, let D0 be an innermost disk in D bounded
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by the circles in S \D. As S is incompressible, @D0 bounds a disk D1 in S.
By the irreducibility of F , D0 [D1 bounds a ball in F . Therefore D1 can be
isotoped o↵ D0 through this ball to reduce the number of circles in S \ D.
The claim then follows from induction on the number of circle components
of S \D in the interior of D.

If S does not intersect the interior ofD then it is an incompressible surface
in the ball B = F \N(D) and so it must be a boundary-parallel disk in B.
If @S is a trivial closed curve in the fibered annulus @D ⇥ I ⇢ @B then
it can not be horizontal or vertical, which contradicts our assumption. So
� = @S separates the two copies of D in @B. Hence there exists a fiber-
preserving isotopy of F which takes @D to the horizontal curve �. Such an
isotopy takes D to a horizontal disk D

0 with @D0 = �. Applying the above
arguments to S \D

0 we can conclude that S does not intersect the interior
of D0 in any circles and so S \ D

0 = @S. Therefore by incompressibility of
S and irreducibility of M , S is isotopic relative boundary to the horizontal
disk D

0 in M .
Assume that S intersects D in a non-empty collection of arcs. If any

of these arcs is boundary-parallel in S then choose an outermost such arc
↵ that cuts o↵ a disk D0 from D. Let @D0 = ↵ [ � with � as the arc
D0 \ @F . As ↵ is boundary-parallel in S so there exists a disk D1 ⇢ S such
that @D1 = ↵[� with � the arc D1\@F . The embedded disk D

0 = D0[D1

is either a meridian disk or a boundary parallel disk of F . If D0 is a meridian
disk then after a slight perturbation we may assume that it is disjoint from
S. And so by the arguments above, S lies in the ball F \N(D0) and hence is
isotopic relative boundary to a horizontal disk. If D0 is a boundary parallel
disk then it bounds a ball B0 in F . There exists an isotopy of F that is
identity oustide a neighbourhood of B0 which sweeps D0 across B

0 and o↵
D1. Restricting this isotopy to D takes D to a meridian disk with fewer
number of components of intersection with S.

We state below the kind of non-orientable incompressible surfaces that
exist in a solid torus, following the characterisation of such surfaces given by
Rubinstein [Rub78].

Lemma 5.3.6 (Corollary 2.2 [Fro86]). A one-sided incompressible surface in
a solid torus has as boundary a single (2k, q)-curve with k 6= 0. Conversely
every (2k, q)-curve with k 6= q on the boundary of a solid torus is the boundary
of a one-sided incompressible surface in the solid torus.

For the sake of exposition we expand on a proof of the below result that
has been proved in Rannard [Ran96].
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Lemma 5.3.7 (Lemma 3.7, [Ran96]). Let S be a connected incompressible
non-orientable surface in a regular solid torus F 2 F . Assume that the
boundary of S is horizontal or vertical in @F . Then S can be reduced to a
meridian disk by a sequence of boundary compressions with respect to any
E 2 E with E ⇢ @F .

Proof. By Lemma 5.3.6, S is a connected incompressible surface with con-
nected boundary. If S is not a disk then we will show that there exists a
boundary compression of S along E that increases its Euler characteristic
by one while keeping S a connected incompressible surface with connected
boundary.

By Lemma 5.3.5, there exists a boundary-relative isotopy that takes S to
a surface which intersects a horizontal disk D in a non-empty collection of
arcs which are not boundary-parallel in S. Let ↵ be an outermost arc which
cuts o↵ a disk D0 from D. Let @D0 = ↵ [ � where � is the arc @F \ D0.
Assume that � lies in E. Let N(@S) be an annulus neighbourhood of @S
in S and let N(↵) be a rectangular neighbourhood of ↵ in S. Translating
a normal vector to S pointing into D0 along ↵ from ↵(0) to ↵(1) followed
by a translation along @S from ↵(1) to ↵(0) reverses the original vector. So
the 1-handle N(↵) is attached to the annulus N(@S) with a twist, giving a
once-punctured Mobius strip Q. The complement of ↵ in Q is connected and
hence its complement in S is also connected. So compressing S along the
disk D0 gives the required connected incompressible surface with connected
boundary and with Euler characteristic one more than that of S.

We will now obtain such a boundary-compressing disk when � is not in
E. We first claim that � can be isotoped to lie arbitrarily close to a vertical
arc via an isotopy through arcs with endpoints on � = @S. Let A be an
annulus such that @F is obtained by identifying the interior of A with @F \�
and @A with �. A has an I-fibering induced by the fibering of @F . Let
�0 and �1 denote the boundary components of A, containing �(0) and �(1)
respectively. As @D and hence � is horizontal so �(0) and �(1) do not lie on
the same I-fiber of A. Let � be the projection of � on �1. As @D and hence
� intersects each fiber of @F at most once so the vertical I-fiber of A at �(0)
followed by � followed by the reverse of � is an embedded closed curve that
bounds a disk in A. This gives an isotopy in A taking � to the I-fiber at
�(0) via arcs with one endpoint fixed at �(0) and the other on �. No point
of � other than possibly �(0) is identified with �(0) in � as � intersects each
fiber of @F at most once. If �(0) is identified with �(0) in � then � intersects
each fiber of @F exactly once and so the two boundary components of A are
identified by full twists, otherwise they are identified via some rational twist.
In either case we have an isotopy in @F that takes � close to a vertical arc
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via arcs with endpoints on @S. Following this up with a rotation in A takes
� to an arc � in E \ A via some isotopy H : I ⇥ I ! @F .

Let P = @F⇥I be a neighbourhood of @F in F , such that S\P = @S⇥I,
D \ P = @D ⇥ I, D0 \ P = � ⇥ I. Let F 0 be the closure of F \ P i.e. the
inner solid torus. Let D

0
0 = F

0 \ D0, �0 = @F
0 \ D

0
0, ↵

0 = F
0 \ ↵ and

S
0 = F

0 \ S. Define G : I ⇥ I ! @F ⇥ I = P by G(s, t) = (H(s, t), t). G

is then an embedding of a rectangle with boundary consisting of a pair of
opposite edges ⌘1 [ ⌘2 on @S ⇥ I = S \ P and the remaining pair of edges
as �0 [ �. Let ↵00 = ↵

0 [ ⌘1 [ ⌘2 and let D1 = D
0
0 [G(I ⇥ I). Then the disk

D1 has boundary ↵00 [ � with ↵00 the arc @D1 \ S and � the arc @D1 \ @F .
As ↵00 is isotopic on S to ↵ which is not boundary-parallel in S so D1 is a
boundary-compression of S with respect to E.

Lemma 5.3.8. Let P be a properly embedded 2-sided surface in M that is a
union of some E 2 E. Let S be an incompressible minimal surface in M . Let
M

0 be the closure of a component of M \P . Then S\M
0 is an incompressible

surface in M
0.

Proof. Suppose that S 0 = S \M
0 is compressible. Let D be a compressing

disk for S 0 in M
0. As S is incompressible in M , so there exists a disk E ⇢ S

such that @D = @E. As @D is essential in S
0 so E does not lie in S

0 and must
therefore intersect P . As M is irreducible, the sphere D [ E bounds a ball
in M . Isotoping E across this ball to D reduces the number of components
of S \ P . As P is a union of some E 2 E so this isotopy reduces ⇠(S),
contradicting the fact that S is minimal. Therefore S

0 is incompressible in
M

0.

We list below the possible incompressible surfaces in a solid torus F 2
F . Note that the solid torus may have non-regular fibering. The following
Theorem 5.3.9 follows from Lemma 3.5 and Lemma 3.6 of Rannard [Ran96].
We give a proof here for the sake of exposition and to ensure that the isotopy
is boundary-relative.

Theorem 5.3.9. Let S be a connected well-embedded essential surface in M

let F 2 F be a solid torus. Then there is an isotopy of S which pointwise
fixes all E 2 E, and takes S \ F to a union of the following components:

1. A vertical boundary-parallel annulus

2. A horizontal disk
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3. A once-punctured non-orientable surface whose boundary is neither a
meridian nor a longitude of F

Proof. Let P be the union of all E 2 E that lie in @F and do not lie on
@M . By Lemma 5.3.8, S \ F is an incompressible surface. And as S is well-
embedded so the boundary of S\F is either horizontal or vertical. Let S0 be
a component of S \ F . By Lemma 5.3.5, there exists an isotopy which fixes
@F and takes S0 to either a horizontal disk or to a surface that intersects a
horizontal disk D in arcs that are not boundary-parallel in S0. Assume that
S0 is not isotopic to a horizontal disk.

Let D0 be the outermost disk cut o↵ by arcs of S0 \D in D. Let @D0 =
↵ [ � where ↵ = S0 \D and � = @F \D. Let �1 and �2 be the components
of @S0 that contain @↵. If �1 and �2 are distinct curves then by Lemma
5.3.4 S0 can be isotoped fixing boundary to a boundary-parallel annulus. By
Lemma 5.3.3, S0 can be isotoped fixing boundary to a vertical annulus and
in particular, @S0 is a vertical curve. If �1 = �2, then we claim that S0 is
a one-sided surface in a solid torus and is therefore non-orientable. To see
this observe that the normal vector field along ↵ pointing into D0, followed
by the normal vector field along �i from one end-point of ↵ to the next gives
a normal vector field along a closed curve on S0 that reverses the direction
of the initial vector. By Lemma 5.3.6, the boundary of S0 is connected and
is neither a meridian nor a longitude of F . S0 is therefore isotopic relative
boundary to either a horizontal disk, a vertical boundary-parallel annulus
or to a once-punctured non-orientable surface whose boundary is neither a
meridian nor a longitude. We shall now see that there exists a boundary-
relative isotopy of F which takes all components of S \ F simultaneously to
one of these three types.

As the Dehn surgery slope at an isolated singular fiber of M is finite, so
the slope of a fiber of @F is non-zero even when F is a non-regular solid.
And by Lemma 5.3.6, the slope of the boundary of a non-orientable surface
is also non-zero. Therefore if some component of S \ F is isotopic relative
boundary to a horizontal disk then every component of S \ F is isotopic
relative boundary to a horizontal disk. So a single isotopy fixing @F exists
taking S \ F to a union of horizontal disks.

Assume that S \ F is a union of boundary-parallel annuli and non-
orientable surfaces. Any two one-sided surfaces in F with isotopic boundary
slopes must intersect, so there is at most one such surface. As any boundary
parallel annuli separates F into two solid tori, so only one of these pieces can
contain the non-orientable surface component. So as in Lemma 5.3.3 there is
an isotopy of F which isotopes all the boundary-parallel annuli with vertical
boundary into a neighbourhood of @F where they are vertical.
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l1
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Figure 5.2: Incompressible surfaces in a solid Klein Bottle represented as
D

2 ⇥ I with the monodromy reflection along a diameter: (i) Horizontal disk
with boundarym, (ii) Vertical boundary-parallel Mobius strip with boundary
d, (iii) Vertical boundary-parallel annulus with boundary d[ d, (iv) Vertical
one-sided annulus with boundary l1[ l2 and (v) One-sided pair of pants with
boundary l1 [ l2 [ d

We now list the possible incompressible surfaces in a solid Klein bottle.

Theorem 5.3.10. Let F = N ⇥ I be a fibered solid Klein bottle and let S be
an incompressible surface in F . Assume that the boundary of S is horizontal
or vertical in @F . Then S can be isotoped relative boundary to a union of
the following components (see Figure 5.2):

1. A horizontal disk

2. A vertical boundary-parallel Mobius strip with boundary d

3. A vertical boundary-parallel annulus with boundary two copies of d

4. A vertical one-sided annulus with boundary l1 [ l2

5. A one-sided pair of pants with boundary l1 [ l2 [ d

Proof. Assume that S is connected. If @S is horizontal then there exists a
horizontal disk D whose boundary is disjoint from @S. And so by Lemma
5.3.5, S is isotopic relative boundary to a horizontal disk. (See Figure 5.2
(i))

Assume that @S is vertical in @F . The Klein bottle @F is the union of two
Mobius strips so the boundary of S consists of components that are either
the cores l1 or l2 of these Mobius strips or copies of the common boundary
d of the Mobius strips. By Lemma 5.3.5 S intersects a horizontal disk D in
arcs that are not boundary-parallel in S.
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Let B = D⇥ I and let F be obtained from B by identifying D1 = D⇥ 1
with D0 = D ⇥ 0 via a reflection along the diameter of D joining l1 and l2.
We claim that S

0 = S \ B is an incompressible surface in B. To see this
let E0 be a compressing disk of S 0 in B. After an isotopy we may assume
that E0 does not intersect D0, i.e., E0 lies in the interior of B. As S is
incompressible so there exists a disk E1 in S with @E1 = @E0. But as S

does not intersect D0 in any circles, so interior of E1 is disjoint from @B,
i.e., E1 ⇢ S \ B = S

0 which contradicts the fact that @E0 is essential in
S
0. Therefore S

0 is incompressible in a ball and hence is a disjoint collection
of disks. Note that S can be reconstructed from S

0 by identifying arcs of
S
0 \D1 with their reflections in S

0 \D0. We now analyse the system of arcs
in S

0 \D1.
Case I: S

0 \ D1 contains an outermost arc with endpoints on distinct
copies of d. Such an outermost arc cuts o↵ a compressing disk E from D1

which satisfies the conditions of Lemma 5.3.4, so S is a boundary-parallel
annulus. As @S is vertical so there exists a boundary-relative isotopy that
takes S to a vertical surface. See Figure 5.2 (iii).

Case II: S 0 \ D1 contains an outermost arc with both end points on the
same curve d. Let d0 and d

00 be the two vertical arcs given by the intersection
of S 0 with @D⇥ I ⇢ @B. Let ↵1 = S

0\D1 be an arc in D1 connecting d
0 and

d
00 and let ↵0 = S

0 \ D0 be its reflection in D0 which also connects d
0 and

d
00. Then � = ↵0 [ ↵1 [ d

0 [ d
00 is a closed curve in @S 0. So S

0 is a single disk
with boundary �. But as ↵0 is identified with ↵1 via a reflection in S and
S is connected so S is a boundary-parallel Mobius strip with boundary d as
in Figure 5.2 (ii). Again as @S is vertical so there exists a boundary-relative
isotopy that takes S to a vertical Mobius strip.

Case III: S 0\D1 does not contain any outermost arc with both end points
on copies of d. Any outermost arc of S 0\D1 must have an end point on either
l1 or l2 so there are at most two such arcs. If there is only one outermost arc
↵1, with end points on both l1 and l2 then its reflection on D0 is an arc ↵0

that also joins l1 and l2. Arguing as in Case II then S
0 is a disk with boundary

↵0 [ ↵1 [ l1 [ l2. As ↵0 is identified with ↵1 via an orientation-preserving
map in S and S is connected so S is an annulus with boundary components
l1 [ l2, as in Figure 5.2 (iv). The complement of l1 [ l2 in @F is connected so
such an annulus is one-sided.

Assume that there are two outermost arcs in S
0\D1, one of which has an

end point on l1 and the other has an end point on l2. Let @S = l1[l2[([k

i=1di)
for some k � 1. Then the pattern of arcs U on D1 is as in Figure 5.3 (i)
with outermost arcs from a point in l1 to d1 and l2 to dk, and parallel arcs
from points in di to di+1. The pattern of arcs L on D0 is a reflection across
the diameter l1l2 of the pattern U (see Figure 5.3 (ii)). Each boundary
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Figure 5.3: The pattern of arcs in (i) U = S \ D1 and its reflection (ii)
L = S \D0
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Figure 5.4: Shaded disk S
0 in B containing the vertical arcs of l1, l2, d1,

d2 and d3 (i.e., k = 3). The dashed curve represents the boundary of a
compressing disk of S.

component di of S splits into two vertical arcs in S
0, with the vertical arc on

the left of the diameter l1l2 in D1 denoted by d
0
i
and the vertical arc on the

right by d
00
i
and ordering of the d

0
i
and d

00
i
given via a path on @D1 from l1

to l2. The boundary of S 0 alternates between the horizontal arcs in U , the
vertical arcs l1, l2, d0i or d

00
i
and the horizontal arcs in L.

To see that @S 0 is connected we trace one such curve starting with l1. If
k is odd then starting from l1, @S 0 traces the following vertical arcs in the
given order l1, d01, d

00
2, d

0
3, d

00
4, ..., d

0
k
, l2, d00k, d

0
k�1, d

00
k�2, ..., d

00
1 and back to l1.

If k is even then starting from l1, it traces out the vertical arcs d01, d
00
2, d

0
3, d

00
4,

..., d00
k
, l2, d0k, d

00
k�1, d

0
k�2, ..., d

00
1 and back to l1. In either case it runs through

all the vertical arcs of @S 0 and it is therefore connected. Hence, S 0 is a single
disk.

Let E be the disk in the sphere @B bounded by @S 0 which contains the
disk cut o↵ from D1 by the outermost arc l1d

0
1 (see Figure 5.4). Note that



Chapter 5. Essential Surfaces in Seifert Fiber Spaces 65

S
0 is a disk in B parallel to E. To reconstruct S from E we need to push

the interior of E into the interior of B and identify U with L, i.e., identify
the horizontal arc l1d01 in U with its reflection l1d

00
1 in L, the arcs d00

i
d
0
i+1 in U

with d
0
i
d
00
i+1 in L and the arc d

00
k
l2 with d

0
k
l2 if k is odd (d0

k
l2 with d

00
k
l2 if k is

even).
When k = 1 then S is a pair of pants with boundary l1 [ l2 [ d. To see

this observe that E is an octagon with @E composed of the arcs l1, l1d0 in U ,
d
0, d0l2 in L, l2, l2d00 in U , d00 and d

00
l1 in L (see Figure 5.2 (v)). Identifying

the horizontal arcs l1d
0 with l1d

00 and d
0
l2 with l2d

00 gives a pair of pants.
Any simple closed curve in a pair of pants is isotopic to one of its boundary
components. But as l1, l2 and d (the boundary components of S) are all
fibers and therefore non trivial in F so S does not have any compressing disk
in F .

We shall show that if k > 1 then S does in fact have a compressing disk
which contradicts the incompressibility of S. As before, let E be the disk
in @B parallel to S

0 (see Figure 5.4). Let G be the disk in @D ⇥ I cut o↵
by d

0
1 [ d

0
2 and @D ⇥ {0, 1}. The boundary of G consists of the vertical arcs

d
0
1, d

0
2 and the horizontal arcs �i in @D ⇥ {i} connecting d

0
1 and d

0
2 (which

do not pass through li). Observe that the arcs �i joining d
00
1 and d

00
2 in @Di

(which do not pass through l1 and l2) lie in E. As S
0 is parallel to E we

may assume that �1 and �2 lie in S
0. After identifying D1 with D0 in F ,

�i is identified with �i and so G \ S = @G. To see that @G is essential in
S observe that it intersects the horizontal arc l1d

0
1 in U exactly once. As it

intersects a properly embedded arc of S exactly once so it can not bound a
disk in S.

Suppose that S is not connected. We have shown that each component
of S is isotopic to one of the five possibilities listed in the statement of this
Lemma. We now argue that a single isotopy can be used to simultaneously
make horizontal or vertical all the components of S which are not a pair of
pants.

If any component of S has horizontal boundary, then it intersects any
vertical curve. So if one component of S is isotopic to a horizontal disk then
S is a union of disks that can be isotoped to be horizontal. Hence there exists
a single isotopy of F that makes all components of S horizontal.

Assume that no component of S has horizontal boundary. If a component
C of S is a boundary-parallel annulus with boundary two copies of d, then its
complement in F is a solid Klein bottle containing l1 and l2 and a solid torus
T . The only components of S that can lie in T are other annuli parallel to C.
Assume that C is the innermost such annuli. There is an isotopy defined in a
neighbourhood of T which takes C into @F . Push the interiors of these annuli
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back into the interior of F to get an isotopy that fixes all other components
of S and takes all the annuli in T to vertical surfaces. Repeating this process
for all boundary-parallel innermost annuli we get an isotopy fixing @F and
taking all boundary-parallel annuli to vertical surfaces.

We now take the solid Klein bottle F 0 in the complement of these boundary-
parallel annuli. And let C be a component of S that is a boundary-parallel
Mobius strip in M

0. Such a component intersects any surface whose bound-
ary contains l1 and l2, so the only remaining components of S in F

0 are
similar boundary parallel Mobius strips. A single isotopy of F 0 exists that
takes all such components to vertical surfaces while fixing the boundary of
F

0.
As the one-sided annulus and one-sided pair of pants have intersecting

boundaries so there can be at most one such component. If a component
C of S in F

0 is a one-sided annulus with vertical boundary, then there is
an isotopy of F 0 fixing the boundary which takes C to a vertical surface.
Combining all these isotopies gives an isotopy which takes S to a vertical
surface.

Corollary 5.3.11. Let M be the fibered manifold N ⇥ S
1 or N⇥̃S

1. Let S
be a connected incompressible surface in M . Assume that for some t0 2 S

1,
S \ (N ⇥ t0) is horizontal or vertical and that @S is either horizontal or
vertical in @M . Then S can be isotoped fixing @S to be either horizontal
or vertical or a one-sided once-punctured torus with vertical boundary when
M = N⇥S

1 or a one-sided once-punctured Klein bottle with vertical boundary
when M = N⇥̃S

1.

Proof. Let N be a fibered Mobius strip I ⇥ I/(x, 0) ⇠ (1 � x, 1) and let
r denote the reflection of N along the arc I ⇥ 1

2 . The manifold M can be
obtained from K = N⇥I by identifying N1 = N⇥1 with N0 = N⇥0 via the
identity if M = N ⇥ S

1 or via the reflection r if M = N⇥̃S
1. In either case,

the fibration on @M is induced by the circles @N ⇥ t. We may assume that
S is either disjoint from or transversely intersects the mobius strip N ⇥ t0

which we identify with N = N0 = N1.
Let S 0 = S \K. Assume that S 0 has a compressing disk D in K. As S

is incompressible so there exists a disk D0 ⇢ S with @D0 = @D ⇢ int(K).
As @D is non-trivial in S

0 so D0 intersects N in some closed curves. This
contradicts the fact that S \ N is horizontal or vertical. Therefore S

0 is
incompressible in K.

The fibration of the Klein bottle @K (given by the fibration of @M and
N) is a union of curves parallel to d, the curve l1 and the curve l2. By
assumption, @S 0 is either horizontal or vertical in @K. Applying Theorem
5.3.10 to S

0, we know that each component of S 0 is either a horizontal disk
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(meridian disk of the solid Klein bottle K), vertical annulus, vertical Mobius
strip or a pair of pants with boundary curves l1 [ l2 [ d.

A horizontal disk of K intersects any surface in K which has vertical
boundary curves, so if a component of S 0 is horizontal then S

0 is a collection
of horizontal disks attached in pairs along arcs on their boundaries. As it is
a covering space of an annulus which is the base space of M so S

0 must be a
horizontal annulus.

If S 0 is a collection of vertical annuli or Mobius strips then S is obtained
from S

0 by attaching them along their boundaries. So S is a vertical annulus,
Mobius strip, torus or Klein bottle.

At most one component of S
0 is a pair of pants. Assume that some

component C of S 0 is a pair of pants. The boundary components l1 and l2

of C are identified in S when N1 is stuck to N0 via the identity or via the
reflection map r. If the third boundary component d of C lies on @M , then S

is obtained from a pair of pants by identifying two of the boundary curves l1
and l2 via identity if M = N⇥S

1 and reflection if M = N⇥̃S
1. S is therefore

a one-sided punctured torus with vertical boundary when M = N⇥S
1 and a

one-sided punctured Klein bottle with vertical boundary when M = N⇥̃S
1.

Assume that the third boundary component d of C lies on N . A boundary
parallel Mobius strip in K separates l1 and l2 and therefore must intersect C.
So by Theorem 5.3.10 the component of S 0 that meets the pair of pants along
the curve d on N must be a vertical annulus with boundary two copies of d.
If both these boundary components lie on N then by the same reasoning it is
adjacent to another vertical annulus. Repeating this argument finitely many
times, we get a vertical annulus with one boundary curve d attached to the
boundary of the pair of pants and the other boundary curve a fiber of @M . S
is therefore obtained from a pair of pants by identifying two of the boundary
curves l1 and l2 via identity if M = N ⇥ S

1 and reflection if M = N⇥̃S
1

and by identifying the third boundary curve to a boundary component of a
vertical annulus. And so again S is a one-sided punctured torus with vertical
boundary when M = N ⇥ S

1 and a one-sided punctured Klein bottle with
vertical boundary when M = N⇥̃S

1.

We now prove Theorem 5.1.4 by replicating the proof of Theorem 4.1 of
Rannard [Ran96], with modifications to take into account singular surfaces
and boundary components.

Proof. As M contains an essential surface so it is not S
2 ⇥ S

1, S2⇥̃S
1 or

RP
3#RP

3. So M is a solid torus, solid Klein bottle or an irreducible man-
ifold with incompressible boundary. Isotope S to have minimal complexity
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in its isotopy class. After a further isotopy of S near each E 2 E using
Lemma 5.3.2, we may assume that it is well-embedded. Let M1 denote
the disjoint union of model neighbourhoods of the singular surfaces and let
M0 = M \M1. If M0 is empty, then M is a either N ⇥ I, N ⇥ S

1 or N⇥̃S
1

and so by Corollary 5.3.11 M , S can be isotoped to be pseudo-horizontal or
psuedo-vertical. Assume that M0 is non-empty.

When M1 is non-empty, let P = @M0 \ @M1 be a properly embedded
surface that is a union of some E 2 E . So by Lemma 5.3.8, S \ M0 is an
incompressible surface in M0.

By Theorem 5.3.9 for each solid torus F 2 F , there exists an isotopy
pointwise fixing @F and taking S \ F to either a union of vertical annuli, a
union of horizontal disks or a once-punctured non-orientable surface. Com-
bining these isotopies we get an isotopy of S that pointwise fixes E and
takes S to a well-embedded surface that intersects each solid torus F 2 F in
vertical annuli, horizontal disks or a once-punctured non-orientable surface.

Case I: For some solid torus F 2 F , a component of S\F is a boundary-
parallel vertical annulus.

As S is well-embedded, it intersects @F in a union of fibers. Suppose
there exists a solid torus F

0 that is adjacent to F along some E 2 E that
intersects S. If F 0 is a regular solid torus then by Theorem 5.3.9 and the
fact that fibers are longitudes of regular solid tori, S \ F

0 must also be a
vertical annulus. If F 0 is a non-regular solid torus then as slopes at singular
fibers can not be infinite so fibers can not be the boundary of a meridian
disk. Therefore S \ F

0 is either a vertical annulus or a once-punctured non-
orientable surface. So S\(F[F 0) is a pseudo-vertical surface. Repeating this
argument for adjacent solid tori we can conclude by induction that S \M0

is a pseudo-vertical surface with vertical boundary in @M0.
Case II: For all solid tori F 2 F , S \ F consists of horizontal disks and

once-punctured non-orientable surfaces.
Fix a solid torus F0 2 F . Suppose that for some regular solid torus

F 2 F , S \ F is a punctured non-orientable surface. There is a path of
regular solid tori from F to F0. We will use Lemma 5.3.7 repeatedly to
reduce the intersection of S with each solid tori in this path (except possibly
F0) to meridian disks.

Let F
0 2 F be a regular solid torus adjacent to F along some E 2 E .

By Lemma 5.3.7, we may compress S along E finitely many times to reduce
S\F to a meridian disk. These compressions give local isotopies that change
S only in the interior of F [F

0. As these isotopies fix S\V so the complexity
⇠(S) does not change and so S is still of minimal complexity. By Lemma
5.3.2, after an isotopy near E in F [F 0, S is a well-embedded surface. Repeat
this process along a path of regular solid tori from from F to F0. Eventually
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the surface S is isotoped to a well-embedded surface that intersects each
regular solid torus in meridian disks. As S intersects @F0 horizontally so by
Theorem 5.3.9, S\F0 must be a non-orientable surface or a union of meridian
disk.

If M has an isolated singular fiber, then take F0 to be a non-regular solid
torus containing such a fiber so that S \ M0 becomes a pseudo-horizontal
surface in M0 with horizontal boundary in @M0. If M has no isolated sin-
gular fibers then by assumption it must have singular surfaces, i.e, M1 is
non-empty. Take F0 to be a regular solid torus that intersects @M1 along
some E0 2 E . Assume that S\F0 is a once-punctured non-orientable surface.
By Lemma 5.3.7, repeated boundary compressions of S\F0 along E0 reduces
S \ F0 to a meridian disk and such an isotopy does not change ⇠(S). Again
the surface S \M0 has been isotoped to a pseudo-horizontal surface in M0

with horizontal boundary in @M0.

If M1 is empty, then we have shown that S is a pseudo-horizontal or
pseudo-vertical surface. When M1 is non-empty, take P = @M0 \ @M1 and
by Lemma 5.3.8, S\M1 is an incompressible surface. By Lemma 5.3.2, there
is an isotopy in a neighbourhood of E 2 E which makes S a well-embedded
surface. By Theorem 5.3.10 and Corollary 5.3.11, when S\P is vertical as in
Case I, for each component W of M1, S\W is either vertical, a pair of pants
(when W = N ⇥ I), a once-punctured torus (when W = N ⇥ S

1) or a once
punctured Klein bottle (when W = N⇥̃S

1). Therefore S is a pseudo-vertical
surface in M . And when S \P is horizontal as in Case II, then S \M1 must
be a horizontal surface. And therefore S is a pseudo-horizontal surface in M .
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Taut Foliations

This chapter is based on ongoing work with Rachel Roberts and her student
Je↵rey Norton of Washington University in St. Louis. There are no original
results here.

6.1 L-space Conjecture

Definition 6.1.1. A transversely orientable codimension-1 foliation F of a
3-manifold M is said to be taut if there exists a transverse circle in M which
intersects each leaf of F .

The existence of taut foliations has interesting topological implications.
For instance, if M contains a taut foliation and has no sphere leaf, then M

is irreducible [Nov65]. Or that the existence of taut foliations implies that
⇡1(M) is infinite [[Nov65], [GO89],[Hae62]].

In [Gab83], Gabai shows that any compact irreducible manifold which is
not a a rational homology 3-sphere (QHS) admits a taut foliation. A rational
homology sphere is a 3-manifold which has the same homology groups as S3

when computed with rational co-e�cients. So, when does a QHS admit a
taut foliation? The L-space Conjecture 6.1.3 attempts to answer this very
question.

Definition 6.1.2. A closed 3-manifoldM is called an L-space if H1(M,Q) =

0 and \H(M) (Heegard Floer homology) is the free abelian group of rank��H1(M,Z)
��.

70
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L-spaces are a generalisation of lens spaces. They have the simplest pos-
sible Heegard-Floer homology. The L-space conjecture predicts a curious re-
lationship between Heegard-Floer homology, orderability of the fundamental
group and the existence of taut foliations in a QHS. The precise statement
of the conjecture is as follows:

Conjecture 6.1.3 (L-space Conjecture, [BGW13], [Juh15] ). Let M be an
irreducible QHS. Then the following are equivalent

1. M is not an L-space.

2. ⇡1(M) is left-orderable i.e. there is a total order on ⇡1(M) that is
invariant under left multiplication

3. M admits a taut foliation

The conjecture is fully resolved for graph manifolds (i.e either a Solv
manifold or a manifold with only Seifert pieces in their JSJ decomposi-
tion or a connected sum of these two categories) by the combined work
of a lot of mathematicians ([BC17],[BGW13],[BNR97],[CLW13],[HRRW20],
[EHN81],[LS09],[BC15]).

We are interested in (1) if and only if (3) part of the conjecture. The
(3) implies (1) part of the conjecture was resolved by the combined work of
Ozsváth, Szabo, Bowden, Kazez and Roberts.

Theorem 6.1.4 ( [OS04], [Bow16], [KR17]). If M is an L-space, then it
does not admit taut foliations

Our objective here is to provide evidence for the converse of the above
statement by explicitly constructing taut foliations in QHS that are not
L-spaces. One way to produce L-space knots is via Dehn surgery.

Definition 6.1.5. A non-trivial knot K is said to be an L-space knot if
some non-trivial surgery along this knot produces an L-space.

Example 6.1.6. Torus knots are L-space knots. More generally all closed
positive n-braids are L-space knots. See [KMOS07],[RR17],[OS05] for de-
tails.

Definition 6.1.7 ([DR21]). A knot K is said to be persistently foliar
if for every rational boundary slope (except the meridional slope ), there is
a co-oriented taut foliation meeting the boundary of the knot exterior in a
foliation by curves of that slope.
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Definition 6.1.8. Let K ⇢ S
3 be a non-trivial knot. Let S3

r
(K) denote the

manifold obtained by Dehn surgery on S
3 along K with surgery co-e�cient

r. Then S
3
r
(K) is said to be reducible if it contains a sphere that does not

bound a ball and the slope r is called a reducible surgery slope.

Conjecture 6.1.9 (L-space knot conjecture). A knot K ⇢ S
3 is persistently

foliar if and only if K is not an L-space knot and has no reducible surgeries,
in other words, it has taut foliations realizing all possible slopes if and only
if every non-trivial Dehn surgery gives a manifold that is not an L-space but
is irreducible.

Krcatovich [Krc15] showed that composite knots can never be L-space
knots. Roberts and Delman in their paper [DR21] confirm Conjecture 6.1.9
for a sub-class of composite knots.

Theorem 6.1.10 ([DR21]). A connected sum of knots in S
3 is persistently

foliar if at least one of the summands is persistently foliar. Also any con-
nected sum of fibered knots is persistently foliar.

Theorem 6.1.11 ([DR20]). Any knot K ⇢ S
3 with a minimal Seifert surface

F which is the plumbing of surfaces F1 and F2 where F2 is an unknotted band
with even number (greater than 4) of twists, is persistently foliar.

Along similar lines, we hope to provide evidence for L-space conjecture
by constructing taut foliations in an infinite family of non-L-spaces. One
way of obtaining non-L-spaces is as follows:

Given an L-space knot K, infinitely many surgeries along K gives rise to
L-spaces. It is known that for any non-trivial positive knot K ⇢ S

3, the set of
L-space slopes is either empty or is [2g�1,1)\Q where g is the Seifert genus
of K [KMOS07],[RR17],[OS05]. Therefore, Dehn surgery along any positive
knot with slope r 2 (�1, 2g� 1)\Q yields a non-L-space. Conjecture 6.1.3
predicts existence of taut foliations in them. Krishna confirms this prediction
by constructing taut foliations in QHS obtained by Dehn surgery along knots
realized as closures of 3-braids in [Kri20].

Theorem 6.1.12 (Theorem 1.2 [Kri20]). Let K ⇢ S
3 be a non-trivial positive

knot realized as the closure of a 3-braid. Then the manifold obtained as a
result of Dehn surgery along K with slope any r 2 (�1, 2g � 1) \Q admits
taut foliation.

We hope to construct taut foliations in manifolds obtained by suitable
Dehn surgery along closed positive n-braids. The precise statement in men-
tioned is the conjecture below. This constitutes future work.
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Conjecture 6.1.13. Let K ⇢ S
3 be a closed positive n-braid, n � 4. Then

any manifold obtained by Dehn surgery along K with slope any r 2 (�1, 2g�
1) \Q admits a taut foliation, where g is the genus of K.

In this chapter, we show why the construction in [Kri20] cannot be gen-
eralised to all closed positive n-braids.

Modus Operandi: Motivated by the work of Rachel Roberts and Tao
Li in [Rob95], [Rob01a], [Rob01b], [LR14],[Li02] and [Li03], we hope to build
branched surfaces without sink disks in the exterior of non-trivial knots that
are realized as closures of positive n-braids. By Li’s work in [Li02]and [Li03],
such a branched surface will carry essential laminations. These laminations
can be extended to taut foliations in the knot exterior, and then to taut
foliations in the Dehn filled manifold by capping o↵ the foliation by disks
whenever the slopes are rational.

The preliminaries required to make sense of the above paragraph are
covered in the following section.

6.2 Preliminaries

6.2.1 Train Tracks and Branched Surfaces

Train tracks were popularized as a means to study simple closed curves on
a surface by Thurston (see [Thu22]). Branched surfaces are a generalization
of train tracks and are convenient tools in the study of incompressible sur-
faces and their generalizations. We define train tracks and branched surfaces
below.

Definition 6.2.1. A train track ⌧ on a surface S is a subspace locally
modeled on the object in the left side of Fig 6.1. The non-manifold points on
⌧ are called switches and the closure of components of the complement of
switches are called branches of ⌧ .

Figure 6.1 shows a local train track model and its I-fibered neighborhood.

Definition 6.2.2. A curve � is said to be carried by ⌧ if it can be isotoped
into a I-fibered regular neighborhood of ⌧ transverse to the I-fibers and is
said to be fully carried by ⌧ if it intersects every I-fiber of N(⌧).

Definition 6.2.3. A measure µ on a train track ⌧ is an assignment of a
non-negative real number (called weights) to each branch of ⌧ satisfying the
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Figure 6.1: Train track model and its I-fibered neighborhood

e
c

d

Figure 6.2: Model measured train track

x

1-x
1

Figure 6.3: Measured train track on a torus
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Figure 6.4: Standard spine models

Figure 6.5: Local model of a branched surface

branching equation e = c + d for each branch point of ⌧ as shown in Figure
6.2.

Figure 6.3 shows a measured train track on a torus. Let ⌧(!) be this
measured train track. Then the slopes realised by this train track are given
by

i(⌧(!),l)
i(⌧(!),m) =

x

1

Since all weights should be non-negative, both x and 1�x are non-negative.
So, varying x in [0, 1], we get ⌧(!) carries all rational slopes in [0, 1] and fully
carries [0, 1).

Definition 6.2.4. A standard spine is a space locally modeled on one of
the spaces in Figure 6.4.

A branched surface B is a union of a finite number of compact surfaces
locally modeled on Figure 6.5 which is obtained by smoothening a standard
spine. B intersects @M in a train track.

Let N(B) denote a regular neighborhood of B as in Figure 6.6.The bound-
ary @N(B) has two parts, @hN(B) which is the horizontal boundary trans-
verse to all the I�fibers and the vertical boundary @vN(B) which is made
up of subarcs of the I-fibers.
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Figure 6.6: The region shaded in black is @v(N(B)) and the region shaded
lightly is @h(N(B))

Figure 6.7: The shaded region is a sink disk

Definition 6.2.5. The branch locus of B denoted by L is the set of all non-
manifold points of B i.e points that do not have a neighborhood homeomorphic
to R

2. A branch sector of B is any connected component of B � L under
the path metric.

In Figure 6.5 the points on the branched locus in the middle branched
surface are called double points. The intersection point of the two loci in the
rightmost branched surface is called a triple point.

Let Z be the set of double points in L. Associate a normal vector to each
component of L�Z (in B) pointing towards the cusp as in Figure 6.5. This
is called the branch direction of this arc.

Definition 6.2.6. A disk D which is a branch sector of B is called a sink
disk if every arc in its boundary points into the disk and D \ @M = ;. We
call D a half sink disk if all arcs in @D � @M points into D. See Figure
6.7.

Definition 6.2.7 ([Oer88]). An invariant measure on a branched surface B
is a function that assigns non-negative real numbers to all the sectors of B
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f e d

c
aab

Figure 6.8: Measured branched surface

satisfying the branching equations f = a+ b = d+ e, b = c+ e and d = c+ a

as shown in Figure 6.8. A branched surface with an invariant measure is
called a measured branched surface.

Definition 6.2.8. Let M be a 3-manifold. A codimension-1 lamination ⇤
is a closed, foliated subset of M where ⇤ is covered by open sets U of M of
the form R

2 ⇥ R such that ⇤ \ U = R
2 ⇥ C, where C is closed in R.

Definition 6.2.9. A lamination (or foliation) ⇤ is said to be carried by B
if it can be isotoped into N(B) transverse to the I-fibers of N(B). It is fully
carried by B if it intersects every I-fiber of N(B).

Essential laminations were introduced by Gabai and Oertel in their sem-
inal paper [GO89] as a generalisation of incompressible surfaces. In [Hat92],
Hatcher constructs essential laminations in a number of irreducible 3-manifolds
which have no incompressible surfaces.

Definition 6.2.10 (See [GO89]). A lamination ⇤ of M is said to be an
essential lamination if

1. The inclusion of the leaves of the ⇤ into M is ⇡1-injective.

2. M⇤ is irreducible, where M⇤ is the metric completion of M\⇤ with the
path metric inherited from a Riemannian metric on M .

3. ⇤ has no S
2 leaves.

4. ⇤ is end-incompressible

Laminar branched surfaces were introduced in [Li02] by changing one
condition from that of essential branched surfaces defined in [GO89]. The
existence of a laminar branched surface ensures the existence of essential
laminations.
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Definition 6.2.11. Let B be branched surface in a closed 3-manifold and
N(B) be its I-fibered neighborhood. A disk D ⇢ M is called a monogon if
D ⇢ M\int(N(B)) with @D = D \N(B) = ↵ [ �, where ↵ ⇢ @vN(B) is in
an interval fiber of @vN(B) and � ⇢ @hN(B).
Definition 6.2.12. Let D1, D2 be the two disk components of @h(N(B)) of
a D

2 ⇥ I region of M\int(N(B)). Let p : N(B) �! B be the projection
identifying each I-fiber to a point. If the intersection of any I-fiber of N(B)
with int(D1) [ int(D2) is either empty or a single point, we call p(D1 [D2)
a trivial bubble in B.
Definition 6.2.13. A branched surface B in a closed 3-manifold M is called
laminar if it satisfies the following conditions:

1. @hN(B) is incompressible in M\int(N(B)), no component of @hN(B)
is a sphere and M\B is irreducible.

2. There is no monogon in M\int(N(B))

3. There is no Reeb component i.e., B does not carry a torus that bounds
a solid torus in M .

4. B has no trivial bubbles.

5. B has no sink disk or half sink disks.

The following theorem of Tao Li gives a nice and easy way to detect
essential laminations in a compact 3-manifold.

Theorem 6.2.14 (Theorem 2, [Li02], [Li03]). Let M be a compact oriented
3-manifold. Then

1. Any laminar branched surface fully carries an essential lamination.

2. Any essential lamination that is not a lamination by planes is fully
carried by a laminar branched surface.

6.2.2 Sutured Manifolds

Gabai introduced the concept of sutured manifolds in [Gab83]. For a nice
exposition see [Sch90]. In [Gab87b], he constructs a branched surface in knot
complements using sutured manifold decomposition. This branched surface
intersects the boundary of the manifold in curves of slope zero. If such a
branched surface carries taut foliations, then it will meet the boundary of the
manifold in curves of slope zero. Tao Li and Rachel Roberts [LR14] modify
Gabai’s sutured manifold hierarchy to obtain a branched surface carrying
taut foliations realizing an interval of rational slopes containing zero.
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Definition 6.2.15. Let K be a knot in S
3. A longitude of K is the unique

(up to isotopy) essential simple closed curve l in @N(K) such that [l] = 0 in
H1(XK), where XK denotes the exterior of K.

Definition 6.2.16. A manifold M is said to be obtained by zero frame
surgery on K if it is obtained by performing Dehn surgery along the longi-
tude.

Definition 6.2.17. A sutured manifold (M,�) is a compact oriented 3-
manifold M together with a set � ⇢ @M of pairwise disjoint annuli A(�) and
tori T (�) such that the interior of each component of A(�) contains a suture,
a homologically non-trivial oriented simple closed curve. Let R = @M\int(�)
and define R+ (or R�) to be the component of R that is oriented so that its
normal vectors are pointing outwards (or inwards) and so that it induces the
same orientation on the sutures. Let the set of sutures be denoted by s(�).

Definition 6.2.18. Let (M,�) be a sutured manifold and let F be a prop-
erly embedded surface such that for every component c of F \ �, one of the
following is true:

1. c is a properly embedded non-separating arc in �.

2. c is a simple closed curve in an annulus A 2 � such that [c] = [A\s(�)]
homologically.

3. c is a non-trivial curve in a torus T 2 � and [c] = [�] if � is any other
component of T \ F .

Then F defines a sutured manifold decomposition (M,�)
F�! (M 0

,�0)
where

1. M
0 = M\int(N(F ))

2. �0 = (� \M
0) [N(F 0

+ \R�) [N(F 0
� \R+)

3. R0
+ = ((R+ \M

0) [ F
0
+)\int(�0)

4. R0
� = ((R� \M

0) [ F
0
�)\int(�0)

where F
0
+(F

0
�) is the component of @N(F ) \ M

0 where the normal vectors
point out of (into) M

0.

A schematic representation of sutured manifold decomposition one di-
mension lower as given in [Sch90] is shown in Figure 6.9.

Gabai shows that there is a nice sutured manifold decomposition where
you end up with product manifolds at the last stage. The following definition
leads upto that result.
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Figure 6.9: Decomposition of an annulus by an oriented arc

Definition 6.2.19 ([Gab87a]). A sutured manifold decomposition (M,�)
F�!

(M 0
,�0) is called well-groomed if for every component W of R, F \W is a

union of parallel, coherently oriented, non-separating closed curves and arcs.

Theorem 6.2.20 (Lemmas 3.6, 5.1 in [Gab87b]). Let K be a knot in S
3

and M = XK. There is a well-groomed sutured manifold sequence of (M,�)
where � = @M

(M,�)
F1�! (M1,�1)

F2�! ...
Fn�! (Mn,�n) = (F ⇥ I, @F ⇥ I)

such that @Fi intersects the boundary of M in a union of circles for each
1  i  n, F1 is a minimal genus Seifert surface of K and F is compact and
oriented.

6.2.3 Product Disks

Stallings [Sta78] showed that positive braid closures are fibered links. Gabai
[Gab86] proved the same result using the theory of sutured manifolds (via
disk decomposition).

Definition 6.2.21. Let (M,�) be a sutured manifold. A product disc is a
disc D properly embedded in M such that @D \ � consists of two essential

arcs in �. A sutured manifold decomposition (M,�)
D�! (M 0

,�0) where D is
a product disk is called a disk decomposition.

Definition 6.2.22. (M,�) is a product sutured manifold if M = S ⇥ I and
� = @F ⇥ I, where F is a compact surface.

Theorem 6.2.23 (Theorem 1.9, [Gab86]). Let L be a link in S
3. L is fibered

with fiber F if and only if there exists a sutured manifold sequence

(S3 � (F ⇥ I), @F ⇥ I)
D1�! ...

Dn��! (Mn,�n)
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such that Di are product disks and (Mn,�n) is a collection of product sutured
balls (D2 ⇥ I, S

1 ⇥ I).

When L is a knot, (Mn,�n) = (B3
, S

1 ⇥ I). Let K ⇢ S
3 be a fibered

knot with monodromy � and fiber surface F , then such a disk decomposition
determines the image of properly embedded arcs on F . For instance, let � be
a properly embedded essential arc on F . Look at � as an arc on F+ ⇢ F ⇥ I

by calling it �+. As (F ⇥ I, @F ⇥ I) is a trivial product sutured manifold, all
information regarding � seems to be captured by the complementary sutured
manifold. So, pushing � through (S3 � (F ⇥ I), @F ⇥ I) we get a disk D

that intersects the suture exactly twice and @D � (@F ⇥ I) = �+[�� where
�+ ⇢ F+ and �� ⇢ F�. Here D is a product disk and � takes �+ to ��.

Definition 6.2.24. A branched surface B is said to be foliar if

1. It does not carry a torus leaf.

2. Complementary regions of the neighborhood of the branched surface are
sutured manifold products.

3. It has no sink disks.

4. It has no trivial bubbles.

Foliar branched surfaces are laminar. If complement of a laminar branched
surface are product regions, then it will carry essential lamination that can
be extended to a foliation. If this foliation has no compact leaves, then it is
taut. Hence, existence of a foliar branched surface guarantees the existence
of a taut foliation by [Li02] and [Li03].

6.3 An Example

In this section, we describe a construction of a foliar branched surface in
the exterior of the trefoil knot (See [Rob01a] and [Kri20]) which satisfies the
required conditions. Let K be a positive trefoil knot (see Figure 6.10). K
has genus 1. The interval of slopes that are realized by taut foliations in its
exterior is (�1, 2g � 1) which in this case is (�1, 1).

A Seifert surface F of K can be drawn as in Figure 6.11 applying Seifert’s
algorithm. We obtain F by attaching bands to Seifert disks. Since F is
orientable, we can call one side F+ and the other one F�. We opt for the
convention that we can see only the positive side of F as in [Rud93].
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Figure 6.10: Two ways of drawing a positive trefoil knot

Figure 6.11: Seifert surface of trefoil knot.

It is well known that K is fibered with fiber a once-punctured torus.
Hence, XK = F ⇥ I/� with � : F �! F the monodromy. Let @N(K) =
@XK = T . Let m be the meridian of T i.e. the curve on T that bounds an
essential disk in N(K) and l = @F be the longitude. Note that i(m, l) = 1.

Let D be a disk as shown in Figure 6.12. Let ↵+ = @D \ F+ and
↵� = @D\F�. Note that @D ⇢ F+[F�[T . Also, ↵+[↵� is outlined in red
on the fiber surface F in 6.13. Sticking to our conventions, ↵+ is the solid
arc and ↵� is the dotted arc. We now construct a branched surface in XK
which intersects T in a train track which carries all rational slopes in (�1, 1).

The spine for the branched surface B is constructed from F ⇥ {1
2} [ D.

We have to assign an orientation to D so as to obtain the desired branched
surface using the smoothing conventions shown in Figure 6.14. We then show
that B is foliar and intersects T in a train track carrying all rational slopes
in (�1, 1). Then we extend essential laminations to taut foliations in XK
and then to a taut foliation in the manifold obtained by Dehn filling XK.

By Lemma 3.4 in [Kri20], D can isotoped such that ↵+ and ↵� lie entirely
in the Seifert disks as shown in Figure 6.15 (ignore the arrows for now). Let
us choose positive orientation on D. Then, following the cusping conventions
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Figure 6.12: Product disk in XK modulo �

Figure 6.13: ↵+ [ ↵� ⇢ @D on Seifert surface of K

Figure 6.14: Smoothing convention

Figure 6.15: Isotoping D
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Figure 6.16: Local model of B

Figure 6.17: Train track B \ @XK

in Figure 6.14 we get a branched surface B which looks locally like Figure
6.16 in the knot complement picture. Note that since F is co-oriented, @F
inherits a co-orientation from F using the right hand rule. The arcs ↵+ and
↵� are co-oriented as in Figure 6.15. Then ⌧ = B \ @XK is the train track
shown in Figure 6.17. The sector of ⌧ on the right along with @F carries
all rational slopes in [0, 1) and the sector on the left along with @F carries
all slopes between (�1, 0). So, together they carry all slopes in (�1, 1).
Therefore, we have a branched surface B that intersects @XK in a train track
that carries all curves with rational slopes in (�1, 1).

Evidently, we do not have any sink disks or half sink disks in B. By
Propsition 3.11 of [Kri20], such a branched surface is laminar. Applying
Theorem 2.5 of [Li03], we have a family of essential laminations ⇤r that meet
@XK in all rational slopes r 2 (�1, 1). Such laminations can be extended to
taut foliations Fr in XK that foliate @XK in curves of slope r (See Proposition
3.18 in [Kri20]). Then we obtain taut foliation in S

3
r
(K) for each r 2 (�1, 1)

by doing a Dehn filling that sends the meridian to a curve with slope r. These
manifolds are non-L-spaces and we have produced explicit taut foliations in
them, just as the L-space Conjecture predicts.
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Figure 6.18: Torus knot T3,4

6.4 A Potential Candidate

It is tempting to believe that the above construction of branched surface can
be generalised to all torus knots Tp,q and then to all positive closed n-braids
as Krishna did for closed 3-braids in [Kri20]. Torus knot complements are
Seifert fiber spaces. The motivation behind attempting to construct taut fo-
liations in torus knot exteriors is twofold. Although the L-space Conjecture
6.1.3 is fully resolved for Seifert fiber spaces, an explicit foliation has not
been constructed. Also, given that Tp,q for 0  p < q are the most complex
of the p-braid closures, so finding a suitable branched surface in this case also
opens up the possibility of extending this construction to the general case
with minor modifications.

If our branched surface is constructed from a copy of the fiber surface and
a bunch of product disks and it is sink disk-free, then it will always be lami-
nar (See Proposition 3.11 in [Kri20]). But unfortunately, as the complexity
of the knot increases, a naive generalization of the construction in [Kri20]
results in combinatorial issues as we shall explain in the remainder of this
section.

Applying Seifert’s algorithm to Tp,q, we obtain a Seifert surface F with p

disks and q(p�1) bands as shown in Figure 6.18. Call the disks S1, ..., Sp. We
number them going from down to up. There are q bands attached between
Si and Si+1. Call them bi,j, where j = 1, 2, .., q. Now Tp,q is fibered with fiber
the obvious Seifert surface of the knot.
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Define P to be the collection of disks in XTp,q satisfying the following
property: Let Di,j 2 P be a disk such that @Di,j ⇢ Si[Si+1[ bi,j [ bi,j+1[A
where A = @F ⇥I ⇢ XTp,q . All disks in P intersect the @F ⇥I in exactly two
components and are therefore product disks. See Figure 6.13 for the outline
of such a disk. Note that for a torus knot Tp,q, |P| = q(p � 1). We start
numbering the disks from bottom left. So, the first disk in Figure 6.18 on
the bottom left is D1,1, the adjacent disk in the same row will be D1,2 and so
on. The last disk in the first row D1,q has its boundary partially contained
in bands b1,q [ b1,1.

In order to generalize Krishna’s techniques of using foliar branched sur-
faces on closed 3-braids to arbitrary Tp,q knots we need to answer the following
question.

Question 6.4.1. Can we obtain a branched surface B in XK where K = Tp,q,
0  p  q, using only a copy of the fiber surface and 2g � 1 product disks
obtained from P (with appropriate co-orientations) such that B intersects
@XK in a train track that carries all rational slopes in (�1, 2g � 1), where
g is the Seifert genus of K ?

We discuss the answer to this question in the remainder of this section.
This is work in progress with Prof. Rachel Roberts and Je↵rey Norton of
Washington University in St. Louis.

6.4.1 Constraint Analysis

The train track in the left half of Figure 6.17 along with the longitude is said
to be of Y -type and the one on the right side in Figure 6.17 along with the
longitude is said to be of X-type. An X-type sub-train track fully carries all
rational slopes in (�1, 0] and the Y -type fully carries all rational slopes in
[0, 1). So, if a train track ⌧ contains one sub-train track of X-type and 2g�1
sub-tracks of Y -type, then ⌧ fully carries all rational slopes in (�1, 2g� 1).
Note that each product disk contributes one sub-train track of Y -type and
one sub-train track of X-type.

The diagram convention is that we can see the positive side of F . If a
disk Di,j is given positive orientation we get smoothing as shown in Figure
6.15 and it contributes the train track in Figure 6.17. If Di,j is given negative
orientation then the resulting train track would have an X-type followed by
a Y -type. After attaching 2g � 1 product disks from P and assigning them
orientations and orienting the knot, we will get a train track with 2g � 1
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x y

1 1-x 1-x-y 1-y 1

Figure 6.19: Overlapping Y -type sub-tracks on a torus with usual identifica-
tions

Figure 6.20: Horizontal Constraint

X-type and Y -type sub-tracks.

Now, we enumerate some constraints on the co-orientations we can assign
to the product disks in order to ensure that they do not give rise to sink disks
and that they carry the required slopes. For convenience, think of a Tp,q knot
as a (p⇥ q) grid with the first and last vertical lines identified.

1. Y -type overlap: If no two Y -type sub-tracks overlap, we would have
a train track that carries the required slopes. Overlapping Y -types
do not increase the interval of slope, thus making it redundant. So,
avoiding such an overlap is desired. As shown in Figure 6.19, if two
Y -type sub- train tracks overlap, the interval of slopes fully carried by
the entire train track is still [0, 1) as 1� x� y � 0 forces x+ y  1.

2. Horizontal Constraint: To ensure that the middle band in Figure
6.20 does not become a half-sink disk, two adjacent disksDi,j andDi,j+1

cannot have ‘(+,�)’ configuration for (Di,j, Di,j+1).

3. Diagonal Constraint: If both Di,j and Di+1,j+1 are attached then
they must have opposite orientations or else one of the polygonal disk
sectors shown in Figure 6.21 will be a sink.
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Figure 6.21: Diagonal Constraint

4. Vertical Constraint: If Di,j and Di+1,j are both attached as in Figure
6.22, then (�,+) co-orientation for (Di,j, Di+1,j+1) is not allowed as it
leads to Y -type overlap.

5. 4-cell Constraint If Di,j, Di,j+1, Di+1,j, Di+1,j+1 are all attached then
we call such a configuration a 4-cell. The only possible co-orientations
for (Di,j, Di,j+1, Di+1,j, Di+1,j+1) are (+,+,�,�) or (�,+,�,+) after
applying the above constraints. See Figure 6.23 for why the other
choices of orientations do not work. The red ellipses indicate con-
straints. For instance, a vertical ellipse means we have a vertical con-
straint there and hence cannot have that configuration.

6. 9-cell Constraint: Using the 4-cell constraint along with the horizon-
tal, vertical and diagonal constraints, we can conclude that we cannot
have a fully filled 9-cell. For instance, if we choose the (+,+,�,�)
for Di,j, Di,j+1,Di+1,j,Di+1,j+1 orientation, then Di+2,j+1 cannot have
‘+’ orientation owing to vertical constraint and cannot be ‘�’ due to
diagonal constraint as seen from the first row of Figure 6.24. So, there
is no choice if we start with this orientation. Similarly, if we choose the
(�,+,�,+), then Di+2,j+1 is forced to be ‘+’ by diagonal constraint
and Di+2,j is forced to ‘�’ by vertical constraint. Now Di+2,j+2 cannot
be ‘+’ by diagonal constraint and cannot be ‘�’ by horizontal con-
straint as illustrated by Figure 6.24. Hence, we cannot have a fully
filled 9-cell.
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Figure 6.22: Vertical Constraint
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Figure 6.23: 4-cell Constraint
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Figure 6.24: 9- cell Constraint

6.4.2 A counterexample

For K = Tp,q, let F be a minimal genus Seifert surface of K and g is the
genus of F . Note that �(F ) = 1� 2g = p� (p� 1)q. So, the total number of
product disks required for XK is pq� p� q and the total number of product
disks from P is (p� 1)q.

Let K be T13,108. Let F be its Seifert surface along which we have to attach
2g � 1 product disks. Visualize T13,108 as a (13⇥ 108) grid with appropriate
identifications. We have established above that a fully filled 9-cell is not
allowed while trying to attach the product disks. When p = 13 and q = 108,
we can tile a (12⇥108) sub-grid of the (13⇥108) using 144 (3⇥3) sub-grids.
As 9-cells are not allowed, the maximum number of disks from the 144 (3⇥3)
sub-grids is 144⇥ 8 = 1152 whereas 2g � 1 = 1283, the di↵erence being 131.
But we only have 108 slots left to put in the disks and hence do not have
enough slots for this construction to work thereby answering Question 6.4.1
negatively.

6.4.3 Conclusion

The above discussion shows us that the methods used in [Kri20] cannot
be generalised to all closed positive n-braids. We have to find a suitable
branched surface without sink disks in the complement of these closed braid
exteriors so that we can apply Li’s results to construct taut foliations in
them. We can then extend it to all rational homology spheres obtained by
performing a Dehn filling for all r 2 (�1, 2g�1)\Q, where g is the genus of
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the closed braid, thus providing further evidence for the L-space Conjecture.
This constitutes future work!
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