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Abstract

In this thesis, I study the effect of confinement on the core structure of vortex state in

dilute Bose gases. Densely packed vortex lattice presents a possibility of observing many

exotic phenomena like quantum melting and atomic quantum Hall states. One way to

achieve such dense packing is to decrease vortex core width to allow accommodation of

more vortices before the quantum melting transition. Confinement might play a key role in

modulating vortex width below the conventional healing length limit. I have studied two

different systems: 1) hard boundary confinement in the transverse direction with a fixed

far field density, and 2) a weakly interacting gas in an axisymmetric harmonic trap and

fixed number of particles. In the first case, calculations have been carried out in a mean

field approach. I observe that the vortex width near the centre of the trap scales as the

confinement length when it is of the order of healing length. But this approach breaks down

near the edges and requires further analysis. In the second system, both the length scales

of confinement play a role in determining the core width which can be further reduced by

making the interactions attractive. The minimum achievable vortex width for a fixed trap

depends on the strength of attractive interaction and the ratio of characteristic lengths in

the transverse and radial direction.
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Chapter 1

Introduction

The conceptual roots of Bose-Einstein condensate date back to 1925 when Einstein, based

on the work by S.N Bose on the statistical description of photons, predicted a phase transition

in a gas of non-interacting atoms. The phase transition was characterised by condensation

of a macroscopic fraction of atoms in the lowest single particle state. It was in 1938 that

London tried to describe the superfluidity in liquid helium as a manifestation of underlying

condensed phase and the theory of Bose-Einstein condensate found practical application. It

also formed the basis for the theory of superconductivity in terms of condensation of Cooper

pairs. With the development of sophisticated ultra-cooling techniques, it was possible to

reach low enough temperatures for the formation of Bose-Einstein condensate. In 1995, the

first experimental signatures of Bose-Einstein condensate was observed in ultra-cold vapours

of alkali atoms like 87Rb, 23Na and 7Li ([1],[2],[3]).

These days, Bose-Einstein condensate can be formed relatively easily in ultracold dilute

atomic vapours which allows for a more rigorous experimental verification of the theory.

BEC exhibits many distinct and unusual features which makes its study interesting. The

occurrence of quantised vortices is one such characteristic. The response of neutral con-

densate to a rotation, which is the formation of vortex states, is analogous to the response

of charged particles in superconductors to a magnetic field. The possibility of quantised

vortices in BEC was first predicted by Onsager(1949) and Feynman (1955) and was later

verified experimentally by Hall and Vinen (1956). These topological objects are a macro-

scopic manifestation of underlying quantum effects. Many properties of a single vortex as
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Figure 1.1: Image of velocity distribution of 87Rb atoms as the temperature is lowered below a
critical temperature for condensation from left to right. From [1]

well a vortex lattice up to about a hundred vortices have been well understood by mean field

theory and rigorously studies experimentally. But it is generally in extreme limits that the

system behaves most peculiarly, and our theory and experimental tools face real challenges.

The following section will survey one such extreme limit of densely packed vortex lattice

which serves as a motivation for the study conducted in this thesis.

1.1 From a single vortex to vortex lattice

Vortex states have higher energy than the ground state [4]. Thus an external torque is

required to rotate the condensate. This can be achieved by introducing a slight anisotropy

in the trap and then making it time dependent. The condensate then experiences a periodic

time-dependent external potential. Just as a normal fluid kept in a rotating container starts

rotating due to friction at the walls, the periodic Vext imparts angular momentum to the

condensate. After a certain frequency of rotation, the angular momentum is incorporated

by the formation of a singly quantized vortex line.

In the presence of time-dependent potential Vext(r, t), lab frame is no longer an appropri-

ate frame of reference. It is necessary to shift to a frame rotating at the same frequency Ω

as the potential to see the stability of vortex. Let Hlab(r,p) be the Hamiltonian in the lab

frame where r and p are the coordinates and conjugate momenta respectively and L = r×p

is the angular momentum. Then the Hamiltonian in a rotating frame Hrot(r
′,p′) is [4]

Hrot(r
′,p′) = Hlab(r

′,p′)−Ω · L(r′,p′)

2



where r′ and p′ are the coordinates and conjugate momenta in the rotating frame. The

modified energy functional in the rotating frame is

Erot[Ψ] =

∫
dr′
[
~2

2m
|∇Ψ(r′)|2 + Vext(r

′)|Ψ(r′)|2 +
g

2
|Ψ(r′)|4

]
−Ω ·

∫
dr′ Ψ∗(r′) r ′×p ′ Ψ(r′)

The minimisation of energy now involves rotation frequency Ω and the last term in above

expression shows that non-zero angular momentum will be favoured.

As the rotation frequency is increased further, the extra angular momentum can be either

stored by increasing angular momentum of a single vortex to higher quanta of circulation or

by incorporating multiple singly quantized vortices. Vortex with multiple quanta of rotation

is unstable and quickly breaks into many singly quantized vortices [5]. Thus, as the rotation

is increased, the condensate expands and incorporates multiple vortex lines to form a lattice.

These vortex lines are aligned parallel to the axis of rotation. The structure of this lattice

has been studied in TF [6] as well as weak interaction limit [7]. See fig.(1.2)(A). The lattice

has different symmetries depending on the number of vortex lines in the cloud. At large

filling of vortices, they arrange into a hexagonal lattice (see fig.(1.2)(B)). The entire lattice

rotates around the central axis and as the filling of vortex lines increases, the whole system

tends to behave like a rigid rotator.

1.2 Condensate with ultra high rotation

At high rotational frequency, the number density of vortices in a 2D system changes as

nv =
mΩ

π~
[4]). This equation shows that as the rotation frequency is increased, more and

more vortex lines are packed together, and the vortices come closer to each other. When the

inter-vortex distance becomes comparable to vortex width, they start to repel each other due

to the centrifugal force of rotation. This further reduces the core size ([10],[11]). Eventually,

inter-vortex spacing becomes of the order of core width. As Ω approaches the trap frequency

ω, the ratio of the area per vortex and core area becomes constant ([10],[11],[12]), and the

rotating condensate enters mean-field quantum Hall limit. In this limit, the centrifugal force

balances the trapping potential in r -direction and the condensate expands considerably. This

expansion leads to a substantial drop in the density. Since interaction energy scales as n2, the

decrease in density makes interaction energy much smaller than the energy scale of the trap

3



(A) Numerical simulation of vortex lattice in weak
interaction regime. Black dots are the positions of

vortices. l is the angular momentum per particle. Taken
from [7]

(B) Experimental observation of vortex lattice with approx. a)16,
b)32, c)80, d)130 vortices. Image taken from [8]

Figure 1.2: Structure of vortex lattice: numerical simulation and experimental observation.

(~ω). The energy of the condensate then becomes equivalent to the energy of an electron in

an effective magnetic field B = −2mω/|e| in the symmetric gauge whose spectrum is given

by Landau levels. Essentially, ultra fast rotation in cold neutral atoms creates a similar effect

as strong magnetic field in an electron system. Following this analogy, it was predicted that

atoms in a rapidly rotating cloud of Bose gas should condense in the lowest Landau level

(LLL) [13]. The many-body wavefunction in the mean field regime is given as

Ψ(z1, z2, ...) =
N∏
i

∏
j

(zi − ηj)e
− |zi|

2

2d2r (1.1)

where z = x+ iy, dr =
√
~/mω is the characteristic length of the trap in r -direction and ηj

are the positions of the vortex lines. The mean field quantum hall limit has been reached

experimentally at Ω = 0.99ω for about 500 atoms per vortex i.e filling fraction ν ∼ 500 [14].

Many interesting phenomena have been predicted when the frequency of rotation

approaches trap frequency. At very high rotation, quantum fluctuations in the coordinates

of the vortex become significant. As more and more vortices are pumped in the cloud, they

are compressed together to the point that these quantum fluctuations become comparable
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Figure 1.3: Theoretical characterization of different atomic quantum Hall states in rapidly rotating
dilute Bose gas. Figure taken from [9]

to inter-vortex separation. At this point, vortices lose a fixed position, and the lattice breaks

down. This phenomenon is termed as the quantum melting transition [15]. The angular

momentum in this state is carried uniformly by a ‘vortex fluid’.

A small filling fraction ν (average number of atoms per vortex) is required for the Lin-

demann criterion (average fluctuation in the position equals inter-vortex separation) to be

satisfied [16]. Through analytical and numerical studies, the critical filling fraction ν pre-

dicted for such melting transition is νc ≈ 8 − 10. In this regime of ultra-fast rotation, The

vortex fluid has been proposed to show many quantum liquid states ([16],[17],[18]). Extend-

ing the previous analogy of an electron in a strong transverse magnetic field, these quantum

liquid states can be characterised as bosonic fractional quantum Hall states. Fig.(1.3) shows

different atomic quantum Hall states at various filling fractions. Some of these states show

special features. Properties of quasi-particle excitations of Read-Rezayi [19] states can be

described by non-Abelian statistics. The ‘composite fermion states’ is another important

class [20]. Analogous to the concept of a composite particle of an electron coupled to a unit

magnetic flux, these composite states may occur from the coupling of a boson to a vortex

carrying unit vorticity and thus experience reduced vorticity compared to the original sys-

tem. It is clear that there is very rich physics at low filling fractions of vortex lattice and

this regime is yet to be fully explored experimentally.
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1.3 Motivation

As mentioned before, there have been experimental attempts to reach small filling frac-

tions required for the manifestation of these quantum Hall states. Schweikhard et al. suc-

cessfully reached ν ∼ 500 at Ω = 0.99ω [14]. But this is still two orders of magnitude greater

than required. The technical difficulty is that as Ω approaches ω, the trap becomes more

and more unstable and at Ω = ω, it breaks down. There was an attempt to bypass this

problem by considering a quartic potential
1

4
kr4 so that Ω can be pushed beyond ω [21].

But the observations of this experiment are not conclusive. Recently, a new approach has

developed where the vortices can be formed in an optical lattice without any rotation of

the trap ([22],[23]). This opens up a new way of reaching atomic quantum Hall regime by

circumventing the technical difficulties involved in ultra-fast rotation.

Another way of reducing the filling fraction ν would be to increase the number of vortices,

Nv, while keeping the number of atoms, N , constant. This is possible if more vortices could

be pumped in at the same rotation speed Ω. If the core width of a vortex could be modulated

by some other experimental parameter apart from rotation speed, it could be used to further

reduce vortex width at the same Ω which will allow accommodation of more vortices. A 10

fold decrease in the vortex width will increase the vortex density by a factor of 100, which

will be sufficient to reach atomic quantum Hall regime.

Conventionally, healing length is defined as the length scale at which any perturbation

in the condensate smoothens out to a uniform density. Thus, the width of vortex core is

taken to be of the order of healing length (ξ), at least in a large system where boundary

conditions do not affect the vortex structure [24]. The theme of this thesis is to devise

ways to change the healing length dependence of vortex width to some other experimental

parameter. Most of the focus would be on studying dilute Bose gas in different confinement

geometries. Confinement provides an extra length scale apart from the microscopic length

scale present in the system i.e. healing length. The hope is that this competing length scale

might show some effect on the vortex width in certain regimes which can later be exploited

to reduce the filling fraction in the vortex lattice.

We will assume the validity of mean field theory for the systems and parameter regions

considered in this study. The theoretical background necessary to understand the analysis in

this thesis is described in the following section. In chapter 2, a system confined in z -direction
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by hard boundaries while infinite in r -extent is studied. In chapter 3, we will introduce

confinement in r as well. A system with axially-symmetric harmonic trap is studied in weak

interaction regime. Conclusion and future work is presented in the end.

1.4 Relevant theoretical background

1.4.1 Mean field approach: Gross-Pitaevskii equation

The details of the theory presented in this section can be found in ([24],[5]). Bose-

Einstein condensate is characterised by a macroscopic occupation of a single-particle state.

This allows the use of Bogoliubov approximation such that the field operator can be split as

a classical field and a fluctuation operator [24]

Ψ̂(r) = Ψ0(r) + δΨ̂(r) (1.2)

Bogoliubov approximation essentially ignores the non-commutativity of the field operator

â0 since < â†0â0 >= N >> 1. In such case, ϕ0â0 ≈
√
Nϕ0 = Ψ0 where ϕ0 is the single-

particle wave function which is macroscopically occupied. δΨ̂(r) is the fluctuation on top of

condensate. At low density and low temperatures required to attain BEC phase transition,

this fluctuation term can be neglected and Ψ̂(r) ≈ Ψ0(r). This classical field Ψ0(r) is the

order parameter of phase transition and |Ψ0(r)|2 gives the density of condensate n.

Dynamical equation for Ψ0(r): Hamiltonian of the system in terms of the field operator

can be given as

Ĥ =

∫ (
~2

2m
∇Ψ̂†∇Ψ̂ + VextΨ̂

†Ψ̂

)
dr +

1

2

∫
Ψ̂†Ψ̂†

′
V (r′ − r)Ψ̂Ψ̂

′
dr′dr (1.3)

In the Heisenberg picture, the dynamical equation can be derived from

i~
∂Ψ̂(r, t)

∂t
=

[
Ψ̂(r, t), Ĥ

]
(1.4)

=

[
− ~2

2m
∇2 + Vext(r, t) +

∫
Ψ̂†(r′, t)V (r′ − r)Ψ̂(r′, t)dr′

]
Ψ̂(r, t) (1.5)
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At low density, only two body interactions are dominant. Also, at low temperatures needed

for BEC, Born approximation is valid, and it is sufficient to consider only s-wave scattering.

This allows the use of effective soft potential Veff such that it produces same low energy

scattering properties given by real interaction potential V. Also, there is a condition on the

density of condensate asn
1/3 << 1 where as is the s-wave scattering length. This implies that

the inter-particle distance n1/3 is much larger than as. This justifies the assumption that the

order parameter Ψ0(r, t) varies slowly over distances of the order of the range of inter-atomic

interaction potential. Putting all this together, the last term in Eq.(1.4) becomes∫
Ψ∗0(r + s, t)Veff (s)Ψ0(r + s, t)ds ≈ |Ψ0(r, t)|2

∫
Veff (s)ds (1.6)

Let us define g =
∫
Veff (s)ds where g signifies the strength of interaction and is related to

scattering length as g =
4π~2as
m

. Thus the dynamical equation for order parameter is

i~
∂Ψ0(r, t)

∂t
=

[
− ~2

2m
∇2 + Vext(r, t) + g|Ψ0(r, t)|2

]
Ψ0(r, t) (1.7)

Above equation is called time-dependent Gross-Pitaevkii equation (GPE).

Using Eq.(1.2), Ψ0(r) =< N |Ψ̂(r)|N + 1 >. Considering the time evolution of the

stationary states be governed by energy of that state,

Ψ0(r, t) = < N |eiE(N)t/~Ψ̂e−iE(N+1)t/~|N + 1 >

= Ψ0(r)e−i(EN+1−EN )t/~

= Ψ0(r)e−iµt/~

where µ is the the energy required to put one extra particle in the condensate, or in other

words, µ is the chemical potential of the system. Unlike single particle states, the time

evolution of order parameter Ψ0 is governed by chemical potential rather than energy.

Putting this in Eq.(1.7), we get stationary GPE[
− ~2

2m
∇2 + Vext(r) + g|Ψ0(r)|2

]
Ψ0(r) = µΨ0(r) (1.8)

The stationary GPE can also be obtained by minimising energy of the system under the

constraint of fixed particle number, that is, δ(E − µN) = 0 where µ acts as a Lagrange

8



multiplier. This is same as minimising the variation of grand potential with respect to Ψ∗0.

The wavefunction can also be written in terms of amplitude
√
n(r, t) and phase S(r, t)

as

Ψ0 =
√
n(r, t)eiS(r,t)

Using this wavefunction, the current density can be given as

j (r, t) =
1

2m
(Ψ∗0p̂Ψ0 + c.c.) = n

~
m
∇S(r, t)

Comparing this with the expression of flow density in continuity equation, j (r, t) = n · v ,

we get the velocity field as

v(r, t) =
~
m
∇S(r, t)

Since velocity field can be written as a gradient of another field, ∇× v = 0, i.e. the flow in

BEC is irrotational.

1.4.2 Structure of vortex states

Many important features of vortices have been successfully explained by the mean field

Gross-Pitaevskii equation which was described in the previous section. It will be used in this

section to highlight some characteristic features of vortex states. Rotations in superfluids

have very different properties than in normal systems which make their study interesting.

In a normal fluid, the velocity field corresponds to that of a rigid rotator and has the form

v = Ω× r giving a vorticity curl ∇× v = 2Ω 6= 0. But as described in the previous section,

BEC is an irrotational fluid (which is a characteristic of any superfluid) implying ∇×v = 0.

This property gives a very different velocity field than that of a rigid rotator.

In this section, we will review some of the properties of a straight vortex line in an

otherwise uniform condensate of really large extent. Due to axial symmetry of the vortex

state, we would work in cylindrical coordinates (r, θ, z). For a state corresponding to rotation

about central axis in a large system, we can consider an ansatz Ψ0(r) = |Ψ0(r)|eisθ. Due to

the symmetry of the state, the norm |Ψ0| only depends on r. Notice,

l̂zΨ0 = −i~ ∂
∂θ

Ψ0 = s~Ψ0

9
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Figure 1.4: f(r̃) =
r̃√

r̃2 + 2
is plotted against r̃ where r̃ = r/ξ for s = 1

This means that the wavefunction is an eigenstate of the angular momentum operator with

lz = s~. The total angular momentum of the vortex is equal to Lz = Ns~. To ensure that

the wavefunction Ψ0(r) is single valued, s has to be an integer. Thus, the angular momentum

of the vortex state is quantized.

The velocity field can be computed from the phase factor S as v(r, t) =
~
m
∇S(r, t).

Here, S(r, t) = sθ giving v =
~
m

s

r
θ̂. The velocity decreases as r increases which is opposite

of the rigid rotator case where velocity of rotation increases with r. Also the velocity shows

divergence at r = 0. To avoid this, the wavefunction must have a node at r = 0 giving a

void at the centre. Also, the circulation of velocity over a closed contour around z -axis can

be evaluated to be ∮
v .dl =

∫
θ

~
m

s

r
rdθ = 2πs

~
m

which is quantised in the units of ~/m independent of the radius of the contour chosen.

To study the profile of order parameter Ψ0(r) for a vortex state, we have to go to the

GPE in (r,θ) coordinates,

− ~2

2m

[
1

r
∂r(r∂r)−

s2

r2

]
Ψ0(r) + (Vext − µ)Ψ0(r) + g|Ψ0(r)|2Ψ0(r) = 0 (1.9)
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Far away from the core, the density of the gas should reach a constant value. At large r,

the kinetic term in the GPE can be neglected to get |Ψ0(r)|2 =
µ

g
= n. In a uniform state,

µ = gn0 where n0 is the density in unperturbed state. It can be shown that in the presence of

a vortex, the corrections to chemical potential µ are of the order of an
1/3
0 and thus negligible

[24]. Thus n ≈ n0. Putting Ψ0 =
√
nf(r̃) where r̃ = r/ξ and ξ = ~/

√
2mgn, the GPE in

dimensionless form looks as follows

1

r̃

∂

∂r̃

(
r̃
∂f(r̃)

∂r̃

)
+

(
1− s2

r̃2

)
f(r̃)− f(r̃)3 = 0 (1.10)

with boundary conditions that f(r̃ = 0) = 0 and f(r̃ →∞) = 1. To study the behaviour of

f(r̃) near r̃ = 0, put an ansatz f(r̃) ∼ r̃p and balance the leading order term,

(p2 − s2)r̃p−2 + r̃p − r̃3p = 0

For r̃ << 1, the leading order term is r̃p−2. Setting the coefficient of this term to 0, we get

p = s. Thus the behaviour of vortex with angular quantum number s near the center ∼ r̃s.

This implies that the wavefunction for a vortex with single quantum of rotation falls linearly

near the center.

There is no exact analytical solution to GPE for vortex state but there are different ansatz

which capture the the qualitative behaviour of the condensate profile. One such ansatz for

s = 1 comes from Padé approximation and closely matches the numerical simulations. It is

given as

f(r̃) =
r̃√
r̃2 + 2

(1.11)

The above function is plotted in Fig.(1.4). Notice that the core size is ∼ ξ. Thus in a

large system where the boundaries do not affect the core structure of the vortex, the core

width Vw is of the order of ξ.
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Chapter 2

Hard confinement along z -direction

In the study of vortex states, the density profile along r is of most interest and the effect

of z confinement is generally suppressed to reduce complications in the calculation. This

can be done by taking a large spatial extent in z-direction such that the change of density

profile along z can be neglected to a good approximation and the boundary conditions in

z do not significantly affect vortex dynamics near z = 0. In such systems, unless there is

tight confinement in r, there is only one microscopic length scale, the healing length ξ, which

naturally determines the scale of vortex core width Vw [5]. But, if the system is confined

in z in such a way that the length scale of this confinement is comparable to ξ, then there

is a possibility that both these length scales are involved in fixing the vortex width. What

will be the expression for Vw in such a system? In this chapter, we will try to answer this

question by rigorously studying the effect of z-confinement on the vortex profile. The effect

of r confinement is studied in the next chapter.

We will consider a system with infinite r extent. This will allow us to analyse the effect

of z-confinement solely. For simplicity, we will consider hard boundaries in z, i.e, an infinite

potential well of length L, implying Ψ(z = 0) = Ψ(z = L) = 0. Basically, the system looks

like a disc with a very large radius. The far field density in the middle of the trap is set to n.

Fixing far field density also fixes healing length, ξ, as ξ = 1/(8πasn)1/2. Since the extent in r

is large, the change in L will not affect the far field density. This allows us to independently

change L and ξ. We will be using a semi-variational approach as explained in the following

section.

13



2.1 Constant vortex width

The grand potential energy of BEC system held at chemical potential µ is given by the

expression

EG[Ψ(r),Ψ(r)∗] =

∫
dr

[
~2

2m
|∇Ψ(r)|2 + Vext(r)|Ψ(r)|2 +

g

2
|Ψ(r)|4 − µ|Ψ(r)|2

]
(2.1)

Vext(r) is the extrenal trapping potential. The equation for a steady state can be obtained

by minimising variation of EG with respect to Ψ∗, i.e, by setting
δEG
δΨ∗

= 0, which gives the

time independent Gross-Pitaevskii equation (GPE)[
− ~2

2m
∇2 + Vext + g|Ψ(r)|2

]
Ψ(r) = µΨ(r) (2.2)

The nonlinear term g|Ψ(r)|2 comes from short ranged interactions in the mean field approach.

This nonlinearity prevents separation of variables, making it difficult to obtain exact solution

of GPE. Thus, we will adopt some suitable ansatz to simplify the calculation.

Let us take the wavefunction in the form Ψ(r, θ, z) =
√
nf(r)h(z)eiθ. We will only

consider vortex with unit angular momentum (s = 1). As explained in the introduction,

numerical simulations in 2D systems have shown that the form of condensate profile in r-

direction closely resembles the functional form
r√

r2 + 2ξ2
, where ξ acts as a scaling factor

for r, or in other words, ξ is the length scale of vortex core width Vw. Similarly, we will

consider an ansatz for f(r) as,

f(r) =
r√

r2 + β2
(2.3)

Notice that here β, which sets the length scale of Vw, is now a variational parameter. The

aim is to find the dependence of β on L and ξ. To begin with, we take β as a constant

parameter, but it can also have z dependence. The case of β(z) is analysed in the next

section. The calculation scheme is as follows:

1) Find the mean field equation for stationary state of h(z): Putting the form of

f(r; β) as in (3.8) in the expression for EG (2.1) and integrating over r, the grand energy

is now only a functional of h(z) and h∗(z). Using the similar method as that used to

obtain GPE (2.2), minimize EG with respect to h∗(z) to get the equation for h(z). That is
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δEG[h(z), h∗(z); β]

δh∗(z)
= 0 gives the equation for h(z; β).

2) Obtain the form of h(z): Solve the equation obtained from the previous step exactly

to get h(z). Notice that h(z) will depend on the parameter β.

3) Minimize EG with respect to β: Using h(z), re-evaluate EG, which will now depend

only on the variational parameter β. As β varies, the grand potential of the system will also

vary and at some particular value of β, EG will be minimized. Thus, in the end,
∂EG(β)

∂β
= 0

will give us the expression for β, and in effect, an expression for Vw.

2.1.1 Deriving equation for h(z)

The expression for EG with given ansatz looks like

EG = n

∫ R

r=0

∫
z

2πrdrdz

[
~2

2m

{
|∂f
∂r
|2|h|2 +

|fh|2

r2
+ |f |2|∂h

∂z
|2
}

+
gn

2
|fh|4 − µ|fh|2

]
(2.4)

Vext = 0 since the potential inside the confinement is set to 0. Also, notice the upper limit

on r integration (R) which has to be put by hand. This is because the energy of a single

vortex is logarithmically diverging with respect to system size. To get any meaningful value

for energy, we have to put an upper limit on the integral [5]. This upper limit R will be set

to be large as compared to vortex width so that it does not affect the structure of vortex

profile.

Evaluating
δEG
δh(z)∗

= 0, we get

−
(∫
|f |2
)
∂2h(z)

∂z2
+

(∫
|∂f
∂r
|2 +
|f |2

r2

)
h(z)+g̃n

(∫
|f |4
)
|h(z)|2h(z)−µ̃

(∫
|f |2
)
h(z) = 0

(2.5)

g̃ =
2m

~2
g and µ̃ =

2m

~2
µ. This is the equation for h(z). For simplicity, we will write it in the

form
∂2h(z)

∂z2
+ C2h(z)− C3|h(z)|2h(z) = 0 (2.6)
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where

C2 =

∫
−|∂f
∂r
|2 − |f |

2

r2
+ µ̃|f |2∫

|f |2
=

(
−R2(R2 + 2β2)

2(R2 + β2)2
+ Log

β2

R2 + β2

)
(
R2 + β2Log

β2

R2 + β2

) + µ̃

and

C3 =

∫
|f |4∫
|f |2

= 2g̃n

(
R2(R2 + 2β2)

2(R2 + β2)
+ β2Log

β2

R2 + β2

)
(
R2 + β2Log

β2

R2 + β2

)
The β dependence in the coefficients C2 and C3 captures the effect of condensate profile

in r -direction. The integration over r shows that we are considering an average effect of

r dynamics on the equation of h(z). This is in some sense a mean field approach. In the

absence of vortex, C2 → µ̃ and C3 → g̃. This shows that the presence of vortex renormalises

the coefficients in the equation for h(z).

The time evolution in BEC system is governed by chemical potential µ in mean field

approach. Thus, consider h(z) = h̃(z)e−iµt/~. The vortex state typically has only tangential

velocity, that is, the phase only has θ dependence. This implies h̃(z) is now a real function.

Let us change the variable z in Eq.(2.6) to a dimensionless variable z̃ = z/L. Then the

equation becomes
∂2h̃

∂z̃2
+ C2L

2h̃− C3L
2h̃3 = 0 (2.7)

The general solution of Eq.(2.7) can be written in terms of Jacobi Elliptical functions [25].

The boundary conditions of the problem h̃(z̃ = 0) = h̃(z̃ = 1) = 0 prompt the use of Jacobi

sn 1 function [26]. Consider the solution form as

h̃(z̃) = A sn(az̃ + δ|m) (2.8)

h̃(z = 0) = 0 implies δ = 0. Also sn functions are periodic with a period of 4K(m) where

K(m) is the complete elliptical integral of first kind. The first node appears at half period

i.e. at 2K(m). This along with the boundary condition h̃(z̃ = 1) = 0 and Eq.(2.8) gives

a = 2jK(m) where j ∈ {1, 2, 3...}. The jth solution has j − 1 nodes. Since we are interested

1The family of sn functions is parametrised by m, where 0 ≤ |m| ≤ 1. When m = 0, sn(x|0) = sin(x)
and when m = 1, sn(x|1) = tanh(x)
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in the ground state, we will choose the solution with minimum nodes i.e. j = 1. A is

determined such that the far field density at z̃ = 1/2 is n. At z̃ = 1/2, sn(K(m)|m) = 1

∀m. Thus A = 1. Putting h̃(z̃) in Eq.(2.7), we get

[
C2L

2 − 4K(m)2(1 +m2)
]
sn(2K(m)z̃|m) +

[
8K(m)2m2 − C3L

2
]
sn3(2K(m)z̃|m) = 0

For the equation to be satisfied at every z̃, the coefficients of both sn and sn3 should be

zero. This implies

C2L
2 = 4K(m)2(1 +m2) (2.9)

and

C3L
2 = 8K(m)2m2 (2.10)

There are two unknowns, m and µ̃, which will get determined from Eq(2.10) and Eq.(2.9)

respectively, in terms of system parameters g and n, variational parameter (β) and the cutoff

R.

2.1.2 Minimization of EG with respect to β

Having obtained the entire form of Ψ, put it back in the expression(2.4) to evaluate EG

as a function of β.

EG(β) =
−gn2

2
2π

(
R2(R2 + 2β2)

2(R2 + β2)
+ β2Log

β2

R2 + β2

)
L

[
−2(1 +m2)E(m) + (2 +m2)K(m)

3m4K(m)

]
(2.11)

E(m) is the elliptical integral of second kind. Remember that here m itself depends on β.

As mentioned before, the vortex width Vw is of the order of ξ when L,R >> ξ. This

behaviour should be reproducible with our analysis and thus can be used to check the validity

of the employed mean field approach. For simplicity, we can write EG as

EG(β) =
−~2nL

2m
2π

R2

2ξ2
E ′(β)

where E ′(β) is a dimensionless quantity given as

E ′(β) =

(
(R2 + 2β2)

2(R2 + β2)
+
β2

R2
Log

β2

R2 + β2

)[
−2(1 +m2)E(m) + (2 +m2)K(m)

3m4K(m)

]
(2.12)
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As can be seen from Eq.(2.11) and Eq(2.12), EG(β) and E ′(β) only differ by a multiplicative

factor which is independent of β. Thus it is sufficient to plot E ′(β) as a function of β to

understand the qualitative behaviour of grand potential EG. m can be evaluated in terms

of β from Eq.(2.10) and µ from Eq.(2.9).
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Figure 2.1: E′ vs β/ξ curve for L = 10ξ and R = 10ξ

Fig(2.1) shows E ′(β) as a function of β/ξ when L = 10ξ and R = 10ξ. A minima

was expected at β/ξ ∼ 1. But it can be seen that energy is monotonically decreasing as

β → 0 and no minima is observed at β/ξ ∼ 1. Since the current approach does not yield an

expected answer in the large L limit, it is not entirely valid and requires improvements.

2.2 Variation in vortex width along z

Intuitively, the vortex width is expected to vary along z. Thus, the next step in improving

the ansatz would be to consider β as a function of z. The ansatz then becomes

Ψ(r, θ, z) =
√
nf(r, z)h(z)eiθ =

√
n

r√
r2 + β2(z)

h(z)eiθ (2.13)
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Notice that β is no longer a parameter but a function and our previous calculation scheme

needs to be changed accordingly.

New analysis scheme: EG for new ansatz is a functional of a complex function h(z)

which captures the profile in z -direction and a real function β(z) which accounts for the

z dependence of vortex width. Thus we would get coupled equations for h(z) and β(z) by

evaluating
δEG
δh∗(z)

= 0 and
δEG
δβ(z)

= 0 simultaneously.

Similar approach has been used before to obtain quasi 1D and 2D GPE in the context of

cigar shaped and disc shaped BEC respectively [27].

The potential energy will now have extra terms involving ∂β(z)/∂z which will show up

in the kinetic energy term due to variation along z. This will be the only different term from

EG expression for previous calculations(2.4).

|∂Ψ

∂z
|2 = |h|2

(
∂f

∂z

)2

+ f 2|∂h
∂z
|2 + f

∂f

∂z

∂|h|2

∂z

where
∂f

∂z
=
∂f

∂β

∂β(z)

∂z
. Let us assume that h(z) varies much faster along z than β(z). Thus

we can neglect terms involving ∂β/∂z. This gives

EG ≈ n

∫ R

r=0

∫
z

2πrdrdz

[
~2

2m

{
|∂f
∂r
|2|h|2 +

|fh|2

r2
+ |f |2|∂h

∂z
|2
}

+
gn

2
|fh|4 − µ|fh|2

]
which is the same as previous expression(2.4) except β is now a function of z.

Equation for h(z),
δEG
δh∗(z)

= 0 will be same as (2.6) with the same form of C2 and C3,

only parameter β is replaced by a function β(z). Equation for β(z) is obtained by
δEG
δβ(z)

= 0

− β
{
Log

β2

R2 + β2
+

R2

R2 + β2

}
|∂h
∂z
|2 +

{
β

(
Log

β2

R2 + β2
+

R2

R2 + β2

)
µ̃

}
|h|2{

+
R2β3

(R2 + β2)3
+

R2

β(R2 + β2)

}
|h|2 − g̃n

2
β

{
R2(3R2 + 2β2)

(R2 + β2)2
+ 2Log

β2

R2 + β2

}
|h|4 = 0

(2.14)
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β(z) depends on h̃(z) as expected. The equations for β(z) and h̃(z) are nontrivially coupled

which makes it very difficult to get the analytical form for these two functions. Thus, further

analysis is done numerically.

As done previously, the relation Vw ∼ ξ needs to be checked when L,R >> ξ to validate

our approach. Let us first understand the behaviour of β(z) near the center of the trap i.e. at

z = L/2. In Eq.(2.14), h̃(z = L/2) = sn(K(m)|m) = 1 and
(
∂h̃/∂z

)
z=L/2

= 0. As before,

m and µ are obtained from the equations for C2(2.9) and C3(2.10). With this approach, an

energy minima exists. Its dependence on ξ in large L limit is shown in the following figure.
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Figure 2.2: β(z = L/2)/L vs ξ/L for fixed L >> ξ (L ∼ R = 10ξ)

Fig(2.2) shows that for a fixed L which is large as compared to ξ, β(z = L/2) scales as

ξ and thus vortex width Vw ∼ ξ. Also note that the cutoff R is about 50-100 times the scale

factor β. Thus an arbitrary cutoff in r is justified.

Having verified the approach, let us analyse the effect of variation of confinement length

scale L on the vortex width at the center of the trap i.e β(z = L/2). The healing length

ξ will be fixed by fixing interaction strength g and far field density n. Also, R is set to be

10ξ. From the equation for C3(2.10), it can be seen that modulation of confinement length

L directly affects the parameter m of sn function. When L is small, m is closer to 0 and
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Figure 2.3: sn(2K(m)z̃|m) vs z̃. The three curves correspond to different values of m. Purple:
m=0 ; Blue: m=0.8 ; Yellow: m=0.9999.

the profile in z -direction is close to sin function (see Fig(2.3)). This is expected because as

the confinement is made tighter, the kinetic energy dominates the interaction term and the

wavefunction looks similar to the wavefunction for a particle in a box. In the other limit

when L is very large, m→ 1 i.e sn→ tanh. This means that h̃(z) would be almost constant

in the middle of the trap (see Fig(2.3)) and the boundary conditions in z would not affect the

vortex structure. This is consistent with our previous observation in Fig.(2.2) that Vw ∼ ξ

when L >> ξ.

As L (and thus m) is changed, the chemical potential µ is also modulated through

equation for C2(2.9). Fig.(2.4) shows the L dependence of β(z = L/2) when L is varied from

L ∼ 0.1ξ to L ∼ 15ξ when R = 10ξ. There are two interesting features of this plot:

1) The plateau at large L: As explained before, when L >> ξ, we do not expect the

vortex width in the middle of the trap to depend on L. The plateau-like behaviour of the

curve is consistence with the expectation. In this region, β ∼ ξ.

2) Linear increase for small L: when L ∼ ξ, β is almost linearly dependent on L. That

means for the confinement of the order of healing length, the vortex width (at least at the

middle of the trap) can be modulated simply by modulating the confinement length.
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Figure 2.4: scaled β-vs-L at the centre of the trap i.e. at z = L/2.
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Figure 2.5: scaled β-vs-L at a distance L/8 away from the centre of the trap, at z = 3L/8.
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Figure 2.6: comparison of β-vs-L curve at z = L/2 and z = 3L/8.

Next thing to consider is how this trend changes as we move away from the center of

the trap. This will give us a better idea of the profile of vortex width along z. After doing

the same analysis for z = 3L/8, the graph that was obtained is shown in Fig.(2.5). We see

that the trend is similar as that in the middle of the trap. The comparison of the trend at

z = L/2 and at z = 3L/8 can be seen in Fig.(2.6). In the linear region, β for z value slightly

away from the trap center is more than that in the middle. That means vortex expands as

we move away from the center.

There are still a few points which need a closer look:

1) Closer to the boundaries of confinement, the observed trend disappears. This most prob-

ably is a consequence of unrealistic boundary conditions and neglecting ∂β/∂z term while

deriving equations for h̃(z) and β(z). At the boundaries, faster variation of β(z) is expected

thus making this assumption invalid and leading to the break down of the solution. A more

rigorous analysis with inclusion of ∂β/∂z terms is needed to understand the behaviour of

vortex width along the whole range of z values.

2) The ansatz that we have considered gives a very complicated equation for β dynamics

and makes it difficult to analyse the dependence of h̃(z) profile on β(z). A simpler ansatz

is needed for a more tractable analysis. One such candidate would be f(r, z) = 1− e−r/β(z).
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It is easy to see that this ansatz satisfies the boundary conditions and will also be easier to

work with due to the exponential factor.

3) Taking a closer look at the equations for C2(2.9) and C3(2.10), it can be seen that when

β is a function of z, m and µ will also be functions of z. Having a gradient of chemical

potential in the system means that there is a material flow to neutralise this current. This

will make the state non-stationary unless the flow paths are in closed contours. This is a

highly nontrivial condition and certainly requires a more involved analysis for the entire form

of µ along z.

Summary: A semi-variational approach has been employed to understand the effect of

z -confinement on vortex width. An ansatz is considered in r -direction to obtain the equa-

tion for z -profile, which is then solved exactly. Taking into account the variation of vortex

width along z gives an expected result in large L limit. Also, for L ∼ ξ, the vortex width

is scaled by L and not ξ (at least near the center of the trap). Although this approach

needs more refinement, it provides a possibility of producing thinner vortices by modulating

confinement length in z.
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Chapter 3

Axially-symmetric harmonic trap

In the previous chapter, we considered the effect of z-confinement on the core width

of a vortex in BEC. In this chapter, we would bring in an additional length scale through

confinement in r-direction and study how these two length scales (apart from the microscopic

length scale in the system i.e. healing length) affect the vortex width.

Most common kind of trap is a harmonic trap, where potential goes as r2. BEC under such

harmonic trap has been well studied in strong interaction regime where the kinetic energy

is negligible (Thomas-Fermi approximation), and the profile of the condensate is mostly

dictated by interaction energy, excluding the boundary corrections [24]. Since interaction

energy goes as n2, its effect is seen as flattening of the condensate to avoid any density

peaks. In this regime, the ground state profile is almost flat up to a certain radius R. Thus,

we expect a vortex formed in this regime to have core width of the order of healing length.

And so is the case as shown in ([24],[28]). Here, we want to study the other limit, i.e., the

weak interaction regime.
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3.1 Variational approach

3.1.1 Taking appropriate ansatz

To get an effective dynamical equation in r-direction, the 3D GPE needs to be reduced

to a quasi 2D equation. In the presence of axially symmetric trap, the GPE for vortex is:[
−~2

2m

(
1

r

∂

∂r
(r
∂

∂r
)− s2

r2
+

∂2

∂z2

)
+

1

2
m(ω2

rr2 + ω2
zz2) + gΨ(r, z)2

]
Ψ(r, z) = µΨ(r, z) (3.1)

Ψ(r, z) is a real function and s is the angular momentum quantum number. Also, Ψ(r, z) is

normalised to the number of particles, N, in the condensate,∫ ∞
r=0

∫ ∞
z→−∞

| Ψ(r, z) |2 2πr2drdz = N

This is one of the important differences between the current system and the system considered

in the last chapter. In the previous system, due to an infinite extent in r, the far field density

n could be fixed, while here, due to confinement, the number of atoms N has to be conserved.

Scaling the variables as z̃ = z/σz, r̃ = r/σr, where σr =
√
~/mωr and σz =

√
~/mωz are

the oscillator lengths and Ψ(r, z) =
√
N/σ2

rσzψ(r̃, z̃) such that∫
| ψ(r̃, z̃) |2 2πr̃2dr̃dz̃ = 1 (3.2)

the GPE in dimensionless form is obtained as,[
−
(

1

r̃

∂

∂r̃
(r̃
∂

∂r̃
)− s2

r̃2
+ λ

∂2

∂z̃2

)
+ (r̃2 + λz̃2) +

2gN

~ωrσ2
rσz

ψ(r̃, z̃)2
]
ψ(r̃, z̃) = 2µ̃ψ(r̃, z̃) (3.3)

where λ = ωz/ωr and µ̃ = µ/~ωr. Putting g = 4π~2as/m, we get,[
−
(

1

r̃

∂

∂r̃
(r̃
∂

∂r̃
)− s2

r̃2
+ λ

∂2

∂z̃2

)
+ (r̃2 + λz̃2) + 8π

Nas
σz

ψ(r̃, z̃)2
]
ψ(r̃, z̃) = 2µ̃ψ(r̃, z̃) (3.4)

As we can see, the strength of the nonlinear term signifies the strength of interaction in the

condensate and thus 8πNas
σz
ψ(r̃, z̃)2 >> 1 is the TF regime while 8πNas

σz
ψ(r̃, z̃)2 < 1 is the

weak interaction regime.
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In the following analysis, we are interested in a weakly interacting system. Also, the trap

is taken such that the confinement in z is much tighter as compared to that in r which implies

λ >> 1. In that case, 8πNas
σz
ψ(r̃, z̃)2 << λ. Consider terms in Eq.(3.4) which determine

the profile of condensate along z : λ∂
2ψ
∂z2

, λz̃2ψ and 8πNas
σz
ψ3. When λ >> 8πNas

σz
ψ(r̃, z̃)2,

the contribution of the nonlinear term can be neglected while solving for the dynamics in z.

Writing the wavefunction in a separable form as ψ(r̃, z̃) = f(z̃)h(z̃), the equation can then

be easily decoupled to get h(z̃) dynamics as,[
− ∂2

∂z̃2
+ z̃2

]
h(z̃) = Kh(z̃) (3.5)

K is a constant. Solving above equation, we get,

h(z̃) = e−z̃
2/2 (3.6)

In the absence of interaction term, the dynamical equation in r would be,[
−
(

1

r̃

∂

∂r̃
(r̃
∂

∂r̃
)− s2

r̃2

)
+ r̃2

]
f(r̃) = (2µ̃− λ)f(r̃) (3.7)

This is the time independent Schrödinger equation with axially symmetric harmonic potential

with (2µ̃−λ) as the eigenvalue. The stationary states of this equation are angular momentum

eigenstates given as, (
r

σr

)s
e−r

2/2σ2
r (3.8)

s is the angular momentum quantum number. In the presence of the interaction term, we

expect the spread of the wavefunction along r to change. Thus, combining (3.2, 3.6 and 3.8),

following normalised trial wave function is considered for variational approach:

Ψ(r, z) =

√
N

π3/2s!σzβ2

(
r

β

)s
e−r

2/2β2

e−z
2/2σ2

z (3.9)

where β (that is, the width of the Gaussian in r), is now a variational parameter. Notice that

width in z is still taken as σz since the nonlinear term does not significantly affect z-profile

when λ >> 1, as discussed before.
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3.1.2 Energy minimization

For a normalised wavefunction, we can consider energy instead of grand potential. The

energy of the system can be written as

E =

∫
r

∫
z

2πrdrdz

[
~2

2m

{
|∂Ψ

∂r
|2 +

s2

r2
|Ψ|2 + |∂Ψ

∂z
|2
}

+
1

2
m
(
ω2
rr2 + ω2

zz2
)
|Ψ|2 +

g

2
|Ψ(r)|4

]
(3.10)

Putting the trial wavefunction (3.9) in this energy functional, we evaluate energy of the

system as a function of β,

E(β) =
2N

s!

[
1

β2

(
~2

2m

Γ(1 + s)

2
+

~2

2m

s2Γ(s)

2
+

2−(3+2s)gN

π3/2s!σz

Γ(2s+ 1)√
2

)]
+

2N

s!

[
β2

(
mω2

r

2

Γ(s+ 2)

2

)
+ E ′(σz)

] (3.11)

The term E ′(σz) does not depend on β and is merely the energy shift due to z -profile given

as

E ′(σz) =
~2

2m

Γ(1 + s)

4σ2
z

+
mω2

z

2

Γ(1 + s)σ2
z

4

In the expression(3.11), β2 term is monotonically increasing while 1/β2 term is monotonically

decreasing as a function of β and thus an energy minima is guaranteed given the coefficients

of these two terms are positive. Let us take s = 1 for simplicity. To find β corresponding to

minimum energy, we set ∂E/∂β = 0. This gives

β4 =
1

mω2
r

[
~2

m
+

gN

8
√

2π3/2σz

]
(3.12)

Putting g = 4π~2as
m

and ~2
m2ω2

r
= σ4

r , we get

β = σr

[
1 +

1√
8π

Nas
σz

]1/4
(3.13)

It can be easily shown that maxima of the function Ψ as given in Eq.(3.9) is at z = 0 and

r = β. Defining width of the vortex as full width at half maxima, the core width clearly

scales as β. This together with Eq.(3.13) shows that in the weak interaction regime, vortex
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width (Vw) goes as

Vw ∼ β = σr

[
1 +

1√
8π

Nas
σz

]1/4
(3.14)

Let us analyse above expression (3.14).

1) β varies linearly with σr. The confinement length in r directly gets selected as vortex

width. The healing length in such a confined system is defined as ξ = 1/
√

8πasn(0) [29].

After performing a similar variational calculation for a non-vortex state to find n(0), it can

be shown that
ξ2

β2
∼
√
π

8

σz
asN

(3.15)

Generally, the factor asN/σz is taken to be small for weakly interacting system, thus giving

ξ > β.

2) The effect of z confinement can be seen from the presence of σz in the correction term
1√
8π

Nas
σz

.

3) This correction term can also be tuned by changing the scattering length as using Feshbach

resonance technique [30]. For a repulsive BEC, as > 0 resulting in the vortex width as well as

the spread of the Gaussian to increase from σr. This is expected since repulsive interaction

enegy, which goes as n2, tries to reduce the density peak by pushing the condensate outwards.

But a more interesting case is when as < 0 i.e attractive BEC.

Attractive BEC: An unbounded BEC with attractive interactions is unstable and col-

lapses into a solid phase [32]. But in the presence of confinement, as the condensate peaks in

the middle, the uncetaintly in momentum increases causing a kinetic pressure. It has been

shown theoretically and experimentally that an attractive BEC can be stabilised inside a

confinement ([33],[3]) till some maximum value of the interaction parameter |Ncas
σz
| ∼ 0.57

([33],[34]). But experimentally, attractive condensates were found to be stable even beyond

this maximum limit. This could be explained by the presence of a vortex line in the system

[35]. Intuitively, this makes sense since the centrigular force due to rotation in the vortex

opposes the inward pull due to attractive interactions. Thus, an attractive BEC system can

be further stabilised by the presence of a vortex. Since attractive BEC is stable only in weak

interaction regime, our approach is still valid.

When as < 0, the correction term in (3.14) becomes negative and thus reduces the vortex

width from σr. By making the value of this correction term as close to -1 as possible, very
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Figure 3.1: Critical value of kc = |Nasσz
| vs L (angular momentum quantum number) for different

ratios of ωz
ωr

(= λ in the plot). The figure is taken from [31].

thin vortices can be achieved. In the numerical calculation by S. Adhikari [31], the critical

value of parameter |Nas
σz
| has been evaluated for an axisymmetric trap like the one considered

here. As seen in fig.(3.1), the critical value increases with increasing ratio ωz/ωr and with

increasing vorticity. For a singly quantised vortex, the critical value can increase as much as

2.

When β reduces significantly in the case of as < 0, the change in the spread of the

wavefunction in z direction might be significant. This has to be taken into account to see

the lower limit for β.

3.2 Changed ansatz: attractive BEC

Let us consider the changed widths in r and z direction be Dr and Dz respectively. Thus

the ansatz is

Ψ(r, z) =

√
N

π3/2s!DzD2
r

(
r

Dr

)s
e−r

2/2D2
re−z

2/2D2
z (3.16)
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where now both Dr and Dz are variational parameters. The energy expression is

E(Dr, Dz) =
2N

s!

[
1

D2
r

(
~2

2m

Γ(1 + s)

2
+

~2

2m

s2Γ(s)

2
+

2−(3+2s)gN

π3/2s!Dz

Γ(2s+ 1)√
2

)]
+

2N

s!

[
D2
r

(
mω2

r

2

Γ(s+ 2)

2

)
+

~2

2m

Γ(1 + s)

4D2
z

+
mω2

z

2

Γ(1 + s)D2
z

4

] (3.17)

The simultaneous minimization of energy with respect to both Dr and Dz will give coupled

equations for them. Evaluating
∂E

∂Dr

= 0 gives

Dr = σr

[
1 +

1√
8π

Nas
Dz

]1/4
(3.18)

just as Eq.(3.14) but with σz replaced by Dz. Also,
∂E

∂Dz

= 0 gives

(
Dz

σz

)4

− Nas√
2πσz

σ2
z

D2
r

(
Dz

σz

)
− 1 = 0 (3.19)

When the second term in the above equation Nas√
2πσz

σ2
z

D2
r

is small, the expression for Dz can be

given as

Dz ∼ σz

(
1 +

Nas

4
√

2πσz

σ2
z

D2
r

)
(3.20)

Notice that when the interaction parameter Nas
σz

is small, the correction to Dr ∼ 1
4
√
8π

Nas
Dz

is

much greater than the correction to Dz ∼ Nas√
2πσz

σ2
z

D2
r

when σ2
z

D2
r
<< 1. This is true when the

confinement is considered to be much tighter in z than in r (that is λ >> 1). In this case,

Dz ∼ σz in the expression for Dr (3.18). As expected, this yeilds the same result as that

derived in the previous section.

As Dr reduces to very small values due to negative as, the second term in (3.20) is no

longer small and the deviation in Dz from σz can no longer be neglected. This also shows

that Dr can not be made arbitrarily small since this second term will diverge and thus there

should be some kind of minimum value for Dr before the vortex solution breaks down.
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Figure 3.2: Variation of Dr and Dz with α = Nas√
8πσz

for different values of ratio σr
σz

: (a)σrσz = 1, (b)
σr
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= 10, (c) σr
σz

=100
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Fig.(3.2)(b) shows the curve of Dr

σr
and Dz

σz
as a function of parameter α = Nas√

8πσz
for a

fixed value of σr
σz

= 10. Here are some important points to notice:

1) As as decreases from positive to negative values, the width of the wavefunction in r

decreases non-linearly till some minimum value of as is reached. This agrees with the expec-

tation.

2) The Dz

σz
varies much slower than Dr

σr
curve as expected.

3) The curves have tilted parabolas-like shape. The lower halves of these curves correspond

to an energy maxima.

4) Through graphs (a) to (c), it can be seen that the lowest value of α, which still gives

the vortex solution, decreases with increasing ratio of σr
σz

. By making the confinement in

z -direction tighter as compared to that in r, smaller values to as can be reached, which will

also make the vortex thinner. In Fig.(3.2)(c), for σr
σz

= 100, Dr can be made as small as

0.2σr.

5) As expected, the variation in Dz from σz becomes neglible as the ratio σr
σz

becomes large.

Summary: The length scale of vortex width changes from ξ to the characteristic length

of the trap σr in weak interaction limit. The width can be further reduced by making the

interactions attractive. This can be done by changing the scattering length to negative values

using Feshbach resonance. The maximum negative value of as which still gives an energy

minima increases by increasing the ratio σr/σz. In effect, a thinner vortex can be achieved

by increasing σr/σz and making as as small as possible, while still remaining in the weak

interaction regime.
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Chapter 4

Conclusion and future work

It is possible to modulate the vortex core width by changing the confinement length in

certain parameter regimes. For a large system with fixed far field density, confined in z by

hard boundaries, the vortex width near the centre varies as the length of confinement (L)

when this length is of the order of healing length. In another system, with axisymmetric

harmonic trap, the vortex width can be significantly reduced by making the interactions

attractive. Both the systems are quite promising in achieving the aim of small filling fractions

by making the vortices thinner.

In future, above analytical results can be verified by numerical simulations. Once verified,

the analysis can be extended to a vortex lattice rather than a single vortex. This will include

vortex-vortex interaction effects and will be closer to the experimental situation. Also, the

stability of these structures can be analysed by studying the excitation spectrum.
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