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Abstract

The subject of this thesis is the theoretical investigation of an atomic chain of Rydberg atoms

embedded in a photonic crystal waveguide. Atoms coupled to the photonic crystal show

prodigious coherent and dissipative dynamics. In coherent regime, the atoms interact via

the evanescent fields resulting in correlated many-body dynamics which demands powerful

numerical tool for modelling. The first part of the thesis deals with the excitation dynamics

of Rydberg atoms in optical lattice. The excitation dynamics of a Rydberg atomic chain

differ significantly from single atom dynamics due to the phenomenon of Rydberg blockade.

Additionally, the number of excitations in the Rydberg atomic chain depends strongly on

the detuning from resonance which leads to dynamical crystallisation. In the second part we

study an atomic chain embedded in photonic crystal waveguide with atomic frequency highly

detuned from the photonic band edge frequency. Here, due to the presence of band gap, a

coherent hopping of Rydberg excitations takes place in the atomic chain. This coherent

many-body interaction is designed appropriately to facilitate controlled hopping along the

atomic chain which emulates quantum walk dynamics.

xi



xii



Contents

Abstract xi

1 Introduction 5
1.1 Outline of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Basic concepts 9
2.1 Rydberg atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Photonic crystal waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Quantum walk: An overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Discrete-time quantum walk . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Continuous-time quantum walk . . . . . . . . . . . . . . . . . . . . . 14

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Rydberg excitation dynamics in optical lattice 17
3.1 Single atom dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Without dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 With dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Collective many-body dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Dynamical crystallisation: Controlled generation of Rydberg excitations . . . 20
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Coherent dynamics in photonic crystal waveguide 25
4.1 Alligator photonic crystal waveguide . . . . . . . . . . . . . . . . . . . . . . 25
4.2 The Hamiltonian of the system . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Determining the length parameter . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 The Green’s function approach . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Single excitation: Quantum walk dynamics 35
5.1 Distribution of the excitation on the atomic chain . . . . . . . . . . . . . . . 35

5.1.1 Symmetric Initial Condition . . . . . . . . . . . . . . . . . . . . . . . 36
5.1.2 Asymmetric initial condition . . . . . . . . . . . . . . . . . . . . . . . 37

xiii



5.2 Description of the spread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Conclusion and Outlook 41

Bibiliography 41

Appendices 49

A Detail calculation 51
A.1 Calculation of collective many-body oscillation . . . . . . . . . . . . . . . . . 51
A.2 Solution of the integral appear in the Hamiltonian . . . . . . . . . . . . . . . 52

B Description of techniques and approximation 55
B.1 Technique used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
B.2 Suzuki-Trotter decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 56

xiv



List of Figures

2.1 a) Electron in an orbit of very high radius (classical) and b) Energy series of
Rydberg atom, Rydberg states are very closely spaced (quantum) . . . . . . 10

2.2 Rydberg blockade between two atoms in the van der Waals regime. The state
|rr〉 is off resonant for the field due to UvdW , this leads to the formation of the
entangled state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Blockade sphere around an atom in excited state of Radius Rb, there can not
be a second excitation inside this sphere . . . . . . . . . . . . . . . . . . . . 11

2.4 Alligator photonic crystal waveguide with an atom is trapped near it. Different
structural parameters such as g: gap, a: periodicity, A: tooth amplitude of
the edge and w: inner waveguide width determines the nature of the APCW.
Guided mode plays an important role in the dynamics both in the coherent
and dissipative regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Probability of finding the walker at a certain position is plotted against the
position space. Two cases- quantum (red) and classical-random (blue) walk
show how different they are in nature . . . . . . . . . . . . . . . . . . . . . . 13

2.6 The probability distribution in position space of continuous-time quantum
walker at two different instances of time(the figure in right is at a time later
to the figure in left). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 A graph Q with 7 vertices(W) and 8 edges(F) . . . . . . . . . . . . . . . . . 14

3.1 Rabi oscillation between the states |g〉 and |e〉 for (a) zero and (b) non-zero
detuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Here we have plotted the probabilities |ρg(t)| (red solid line) and |ρe(t)| (blue
solid line) for an atom with initial state ρg(0) = 0 and ρe(0)=1. Figure
(a) shows intermediate coupling regime; resonant case with parameters
(∆,Ω, γ = κ)= (0, 2.8, 3). Figure (b) shows Strong coupling regime under
resonant case with parameters (∆,Ω, γ = κ)=(0,10 ,3) . . . . . . . . . . . . . 19

3.3 Comparison of population of (a) |gg〉(blue line) with |g〉(red line) and (b)
1
2
{|gr〉+ |rg〉}(blue line) with |e〉(red line). We can clearly see the increase in

the frequency of the collective states . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Depending on the number of Rydberg excitations, they are getting arranged

in such a way that the interaction energy is minimum. Thus a crystal of
Rydberg excitations is formed. . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1



3.5 Energy versus detuing plot for the states with zero (black), one (red), two
(blue), three (pink) and four (green) excitations for N=4 atoms. Inset: It
is showing the difference amongst the point of intersections for zero, one and
two excitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 A schematic showing the coherent dynamics of an atomic chain (two-level
scheme) embedded to APCW. For a single excitation configuration (an atom
is excited by using an external field and after that field is switched off), the ex-
cited atom (red) then exchanges its excitation with the nearest-neighbour(tuned)
atoms which are in ground state(blue). . . . . . . . . . . . . . . . . . . . . . 26

4.2 Band structure of 1D photonic crystal, here guided mode frequency ωk is
plotted against Bloch wave-vector k in the first Brillouin zone . . . . . . . . 31

4.3 It reflects how the detuning change the photonic envelope around the atomic
position and along with the effective cavity length. . . . . . . . . . . . . . . 31

5.1 Showing the distribution of the excitation on the position in two different
instances of time (figure in the right side corresponds to a larger time than
the figure in the left side)for a case where the atom is at 50th site of the
atomic chain initially i.e. symmetric initial condition. The atomic chain have
101 atoms here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Showing the distribution of the excitation on the position in two different
instances of time (figure in the right side corresponds to a larger than the
figure in the left side) for a case where the atom is at 75th site of the atomic
chain initially i.e. for symmetric initial case. The atomic chain have 151 atoms
here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Showing the distribution of the excitation on the position in two different
instances of time (figure in the right side corresponds to a larger than the
figure in the left side) for a case where the atom is at 25th site of the atomic
chain initially i.e. for asymmetric initial case. The atomic chain have 101
atoms here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4 Showing the distribution of the excitation on the position in two different
instances of time (figure in the right side corresponds to a larger than the
figure in the left side) for a case where the atom is at 35th site of the atomic
chain initially i.e. for asymmetric initial case. The atomic chain have 151
atoms here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.5 Comparing the spread of the the two cases differed by initial condition. The
blue line is for asymmetric initial condition where the excitation is at 25th site
of the atomic and the red line is for the one with excitation’s initial position
at the 50th site i.e. symmetric case. The atomic chain have 101 atoms . . . . 38

5.6 Comparing the spread of the the two cases differed by initial condition. The
blue line is for asymmetric initial condition where the excitation is at 35th site
of the atomic and the red line is for the one with excitation’s initial position
at the 75th site i.e. symmetric case. The atomic chain have 151 atoms . . . . 38

2



5.7 Comparing the spread of the the two cases differed by length of the atomic
chains. The blue line is for N=101 atoms and the red line is for N=151 atoms
with symmetric initial condition in both cases . . . . . . . . . . . . . . . . . 38

3



4



Chapter 1

Introduction

The field of quantum information science is fuelled by a wide range of scientific opportuni-

ties in quantum computation[1, 2] and quantum communication[3] among other emerging

fields[4]. The field is boosted by quantum networks which consists of quantum nodes and

quantum channels. The quantum nodes generate and store quantum information which is

transferred via the quantum channels. However, a quantum network can also be thought

of as a quantum simulator. Quantum simulator enables us to investigate quantum many-

body phenomena[5, 6, 7, 8] emerging due to interactions between the quantum nodes[9, 10].

Quantum networks can be realised physically using systems which can efficiently generate

and store quantum memories, and are capable of transferring the stored information across

the network.

Photons can carry quantum information over long distances whereas atoms can store this

information, thereby making atom-light interaction an ideal tool to investigate quantum

networking. Interaction between light and matter in free space[11] has been studied widely.

However when an atomic ensemble is confined to cavity or embedded in a dielectric envi-

ronment, a window to new regimes of dissipative dynamics gets opened[12, 13, 14]. Along

with the modification of dissipative dynamics, such dielectric environment can be used to

manipulate atom-atom interactions, which leads to atomic dynamics very different from the

dynamics in free space[15]. Depending on the properties of the atom, its interaction with

photonic mode is manipulated in order to design interesting dynamics[16].

In recent years efforts have been made to integrate nano-photonics and atomic physics.

It provides us with a powerful tool to look at the quatum transport in a new light[17].
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Photonic systems provide a tool for controllable light-matter interaction at the level of single

photon[18, 19, 20]. The systems coupled to nanophotonic structure have been studied in the

coherent regime as well as in the dissipative regime[21, 22]. Engaging research in this area

can pave way for future experimental works.

Additionally, working with Rydberg atoms can be further enriching as Rydberg atoms ex-

hibit remarkable properties[23] such as long radiative lifetimes and a huge dipole moment

among other properties. Moreover, an ensemble of Rydberg atoms gives rise to the phe-

nomenon of Rydberg blockade, a strong interaction which prevents a new excitation in a

finite volume[24, 25, 26]. Key point here is that Rydberg atoms provide unique ability to

control the interaction strength over a wide range. For this reason Rydberg physics finds

wide applications from quantum information processing, quantum optics, BEC physics to

plasma physics[27, 28, 29, 30, 31, 32, 33].

In our work we focus on coupling a Rydberg atomic chain trapped in photonic crystal

waveguide. The motivation to work along this direction is enhanced by the studies which

show the strong coupling mediated by nano photonic environment for a solid state system[34].

Moreover, similar regime of coupling has been demonstrated using cold atom setups[35, 36,

37, 38]. Single atoms have been coupled to photonic crystal via local imperfections[37, 38].

We show that if an atomic chain of Rydberg atoms is made to interact via the evanescent

guided modes of photonic crystal waveguide, it leads to an excitation manifold based outcome

which can play vital role in quantum computation and quantum information processing.

Thus our system can be used as a potential tool to realise controlled light-matter interaction,

thereby depicting the impact of photonic crystal in quantum many-body physics.

1.1 Outline of this work

This thesis is organized as follows:

Chapter 2 summarises the basic concepts of Rydberg physics and photonic crystal waveg-

uide. First a detailed discussion on the properties of Rydberg atom is included. We then

explain the structure and foundations of photonic crystal by relating it to atomic crystal

lattice. Finally, quantum walk dynamics is discussed briefly. We have focussed mainly on

continuous-time quantum walk and thereby discussed mathematically the transition from its

classical analog.
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Chapter 3 is about the dynamics of Rydberg atoms under external fields. We start with

single atom dynamics, before discussing collecting many-body dynamics of Rydberg atoms.

Thereafter, a detailed study of a Rydberg atomic chain in the weak coupling limit where

detuning can be used as a parameter to tune the excitation manifolds is provided.

Chapter 4 deals with an atomic chain of Rydberg atoms embedded to photonic crystal

waveguide. The atomic transition frequency of the atom is highly detuned from the band

edge frequency of the photonic crystal w.r.t which coupling of the atoms to the photonic

modes is considered. We then derive the interaction Hamiltonian and the length parameter

which dictates the restriction of exchange of excitation along the atomic chain. The effect of

the photonic modes can be understood in dyadic green function perspective explaining the

response of the atoms in the photonic crystal waveguide. Thus, we show how the Hamiltonian

can be expressed in terms of Green function.

Chapter 5 is dedicated to the coherent dynamics of a specific case of excitation manifolds

which is single excitation in the atomic chain. We consider two initial conditions, an excited

atom exactly in the middle of the atomic chain (symmetric) and somewhere other than the

middle position (asymmetric). We discuss the dynamics shown by the excitation for both

the cases. The spread of the excitation is calculated and from its linear dependence on time

we show that the single excitation in the atomic chain is indeed a quantum walker.

Chapter 6 briefly summarises the results of the previous chapters and gives an overview of

the work in progress.
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Chapter 2

Basic concepts

This chapter deals with the basic physical concepts related to our work. We have focused

particularly on Rydberg atoms and photonic crystal waveguide. Section 2.1 has the details

of the properties and interactions of Rydberg atoms. We discuss the interactions of the

Rydberg atoms in an ensemble. In Section 2.2, it is discussed about the photonic crystal,

and the behaviour of trapped atoms near the photonic crystal waveguide. The basic idea of

quantum walk is discussed in section 2.3. Here we give importance to continuous-time walk

and explain the expected behaviour of a quantum walker.

2.1 Rydberg atom

Rydberg atoms are atoms with one or more electrons in the excited states which have very

high principal quantum number. It shows many exaggerated properties as a response to

electro-magnetic field. As excited states are far away from the nucleus, quantum defect has

to be considered .

En = − Ry

(n− δnjl)2
(2.1)

Where δnjl is the quantum defect and Ry is the Rydberg constant. Quantum defect takes

into account the effect of screening by the inner-shell electron which increases the effective

charge seen by the electron lowering the binding energy.
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Figure 2.1: a) Electron in an orbit
of very high radius (classical) and
b) Energy series of Rydberg atom,
Rydberg states are very closely
spaced (quantum)
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2.1.1 Interactions

Interatomic interactions are the most significant feature of Rydberg atoms. There are types

of interaction regimes shown by Rydberg atoms depending on the separation between the

atoms; dipole-dipole interaction and Van der Waal interaction. Dipole-dipole interaction is

given by Vdipole = C3

R3 with C3 ∝ (n−δnjl)4, while van der Waal interaction goes as VV dW = C6

R6

with C6 ∝ (n−δnjl)11. At a particular distance the interaction regime can be tuned properly

around Foster resonance. The interaction explained here can lead to a very interesting many-

body phenomena. It is known as Rydberg blockade where excitation of one atom prevents

the excitation of a second atom under the effect of a field.

Figure 2.2: Rydberg blockade between
two atoms in the van der Waals regime.
The state |rr〉 is off resonant for the field
due to UvdW , this leads to the formation
of the entangled state
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In considering the van der Waal interaction regime, the energy of the state |rr〉 gets shifted

by VV dW and thus it gets decoupled. For two atoms, the state prepared under the blockade

effect is entangled (|ψ+〉 = |rg〉+|gr〉√
2

) and it is coupled to |gg〉 with Rabi frequncy
√

2Ω. The

state |ψ−〉 = |rg〉−|gr〉√
2

is not coupled to |gg〉. It is beacuse the total dipole is zero w.r.t that

state i.e. 〈gg| D̂ |ψ−〉 = 0 with D̂ as the dipole operator.

We can define a parameter named blockade radius (also called Condon radius) in an ensemble

of atoms. Around any atom in Rydberg state a blockaded sphere is formed with radius Rb

and inside this sphere no other excitations can exist.

2𝑅𝑏

Figure 2.3: Blockade sphere around an
atom in excited state of Radius Rb, there
can not be a second excitation inside this
sphere

This radius can be calculated very easily depending on the regime of interactions. In the

Van der Waal interaction regime, h̄Ω = C6

R6
b
⇒ Rb =

{
C6

h̄Ω

} 1
6
. We can define the blockade

condition as ∆E = VV dW > h̄Ω and we have applied this condition in reproducing basic

results of blockade (details in the next chapter).

2.2 Photonic crystal waveguide

Photonic crystal can be considered as the optical analogue of atomic or molecular crystal

lattice[39] which affects the motion of photons. In lattice we have a periodic potential along

with atoms or molecules filling the sites, in case of photonic crystal we have periodic dielectric

function, and electron’s place is taken by photon. We are aware of band structures of crystal

lattice. And there are band gaps which basically prohibits electron to move with certain

energies. Photonic crystals can also be designed with photonic band gaps which prohibit
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light from moving in certain directions with certain energies. This particular feature leads to

a situation where flow of light can be molded. Thus photonic crystal has become an excellent

tool to study light-matter interactions.

Figure 2.4: Alligator photonic crystal
waveguide with an atom is trapped near
it. Different structural parameters such
as g: gap, a: periodicity, A: tooth am-
plitude of the edge and w: inner waveg-
uide width determines the nature of the
APCW. Guided mode plays an important
role in the dynamics both in the coherent
and dissipative regime.

Γ1𝐷𝑔

Γ′

𝜔

2𝐴
𝑎

The notion of photonic crystal becomes even more interesting when the idea of waveguide

is merged with it. We can now think of quasi one-dimensional system which provides us

guided modes inherently for a field. Experimental attempts have been made to study the

physics of trapped atoms near photonic crystal. We have taken the advantage of many

fruitful properties of this quasi-1D system in order understand the quantum dynamics of

Rydberg atoms embedded to it. One of such properties is that near the photonic crystal if

an imperfection is created then, a local cavity mode arises around that point. Trapping an

atom can also be considered as an imperfection. Thus an array of trapped atom brings in

different regime of interaction which pushes our system to a different level.

2.3 Quantum walk: An overview

The idea of quantum walk is at the heart of our project. It is basically the quantum analogue

of classical random walk[40, 41, 42, 43, 44]. But quantum walk is inherently dictated by the

fundamental aspects of quantum mechanics like superposition or interference. This makes it

an interesting phenomenon to study. The outcome of quantum walk is very different from

that of classical random walk as shown in figure 2.5.

Just like its classical analogue, there are two types of quantum walks - discrete-time quantum

12
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Figure 2.5: Probability of find-
ing the walker at a certain posi-
tion is plotted against the position
space. Two cases- quantum (red)
and classical-random (blue) walk
show how different they are in na-
ture

walk(DTQW) and continuous-time quantum walk(CTQW) [45]. We will give a brief overview

of both of them.

2.3.1 Discrete-time quantum walk

In the case of discrete-time quantum walk (DTQW), the notion of coin operator comes into

the picture, it dictates the direction of movement of the walker at each time-step. The

action of coin operator is followed by a shift operator which drives the walker i.e. it makes

it walk. Based on these two operators we can define a walk operator Q̂. Mathematically

|Ψ(t)〉 = Q̂t |Ψ(0)〉 with Q̂ = S(C⊗1), S as shift and C as coin operator(written in the basis

{|0〉 , |1〉}). The form of the operators are given below

C =

(
cos θ −i sin θ

−i sin θ cos θ

)
(2.2)

S = |0〉 〈0| ⊗
∑
jεZ

|ψj−1〉 〈ψj|+ |1〉 〈1| ⊗
∑
jεZ

|ψj+1〉 〈ψj| (2.3)

The state |0〉 and |1〉 indicates the direction of the walker at a particular time step. These two

states can be associated with the internal states of the walker. For example, the eigen-vector

of the Pauli spin matrices[46] can be used for this purpose.

The main advantage of DTQW is that the coin operator can be tuned to favour the system

in hand. The study of DTQW has shown its connection to relativistic quantum mechanics
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[47], along with neutrino oscillation[48].

2.3.2 Continuous-time quantum walk

The continuous-time quantum walk(CTQW)[49] is different conceptually although the ex-

pected probability distribution is same as the DTQW. We have to understand the classical

version of continuous-time walk first in order to understand the quantum version of the

walk which takes place entirely in the position space. For a one-dimensional system[50], the

expected probability distribution in position space is given below.
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Figure 2.6: The probability distribution in position space of continuous-time quantum walker
at two different instances of time(the figure in right is at a time later to the figure in left).

We can get a better understanding with the help of a graph which portrays a solid base of

the dynamics. As shown in the figure below, the vertex set W with edge set F constitute

the graph Q i.e. Q = (W, F). The position space Hp spanned by W and E.

Figure 2.7: A graph Q with 7 vertices(W)
and 8 edges(F)
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The probability distribution goes through the vertices, along the edges giving rise to random

walk. And the process can be formulated in terms of B as,

Bj,k =

1, if (j, k)εE

0, otherwise
(2.4)

Now by introducing rate of diffusion and degree of the vertices, we can define an important

matrix associated with the graph Q. This is called the generator matrix H given by

Hj,k =


bjη, j = k

−η, (j, k)εE

0, otherwise

(2.5)

Here η is the probability transition rate between nearest neighbours and bj is the degree of

the vertex j. The generator H drives the dynamics of the walker i.e. diffusion in graph G.

If Pj(t) denotes the probability of being at vertex j at time t then the transition on graph G

can be obtained as
d

dt
Pj(t) =

∑
kεV

Hj,kPk(t) (2.6)

The solution of the differential equation is given by

P (t) = e−iHtP (0) (2.7)

So far we have got an idea about the dynamics of continuous-time classical random walk.

Now moving on to the quantum analogue of it, we can quantise the differential equation (2.6)

which will bring quantum nature. By replacing the probabilities by the quantum amplitudes

cj(t) = 〈j|Ψ(t)〉 and introducing the factor i we get

i
d

dt
cj(t) =

∑
kεV

Hj,kck(t) (2.8)

It has similarities with the Schrodinger equation as

i
d

dt
|Ψ〉 = H |Ψ〉 (2.9)
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The Hamiltonian is constructed keeping the rate generator matrix in mind (classical case)

and it has to replicate the inherent nature of random walk in quantum case also.

To implement the simplest form of continuous-time quantum walk, CTQW on a line, the

position Hilbert space Hp can be written as a state spanned by the basis states |j〉, where

jεZ. The Hamiltonian H is defined such that

H |j〉 = −η |j − 1〉+ 2η |j〉 − η |j + 1〉 (2.10)

In one-dimension continuous-time quantum walk is simply a finite difference Schrodinger

equation

i
dcj(t)

dt
= −η[cj+1(t)− 2cj(t) + cj−1(t)] (2.11)

Here cj(t) are complex amplitudes at the (continuous) time and (discrete) lattice spacing j.

We now need to form a set up which can make the walker diffuse or hop around in the

one-dimensional system. We have to make sure that such hopping is restricted only to

nearest neighbour at each instances and photonic crystal waveguide provides that luxury to

implement the system.

There are many ways we can see the benefits of the study on CTQW. Recently attempts have

been made to explain photosynthetic energy transfer, using CTQW[51]. Moreover quantum

version of travelling sales man problem has also been approached by using the notion of

CTQW.

2.4 Summary

This chapter instills the fundamental concepts which are to used in the next few chapters.

We discuss different parts of the system we use to emulate quantum walk dynamics in details.

Special importance is given to explain the foundations of quantum walk. Although we are

interested in continuous-time quantum walk, but we also discuss discrete-time quantum walk

briefly.
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Chapter 3

Rydberg excitation dynamics in

optical lattice

In this chapter we study the dynamics of a two level atom with the excited state being the

Rydberg state. We start with the single atom under an external field and understand how the

population of the ground and the excited states change with time in non-dissipative case. We

then incorporate dissipation into the two-level system. After understanding the single atom

system, we introduce one more atom to the system. This is the part where Rydberg-Rydberg

becomes crucial. We compare the change in the dynamics under the blockade condition with

the single excitation case. The next section is about expressing number of excitations as a

function of detuning. We discuss it for four atoms under near zero Rabi frequency condition.

3.1 Single atom dynamics

We started our work by verifying a few fundamental aspects of light-matter interaction for

single two-level atom. At first it is done without decay and later with the inclusion of

dissipation. The dynamics is given by the Jayne-Cummings Hamiltonian and under RWA

it is given by H = −h̄∆ + h̄Ω
2

[σeg + σge]. Now the general state of the atom can be written

as |ψ〉 = cg |g〉 + ce |e〉, and we numerically studied the dynamics of this state in terms of

population of |g〉 and |e〉.
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3.1.1 Without dissipation

The time evolution of the coefficients cg and ce can be written based on the above Hamiltonian

as below. The dynamics is basically Rabi oscillation between |g〉 and |e〉 which is tuned by

∆ and Ω. Moreover, we use c̃e in stead of ce and c̃e = cee
iω0t.

ċg = −iΩ
2
c̃e (3.1)

˙̃ce = i∆c̃e − i
Ω

2
cg (3.2)
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Figure 3.1: Rabi oscillation between the states |g〉 and |e〉 for (a) zero and (b) non-zero
detuning

From the figure 3.1, we conclude that the amplitude of Rabi oscillation gets modified as ∆

is changed.

3.1.2 With dissipation

To incorporate dissipative effect into dynamics (spontaneous emission), we have to solve

quantum master equation. It can be written as

∂tρ = − i
h̄

[H, ρ] + Ldecay[ρ] (3.3)

where ρ is the density matrix, H is the atomic Hamiltonian and Ldecay[ρ] is the Lindblad

super operator and it is given as Ldecay[ρ] = Lγ[ρ]+Lκ[ρ] with spontaneous decay rate γ and

cavity decay rate κ. The individual decay expression can be written as
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Lγ[ρ] = −γ
2

({σjee, ρ} − 2σjgeρσ
j
eg) (3.4)

Lκ[ρ] = −κ
2

({â†âk, ρ} − 2âkρâ
†
k) (3.5)
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Figure 3.2: Here we have plotted the probabilities |ρg(t)| (red solid line) and |ρe(t)| (blue solid
line) for an atom with initial state ρg(0) = 0 and ρe(0)=1. Figure (a) shows intermediate
coupling regime; resonant case with parameters (∆,Ω, γ = κ)= (0, 2.8, 3). Figure (b)
shows Strong coupling regime under resonant case with parameters (∆,Ω, γ = κ)=(0,10
,3)

From figure 3.2, it can be concluded that when the coupling strength is strong, the Rabi

oscillation lasts for longer time compared to weaker coupling strength.

3.2 Collective many-body dynamics

When an atomic ensemble is considered in such a way that the spatial dimension is less than

the Rydberg blockade radius only one excitation is possible in the ensemble. Thus we get

two states |G〉 = |ggg...g〉 and |R〉 = 1√
N

[|rgg...g〉 + |grg...g〉 + ...... + |ggg...r〉]. The state

|R〉 is superposition of all of the single excitation state. We want to show that the Rabi

oscillation between the states |G〉 and |R〉 has an effective frequency
√
N times more than

that for single atom under the same field[52]. The Hamiltonian is composed of two parts -

atomic and interaction Hamiltonian, H = −h̄∆
∑N

i=1 σ
(i)
ee + h̄Ω

2

∑N
i=1[σ

(i)
eg +σ

(i)
ge ]. Thus, under

the blockade condition a general state can be written as, |ψ〉 = cG |G〉 + cR |R〉. The time

dependence of the coefficients can be written from Schrodinger equation (See in Appendix

A) and we get
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˙cG = −i
√
NΩ

2
cR (3.6)

˙cR = i∆cR − i
√
NΩ

2
cG (3.7)

Comparing the above two equations with the equations 2.2 and 2.3 for single atoms, we

can clearly see that the system under blockade condition has an effective Rabi frequency,

Ωeff =
√
NΩ. This shows the power of bloackade condition, which makes the ensemble

behave like a superatom. We have numerically studied the blockade effect in an atomic

chain of two atoms placed in a cavity through optical lattice. The Rabi oscillation is observed

between the states |gg〉 and 1
2
{|gr〉 + |rg〉}. By comparing the population of single atomic

states and collective many-body states, the modification of Rabi frequency can be easily

spotted.
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Figure 3.3: Comparison of population of (a) |gg〉(blue line) with |g〉(red line) and (b) 1
2
{|gr〉+

|rg〉}(blue line) with |e〉(red line). We can clearly see the increase in the frequency of the
collective states

Here, we limit ourselves to the non-dissipative part only as we are interested in the coherent

dynamics the atomic chain.

3.3 Dynamical crystallisation: Controlled generation

of Rydberg excitations

So far we have discussed in detail about the properties of Rydberg atom. It has one more

significant aspect, the excitation of Rydberg atoms can generated in a controlled manner
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which is called dynamical crystallisation.
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Figure 3.4: Depending on the number of Rydberg excitations, they are getting arranged in
such a way that the interaction energy is minimum. Thus a crystal of Rydberg excitations
is formed.

In near zero external field i.e. Ω ≈ 0, the number of Rydberg excitation can be obtained as

a function of Detuning. The Hamiltonian in such case can be written as

H = −h̄∆
N∑
i=1

σ(i)
ee +

C6

a6

N∑
i>j

σ
(i)
ee σ

(j)
ee

(i− j)6
(3.8)

H̃ = −∆̃
N∑
i=1

σ(i)
ee +

N∑
i>j

σ
(i)
ee σ

(j)
ee

(i− j)6
(3.9)

Here, ∆̃ = h̄a6

C6
∆ and H̃ = a6

C6
H with a as lattice spacing. Thus we see that H̃ depends

linearly on ∆̃, thus the energy versus detuning plot is a straight line. Here calculation is

made for the state with minimum energy w.r.t a particular number of Rydberg excitation.

We can deduce this easily for N atoms i.e. we will have 2N different possible states. For
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|3>
|4>

Figure 3.5: Energy versus detuing plot for the states with zero (black), one (red), two (blue),
three (pink) and four (green) excitations for N=4 atoms. Inset: It is showing the difference
amongst the point of intersections for zero, one and two excitations

N atoms, single excitation state can be any of the N different single-excited states, so they

are all degenerate. The energy of a singly-excited state can be written as E
(1)
min = −∆.

Considering the two excitations configuration, the one where two excitations are separated

by maximum distance will be of lowest energy, and the energy can be calculated as E
(2)
min =

−2∆ + C6

(N−1)6a6
. For three excitation configuration, there are two ways the lowest energy

states can be evaluated. If N is an odd number, then the configuration with two of the

excitations on each end (1st and Nth position) of the atomic chain with the third excitation

on exact middle position (N+1
2

th) will give rise to lowest energy configuration. The energy

can be calculated as E
(3)
min = −3∆ + C6

(N−1)6a6
+ 2C6

(N−1
2

)6a6
. We can find approximately the

minimum energy of a configuration with n excitation[53], and it is given as

E
(n)
min = −n∆ +

C6(n− 1)6

(N − 1)6a6
+

n−1∑
j=1

j

(n− j)6

E
(n)
min ≈ −n∆ +

C6(n− 1)7

(N − 1)6a6
(3.10)

As the number of excitation increases, the approach to find the configuration with lowest

energy becomes non-trivial. The approach taken above is a very crude way to understand the
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differences of configuration w.r.t a particular number of Rydberg excitations. But it can be

understood in a much more systematic way[27] which highlights the potential of many-body

states.

Let’s assume that we have an atomic chain of length L consisting N atoms. The atomic

separation or the lattice constant is given as b = L
N−1

. Considering zero Rabi frequency,

we can move from atomic to excitation manifold. If n is the number of excitation in a

configuration, then there are
(
N
n

)
profiles with n excitation and the one with lowest energy is

of utmost interest. In the excitation manifold of n excitations, the lowest energy state pushes

the separation between two excitation to a maximum value, which is given as bn = L
n−1

.

Thereby a crystal of Rydberg excitation is formed. We will assume that excitation number

is relatively smaller i.e. bn >> b. Thus the energy of the configuration with n excitations

can be written as,

En = −n∆ + (n− 1)
C6

b6
n

(3.11)

En = −n∆ + (n− 1)7C6

L6
(3.12)

Let ∆n
n+1 be the detuning at which the system makes a transition from n-excitations to

(n+1)-excitations manifold. It can obtained as En+1 = En ⇒ ∆n
n+1 = {n7 − (n − 1)7}C6

L6 .

Now Considering n >> 1, we can write,

∆n
n+1 = 7

C6

L6
n6 (3.13)

The above equation helps in determining the density of Rydberg excitation along with the

Rydberg atom lattice spacing. So far no laser intensity is considered; when a laser is brought

into the picture then the whole scenario becomes dynamically different. Laser excitation

causes transition between crystal states and lifts the degeneracy of a manifold.

3.4 Summary

The primary idea to study single atom dynamics is to get an idea about the interaction of

light with two-level system. This helps us to understand the role of ∆ and Ω (comes from the

term d̄.Ē in the dipole interaction term of the atom under the field Ē). We study the single
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atom dynamics for constant Rabi frequency by changing the detuning. However it can also

be studied for time-varying case which gives interesting dynamics which we chose to ignore

as our system doesn’t contain such interaction. The study of dynamical crystallisation helps

us to find out a parameter to to decide the number of excitation at given time. As we were

interested in single excitation case in a cavity at the initial phase of our work, thus getting

an idea about the detuning value to generate such coonfigurations was very important.
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Chapter 4

Coherent dynamics in photonic

crystal waveguide

In this chapter we discuss the non-dissipative effect that arises in an atomic system trapped

in photonic crystal waveguide. Section 4.1 deals with the Jaynes-Cummings model and how

it can be mapped onto a system trapped in APCW. We discuss and derive the Hamiltonian

of our system from fundamental interaction between atoms and photonic modes in section

4.2. Later we derive the length parameter which dictates the coherent dynamics in the

waveguide. Finally, we express the Hamiltonian in terms of the dyadic Green’s function as

it embodies the inherent bloch profile of photonic crystal.

4.1 Alligator photonic crystal waveguide

We use a system where a one-dimensional array of atoms is embedded to an alligator photonic

crystal waveguide (APCW). The array of atoms can be obtained by using an optical lattice or

in the presence of substantial Casimir– Polder (CP) forces in photonic crystal waveguide[54,

55], thereby bringing periodicity to the system.

Spatial complexity of a system coupled to photonic crystal can be used as a tool to understand

controlled dynamics. To understand this we discuss the dynamics of an atomic system in

cavity. We know that, Jaynes-Cummings model describe the dynamics and the form of the
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|𝑒〉

|𝑔〉

|𝑒〉

|𝑔〉

|𝑒〉

|𝑔〉

Figure 4.1: A schematic showing the coherent dynamics of an atomic chain (two-level scheme)
embedded to APCW. For a single excitation configuration (an atom is excited by using an
external field and after that field is switched off), the excited atom (red) then exchanges its
excitation with the nearest-neighbour(tuned) atoms which are in ground state(blue).

Hamiltonian for a single atom in cavity is

Hone−atom = h̄ωcâ
†â+ h̄σee + h̄g(σegâ+ σgeâ

†) (4.1)

In absence of the cavity field, |e〉 and |g〉 are the eigenstates of the atomic Hamiltonian.

But they no longer are the eigenstates of the Hamiltonian H when the atom is placed in

a cavity as the interaction between the cavity and the atom shifts the energies. The new

eigenstates are, |ψ+〉 = cos(θ) |e〉 |0〉+sin(θ) |g〉 |1〉 and |ψ−〉 = − sin(θ) |e〉 |0〉+cos(θ) |g〉 |1〉.
If cavity mode and atomic resonance frequency is highly detuned, it drastically changes the

population of the respective states and modes. It can be explained by the mixing angle θ

which determines the population on either state , θ = gc
∆c

. Under this condition, θ << 1

as ∆c = ωa − ωc >> gc. From the expression of |ψ+〉, it’s quite clear that the atomic

excitation dominates the photonic component. Now, if we introduce another atom in the

cavity with ground state configuration, the second atom exchanges the excitation of the first
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atom. Thus in an atomic chain, the excitation hops around the chain in the cavity. This

additional interaction is given by[56]

Hef−cavity
I =

g2
c

∆c

∑
j,l

σjegσ
l
ge (4.2)

Clearly the above effective interaction Hamiltonian has no spatial dpendence. Despite the

lack of spatial dependence it leads to some interesting phenomena.[57, 58, 59, 60]. Now, if

we replace cavity with alligator photonic crystal waveguide, while keeping the rest of the

parameters intact, we obtain a similar excitation exchange along the atomic chain. The

excitation will be delocalised over the photonic degrees of freedom as

|1〉 =

∫
dkc∗kâk |0〉 (4.3)

Moreover, the photonic crystal will modify the effective interaction as

HI =
g2

2∆

∑
j,l

f(zj, zl)σ
j
egσ

l
ge (4.4)

4.2 The Hamiltonian of the system

In interaction picture the interaction between the atom and photonic crystal modes is

HI = h̄
N∑
j=1

∫
dkgkσ

j
egâkuk(zj)e

iδkt+ikzj +H.c (4.5)

So the full Hamiltonian under RWA(w.r.t the atomic frequency ωa) is given by

H = −h̄
∫
dkδkâ

†
kâk + h̄

N∑
j=1

∫
dk[gkσ

j
egâkuk(zj)e

ikzj + gkσ
j
geâ
†
ku
∗
k(zj)e

−ikzj ] (4.6)

On the other hand the dissipative dynamics is contained in the equation

L[ρ] = −γ
2

∑
({σjee, ρ} − 2σjgeρσ

j
eg)−

κ

2

∫
dk({â†âk, ρ} − 2âkρâ

†
k) (4.7)
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The dynamics of the photonic modes depend on the dynamics of creation(â†k) and annihilation(âk)

operator. So we derive the rate equation for these operators from Heisenberg equation of

motion. Rate of change of coherent part of âk is derived as

˙̂ak =
i

h̄
[H, âk] (4.8)

˙̂ak =
i

h̄
[−h̄

∫
dk′δk ′â

†
k
′âk ′+ h̄

N∑
j=1

∫
dk′(gσjegâk

′uk ′(zj)e
ik
′
zj + gâ†k

′σjgeu
∗
k
′(zj)e

−ik′zj), âk] (4.9)

˙̂ak = i[−
∫
dk′δk ′â

†
k
′âk ′, âk] + ig[

N∑
j=1

∫
dk′(gσjegâk

′uk ′(zj)e
ik
′
zj + gâ†k

′σjgeu
∗
k
′(zj)e

−ik′zj), âk]

(4.10)

˙̂ak = −i
∫
dk′δk ′[â

†
k
′âk ′, âk]+ig

N∑
j=1

∫
dk′[(σjegâk

′uk ′(zj)e
ik
′
zj + â†k

′σjgeu
∗
k
′(zj)e

−ik′zj), âk] (4.11)

˙̂ak = −i
∫
dk′δk ′(−δ(k − k′))âk ′+

ig
N∑
j=1

∫
dk′{uk ′(zj)eik

′
zjσjeg[âk

′, âk] + u∗k
′(zj)e

−ik′zj)[â†k
′, âk]σ

j
ge} (4.12)

˙̂ak = iδkâk − ig
N∑
j=1

{u∗k(zj)e−ikzj}σjge (4.13)

Now introducing dissipation into the system, we get (full rate equation)

˙̂ak = (iδk −
κ

2
)âk − ig

N∑
j=1

{u∗k(zj)e−ikzj}σjge (4.14)

Considering γ << κ and g << min{δk, κ}, the photonic modes can be adiabatically elimi-
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nated.the field operator takes the form

˙̂ak = 0 −→ âk =
g
∑N

j=1{u∗k(zj)e−ikzj}σjge
(δk + iκ

2
)

(4.15)

âk =
g(δk − iκ2 )

∑N
j=1{u∗k(zj)e−ikzj}σjge
δ2
k + κ2

4

(4.16)

Putting this expression back into the Hamiltonian (eq. 4.6), we get

H = −h̄
∫
dkδk(

g(δk + iκ
2
)
∑N

i=1{uk(zi)eikzi}σieg
δ2
k + κ2

4

)(
g(δk − iκ2 )

∑N
j=1{u∗k(zj)e−ikzj}σjge
δ2
k + κ2

4

) +

h̄
N∑
j=1

∫
dk[gσjeg(

g(δk − iκ2 )
∑N

j=1{u∗k(zj)e−ikzj}σjge
δ2
k + κ2

4

)uk(zj)e
ikzj

+gσjge(
g(δk + iκ

2
)
∑N

i=1{uk(zi)eikzi}σieg
δ2
k + κ2

4

)u∗k(zj)e
−ikzj ](4.17)

H = −h̄g2
∑
i,j

σiegσ
j
ge

∫
dk
δkuk(zi)u

∗
k(zj)e

ik(zi−zj)

δ2
k + κ2

4

+h̄g2
∑
i,j

σiegσ
j
ge

∫
dk[(

(δk − iκ2 )uk(zi)u
∗
k(zj)e

ik(zi−zj)

δ2
k + κ2

4

)

+(
(δk + iκ

2
)uk(zi)u

∗
k(zj)e

ik(zi−zj)

δ2
k + κ2

4

)] (4.18)

H = h̄g2
∑
i,j

σiegσ
j
ge

∫
dk{−δkuk(zi)u

∗
k(zj)e

ik(zi−zj)

δ2
k + κ2

4

+

(δk − iκ2 )uk(zi)u
∗
k(zj)e

ik(zi−zj)

δ2
k + κ2

4

+
(δk + iκ

2
)uk(zi)u

∗
k(zj)e

ik(zi−zj)

δ2
k + κ2

4

} (4.19)
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H = h̄g2
∑
i,j

σiegσ
j
ge

∫
dk{δkuk(zi)u

∗
k(zj)e

ik(zi−zj)

δ2
k + κ2

4

}

As we know that, around the band edge wave-vector

Ek(z) = eikzuk0(z)

Ek(z) = ei(k−k0)zEk0(z) (4.20)

Thus we can write that

H = h̄g2
∑
i,j

σiegσ
j
ge

∫
dk{δkEk(zi)E

∗
k(zj)

δ2
k + κ2

4

}

Applying the quadratic approximation around the band edge ωk = ωb(1 − α(k − k0)2/k2
0)

where α is the band curvature and writing ∆ = ωa − ωb, we get

H = h̄g2
∑
i,j

σjegσ
i
geEk0(zj)E

∗
k0

(zi)

∫
dk
δke

i(k−k0)(zi−zj)

δ2
k + (κ/2)2

(4.21)

After solving this integral (the process of integration is given in Appendix A), we end up

with the Hamiltonian

H =
g2
c

2∆

∑
i,j

Ek0(zi)E
∗
k0

(zj)e
−|zi−zj |/Lσiegσ

j
ge (4.22)

where gc = g
√

2π/L and thus we can see the emergence of spatially modulated interaction

here. This is the Hamiltonian of our system, an atomic chain of Rydberg of atoms embedded

to APCW. The Hamiltonian can be obtained by using Nakajima-Zwanzig approach also (see

in Appendix A).
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4.3 Determining the length parameter

The length parameter L plays the most important part in controlling the nature of dynamics.

We know that L is given as

L =

√
αωb
∆k2

0

(4.23)

Thus we see that L depends on inherent nature of the photonic crystal like α - band

curvature[61, 38]

Figure 4.2: Band structure of 1D photonic crystal, here guided mode frequency ωk is plotted
against Bloch wave-vector k in the first Brillouin zone
. Courtesy: Figure taken from [62]

Moreover the detuning ∆ plays the role of the parameter which tunes the length parameter.

We emulate the signature quantum walk distribution along with the linear dependence of

spread on time for L values around 0.5a (a is the lattice constant of APCW).

Figure 4.3: It reflects how the detuning change the photonic envelope around the atomic
position and along with the effective cavity length.

As L depends on band curvature, band edge frequency and wave-vector, so tuning can be

made w.r.t to the detuning only. So ∆ has to be chosen appropriately although it will be

very high. In case of alligator photonic crystal waveguide, α=10.6, ωb

2π
=333 THz, k0 = π/a,

thus we get L = 0.5a ⇒ αωb

∆π2 = 0.25, and we arrive at ∆ = 4αωb

π2 . Thus we find that the

detuning to get nearest neighbour exchange is very high and in case of APCW, ∆ ≈ 1430.56

THz.
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4.4 The Green’s function approach

To incorporate the role of the bloch modes that appear in the Hamiltonian, we use the dyadic

Green’s function approach[63], which comes from the response of the atoms in photonic

crystal waveguide. Considering APCW, a quasi-1D nanostructure, the full Green tensor

(or function) can be written as G(ri, rj, ωa) = G1D(ri, rj, ωa) + G′(ri, rj, ωa), where G1D

corresponds to the guided mode along the waveguide mediating atom-atom interactions and

G′ is the contribution from all of the other modes (includes decay effect). As we work in the

band gap regime of the photonic crystal waveguide, hence we can directly use the guided

portion of the Green function[63]. Thus the Green’s function takes the form,

G(ri, rj, ωa) = G1D(ri, rj, ωa) = (J1D + i
Γ1D

2
)cos(

πri
a

) cos(
πrj
a

)exp[−|ri − rj|/L] (4.24)

But for a relatively long photonic crystal waveguide, Γ1D is negligible i.e. Γ1D ≈ 0. This

is because the photonic envelope is highly localised, thereby preventing dissipation through

the guided mode. Finally, the Green’s function can be written as,

G(ri, rj, ωa) = J1D cos(
πri
a

) cos(
πrj
a

)exp[−|ri − rj|/L] (4.25)

For cavity, the coefficient J1D is given as J cavity1D = −g2c∆c

∆2
c+κ2c/4

. The physics of the atoms

embedded to PCW can be mapped onto the similar system in a cavity. In this case we can

define the factor J1D for PCW as well by introducing the map, gc −→ ḡc and ∆c −→ ∆̄c.

Thus for an atomic chain coupled to photonic crystal waveguide,

J1D =
−ḡc2∆̄c

∆̄c
2

+ κ̄c2/4
(4.26)

We have here ∆̄c = 2∆ (as δ = ∆) and κ̄c = κ, thus J1D = −ḡc2(2∆)2)
(2∆)2+κ2/4

Now neglecting terms

in the second order of (κ/∆) as we work in a higher detuning regime, we get J1D = −ḡc2
2∆

..

As gc = 2π(12.2
√
a/L)GHz, we can write the Green’s function as

G(ri, rj, ωa) =
−ḡc2

2∆
cos(

πri
a

) cos(
πrj
a

)exp[−|ri − rj|/L] (4.27)
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G(ri, rj, ωa) =
−61.9827× 106

√
∆

cos(
πri
a

) cos(
πrj
a

)exp[−|ri − rj|/L] (4.28)

In terms of the Green function, the Hamiltonian[64] can be written in the band gap regime

as

H = −µ0ω
2
a

N∑
i,j

{d.∗ReG(ri, rj, ωa).d}σiegσjge (4.29)

H = −3πh̄µ0ε0ω
3
a

3πh̄ε0ωa

N∑
i,j

{d.∗ReG(ri, rj, ωa).d}σiegσjge (4.30)

H = −{ ω3
a|d|2

3πh̄ε0ω3
a

}{3h̄πc

ωa
}

N∑
i,j

ReG(ri, rj, ωa)σ
i
egσ

j
ge (4.31)

H = −γ0{
3h̄πc

ωa
}

N∑
i,j

ReG(ri, rj, ωa)σ
i
egσ

j
ge (4.32)

Here γ0 = ω3
a|d|2

3πh̄ε0ω3
a

is the free space emission rate. After putting the expression for the Green’s

function, the Hamiltonian takes the form

H = γ0{
3h̄πc

ωa
}61.9827× 106

√
∆

N∑
i,j

cos(
πri
a

) cos(
πrj
a

)exp[−|ri − rj|/L]σiegσ
j
ge (4.33)

H

γ0h̄
= {3π × 3× 108

ωb + ∆
}61.9827× 106

√
∆

N∑
i,j

cos(
πri
a

) cos(
πrj
a

)exp[−|ri − rj|/L]σiegσ
j
ge (4.34)

H

γ0h̄
=
{ 1.75× 105

(2092.3 + ∆)
√

∆

} N∑
i,j

{ cos(
πri
a

) cos(
πrj
a

)exp[−|ri − rj|/L]}σiegσjge (4.35)

The cos terms appear in the Hamiltonian are the profiles of the Bloch modes. This term

brings a chiral impact on the dynamics.

4.5 Summary

In this chapter we go through the derivation of the Hamiltonian in two ways to eliminate the

photonic modes. The length parameter is crucial which leads us to quantum walk dynamics.

We discuss the range of detuning in order to obtain the nearest neighbour excitation ex-
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change. In the Hamiltonian, there are terms showing the profile of the bloch modes, thus to

incorporate the effect of bloch modes, we look into our system in Green’s function formalism.

We express the interaction Hamiltonian in terms of Green’s function. We carefully choose

a regime in band structure, as the Green’s function has dissipative part in non-band gap

regime. We work in the band gap regime to get coherent dynamics.
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Chapter 5

Single excitation: Quantum walk

dynamics

In this chapter we discuss the results we have for single excitation coherent dynamics. Section

5.1 deals with the probability distribution of the excitation on the atomic chain. We discuss

it for 101 and 151 atoms considering a symmetric and an asymmetric initial condition. We

explain how the results resemble the quantum walk dynamics. In section 5.2 we calculate

the spread of the excitation over the atomic chain and determines its dependence on time.

We explain the importance of time factor for a certain atomic chain.

5.1 Distribution of the excitation on the atomic chain

The probability of finding the excitation at a position can be obtained by taking the projec-

tion of the wave function on the position space. Single excitation is very easy to map onto

the position space as the position is very similar to the configuration used in the numerical

study. The study is for nearest neighbour exchange, thus we tune the length parameter to a

value half of the atomic separation in the chain i.e. L = 0.5a. For single excitation case, we

are considering an atomic chain with odd number of atoms, N=101 and 151.
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5.1.1 Symmetric Initial Condition

In this case initial position of the excitation is at the N−1
2

th site in the atomic chain, where

N is the number of atoms in the chain.
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Figure 5.1: Showing the distribution of the excitation on the position in two different in-
stances of time (figure in the right side corresponds to a larger time than the figure in the
left side)for a case where the atom is at 50th site of the atomic chain initially i.e. symmetric
initial condition. The atomic chain have 101 atoms here.
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Figure 5.2: Showing the distribution of the excitation on the position in two different in-
stances of time (figure in the right side corresponds to a larger than the figure in the left
side) for a case where the atom is at 75th site of the atomic chain initially i.e. for symmetric
initial case. The atomic chain have 151 atoms here.

We can clearly see here that the height of peak towards the end of an atomic chain in the

figure 5.1 and figure 5.2 is more along a particular direction. This can be termed as a chiral

behaviour where a certain direction is preferred over the other in the waveguide (i.e. the

atomic chain).
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5.1.2 Asymmetric initial condition

If we change the change the initial condition to an asymmetric one i.e. the excitation is at

a site other than the N−1
2

th site initially. This implies that the time taken by the excitation

to reach one end of the chain different from the time taken to reach the other end.
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Figure 5.3: Showing the distribution of the excitation on the position in two different in-
stances of time (figure in the right side corresponds to a larger than the figure in the left
side) for a case where the atom is at 25th site of the atomic chain initially i.e. for asymmetric
initial case. The atomic chain have 101 atoms here.
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Figure 5.4: Showing the distribution of the excitation on the position in two different in-
stances of time (figure in the right side corresponds to a larger than the figure in the left
side) for a case where the atom is at 35th site of the atomic chain initially i.e. for asymmetric
initial case. The atomic chain have 151 atoms here.

From figure 5.3 and figure 5.4, it can be seen that probability distribution is heavier towards

the end, from where the initial position of the excitation is the closest. Thus from both of

the initial conditions, we see the similarity of the plots with figure 2.6 and it states that the

excitation hopping along the atomic chain is similar to the quantum walk dynamics with

excitation as the walker.
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5.2 Description of the spread

This is the crucial result for our system as it shows when the excitation is behaving like

a quantum walker. It determines the time up to which quantum walk dynamics persists.

We know that for classical random walk spread(standard deviation) goes as
√
time while in

quantum walk that is linear w.r.t time. And we get exactly the linear plot but the linearity

disappears after the excitation reaches either side of the atomic chain. We focused on the

linear part, where excitation shows quantum walk like dynamics.

Figure 5.5: Comparing the spread of the
the two cases differed by initial condition.
The blue line is for asymmetric initial con-
dition where the excitation is at 25th site
of the atomic and the red line is for the
one with excitation’s initial position at the
50th site i.e. symmetric case. The atomic
chain have 101 atoms
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Figure 5.6: Comparing the spread of the the
two cases differed by initial condition. The
blue line is for asymmetric initial condition
where the excitation is at 35th site of the
atomic and the red line is for the one with
excitation’s initial position at the 75th site
i.e. symmetric case. The atomic chain have
151 atoms
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Figure 5.7: Comparing the spread of the the
two cases differed by length of the atomic
chains. The blue line is for N=101 atoms
and the red line is for N=151 atoms with
symmetric initial condition in both cases
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We can clearly see that the spread of the excitation i.e. quantum walker depends on the

initial condition. In other words, the slope of the spread versus time plot is determined by the

initial position of the excitation on the atomic chain. The slope of the plot for asymmetric

initial condition is higher than that of symmetric initial condition. It implies that the spread

of the excitation over the position space is much faster for asymmetric case. Moreover, the

length of the atomic chain does affect the spread of the excitation. For a symmetric initial

condition, the slope of the plot for 101 atoms is more than that of 151 atoms. Shorter atomic

chain corresponds to faster spread.

5.3 Summary

We discussed briefly about the outcome of single excitation dynamics when projected to

position space, we see that it is quite similar to the signature quantum walk plot shown in

the first chapter. Our claim is supported by the spread versus time plot, which shows linear

behaviour. The important part of this linear plot is that its slope shows a particular pattern

w.r.t number of atoms. Moreover the linearity vanishes after sometime signalling that the

walker has reached the boundary and no more quantum walk dynamics persists, thereby

making time-factor a significant part of our system. We study the dynamics for atomic

chains with different number of atoms to understand the effect of length of the atomic chain

on the dynamics.
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Chapter 6

Conclusion and Outlook

In this chapter, we summarise our results briefly and discuss the future directions of our

work. In chapter 2, we give importance to the basic concepts like Rydberg atoms, photonic

crystal etc. which are used in chapter 3 and chapter 4. Chapter 3 is about the dynamics of

Rydberg atoms under an external field, and we are working on such a system embedded to

photonic crystal waveguide where Rydberg-Rydberg interactions play a handy role. Chapter

4 is totally dedicated to the set up we use to study the coherent dynamics of the atomic

chain. In chapter 5, we discuss the results of our study of single excitation dynamics. The

result obtained has shown similarities with expected plots of quantum walk dynamics. And

the spread of the walker goes linearly with time. Thus single excitation manifold under the

exchange gives us quantum walk dynamics.

There are many questions still need to be investigated. For example, we can study the

dynamics of double excitations i.e. double quantum walker. It will be really interesting to

see how the interatomic interactions will modify the dynamics. Moreover, we have plans

to get the dynamics for a general case i.e n excitations. We can study in details the chiral

character of photonic crystal waveguide in coherent regime.

Moreover, we can also incorporate the effects of the environment on the quantum walker.

There are two regimes we can explore - Markovian and non-Markovian regime. Depending

on the strength of the system-environment interactions one regime dominates the other. In

the non-Markovian regime, we can tune the dynamics of the quantum walker in such a way

that it can emulate localised behaviour. All these aspects of an atomic system embedded to

photonic crystal waveguide make it a very exciting field to study.
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[31] B Olmos, R González-Férez, and I Lesanovsky. Fermionic collective excitations in a
lattice gas of rydberg atoms. Physical review letters, 103(18):185302, 2009.

[32] S Ji, C Ates, and I Lesanovsky. Two-dimensional rydberg gases and the quantum
hard-squares model. Physical review letters, 107(6):060406, 2011.

[33] Igor Lesanovsky. Many-body spin interactions and the ground state of a dense rydberg
lattice gas. Physical review letters, 106(2):025301, 2011.

[34] Galina Khitrova, HM Gibbs, M Kira, Stephan W Koch, and Axel Scherer. Vacuum rabi
splitting in semiconductors. Nature Physics, 2(2):81–90, 2006.
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Appendix A

Detail calculation

A.1 Calculation of collective many-body oscillation

ih̄
d

dt
[cG |G〉+ cR |R〉] = H[cG |G〉+ cR |R〉] (A.1)

ih̄[ ˙cG |G〉+ ˙cR |R〉] = −h̄∆
N∑
i=1

σ(i)
ee [cG |G〉+cR |R〉]+

h̄Ω

2

N∑
i=1

[σ(i)
eg +σ(i)

ge ][[cG |G〉+cR |R〉] (A.2)

= −h̄∆
N∑
i=1

σ(i)
ee [cG |G〉+ cR

1√
N

[|rgg...g〉+ |grg...g〉+ ......+ |ggg...r〉]]

+
h̄Ω

2

N∑
i=1

[σ(i)
eg + σ(i)

ge ][cG |G〉+ cR
1√
N

[|rgg...g〉+ |grg...g〉+ ......+ |ggg...r〉] (A.3)

= −h̄∆
1√
N
cR

N∑
i=1

σ(i)
ee [|rgg...g〉+ |grg...g〉+ ......+ |ggg...r〉]

+
h̄Ω

2

N∑
i=1

σ(i)
eg [cG |G〉+ cR

1√
N

[|rgg...g〉+ |grg...g〉+ ......+ |ggg...r〉]]

+
h̄Ω

2

N∑
i=1

σ(i)
ge [cG |G〉+ cR

1√
N

[|rgg...g〉+ |grg...g〉+ ......+ |ggg...r〉]] (A.4)
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= −h̄∆
1√
N
cR[|rgg...g〉+ |grg...g〉+ ......+ |ggg...r〉]

+
h̄Ω

2
[cG[|rgg...g〉+ |grg...g〉+ ......+ |ggg...r〉] + cR

1√
N
|X〉]

+
h̄Ω

2
cR

1√
N

[|ggg...g〉+ |ggg...g〉+ ......+ |ggg...g〉] (A.5)

= −h̄∆cR |R〉+
h̄Ω

2

√
NcG |R〉+

h̄Ω

2
cR

1√
N
|X〉+

h̄Ω

2
cR

1√
N

[N |G〉] (A.6)

Here |X〉 is none of the states |G〉 and |R〉 and it will get eliminated inherently in later stages

of equation. Thus we have

ih̄[ ˙cG |G〉+ ˙cR |R〉] = −h̄∆cR |R〉+
h̄
√
NΩ

2
cG |R〉+

h̄
√
NΩ

2
cR |G〉+

h̄Ω

2
cR

1√
N
|X〉 (A.7)

Now multiplying the above equation by 〈G| and 〈R| separately we get two equations,

˙cG = −i
√
NΩ

2
cR (A.8)

˙cR = i∆cR − i
√
NΩ

2
cG (A.9)

A.2 Solution of the integral appear in the Hamiltonian

HI =
∑
j,l

σjegσ
l
geEk0(zj)E

∗
k0

(zl)

∫
dk
g2
kδke

i(k−k0)(zj−zl)

δ2
k + (κ/2)2

(A.10)

Clearly δk linearly depends on ∆ and thus considering the terms only to the first order of

κ/∆ we get-

HI =
∑
j,l

σjegσ
l
geEk0(zj)E

∗
k0

(zl)

∫
dk
g2
ke
i(k−k0)(zj−zl)

δk
(A.11)
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Considering coupling constant gk to be invariant w.r.t field modes, we obtain

HI =
∑
j,l

σjegσ
l
geEk0(zj)E

∗
k0

(zl)g
2

∫
dk

ei(k−k0)(zj−zl)

∆ + ωbα(k − k0)2/k2
0

(A.12)

Now defining L =
√

αωb

∆k20
and p = k − k0

HI =
∑
j,l

σjegσ
l
geEk0(zj)E

∗
k0

(zl)
g2

∆

∫
dp
eip(zj−zl)

1 + p2L2
(A.13)

HI =
∑
j,l

σjegσ
l
geEk0(zj)E

∗
k0

(zl)
g2

∆L2

∫
dp

eip(zj−zl)

(p+ i/L)(p− i/L)
(A.14)

Complex integration leads us to

HI =
∑
j,l

σjegσ
l
geEk0(zj)E

∗
k0

(zl)
g2

∆L2
2πi{e

−|zj−zl|/L

(2i/L)
} (A.15)

HI =
∑
j,l

σjegσ
l
geEk0(zj)E

∗
k0

(zl)
πg2

∆L
e−|zj−zl|/L (A.16)

HI =
g2
c

2∆

∑
j,l

Ek0(zj)E
∗
k0

(zl)e
−|zj−zl|/Lσjegσ

l
ge (A.17)

where gc = g
√

2π/L.
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Appendix B

Description of techniques and

approximation

B.1 Technique used

This is the key part of our work. Here we will explain how we emulate the physical system

as a program. This part will contain three different sections, mainly detuning dependence

of energy, Rabi oscillation under blockade effect and emulating quantum walk using single

excitation.

We try to relate the notion of atomic chain to binary code as ground state(|g〉) and excited

state(|e〉) is reflected by the digits 0 and 1 respectively. Thus for an atomic chain of 5 atoms

the state |eegeg〉 is represented by the binary number 11010. This helps us to relate each

and every state to a decimal number and that decimal number contains informations about

that particular state. We have a general algorithm to do so. If we consider N to be the

number of atoms in the atomic chain, then there are 2N possible states. So by using the

index i=0,1,2,....,2N -1 we can assign each and every state. Now we can extract information

about the state by converting each and every number to its binary form. This binary form

will tell us how many excited atoms are in a state along with the magnitude of interaction

they possess.

This formalism helps us to determine the coupling of the atoms to cavity field or laser field

with ease. More exchange of excitation can also be explained using this formalism very
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easily.

B.2 Suzuki-Trotter decomposition

As time evolution is key to our work, thus we had to deal numerically with a lots of differential

equation. And we have used split-operator technique to improve the accuracy of our results.

We split the coefficient of a state to its real and imaginary part and these two parts are

evolved at different way.

Let A and B be two operators, we know that Suzuki-Trotter decomposition of first order can

be written as

eA+B = lim
n→∞
{e

A
n e

B
n }n (B.1)

In the second the decomposition takes the form and we have used this particular order of

Suzuki-Trotter decomposition

eA+B = lim
n→∞
{e

A
2n e

B
n e

A
2n}n (B.2)

This numerical technique has played significantly important role in delivering accurate dy-

namics of our system.
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