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Abstract

The principal cause of hyperglycemia-mediated post-diabetic complications (PDCs) is -

oxidative stress (OS). Therefore, establishing a quantitative relationship between OS and

glycemic status (GS) of a diabetic individual could help in deciding how much and how long

OS should be controlled via external anti-glycemic treatment. To monitor serial changes in

OS (as measured by glutathione or GSH, an OS marker), a group of newly diagnosed type

2 diabetic patients kept on anti-diabetic treatment were followed for the period of 8 weeks.

A cluster analysis performed on the GSH values pooled from non-diabetics and diabetics

before and after therapy (0 and 8 weeks) show that GSH can be used to classify individuals

based upon their diabetic status, independently of glucose. That is, GSH can be an excel-

lent anti-oxidant to monitor along with glucose in defining diabetes status. Further, GSH

levels are found to be inversely correlated with the GS of diabetic individuals. We propose a

physiological minimal mathematical model to capture a quantal dose-response relationship

between GSH and glucose for each diabetic patient. Individualised diabetic GSH-glucose

curves are parameterised by: maximal glutathione level (Gtot), glucose concentration when

GSH is half maximal (v) and slope of the curve (k). Finally, to relax the assumptions im-

posed in the physiological model, a statistical phenomenological model is proposed to capture

OS-GS trajectories in diabetic patients. We show that a phenomenological model is a statis-

tically better and simple alternative to the physiological minimal model. We propose that

individually parameterised GSH-glucose curves can be helpful in deciding optimal glucose

control strategies through which OS is maximally controlled. Thus, glucose targets can be

personalised based upon the OS state of an individual.
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Chapter 1

Introduction

Type 2 diabetes (diabetes) has emerged as a pandemic in the last two decades [1]. Diabetes

is diagnosed by fasting plasma glucose (FPG) > 126 mg/dL (7.0 mmol/L) and glycated

hemoglobin (HbA1c) ≥ 6.5% (48 mmol/mol). HbA1c reference assay for defining diabetic

state was standardised based upon the results from Diabetes Control and Complications

Trial [2]. A pre-diabetic state is characterised by an FPG range of 100 - 125 mg/dL (5.5-6.9

mmol/L) or HbA1c range 5.7-6.4% (American Diabetes Association [3]; The International

Expert Committee [4]). Currently, there are 350 million individuals affected due to diabetes

worldwide, and an equal number of people are in the pre-diabetic state (International Di-

abetes Federation (IDF) Diabetes Atlas [5]). The worldwide spread of diabetes seems to

have a complex, multifactorial origin. Obesity -another emergent epidemic- has a strong

association with metabolic disorders like diabetes, hypertension and cardiovascular disease

(Yoon [6]; Kahn et al. [7]). In general, a sedentary lifestyle (Tuomilehto et al. [8]; Hamilton

et al. [9]), and over consumption of food and sugar-sweetened drinks (Hu and Malik [10];

Pereira et al. [11]), together with the lack of physical activity or exercise (Sigal et al. [12];

Colberg et al. [13]) are contributing to the spread of metabolic diseases. However, along

with environmental factors, ethnicity - the genetic and anthropometric characteristics of a

population - also play a crucial role in the development of diabetes (Harris et al. [14]; Abate

and Chandalia [15]). If the current spread of diabetes is not controlled, the number of dia-
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betics is expected to rise by around 55% by 2035 (International Diabetes Federation (IDF),

Diabetes Atlas [5]).

Another important aspect of the diabetes management is controlling the rate of post-

diabetic complications (PDCs). PDCs fall into two main categories: microvascular and

macrovascular disease. Microvascular disorders comprise of retinopathy, nephropathy and

neuropathy. Cardiovascular disorders (CVDs) like heart disease and stroke form a major

component of macrovascular disorders. Diabetes is the leading cause of retinopathy and

end-stage kidney disease, and CVDs are the leading cause of deaths among the diabetic

patients (International Textbook of Diabetes, Vol. 2 [16]). The International Federation

of Diabetes estimates that an average per person global health expenditure with diabetes

ranges between USD 1583 to USD 2842 and an annual global expenditure on diabetes ranges

between 612 billion to 1099 billion USD (Rocha et al. [17]). The expense on diabetes therapy

contributes towards 11% of the total global health expenditure (Zhang et al. [18]). In fact,

in the United States of America, average lifetime medical expenditure for a diabetic patient

is 85,200 USD, of which 53% is on PDCs (Zhua et al. [19]). Though diabetes expenditure

varies region wise all across the world, the management of PDCs clearly puts a huge burden

on healthcare systems.

Persistent hyperglycemia is known to play a significant role in the development of PDCs

(Klein [20]; Singh et al. [21]): the duration of diabetes and poor glucose control have been

correlated with the development of PDCs (International Textbook of Diabetes, Vol. 2 [16]).

Consequently, controlling glucose within certain limits remains a key focus of diabetes man-

agement. Along these lines, large-scale clinical trials have been performed to assess the im-

pact of glucose control regimens on the rate of development of PDCs (Turnbull et al. [22]).

The results of these clinical trials are reflected in the current position statement of the

American Diabetes Association (ADA) (Inzucchi et al. [23]): ADA criticises a “one-size-

fits-all” approach to diabetes therapy; stating that benefits of tight glucose control should

be evaluated in the context of other risk factors like the age of an individual, duration of

diabetes, comorbodities associated with diabetes, sex, and general social and health status
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of an individual. Therefore, there is a great concern regarding how various phenotypic,

pathophysiological and genetic factors can be factored into the personalisation of diabetes

treatment [23].

A few personalised algorithms have been developed, using various phenotypic indicators

of a diabetic patient. Notably, The Italian Association of Medical Diabetologists (Ceriello

et al. [24]) and Finnish Current Guidelines on Diabetes (Virkamaki et al. [25]) suggest deci-

sion making algorithms to define person-specific antidiabetic therapy. They use phenotypic

factors like the duration of diabetes, BMI of an individual, occupation of the person, age of

the diabetic individual, comorbodities associated with diabetes, and side effects of antidia-

betic drug treatments like hypoglycemia to recommend antidiabetic strategies. However, it

is important to note that there are no consensus algorithms available which would

predict personalised glucose targets, and this is an important open area in the

field of diabetes treatment.

Glucose metabolism leads to production of reactive oxygen species (ROS) via the Tri-

carboxylic Acid Cycle (TCA) cycle. ROS production is the natural byproduct of the energy

metabolism, and in fact, they often play an important role of secondary messenger molecules

in various cell signalling mechanisms. The redox state of the cell is maintained by a balance

between the pro-oxidant and antioxidant systems of the cell. This balance is upset in hyper-

glycemic state leading to an unbalanced production of ROS, which leads to oxidative stress

(OS). Brownlee et al., using cell lines and animal models, established that mitochondrial

overproduction of ROS is a unifying causal pathophysiological feature of hyperglycemia-

mediated diabetic microvascular and macrovascular complications (Brownlee [26]; Giacco

and Brownlee [27]). Therefore, controlling hyperglycemia is expected to improve the OS

status of the cell. However, an important question in this regard is: what is the optimal

glucose control? If OS is causally implicated in the development of PDCs, it stands to reason

that optimal glucose control would be one which would improve OS sufficiently such that

OS is maximally controlled; and this can be expected to reduce the rate of development of

PDCs. Therefore, if the OS response to changes in the glycemic state (GS) can be captured
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quantitatively, then OS state of a diabetic patient can be used (a) to monitor the extent of

progression of diabetes therapy, and (b) to optimise a glucose target for a patient.

In this thesis we work with data collected as a part of an interventional study conducted

on newly-diagnosed Indian diabetic patients. Professor Saroj Ghaskadbi and Dr. Jhankar

Acharya from Savitribai Phule Pune University shared a dataset of diabetic patients who

were kept on an antidiabetic treatment for around two months (Acharya et al. [28]). Blood

samples of the study subjects were serially collected at intervals of 0-week, 4-weeks and

8-weeks. Ten OS markers along with plasma glucose, insulin and HbA1c were measured

in the study subjects over the study period [28]. We used this dataset to propose a

quantitative algorithm which utilises the OS state of a diabetic patient to predict

personalised glucose targets. This novel approach of predicting glucose targets

based on monitoring OS along with GS is the central result of the present thesis

work.

Outline of the thesis

In Chapter 2 we first review literature which shows that OS is a central causal

locus for hyperglycemia-mediated development of PDCs. These studies imply that

controlling OS internally using antioxidant molecules might be expected to reduce the rate of

PDCs. However, unexpectedly, the use of antioxidants in controlling diabetes has not turned

out to be useful; in fact, the use of antioxidants is not recommended for diabetes treatment

(Golbidi et al. [29]; Johansen et al. [30]; Bajaj and Khan [31]).

Since the use of antioxidants is controversial in diabetes therapy, we focus instead on a

novel approach of monitoring OS as a function of changes in the GS. We use this to predict

personalised glucose targets. This unique approach will be elaborated on in Chapter 5.

In Chapter 3 we present an analysis of the ten OS markers serially measured in newly-

diagnosed diabetic patients. In particular, we seek two characteristic features in the OS

markers: (a) the marker should respond rapidly to changes in glucose over the short study

period of 8-weeks, and (b) the OS marker should distinguish a diabetic state distinctly from

the non-diabetic state. These two features serve two purposes: firstly, a distinction between
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the diabetic and non-diabetic state indicates a strong involvement of that OS marker in the

diabetics pathophysiology. Secondly, if we could quantitatively capture rapid changes in the

OS marker with respect to the GS in a model, it can potentially help us define what the

optimal glucose control should be. In our view, an optimal glucose control is that in which

OS state is maximally controlled in order to reduce the rate of development of PDCs.

We show that glutathione metabolism: GSHt and activity of the enzyme glutathione

peroxidase show these properties. We select glutathione as an OS marker to perform a

further detailed analysis for tracking diabetes progression.

In Chapter 4 we describe an interesting result emerging out of a cluster analysis of

glutathione values pooled from non-diabetic subjects and diabetic patients: we show that

glutathione can be used to classify diabetes, independently of the glucose-based

classification. That is, glutathione alone can be used to classify a person as diabetic or

non-diabetic with good accuracy.

In Chapter 5 we present a biophysically motivated minimal mathematical model to

explain the following observation: OS (measured in terms of GSHt) shows an inverse rela-

tionship with GS, as diabetes treatment progresses. The minimal model captures the rapid

variation in the OS in response to changes in the GS, and does so in an individualised man-

ner. We describe various salient features of the model and explain how predictions of the

model can be used to determine glucose targets in a personalised manner in a clinical setting.

Although the physiological model inChapter 5 explains the inverse relationship observed

between OS and GS, due to its complex functional form it may not be readily usable in a

clinical setup. Besides, the glutathione-glucose physiology is made up of a more complex

network of reactions than is represented in the minimal model (Reed et al. [32]; Raftos et

al. [33]). We anticipate that some of the underlying assumptions of the physiological model

may not be realistic and ought to be relaxed. In Chapter 6 we therefore shift our modelling

approach and propose a simple phenomenological model to capture OS-GS trajectories

in diabetic patients. A rigorous statistical analysis is then carried out to compare the two

models. We show that the phenomenological model with its simple functional form retains
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the ability to predict personalised glucose targets and is suited to a clinical setup.

We close this chapter by presenting a comparison of the strengths and weaknesses of the

physiological and phenomenological models.

In Chapter 7 we focus on another aspect of glutathione metabolism in the context

of recovery from the diabetes treatment. In Chapter 5 we showed that diabetic patients

respond differently to antidiabetic therapies. What influences these different recovery rates

of diabetic patients? It is to be expected that initial GS influences the rate of recovery from

the diabetes treatment. Surprisingly, we show that before-therapy GSHt status also

influences the recovery trajectory of a diabetic patient. The exact physiological

explanation of this result remains unclear.

In Chapter 8 we summarise the main outcomes of the thesis work. We then elaborate on

the results of our minimal model in the broader context of the development and progression

of diabetes. Our minimal model specifically captures variations in the OS as a function of

glucose metabolism. However, changes in the OS state have a more complex origin than

represented in the minimal model. Firstly, OS is affected due to several other physiological

factors like free fatty acid metabolism and inflammatory responses. These mechanisms may

be contributing towards changes in the OS apart from GS. Secondly, OS not only plays a

causal role in the development of PDCs but also in the development of hyperglycemia itself.

Recent findings suggest that OS plays a key role in the development of insulin resistance and

β-cell dysfunction, the ultimate cause of hyperglycemia. Thus, changes in the OS may feed

back into the GS via modifying insulin sensitivity and secretory functions. Therefore, the

OS-GS relationship would be expected to be made up of a complex network of non-linear

interactions than represented in the model. Further, we realise that the interest of redox

status is beyond the development of PDCs and there is scope to build complex models of

diabetes progression involving OS.

The unifying theme that evolves in these chapters is how monitoring glutathione as an

OS marker along with the GS marker, HbA1c, might enable prediction of a personalised

glucose target in diabetic patients.
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Chapter 2

Problem foundations

This thesis is about utilising OS status for personalization of glucose targets in type 2 di-

abetes treatment. To understand motivation behind this work, we describe the evidence

supporting the role of OS as a major cause of hyperglycemia-mediated diabetic complica-

tions. Defining glucose targets to control diabetic complications is a difficult task. There

are two relevant components to it: On the one hand, we need to consider the physiological

mechanisms which give rise to hyperglycemia. On the other hand, we need to consider vari-

ous physiological mechanisms which lead to hyperglycemia-mediated diabetic complications.

Current diabetes treatment to control hyperglycemia is based on the existing evidence of

underlying mechanisms giving rise to hyperglycemia. Ironically, glucose targets are defined

based on the association of GS with the rate of development of diabetic complications. Es-

sentially, we need to combine these two apparently distinct arms. That is, we search for a

unifying physiological principle which (a) influences the development of hyperglycemia, and

(b) plays a key role in hyperglycemia- mediated diabetic complications.

In Section 2.2 we ask whether hyperglycemia is sufficient to cause diabetic complica-

tions. Though there is ample evidence to support this claim, there are important reasons

why controlling hyperglycemia may not be adequate to reduce diabetic complications. An

important question in this respect is: are we truly targeting the cause of diabetic

complications while defining glucose targets? This sets the stage for understanding the
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need of (a) personalised medicine in the diabetes treatment, and (b) incorporating markers

other than glucose for defining diabetes treatment.

In Section 2.3, we dive deeper into the molecular mechanisms of hyperglycemia-mediated

diabetic complications. We seek a unifying mechanism found in the various diabetic tissue

damages: such a mechanism is mitochondrial overproduction of ROS, or OS. We summarise

the evidence supporting a causal role of OS in the development of PDCs. In fact, OS may

emerge as a unique underlying mechanism of diabetes development and progression into

diabetic complications. It will serve as a model for generating hypotheses for controlling dia-

betes development. We shall stress that manipulating OS may be considered as an important

therapeutic target for reversing hyperglycemia-mediated PDCs.

Before going into the molecular mechanisms of diabetic complications, we first begin

to describe diabetes itself. In Section 2.1 we present a brief history of diabetes and then

move into the current theories of the development of diabetes, which will set the stage for

discussing the need of personalised glucose targets.

2.1 Diabetes: the problem of impaired glucose homoeostasis

The symptomatic evidence of diabetes can be found in ancient literature as early as from 1500

BC. For example, an Egyptian manuscript documents - “too great emptying of the urine”

- probably referring to a diabetic condition, and Indian literature describing “ants getting

attracted to a patient’s urine” - indicative of the presence of sugar in the urine (Principles of

Diabetes Mellitus [34]). Although there were intermittent records of diabetic cases till 18th

century, no curative measures were available, because the pathophysiology of diabetes was

unclear.

The causal mechanisms underlying diabetes started to emerge only in the 19th century.

The credit of discovering the role of pancreas in the pathogenesis of diabetes is given to

Joseph von Mering and Oskar Minkowski [35]. In 1889, they performed pancreatectomy in

dogs. They showed that dogs developed symptoms of diabetes and died shortly afterwards.

This suggested that the deficiency of a chemical from pancreas is responsible for diabetes.

8



However, it took almost three decades to discover that chemical substance, today known as

insulin. The milestone discovery of insulin changed the lives of diabetic patients, for which

the credit of discovery goes to Frederick Banting and Charles Best: In 1921, they took a

step ahead of Mering and Minkowski’s experiment. They injected pancreatic extract from a

healthy dog to a diabetic dog and showed a reversal of diabetic symptoms [36]. Further, they

discovered the chemical from the pancreatic extract - insulin - for which they got Noble Prize

in 1923. Insulin is, therefore, the first effective documented treatment for treating diabetic

patients.

However, at this point, it was thought that the lack of insulin is the prime reason for

developing diabetes. Later, in 1939, Himsworth proposed that insulin deficiency may not

be the only cause for the development of diabetes, but resistance to insulin action may be

another reason. He coined the term “insulin insensitivity” for this phenomenon [37]. Insulin

insensitivity or resistance can be termed as inability of insulin responsive tissues to uptake

glucose, despite presence of insulin in the blood. However, this idea gained support after

development of radioimmunoassays to measure plasma insulin (Yalow and Berson [38]) and

insulin resistance measures like “glucose-clamp method” in late 60’s and 70’s (Shen et al. [39];

DeFronzo et al. [40]). Later, clinical trials showed that most of the diabetic individuals

studied were in fact “insulin insensitive” (Ginsberg et al. [41]; Reaven [42]). Further, it was

showed that insulin resistance could play a predictive role in the development of diabetes

(Warram et al. [43]; Lillioja et al. [44]).

The point of describing historical events is to understand how it has shaped our un-

derstanding of the pathophysiology of diabetes. This is also reflected in the way diabetes

treatments are developed. Therefore, it is worth taking a brief account of theories of the

development of diabetes.

2.1.1 Theories of development of hyperglycemia

The narrow range of fasting normoglycemia (80-100mg/dL) is maintained by the net effect

of mechanisms by which glucose enters into the blood circulation and is removed from it.
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Food is the main source of the plasma glucose. Elevated plasma glucose levels, after a meal,

induce insulin secretion form the pancreas. There are three primary tissues which have

insulin-dependent glucose uptake, namely, liver, fat, and skeletal muscle. Insulin binds to

receptors to cells in these tissues to facilitate glucose uptake. Another function of insulin is to

inhibit gluconeogenesis - the conversion of glycogen into glucose - in the liver. Thus, insulin

plays an important role in the effective absorption of the plasma glucose and bringing it back

to the normoglycemic range. This process usually takes place within two hours. Following

absorption of glucose, insulin secretion is lowered, leading to activation of gluconeogenesis in

the liver. The activation of gluconeogenesis helps maintain blood glucose in the fasting range;

providing a constant supply of glucose to the brain. Maintenance of glucose homoeostasis is a

complex process involving other hormones like glucagon, and organs such as kidneys. Glucose

homoeostasis is based upon the interplay of three essential factors: (a) insulin sensitivity: the

efficiency of glucose uptake in insulin-dependent tissues in response to secretion of insulin,

(b) β-cells’ capacity to secrete insulin in response to elevated blood glucose levels and (c)

liver gluconeogenesis which plays a crucial role in maintaining fasting plasma glucose levels.

Therefore, independent or combined defects in any of these three processes leads to hampered

glucose homoeostasis.

The pathophysiological routes which give rise to hyperglycemia have been studied for a

long time. For instance, different disease models exist to understand the complex origin of

elevated blood glucose levels. Two theories are center-stage in understanding the mechanistic

origin of elevated glucose levels in diabetic patients. These (theories) are based on the

interplay between the two pathological features of diabetes, namely, insulin resistance and

impaired insulin secretion from the β-cells of pancreas.

Of the three insulin-dependent tissues, muscles are the major site of glucose disposal (re-

sponsible for nearly 70% of the total glucose disposal). Insulin resistance can be thought of as

the inability to take up glucose or process insulin signal despite the presence of insulin in the

blood. According to the classical theory of type 2 diabetes, insulin resistance develops

many years before frank hyperglycemia is observed (DeFronzo [45]). Insulin resistance has
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multiple origins. Nutrient overload (free fatty acid metabolism) is considered as one of the

important drivers of insulin resistance, along with the inflammatory responses and gut micro-

bial changes (Johanson et al. [46]). Cellular and animal models have confirmed that multiple

stimuli can potentially induce insulin resistance in these tissues. Inter-dependence of these

tissues in maintaining glucose homoeostasis makes insulin resistance a complex phenomenon,

and tracing the original cause seems almost difficult.

The mechanistic origin of insulin resistance-driven hyperglycemia is depicted in the Figure

2.1. Insulin resistance leads to transient hyperglycemia, which in turn leads to compensatory

hyperinsulin secretion from pancreatic β-cells. Transient hyperinsulinemia, also in principle

can induce insulin resistance in insulin responsive tissues. If insulin resistance persists for a

longer time, eventually β-cell’s secretory capacity gets exhausted, and insulin secretion is not

enough to control glucose in non-diabetic glycemic limits. In fact, beyond a point, insulin

secretion drops, and the person develops diabetes.

Figure 2.1: Insulin resistance as a driver of development of hyperglycemia. According to the
classical theory of diabetes, insulin resistance leads to compensatory hyperinsulin secretion
from the pancreas. If insulin resistance persists for a longer time, eventually insulin secretory
capacity of the pancreas is exhausted leading to hyperglycemia.
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Therefore, the onset of type 2 diabetes is mainly characterised by three hallmark features:

(a) Hyperglycemia - excess glucose in the blood plasma and urine (b) Insulin resistance -

reduced glucose uptake rate despite presence of insulin in the plasma, and (c) almost 50%

reduction in the insulin-secreting β-cell mass in the pancreas. It is important to stress that

in the classical theory of type 2 diabetes, insulin resistance is the main driver of diabetes

progression, however, until β-cell’s capacity to control glucose homoeostasis is not exhausted,

frank hyperglycemia does not ensue (DeFronzo and Tripathy [47]).

An alternative theory of the development of type 2 diabetes puts hyperinsulin

secretion as the sufficient cause of development of hyperglycemia (Corkey [48]). Corkey

hypothesise that there are multiple food components which have entered in the human food

chain in the recent times, which can potentially trigger hyperinsulin secretion from the

pancreas, without first inducing insulin resistance [49]. This hyperinsulin secretion can cause

insulin resistance and further development of hyperglycemia (see Figure 2.2).

Figure 2.2: Hyperinsulin secretion as a driver of development of hyperglycemia. According
to the alternative theory of diabetes, hyperinsulin secretion is sufficient to drive development
of hyperglycemia. Hyperinsulin secretion can potentially lead to the development of insulin
resistance which can drive development of hyperglycemia.
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Both the classical and alternative theories provide disease models for the development of

hyperglycemia. At the onset of diabetes, both the defects: insulin resistance as well as β-cell

dysfunction, co-exist. However, whether insulin resistance arises first or the major defect is

hyperinsulin secretion, in development of hyperglycemia, is an unresolved puzzle. In fact, the

relative contribution of the each of the defects is difficult to measure. The development of

theories of diabetes is an ongoing research and more complicated diabetes models involving

other organs like brain, kidney and adipose tissue may evolve in near future (DeFronzo [50]).

2.2 Hyperglycemia: are we treating the cause of diabetic

complications?

It is important to step back and retrospect about how these theories have shaped our view

of diabetes diagnosis and treatment. Both theories do not contribute towards identifying

a marker apart from glucose to monitor diabetes progression. Even after more than 100

years of discovery of insulin, our classification of diabetes is restricted to glucose ranges (and

recently, to HbA1c ranges). Intriguingly, this glucose-based classification may not reflect un-

derlying pathophysiological changes. The current diabetic treatments are designed to reduce

insulin resistance, improve insulin secretion or to reduce the rate of gluconeogenesis from the

liver. Although we have the models describing the pathophysiology of diabetes, the quanti-

tative contribution from each of these factors in the pathophysiology can not be deciphered.

Recently, several other factors like free fatty acid metabolism, inflammation, gut microbial

changes have known to be involved in the development of insulin resistance (Johanson et

al. [46]). While blood glucose is the only accepted feature to define diabetes, these abnor-

malities may contribute towards the development of diabetic complications. Therefore, while

developing the diabetes therapies to reduce diabetic complications, can we be sure that we

are targeting the actual cause of diabetic complications?

Hyperglycemia is considered as an initiating cause of diabetic complications. The hyper-

glycemic state has been associated with diabetic complications in type 1 and type 2 diabetes.
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The relationship between poor glucose control and duration of hyperglycemia has long been

known to be associated with the degree of complications. The interventional therapies to

reduce blood glucose, such as insulin or drugs like metformin, are known to reduce diabetic

complication via a reduction in the blood plasma glucose levels. Consequently, tight glu-

cose control regimens were expected to reduce the rate of diabetic complications. However,

contrary to this expectation, tight glucose control may not always account for regulation of

diabetic complications. What follows next is an account of clinical trials assessing the impact

of tight glucose control on the development of diabetic complications.

2.2.1 Aggressive glucose control: findings from the clinical trials

Persistent hyperglycemia influences the development of post-diabetic microvascular (e.g.

nephropathy, retinopathy) and macrovascular disorders (especially cardiovascular disorders

(CVDs) like myocardial infarction and a fatal or non-fatal stroke). Accordingly, controlling

hyperglycemia within a certain limit remains a major concern in the diabetes treatment.

Large clinical trials have been conducted in the past decades to define the glucose control

regimen for diabetes control. Notably, these clinical trials evaluated the effects of strict ver-

sus standard glucose control on the development of microvascular disorders and CVDs. Of

these clinical trials, Action to Control Cardiovascular Risk in Diabetes (ACCORD trial [51],

n=10,251) and Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified

Release Controlled Evaluation (ADVANCE trial [52], n=11,140) were performed on type 2

diabetic patients having one or more micro- or macrovascular events. A strict glucose target

employed was reducing HbA1c well below 6% (ACCORD trial [51]) or 6.5% ( ADVANCE

trial [52]) against the standard glucose reduction criteria ofHbA1c range of 7-7.5% or <6.5%.,

respectively. Another mega clinical trial performed on newly-diagnosed type 2 diabetics in

the UK Prospective Diabetes Study (UKPDS [53], n=5,102) compared the effects of a strict

glucose regimen of 6 mmol/L as against the standard glucose regimen of 15 mmol/L. On an

average, trials were carried out for 4-5 years duration, and more than a thousand patients

participated in the each clinical study. Impact of intensive versus standard glucose con-
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trol was compared with the proper definition of clinical end-points as micro/macrovascular

events.

A meta-analysis conducted on these clinical trials showed that aggressive glucose control

helped reduce microvascular events especially retinopathy, but did not lessen the rate of

cardiovascular disorders. Aggressively controlled glucose did not reduce the death events

caused due to CVD or in overall mortality compared to the standard therapy (Turnbull

et al. [22]). In fact, intensive glucose control did not affect major macrovascular outcomes

in newly-diagnosed diabetics as well. In a different study, Neugebauer et al. conducted a

clinical trial of 58000 diabetic patients: they divided the cohort into four distinct regimens

of HbA1c reduction, ranging from <7% to <8.5%. They demonstrated that the intensive

glucose control, although reduced rate of nephropathies, did not show any beneficial effect

on myocardial infarction events over a period of four years [54]. Nonetheless, a couple of

other clinical trials showed that an aggressive glucose control in early stages of diabetes,

having reduced CVD risk factors, turn out to be beneficial at least during the short study

period of 4-5 years (Dailey et al. [55]; Chokrungvaranon et al. [56]). In almost all the clinical

trials, aggressive glucose control enhanced the hypoglycemic events (Turnbull et al. [22]). In

conclusion, aggressive glucose control may be helpful in the early stage of diabetes to control

microvascular disorders but may not reduce the rate of development of CVDs, especially

in elderly diabetic patients. Since post-diabetic complications are essentially influenced by

multiple factors like duration of diabetes, age of an individual and other risks factors like

lipid metabolism, drug-mediated glucose control alone may not be sufficient to turn down

the progression of diabetes. Consequently, ADA diabetes guidelines published in 2015 based

upon the clinical trials, recommended designing personalised glucose targets, taking into

account various factors that contribute towards the development of post-diabetic disorders

(Inzuchi et al., [57]). In other words, a one-size-fits-all strategy of diabetes control is to be

abandoned in favour of tailor-made antidiabetic treatment. Also, physiological parameters

other than glucose are required to be utilised to define treatment regimen.

Persistent hyperglycemia is known to be the initiating cause of the PDCs, therefore,
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glucose control undoubtedly remains as the prime therapy of diabetes management. How-

ever, current diabetes treatment has not furnished acceptable glucose targets to prevent

onset of the diabetic complications. Therefore, it is important to ask what other molecular

players, other than glucose, determine recovery from diabetes. This is also relevant in the

context of current diabetic treatments which show interpatient variation in the response to

diabetes therapy. In other words, diabetes treatment needs to be personalised. Clearly, the

pathophysiology of diabetes is too complex to be defined only by GS. Therefore, we need to

incorporate other underlying physiological factors while defining individualised glucose tar-

gets. To understand which variables (apart from glucose) can be monitored to refine glucose

targets, we need to look deeper into the pathophysiology of the development of PDCs.

2.3 OS: a central causal link in the hyperglycemia mediated

diabetic complications

Vascular tissues are vulnerable to accumulation of excessive glucose inside the cell. In fact,

vascular tissues are not equipped with regulatory mechanisms for dealing with hyperglycemic

levels and are therefore prone to damage. There are three main types of diabetic compli-

cations : cardiomyopathies, diseases of the microvasculature (retinopathy, nephropathy and

neuropathy) and the macrovasculature (cardiovascular disorders for example heart attack

and stroke). Four major pathways are known to be activated in the diabetic tissue damage,

namely: (1) Polyol pathway (2) Hexosamine pathway (3) Protein kinase C (PKC) pathway,

and (4) Advanced glycation end (AGE) products formation. We take a brief account of

each of them separately, although they may be activated simultaneously in different vascular

tissues.

2.3.1 Increased flux through the polyol pathway

The polyol pathway is known to be activated in the diabetic retinopathy, nephropathy and

neuropathy. It is one of the first pathways discovered in the hyperglycemia-mediated diabetic
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complications and has been under investigation for almost forty years now.

The polyol pathway is a two-step pathway used for converting excessive glucose into

fructose with sorbitol as an intermediate as described in the figure (see Figure 2.3 (A)).

Accumulation of the excess glucose inside the cell activates polyol pathway. In the first step,

aldose reductase (AR) utilises the reducing equivalent NADPH to convert excessive glucose

into sorbitol. In the second step, sorbitol dehydrogenase (SDH) utilises sorbitol to produce

fructose and NADH. Activation of polyol pathway leads to diabetic tissue damage in at

least three ways: (1) activation of polyol pathway leads to a reduction of NADPH/NADP

ratio which is otherwise required for replenishing reduced form of the glutathione, an im-

portant redox buffer of the cell (2) A gradual build up of sorbitol and its intermediate

biochemical products leads to osmotic imbalance and impairment of Na+/K+ ion channels

(Gallgher EJ et al. [58]) (3) Fructose gets further converted into fructose-3-phosphate and

3-deoxyglucosone, which are potent glycosylating agents leading to deposition of advanced

glycation end products (Chung et al. [59]; Tang S et al. [60]).

Interventional studies have been performed in animal models and in humans to define

the causal role of AR in the the development of PDCs. Overexpression of AR with SDH

deficiency in the transgenic mouse model lead to enhanced OS in the liver tissues. In the same

mouse model, use of AR inhibitor, epalrestat, showed a reduction in the OS and decreased

albuminuria in the urine (Li et al. [61]). In a small observational study, Bravi et al. [62]

showed that intervention with AR inhibitor tolrestat improved erythrocytic NADPH/NADP

ratio and GSH concentrations in diabetic patients. A recent meta-analysis performed on the

use of AR inhibitors in human clinical trials showed reduction in the diabetic neuropathy

(Hu et al. [10]; Hotta et al. [63]). Undoubtedly, AR inhibitors are the promise for control of

diabetic complications, though newer drugs are under investigation.

2.3.2 Increased flux through hexosamine pathway

The fourth pathway found to be activated in the hyperglycemia-mediated diabetic tissue

damage is the hexosamine pathway (see Figure 2.3(B)). 2-5% of the total glucose pool gets
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diverted into hexosamine pathway in the hyperglycemic conditions (Schleicher and Weigert

[64]). The key rate-limiting enzyme of the pathway is glutamine:fructose-6-phosphate ami-

dotransferase (GFAT). GFAT adds an amino group to fructose-6-phosphate producing glu-

cosamine. The end product of the pathway is UDP-N-acetylglucosamine (UDP-GlcNAc).

Activation of hexosamine pathway in hyperglycemic conditions leads to activation of

O-glycosylation of transcription factor Sp1 (Du et al. [65]). Covalent modification of Sp1

causes overexpression of transforming growth factor-β1 (a cytokine) and plasminogen acti-

vator inhibitor-1 (a serine protease inhibitor), which are found to be activated in vascular

disorders in diabetes, particularly diabetic nephropathy (Sharma and Ziyadeh [66]; Schle-

icher and Weigert [64]). The hexosamine pathway also activates NF-kβ in mesangial cells

(James et al. [67]). Overall, activation of the hexosamine pathway leads to initiation of

pro-inflammatory response and modulation of cellular matrix physiology and signalling. In

fact, hexosamine pathway has been proposed to play a role in the development of insulin

resistance (Buse [68]) and impaired β-cell function (Kaneto et al. [69]).

2.3.3 Activation of protein kinase C (PKC) pathway

Hyperglycemia leads to the formation of a metabolic intermediate diacylglycerol (DAG)

(Geraldes and King [70]). DAG is known to activate PKC isoforms (mostly β isoforms) in

vascular tissues (see Figure 2.3(C)), specially in retinopathy (Shiba et al. [71]), neuropathy

(Xia et al. [72]), nephropathy (Craven et al. [73]) and cardiovascular structural deformities

(Inoguchi et al. [74]; Lee et al. [75]; Taher et al. [76]).

Increased PKC activation in these tissues have been associated with changes in blood flow,

vasodialation, basement membrane thickening, extracellular matrix expansion, abnormal

angiogenesis, and excessive apoptosis. PKC activation also leads to changes in enzymatic

activity alterations such as MAP kinase, PI3Kinase and Na(+)-K(+)-ATPase (Evcimen and

King [77]). In cardiomyocytes, PKC-β activation leads to hampered cardiac function and

modulation via impaired Akt-dependent-nitric oxide synthesis (eNOS) (Lei et al [78]).

Numerous studies have been performed in diabetic rat and mice models to assess the
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efficacy of PKC inhibitors or deletion of PKC gene or overexpression of PKC genes on the

development of diabetic vascular complications (Geraldas and King [70]). These studies not

only established the role of PKC isoforms in the development of diabetic vascular disorders

but also paved a new way of using PKC inhibitors for the treatment of diabetic complications

(Durpes et al [79]). For example, PKC inhibitors like LY333531 have been useful in improving

retinopathy, nephropathy, neuropathy and neuronal dysfunction. (Geraldas and King [70]).

The use of PKC inhibitor, in the clinical trials has been reviewed in detail by Geraldas and

King [70] and Idris and Donneley [80]. For example, ruboxistaurin, a PKC-β isoform selective

inhibitor, improves renal glomerular filtration rate, endothelial dysfunction and prevents loss

of visual acuity (Idris and Donnelly et al [80]) and neurological dysfunction (Bansal et al [81])

in diabetic patients. The use of Ruboxistaurin for the treatment of diabetic complications is

currently under investigation, and PKC inhibitors present a great promise for improvement

of debilitating diabetic complications.

2.3.4 Intracellular production of advanced glycation end products

AGEs are nonenzymatically glycated intermediates of proteins, lipids and nucleic acids, pro-

duced due to persistent hyperglycemic and oxidative environment inside the cell (see Figure

2.3(D)). Apart from hyperglycemia, smoking and dietary AGEs also contribute towards the

pool of AGEs (Brownlee [75]; Goldin et al. [82]; Goh and Cooper [83]). AGE formation is a

key pathological cause of diabetic vasculature disorders of eyes (Stitt [84]; Milne and Brown-

stein [85]), kidneys (Forbes et al. [86]), nerves (Sugimoto et al. [87]), and cardiovascular

disease (Meerwaldt et al. [88]).

Accumulated AGEs affect physiology by at least three well-known mechanisms. First,

AGEs interact with receptors for AGE (RAGE) on the cells. AGE-RAGE interaction leads

to enhanced production of OS and activation of nuclear factor NF-k β, which is responsible

for modulation of gene expression and activation of pro-inflammatory cytokines like IL-1,

IL-6 and tumour necrosis factor-α (TNF-α) (Nessar [89]; Neumann et al. [90]; Ramasamy

et al. [91]). Secondly, AGEs induce cross-linking of proteins like collagen thereby altering
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vascular structure (Goh and Cooper [83]). Thirdly, accumulation of AGEs over the time is

known to affect renal function. This is mainly due to accumulation and inefficient clearance

of AGEs from the kidneys, which further develops into kidney malfunctioning.

Pre-clinical interventional trials using AGE inhibitors (like Aminoguanidine) either for

preventing the formation of AGEs or for the removal of AGEs have shown promise in reducing

the developments of retinopathies, nephropathies and neuropathies (Goldin et al. [82]). A

detailed review of animal models and clinical trials performed using AGE inhibitors is due to

Goh and Cooper [83], Singh et al. [21]. In summary, AGE inhibitors do show promise in small

clinical trials, but their long term toxic effects are unclear. Long-term clinical investigations

and search for new AGE inhibitors is an ongoing quest to reduce diabetic complications.

2.3.5 Mitochondrial overproduction of ROS: a unifying mechanism of hy-

perglycemia - mediated diabetic complications

All the above mentioned pathways are known to be activated in diabetic tissue damage.

However, is there a common upstream event that regulates all these distinct mechanisms

of diabetes tissue damage? Brownlee et al. [26] sought to answer this question mainly for

two reasons: first, they observed that using inhibitor for one pathway did not suppress

the effect of the other. Secondly, clinical trials using combination of inhibitors of these

pathways were unsuccessful. This suggested that there might be an upstream missing link

which is still mediating its effect (Brownlee [26]). Although the association between OS

and hyperglycemia was known for a long time, the exact molecular mechanism linking the

two processes was lacking. Brownlee and colleagues found that a common feature of differ-

ent cell types undergoing diabetic tissue damage is elevated mitochondrial ROS production

(Nishikawa et al. [92]). They established the causal mechanism of mitochondrial overpro-

duction of ROS in the activation of diabetic tissue damage pathways in three different ways.

To begin with, they overexpressed the enzyme manganese superoxide dismutase (MnSOD)

in the endothelial cells exposed to hyperglycemia. They showed that the ROS levels were

significantly lowered in these cells compared to the control. In another experiment, they
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Figure 2.3: Mitochondrial overproduction of ROS is a unifying mechanism in
hyperglycemia-mediated diabetic complications. Four main pathways of diabetic tissue dam-
age are: (A) increased flux through the polyol pathway, (B) activation of the hexosamine
pathway, (C) activation of the protein kinase C (PKC) pathway, and (D) accumulation of
advanced glycation end (AGEs) products. Mitochondrial superoxide overproduction inhibits
the activity of the enzyme GAPDH (glyceraldehyde 3-phosphate dehydrogenase). This leads
to the accumulation of glycolysis intermediates, which activates the four pathways in the
diabetic complications.

generated a mutant endothelial cell line with the deletion of mitochondrial DNA. In these

mutant cells, hyperglycemia completely failed to activate the four pathways involved in the

hyperglycemic diabetic complications. They confirmed their findings in the diabetic mice

models overexpressing MnSOD. They found that in these mice models activation of the four

pathways was considerably reduced. These experimental results clearly demonstrated the

causal role of mitochondrial ROS production in the activation of pathways involved in the

diabetic complication.

Further molecular mechanisms were studied linking the mitochondrial ROS production
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and development of diabetic complications in cell lines and animal models (Brownlee [26]).

Figure 2.3 represents the overview of the molecular mechanisms implicated in the develop-

ment of diabetic complications. Brownlee and coworkers showed that mitochondrial ROS

leads to single-strand breaks in the DNA. This activates poly(ADP-ribose) polymerase

(PARP) which makes polymers of ADP-ribose. Activated PARP leads to deactivation of

glyceraldehyde 3-phosphate dehydrogenase (GAPDH), an enzyme in the glycolysis pathway.

Reduced activity of GAPDH leads to accumulation of intermediate products of the glycoly-

sis and activates all four major pathways of diabetes complications, namely, polyol pathway,

hexosamine pathway, PKC, and AGE pathway.

In this chapter, we reviewed literature to establish the causal role of imbalanced produc-

tion of ROS or OS in the development of hyperglycemia-mediated diabetic complications.

We also evaluated literature on the current glycemic goals suggesting the need for personal-

isation of diabetes treatment. The rest of the thesis describes evolution of an idea

about how OS can be utilised in predicting the personalised glucose targets.

We hope that the concepts described in this chapter would be helpful in understanding the

reasoning behind our personalisation algorithm to follow.
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Chapter 3

Population study design and

preliminary data analysis

3.1 Introduction

The redox homeostasis or optimal ROS level inside the cell is regulated by the balance

between pro-oxidant and antioxidant mechanisms. In diabetes this balance can not be sus-

tained, leading to excessive accumulation of ROS and enhanced OS (Halliwell [93]). As

described in Chapter 2 (see Section 2.3), OS markers hold crucial information regarding the

progression of diabetes due to their central position in hyperglycemia-mediated development

of PDCs. On the one hand, changes in the GS may be directly reflected in changes in the

OS. On the other hand, OS is causally involved in the pathophysiology of PDCs. The causal

role of OS in the development of PDCs implicates it in defining what should the optimal

glucose control be. An optimal glucose control would be that which would minimise OS

sufficiently such that this would augment antioxidant status of the cell and further reduce

the rate of development of PDCs. In order to achieve this (that is defining optimal glucose

targets), first, we need to ask: which OS marker can be utilised to track the progression

of diabetes?

OS markers broadly fall into two categories: (a) molecules involved in the antioxidant
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defence of the cell (e.g. glutathione, vitamin E, C and enzymes like superoxide dismutase,

catalase, glutathione reductase), and (b) cell molecules which show oxidative damage (e.g.

markers of DNA, protein and lipid damage). Hyperglycemia is known to be associated with

elevated levels of lipid peroxidation marker like thiobarbituric acid (TBARS) (Augustin et

al. [94]) and secondary end-products of lipid peroxidation like 8-epi-prostaglandin F2 (8-epi-

PGF2α) isoprostane (Sampson et al. [95]). 8-epi-PGF2α is considered as a direct, sensitive

biomarker of membrane lipid-peroxidation (Kaviarasan et al. [96]). The diabetic state is

associated with lowered antioxidant defence state molecules like vitamin C (Iino et al. [97]),

vitamin E (Lonn et al. [98]) and glutathione (Lagman et al. [99]). Enzymes involved in the

OS regulation are also used to measure OS state. There are a plethora of studies which

have looked at activities of enzymes like superoxide dismutase (SOD), catalase, glutathione

peroxidase and glutathione reductase in the diabetic state (Akkus et al. [100]; Bhatia et

al. [101]; Song et al. [102]).

A point worth noting is that although the literature is replete with studies showing

association of different OS markers with the diabetic state, no OS marker has been established

to classify diabetes. One important aspect is that we lack population studies which monitor

longitudinal changes in the OS state of a diabetic patient, which could in principle be used

to classify diabetes using OS.

The present thesis work is based on an interventional trial performed on newly-diagnosed

Indian type 2 diabetes patients. Prof Saroj Ghaskadbi from Savitribai Phule Pune University

shared this dataset with us. An interesting feature of this study is that patients were kept

on antidiabetic treatment for about two months and ten OS markers were longitudinally

measured at the intervals of 0-week, 4-weeks and 8-weeks. The details of the study design

and blood sample collection are provided in Section 3.2.

In this chapter, our objective is to identify which OS marker can be used to monitor

diabetes progression. The longitudinal aspect of the study design would help us decipher (a)

how rapidly a given OS marker varies in response to changes in the GS over the short study

period of 8 weeks, and (b) whether changes in an OS marker delineate a diabetic state from
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the non-diabetic state. These two features give insight about which OS marker is suitable

for monitoring diabetes progression. We first summarise data analysis carried on different

OS variables serially measured in newly-diagnosed Indian diabetic patients at the intervals

of 0, 4, and 8 weeks. Specifically, we studied trends in the OS variables in response to GS.

We observed that markers of glutathione metabolism respond rapidly to the antidiabetic

treatment compared to other OS variables.

3.2 Population study design and sample collection

3.2.1 Subject information

The clinical trial was performed on newly-diagnosed type 2 diabetic patients (n=54) attend-

ing the Diabetes Unit, KEM Hospital, Pune for the period of 2 months. Two criteria were

used to define the diabetic status of an individual, namely, (a) fasting blood glucose >6.9

mmol/L and (b) glycated haemoglobin (HbA1c) >6.5% (47.5 mmol/mol). The non-diabetic

control group (n=50) was comprised of individuals from academic institutions in Pune. Non-

diabetic status was defined by (a) fasting blood glucose <6.9 mmol/L and (b) HbA1c <6.5%

(47.5 mmol/mol). The anthropomorphic details of the study subjects (age, BMI and gender)

are provided in the Appendix Section 5.1. The population study followed a longitudinal in-

terventional design in which diabetic subjects were kept on the antidiabetic drug treatment

for about two months and their fasting blood samples were collected at the interval of 0, 4

and 8 weeks. Similarly, fasting blood samples of non-diabetic subjects were also collected

and processed for further biochemical measurements. The details of the drug treatment are

provided in the Appendix Section 5.2. Diabetic patients were instructed on physical exercises

and diet and advised to avoid the use of oral antioxidants and multi-vitamin supplements.

Subjects with/having (a) a recent cardiovascular event and heart disease (b) clinical infection

and inflammation (c) excessive alcohol intake (d) chronic smoking habit (e) malignant dis-

ease and pregnant women were removed from the study protocol. Finally, written consents

were taken from all the study subjects and study design was approved by the Institutional
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Ethical Committee, KEM Hospital and Research Centre, Pune.

3.2.2 Sample preparation

Fasting blood samples were used for the measurements of biochemical components. The

details of the biochemical measurements of remaining physiological markers are provided

in Acharya et al. [28]. We briefly discuss biochemical assays used to measure blood com-

ponents. Plasma was separated by spinning down the sample volume at 4000 rpm for 10

minutes. Further, buffy coat was removed, and blood erythrocytes (RBCs) were washed

thrice with cold saline. A 50% hemolysate was prepared by adding ice-cold ultrapure wa-

ter to the RBCs (MilliQ plus reagent grade; Millipore, Bedford, MA) and stored at -80.

HbA1c levels were measured using was measured by using an HPLC cation exchange column

on D10 HbA1c analyser (Bio-Rad Laboratories, Hercules, CA). GOD-PAP (glucose oxidase

Peroxidase) method was used to measure plasma glucose concentrations using auto-analyzer

(Hitachi 902, Japan). Total free glutathione, GSHt (reduced (GSH) and oxidised (GSSG)

forms of glutathione) was measured according to the method of Akerboom and Sies [103].

Plasma insulin levels were measured using ELISA-based insulin measurement kits obtained

from Mercodia (Uppsala, Sweden).

3.3 Statistical methods

3.3.1 Percent relative measures of changes in the mean and standard de-

viation of diabetic stress variables with respect to the non-diabetic

group

To compare the mean (standard deviation (sd) ) values over the diabetic population relative

to the mean (standard deviation) of the corresponding non-diabetic group, we computed a

percent relative mean (sd) difference given by the formula(s):

Percent relative mean difference = mean(Diabetic group) - mean(Non-diabetic group)
mean(Non-diabetic group) × 100

26



Percent relative sd difference = sd(Diabetic group)- sd(Non-diabetic group
sd(Non-diabetic group) × 100

Positive (negative) percent relative values indicate difference is higher (lower) with respect

to non-diabetic group.

3.3.2 Bootstrap estimates of confidence interval (CI) for reporting sample

mean values to account for small study size

To obtain confidence in stating mean and standard error around the mean value, we boot-

strapped over the non-diabetic and diabetic values obtained for each of the physiological

markers measured during the study period. Ten thousand datasets were simulated by sam-

pling with replacement from the values measured for each physiological marker for each of

the 3 visits. For each simulated dataset, a mean value was calculated. This procedure gen-

erated distribution of 10000 simulated sample means. This distribution of simulated sample

means was used to obtain mean and standard error around the mean for a given physi-

ological marker. This standard error was used to obtain normal and percentile-based CI

around the mean considering 95% confidence level. These CIs were reported along with the

sample mean±se values. We also compared the CI for the difference of means between the

two groups to be compared using the bootstrap algorithm. In almost all the cases where

comparisons were made, they match up with the CI obtained from Student’s t-test. So we

have reported CI from the Student’s t-test along with the p-values obtained using confidence

level, α = 0.05. All the calculations were performed using statistical software package R

(version 2.14.1).
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3.4 Results

3.4.1 Preliminary analysis of OS markers revealed rapid recovery in the

markers of glutathione metabolism

Acharya et al. previously studied serial changes in the OS biomarkers in newly diagnosed

diabetic patients [28]. In all, seventeen physiological markers were studied in response to

variations in the glycemic load over the period of 2 months. These biomarkers were roughly

divided into following categories: (1) OS defence markers: glutathione, glutathione reduc-

tase, glutathione peroxidase, superoxide dismutase, catalase, bilirubin and uric acid. (2)

Lipid profile markers: cholesterol, triglycerides and high density lipoproteins (3) Cell dam-

age markers: protein carbonyls, protein sulfhydryls and TBARs (4) Kidney and liver function

markers: creatinine, glomerular filtration rate, alanine aminotransferase (ALTKE) and aspar-

tate aminotransferase (ASTKE). Among the above mentioned markers, OS defence markers

and cell damage markers are the ten OS biomarkers studied. Plasma glucose, insulin and

glycosylated haemoglobin (HbA1c) were measured along with the mentioned biomarkers, at

the intervals of 0 week (visit 1), 4 weeks (visit 2) and 8 weeks (visit 3). The measurement

units for all the biomarkers are provided in the Appendix Section 3.2.

To quantitatively compare changes in stress variables in the diabetic state with respect

to the non-diabetic state, percent relative mean and standard deviation difference were cal-

culated for all stress variables (see Statistical Section 3.3.1). Table 3.1 gives an account

of percent relative mean and standard deviation difference for all of the stress variables

studied. As mentioned earlier, relative mean values indicate changes between the first and

third visits in diabetic patients when glucose levels were therapeutically controlled. Further,

scatter-histograms were used to reveal trend between glucose and stress variables, across

three visits.

Among the OS defence markers, glutathione, glutathione reductase, glutathione perox-

idase, superoxide dismutase and catalase showed a low relative mean value compared to

corresponding non-diabetic values in the first visit (Table 3.1). By the third visit, relative
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mean differences were found to increase, indicating a shift towards the physiologically healthy

ranges (as expressed by the non-diabetic group). On the contrary, bilirubin and uric acid

levels were higher in the first visit and lowered by the third visit.

Increased levels of protein carbonyls and decreased levels of protein sulfhydryls represent

protein damage inside the cell due to OS. Table 3.1 shows high (low) relative mean difference

value for protein carbonyls and TBARs (protein sulfhydryls) in the first visit indicating OS

damage. By the third visit, relative mean difference value for protein carbonyls and TBARs

was well below half the relative mean difference value in the first visit. This indicates a

strong sensitivity of protein carbonyls and TBARs to the glucose control in the diabetic

group. However, proteins sulfhydryls did not show such sensitivity in the third visit (Table

3.1).

Other physiological parameters like lipid profile markers and kidney and liver function

markers were also studied for their changes with respect to the glycemic changes. Lipid

profile markers cholesterol and triglycerides showed a high relative mean value compared to

the corresponding non-diabetic values in the first visit and decreased by third visit (Table

3.1). Hence cholesterol and triglycerides, but not lipoproteins, can be treated as useful

correlates of glucose control in diabetic patients. Kidney and liver function markers, ASTKE

and ALTKE did not show much change in the relative percent mean from first visit to third

visit. The other two markers, creatinine and glomerular filtration rate, showed improvement

over the study period. However, the difference between the first and third visit is well below

15% (Table 3.1). Therefore, it can be inferred that kidney and liver function markers are

less sensitive to glucose changes in the diabetic group, over three visits.

HbA1c is a measure of chronic levels of glucose in the blood. Since the half-life of HbA1c

is about six weeks, the HbA1c values in the third visit reflect a cumulative glucose control

over eight weeks of therapy. Table 3.1 shows a high relative mean difference value for HbA1c

in the first visit which is lowered by about half by the third visit.

Overall, all the OS markers showed some improvement over the study period in diabetic

patients (Acharya et al. [28] and Table 3.1) We used scatter-histograms to eyeball whether
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First visit Third visit
Mean (%) Stdev.* (%) Mean (%) Stdev. (%)

OS defence markers
Glutathione -83 -63 -61 -59
Glutathione reductase -26 18 -17 -9
Glutathione peroxidase -63.4 -39 -7.73 18
Superoxide dismutase -10 -37.2 -7.4 -3.15
Catalase -21 -30 -10 -10
Bilirubin 27.2 11 5.44 -13
Uric acid 21.9 38 -4.2 -20
Lipid profile markers
Cholesterol 15.2 9.3 0.42 -9.3
High density lipoproteins -6.2 -1 -10.4 3
Triglycerides 70.4 90 40.5 80
Cell damage markers
Protein carbonyls 83 14 32 7.1
Protein sulfhydryls -47.1 5.8 -31.6 -12
TBARs 33.7 87 4.38 37
Kidney and liver markers
Creatinine -0.2 -17 -9.5 -21
Glomerular filtration rate -9.5 -16 2 -6.4
ASTKE -13.6 -8 -18.4 -1
ALTKE 9.6 -2.9 4.6 11
Glycosylated hemoglobin 75.7 250 38.2 75
Glucose 114.8 493 70.4 370

Table 3.1: Percent relative mean and standard deviation (Stdev.) difference for diabetic
stress variables compared to non-diabetic values. Data adapted from Acharya JD et al. [28].
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changes in the stress variables over the 8 weeks are sufficient to distinguish individuals

based upon their diabetic status (see Appendix Section 3.6.1 for scatter-histograms of all the

biomarkers). Scatter-plot represents serial variation in the biomarker values across the three

visits, and histograms show corresponding shifts in the fitted distributions of the biomarker

over the three visits. We noticed that markers of the glutathione metabolism specially

GSHt and GPx showed “marked” improvement before and after antidiabetic therapy. For

instance, Figures 3.1 and 3.2 show scatter-histograms of GSHt against plasma glucose for

non-diabetics and diabetics, respectively. The glutathione histograms depict serial changes

over the 8 weeks in the GSHt distributions. The first visit diabetic mean±se glutathione

value (140±16) was much lower when compared to the mean±se glutathione value of the

non-diabetics (859±3). After controlling glucose levels in diabetic patients, glutathione levels

showed an upward shift with the mean±se value of 334±18. Further, the diabetic scatterplot

revealed that the first (0 week) and third visit (8 weeks) glutathione levels can be roughly

demarcated at around GSHt value of 200 (nM/ml) (see Figure 3.2). Similarly, Figures 3.3

and 3.4 show scatter-histograms of non-diabetic and diabetic GPx activity levels over the

three visits. GPx activity was rapidly increased over the 8 weeks study period in response

to antidiabetic treatment. In the first visit, diabetic GPx activity levels were low with the

mean±se value of 0.07±0.00. Over the study period, diabetic GPx activity improved with

the mean±se value of 0.179±0.006 (Figure 3.4) slowly approaching the non-diabetic GPx

range (see Figure 3.3). Moreover, a clear distinction between 0 week and 8 weeks GPx

activities can be assigned near GPx activity level of 0.11 (U /mg of protein)(see Figure 3.4).

Among several physiological markers studied, scatter-histograms of GSHt and GPx re-

vealed that individuals need not only be classified based on GS but along the stress variable

axis as well. Therefore, we inferred that the markers of glutathione metabolism, specially

GSHt and GPx can be used to distinguish diabetic state from the non-diabetic state.



Figure 3.1: Scatter-histogram of glutathione versus glucose for non-diabetics. Non-diabetic
glucose levels show physiologically normal range of 80-120 with overall mean±se of 91±2 over
three visits. Non-diabetic glutathione is normally distributed with mean±se of 859±3 over
the three visits.

Figure 3.2: Scatter-histogram of glutathione versus glucose for diabetics. The scatter plot
shows glucose range between 70-350 in the first visit. In the first visit, mean±se values for
glucose and glutathione are 194±3 and 140±16, respectively. By the third visit, mean±se
value for glucose was reduced to 153±2 and glutathione mean±se value was increased to
334±18.



Figure 3.3: Scatter-histogram of glutathione peroxidase versus glucose for non-diabetics.
Non-diabetic glutathione peroxidase activities range between 0.1-0.3, with mean±se value of
0.194±0.003 over the three visits.

Figure 3.4: Scatter-histogram of glutathione peroxidase versus glucose for diabetics. In
the first visit, mean±se glutathione peroxidase activity is 0.07±0.003. By the third visit,
glutathione peroxidase activity showed considerable increase with the mean±se value of
0.179±0.006.



3.5 Discussion

In this chapter, we examined which OS marker can be suitably used to monitor diabetes pro-

gression along with glucose. We used the dataset on newly-diagnosed diabetic patients who

were kept on glucose control treatment for about two months and serially tracked changes

in the OS. We were specifically interested in how rapidly a given OS marker varies in re-

sponse to changes in the GS. We also evaluated whether the diabetic profile was distinctly

different from the non-diabetic profile for a given OS marker using scatter-histograms (see

scatter-histograms for all the variables in the Section 3.6.1). We showed that among almost

12 markers of OS studied, markers of glutathione metabolism respond rapidly to antidia-

betic treatment. Further, these markers show distinct diabetic and non-diabetic ranges (for

instance see scatter-histograms of GSHt and GPx), unlike other markers, followed in the

study.

We note that markers of glutathione metabolism may show significant variation over

the short study period of 8-weeks, while other OS markers may hold important clinical

information over longer study periods.

3.6 Appendix

3.6.1 Scatter-histograms of OS markers

Scatter-histograms of all the physiological biomarkers are provided for the reference for all

the three visits, with visit 1, 2 and 3 stand for 0-week, 4-weeks and 8-weeks, respectively.

We asked whether serial changes in the biomarkers over the 8 weeks is sufficient to

distinguish individuals based upon their diabetic status. In other words, we enquired whether

a distinct clustering would emerge based upon the distribution of data points on the scatter-

plot. Corresponding histograms represent changes in the fitted distributions over the study

period. The bootstrapped mean±se values are provided for the comparison for each visit.



Biomarker Biochemical measurement Unit
Glutathione nM/ml
Glutathione reductase U/mg protein
Glutathione peroxidase U/mg protein
Superoxide dismutase U/mg protein
Catalase U/mg protein
Bilirubin mg%
Uric acid mg%
Cell damage markers
Protein carbonyls nmole/mg protein
Protein sulfhydryls nmole/mg protein
TBARs nmole MDA/L
Lipid profile markers
Cholesterol mmol/L
High density lipoproteins mmol/L
Triglycerides mmol/L
Kidney and liver markers
Creatinine umol/L
Glomerular filtration rate ml/min/m2

ASTKE U/mg protein
ALTKE U/mg protein
Glycosylated hemoglobin %
Glucose mg/dL

Table 3.2: Biochemical units of the biomarkers followed in the study period. Units obtained
from Acharya et al. [28].



Figure 3.5: Scatter-histogram of glutathione reductase versus glucose for non-diabetics.
Glutathione reductase activities range between 0.02-0.08, with mean±se value of 0.049±0.001
over the three visits.

Figure 3.6: Scatter-histogram of glutathione reductase versus glucose for diabetics. In
the first visit, mean±se glutathione reductase activity is 0.034±0.001. By the third visit,
glutathione reductase activity did not show much change with the mean±se value of
0.038±0.001.



Figure 3.7: Scatter-histogram of superoxide dismutase activity versus glucose for non-
diabetics. Non-diabetic glutathione peroxidase activities range between 35-80, with mean±se
value of 0.194±0.003 over the three visits.

Figure 3.8: Scatter-histogram of superoxide dismutase activity versus glucose for diabetics.
In the first visit, mean±se glutathione peroxidase activity is 0.07±0.003. By the third visit,
glutathione peroxidase activity showed considerable increase with the mean±se value of
0.179±0.006.



Figure 3.9: Scatter-histogram of catalase activity versus glucose for non-diabetics. Non-
diabetic catalase activities range between 1300-2700, with mean±se value of 1743±29 over
the three visits.

Figure 3.10: Scatter-histogram of catalase activity versus glucose for diabetics. In the first
visit, mean±se catalase activity is 1376±27. By the third visit, catalase activity showed
considerable increase with the mean±se value of 1567±36.



Figure 3.11: Scatter-histogram of bilirubin activity versus glucose for non-diabetics. Non-
diabetic bilirubin levels range between 0.01-0.4, with mean±se value of 0.147±0.007 over the
three visits.

Figure 3.12: Scatter-histogram of bilirubin levels versus glucose for diabetics. In the first
visit, diabetic mean±se bilirubin level was 0.187±0.01. By the third visit, bilirubin levels
decreased to mean±se value of 0.155±0.008.



Figure 3.13: Scatter-histogram of uric acid levels against glucose for non-diabetics. Non-
diabetic uric acid levels range between 2.0-8.0, with mean±se value of 4.18±0.08 over the
three visits.

Figure 3.14: Scatter-histogram of uric acid levels against glucose for diabetics. In the first
visit, mean±se diabetic uric acid level was 5.1±0.1. By the third visit, uric acid levels show
slight decrease with the mean±se value of 4.0±0.09.



Figure 3.15: Scatter-histogram of cholesterol levels against glucose for non-diabetics. Non-
diabetic cholesterol levels range between 110-290, with mean±se value of 169.3±3.6 over the
three visits.

Figure 3.16: Scatter-histogram of cholesterol levels against glucose for diabetics. In the
first visit, mean±se diabetic uric acid level was 195±5.4. By the third visit, cholesterol levels
show slight decrease with the mean±se value of 168.5±4.5.



Figure 3.17: Scatter-histogram of high density lipoproteins levels against glucose for non-
diabetics. Non-diabetic high density lipoproteins levels range between 12-82, with mean±se
value of 42.4±1.0 over the three visits.

Figure 3.18: Scatter-histogram of high density lipoproteins levels against glucose for dia-
betics. In the first visit, mean±se diabetic high density lipoproteins level was 39.8±1.2. By
the third visit, cholesterol levels show a little change with the mean±se value of 38.0±1.4.



Figure 3.19: Scatter-histogram of triglyceride levels against glucose for non-diabetics. Non-
diabetic triglyceride levels range between 10-490, with mean±se value of 42.4±1.0 over the
three visits.

Figure 3.20: Scatter-histogram of triglyceride levels against glucose for diabetics. In the
first visit, mean±se diabetic triglyceride level was 39.8±1.2. By the third visit, triglyceride
levels show a little change with the mean±se value of 38.0±1.4.



Figure 3.21: Scatter-histogram of protein carbonyl levels against glucose for non-diabetics.
Non-diabetic protein carbonyl levels range between 2-10, with mean±se value of 4.9±0.1
over the three visits.

Figure 3.22: Scatter-histogram of protein carbonyl levels against glucose for diabetics. In
the first visit, mean±se diabetic protein carbonyl value was 9.0±0.5. By the third visit,
protein carbonyl levels reduced to the mean±se value of 6.5±0.2.



Figure 3.23: Scatter-histogram of protein sulfhydryl levels against glucose for non-
diabetics. Non-diabetic protein sulfhydryl levels range between 0.7-2.7, with mean±se value
of 1.56±0.04 over the three visits.

Figure 3.24: Scatter-histogram of protein sulfhydryl levels against glucose for diabetics. In
the first visit, mean±se diabetic protein sulfhydryl value was 0.82±0.05. By the third visit,
protein sulfhydryl levels improved a little to the mean±se value of 1.07±0.04.



Figure 3.25: Scatter-histogram of TBARs levels against glucose for non-diabetics. Non-
diabetic TBARs levels range between 0.4-4.0, with mean±se value of 2.23±0.07 over the
three visits.

Figure 3.26: Scatter-histogram of TBARs levels against glucose for diabetics. In the first
visit, mean±se diabetic TBARs value was 3.0±0.2. By the third visit, TBARs levels reduced
to the mean±se value of 1.07±0.04.



Figure 3.27: Scatter-histogram of creatinine levels against glucose for non-diabetics. Non-
diabetic creatinine levels range between 0.5-1.5, with mean±se value of 0.90±0.0 over the
three visits.

Figure 3.28: Scatter-histogram of creatinine levels against glucose for diabetics. In the first
visit, mean±se diabetic creatinine value was 0.9±0.0. By the third visit, creatinine levels
reduced to the mean±se value of 0.81±0.1.



Figure 3.29: Scatter-histogram of glomerular filtration rate against glucose for non-
diabetics. Non-diabetic glomerular filtration rate ranges between 30-150, with mean±se
value of 88.3±2.0 over the three visits.

Figure 3.30: Scatter-histogram of glomerular filtration rate against glucose for diabetics.
In the first visit, mean±se diabetic glomerular filtration rate was 80.0±2.3. By the third
visit, glomerular filtration rate improved to the mean±se value of 90.1±2.5.



Figure 3.31: Scatter-histogram of ALTKE against glucose for non-diabetics. Non-diabetic
ALTKE ranges between 10-90, with mean±se value of 24.8±1.4 over the three visits.

Figure 3.32: Scatter-histogram of ALTKE against glucose for diabetics. In the first visit,
mean±se diabetic ALTKE was 27.2±2.0. By the third visit, ALTKE remained unchanged
with the mean±se value of 26.0±2.3.



Figure 3.33: Scatter-histogram of ASTKE against glucose for non-diabetics. Non-diabetic
ASTKE ranges between 12-52, with mean±se value of 24.5±0.7 over the three visits.

Figure 3.34: Scatter-histogram of ASTKE against glucose for diabetics. In the first visit,
mean±se diabetic ASTKE was 21.2±0.9. By the third visit, ASTKE did not change much
with the mean±se value of 20.0±0.9.



Chapter 4

Blood glutathione accurately

classifies diabetic states

4.1 Introduction

In Chapter 3, we studied how several OS parameters vary in response to antidiabetic treat-

ment in diabetic patients. In particular, we showed that markers of glutathione metabolism

recover quickly over the short study period of 8-weeks (see Chapter 3, Section 3.4.1). We

decided to study variation in glutathione metabolism in response to glucose control in greater

detail.

Glutathione (GSHt) is an endogenous antioxidant buffer of the cell, which exists as

a redox couple: in reduced (GSH) and oxidised disulfide (GSSG) form. Glutathione is

primarily involved in maintaining the appropriate redox status of the cell, by scavenging

free radicals produced due to energy metabolism (Scholz et al. [104]; Grant [105]). It is

also known to play an essential role in DNA synthesis and repair, cell differentiation and

proliferation, iron metabolism, and nitric acid cycle (Prasad et al. [106]; Atakisi et al. [107];

Kumar et al. [108]; Shelly [109]). Undoubtedly hampered glutathione metabolism might

be reflected as a systemic response to the diseased state. For instance, GSH/GSSG ratio is

routinely used as a measure of redox status and known to be altered in clinical conditions like
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neurodegenerative disorders, cancer and diabetes (Jones [110]; Owen and Butterfield [111]).

These studies suggest that glutathione is an excellent OS marker in vivo (Jones et al. [112]).

Most importantly, the role of glutathione metabolism is well established in the context of

the development of hyperglycemia-mediated PDCs. Hyperglycemia leads to mitochondrial

overproduction of ROS via TCA cycle; which takes toll on glutathione and other antioxidant

systems of the cell (Goh and Cooper [83]; Peppa et al. [113]; Stirban et al. [114]). A large

body of clinical evidence shows that diabetic state is associated with the lowered blood

glutathione levels (Thornalley et al. [115]; Samiec et al. [116]; Dincer et al. [117]; Nwose et

al. [118]) and reduced GSH synthesis rates (Tachi et al. [119]; Murakami et al. [120]; Whillier

et al. [121]). The central role of GSH metabolism in the regulation of glucose metabolism can

be studied using GSH infusion studies in diabetic patients: GSH infusion readily improved

GSH synthesis rates, glucose homoeostasis and reduces PDCs (Paolisso et al. [122]; De Mattia

et al. [123]; Marfella et al. [124]). Sekhar et al. showed that infusion of amino acids cysteine

and glycine, which are precursors of GSH synthesis, not only restored the GSH synthesis

rates but also showed reduction in the oxidative damage markers [125]. Therefore, it is

important to ask: if GSH metabolism plays such a crucial role in the regulation

of glucose metabolism, how it can be utilised in the diagnosis and treatment of

diabetes?

In this chapter, we, first analyse whether reduction in hyperglycemia is associated with

concomitant improvement in the diabetic status, as measured by Homeostasis Model Assess-

ment (HOMA) indices: measures of insulin sensitivity and β-cell dysfunction (see Section

4.5.3 for more details). We show that improvement in the β-cell dysfunction is associated

with improved GSHt levels in diabetic patients. Then, we sought to explore the relationship

between GSHt and HbA1c in greater detail. We specifically ask: whether GSHt levels are

sufficient to define diabetes and hence might be useful in tracking the progression of dia-

betes? To establish that GSHt can be used to classify diabetes, we perform a hierarchical

cluster analysis on the GSHt values pooled from non-diabetic subjects and diabetic patients

at 0 and 8-weeks. We show that GSHt levels alone can be used to classify individuals from
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diabetic to non-diabetic state. We propose that GSHt can be an excellent OS marker in

monitoring and diagnosis of the diabetic status.

Parts of this work have been previously published in Kulkarni et al. [126]. The figures

and tables in this chapter are reproduced under the creative commons attribution license.

4.2 Statistical methods

4.2.1 Bootstrap estimates of confidence interval for reporting sample mean

values to account for small study size

The CIs were reported along with the sample mean ± sd values as described in Chapter 3,

Section 3.3.2. The comparison between the sample means was also performed as described

in Section 3.3.2.

4.2.2 Multiple linear regression of GSHt against age and BMI

OS is an important factor influencing the process of aging (Finkel and Holbrook [127]; Kregel

and Zhang [128]). Therefore, age is an important confounding factor while interpreting

changes in the OS as a function of GS. Since the non-diabetic and diabetic groups were not

age-matched as a part of the study design, we imposed age-matching by dividing study sub-

jects into two age groups: below and above age 40. Multiple linear regression of GSHt against

age and BMI were performed within the age groups to confirm the absence of confounding

effects (see Section 4.5.4 for more information). For between-group comparisons, Student’s

t-test was used with the p-value calculations at the 95% level of significance. Statistical

package R was used to perform the computations and data analysis.

4.2.3 Cluster Analysis of GSHt values

A hierarchical cluster analysis was conducted on the GSHt values pooled from non-diabetic

subjects and diabetic patients at 0 and 8-weeks. Euclidean distance measure was used to

produce the distance matrix, and Ward's method was used to perform hierarchical cluster
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analysis using built-in functions linkage() and dendrogram() in MATLAB.

4.3 Results

4.3.1 Antidiabetic treatment reduces plasma glucose levels, however plasma

insulin levels remain unchanged in diabetic patients over the study

period

Acharya et al. conducted an interventional study on newly-diagnosed diabetic patients to

control hyperglycemia using antidiabetic drug treatment (see Appendix Section 5.2 for more

information on the drug treatment details) [28]. Diabetic plasma glucose levels were expected

to reduce over the study period due to antidiabetic drug treatment. Figure 4.1a shows serial

changes in the mean plasma glucose levels in diabetic patients at 0-week (D0), 4-weeks (D4),

8-weeks (D8) and compared with the non-diabetic plasma glucose values pooled from 0-week

and 8-weeks (ND). Antidiabetic treatment was found to reduce glucose levels significantly in

diabetic patients with mean±sd (bootstrapped CI for the mean) of 10.6± 3.4 (9.6, 11.5) at

D0 to 7.6 ± 1.7 (7.1, 8.1) at D8. However, D8 glucose values were still higher compared to

the ND glucose levels with mean±sd (bootstrapped CI for the mean) being 4.92± 0.42 (4.8,

5.0).

We also studied changes in the diabetic plasma insulin levels over the study period.

Figure 4.1b represents serial variation in the mean plasma insulin levels in diabetic patients.

Plasma insulin levels show considerable variation within the D0, D4 and D8 groups. Also,

mean insulin levels were not changed significantly over the study period. The mean ± sd

(with corresponding bootstrapped CI for the mean) value for plasma insulin levels in diabetic

patients at D0 being 11.5 ± 8.2 (9.35, 13.7) and 12.3 ± 8.9 (9.9, 14.7) at D8. However, D8

insulin levels were found to be notably higher compared to the ND insulin levels; indicating

that diabetic patients were hyperinsulinemic compared with non-diabetic subjects (Figure

4.1b).
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(a) Mean plasma glucose (b) Mean plasma insulin

Figure 4.1: Serial change in the average plasma glucose (figure 4.1a) and insulin levels
(figure 4.1b) levels in diabetics kept on the antidiabetic treatment for 8 weeks. D0: Diabetic
values at 0 week (n=53); D4: Diabetic values at 4 week (n=51), D8: Diabetic values at 8-
weeks (n=46) and ND: Non-diabetic values at 0 and 8 weeks (n=92). Figure 4.1a shows serial
changes in mean±sd (bootstrapped CI for the mean) values of plasma glucose corresponding
to D0, D4, D8 and ND. ND values lie in the physiological range of 4.92±0.4 (4.84, 5.0). The
D0, D4 and D8 values being 10.6 ± 3.4 (9.6, 11.5), 8.3 ± 2.3 (7.7, 9.0) and 7.6 ± 1.7 (7.1,
8.0), respectively. Comparison of the mean plasma glucose at D0 and D8 shows statistical
significance, with p-value<0.001 with CI for the difference between the means of (35.6,73.8).
Also, the difference between D8 and ND plasma glucose values was significantly higher with
p-value<0.001, CI for the difference between the means=(39.0, 57.3). Figure 4.1b shows serial
changes in mean±sd (bootstrapped CI for the mean) values of plasma insulin corresponding
to D0, D4, D8 and ND being 11.5 ± 8.2 (9.4, 13.7), 12.0 ± 7.6 (10.0, 14.0), 12.3 ± 9.0
(10.0, 14.7) and 9.1 ± 4.4 (8.23, 10.0), respectively. There is, however, a slight increase in
the insulin secretion at D8, comparison of means between D0 and D8 was not statistically
significant, with p-value=0.6, CI for the difference between the means=(-4.2,2.6). However,
insulin levels at ND were found to be marginally but significantly lower compared to D8 with
p-value<0.05, CI for the difference between the means=(-6.3,-0.4).
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4.3.2 Antidiabetic treatment significantly improves β-cell function but not

insulin sensitivity in diabetic patients

Insulin resistance and impaired insulin secretion along with hyperglycemia are the salient

features of the type 2 diabetes. Enhanced glucose levels are known to aggravate insulin

resistance and hamper insulin secretion. Homeostatic Model Assessment (HOMA) indices,

namely, HOMA2-IR and HOMA-%B, are popularly used in the clinical trials as surrogate

measures of insulin sensitivity and insulin secretion (or β-cell dysfunction), respectively. We

used HOMA2-IR and HOMA-%B indices of the study subjects to observe the impact of

antidiabetic drug treatment on the improvement of diabetic status. For more information

about calculations of HOMA indices refer to Appendix Section 5.3.

Mechanistically, a reduction in hyperglycemia is expected to decrease IR and improve

β-cell dysfunction. Figures 4.2a and 4.2b show serial changes in the mean-HOMA2-IR and

mean-HOMA-%B against diabetic states in study subjects, respectively. Mean-HOMA2-IR

was found to be lowered in diabetic patients over the study period with mean±sd (with cor-

responding bootstrapped CI for the mean) of 2.1±1.4 (1.7, 2.5) at D0 compared to 2.0±1.3

(1.63, 2.37) at D8. However, this IR improvement was not statistically significant (Fig-

ure 4.2a). On the contrary, insulin secretion as measured by HOMA-%B was found to be

significantly improved after the antidiabetic treatment (mean±sd (with corresponding boot-

strapped CI for the mean) for D8 mean-HOMA-%B being 75.4±52.6 (60.6, 90.2) against D0

mean-HOMA-%B of 45.6± 33 (36.7, 54.5); Figure 4.2b). On an average, HOMA-%B shows

an inverse relationship with the glycemic status. Thus, antidiabetic treatment improves

β-cell function but not insulin sensitivity.

4.3.3 Improvement in the β-cell function is correlated with increased GSHt

levels in diabetics over the study period

Overproduction of mitochondrial ROS is a key mechanism through which hyperglycemia

leads to PDCs (Brownlee [26]; Giacco and Brownlee [27]). Therefore, restoration of GS

would be expected to restore oxidative imbalance at least partially, and improve diabetic
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Figure 4.2: Serial changes in the average HOMA2-IR (Figure 4.2a) and HOMA-%B (Figure
4.2b) against plasma glucose for diabetics kept on antidiabetic treatment. Red filled circle:
ND at 0 and 8 weeks (n=92); Open triangles: D0 (n=53); Green filled rectangles: D8
(n=47). The bold line indicates serially observed change in the diabetic HOMA scores from
D0 to D8, while the dotted line shows projection to the asymptotic values of ND HOMA
scores, if diabetic patients were to continue on the therapy for longer time period. Figure
4.2a shows average reduction in HOMA2-IR values from D0 (2.13 ± 3.7, (1.7,2.5)) to D8
(2.0 ± 1.3, (1.6,2.4)), although not significant (p-value = 0.6, CI for the difference between
the means being (-0.67,0.4)). Figure 4.2b shows that HOMA-%B scores were significantly
improved after therapy with mean±sd (bootstrapped CI for the mean) values being 45.6±33
(36.7,54.6) at D0 to 75.4±52.6 (60.6,90.2) at D8 (p-value<0.05, CI for the difference between
the means being (12.0,47.5)). The ND mean±sd (bootstrapped CI for the mean) values for
HOMA2-IR (1.34± 0.64 (1.21,1.47)) and HOMA-%B (118± 37.6 (110,125)) are provided for
the reference. Figure 4.2a is reproduced from Kulkarni et al. [126], published as Figure S12
in the Supplementary information.
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Figure 4.3: Serial changes in the mean-HOMA2-IR (Figure 4.3a) and mean-HOMA-%B
(Figure 4.3b) against GSHt in study subjects. Red filled circle: ND at 0 and 8 weeks (n=92);
Open triangles: D0 (n=53); Green filled rectangles: D8 (n=47). The bold line indicates
serially observed change in the diabetic HOMA scores from D0 to D8, while the dotted line
shows projection to the asymptotic values of ND HOMA scores, if diabetic patients were to
continue on the therapy for longer time period. Reduction in the glycemic load was reflected
in the serial mean-GSHt levels. The mean±sd (bootstrapped CI for the mean) GSHt values
for D0, D8 and ND being 145± 122 (112,179), 341± 134 (302,379) and 860± 311 (797,922),
respectively. The mean±sd (bootstrapped CI for the mean) values for HOMA scores was
provided in the Figure 4.2. Figure 4.3b is reproduced from Kulkarni et al. [126], published
as Figure S13 in the Supplementary Information.

status. To enquire whether OS improvement is also associated with improvement in the

diabetic condition, we correlated HOMA scores with the GSHt , as a measure of OS. Figure

4.3b shows that HOMA-%B but not HOMA2-IR is positively correlated with GSHt (Figure

4.3b). In fact, HOMA2-IR as a function of GSHt remained unchanged over the study period

(Figure 4.3a). Based on our analysis we propose that glucose intervention may alleviate

diabetic status via improving OS (as measured in terms of GSHt ).
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4.3.4 GSHt shows age-dependence in non-diabetic individuals but not in

diabetic patients

We observed that the age-groups of non-diabetic subjects and diabetic patients were signifi-

cantly different (see Appendix Section 4.5.1, Table 4.1). Age-matched grouping was required

to compare the non-diabetic and diabetic OS with respect to GS. We performed a linear

regression of GSHt against age in non-diabetic and diabetic subjects (Figure 4.4). We found

that GSHt showed dependence on age in non-diabetic subjects (Figure 4.4a), but not in

diabetic patients (Figure 4.4b). Further, we noticed that non-diabetic GSHt levels show

two distinct clusters above and below 40 age-groups (Figure 4.4a). Therefore, we divided

non-diabetic and diabetic subjects in above and below 40 age-groups, based on approximate

age-matching with non-diabetic clusters. Also, we found that within the above 40 age-group,

GSHt levels were not dependent on age, BMI or gender (see Appendix Section 4.5.4, Table

4.3). However, age-dependence was observed in the non-diabetic below 40 age-group (see

Appendix Section 4.5.4, Table 4.4). Therefore, GSHt cluster-analysis is presented for above

40 age-group. The GSHt cluster-analysis details for below 40 age-group are provided in the

Appendix Section 4.5.6.

4.3.5 GSHt is a classifier of diabetic states in the above 40 age-group

Hyperglycemia is known to be associated with lower GSHt levels in diabetic patients. There-

fore, systematic reduction in the HG is expected to relieve OS and improve GSHt levels

concomitantly. To establish whether OS improves with the antidiabetic treatment, we corre-

lated GSHt with HbA1c of non-diabetic subjects (ND: 0 and 8-weeks) and diabetic patients

from before therapy 0 week (D0) and after 8-weeks of antidiabetic treatment (D8). Figure

4.5 shows a cluster-histogram of GSHt against HbA1c for ND, D0 and D8 for the above

40 age-group. HbA1c reflects fluctuations in the glucose load over the period of past three

months and, therefore, considered as a stable marker of GS. ND HbA1c values were found to

lie between standard non-diabetic HbA1c range of 30-47.3 (mmol/mol), with the mean± sd

(bootstrapped CI for the mean) of 40±4 (38,42). After 8-weeks of antidiabetic treatment,
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Figure 4.4: Linear regression of GSHt against age in non-diabetics (n=94) and diabetic
(n=98) subjects taken over 0 and 8 weeks. Figure 4.4a shows that GSHt levels were affected
due to aging in non-diabetics. The regression equation for this relationship being GSHt =
1267- 12.5 ×age (p-value <0.001). On the other hand, GSHt levels in diabetics were not
dependent on age. The regression equation for this relationship being GSHt = 176- 1.2 ×age,
with the p-value = 0.4. Figure 4.4a is reproduced from Kulkarni et al. [126], published as
Figure S14 in the Supplementary Information.
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diabetic HbA1c values showed a downward shift in the mean± sd (bootstrapped CI for the

mean) from 86.3±23.8 (79,94) at D0 to 60.7±11 (57.5,64) at D8. D0 HbA1c values showed a

wider distribution with the range of 52-150, which reduced to 44-83 after 8 weeks. The con-

comitant changes were noticed in the GSHt distributions. At the beginning at D0, the GSHt

levels had narrow distribution range of 27-585 (nM/ml) with the mean± sd (bootstrapped

CI for the mean) of 124± 121 (90, 163) which shifted upwards to mean± sd (bootstrapped

CI for the mean) of 342± 123 (308, 381) and the wider GSHt range of 122-682 at D8. The

ND GSHt distribution was ahead of D8 with mean ± sd (bootstrapped CI for the mean)

of 657 ± 156 (595, 719) with a wide range of 392-900. The additional information about

the approximately fitted distributions shown in Figure 4.5 is given in the Appendix Section

4.5.5, Table 4.5.

To use a biomarker to monitor disease progression, it should track pathogenesis of the

disease. In other words, it should be able to classify individuals based on the distinct disease

states. We used GSHt levels from above and below 40 age-groups to establish whether, GSHt

levels are sufficient to define diabetic states, along with the GS markers. Our analysis on the

population histograms showed that there is a clear distinction of different diabetic states with

respect to GSHt levels. To establish this demarcation quantitatively, we performed a cluster

analysis on the GSHt values, pooled from ND, D0 and D8 (Figure 4.5 ). Interestingly,

we found that three distinct GSHt clusters emerge out of the analysis corresponding to

the respective diabetic state, namely, 0-220 (nM/ml) correspond to D0; 220-480 (nM/ml)

corresponding to D8 "recovery phase" and 480-1000 (nM/ml), the ND band. Cluster analysis

suggests that GSHt classification follows the diabetic classification based on fasting glucose

ranges and hence GSHt can be used to classify individuals based on their diabetic state. We

speculate that GSHt ranges can be an excellent tracker of diabetes progression.

We also analysed GSHt values in the below 40 age-group. However, due to few data

points in the diabetic group (n=11), the results were not conclusive. Nevertheless, the below

40 age-group cluster analysis is described in Appendix Section 5.6.
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Figure 4.5: Cluster analysis of GSHt values pooled together from ND, D0 and D8, above
40 age group. • : ND (n=23), ◦ : D0 (n=38), M : D8 (n=38). Three distinct classes of GSHt

(nM/ml) emerge out of the cluster analysis: Diabetic phase corresponding to D0 (0-220);
Diabetic recovery phase corresponding D8 (220-480) and non-diabetic phase corresponding
to ND (480-1000). The corresponding histograms represent fitted distributions to HbA1c
and GSHt. The estimated parameter values for the approximately fitted distributions are
given in the Appendix Section 4.5. Figure reproduced from Kulkarni et al. [126], published
as Figure 2 in the paper.

62



4.4 Discussion

In this chapter, we correlated blood GSHt levels with the glycemic marker HbA1c in the

diabetic patients. We explored in detail whether GSHt levels can predict the diabetic status

of an individual, independent of the plasma glucose or HbA1c levels. We performed hierarchi-

cal cluster analysis on GSHt levels pooled from non-diabetic and diabetic at 0 and 8-weeks

time points. We found that following GSHt ranges emerge out of the cluster analysis: (1)

0-220 (nM/ml): poor antioxidant defence associated with the newly diagnosed diabetic state

(2) 220-480 (nM/ml): diabetic recovery phase after antidiabetic treatment and (3) 480-1000

(nM/ml): normoglycemic state of non-diabetics. Interestingly, this GSHt based classifica-

tion matches with the glucose based diabetic classification. In other words, we showed that

GSHt could be used to classify individuals with diabetic status independent of glucose levels.

So far, only plasma glucose and HbA1c have been used to track the progression of diabetes.

Based on our results, we propose that blood GSHt can be used to monitor the diabetes

progression along with glucose.

An important aspect that emerges out of this analysis is how the age of an individual

can be utilised in proposing diabetes diagnosis. We noted two observations regarding age-

dependence and GSHt levels in the study population (see Figure 4.4): (a) GSHt does not

show age-dependence in diabetic conditions (b) Diabetic and non-diabetic GSHt levels differ

significantly. Since, age is an important confounding factor in comparing the OS state of

diabetic and non-diabetic individuals; we need to account for the effect of age on the GSHt

levels for the sake of comparison. There are two possible ways to account for age while

comparing non-diabetic and diabetic GSHt levels. One is doing age-correction collectively

on ND, D0 and D8 GSHt values, using multiple linear regression. However, since the groups

were not age-matched as a part of the study design, this wouldn’t give an exact idea about

age-correction that should be imposed while comparing two groups. Also, we think this

would make an erroneous change in the diabetic GSHt values. Therefore, we preferred age-

matching over age-correction while doing cluster-analysis. We divided both non-diabetic
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and diabetic groups in above and below 40 age-groups for cluster-analysis. Above 40 age-

group shows interesting GSHt ranges as associated with diabetic states. However, below 40

age-group didn’t show GSHt ranges mostly due to lack of enough data points (see Appendix

Section 4.5.6, Figure 4.6). Nevertheless, this analysis demonstrates a possibility that different

clustering schemes would evolve based on the ageing status. Our population study, albeit

with small sample size, calls for the large longitudinal population studies to decipher agewise

GSHt ranges associated with progression of diabetes stages.

We found that glucose control leads to improvement in the β-cell dysfunction but not

insulin sensitivity (see Figure 4.2). HOMA indices make use of fasting glucose and insulin

values to calculate HOMA2-IR and HOMA-%B scores. In our population study, we observed

that fasting insulin values remain almost unchanged over the study period in diabetic pa-

tients (see Figure 4.1b). Therefore, changes in HOMA-%B can be mostly attributed to the

reduction in the fasting glucose values and not insulin levels. On the other hand, HOMA2-

IR scores remain unchanged in diabetic patients. One reason might be the action of drugs

used for diabetes treatment. Almost 60% of the diabetic patients were given gliptins to

control blood glucose. Gliptins typically act through altering gluconeogenesis in the liver

and improving insulin secretion in the pancreas. We infer that the reduction in the plasma

glucose levels would be mostly due to altered liver glucose output, and there may not be

substantial contribution from the changes in the IR. We also noticed that improvement in

the HOMA-%B scores was found to be positively correlated with GSHt levels (see Figure

4.3b). Whether, enhancement in HOMA-%B and GSHt levels are two independent effects

of the glucose control or OS causally influences HOMA-%B scores is not clear. However,

GSH infusion studies in diabetics and also in non-diabetics showed an overall improvement

in the glucose homoeostasis and insulin secretion Paolisso et al. [122]; De Mattia et al. [123];

Marfella et al. [124]). Hence, plausibility that OS is a causal link through which glucose

control improves diabetic status may not be denied.

The systematic increase in the erythrocyteGSHt levels corresponding to reduced glycemic

load indirectly suggests that GSH synthesis capacity is still retained in diabetic patients. For
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instance, Whillier et al. used diabetic RBCs to show that activity of the enzyme GSH syn-

thetase is retained in the diabetic state. This would have a major implication from the

clinical perspective [121]. Reducing glycemic load is one way to improve GSH turnover.

Another way would be supplementation of amino acids essential for GSH synthesis, which

would aid in reducing DC rate.

Our study speculates that the GSHt ranges could be a useful way to define on an average

how much OS control needs to be enforced for controlling diabetes progression. Further,

tracking GSHt as a marker of OS might be useful to account for age-dependent metabolic

changes in the diabetes management.

4.5 Appendix

4.5.1 Anthropomorphic characteristics of the non-diabetic subjects and

diabetic patients

In the non-diabetic group, two subjects were removed: Case 14 developed diabetes during

the study period and Case 16 was removed due to missing data. Five diabetic patients were

removed due to missing data points either in glucose and GSHt (Cases 5,8,53) or BMI (Cases

42,48). Anthropomorphic characteristics of 48 non-diabetic subjects and 49 diabetic patients

are given in the Table 4.1.

Characteristic Non-diabetic Diabetic

Gender Female 23 22
Male 25 27

Age Mean ± Std. Dev. 32.8 ± 11.78 47.8 ± 10.5
Range 22-64 29-76

BMI Mean ± Std. Dev. 23.75 ± 3.2 26.0 ± 3.6
Range 16.8-33.3 20.3-41.6

Table 4.1: Summary of anthropomorphic characteristics: gender,age and BMI of study
subjects. Table 4.1 is reproduced from Kulkarni et al. [126], published as Table S1 in the
Supplementary Information.
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4.5.2 Details of the antidiabetic drug treatment given to diabetic patients

Details of the antidiabetic medication given to 48 diabetic patients over the period of 8-weeks

are given in the Table 4.2.

Drug treatment Number of diabetics
DPP-4 inhibitor 28

Biguanide 10
Biguanide and sulphonamides 10

Table 4.2: Summary of the antidiabetic drug treatment. Out of 48 diabetics, 58% received
DPP-4 inhibitor or gliptin treatment, 21% were given biguanide drug treatment and remain-
ing 21% were kept on combination of biguanides and sulphonamides. Table 4.2 is reproduced
from Kulkarni et al. [126], published as Table S2 in the Supplementary Information.

4.5.3 Details of the calculation of HOMA2-IR and HOMA-%B scores

Insulin sensitivity is defined as the whole-body glucose uptake rate in the presence of insulin.

Defronzo et al. [40], developed a method in 1979 to measure insulin sensitivity. This method

is called as “glucose-clamp” method. An artificial hyperinsulinemic condition is maintained

in the study subject and glucose is infused so as to retain particular plasma glucose level in the

blood. Insulin sensitivity is defined by the glucose infusion rate which is required to maintain

particular plasma glucose levels in the blood. For example, if a person is insulin resistant, the

whole body glucose uptake rate would be reduced. Therefore, lower glucose infusion rates will

be required to maintain desired plasma glucose levels, contrary to a person who is relatively

less insulin resistant. This method is considered as the “Gold-standard”for measurement of

insulin sensitivity. However, it is labour-intensive and tedious to put into practice, especially

for large clinical trials. Therefore, several surrogate insulin sensitivity indices were developed

which make use of fasting plasma glucose and insulin values to predict insulin resistance in

the body (Muniyappa et al. [129]). Of the several surrogate indices, HOMA indices are

popularly used in the clinical trials. They are found to be highly correlated with the results

of glucose clamp method (Matthews et al. [130]; Levy et al. [131]; Bonora et al. [132]).

HOMA2-IR is a surrogate index for whole body insulin sensitivity and HOMA-%B is used
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to predict β-cell functionality.

HOMA (now designated HOMA2-IR) was originally a simple formula that was a product

of the two quantities fasting plasma glucose and fasting plasma insulin given by [133],

HOMA = FPG× FPI
405 , (4.1)

where FPG is expressed in mg/dL and FPI in mU/L.

Levy et al. proposed a modified version of HOMA, for which an online HOMA2-IR and

HOMA-%B calculator is available on the University of Oxford, Clinical Trial Unit webpage

[131]. We used this online HOMA2-IR and HOMA-%B calculator to obtain HOMA scores of

study subjects and used the as surrogate measures of insulin sensitivity and β-cell dysfunction

in our analysis.

4.5.4 Multiple linear regression of GSHt dependence on Age and BMI in

above-40 and below-40 age groups

Non-diabetic subjects and diabetic patients were divided into two age-groups: above and

below age 40. Multiple linear regression was performed to assess within group age and BMI

dependence on GSHt levels in non-diabetics as well as diabetic group.

We observed that within the above-40 age group, GSHt was not influenced by age or

BMI (Table 4.3). However, age-dependence was observed in non-diabetic subjects below-40

age group (Table 4.4). Therefore, age and BMI can be removed as confounding factors while

interpreting cluster analysis results for above-40 age group, but not for below-40 age group.

4.5.5 Additional statistical details pertaining to Figure 4.5.

Table 4.5 gives details of the fitted distributions along with mean±sd values obtained for

fitted curves for GSHt and HbA1c histograms in the Figure 4.5. Each populations were

approximately fitted either to a normal or log-normal distribution as indicated. Parameters

of the normal and log-normal distributions (mean and standard deviation) were obtained in

MATLAB using the functions normfit() and lognfit(), respectively. The Shapiro-Wilk test

67



Non-diabetics
Predictor variable Coefficient p-value

Intercept 1021 0.122
BMI 10.47 0.58
Age -12.5 0.18

Diabetics
Predictor variable Coefficient p-value

Intercept 111.5 0.6
BMI -3.76 0.62
Age 2.16 0.34

Table 4.3: Multiple linear regression of 0-week GSHt with Age and BMI, in non-diabetics
(n=23) and diabetics (n=38) above age 40. Both age and BMI are not significant predictors
of GSHt within non-diabetic and diabetic groups, as shown by corresponding p-values. Table
4.3 is reproduced from Kulkarni et al. [126], published as Table S3 in the Supplementary
Information.

for normality and q-q plots were used to confirm the normality. The distributions given

are approximations, standard Student’s t-test was used for the comparative purpose and

bootstrapped CI intervals were provided wherever required.

Cluster analysis was performed as described in the statistical methods section 4.2.3.

Table 4.6 shows distribution of ND, D0 and D8 percentages observed in each cluster. In

cluster 1: 22% of the values correspond to D0, 71% correspond to D8 and remaining 8%

correspond to ND. Cluster 2 contains 13% of the GSHt values corresponding to D8 and 34%

corresponding to D0, but there are no ND values. Cluster 3 comprised of 78% ND, 3% D0

and 16% of D8.

4.5.6 Cluster analysis results of GSHt values for diabetics and non-diabetics

below age 40

We performed a heirarchical cluster-analysis on GSHt values pooled from ND, D0 and D8

in below age 40 (Figure 4.6).

Table 4.7 shows the mean± sd of GSHt and HbA1c of each of the populations, diabetic

and non-diabetic, at 0 and 8-weeks, below 40 age-group. Each population was fitted either

to a normal or log-normal distribution as indicated. The Shapiro-Wilk test for normality
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Figure 4.6: Cluster analysis of GSHt values pooled together from non-diabetics and dia-
betics at 0 and 8-weeks, below age 40. • : non-diabetics 0 and 8-weeks (n=72), ◦ : diabetics
0-week (n=11), M : diabetics 8-weeks (n=11). Three clusters emerged out of the cluster
analysis. Unlike the cluster analysis for the age group above 40, below 40 GSHt values do
not show separation within diabetic groups at 0 and 8-weeks. However, non-diabetic be-
low 40 age group is separated into two clusters. Figure 4.6 is reproduced from Kulkarni et
al., Supplementary Information [126], earlier published as Figure S1 in the Supplementary
Information.
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Diabetics
Predictor variable Coefficient p-value

Intercept 111.5 0.6
BMI -3.76 0.62
Age 2.16 0.34

Non-diabetics
Predictor variable Coefficient p-value

Intercept 1779 0.001
BMI 18.3 0.29
Age -47.1 0.009

Table 4.4: Multiple linear regression of 0-week GSHt with age and BMI, in non-diabetics
(n=36) and diabetics (n=11) below age 40. In both groups, BMI is not significant predic-
tor of GSHt . However, age predicts GSHt in non-diabetics, but not in diabetics. Table
4.1 is reproduced from Kulkarni et al. [126], published as Table S4 in the Supplementary
Information.

and q-q plots were used to confirm the normality. Parameters of the normal and log-normal

distributions (mean and standard deviation) are obtained in MATLAB using the functions

normfit() and lognfit(), respectively.

Table 4.8 shows statistics of a hierarchical cluster analysis performed on the below 40

age-group non-diabetic and diabetic GSHt values pooled from 0 and 8-weeks. Euclidean

distance measure was used to produce the distance matrix and Ward’s method was used to

perform hierarchical clustering. In cluster 1, 60% of the values correspond to non-diabetics,

9% correspond to 8-week diabetics but no 0-week diabetics. Cluster 2 corresponds to only

30% of the all non-diabetics. Cluster 3 contains 10% correspond to 0-week diabetics, 91%

diabetics at 8-weeks and 78% of the non-diabetics.
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Fitted distribution Mean Standard deviation
GSHt (nmol/ml)

Non diabetic Log-normal 620.9 157.6
Diabetic 0 week Log-normal 121.0 108.9
Diabetic 8 weeks Normal 342.4 123

HbA1c (mmol/mol)
Non diabetic Log-normal 36.8 4

Diabetic 0 week Normal 86.3 23.8
Diabetic 8 weeks Normal 60.7 10.9

Table 4.5: Mean and standard deviation values corresponding to normal or log-normal
probability density curves fitted to GSHt and HbA1c levels of non-diabetics and diabetics
shown in the Figure 4.5. Table 4.5 is reproduced from Kulkarni et al. [126], published as
Table S5 in the Supplementary Information.

ND(0 and 8-weeks) D0 D8
Cluster 1 5 3 27
Cluster 2 0 34 5
Cluster 3 18 1 6

Table 4.6: A hierarchical cluster analysis performed on GSHt values of non-diabetics
(n=23) , diabetics at 0 week (n=38) and diabetics at 8 weeks (n=38) showed 3 clusters
emerging from the data. For instance, cluster 1 is comprised of 3 diabetics at 0-week, 27
diabetics from 8-weeks and 5 non-diabetic subjects. Table 4.6 is reproduced from Kulkarni
et al. [126], published as Table S6 in the Supplementary Information.

Fitted distribution Mean Standard deviation
GSHt (nmol/ml)

Non diabetic Normal 922.0 317.0
Diabetic 0 week Log-normal 195.0 166.0
Diabetic 8 weeks Normal 290.0 158.0

HbA1c (mmol/mol)
Non diabetic Normal 35.8 4.1

Diabetic 0 week Normal 73.0 15.9
Diabetic 8 weeks Normal 60.0 12.0

Table 4.7: Mean and standard deviation values corresponding to normal or log-normal
probability density curves fitted to GSHt and HbA1c levels of non-diabetics and diabetics
below age 40. Table 4.7 is reproduced from Kulkarni et al. [126], published as Table S7 in
the Supplementary Information.

71



Non-diabetics (0 and 8 weeks) Diabetics (0 week) Diabetics (8 weeks)
Cluster 1 43 0 1
Cluster 2 22 0 0
Cluster 3 7 11 10

Table 4.8: A hierarchical cluster analysis performed on GSHt values of non-diabetics
(n=72) 0 and 8 weeks together, diabetics at 0 week (n=11) and diabetics at 8 weeks (n=11)
showed 3 clusters emerging from the data. Table 4.8 is reproduced from Kulkarni et al. [126],
published as Table S8 in the Supplementary Information.
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Chapter 5

A physiological model of the OS

response to GS in diabetic patients

5.1 Introduction

Mitochondrial overproduction of ROS is a unifyingmechanism of the hyperglycemia-mediated

development of PDCs (see Chapter 2, Section 2.3). A schematic representation of the role of

OS in the development of PDCs is depicted in Figure 5.1. The theory suggests a plausible

approach to reduce progression of diabetes: controlling OS internally using antioxidants is

to reduce PDCs.

Figure 5.1: A schematic representation of OS as a central causal link in the hyperglycemia-
mediated development of PDCs. Therefore, direct intervention of OS using antioxidant
molecules is expected to reduce the rate of diabetic complications.

Several nonenzymatic systemic antioxidant molecules have been used to establish the role

of OS in the development of diabetic vascular disorders. These antioxidant molecules include

fat soluble vitamins C, E and A, vitamins of B-complex group (B1, B2, B6 and B12), trace
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elements like copper, zinc and selenium, α-lipoic acid, co-enzyme Q10 (CoQ10), carotenoids,

and cofactors like folic acid, uric acid, albumin, N-acetylcysteine and glutathione. Of these,

vitamin E, C and α-lipoic acid are the most sought after antioxidant molecules for diabetes

treatment. Vitamin C, E and α-lipoic supplementation in diabetic rats has shown to reduce

or prevent rate of development of retinopathy or retinal abnormalities (Di Leo et al. [134];

Kowluru et al. [135]), nephropathies (Kedziora-Kornatowska et al. [136]), neuropathy (Jo-

hansen et al. [30]) and overall improvement in OS. α-lipoic acid has been especially proven

to be useful in the treatment of diabetic animal models of neuropathy and nephropathy

(Oyenihi et al. [137]; Shay et al. [138]).

The utility of antioxidants in clinical trials is inconclusive

Results of these animal studies when translated into clinical trials have, however, not

turned out to be conclusive (Golbidi et al. [139]). Some of the trials involving a small number

of patients and short study duration showed favourable outcomes. For example, combined

therapy of Vitamin C and E supplementation has been shown to reduce urinary albumin

excretion rate (Gaede et al. [140]). Vitamin E dose of 1000 IU/day showed promising results

to normalise retinal and renal functions in diabetic patients (Bursell et al. [141]). A beneficial

effect of the oral antioxidant Raxofelast was observed in diabetic patients in which it improved

OS status measured in terms of lipid peroxidation marker: 8-epi-PGF2α (Chowienczyk et

al. [142]). However, large clinical trials conducted based on small studies have failed to show

a decisive role of antioxidants. The Heart Outcome Prevention Evaluation (HOPE) study,

carried out on 3,654 diabetic patients for on an average of 4.5 years, showed none or neutral

effect of vitamin E supplementation on cardiovascular disorders and nephropathies (Lonn et

al. [98]). Millen et al. Another large-scale study showed that there is no significant association

between vitamin E supplementation and diabetic vascular complications (Millen et al. [143]).

Among other antioxidants, use of α-lipoic acid as an antioxidant has shown some promise

in the treatment of diabetic nephropathies and is currently under investigation (Poh and

Goh [144]; Hector et al. [145]). These clinical studies suggest that although experimentally

OS has been implicated in the diabetic pathophysiology, and theoretically OS can be looked
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like a lucrative target for controlling diabetes, its utility is restricted by the lack of

quantitation, which would help in designing how much and how long OS should

be controlled with respect to GS.

Since OS may not be regulated effectively using antioxidants, instead of con-

trolling OS internally, we propose to monitor OS along with GS, as diabetes

treatment progresses (see Figure 5.2). Hyperglycemia is known to produce enhanced

levels of ROS in PDCs. Therefore, it is expected that controlling hyperglycemia would re-

lieve OS, and since OS is causally involved in the development of PDCs, controlling OS

will reduce the rate of PDCs. Thus, if variation in OS with respect to changes in the GS

can be captured quantitatively, this could help us in predicting optimal glucose control in a

personalised manner. An optimal glucose control would be that by which OS is maximally

controlled, and therefore would reduce development of PDCs.

Figure 5.2: Monitoring OS status of an individual to define personalised glucose targets
in diabetic patients. An optimal glucose control would be that by which OS is maximally
controlled, and therefore would reduce development of PDCs.

The present chapter describes a minimal mathematical model of glutathione-glucose phys-

iology to capture the non-linear inverse relationship between OS and GS for an individual.

A minimal model is characterised by three parameters, namely, Gtot: the maximal GSHt

pool achieved by a diabetic patient when glucose is lowered to the normoglycemic range; v:

glucose threshold at which GSHt is half-maximal and k: the slope determining parameter

of the curve (see Section 5.2 for logic and assumptions of the model and Appendix Section

5.5.1 for the model derivation). The model is fitted to four GSH-glucose pairs: 0, 4 and 8

weeks GSH-glucose values of an individual diabetic patient and an age-adjusted nondiabetic

GSH-glucose pair computed for a given diabetic patient (see Section 5.3 for the calculations).
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Therefore, the modelling process implicitly incorporates age of an individual. The parame-

ter values vary for each diabetic patient, thereby capturing individual variation. We discuss

the robustness of the curve fitting procedure accounting for the daily variation in GSH and

glucose values. Finally, the utility of the model in predicting personalised glucose targets is

illustrated by two case studies.

This work is previously published as Kulkarni et al. [126]. The figures and tables used

in this chapter are reproduced under the creative commons attribution license.

5.2 A minimal mathematical model

5.2.1 Logic and assumptions of the model

Human clinical trials consistently show that hyperglycemia is associated with reduction in the

blood GSH levels. As described in Chapter 2, we support this observation by showing that

GSH levels are inversely related to HbA1c levels in diabetic patients kept on an antidiabetic

treatment. However, the essence of this argument is deeper than showing a qualitative inverse

relation between the OS-GS axis; for instance what would be the quantitative relationship

between OS and GS? Can we extrapolate from the existing observation and predict the

functional relationship between the two variables? To address this question in depth, we

argued in the following manner: Before therapy GSHt levels in the newly-diagnosed diabetic

patients were found to lie in the narrow band of 0-220 (nM/ml). Since diabetic patients

were not exposed to any anti-diabetic treatment before the clinical trial, the 0-week GSHt

values can be considered as the lowest possible steady-state levels achieved due to prolonged

uncontrolled hyperglycemia. Therefore, we inferred that there would be lower asymptotic

GSHt levels corresponding to the hyperglycemic end. On the other hand, there would be

a physiological upper asymptote above which GSHt levels may not rise in a normoglycemic

state. Therefore, we proposed that GSHt levels as a function of GS of an individual would

have a nonlinear, saturating, reversible relationship, at least in the initial phase of

diabetic recovery.
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A minimal model is proposed based on GSH-glucose physiology to capture the inverse

relationship between the OS and GS. Figure 5.3 portrays a simple schematic of GSH-glucose

biochemistry. Excessive glucose metabolism generates superoxide radicals via TCA cycle in

the mitochondrial electron transport chain. Excess superoxide radicals get converted into

hydrogen peroxide (H2O2), after reacting with water molecule. Inside the cell, glutathione

exists as reduced (GSH) and oxidised (GSSG) forms. GSH scavenges H2O2 generated from

the energy metabolism, and produces GSSG and water molecule in the enzymatic process.

This reaction is catalysed by the enzyme glutathione peroxidase (GPx). In turn, glutathione

reductase (GR) converts GSSG back into the GSH utilising reducing equivalent NADPH.

Following assumptions were made while putting up the minimal model:

Figure 5.3: A simple underlying physiology of glutathione-glucose metabolism. ROS pro-
duced due to glucose metabolism is scavenged by reduced form of GSH and it gets converted
into GSSG via the enzyme (glutathione peroxidase) GPx. GSH pool is replenished by the
enzymatic action of glutathione reductase (GR). This figure is reproduced from Kulkarni et
al. [126], published as Figure 1 in the paper.

1. Total free glutathione GSHt, made up of GSH + GSSG, is conserved over the study

period.

2. Plasma glucose would act as a proxy for the hydrogen peroxide, as it would represent
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OS state of an individual

3. Glutathione peroxidase reaction would follow a Michaelis-Menten kinetics, with GSH

and glucose as substrates

4. The conversion of GSSG to GSH by GR would have Michaelis-Menten kinetics, but it

is assumed that NADPH, another substrate of the enzyme does not limit the rate of

the reaction.

5. Almost more than 90% of the erythrocyte GSHt pool is comprised of reduced form

of the glutathione. Therefore, GSH is used as an approximation of measured GSHt

values in diabetic patients.

The rate of change of reduced form of the glutathione (GSH) is given by the Equ.(5.1).

The net change in the GSH pool is due to the rate at which GSH utilised due to glucose

metabolism (as a proxy for OS state inside the erythrocyte) and the rate at which GSH is

produced from the oxidised form of the glutathione (GSSG). The detailed derivation and

mathematical aspects of the Equ.(5.1) are provided in the Appendix section 5.5.1.

d[GSH]b
dt

= v(Gtot − [GSH])
k + (Gtot − [GSH]) −

[Glucose][GSH]
k + [GSH] . (5.1)

The steady-state expression between GSH and glucose was derived by setting Equ.(5.1) =

0. The steady-state expression is a Goldbeter-Koshland (GK) functional form with nonlinear

decreasing saturating relationship given by the Equ.(5.2). (see Appendix section 5.5.1 for
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detailed derivation of the GK functional form).

GSH(Glu) =

−(v ·Gtot − v · k −Glu · k −Gtot ·Glu)−

√√√√√√√√√√√√√

v2 ·Gtot2 + v2 · k2 + k2 ·Glu2

+Glu2 ·Gtot2 + 2 ·Glu2 · k ·Gtot

−2 ·Gtot2 ·Glu · v + 2 · k2 · v ·Glu

+2 · v2 · k ·Gtot − 4 ·Glu ·Gtot · v · k
2 · (Glu− v) .

(5.2)

The Equ.(5.2) is characterised by three parameters: Gtot: the maximal total GSH pool

for a diabetic patient; v: the threshold glucose value for which GSH is half-maximal and k:

the slope parameter of the curve. The GK functional form was used to obtain individual

diabetic fits.

5.2.2 Curve fitting procedure

Four GSH-glucose data points were used for each diabetic patient to obtain the fit: 0, 4 and 8-

weeks GSH-glucose pairs and fourth non-diabetic GSH-glucose data point adjusted according

to the age of a diabetic individual. In Chapter 2, we showed that GSH shows age-dependence

in non-diabetic individuals (see Section 3.3, Figure 5a, Chapter 2). The regression between

non-diabetic GSH against age was used to obtain age-adjusted non-diabetic GSH pool as the

fourth point (see Equ.(5.3) for the reference). Age-adjusted GSH value was paired with the

mean non-diabetic glucose value of 4.8 mM/L.

GSH = 1267− 12.5×Age (5.3)

GSH-glucose data points and GK functional form were provided as inputs to the optim()

function in statistical software package R. Internally, Nelder-Mead algorithm was used to

optimise the function and obtain parameters for each fitted OS-GS trajectory. The plotting

of the curves and statistical analysis was performed in R.
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5.3 Results

5.3.1 Minimal model captures unique GSHt-glucose dose-response for each

diabetic patient

We used steady-state GK functional form to fit diabetic GSHt-glucose dose-response curves

(Equ.5.2). Age-dependence on the OS is implicitly defined in the curve fitting procedure.

In that, the asymptotic maximal GSHt level for each diabetic patient would correspond to

age-matched non-diabetic GSHt value. We could fit 34 out of 49 diabetic dose-responses

(Figure 5.4, without age-grouping). Above and below 40 age-group curves are provided

separately for the reference in the Appendix section 5.5. The grey lines on the background

show individual diabetic fits. The individualised diabetic curves along with parameter values

are provided in the Appendix section 5.5.3. The solid black line is the population-averaged

curve (PAC) computed over 34 fitted lines. Each curve is characterised by three parameter

values, namely, Gtot: The maximal GSHt pool for each diabetic individual; v: the threshold

glucose value corresponding to half-maximal GSHt levels and k: the slope parameter which

would define steepness of the curve.

The PAC is parameterized by mean±sd of Gtot: 728 ± 128, v:7.5±1.1 and k: 43.7±40.

The GSHt shows a biphasic graded response to glucose therapy: hyperglycemia is associated

with lower GSHt levels, transiting to normoglycemic regimen associated with maximal GSHt

values. Hyperglycemia to normoglycemia shift corresponds with a switch in the OS status at

an inflection point v (7.5 mM L) -the threshold glucose level at which GSHt is half-maximal,

denoted by the black dot on the PAC. The red portion of the black curve is the steepest

region of the curve. It is a transition phase between hyperglycemia and normoglycemia.

We call it as an “inflection region". The interesting feature emerged out of curve fitting is

that the “pre-diabetic" zone as defined ADA (5.5-6.9 mmol/L) and WHO (6.1-6.9 mmol/L)

overlaps with the upper portion of the inflection region. The individuals having pre-diabetic

glucose values have a higher risk of developing diabetes and associated comorbodities. We

infer that corresponding GSH values in this zone are deteriorated from the healthy GSH
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Figure 5.4: The GSHt response to glycemic therapy is unique for each diabetic patient.
The thin grey lines in the background are the individual dose-responses of diabetic patients
captured using minimal model (n=34 out of 49). The bold black curve is the population-
averaged profile taken over 34 curves. The black dot on the curve is the “inflection point”
(glucose threshold v = 7.5mM/L), at which GSHt is half-maximal. The Gtot for the average
profile is 728 nM/ml and characterised by a slope parameter k = 43.7. The transition phase
between hyperglycemia and normoglycemia is marked by a red portion, called as “inflection
region" (roughly about v

4 around the inflection point). Interesting feature of the curve is that
“impaired fasting glucose” (IFG) or “pre-diabetic” glucose range defined by ADA (5.5-6.9
mmol/L) and WHO (6.1-6.9 mmol/L), overlay the upper portion of the inflection region.
Also, the after therapy 8-weeks GSHt levels (220-480 nM/ml) occupy the lower portion of
the inflection region. This figure is reproduced from Kulkarni et al. [126], published as Figure
3 in the paper.
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levels. Therefore we reinterpret “pre-diabetes" in terms of OS as GSH range between maximal

and half-maximal GSH levels. We postulate that individuals having GSH values in this zone

would have a higher risk of developing full-blown diabetes. This has important implication for

the personalised diabetes therapy. Since OS may not be controlled precisely using antioxidant

treatment; we propose to control glucose well below v, the inflection point, so that diabetic

patient would get maximum benefit out of diabetes treatment in terms of improvement of OS

status.

On the other hand, we also found that 8-weeks diabetic GSHt levels lie in the lower

portion of the inflection zone. According to our hypothesis, the optimal glucose control would

be when their GSHt levels improve enough to lie in the “pre-diabetes" region. Individual

diabetic curves show considerable deviation from the population curve and have unique

parameter values which can be utilised in the personalisation of diabetes treatment.

5.3.2 Robustness of the curve fitting procedure

We fitted individual diabetic GSHt-glucose dose-responses using minimal model. However, it

is hard to determine whether the fitted trajectory would depict the actual GS-OS relationship.

In other words, it is important to verify whether small perturbations around the GSHt-

glucose time points affect the curve fitting procedure. For instance, Blanco et al. [146]

showed that there is around 15% diurnal variation in the blood GSHt levels. Similarly,

single time point reading of plasma glucose may not reflect an average change in the GS.

Two approaches were used to account for these variations in the GSHt and glucose levels.

HbA1c converted glucose values

Selvin et al. [147] in 2010 performed a clinical trial on diabetic patients and showed that

baseline HbA1c is associated with development of diabetes and further PDCs. HbA1c reflects

net glycemic load in the blood over the period of past three months and not affected due to

fluctuations in the daily glucose levels. Therefore, HbA1c is considered as a stable marker

of GS, contrary to plasma glucose which varies daily depending upon food intake. We used
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Figure 5.5: A linear regression between HbA1c against plasma glucose. Fasting glucose and
HbA1c values taken from • : Non-diabetic (n=98, pooled from 0 and 8-weeks); ◦: Diabetics
0-week (n=51); 2: Diabetics 4-weeks (n=51); 4: Diabetics 8-weeks (n=51). This equation
is used to convert HbA1c into a glucose value for model fitting. This figure is reproduced
from Kulkarni et al. [126], published as Figure S28 in the supplementary information.

HbA1c converted glucose values to obtain the OS-GS fits in diabetic patients. A linear

regression (Figure 5.5) between HbA1c against glucose was used to derive the conversion

equation (Equ.5.4).

Glucose = 20.5HbA1c − 22.3 (5.4)

For each diabetic patient, HbA1c values at 0, 4 and 8-weeks were converted into glucose

and utilised in the curve fitting procedure.

Simulations with variations around GSHt levels

To account for the standard error around the GSHt time point, we simulated curve fitting

procedure considering a diurnal variation in GSH levels. The diurnal variation in GSH

and GSSG is estimated to be approximately 15-30 % (Blanco et al. [146]; Chakravarty and

Rizvi [148]). Briefly, a random number generator was used to generate a new GSHt value
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Figure 5.6: Distributions of v, k and Gtot for Case 13 assuming an error in the measured
GSH. GSH measurements at the 0, 4 and 8-weeks values were randomly varied up to 15%;
1000 curve fitting procedures were done and 1000 parameter datasets were generated. The
mean ± sd for v, k and Gtot across these 1000 computations are 7.8 ± 0.1, 37.7 ± 5.6 and
829±9, respectively. This figure is reproduced from Kulkarni et al. [126], published as Figure
S29b in the supplementary information.

considering 15-30% variation around the given GSH value. Parameter values were obtained

by fitting the model to the simulated GSH time points. Thousand such parameter sets were

generated using simulated curve fitting procedure. We describe two case studies; with 15%

(Case 13) and 30% (Case 15) variation around the measured GSHt value. Figures 5.7 and

5.6 show simulated distributions of the parameters k, v, and Gtot obtained for Case 13 and

Case 15, respectively.

We observed that in the Case 13 with 15% variation in the GSH values, the predicted

glucose threshold v wouldn’t vary more than 1.2%. In fact, even with 30% variation in
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Figure 5.7: Distributions of v, k and Gtot for Case 15 assuming an error in the measured
GSH. GSH measurements at the 0, 4 and 8-weeks values were randomly varied up to 30%;
1000 curve fitting procedures were done and 1000 datasets were generated. The mean± sd
for v, k and Gtot across these 1000 computations are 6.6 ± 0.3, 95.3 ± 16.7 and 938 ± 46,
respectively. This figure is reproduced from Kulkarni et al. [126], published as Figure S29a
in the supplementary information.

the Case 15, there would be only 4.5% variation in the predicted glucose threshold values.

Therefore, the curve fitting is robust and predicted glucose control levels wouldn’t be affected

by GSH variation. Similarly, predicted Gtot pools show less than 5% variation in both the

cases (1% for Case 13 and 4.9% for Case 15). The slope parameter k shows a variation of

an order of magnitude of ten higher than v and Gtot (14.8% for Case 13 and 17% for Case

15). This may slightly change the recovery trajectory but not the predicted glucose target.

Hence, we conclude that the overall curve-fitting procedure is robust towards daily variation

in GSH levels.
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Figure 5.8: GSH-glucose dose-responses are unique for each diabetic individual. Left panel
compares two cases (Cases 13 and 44) with similar k’s but with distinct v’s. On the other
hand, right panel compares two cases (Cases 2 and 12) having same v’s but differ in their slope
parameter value, k. All the four cases have different predicted glucose targets as discussed in
the Section 5.3.3. This figure is reproduced from Kulkarni et al. [126], published as Figure
4 in the paper.

5.3.3 Personalised glucose targets: clinical perspective

Individual GSH-glucose dose-responses differ for each diabetic patient (see grey lines in the

background of Figure 5.4). We interpret personalised glucose targets in terms of the OS in

the following manner: GSH levels along with glycemic markers would be monitored for two

months at the intervals of 0, 4, and 8 weeks. An algorithm given by minimal model would

be used to obtain the dose-response curve for a diabetic patient, which is characterised by

a threshold glucose parameter v. We hypothesise that the optimal glucose target would

be to lower glucose well below v, such that a diabetic patient would obtain a maximal

benefit in terms of improved GSH pools. Furthermore, we speculate that monitoring OS

along with the GS would help in predicting better glucose targets, for instance, whether

glucose therapy should be intensified or lowered depending upon whether maximal GSH

pool is attained or not. We illustrate the clinical implications of this by considering two

cases studies; particularly comparing patients having similar k’s but different v’s (left panel

of Figure 5.8) and patients having same threshold glucose value v’s but differ in their slope

parameters k’s (right panel of the Figure 5.8).
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Cases 13 and 44 in the left panel of Figure 5.8 have similar slopes k but differ in their

threshold glucose values, v. Also, Case 44 has lowered Gtot = 609 value compared with

Case 13 Gtot= 828. Accordingly, Case 44 diabetic would need to reduce glucose just below

v=8.9mM/L to reach maximal GSH pools. But Case 13 patient would need to take glucose

therapy little longer to reduce the glucose below v =7.8 mM/L. We note that in both these

Cases 13 and 44, the optimal glucose targets are much higher than imposed standard glucose

control regimen (HbA1c <6.5%), and much flexible glucose control is possible. On the

contrary to left panel, the right panel shows Cases 2 and 12 with same glucose threshold v =

7.2 but differ in their slope parameter value, k. Therefore, we conclude that despite having

same v values, Case 12 slowly reaches to maximal GSH pool (k=25.5) and thus would need

longer glucose control compared to Case 2 which has steeper trajectory with k=6.3.

To sum up, OS-GS trajectory is dynamically regulated by a combination of slope param-

eter, maximal GSH pool and threshold glucose value; and accordingly, glucose targets can

be defined in a personalised manner.

5.4 Discussion

In this chapter, we discussed a minimal mathematical model to obtain individualised OS-GS

trajectories in diabetic patients. We could fit around 70% (34 out of 49 diabetic patients)

GSHt-glucose dose-responses. Individual OS-GS trajectories are provided in the Appendix

Section 5.5.3). The minimal model captured variations in individual responses to glucose

control treatment. We showed that these individual responses could be characterised by

three parameters, namely, Gtot: maximal GSHt pools inside the cells; v: threshold glucose

value when GSHt is half-maximal; k: slope parameter of the curve. We proposed that this

feature be used in clinical setting to predict optimal glucose target in personalised manner

(see Figure 5.8). We speculate that threshold glucose value (v) is the optimal

glucose control for a diabetic patient. A stepwise algorithm based on the minimal

model which can be implemented in a clinical setup is provided in Figure 5.9.

We found that in around 30% of the patient cases, meaningful fits could not be obtained.
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Algorithm for predicting personalised glucose targets using the
GSH-glucose minimal model

Step 1 : Monitor diabetic patients for 2 months and measure their plasma HbA1c, plasma 
              Glucose and total glutathione levels at the intervals of 0, 4 and 8 weeks.

Step 2 : Obtain HbA1c converted glucose values, as explained in Section 5.3.2, 
              using Eq. 5.4.

Step 3 : Plot the graph of GSH against converted glucose values. The age-adjusted 
             GSH-glucose pair would be obtained using Eq. 5.3 (Section 5.2.2).

Step 4 : Use the steady-state Goldbeter-Koshland functional form (Section 5.2.1, Eq. 5.2) 
              to obtain the parameters of the models, namely, v (the threshold glucose value ), 
              k (the slope parameter) and Gtot (maximal GSH pool).

Step 5 : The prediction of the model is controlling glucose levels well below the threshold 
             glucose value (v) is the personalised glucose target for that patient. 

Figure 5.9: A stepwise algorithm based on the GSHt -glucose minimal model to obtain the
personalised glucose target for a diabetic patient.
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In these patients, GSHt levels have not shown concomitant changes with respect to glucose

control, and therefore, fitting procedure failed to obtain the fit. (for example see Case 17 in

the panel figure 5.13; Case 21 in the panel figure 5.14; Cases 50-52 in the panel figure 5.19).

There are a couple of interesting cases where the interpretation of the fits would be difficult.

For example, in Case 22 (panel figure 5.14) and Case 28 (panel figure 5.15), the GSH levels by

8-weeks are already higher or near to the age-adjusted nondiabetic GSH levels. In these cases,

curve passed through a single point and predicted glucose threshold values v are relatively

higher. Therefore, our minimal model predictions can be verified and testable in diabetic

patients. However, a shortcoming is the fewer number of time points (n=4) per diabetic

patient used in this population study. This might be a limitation in having better predictive

power in the model. Higher number of data points would also be useful in building complex

models which would be closer to the underlying physiology. Nonetheless, an important

feature of our work is the introduction of a novel strategy to incorporate OS

markers in the diabetes treatment and the predictive power can be improved

by collecting a higher number of time points. We hope that this small longitudinal

clinical trial might turn out to be a starting point for larger clinical trials which would add

confidence in the data interpretation.

Instead of strict glucose regimens, current approaches in the antidiabetic treatments

suggest the need for personalised glucose targets (see Section 2.2.1). In this chapter, we

proposed a simple quantitative algorithm to capture OS-GS trajectory, thereby predicting

personalised glucose targets for type 2 diabetic patients. We emphasise on having optimal

rather than strict or even standard glucose control, based on the OS of an individual. The

flexible glucose control may raise a concern regarding consistently higher glucose levels in

patients over the long time periods. For example, as discussed in the Section 5.3.3, Figure

5.8, the predicted glucose targets might be higher than the standard glucose targets; outside

of the “pre-diabetic” zone. This may cause persistent hyperglycemia and eventually increase

PDCs rate, as suggested by the theory. We argue that, however, maintaining OS well below

threshold glucose v, may be sufficient to relieve the stress and most importantly side-effects of
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the drug therapy can be reduced, especially in the elderly patients. The corollary prediction

would be to maintain “pre-diabetic” OS levels by GSH or amino acid supplementation, to

monitor its effect on long-term development of PDCs.

In our modelling study, we assumed that the GSHt (GSH + GSSG) is conserved over

the study period. However, since almost 90% of the GSHt is made up of GSH, the Eq.

5.2 actually assumed to represent GSHt rather than GSH. The model predicts that when

glycemic stress is low, GSSG pool is high and as glycemic stress is reduced GSSG pool is

reduced and simultaneously GSH pool increases over the study period. This is in contradic-

tion to the fact that at any given instance, most of the GSHt pool is composed of GSH and

less than 10% of the GSSG pool. Therefore, our model doesn’t account for changes in the

GSSG pool and in fact overpredicts the GSSG pool. It also suggests that increases in the

GSH pool (over the study period) is due to complex processes like exporting GSSG out of

the cell and may be processes affecting GSH synthesis which may play an important role in

maintaining erythrocytic GSH pool (Reed et al. [32]; Raftos et al. [33]). We note that despite

the availability of kinetic data on individual enzymes of the GSH metabolism and diabetic

erythrocytes, we do not have a comprehensive model of diabetic GSH-glucose metabolism.

In other words, there is scope to improve the existing minimal model to incorporate complex

interactions and make more meaningful predictions.

In conclusion, we propose that longer time courses of GSH and glucose in diabetic patients

would be useful in building complex models of GSH-glucose metabolism in future. We hope

that our minimal model would be a beginning towards that endeavour.

5.5 Appendix

5.5.1 Derivation of the steady-state solution of the minimal GSH-glucose

model

The minimal model for the antioxidant action of GSH, as described in the Section 5.2,

is to assume a ROS-dependent interconversion between the reduced (GSH) and oxidized
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form (GSSG). This derivation of the GSH-glucose minimal model appears in Kulkarni et

al. [126], published in the supplementary information (Section 5.1). We include it here for

completeness. Taking the simplifying assumption is that cellular ROS is roughly proportional

to the blood glucose concentration, [ROS] = β[Glucose]: using Michaelis-Menten kinetics

for the forward and backward reactions, we have

d[GSH]c
dτ

= v1([Gtot]c − [GSH]c)
k? + ([Gtot]c − [GSH]c)

− v2β[Glucose][GSH]c
k? + [GSH]c

, (5.5)

where [Glucose] is the plasma glucose concentration, [Gtot]c is the maximal value of total

cellular GSH, [GSH]c is cellular [GSH] and [GSSG]c = [Gtot]c− [GSH]c is cellular [GSSG].

v1 and v2 represent maximal enzymatic reaction rates for the enzymes GR and GPx, respec-

tively. Here we have taken the same Michealis-Menten constant, k, for both, forward and

backwards reactions; this simplification is used to avoid overfitting the data. Introducing the

rescaled variables v = v1
v2β

and t = v2βτ , we get

d[GSH]c
dt

= v([Gtot]c − [GSH]c)
k? + ([Gtot]c − [GSH]c)

− [Glucose][GSH]c
k? + [GSH]c

. (5.6)

Notice that the equation Eq. (5.6) is in terms of cytosolic GSH variables. Clinically, however,

the measurements are most readily collected from the blood. We thus have to transform

cytosolic variables to plasma variables. Reed et al. [32] describe a detailed mathematical

model of GSH metabolism; they show that, to first order, plasma GSH varies in proportion

to cellular GSH, that is, [GSH]c ≈ α[GSH]b, where [GSH]b is blood GSH. Moreover, they

demonstrate that this relationship is valid even as OS varies, and it is valid between diabetics

and healthy persons, see Fig. 6 in [32]. Eq. (5.6) can therefore be written in terms of plasma

GSH as

α
d[GSH]b

dt
= v([Gtot]c/α− [GSH]b)
k?/α+ ([Gtot]c/α− [GSH]b)

− [Glucose][GSH]b
k?/α+ [GSH]b

. (5.7)
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Thus the equation for [GSH]b, in terms of the quantities Gtot = [Gtot]c/α and k = k?/α, is

α
d[GSH]b

dt
= v(Gtot − [GSH]b)
k + (Gtot − [GSH]b)

− [Glucose][GSH]b
k + [GSH]b

. (5.8)

Setting
d[GSH]b

dt
= 0, (5.9)

the steady state expression of [GSH]b as it varies with [Glucose] is thus obtained as

v(Gtot −GSH)
k + (Gtot −GSH) −

Glu ·GSH
k +GSH

= 0 (5.10)

where we have dropped the square brackets and subscript for simplicity and abbreviated

[Glucose] as Glu. Thus, we have the following implicit relation between GSH and Glu:

v(Gtot −GSH) · (k +GSH)−Glu ·GSH · (k + (Gtot −GSH)) = 0. (5.11)

By rearranging the terms in Eq. (5.11) we get,

(Glu− v) ·GSH2 + (v ·Gtot − v · k −Glu · k −Gtot ·Glu) ·GSH + k · v ·Gtot = 0. (5.12)

This is a quadratic equation that can be solved for GSH in terms of glucose: its physically

relevant solution is the Golbeter-Koshland formula [149]:

GSH(Glu) =

−(v ·Gtot − v · k −Glu · k −Gtot ·Glu)±

√√√√√√(v ·Gtot − v · k −Glu · k −Gtot ·Glu)2

−4 · k · v ·Gtot(Glu− v)

2 · (Glu− v)
(5.13)
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Or, equivalently, expanding the square term inside the square root we get the following from:

GSH(Glu) =

−(v ·Gtot − v · k −Glu · k −Gtot ·Glu)−

√√√√√√√√√√√√√

v2 ·Gtot2 + v2 · k2 + k2 ·Glu2

+Glu2 ·Gtot2 + 2 ·Glu2 · k ·Gtot

−2 ·Gtot2 ·Glu · v + 2 · k2 · v ·Glu

+2 · v2 · k ·Gtot − 4 ·Glu ·Gtot · v · k
2 · (Glu− v) .

(5.14)

This is the GSH-glucose minimal model that the data is fit to.

Note that the equation is parameterized by the three quantities, v, k and Gtot, that will

vary from individual to another. We have the following physical interpretations of these

parameters:

1. Notice that if we set Glu = 0 in Eq. (5.10), GSH = Gtot satisfies the equation. That

is, Gtot can be interpreted as the maximal value of total cellular GSH at low glucose.

2. Taking Glu = v in Eq. (5.10) we find GSH = Gtot/2. Thus v is the threshold glucose

value for which GSH is half-maximal.

3. Taking logarithms in Eq. (5.10) and differentiating, and taking the limits GSH →

Gtot/2 as Glu→ v, we find that

GSH ′(Glu→ v) = −Gtot8v

(
2 + Gtot

k

)
(5.15)

where the derivative GSH ′ is with respect to Glu. For a given value of Gtot, the larger

the k, the smaller is the slope of the GSH(Gluc) curve at the inflection point. Thus

k can be interpreted as a slope with which the inflection is expressed; in other words,

the rate of recovery. A smaller k implies that the GSH becomes rapidly near-maximal

as Glu crosses below the v threshold.
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5.5.2 GSHt-glucose dose-response curves for above 40 and below 40 age-

groups

GSH-glucose dose-responses for above and below 40 age-groups are presented separately

in the Figures 5.10 and 5.11, respectively. The mean Gtot of above 40 age-group is lower

compared to mean Gtot of below 40 age-group (above 40 mean Gtot = 695 against below 40

mean Gtot = 924). However, there is no much difference with respect to mean v and mean

k between the two groups of the curves. The lower mean Gtot in the above 40 age-group

may be ascribed to lower non-diabetic age-adjusted GSH values used for the curve fitting

procedure. Although, low number of cases (n=5) in below 40 age-group, may not signify this

effect.
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Figure 5.10: GSH-glucose dose-responses for diabetics above-40 age-group (n=29). We
could obtain 29 of 38 dose-responses (thin gray lines) in the above-40 age-group using a
minimal mathematical model. A PAC is shown by a bold black line. The PAC is param-
eterised by a threshold glucose value (black dot), v = 7.5 mmol/L ; Gtot = 695 and k=43.
An inflection regime with an approximate width of one fourth of V (1.87 mmol/L) is marked
in red. The GSH band at 220-480 represents the recovery phase for treated diabetics. The
ADA impaired fasting glucose (IFG) range (5.5-6.9 mmol/L) and WHO IFG range (6.1-6.9
mmol/L) is superimposed for the reference. Interestingly, IFG occupies the upper portion
of the red curve, and 8-weeks patients lie in the lower portion of the red curve. This fig-
ure is reproduced from Kulkarni et al. [126], published as Figure S24 in the supplementary
information.

95



Glucose (mM/L)

G
lu

ta
th

io
n

e
 (

n
M

/m
l)

0

925

1000

1500

0

5
.5

6
.9

7
.4 2
5

ADA

 IFG

WHO

 IFG

Figure 5.11: GSH-glucose dose-responses for diabetics below-40 age-group (n=5). Thin
gray lines show individual GSH-glucose response curves for diabetic patients in below 40
age-group (n= 5 out of 11) along with the PAC (bold black line). The PAC has a glucose
threshold (black dot), v = 7.4 mmol/L; Gtot = 924 and k=48.7. The red portion of the PACF
indicates an inflection regime of width approximately one fourth of V, 1.85 mmol/L. ADA
and WHO IFG-ranges are shown for the reference. This figure is reproduced from Kulkarni
et al. [126], published as Figure S25 in the supplementary information.

5.5.3 Individual diabetic GSHt-glucose dose-response curves

The GK functional form was used to obtain individual diabetic fits as described in the Section

5.2. We could fit 34 out of 49 diabetic cases, which have meaningful physiological parameter

values. Figures 5.12-5.20 show results of 49 individual fits, with data points represented as �:

0-week, ◦: 4-weeks and M:8-weeks and N: non-diabetic, GSH-glucose pairs. The physiological

parameters v, k, and Gtot are provided for the reference for each diabetic case.
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Figure 5.12: Individual diabetic GSHt-glucose dose-response curves for the cases 1-7.
Minimal model was fitted to diabetic patient’s GSHt-glucose pairs at 0-week (�), 4-weeks
(◦) and 8-weeks (M). Asymptotic GSHt-glucose point was age-matched non-diabetic data
point (N) using regression fit. Parameters v, k and Gtot estimated from a fit are displayed
for each diabetic case. This panel figure is reproduced from Kulkarni et al. [126], published
as Figure S15 in the supplementary information.
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Figure 5.13: Individual diabetic GSHt-glucose dose-response curves for the cases 9-14.
Minimal model was fitted to diabetic patient’s GSHt-glucose pairs at 0-week (�), 4-weeks
(◦) and 8-weeks (M). Asymptotic GSHt-glucose point was age-matched non-diabetic data
point (N) using regression fit. Parameters v, k and Gtot estimated from a fit are displayed
for each diabetic case. This panel figure is reproduced from Kulkarni et al. [126], published
as Figure S16 in the supplementary information.
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Figure 5.14: Individual diabetic GSHt-glucose dose-response curves for the cases 15-20.
Minimal model was fitted to diabetic patient’s GSHt-glucose pairs at 0-week (�), 4-weeks
(◦) and 8-weeks (M). Asymptotic GSHt-glucose point was age-matched non-diabetic data
point (N) using regression fit. Parameters v, k and Gtot estimated from a fit are displayed
for each diabetic case. This panel figure is reproduced from Kulkarni et al. [126], published
as Figure S17 in the supplementary information.
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Figure 5.15: Individual diabetic GSHt-glucose dose-response curves for the cases 21-26.
Minimal model was fitted to diabetic patient’s GSHt-glucose pairs at 0-week (�), 4-weeks
(◦) and 8-weeks (M). Asymptotic GSHt-glucose point was age-matched non-diabetic data
point (N) using regression fit. Parameters v, k and Gtot estimated from a fit are displayed
for each diabetic case. This panel figure is reproduced from Kulkarni et al. [126], published
as Figure S18 in the supplementary information.
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Figure 5.16: Individual diabetic GSHt-glucose dose-response curves for the cases 27-32.
Minimal model was fitted to diabetic patient’s GSHt-glucose pairs at 0-week (�), 4-weeks
(◦) and 8-weeks (M). Asymptotic GSHt-glucose point was age-matched non-diabetic data
point (N) using regression fit. Parameters v, k and Gtot estimated from a fit are displayed
for each diabetic case. This panel figure is reproduced from Kulkarni et al. [126], published
as Figure S19 in the supplementary information.
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Figure 5.17: Individual diabetic GSHt-glucose dose-response curves for the cases 33-38.
Minimal model was fitted to diabetic patient’s GSHt-glucose pairs at 0-week (�), 4-weeks
(◦) and 8-weeks (M). Asymptotic GSHt-glucose point was age-matched non-diabetic data
point (N) using regression fit. Parameters v, k and Gtot estimated from a fit are displayed
for each diabetic case. This panel figure is reproduced from Kulkarni et al. [126], published
as Figure S20 in the supplementary information.

102



Figure 5.18: Individual diabetic GSHt-glucose dose-response curves for the cases 39-45.
Minimal model was fitted to diabetic patient’s GSHt-glucose pairs at 0-week (�), 4-weeks
(◦) and 8-weeks (M). Asymptotic GSHt-glucose point was age-matched non-diabetic data
point (N) using regression fit. Parameters v, k and Gtot estimated from a fit are displayed
for each diabetic case. This panel figure is reproduced from Kulkarni et al. [126], published
as Figure S21 in the supplementary information.
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Figure 5.19: Individual diabetic GSHt-glucose dose-response curves for the cases 46-52.
Minimal model was fitted to diabetic patient’s GSHt-glucose pairs at 0-week (�), 4-weeks
(◦) and 8-weeks (M). Asymptotic GSHt-glucose point was age-matched non-diabetic data
point (N) using regression fit. Parameters v, k and Gtot estimated from a fit are displayed
for each diabetic case. This panel figure is reproduced from Kulkarni et al. [126], published
as Figure S22 in the supplementary information.
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Figure 5.20: Individual diabetic GSHt-glucose dose-response curves for the case 54. Min-
imal model was fitted to diabetic patient’s GSHt-glucose pairs at 0-week (�), 4-weeks (◦)
and 8-weeks (M). Asymptotic GSHt-glucose point was age-matched non-diabetic data point
(N) using regression fit. Parameters v, k and Gtot estimated from a fit are displayed for each
diabetic case. This panel figure is reproduced from Kulkarni et al. [126], published as Figure
S23 in the supplementary information.
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Chapter 6

A phenomenological model of

OS-GS trajectories

6.1 Introduction

We have found that the markers of glutathione metabolism responded rapidly to the changes

in the GS. Further, we proposed that the OS-GS dose-responses would have “non-linear in-

verse” relationship in diabetic patients. In Chapter 5, we presented a physiologically-driven

minimal mathematical model to capture this non-linear inverse relationship between sys-

temic OS (GSHt) as a function of GS. We used simple GSH-glucose biochemistry to capture

changes in the OS response to GS at steady-state (for more information see 4, Section 5.2).

Thereafter, we show that the GSH-glucose dose-responses could be individualised. Further,

we hypothesised that EC50 or threshold glucose value, v can be used to predict personalised

glucose targets.

We proposed a minimal model based on a simple glutathione-glucose biochemistry; how-

ever, glutathione metabolism is made up of an intricate network of biochemical reactions.

Impaired glutathione metabolism and OS are known to be involved in multiple diseases like

Alzheimer’s, Parkinson’s, Down’s syndrome, cardiovascular disorders, cancer, autism, and

diabetes (Marvin and Farook [150]; Townsend et al. [151]; Wu et al. [152]). Glutathione
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is a tripeptide, synthesised from the amino acids cysteine, glutamate and glycine, of which

cysteine is the rate-limiting amino acid. GSH, the reduced form of glutathione scavenges

free radicals, primarily produced due to energy metabolism. The net glutathione levels are

therefore determined not only by the OS present inside the cell but also due to changes in the

amino acid pools. Besides, GSSG, an oxidised form of glutathione is transported out of the

cell to maintain reducing GSH levels inside the cell. Systemically, glutathione is produced in

the liver and transported to the various tissues through the plasma. Elaborate mathematical

models have been developed to understand the role of glutathione metabolism at the cellular

and systemic level to understand diseased conditions. For example, Reed et al. developed a

model of glutathione metabolism in the liver with respect to changes in the amino acid pools

in the blood [32]. They used this modelling study to understand glutathione metabolism in

the context of Down’s syndrome and autism. Another dynamic mathematical model of hep-

atic glutathione metabolism was proposed by Vali et al., to decipher the role of glutathione

metabolism in Parkinson’s disease [153]. Raftos et al. developed a steady-state kinetic model

of erythrocyte glutathione metabolism. It is a complex model with about 26 biochemical

reactions [33]. Further, a review of computational studies of glutathione metabolism is given

by Presnell et al. [154].

We have proposed a minimalistic model to understand changes in the erythrocytic glu-

tathione pool in response to glycemic control in diabetic patients. Considering the complexity

of glutathione metabolism, our mechanistic model has limitations. Some of the pitfalls of

the GSH-glucose minimal model are as follows:

1. To start with, we assumed that the total glutathione pool (GSHt) (made up of GSH

and GSSG) would be conserved over the two months study period (for more information

see 4, Section 5.2). According to this assumption, at the beginning of the study, GSSG

levels would be higher compared to the GSH levels; as the GS is reduced over the study

period, GSSG gets converted into GSH. However, at any given instant, more than 90%

of the erythrocytic GSHt pool is made up of GSH (Srivastava and Beutler [155]; Nur

et al. [156]) and therefore, this assumption may not hold true in reality.
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2. Secondly, glutathione-glucose physiology is made up of a complex biochemical reactions

network. Therefore, apart from GSH-GSSG interconversion, there might be some other

mechanisms that would give rise to non-linear inverse OS-GS relation. For example,

changes in transport rates of GSSG and amino acid pools required for synthesis of GSH

may contribute to the observed phenomenon (Reed et al. [32]; Raftos et al. [33]).

3. Most importantly, the GK functional form, with its complexity, is not convenient to

readily use in a clinical set-up.

To overcome these shortcomings we employed a simple phenomenologicalmodel to capture

OS-GS relationship in these diabetic patients. A phenomenological model would reduce the

uncertainty in the assumptions of the mechanistic model. Additionally, a phenomenological

model would have an advantage of being simple and predictive, at the same time.

In this chapter, a phenomenological logistic sigmoid function (LS) is used to derive the

OS-GS trajectory for an individual diabetic patient (see Section 6.2.1). We apply another

curve-fitting algorithm and fit 48 (out of 49, compared to 34 out of 49 in Chapter 5) diabetic

curves using LS and GK functional forms. We also found that LS model is a statistically

better alternative to the GK model. Hence, we propose that the LS model is suitable to use

in a clinical set-up (a) to monitor antidiabetic treatment using OS of an individual diabetic

patient, and (b) to define personalised glucose targets. Nonetheless, the physiological GK

model has its advantages, and we close this chapter by presenting a comparative account

between the phenomenological and physiological models.

This work is published as a BIOMAT 2015 conference proceedings book chapter (Kulkarni

R [157]).

6.2 Methods

6.2.1 A phenomenological model and data fitting

In chapter 5 a mechanistic model was proposed to account for the steady state GSHt -glucose

dose-response trajectories in newly-diagnosed diabetic patients (Kulkarni et al. [157]). The

108



steady-state functional form of the GK model is provided in the Appendix Section 6.5.1.

In this chapter, a simple statistical function is used to capture the graded dose-response

between GSHt and glucose. The LS model has a monotonically decreasing functional form,

which is given by:

GSHt(glucose) = GSHmin + GSHdiff

1 + ek(glucose−v) (6.1)

The additional details about the mathematical properties of the LS model are provided in

the Appendix Section 6.5.2. The LS model has an extra parameter, GSHmin, in comparison

to the GK model. GSHmin stands for the baseline GSHt value at the 0-week. We note that

in the LS model, GSHdiff = GSHmax −GSHmin. Both the GK and LS models have three

parameters:

1. GSHmax
1: the maximal GSHt corresponding to normoglycemia

2. k: the recovery rate parameter of the curve

3. v: the threshold glucose value, GSHt is half maximal

The curve fitting procedure was performed as described in Chapter 5, Section 5.3, with

few modifications. In Chapter 5 we observed that curve fitting procedure predicted unphysi-

ological glucose threshold values below 5 mM, in few diabetic cases. To avoid this, the lower

value of v, the threshold glucose value, was set to 5mM. Thus, even in cases where curve

fitting did not produce meaningful curves, it would predict standard glucose target.

6.2.2 Statistical analysis

Student’s t-test was used to compare the best fit parameter distributions obtained by the

GK and LS models at 95% CI. Model selection criteria Akaike’s Information Criterion (AIC)

and sum of squared errors (SSE) were used to compare the model performances. The aic()

function in statistical package R was used to calculate AIC scores.
1In Chapter 5, the maximal GSH pool parameter was referred to as Gtot. For the sake of comparison

between the two models, the same parameter is referred to as GSHmax in this chapter.
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6.3 Results

6.3.1 Phenomenological model is parametrically comparable to the phys-

iological model

We compared the fits obtained from GK and LS models to the diabetic patient data. The

LS model details are provided in the Section 6.2.1, and steady-state form of GK function is

provided in the Section 6.5.1. We could fit 48 out of 49 diabetic GSH-glucose dose-responses,

for each model. Both the models have three comparable parameters GSHmax, v, and k; as

described in the Section 6.2.1. Figure 6.2 compares the parameter distributions obtained

by two models over the 48 fitted GSH-glucose trajectories. Of the three parameters, v and

GSHmax have physiological relevance. However, the origin of the slope parameter k in the

GK model is convoluted and may not be readily comparable with the slope parameter of

the LS model. We found that distributions of v and GSHmax do not differ significantly

(Figure 6.1). The mean± sd values of v for GK and LS models being 6.9±1.7 and 6.6±1.4,

respectively. Also, mean±sd values for GSHmax parameter were not found to be statistically

different (905± 346 and 846± 276 for GK and LS models, respectively). But, distributions

of the slope parameter k differ significantly between the two models, with mean± sd values

of 82.2± 98 and 4.4± 5.2 corresponding to GK and LS models.

The GSH-glucose dose-responses obtained by fitting GK and LS models are shown in

the Figures 6.2(a) and 6.2(b), respectively (Figure 6.2). The grey lines in the background

are individual diabetic dose-response curves. The “population-averaged curve" (PAC) for

both the models are depicted by a dotted bold curve with population-averaged values of

GSHmax, k, and v over the 48 individual curves. We note that the PAC for the LS model

(parameterized by GSHmax=846, GSHdiff=712, v=6.6, and k=4.4) has a steeper slope but

otherwise comparable to the GK model (parametrized byGSHmax=905, v=6.9, and k=82.2).

Glutathione responds in a biphasic manner in the inflection region (the solid bold middle

portion of the PAC, approximately v
4 around the threshold glucose or the inflection point,

v depicted by the solid black dot on the PAC). The hyperglycemic region corresponds to
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Figure 6.1: Comparison of fitted parameter distributions namely, GSHmax, v and k for
GK and LS models (n=48). Mean±sd values for parameter distributions are represented by
vertical black dotted lines. The distributions of the parameters v and GSHmax obtained by
the LS and GK models are comparable (p-values: 0.44 and 0.36 at 95% confidence interval,
respectively), although, the distributions of the slope parameter k differ by an order of
magnitude of ten. This figure is reproduced from Kulkarni R [157], published as Figure 2 in
the main text.

lower GSHt asymptote and switches to maximal GSHt asymptote with non-diabetic glucose

range, around the inflection point. The LS-PAC also shows a feature earlier observed in

the GK model. The upper portion of the inflection region overlaps with the “impaired

fasting glucose" (IFG) ranges defined by ADA (5.5-6.9mM glucose) and WHO (6.1-6.9 mM

glucose). Also, after-therapy diabetic GSHt levels occupied the lower portion of both the

PACs. Essentially, we conclude that LS model fits preserve the features of GK model fits,

and therefore LS model can be used for capturing GSH-glucose dose-responses.
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Figure 6.2: Figure panels 1a and 1b show individual diabetic GSHt-glucose dose-response
trajectories (n = 48 of 49) obtained by fitting GK and LS models, respectively. Grey lines in
the background depict individual diabetic fits which show considerable variation with respect
to glucose control. The PAC is represented by a dotted bold black curve. The black dot
on the PAC represents an inflection point (v), the threshold glucose at which GSHmax is
half-maximal. The solid black curve is the sensitive portion of the PAC defined as “inflection
region” (roughly v

4 on both sides of the inflection point). The PAC for the LS model is
parameterized by v=6.6, k=4.4, GSHdiff=712 and GSHmax=846) and that of GK model is
parameterized by v=6.9, k=82.2 and GSHmax=905. PAC of the LS model is steeper than
the GK model. ADA (5.5-6.9 mM/L) and WHO (6.1-6.9 mM/L) IFG-ranges are provided
for the reference. IFG-ranges occupy the upper portion of the solid black curve. This region
is the most sensitive portion of the curve, and individuals having glucose values in this band
are prone to develop diabetes at a faster rate. Also, 80% of the 8-weeks GSHt values lie
in the lower portion of the solid black curve which represents the recovery phase from the
glycemic treatment. This figure is reproduced from Kulkarni R [157], published as Figure 1
in the main text.

6.3.2 LS model performs statistically better over the GK model

We used two measures of model selection to compare the performances of the model fits: a

sum of squared errors (SSE) and Akaike’s Information Criterion (AIC). The details of SSE

and AIC calculations are provided in the Section 6.2.2. Briefly, lower the SSE and AIC, better

the quality of fits. Figure 6.3 shows distributions of SSE scores obtained for each diabetic

fit, with GK and LS models. The LS model fits had statistically significant lower SSE scores

with the mean ± sd value of 6.7 ± 3.8 compared to the mean ± sd value for GK model of
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8.4 ± 1.9 (p-value for the comparison between the means being <0.003). Additionally, AIC

scores were also found to be significantly lower for the LS model (mean±sd value of 27±15)

as against the GK model (mean±sd value of 34±7) with the p-value <0.003, for comparison

of the means. Hence, both the measures suggest that LS model fits are better over the GK

fits.

Figure 6.3: Comparison of SSE scores obtained by the GK and LS fits (n=48). Population-
averages SSEs (mean ± sd) are represented by the vertical black dotted lines on the his-
tograms. The average SSE score differ significantly between the two models; SSE score
found to be lower for LS model (p-value <0.05). This figure is reproduced from Kulkarni
R [157], published as Figure 3 in the main text.

6.4 Discussion

We adapted statistical LS model to obtain GSHt -glucose dose-responses. Our most impor-

tant aim was to relax the assumptions of the mechanistic model while retaining predictive

power. We compared the LS and GK model fits and showed that LS model performs sta-
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tistically better over the GK model (see Section 6.3.2). The distributions of the parameters

v and GSHmax were found to be comparable (Figure 6.1). However, the distributions of

the slope parameter k differ significantly, by order of magnitude of 10. We speculate that

this difference is due to the complicated functional form of the GK model. We note that

such complexity is not present in the LS model, and interpretation of the slope parameter

is not complicated. Furthermore, mathematical properties of the LS model suggest that

the predicted threshold glucose target (v) is slightly greater than GSHmax
2 (refer to Appendix

Section 6.5.2). However, the slight increase in the v would be on average within the standard

deviation of the v for the PAC for the LS model (Figure 6.2), and this may not affect the

predictive power.

We performed GSHt -glucose curve-fitting simulation with 15-30% daily variation around

GSH-glucose time point (refer to Chapter 4, Section 5.3.2). We note an interesting feature

in the simulated curves: the patient cases whose v is roughly in the range of 5-5.6 mM,

show fragility in the curve fitting. These cases show bimodal distributions of the param-

eters. In short, two different curves are possible for a given set of simulated GSH-glucose

time-points. However, no such phenomenon was observed for cases having v >5.6 mM. We

speculate that steeper dose-responses are sensitive towards the small fluctuations in the GSH

values. Further, the sensitive range for v, would not affect the predictive power of the model,

since in these cases optimal glucose control would be the standard prescribed glucose limit.

Nonetheless, higher number of time points would reduce the fragility in these cases.

We used statistical analysis to show that the simple LS model is suitable to use in

the clinical set-up as compared to the GK model. However, physiologically inspired GK

model has its advantages (refer to Table 6.1). For instance, both the GK and LS models

can predict optimal glucose targets v, but LS model is not suitable for predicting recovery

from the diabetes treatment. On the contrary, slope parameter (k) in the GK model has a

complex physiological origin and hence useful in defining recovery from the diabetes treat-

ment. Besides, GSH-glucose physiology is complicated, and, therefore, intricate details of

the physiology can be incorporated in the GK model provided more number of data points
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GK Model LS Model
GK functional form though
explains OS-GS trajectories is
too complex to put into the
clinical practice

LS functional form is simpler
and can be readily used in the
clinical practice

The origin of slope parame-
ter k in the GK model has
complex physiological origin.
Therefore, GK model can be
used predict better recovery
rates.

The slope parameter may not
be assigned any physiological
origin. Therefore, LS model
can predict glucose targets
comparable to the physiolog-
ical model, but not recovery
from the diabetes treatment.

GK model can be extended
to add complex mechanisms,
provided more data points are
available

Statistical functional form,
not assumption based.

Table 6.1: A comparative account of GK (physiological) against LS (phenomenological)
models.

are available. In other words, there is scope to extend the existing minimal model and build

elaborate mathematical models to predict GSH-glucose dose-responses.

6.5 Appendix

6.5.1 Goldbeter-Koshland functional form

The GK functional form is reproduced for the reference (see Equ.6.2). The detailed derivation

can be found in the Chapter 3, Appendix Section 5.1.

GSHt(glucose) =

−(v · GSHmax − v · k − Glu · k − GSHmax · Glu) −

√√√√√√√√√√√√√√

v2 · GSHmax
2+

v2 · k2 + k2 · glucose2

+glucose2 · GSHmax
2+

2 · glucose2 · k · GSHmax

−2 · GSHmax
2 · glucose · v+

2 · k2 · v · glucose

+2 · v2 · k · GSHmax−

4 · glucose · GSHmax · v · k

2 · (glucose − v)
(6.2)
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6.5.2 Physiological explanation of the phenomenological model

The LS model is characterised by three parameters, v, k and GSHmax. GSHdiff is the

difference between GSHmax−GSHmin. The physiological interpretation can be obtained as

follows:

1. By putting Glu = 0, in the Equ. 6.1,

the denominator in the term GSHdiff

1+ek(glucose−v) tends towards 1. This leads toGSHt(glucose) =

GSHmin +GSHdiff = GSHmax. Therefore, at the low glucose GSHmax is reached.

2. By putting Glu = v, in the Equ. 6.1, we obtain,

GSHt(glucose) = GSHmin + GSHdiff

2 = GSHmax+GSHmin
2

Therefore, v is the threshold of glucose where GSHt is slightly greater than GSHmax
2 .

This mathematical explanation is reproduced from Kulkarni [157], published as Ap-

pendix Section 5.3.

3. Differentiating Equ. 6.1 and taking the limits GSH → Gtot/2 as Glu→ v, we find that

GSH ′(Glu→ v) = −GSHdiff × k
4 (6.3)

where the derivative GSH ′ is with respect to Glu. For a given value of Gtot, the larger

the k, the larger is the slope of the GSH(Gluc) curve at the inflection point. In oppose

to the interpretation of k for the GK model, larger k in the LS model implies that the

GSH becomes rapidly near-maximal as Glu crosses below the v threshold (see Chapter

5 Appendix Section 5.5.1). The slope parameter k in the GK model has an upper limit

(as k → infinity) but the slope parameter k in the LS model is not capped.
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Chapter 7

Blood glutathione is a covariate of

glucose during recovery from

diabetes

7.1 Introduction

Persistent hyperglycemia leads to the development of microvascular and macrovascular im-

pairment over the time. Therefore, management of hyperglycemia - the primary cause of

diabetic complications - poses a significant challenge to diabetes control. This concern is

not unreasonable since clinical studies show there is a considerable interpatient variation in

response to antidiabetic treatment and as diabetes progresses, it becomes difficult to achieve

the standard glucose control goal of HbA1c < 7% (Gavin and Bahnnon [158]). Therefore,

designing antidiabetic drug treatments to rationalise interpatient variation is an important

motivation behind developing “patient-centered” antidiabetic therapies (Inzucchi et al. [23]).

On these lines, predictive algorithms have been developed to define combinations of an-

tidiabetic drugs to account for underlying pathophysiological changes to achieve standard

glycemic goals (Tsang [159]).

In our population study, we examined changes in the HbA1c levels of diabetic patients
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Figure 7.1: HbA1c levels fall consistently in the diabetic patients over the study period
(n=43). However, the fall in the GS show considerable variability in the diabetic patients.
Figure reproduced from Kulkarni et al. [160], published as Figure 2 in the main text.

over the study period (see Figure 7.1). We observed that there is a remarkable interpatient

variation in the decline of GS among the diabetic patients. Additionally, in Chapter 5 we

also modelled variable recovery rates of diabetic patients kept on the antidiabetic treatment

(see Chapter 5, Section 5.3.1). These observations lead to an interesting question: what

determines the variability in the recovery trajectories of diabetic patients?

Pharmacogenomic and pharmacokinetic studies have been conducted to assess variations

to the antidiabetic drugs like biguanides and sulfonylureas. These studies have identified

genetic polymorphisms in drug targets in diabetic patients (Daniels et al. [161]). However,

identification of genetic variants has not turned out to be conclusive in defining personalised

therapies (Engelbrechtsen et al. [162]). Clearly, there are other pathophysiological compo-

nents like lipid, liver and skeletal muscle metabolism which potentially contribute towards

differential responses to antidiabetic treatments (Becker et al. [163]).

OS is known to be causal in the development of PDCs. OS also plays an instrumental
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role in the development of hyperglycemia. Studies in cell lines and animal models established

that OS is an influential factor in the development of insulin resistance (Houstis et al. [164];

Hoehn et al. [165]) and β-cell dysfunction (Drews et al. [166]; Evans et al. [167]). Clinical

trials have shown a strong association of OS with insulin resistant states in pre-diabetic

conditions (Naota et al. [168]). For example, the Framingham study (Meigs et al. [169]) shows

that insulin resistance in the non-diabetic state is strongly associated with enhanced OS.

Therefore, OS might be a potential pathophysiological feature influencing the recovery from

the diabetes treatment. Our analysis of OS markers showed that glutathione is an excellent

biomarker suitable to represent OS state in the progression of diabetes. Additionally, Thomas

et al. showed that glutathione levels show considerable variation at the population level, and

this variation may be due to genetic components [170]. Thus, we hypothesise that GSHt

as a measure of OS might influence recovery from the diabetes treatment.

In this chapter, we seek to answer whether OS status measured as GSHt is a co-

determinant of recovery from the diabetes treatment along with GS? We expect that GS

of an individual at the beginning of the therapy would influence how much benefit a patient

would get out of the antidiabetic treatment. Since OS seems to be affected by changes in

the GS, it is plausible that OS could also co-determine recovery from treatment. We show

that recovery from the diabetes is positively correlated with the baseline GSHt levels but

negatively influenced by initial HbA1c levels.

This result has been previously published as Kulkarni et al. [160].

7.2 Statistical methods

7.2.1 Multiple linear regression of recovery rate against 0-week HbA1c and

0-week GSHt in diabetic patients

Recovery rate (RR) was defined as a difference between 8-weeks HbA1c and 0-week HbA1c.

All the three variables, RR, 0-week HbA1c, and 0-week GSHt were normalised to obtain

standard normal distributions. A multiple linear regression was performed with RR as
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a dependent variable and 0-week HbA1c and 0-week GSHt as independent variables. A

multiple linear regression was performed using the lm() function in statistical package R

(version 2.14.1).

7.3 GSHt is a covariate of recovery from the diabetes treat-

ment

To establish whether antioxidant defence status or GSHt influences recovery from the an-

tidiabetic treatment, we defined a term called as recovery rate (RR) - difference between

8-weeks HbA1c and 0-week HbA1c. RR implied how fast or slow a diabetic patient would

respond to the antidiabetic treatment. Since we have not monitored diabetic patients long

enough to develop PDCs, we assume that RR would be indirectly and inversely related to

the rate of development of PDCs.

We performed a multiple linear regression (MLR) of RR against 0-week HbA1c, 0-week

GSHt, and age of a diabetic patient, n=48 (details of the MLR are provided in Section

7.2.1). Table 7.1 shows results of the MLR. Our analysis demonstrated that recovery from

the diabetes treatment is significantly correlated to initial GS (0-week HbA1c) and OS (as

defined by 0-week GSHt), but not age. We expected that a-priory glucose levels before start-

ing of the antidiabetic treatment would influence recovery trajectory of a diabetic patient;

however, interestingly we also found that pre-treatment GSHt levels also affect the outcome

of the diabetes therapy. In that, RR is significantly but negatively correlated with 0-week

HbA1c (coefficient: 1.23; p-value: <0.001) ) but positively influenced by 0-week GSHt pools

(coefficient: 0.33; p-value: <0.006).

The results of MLR imply that antioxidant defence status of a diabetic patient is featured

prominently in response to the treatment. In other words, higher the antioxidant defence

status of a diabetic patient better is the recovery from the diabetes therapy. This would

have important implication in determining the diabetes therapy.
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Independent variable Coefficient p-value
Intercept -1.69 0.01 *
0-week A1C -1.23 <0.001 *
0-week GSH 0.33 0.006 *
Age -0.006 0.65

Table 7.1: Multiple linear regression of recovery rate against 0-week HbA1c and 0-week
GSHt. RR is negatively influenced by 0-week GS but positively influenced by 0-week OS (as
measured by GSHt). Table adapted from Kulkarni et al. [160].

7.4 Discussion

In this chapter, we sought to understand whether OS (measured as GSHt) co-determines

recovery from the diabetes treatment along with the GS. We regressed recovery rate against

0-week GSHt and 0-week HbA1c from the diabetes therapy. We found that OS, measured

in terms of pre-treatment GSHt levels, emerged as a covariate of recovery along with GS. In

other words, OS together with GS contributes towards the outcome diabetes treatment.

We thus observe that OS is an independent predictor of RR along with GS. This

observation suggests that the contribution of OS to the development of PDCs has a com-

ponent independent of GS. Undoubtedly, a major portion of OS would be contributed by

glucose metabolism. However, OS might also be affected due to factors other than glucose.

For example, lipid metabolism and inflammation are known to induce excessive ROS and

this may contribute towards hampered OS independently, and in addition to, glucose

metabolism. These observations, although based on small sample size and short study pe-

riod, suggest that further substantial effort is required to investigate the complex origins of

OS in the progression of diabetes.

We have clearly not waited long enough to see whether diabetic patients develop diabetic

complications over the span of years. However, RR of the diabetes treatment can be looked

at as a proxy for how OS would influence the rate of diabetic complications in the long run.

Hyperglycemia undoubtedly needs to be controlled in the diabetes treatment since it is one

of the primary causes of OS. However, our results show that the recovery from the diabetes

121



FFA, Infl. // OS

""DDDDDDDD

RR // PDCs

GS

OO

<<yyyyyyyy

Figure 7.2: OS co-determines recovery from the diabetes treatment along with GS. This
observation suggests that there might be other factors which influence OS status apart from
GS. These other factors may include free fatty acid metabolism (FFA) and inflammatory
responses (Infl). Therefore, involvement of OS in development of PDCs could have multiple
nonlinear origins than represented in the minimal model (see Chapter 5).

treatment depends not only on the initial glycemic load but also on the initial OS status of

a diabetic patient. We speculate that OS holds an additional information which should be

incorporated when defining glucose targets.

122



Chapter 8

Conclusions and future directions

The role of ROS as secondary messenger molecules has been well documented in the human

physiology. Impaired ROS responses are an important and emerging area in the study of

human disease physiology. The imbalance of redox state - either due to overactivity of pro-

oxidant mechanisms or insufficient antioxidant defence systems, or both - has been shown to

be involved in the production of OS in the neurodegenerative disorders, cancer and diabetes.

In this thesis we have studied the role of OS in the context of hyperglycemia-mediated devel-

opment of PDCs. Recent findings in cell-lines, animal models and clinical trials establish the

central causal role of overproduction of mitochondrial ROS in the development of PDCs. We

have focused on investigating OS reduction during the diabetes therapy because augmenta-

tion of an antioxidant defence mechanism is likely to be a prominent protective mechanism

underlying glycemic control.

In Chapter 3 we study serial changes in the ten OS markers in response to the glucose

control treatment. In particularly, we look for the two features in the OS markers: (a) how

quickly does an OS marker respond to changes in the glucose over a short period of 8-weeks,

and (b) whether it demarcates a diabetic state from the non-diabetic state? These features

could suggest that a particular OS marker is plausibly involved in the pathophysiology of di-

abetes and can potentially track diabetes progression. Most importantly, such an OS marker

would likely manipulable using antidiabetic drug treatment. We show that glutathione pools
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recover rapidly in response to antidiabetic drug treatment over the short study period of 8-

weeks. InChapter 4 we observe an interesting feature of glutathione metabolism in response

to changes in the GS. We show that glutathione alone can be used to classify individuals

into distinct diabetic states, consistent with the glucose based classification. In other words,

glutathione can be a useful measure for tracking diabetes progression.

Although on average, GSHt pools show rapid recovery over the 8-weeks we observe that

the extent and rate of recovery of GSHt pools show variation among diabetic patients. We

propose a biophysically motivated minimal mathematical model to capture these individual

differences in responses to antidiabetic treatment, Chapter 5. The model indicates that

changes in the OS are non-linearly related to reduction in the GS. We were able to compute

OS-GS trajectories in 34 of 49 patients. For each case, the recovery trajectory is characterised

by a size of the maximal glutathione pools (GSHt), threshold glucose value when GSH is

half-maximal (v), and recovery rate or slope parameter of the curve (k). We hypothesise that

controlling glucose until it is well below the threshold glucose value is an optimal glucose

target. We explain how these results can be used in a clinical setup (see Chapter 5, Section

5.3.3).

The fitted v and k values for the GSH-glucose curves indicate the inherent maximal an-

tioxidant capacity and how rapidly it can be attained. There is an important mechanistic

insight coming out of the modelling study, which is justified by few human studies. Our

analysis showed that v, the threshold glucose value would be a glucose target for a given

diabetic patient. The threshold glucose value v is the ratio of maximal enzymatic reaction

rates (v1/v2 ∗ β), where v1 is the maximum enzymatic reaction rate for GR and v2 is the

maximum enzymatic reaction rate for GPx. v1 has units of concentration/time and v2 has

unit of (1/time). This means the rate at which GSH is replenished is limited to available

GSSG pool but v2 acts in proportion to glucose load and OS is essentially linearly increased

in proportion to glycemic load. This mechanistic understanding suggests two possible ways

to control diabetes. First, a standard way is to reduce glucose load so that v2 will be lowered

and antioxidant defence capacity would be sufficient to cope up with the OS stress. Another
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way is to improve v2, which means to increase antioxidant capacity of the cell. Increase

in v1 or decrease in v2 both will lead to higher glucose threshold levels suggesting that an-

tioxidant capacities would be enough to cope up with the OS. Though our strategy doesn’t

suggest GSH supplementation, there are several studies available on GSH supplementation

in diabetic individuals which showed that improvement in GSH levels leads to relief from

the diabetic symptoms and better glucose control. A detailed account of these studies has

been given in Chapter 4, Section 4.1 (Introduction). In Chapter 7 we also establish that

the initial antioxidant capacity influences the rate of recovery from the diabetes treatment.

Therefore, increasing v1 or GSH inside that cell can be beneficial in diabetes control. Al-

though our strategy is not based upon GSH supplementation, it does suggest the possibility

that improving GSH internally can help control the diabetes status.

Although the minimal model is used to describe the non-linear OS-GS relationship, it

comes with disadvantages. First, the complex functional form of the minimal model may

not be readily usable in the clinical setup. Secondly, glutathione-glucose physiology is more

complicated than represented in the minimal model. There might be multiple mechanisms

which may contribute towards the observed function relationship between the OS and GS.

Thus, employ a phenomenological logistic sigmoid function to reconstruct OS-GS trajectories

in Chapter 6. The phenomenological model retains the predictive power with its readily

usable simple functional form.

In both modelling procedures we show that curve fitting is robust to small but substantial

perturbations in glutathione values (see Chapter 5, Section 5.3.2). A major strength of

this modelling study is that a simple measurement of GSH thrice in 8-weeks can give a

quantitative measure of how stringent glucose control needs to be.

One reason for keeping the model minimal is to avoid overfitting due to the availability of

only three data points. This is also a limitation of the study. More frequent measurements

of GSH might be helpful in improving model estimates and building more complex models

of GSH-glucose physiology. Thus, we propose that GSH measurements should be carried out

for longer time duration in order to make precise inferences about glucose targets.
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We have used mathematical modelling approaches to decipher individual differences to

the glucose control treatment. We ask: what factors may influence intrinsic responses to dia-

betes treatment? In Chapter 7 we attempted to deconstruct variations in the recovery rates

of diabetic patients. We show an intriguing result: initial OS independently co-determines

recovery from the diabetes treatment together with initial GS. This result indicates that

OS-GS relationship is more complex than represented in the model. OS capacity can be

influenced by glucose-dependent, as well as glucose-independent metabolic processes. OS is

influenced by glucose-independent factors like free fatty acid metabolism, inflammatory

responses due to infections as well as aging. We show that changes in the GSH in our study

are not correlated to BMI or age (see Chapter 4, Section 4.5.4 ). However, in other pop-

ulation studies diabetes-associated comorbodities may need be considered while modelling

OS responses. Another important factor which may contribute towards changes in the OS

is antidiabetic drug treatment. Antidiabetic drugs like Glimepiride and Repaglinide have

shown to reduce OS without affecting lipid parameters in the blood (Chen [171]). Another

study indicates that Miglitol, an oral-antidiabetic drug improves endothelial cell function by

suppressing ROS production (Aoki et al. [172]).

Glucose-dependent changes in the OS are more intricate than appear in the minimal

model (see Figure 8.1). The development of diabetes (in patients with pre-diabetic state)

is characterised by two main features: insulin resistance and impaired β-cell dysfunction.

The interplay between these two features leads to the development of hyperglycemia. Lipid

metabolism, inflammation and gut microbial changes are known to develop insulin resis-

tance and impaired insulin secretion by inducing OS (Houstis et al. [164]; Hoehn et al. [165];

Johnson and Olfesky [46]). Furthermore, human clinical trials also showed that OS is posi-

tively associated with insulin resistance in non-diabetic obese individuals (Meigs et al. [169]).

Anderson et al. showed that muscle biopsies of obese individuals have a higher rate of mi-

tochondrial superoxide production compared to the lean study subjects and is associated

with the higher insulin resistant state (Anderson et al. [173]). Additionally, hyperglycemia

hampers insulin secretion, aggravates insulin resistance, and contributes to the diabetic pro-
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gression via enhanced production of ROS (Ceriello and Motz [174]). This intricate web of

reactions depict the non-linear feedback mechanisms which can affect OS state in more than

one way. We observe that antidiabetic treatment leads to the reduction in the GS as well

as OS. The reduction in the hyperglycemia is likely due to the action of drugs on the in-

sulin sensitivity and insulin secretion responses. These changes can further influence the

observed GS state. We realise that it is difficult to decipher individual contributions of these

mechanisms to the changes in the OS and GS in a complex physiological network.

FFA, Infl., Gut microbiome // OS

��

// PDCs

HG

ddHHHHHHHHH

IR

::uuuuuuuuu

Figure 8.1: The complex origin of OS in the development and progression of diabetes.
OS: oxidative stress; IR: insulin resistance; HG: hyperglycemia; PDCs: post-diabetic com-
plications. OS might be influenced due to glucose-independent metabolic insults like free
fatty acid metabolism (FFA), inflammation (Infl.) and gut-microbial changes. OS may be
influenced due to glucose-dependent changes. For example, changes in the IR can feedback
into HG influencing the OS.

Although we have modelled variations in the OS in response to changes in the

hyperglycemia, in reality, we have modelled overall changes in the systemic OS

in response to the systemic GS changes. Despite these shortcomings, our modelling

study suggests the scope to construct complex physiological models incorporating various

sources of OS to better distinguish the origin of individual differences.

Finally, we conclude that our modelling effort renders a quantitative tool which can be

readily applicable in a clinical setup to define glucose targets over the short monitoring pe-

riod of two months. We note that, although the predictions of the model are interesting

and give valuable insights about defining personalised glucose targets, they are speculative

at this stage. Future efforts will determine the efficiency of our approach and further modi-

fications would follow. Nonetheless, understanding the redox regulation in the development
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and progression of diabetes would not only help us in designing better diabetic treatments

but may also help in building preventive measures. We hope that our OS profiling to

predict personalised glucose targets is a small but significant step towards that

endeavour.
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