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Abstract

Characterization and control in quantum dynamics are paramount for the emerging field of

quantum technologies. In the realm of quantum mechanics, the Schrödinger equation or Von-

Neumann equation governs quantum evolution. However, efficiently characterizing the final state

and determining external parameters or controls remains challenging, necessitating the develop-

ment of advanced computational methodologies. This thesis focuses on developing and demon-

strating innovative computational approaches for efficient characterization and control of quan-

tum dynamics. The first key aspect involves the application of a machine-learning algorithm

known as the recommender system (RS). In this context, RS is utilized to estimate changes in

quantum correlations following unitary or nonunitary evolution. Remarkably, RS demonstrates

the capability to estimate quantities that are challenging to compute or lack analytical expressions.

The subsequent discussion revolves around three distinct developments within the control frame-

work and their demonstration using Nuclear Magnetic Resonance (NMR) experiments. Firstly,

the thesis delves into RS-expedited quantum control optimization, where the machine learning al-

gorithm efficiently populates a sparse table of quantum controls. Secondly, the concept of ‘push-

pull quantum control’ is introduced, leveraging a target operator alongside a set of orthogonal op-

erators to generate robust control sequences effectively. Lastly, implementing a Physics-informed

neural network for solving the time-dependent Schrödinger equation is explained, highlighting its

advantages, particularly avoiding prior discretization of the parameter space. These methodolo-

gies are demonstrated to be versatile and applicable across different physical hardware, signifying

their crucial role in the unfolding landscape of quantum technologies.
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Synopsis

In this thesis, we report the advancement of computational methods and their NMR demonstra-

tions for the characterization and control of quantum dynamics. The thesis is divided into six

chapters, each briefly reviewed below.

Chapter 1 − Introduction

This chapter introduces the basic terminology and concepts of quantum information processing,

starting from qubits, dynamics, measurements and correlations. We then explain the experimental

quantum information by giving an overview of the NMR test bed and its usage for quantum in-

formation processing. We then describe quantum control and summarize some famous quantum

control algorithms. We conclude this chapter with the primitive ideas of machine learning and

unfold the workings of a neural network.

Chapter 2 − Efficient Characterization of Quantum Evolutions via a Recommender System

Characterization of a quantum system is important to infer any information about the dynamics.

It can be done using the correlations or fidelity of the final state. However, it becomes difficult

to calculate quantum correlations, especially discord, which has no analytical expression. This

chapter uses a machine learning algorithm recommender system to characterize the dynamics.

Here, we choose (i) quantum correlations quantified by measures such as entropy, negativity, or

discord and (ii) state-fidelity. Using quantum registers with up to 10 qubits, we demonstrate that

an RS can efficiently characterize unitary and non-unitary evolutions. After conducting a detailed

performance analysis of the RS in two qubits, we show that it can distinguish a clean database

of quantum correlations from a noisy or a fake one. Moreover, we find that the RS brings a sig-

nificant computational advantage for building a large database of quantum discord, for which no

simple closed-form expression exists. Also, RS can efficiently characterize systems undergoing

non-unitary evolutions in terms of quantum discord reduction and state fidelity. Finally, we utilize

RS to construct discord phase space in a nonlinear quantum system.
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Chapter 3 − Recommender System Expedited Quantum Control Optimization

In this chapter, we extend the use of RS to speed up the quantum control protocol. In the quantum

control problem, each iteration of a numerical optimization algorithm typically involves evaluat-

ing many parameters, such as gradients or fidelities, which can be tabulated as a rating matrix.

We establish that RS can rapidly and accurately predict elements of such a sparse rating matrix.

Using this approach, we expedite a gradient ascent-based quantum control optimization, namely

GRAPE, and demonstrate the faster construction of a two-qubit CNOT gate in registers with up

to 8 qubits. We also describe and implement the enhancement of the computational speed of a

hybrid algorithm involving simulated annealing and gradient ascent. Moreover, the faster con-

struction of three-qubit Toffoli gates further confirmed the applicability of RS in larger registers.

Chapter 4 − Push-Pull Optimization of Quantum Controls

The convergence of control algorithms is a quintessential feature for better quantum gates. In this

chapter, we propose an objective function that incorporates not only the target operator but also a

set of its orthogonal operators, whose combined influences lead to an efficient exploration of the

parameter space, faster convergence, and extraction of superior solutions. As we call it, the push-

pull optimization can be adopted in various quantum control scenarios. We describe adopting it

to a gradient-based and a variational principle-based approaches. Numerical analysis of quantum

registers with up to seven qubits reveals significant benefits of push-pull optimization. Finally, we

describe applying the push-pull optimization to prepare a long-lived singlet-order in a two-qubit

system using NMR techniques.

Chapter 5 − Physics Informed Neural Network for Robust Quantum Controls

Machine learning is becoming increasingly integral across various domains. In this context, we

present a novel approach utilizing a Physics Informed Neural Network for constructing quantum

gates. Our focus is on creating a two-qubit CNOT gate and a protocol for state-to-state trans-

fer, specifically designing a pulse to prepare a long-lived singlet state (LLS). These sequences

are implemented on Nuclear Magnetic Resonance (NMR) platforms to assess the effectiveness

of the algorithm. On the other hand, the significance of geometric quantum computation lies in
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its inherent robustness against certain types of parameter noise. Therefore, it becomes impera-

tive to devise innovative algorithms for generating geometric quantum gates applicable to diverse

quantum platforms. Our study highlights the robust nature of the one-qubit phase gate when com-

pared to the conventional hard pulse approach. This comparison sheds light on the algorithm’s

resilience, a critical aspect for the development of practical quantum computing solutions.
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CHAPTER 1

Introduction

To feel absolutely right is the beginning of the end − Albert Camus

The allure of science lies in its ability to unveil the mysteries that enshroud our immediate

surroundings and the distant realms of the cosmos. Physicists have pioneered tools to learn about

atoms as well as stars. As Galileo articulates, “All truths are easy to understand once they are

discovered; the point is to discover them”. The development of quantitative laws, coupled with

experimental findings, led to the emergence of Physics as a distinct subject, showcasing a rich

history marked by remarkable progress. Newton’s discovery of laws of classical mechanics [1]

has an impact even in the modern world centuries later. However, Newton’s law could not explain

systems with extreme conditions, such as particles moving with the speed of light, length scales

comparable to atomic radius or smaller and high energy systems. Einstein’s “Theory of Special

Relativity” explained the dynamics of particles moving near the speed of light [2], and quantum

mechanics became the basis for understanding the atomic and subatomic particles giving rise to

Modern Physics. Today, the framework of quantum mechanics is an integral part of numerous

sub-branches of physics. Some of the hallmarks of early quantum mechanics include explanation

of black-body radiation [3], photoelectric effect [4], Bohr’s hydrogen atom model [5], and Stern-

Gerlach experiment [6–8]. In 1923, Louis de Broglie introduced the principle of wave-particle du-

ality, according to which a particle can have particle and wave behavior [9]. The further advances

unfolded with the mathematical formulation of quantum mechanics, which encompasses Matrix

Mechanics by Werner Heisenberg, Max Born and Pascual Jordan [10] and Wave Mechanics by

Erwin Schrödinger [11]. It was additionally interpreted or understood in light of the contributions

of David Hilbert, Paul Dirac, and John von Neumann. Following the success of quantum mechan-

ics, its impact extended to various scientific disciplines, including information science, chemistry,

and others. As information science and quantum mechanics started coming together, it gave rise
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to whole new field of quantum information and computation [12]. It started to progress with

the work of Bell on entanglement [13], concept of quantum Turing machine by David Duestch

[14] and later the development of Shor’s [15] and Grover’s [16] algorithm paved a way to build

quantum algorithms for quantum advantage. Schrödinger’s equation or Von-Neumann equation

has been the governing dynamical equations for quantum system. Thus, the primary focus of this

thesis revolves around understanding some of the key aspects such as characterization and control

of quantum dynamics, an important paradigm of quantum information. The thesis commences by

elucidating the fundamental concepts of quantum information and computation in the following

section.

1.1 Quantum Information

Information, the amount of surprise, is an abstract concept. Information theory makes beautiful

use of this abstractness to study its quantification, storage and communication [17]. In the realm

of classical information processing, transistors have laid the foundation for practical realizations

[18]. With the discovery of transistors, classical computers became powerful, making information

storage and processing easier. In the classical case, the basic unit of information is called bit,

which possesses binary values such as 0 or 1. Classical computers manipulate these bits and

produce outputs in the form of bits as well. Despite the remarkable success of classical computers,

certain problems remained unsolvable within their computational framework. In 1981, when

Richard Feynman stated, “Nature isn’t classical, dammit, and if you want to make a simulation of

nature, you’d better make it quantum mechanical, and by golly it’s a wonderful problem, because

it doesn’t look so easy” prompted people to seriously think about the possibility of quantum

systems and their processing on a quantum level [19]. This incited the whole field of quantum

information processing (QIP), which is today not only limited to simulations but expands to

computation, communication, sensing, and more. It has gained massive success over the last 2-3

decades, with tech giants investing a hefty sum for building a quantum computer [20–22]. Now,

we proceed to delineate the basic terminology employed in quantum information processing.
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1.1 Quantum Information

1.1.1 Qubit

Quantum bit or qubit is the fundamental unit of information in quantum mechanics. Unlike

bits, qubits can have values 0 and 1 simultaneously with certain probabilities owing to the rule

of superposition in quantum mechanics. The state of a qubit, also called the wave vector of a

quantum particle, represented with a column vector is given by

|ψ⟩ = α |0⟩+ β |1⟩ . (1.1)

Here α and β are complex number with identity |α|2 + |β|2 = 1. |α|2 and |β|2 are called the

probabilities of being in state |0⟩ and |1⟩ respectively. The adjoint of state |ψ⟩ is a row vector

⟨ψ| = α∗ ⟨0| + β∗ ⟨1| where α∗ and β∗ are the complex conjugate of α and β. In the lexicon of

quantum mechanics, |ψ⟩ and ⟨ψ| are called ket and bra vector, respectively.

x
y

z
|ψ⟩

θ

ϕ

|0⟩

|1⟩

Figure 1.1: Qubit representation on a 3D Bloch sphere
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Geometrically, a qubit state is depicted as a vector on a 3D Bloch sphere, as shown in fig. 1.1.

A general state on a Bloch sphere is written using polar angle θ and azimuthal angle ϕ as

|ψ⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩ . (1.2)

The point on the north pole with θ = 0◦ is assigned to the |0⟩ state while point on the south pole

with θ = 180◦ is assigned to the |1⟩ state. The point on x-axis with θ = 90◦ and ϕ = 0◦ represents

the superposition state |0⟩+|1⟩√
2

.

Physically, a qubit can be realized in a two-level system. Here, |0⟩ and |1⟩ represent the

ground and excited state of the two-level system, respectively. There are multiple candidates for

the physical realization of the two-level system, for example, nuclear spins in nuclear magnetic

resonance [23], electron spins in defect centers and quantum dots [24, 25], hyperfine levels in

trapped ions [26], charge, current or energy in cooper pairs of superconductors [27], the polariza-

tion of light in Photonic setup [28], Rydberg atoms [29], etc.

1.1.2 Density matrix

A density matrix is a more general way of describing the state of a quantum system. The wave

function approach is suitable for a pure state but inadequate for a mixed state. The density matrix

of a general state is given by

ρ =
m∑
i=1

pi |ψi⟩ ⟨ψi| ,

with probability pi of being in state |ψi⟩. The density matrix’s diagonal and off-diagonal elements

are called populations and coherences, respectively. It satisfies the following properties:

• ρ is a Hermitian matrix, i.e. ρ† = ρ.

• Since probabilities must be normalized, i.e. Tr [ρ] = 1.

• ρ is a positive semi-definite matrix, i.e. all eigenvalues are non-negative.

The states can be classified as either pure or mixed depending on the following features:
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1.1 Quantum Information

Pure state Mixed state

• m = 1, ρ = |ψ1⟩ ⟨ψ1| m > 1, ρ =
∑m

i=1 pi |ψi⟩ ⟨ψi|

• Purity, Tr [ρ2] = 1 Tr [ρ2] < 1

• Idempotent, ρ = ρ2 ρ ̸= ρ2

• Lies on the surface of Bloch sphere Lies inside Bloch sphere

1.1.3 Quantum dynamics

According to Schrödinger equation, the Hamiltonian operatorH controls the dynamics of a quan-

tum state. The expectation value ofH quantifies the total energy of a quantum mechanical system.

Like classical mechanics, Hamiltonian has two terms, one corresponding to kinetic energy and

the other to potential energy. For a general system, Hamiltonian H takes the following form

H =
P 2

2m
+ V, (1.3)

where P is the momentum operator, V is the potential term, and m is the mass of particle. The

given Hamiltonian governs the dynamics of particle in the potential V . The evolution of a pure

quantum state |ψ(t)⟩ under time-dependent Hamiltonian H(t) in a closed system is governed by

Schrödinger equation

d |ψ(t)⟩
dt

= − i

ℏ
H(t) |ψ(t)⟩ . (1.4)

The solution of the above equation in a time interval of 0 and T is given by

U(T ) = T exp

(∫ T

0

− i

ℏ
H(t) dt

)
, (1.5)

where T stands for Dyson time ordering operator. The Schrödinger equation can alternatively be

expressed in the Heisenberg picture as the evolution of the unitary operator U(t)

dU(t)

dt
= − i

ℏ
H(t)U(t). (1.6)
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The alternative way of depicting the quantum evolution of a general quantum state with density

matrix ρ(t) in a closed system is given by the Liouville-von Neumann equation

dρ(t)

dt
= − i

ℏ
[H(t), ρ(t)]. (1.7)

1.1.4 Open Quantum System

In practical situations, no system is ideal and constantly interacts with its surroundings. For an

open system, the total Hamiltonian H can be expressed as the sum of the system Hamiltonian

HS , bath Hamiltonian HB and system-bath interaction HSB [30, 31]

H = HS +HB +HSB. (1.8)

The evolution of total density matrix ρ(t) under the Hamiltonian H is given as

ρ(t) = U(t) ρ(0)U †(t), (1.9)

with unitary operator of the form U(t) = e−iHt. The bath operator at the initial time with the

eigenvalues λα and orthonormal basis vectors {|α⟩} can be decomposed as

ρB(0) =
∑
α

λα |α⟩ ⟨α| . (1.10)

The system density matrix can be obtained by partially tracing the total density matrix ρ(t) over

bath degrees of freedom

ρS(t) = TrB [ ρ(t) ]

ρS(t) = TrB [U(t) ρ(0)U †(t) ]

ρS(t) =
∑
β

⟨β| U(t) ρ(0)U †(t) |β⟩ , (1.11)

6



1.1 Quantum Information

where |β⟩ are the eigenvectors for bath operator. Starting with the assumption that system and

bath are uncorrelated at initial time, such that

ρ(0) = ρS(0)⊗ ρB(0). (1.12)

Based on the above assumption, the system state can be simplified as

ρS(t) =
∑
β

⟨β| U(t)
(
ρS(0)⊗ ρB(0)

)
U †(t) |β⟩

ρS(t) =
∑
β

⟨β| U(t)
(
ρS(0)⊗

∑
α

λα |α⟩ ⟨α|
)
U †(t) |β⟩

ρS(t) =
∑
β α

(√
λα ⟨β| U(t) |α⟩B

)
ρS(0)

(√
λα ⟨α| U †(t) |β⟩B

)
ρS(t) =

∑
β α

Kβα(t) ρS(0)K
†
βα(t). (1.13)

Here {Kβα} are called Kraus operators having the following form

Kβα(t) =
√
λα ⟨β| U(t) |α⟩B . (1.14)

The equation 1.13 is called the Kraus operator-sum representation for the evolution of the system

density matrix. Kraus operators follow the condition

∑
β α

K†
βα(t)Kβα(t) = 1S (1.15)

The alternative way to define the evolution of the system density matrix ρS(t) is given using

the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) equation [32]

dρS(t)

dt
= − i

ℏ
[HS(t), ρS(t)] + L(ρS), (1.16)

where L is called Lindbladian operator having the form

L(ρS) =
∑
n

γn

(
Vn ρS V

†
n − 1

2

(
ρS V

†
nVn + V †

nVn ρS

))
. (1.17)
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Here Vn and γn represent the jump operators and damping rates for the dissipative part of dynam-

ics.

1.1.5 Quantum Gates

Logic gates are an integral part of the circuit model of computation. In classical computers, gates

like AND, OR, NOT, etc, are routinely used for processing. These gates together implement a

set of instructions for the bits to generate the desired output. Similar to classical computation,

various single- and multi-qubit gates operating on qubits constitute quantum circuits. These gates

are unitary operators of dimension 2n where n is the number of qubits. Some of the basic gates

in quantum computation are as follows:

Gate Circuit representation Matrix representation

Hadamard H
1√
2

1 1

1 −1



X Gate X

0 1

1 0



Y gate Y

0 −i

i 0



Z gate Z

1 0

0 −1



Phase gate P

1 0

0 eiϕ



CNOT gate
•


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


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1.1 Quantum Information

CZ gate

•

Z


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1



Swap gate
×

×


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1



1.1.6 Quantum measurement

The revelation of physical information necessitates a measurement in both classical and quan-

tum systems. In the quantum realm, linear operators defined on the Hilbert space, also called

observables, are measurable properties of the physical system. The spectral decomposition of an

observable A is written as [33]

A =
∑
n

nPn.

Here n are eigenvalues of observableA and Pn are projectors defined onto eigenvectors {a1, a2, · · · , an}

of observable A as Pn = |an⟩ ⟨an|. Projectors form a complete set and thus satisfy the identity

relation
∑

n Pn = 1. The measurement probability p of getting eigenvalue n for a general state

|ψ⟩ is given by Born rule

p(n) = ∥Pn |ψ⟩∥2 = ⟨ψ|Pn |ψ⟩ , (1.18)
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where the identity for projectors P 2
n = Pn has been employed and ∥A∥2 ≡

√
A†A is the two-

norm. Thus, the post-measurement state would be

|ψ⟩ → Pn |ψ⟩
∥Pn |ψ⟩ ∥2

. (1.19)

The expectation value of observable A is expressed as

⟨A⟩ =
∑
n

n ⟨ψ|Pn |ψ⟩ =
∑
n

np(n).

These are also called Projective measurements.

However, there is another set of generalized measurements known as Positive Operator Valued

Measure (POVM), defined as the decomposition of identity into m operators, i.e.

∑
m

M †
mMm = 1,

whereMm are called Kraus operators as defined in 1.1.4. The probability p(m) of getting outcome

m on density matrix ρ is given as

p(m) = Tr[Qmρ],

where Qm =M †
mMm. If ρ depicts a pure state ρ = |ψ⟩ ⟨ψ| then probability reduces to

p(m) = ⟨ψ|M †
mMm |ψ⟩ ,

which is equivalent to projective measurement as shown in equation 1.18.

1.1.7 Quantum Correlations

When quantum systems interact, information exchange occurs, giving rise to quantum correla-

tions. Physically, the amount of correlations is quantified aiding measurements. The crucial

distinction between classical and quantum systems lies in the fact that, ideally, measurements on

a classical system do not disturb its state, whereas measurements do disrupt the state of a quantum

10



1.1 Quantum Information

system. Quantum coherence, a consequence of quantum superposition, is a necessary condition

for the existence of quantum correlations [34, 35]. These quantum correlations serve as valuable

resources for a range of quantum technologies [36]. In the subsequent sections, we will delve

into the comprehensive description of two fundamental correlations: entanglement and discord.

1.1.7.1 Entanglement

Entanglement is the property of two or more quantum particles where the state of one particle

can’t be described without the knowledge of others. For two parties, Alice (A) and Bob (B),

pictorially the entanglement can be shown as fig 1.2. A measurement on any part of the entangled

Figure 1.2: Pictorial representation of entanglement

state collapses the whole state. Before the formulation of quantum mechanics, it was believed

that every physical theory should follow locality, realism and experimenter’s free will. However,

in 1935, the famous paper of Einstein, Padolosky and Rosen argued that quantum mechanics is

an incomplete physical theory as it does not obey local realism [37]. This was famously called

the EPR paradox and was troubling physicists for a few decades. EPR paradox was resolved in

1964 with the work of John Bell using a stroke of pen [13]. Bell’s theorem proves the maximum

amount of correlation that any theory can possess, obeying local realism. Consider a thought
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experiment in which A and B, located at a distance, receive one particle each from Charlie (C),

who prepares two particles by some means. A and B can perform two possible measurements

each for two different physical properties. Let’s define the physical properties using operators A0

or A1 for A and B0 or B1 for B. The measurement outcome for each property is binary, giving

value +1 or −1. Now, A and B make one measurement each. After repeating the experiment a

large number of times and by taking the average over trials, the expectation value of observables

is given by Bell’s inequality

⟨A0B0⟩+ ⟨A0B1⟩+ ⟨A1B0⟩ − ⟨A1B1⟩ ≤ 2, (1.20)

where the angle bracket denotes the average. Equation 1.20 is also called CHSH inequality [38].

Four famous two-qubit states, called Bell state, show the maximum amount of quantum entangle-

ment. These states are written as

∣∣ϕ±〉 = 1√
2
[ |00⟩ ± |11⟩ ]∣∣ψ±〉 = 1√

2
[ |01⟩ ± |10⟩ ]. (1.21)

However, quantum mechanics can violate Bell or CHSH inequality if C prepares the initial

state as one of the Bell states shown in equation 1.21. C then passes one qubit to A and another to

B where A has Pauli matrices σz and σx while Bob possess −(σx+σz)/
√
2 and (σx−σz)/

√
2 as

two of the possible measurements. After calculating the expectation value for pair of observables

as shown in equation 1.20, the equation is modified as

⟨A0B0⟩+ ⟨A0B1⟩+ ⟨A1B0⟩ − ⟨A1B1⟩ = 2
√
2, (1.22)

which exceeds the bound achieved earlier, obeying local realism theory. This is the maximum

amount of correlation value for pair of observables, also known as Tsirelson bound [39]. Soon

after Bell’s paper, John Clauser and Stuart Freedman performed the Bell test in the laboratory

[40], which was made more stringent by Alain Aspect and collaborators [41]. Additionally, Anton

Zeilinger utilized Bell states to experimentally carry out quantum teleportation [42]. Recently, the

trio of Aspect, Clauser, and Zeilinger was awarded the 2022 Nobel Prize in Physics [43, 44].
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Despite the theoretical progress, quantifying entanglement has been a non-trivial task for a

general quantum state. There have been some successful attempts in the same direction. For a

bipartite case, Peres [45] gave the Positive Partial Transpose (PPT) criteria according to which a

state ρAB is separable if the partial transposed matrix ρΓAB is a positive operator. It is a necessary

and sufficient condition for the separability of 2⊗2 and 2⊗3 cases. Some fundamental tools called

entanglement witness show the separability of quantum states. However, only very few witnesses

can measure the amount of entanglement in a quantum state, also called entanglement measure.

The postulate for a measure was given by Bennett et al. [46] based on local operation and classical

communication (LOCC) monotone, according to which, “Entanglement cannot increase under

local operations and classical communication.” Here we discuss some entanglement measures

for a bipartite case [47]. One of them being entanglement entropy defined for a pure bipartite

state ρAB as

S(ρA) = −Tr [ρA log ρA] = −Tr [ρB log ρB] = S(ρB), (1.23)

where ρA (ρB) represents the density matrix of subsystem A (B) after partial trace. It is worth

noticing that entanglement entropy is symmetric with respect to partition. A more generalized

way of quantifying entanglement for state ρ is called negativity, given by

N (ρ) = log2 ∥ρΓ∥1, (1.24)

where ρΓ denotes the partial transpose of state ρ and ∥A∥1 ≡ Tr
[√

A†A
]

is the trace-norm or

one-norm. There are a few other measures which can be used for entanglement quantification. A

distance-based measure called relative entropy of entanglement is defined as

S(ρ|σ) = Tr [ρ (log2 ρ− log2 σ)], (1.25)

where σ is the nearest separable state. Another measure for the two-qubit pure state ρ called

concurrence based on convex roof measure is given as

C(ρ) =
√

2 (1− Tr[ρ2A]) =
√

2 (1− Tr[ρ2B]), (1.26)
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where ρA (ρB) is the reduced density matrix of state ρ for subsystem A (B).

1.1.7.2 Discord

Discord was first introduced by Ollivier and Zurek in their seminal paper in 2001 [48]. In naive

terms, it shows the loss of information due to state measurement. It is considered a more general

form of measuring quantum correlation, i.e., states with zero entanglement but non-zero discord

exist. First, we need to understand the origin of discord to quantify the amount of discord [49, 50].

Let us take the example of two parties, A and B, which share mutual information as shown in

1.3. One can calculate mutual information in two ways

H(A : B) = H(A) +H(B)−H(A,B), (1.27)

H(A : B) = H(A)−H(A|B) = H(B)−H(B|A), (1.28)

where H denotes the entropy.

H(A) H(B)

H(B|A)H(B)

H(A) H(A|B)

H(A:B)

H(A,B)

Figure 1.3: Ways of calculating mutual information

Classically, these two ways are equivalent; however, in quantum mechanics, they differ. The

problem arises due to the second definition, which involves the knowledge of other subsystems.
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To do so, one performs the measurement, and the outcome depends on the measurement basis.

We can rewrite the mutual information in terms of Von-Neumann entropy

I(ρ) = S(ρA) + S(ρB)− S(ρ) (1.29)

JA(ρ) = S(ρB)− S(ρB|ρA)

JB(ρ) = S(ρA)− S(ρA|ρB). (1.30)

The difference between these two types of mutual information provides discord while maximizing

J over all measurement basis states,

DA(ρ) = I(ρ)−max
{ΠA

j }
JΠA

j
(ρ) (1.31)

DB(ρ) = I(ρ)−max
{ΠB

j }
JΠB

j
(ρ). (1.32)

Generally, discord is not a symmetrical quantity, i.e. DA(ρ) ̸= DB(ρ). Due to the maximization

involved, discord calculation is an NP-hard problem [51]. There doesn’t exist any analytical

formula for it.

1.1.8 Quantum Fidelity

The quantification of distance between two quantum operators is a useful tool. It has many

applications in quantum information, such as characterizing the final state in experiments and

quantifying entanglement [52]. One of commonly used measure trace distance between operators

A and B is defined as

T (ρ, σ) =
1

2
∥A−B∥1, (1.33)
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where ∥A∥1 ≡ Tr
[√

A†A
]

is the trace-norm or one-norm. The closeness between two unitary

operators U1 and U2 can be given in terms of distance as

∥U1 − U2∥21 = Tr
[
(U1 − U2)

† (U1 − U2)
]

= Tr
[
U †
1U1 + U †

2U2 − U †
1U2 − U †

2U1

]
= 2− 2Re

(
Tr
[
U †
1U2

])
= 2− 2Re(⟨U1|U2⟩), (1.34)

where identity for unitary matrices U †U = 1 has been exploited. The minimization of distance,

in turn, implies the maximization of second term, also known as Frobenius inner product. Thus,

the Operator fidelity between two operators is defined as

F1(U1, U2) = −Re(⟨U1|U2⟩)

or

F2(U1, U2) = |⟨U1|U2⟩|2, (1.35)

where the second expression is accurate up to a global phase, which is generally the requirement

in practical cases.

State fidelity representing the degree of closeness between a pair of pure state ρ = |ψ⟩⟨ψ| and

σ = |ϕ⟩⟨ϕ| can be defined as the transition probability [53]

F ( |ψ⟩⟨ψ|, |ϕ⟩⟨ϕ| ) = |⟨ϕ|ψ⟩|2. (1.36)

However, defining the fidelity for a general mixed state is more complex. The above expression

was further generalized implicitly by the same authors, also known as Schumacher’s fidelity [53]

F (ρ, |ψ⟩⟨ψ|) = ⟨ψ|ρ|ψ⟩. (1.37)

For a pair of general states ρ and σ, fidelity takes the following form

F (ρ, σ) = ⟨ρ|σ⟩ = Tr (ρ σ). (1.38)
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Another extensively used measure in literature is Ulhman-Josza fidelity, which is applicable to

general states and is expressed as [54, 55]

FUJ (ρ, σ) =

(
Tr
√√

ρ σ
√
ρ

)2

. (1.39)

It reduces to equation 1.36 for a pair of pure states and to equation 1.37 for a pair of pure and

mixed states. It is crucial to observe that all measures of operator and state fidelity are symmetric.

1.2 Experimental Quantum information

There has been tremendous progress in the experimental architectures for quantum information

processing in the last few decades. Till date, we have several noisy intermediate-scale quantum

(NISQ) devices, each having their strengths [56, 57]. Many tech giants like Google and IBM are

investing in practical quantum computers, and small startups are also emerging rapidly [20–22].

Although there is no winner at the moment, the race to build a fault-tolerant quantum computer

is on. We have multiple platforms for successful implementation of quantum processes, for ex-

ample, nuclear magnetic resonance [23, 58], superconducting qubits [27, 59], photonic comput-

ers [60–62], Nitrogen-vacancy center or defect center [63, 64], ion trap [26, 65], neutral atoms

[28, 66], Rydberg atoms [29, 67], and quantum dots [25, 68]. DiVincenzo described five criteria

to realize a universal quantum computer given as [69]

1. Logical qubit scalability.

2. Initialization in a simple, easy-to-prepare state.

3. Long coherence times.

4. Universal set of gates.

5. Easy qubit targeted measurement ability.

In this thesis, we have employed NMR as our test bed to implement control algorithms. Ini-

tially, we will provide an overview of the fundamentals of NMR and subsequently demonstrate

its application for quantum control algorithms.
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1.2.1 Nuclear magnetic resonance (NMR) test bed

NMR has a long history of successful advancements and bagging of two Nobel Prizes [70]. The

hardware is advanced, and the system is robust, thus making it the optimal candidate for per-

forming quantum information tasks. The initial applications of NMR for quantum information

processing were exhibited by Gershenfeld et al. for bringing forward the idea of multi-pulsed

NMR to quantum computing [71], Cory et al. for ensemble quantum computing [72] and Neilsen

et al. for teleportation [73]. After that, it gained the momenta, and various quantum information

tasks have been performed [23]. Here, we will now explain the quintessentials of NMR [74, 75].

1.2.1.1 NMR spin

As the name implies, NMR relies on the nuclear spins of atoms, which possess the spin angular

momentum operator I. The eigenvalues of I2 are given by I(I + 1)ℏ, where I represents the spin

number. Based on nucleons’ configuration, system can have spin I = 1/2, 3/2, · · · . For a single

spin-I of gyromagnetic ratio γ having magnetic moment µ = ℏγI under magnetic field B, the

corresponding Hamiltonian H0 is

H0 = −µ ·B = −ℏ γ I ·B.

For magnetic field B in the ẑ-direction with strength Bz, aforementioned Hamiltonian is refor-

mulated as follows

H0 = −ℏ γ Iz Bz = ℏω0 Iz, (1.40)

with ω0 = −γ Bz being the Larmour frequency of the nuclei. It is of the order of 101 − 102 MHz

based on the nuclei for magnetic fields of few tesla. The energy is contingent on the orientation

of the magnetic moment, attaining a minimum when the magnetic field is parallel to it and a

maximum when the field is anti-parallel to it for the positive value of γ. Conversely, for the

negative value of γ, the relationship is reversed [74, 75].

The Zeeman Hamiltonian 1.40 has the eigenvalues Em = −mℏω0 where m is the quantum

number having 2I + 1 discrete values m = −I,−I + 1, · · · , I − 1, I . We take the example of
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spin-1/2 nuclei, which form a two-level system with m = ±1/2.

1.2.1.2 Chemical shift

In a molecule, nuclei of the same species might experience different magnetic fields due to the

distinctive local electronic environment. This effect is also known as nuclear shielding. With a

good approximation, the induced field on jth spin due to an electronic cloud can be considered

linearly dependent on the external magnetic field, such that [74, 75]

Binduced
j = δj B, (1.41)

where δj is the chemical shift tensor. For the secular approximation where chemical shift is weak

compare to Zeeman interaction, the chemical shift Hamiltonian is given by

HCS
j = −µj ·Binduced

j

= −µj · (δjB)

= −ℏ γj δj,zz(θ, ϕ)Bz Ij,z. (1.42)

Here the term δj,zz(θ, ϕ) depends on the orientation of molecule and it takes the following form

δj,zz(θ, ϕ) = δj,11 sin
2 θ cos2 ϕ+ δj,22 sin

2 θ sin2 ϕ+ δj,33 cos
2 θ, (1.43)

where δ11, δ22, δ33 denotes the principal values of the chemical shift tensor. In an isotropic liquid

sample, molecules do tumbling motion, and time-averaged isotropic value of chemical shift tensor

reduces to the form

δj =
1

3
(δj,11 + δj,22 + δj,33). (1.44)
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The total Hamiltonian for jth spin due to static field and induced field is

H0 = −ℏ γj Ij,z (Bz + δjBz)

= ℏωj,0 Ij,z(1 + δj)

= ℏ Iz ωj, (1.45)

where each spin has a chemical shifted Larmour frequency defined as ωj = ωj,0(1 + δj).

1.2.1.3 Interacting spins

In a molecule, there can be more than one species of nuclear spins. If the spins are of same species

then the molecular system is called homonuclear system while for spins of different species, it is

called heteronuclear system. The interaction between these spins can be of multiple types such

as [74, 75],

• Direct dipole-dipole coupling D.

• Indirect spin-spin coupling J .

Nuclear spins with quantum number > 1/2 have asymmetric charge distribution resulting in elec-

tric quadruple interaction. However in this thesis, we have only worked with spin-1/2 nuclei,

hence it is not discussed here.

Direct dipole-dipole coupling is rather easier to understand. Each spin in the magnetic field

behaves like a tiny magnet with a dipolar moment. The magnetic fields of spins interact with each

other and couple through that. The corresponding Hamiltonian with the dipole-dipole coupling

D is

HDD =
∑
i< j

Ii ·Dij · Ij, (1.46)

where Dij is the dipole-dipole interaction tensor. In the high-field, the secular approximation can

be employed giving rise to reduced Hamiltonian of the form

HDD =
∑
i< j

dij(3 Iiz Ijz − Ii · Ij), (1.47)
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where dij =
bij
2
(3 cos2 θij − 1) is the secular dipole-dipole constant with bij = −µ0γiγjℏ

4πr3ij
and

θij being the angle between vector of magnitude rij joining the spins and external magnetic field

vector. For heteronuclear case, secular dipole-dipole Hamiltonian can further be reduced to the

following expression

HDD =
∑
i< j

2 dijIizIjz. (1.48)

It is clear from 1.47 that the dipole-dipole Hamiltonian depend on the molecule orientation. How-

ever, in an isotropic liquid sample, molecules keep moving around without having any particular

direction; thus, the time-averaged Hamiltonian vanishes.

On the other hand, even in the absence of dipolar-dipolar coupling, spins still show a non-

zero interaction. It is primarily attributed to bonding electrons between spins, resulting in an

intramolecular effect. Since it does not originate because of vector fields, motional averaging

leaves it unaffected. The Hamiltonian due to J -coupling is given by

HJ =
∑
i< j

2π Ii ·Jij · Ij, (1.49)

where Jij is J -coupling tensor. In an isotropic liquid due to rapid tumbling, similar to chemical

shift, the averaged J -coupling becomes Jij having the form Jij = 1
3
(Jij,xx + Jij,yy + Jij,zz).

Thus, the modified Hamiltonian takes the following form

HJ =
∑
i< j

2πJij Ii · Ij. (1.50)

The secular J -coupling Hamiltonian satisfying the condition 2π |Jij| ≪ |ωi − ωj| have two

different forms based on the type of nuclei interaction. For a homonuclear system, the secular

Hamiltonian remains similar to equation 1.50; however, for a heteronuclear case, the secular

Hamiltonian can be expressed as

HJ =
∑
i< j

2πJij IizIjz. (1.51)

J -coupling contributes to the total energy based on the sign of coupling and polarization of spins.
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The energy increases for a positive value of coupling and parallel spin, while for opposite spins,

energy decreases. On the other hand, for negative J - coupling, energy increases for opposite spin

polarization and decreases for parallel spin polarization. In this thesis, we have only used liquid

sample thus only J -coupling is present. The total Hamiltonian for a system of spins inclusive of

J -coupling is

H =
∑
i

ωiIiz +
∑
i< j

2πJij Ii · Ij. (1.52)

1.2.1.4 Spin manipulation

As explained in section 1.2.1.1, energy levels of the spins under high static magnetic field split

due to the Zeeman effect. For a field of 11.7 T, the Larmour frequency of 1H nucleus corresponds

to 500 MHz, falling within the radio frequency (RF) range. Consequently, these spins can be co-

herently controlled using RF fields. The magnetic field BRF generated through RF waves is small

compared to the static field. The effect of this weak field onto spin states gets accumulated over

time if the direction of magnetic field is resonant with spin precession. The effective Hamiltonian

due to the RF field along the transverse direction is given by [74, 75]

HRF(t) = −µ ·BRF

= −ℏ γ B1 cos (ωref t+ ϕp) Ix, (1.53)

where B1 is amplitude of the field while ωref and ϕp represent the oscillation frequency and initial

phase respectively. A linearly oscillating field can be imagined as two components of the same

frequency but rotating in opposite directions. Thus, we can recast the magnetic field generated

from RF pulses into two rotating components, namely resonant and non-resonant field

Bres(t) =
1

2
B1

{
cos(ωref t+ ϕp) êx + sin(ωref t+ ϕp) êy

}
Bnon-res(t) =

1

2
B1

{
cos(ωref t+ ϕp) êx − sin(ωref t+ ϕp) êy

}
, (1.54)

where êx and êy are unit vectors in x- and y-direction, respectively. The resonant field precesses

in the direction of the spin and gets coupled, while non-resonant component leaves it unaffected.
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By ignoring the non-resonant component, the total transverse RF field Hamiltonian is given by

HRF(t) = −1

2
ℏ γ B1

{
cos(ωref t+ ϕp) Ix + sin(ωref t+ ϕp) Iy

}
(1.55)

with ωp = −γ B1

2
representing the maximum RF field amplitude. The time dependence of RF

field can be removed by going into a rotating frame precessing with frequency ωref about z-axis

achieving the time-independent Hamiltonian

Hr = R−1HRF(t)R, R = exp(−iωrefIzt)

= ωpℏ
(
cosϕp Ix + sinϕp Iy

)
. (1.56)

In the rotating frame, the precession frequency is also modified as Ω = ω − ωref, representing

the difference between Larmour frequency and rotating frame frequency, referred as offset. The

effective field in the rotating frame is given by

Beff = B1

(
cosϕp êx + sinϕp êy

)
− Ω

γ
êz, (1.57)

where precession around the effective field Beff is characterized using nutation frequency having

the form ωnut = −γBeff. The effective Hamiltonian takes the following form in rotating frame

Heff = ΩℏIz + ωpℏ
(
cosϕp Ix + sinϕp Iy

)
, (1.58)

which reduces to equation 1.56 for the on-resonant case, i.e. ω = ωref. Following this, nutation

frequency ωnut also takes the form of ωp. From now onward, we will assume ℏ = 1.

1.2.1.5 Relaxation

Like all natural systems, a quantum system goes to equilibrium after a specific duration. However,

it starts loosing entanglement and superposition, some of the essential properties for computation

as it relaxes. Therefore, it is essential to characterize the relaxation time such that all computation

takes place before relaxation. In NMR, relaxation is majorly of two types [74, 75].

• Longitudinal relaxation (T1) : After any perturbation to longitudinal magnetization (Mz),
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it goes back to its original position in the z-direction influenced by static field. When

the magnetization becomes 63% of the initial value (M0), the time constant is called T1

relaxation time. A schematic for the magnetization recovery has been shown in figure

1.4. The process is also known as thermal relaxation or spin-lattice relaxation due to spin

transferring energy to the environment and going to thermal equilibrium. The revival of

longitudinal magnetization is written as

Mz(t) =M0 (1− e−t/T1). (1.59)

Figure 1.4: Revival of longitudinal magnetization with time

• Transverse relaxation (T2): The transverse component of magnetic field (Mxy), perpen-

dicular to static field B0, decays with time constant T2. During this time, a spin starts to

dephase and coherence decays. The process is also known as decoherence or spin-spin

relaxation as the spin experiences a local magnetic field from nearby spins in addition to

static field B0. The decay of magnetization can be shown using a schematic in figure 1.5

and mathematically given by

Mxy(t) =Mxy(0) e
−t/T2 . (1.60)

Typically T1 is of the order of seconds while T2 is of the order of 100 ms. Hence, T2 sets an
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Figure 1.5: Decay of transverse magnetization with time

initial bound on the computation time. These times vary from nuclei to nuclei and molecule to

molecule.

1.2.2 NMR quantum information processing

Nuclear spins in high magnetic fields form a two-level system, naturally making it a suitable

candidate for qubits. These qubits can be manipulated using the external RF field as explained

in the above section 1.2.1.4. Nonetheless, some ingredients are needed explicitly for quantum

computation [23]. We will explain them one by one as given below.

1.2.2.1 Quantum gates

In the gate model of computation, quantum gates are essential. These gates are implemented uti-

lizing the internal Hamiltonian of the molecular system in conjunction with the external RF field.

We require a set of one-qubit and two-qubit gates to have a universal set of gates.

Single-qubit gates: Single-qubit gates are fundamentally rotations in a 3-dimensional space.

Any single qubit gate can be executed with the help of a set of Pauli matrices and an identity

matrix. Single-qubit gates like NOT, Hadamard etc. are realized using RF pulses. As explained

in 1.2.1.4, an on-resonant x-pulse of angle θ is achieved by applying RF Hamiltonian with initial

phase being ϕp = 0◦ for a time duration τ such that pulse angle θ = ωpτ . Similarly, we need
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to change the initial phase to ϕp = 90◦ for rotation in the y-direction. The rotation operator for

x-pulse with rotation angle θ is given as

Rx(θ) = exp(−iθIx), (1.61)

which is essentially a NOT gate for an angle π

Rx(π) = exp(−iπIx) = −i

0 1

1 0

 . (1.62)

As −i represents the global phase and is not detectable, we can safely ignore it. We can obtain

the Hadamard gate by a sequence of two pulses given by

Rx(π)Ry(π/2) = exp(−iπIx) exp(−iIyπ/2)

=
−i√
2

1 1

1 −1

 , (1.63)

which depicts the Hadamard matrix along with undetectable global phase. A rotation about z-

axis with an angle θ is equivalent to phase shift gate. It can be achieved with a y-pulse of angle θ

sandwiched between x-pulses as follows:

Rz(θ) = R−x(π/2)Ry(θ)Rx(π/2)

= exp(iπ/2Ix) exp(−iθIy) exp(−iπ/2Ix)

= exp(−iθ/2)

1 0

0 eiθ

 . (1.64)

Thus, we can attain any single-qubit gate by appropriately choosing the rotation angle and phase

to design a sequence of pulse.

Multi-qubit gates: Along with Pauli operators, a 2-qubit CNOT gate results in a universal

set. We realize the multi-qubit gates by using the J -coupling as explained in section 1.2.1.3. The

26



1.2 Experimental Quantum information

evolution of a pair of spin with J -coupling for time t results in the following unitary

HJ = 2πJ I1 · I2, (1.65)

UJ = exp(−iHJt) = exp(−i 2πJ t I1 · I2). (1.66)

Using the product operator formalism [76], starting from the state ρ, the final state at time τ after

applying the operator αÔ is given as

ρ→ cos(ατ)ρ+ sin(ατ)[Ô, ρ], (1.67)

where [Ô, ρ] represent the commutator between operator Ô and initial state ρ. For a weakly

coupled system, the Hamiltonian reduces as described in equation 1.51 and the corresponding

unitary is

UJ = exp(−iHJt) = exp(−i 2πJ t I1zI2z). (1.68)

At time t = 0, we start with density matrix I1x, then the matrix after time t = τ would be:

I1x
2πJ t I1zI2z−−−−−−−→

τ
cos(πJ τ)(I1x) + sin(πJ τ)2Iy1Iz2, (1.69)

which is a correlated matrix between two qubits. Thus we can convert a uncorrelated density

matrix to correlated form using J evolution. A very popular 2-qubit CNOT gate can be realized

using the pulse sequence given as

UCNOT =
(π
2

)2
−y

(π
2

)1,2
−z

τ

2
(π)1,2y

τ

2
(π)1y

(π
2

)2
−y
, (1.70)

with τ = 1
2J . Using the RF pulses and J -evolution, we can implement various gates. We can

also realize the multi-qubit gates using the techniques of quantum optimal control, which has

been discussed in sufficient detail in the later section.
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1.2.2.2 State initialization

Engineering a pure state is ubiquitous in many quantum computing problems. Since the equilib-

rium state in NMR is a thermal state that corresponds to Boltzmann distribution at room temper-

ature, given as

ρthermal =
1

2N
+
∑
i

ϵiIiz, (1.71)

where ϵi = γi Bz

N kBT
∼ 10−5 is called the purity of the system. The first part of the thermal density

matrix remains invariant under unitary evolution, while the second part changes. In many tasks,

one wants to start with a pure state. However purity being quite a small factor in NMR, either one

needs very high magnetic field or very small temperature. In NMR, we use a pseudo-pure state

(PPS) [71, 77], which corresponds to a significant population difference between a ground state

and excited states and is isomorphic to a pure state. Thus, the extra population works as a pure

state signature while the rest acts as a background without any observable magnetization. The

density matrix for PPS is given by

ρPPS = (1− ϵ)
1

2N
+ ϵ ρpure. (1.72)

1.2.2.3 Measurement

Measurement is an essential aspect of practical quantum devices. In NMR, we observe mag-

netization of spins with respect to time. Due to inherent relaxation, the time domain signal of

magnetization decays, which is called free induction decay (FID). After doing the Fourier trans-

form of FID, we get the corresponding peaks in the frequency domain. Since, we have coils in

xy-plane, we can only observe the corresponding magnetization given by

M(t) = Tr[ρ(t)(σx + iσy)]. (1.73)

To find a full-density matrix at any given time, one must perform quantum state tomography

(QST), where each element must be measured separately.
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1.2.2.4 Decoherence time

As mentioned in the section above 1.2.1.5, we defined the two primary sources of errors given by

relaxation time T1 and T2. T2 is generally defined as a decoherence time for single spin coherence

and decoherence times for a multiqubit systems can differ. However, it gives a rough estimate

of the time, which is in the order of seconds for liquid states sample, while each hard pulse for

single-qubit and 2-qubit gate is in milliseconds. Thus, it is possible to implement reasonable deep

circuits in NMR.

A schematic of NMR is shown in figure 1.6. In the thesis, we have explored the usage of NMR

to carry out quantum control protocols. In the next section, we explain the basics of quantum

RF Generator

Detector

Magnet

Sample RF coils

Spectrum

Figure 1.6: A schematic of NMR system

control and describe some of the most commonly used algorithms.

1.3 Quantum Control

Control theory provides a way to control a dynamic system efficiently while minimizing re-

sources. It has seen tremendous progress over the years in various fields of science and engineer-

ing [78–81]. It has been used in engineering for aircraft cruise control, robotics, etc. [82]. Various
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scientific sub-branches, including molecular dynamics [83] and physical chemistry [84, 85], in-

corporate control theory to manipulate and understand dynamic systems.

Optimal control can be divided into problem classes such as open or closed loop control, nu-

merical or geometric optimal control, the Pontryagin maximum principle (PMP) or the Hamilton-

Jacobi-Bellmann (HJB) approach, etc. In the closed-loop control, new controls are calculated

based on the feedback, while open-loop control deals with prior optimization of controls before

applying them to a physical system. In the other class, numerical or geometric optimal control

deals with the type of algorithms used in optimization, such as a geodesic approach for geometric

control and a gradient-based approach for numerical control. PMP or HJB provides conditions

for the optimality of the dynamical equation. PMP provides a necessary condition for extremum

solution along the trajectory, while HJB provides a necessary and sufficient condition for finding

the optimum of a dynamical system. However, it is generally rather difficult to solve the HJB

equation numerically.

As quantum mechanics became more popular and influential in many fields of Physics and

Chemistry, the control of quantum systems became more ubiquitous, giving rise to the field of

quantum control theory (QCT). There are various ways of controlling quantum systems, but they

can be divided into the following parts.

• Quantum optimal control theory (QOCT): QOCT is the most widely used class of tech-

niques for controlling quantum systems. As the name suggests, it tries to find the optimal

strategies to control a quantum system for tasks such as unitary evolution, state-to-state

transfer, etc. The fundamental principles of these techniques are based on numerical opti-

mization algorithms. There has been significant progress in using optimization algorithms

such as gradient-based methods, variational principle-based methods, metaheuristic algo-

rithms, etc., for quantum control [86–90]. We will discuss them in detail subsequently.

• Lyapunov-based control: These control methods are based on the Lyapunov function

invented by Aleksandr Lyapunov [91] and used for finding the stability of a dynamical

equation. Control-Lyapunov functions are an extension of ordinary Lyapunov functions

where we try to find controls which drive the system’s state to the lowest energy state

asymptotically [92]. For the Lyapunov function V , we want to find controls such that

V̇ ≤ 0 corresponding to the Lyapunov stable region. P. Vettori [93] as well as Symeon
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Grivopoulos and Bassam Bamieh [94] used it for quantum control in the context of state

transfer. Consequently, it was used in experiments and theoretical approaches [95–97].

There have been proposals for advanced versions of Lyapunov-based control, which deals

with specific problems of the scheme, such as reduction in total evolution time [98, 99].

• Incoherent control: The usual control approaches consider the system’s Hamiltonian evo-

lution pertaining to coherent control. However, there are some tasks, for example, different

spectra for initial and final states, same target state for different initial states, etc., where

coherent controls have limited advantage. In such a case, we exploit incoherent controls

(non-unitary dynamics) using environment [100, 101].

1.3.1 Quantum optimal control theory (QOCT)

In this thesis, we are mainly going to use QOCT. Let us consider a quantum mechanical system

with a drift/constant Hamiltonian H0, and the system is being controlled using external electro-

magnetic fields governed by time-dependent Hamiltonian Hc(t). A general structure of the total

Hamiltonian H(t) is

H(t) = H0 +Hc(t)

= H0 +
M∑
k=1

uk(t)Hk. (1.74)

Here uk(t) are time-dependent controls, Hk are the corresponding control Hamiltonians, and M

is the number of qubits. The task of quantum control is to achieve a desired unitary or target state.

In a closed system, the evolution is governed by Schrödinger equation 1.6 or 1.7. We can divide

the control problem based on the target into two types:

• Unitary transformation (UT): In this, the goal is to achieve a desired unitary Uf under

which the evolution of quantum system is taking place governed by equation 1.6. The

fidelity between target unitary Uf and simulated unitary Us as explained in equation 1.35 is

defined as

Fu(Uf , Us) = |⟨Uf |Us⟩|2 =
∣∣∣Tr(U †

f Us

)∣∣∣2. (1.75)
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• State-to-state transfer (s2s): Starting from a initial quantum state ρ0 to reach to the final

desired state ρf under the evolution 1.7. We can define the state fidelity between target state

ρf and simulated state ρs as described in equation 1.38

Fs(ρf , ρs) = ⟨ρf |ρs⟩ = Tr (ρf ρs), (1.76)

However, it is convenient to use the slightly modified form of fidelity, also called correlation, for

the traceless part of the density matrix, which takes into account purity [102]

Fc(ρf , ρs) =
Tr(ρf ρs)√
Tr(ρ2f ) Tr(ρ

2
s)
. (1.77)

Unitary transformation is more general as it doesn’t take into account the state of the system and

can be applied to any initial state irrespective of optimization procedure. However, the state-to-

state transfer is more restrictive and can only be applied to a particular pair of initial and target

states used in optimization.

Figure 1.7: (a) Control amplitude vs time (b) Division of control amplitude into N segments each of δt
time interval with amplitude ujk for jth segment (red curve represent the control amplitude after piecewise
constant approximation).
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One example of control amplitude vs time is shown in 1.7 (a). As our Hamiltonian 1.74 is

time-dependent, solving the time-dependent Schrödinger equation is not a straightforward task.

Given this, we resort to the piece-wise constant approximation. It is a widely used approximation,

simultaneously being practical and advantageous. We divide the controls uk(t) into N constant

segments, each of the same time duration δt as shown in 1.7 (b). After the piece-wise constant

approximation, the Hamiltonian for jth segment is

Hj = H0 +
M∑
k=1

ujkHk. (1.78)

Due to the removal of time dependency, it becomes much easier to solve the above equation. The

corresponding unitary for jth segment is

Uj = exp(−iHj δt). (1.79)

As a consequence, the total unitary U(T ) after a time duration of T is written as the product of

different segments unitaries time-ordered from 1 to N

U(T ) = UN UN−1 · · · U2 U1. (1.80)

To simulate a unitary, we find control amplitudes ujk followed by the control Hamiltonians Hj .

We employ numerical optimization techniques and some machine learning optimization protocols

for this. To this end, we look for an optimization function that would be an important ingredient

for the algorithm. We choose unitary or state fidelity as described in 1.75 and 1.76, respectively.

Along with maximizing the fidelity, we also wish to minimize the resources. For electromagnetic

fields, total power is a resource to be minimized. In general, time is another parameter to be min-

imized. Thus, we formulate our final optimization function with fidelity and power consumption

J = F − λk

M∑
k=1

N∑
j=1

u2jk, (1.81)

here λk is called the penalty parameter. Using an optimization algorithm, we aim to maximize

the function J or minimize J̃ = 1 − J . The following section describes some of the most used
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and famous quantum control algorithms.

1.3.2 Quantum control algorithms

In the last few decades, ample research has been done to advance quantum control algorithms.

The first mathematical formulation of time optimal controls in coherent spectroscopy was shown

by Khaneja et al. in their seminal paper [103]. It was a geometric approach with shortest paths

lying on certain coset space. At the same time, people started looking at other geometric ap-

proaches, such as Pontryagin’s maximum principle for finding optimal protocol for population

transfer [104] as well as time optimal control [105]. From a different perspective, Fortunato et

al. [102] developed strongly moduled pulses based on a direct numerical search algorithm called

the Nelder-Mead simplex search. With this, numerical methods ushered in; however, a system-

atic and practical algorithm still needed to be developed. As a heuristic algorithm, Nelder-Mead

suffered from a convergence problem and found it challenging to scale to higher qubits.

The formulation of a gradient-based method called Gradient Ascent Pulse Engineering (GRAPE)

proposed by Khaneja et al. [106] attained immediate popularity for a general quantum control

problem. The power of the GRAPE algorithm lies in straightforward analytical form of gradients.

There have been many variants of the GRAPE algorithm to tackle specific issues. Some of the

famous incorporations to enhance the convergence of GRAPE protocol are conjugate gradients

[107], quasi-Newton BFGS method [108], Newton-Raphson method [109], push-pull algorithm

[110], etc.

V. F. Krotov developed a variational principle-based optimization method [111] utilizing a

Lagrange multiplier to have unconstrained optimization functional. Due to its global nature, it is

expected to have better convergence. It was first used for optimal control of spin systems in NMR

and dynamic nuclear polarization in 2008 by Maximov et al. [112]. Later, it was also used for

spatial-selective pulses in magnetic resonance imaging [113].

Along with the Nelder-Mead simplex search, there are other direct search or heuristic algo-

rithms. One of them is simulated annealing (SA), which has been used for solving quantum

circuit transformation problems [114], optimizing quantum circuits for simultaneous dense pro-

tocol [115], and preparing high fidelity quantum controls [116]. Another famous class consists of

evolutionary algorithms inspired by biological evolution. Genetic algorithms based on the ingre-
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dients of biological evolution, such as recombination and mutation, have been used for quantum

optimal control of qutrits [117], generating unitary and nonunitary quantum controls [118], and

for preparing singlet order in an 11-qubit register [119], etc. Differential evolution using the same

principles of evolution yet based on vector differences has also been used for gate control [117]

and control of open quantum system [120].

Chopped Random Basis Optimization (CRAB) was first developed for control of time-dependent

density matrix renormalization group (DMRG) simulations [121] and was later generalized for

other quantum processes [122]. In this, we expand the controls in functional space basis such

as Fourier space, Lagrange polynomials, etc. It has two distinct features: first, the function ba-

sis space is truncated at a finite dimension, and second, the corresponding basis functions are

randomized to improve convergence. In recent years, there have been many applications of the

CRAB algorithm, e.g. bandwidth-limited pulses [123], control of Bose-Einstein condensates

[124], robust adiabatic population transfer in Nitrogen vacancy center [125], etc.

Gradient optimization of analytical controls (GOAT) is another gradient-based algorithm in

which the gradients are calculated analytically. Analytical gradients make the algorithm flexible,

accurate and practical [126].

As machine learning became prevalent in many areas of life, it also followed the advancement

of ML-based control algorithms. Most of these algorithms rely on reinforcement learning (RL)

based methods; however, other methods have also been used. RL gained fame after winning

the Go game against a world champion [127]. It tries to find the best optimal strategy to move

in the parameter space based on its history without requiring external training data as input.

It was used for control of non-integrable many-body system [128], universal robust quantum

control [129], quantum gate control [130], state preparation [131] etc. Some other methods,

e.g. deep learning, have also been employed for robust quantum control [125]. Recently, some

work displayed the usage of Physics-informed neural network (PINN) to solve quantum control

problems via solving Schrödinger equation [132] and Markovian open system dynamics [133].

Another subset of ML algorithms called differential programming has also been employed for

tasks like eigenstate preparation [134] and control of the quantum thermal machine [135].

Various hybrid algorithms have used the strength of two or more control algorithms. A com-

bination of GRAPE and Krotov algorithm utilizes the simplicity and speed of GRAPE algorithm
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at initial times while the monotonic convergent behaviour of Krotov at later times [136]. Eitan

et al. combined Krotov and quasi-Newton method for accelerated convergence [137]. A merger

of heuristic algorithm SA and GRAPE, namely SAGRAPE, uses the structural form of gradients

while trying to explore a broader parameter space [116]. Machine learning algorithms such as

differential programming and CRAB algorithm for speeding up of magnon transport [138] as well

as recommender system along with GRAPE and SAGRAPE have been used for expediating the

original algorithms for unitary synthesis in large quantum systems [139]. A summary of different

control algorithms is presented in table 1.2.

Algorithm Features Drawbacks
Strongly
modulated
pulses

First numerical algorithm,
adaptable

Computationally resource
heavy, convergence issue,
scaling problem

GRAPE
Easy gradient formula,
numerically efficient

Get stuck in local minima,
sensitive to initial guess

Krotov
Monotonically conver-
gent

Convoluted updates, higher
computational resources

Simulated
annealing

Heuristic, local minima
escape

Scaling up, slow

Evolutionary
algorithm

Adaptable, global search
Slow, computationally expen-
sive

CRAB
Functional space control
expansion, flexibility in
optimization routine

Sensitivity to chosen model

GOAT Analytical controls Sensitivity to chosen model

RL
Local optima overcome,
improved convergence

Difficult to implement

PINN
Takes information of un-
derlying physical model

Needs more research

Hybrid
Simultaneous advantage
of two or more methods

Enhanced complexity, fine-
tuning of various parameters

Table 1.2: A summary of different control algorithms

1.4 Machine learning

Machine learning is a branch of computer science that tries to use data and algorithms to mimic

how humans behave. It is based on the human brain structure where thousands of neurons contin-
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uously talk to each other [140]. The basic machine learning algorithms are based on the regression

principle and try to predict the future outcome. With the invention of better storage devices and

enhanced computational power, these methods have been routinely used in academia and industry

for the last few years [141].

There are some terms like machine learning (ML), neural network (NN), and deep neural

network (DNN) which are used interchangeably quite a lot. Although all these are branches of

artificial intelligence (AI), we can consider machine learning as a branch of AI, NN as a branch

of ML and DNN as a branch of NN [142].

ML deals with all algorithms used to model the datasets. These models can be further used

for the prediction of future outcomes. The early algorithms in the field of ML include linear

regression [143], principal component analysis [144], decision trees [145] etc. We can mainly

divide ML into three classes:

1. Supervised learning: This ML model type connects input and output via a particular math-

ematical function by finding the underlying data pattern. In this class, there are specific

labels assigned to outputs. It is the primary form of ML, yet it is convenient and practical.

2. Unsupervised learning: If no labels are associated with outputs, it is more difficult to

predict the outcome. However, unsupervised learning-based methods can be helpful in this

regard.

3. Reinforcement learning: This differs from the above two as it does not need any data to

learn the underlying model. It is based on trial and error, such that it gets rewarded for each

excellent step and punished for a bad one. Thus, it learns from its previous history only.

However, as computers’ storage capacity and computational power increased, the ML sub-

group called NN became more prevalent. The neurons in NN are called artificial neurons; the

network is the artificial neural network (ANN). The basic structure of a neural network is shown

in figure 1.8 having an input layer, a hidden layer and an output layer.

In NN, there are three primary components: the input layer needed to encode the input data,

the hidden layer for processing and the output layer that reveals the outcome. If NN has more

than one hidden layer, it is called a deep neural network (DNN). Each layer has multiple neurons

based on the dataset available. Each neuron would connect with other neurons in the same or next
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Figure 1.8: Neural network

Figure 1.9: Mathematical processing of a neural network where xi are inputs, wi,j are the weights, bj are
bias, and yj are output.

layer. The strength of these connections can be defined via weights wij , thus forming a matrix

W . Each neuron has a constant value called bias bi, which helps make the model more general

and accurate. Bias does not depend on the previous layer but is a somewhat independent quantity

to adjust the origin of the activation function. The activation functions, e.g. sigmoid, hyperbolic

tangent, ReLu, etc., are generally non-linear function, which takes the sum of weights multiplied

input and bias, a linear function as argument. After applying these functions, the output of a

neuron becomes the non-linear function, which is more general and helps us better model the
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Figure 1.10: Classification based on data type and processing device.

data [146]. Thus, a NN is considered a universal function approximator with the appropriate

number of neurons and layers. We use this property in one of the problems described in 5. The

processing of a neuron is shown in 1.9.

In recent years, there has been rapid progress in the intersection of quantum mechanics and

machine learning. There are four types of possibilities we can have, as shown in 1.10

1. Classical data with a classical information processing device (CC, upper left), such as image

recognition and computer vision using deep neural network [147], have gained adequate

recognition.

2. Quantum data with classical devices (QC, bottom left) has made a big impact in the last few

years. Since quantum data increases exponentially with qubit size, finding the optimal al-

gorithms and showing the advantage became easier. The most prominent examples include

quantum phase transition [148], quantum state tomography [149], ground state reconstruc-

tion of a quantum Hamiltonian [150], controlling the quantum dynamics [128] etc.

3. Classical data with quantum devices (CQ, upper right) uses classical data but processes it on

quantum devices such as boson samplers, quantum computers, etc. The primary examples

include handwriting recognition on a 4-qubit NMR system using quantum support vector
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machine [151], robust binary classification using quantum adiabatic optimization [152], a

quantum algorithm for well-known recommender systems [153], etc.

4. Quantum data with the quantum device (QQ, bottom right) has been advantageous in simu-

lating the quantum Hamiltonian on a programmable quantum simulator, also called digital

quantum computation [154–156]. Some other examples of the QQ section include quan-

tum Hamiltonian learning using quantum algorithms [157, 158], state tomography using

quantum Boltzmann machines [159], quantum convolutional neural network [160], etc.

ML has impacted all areas of quantum information and quantum mechanics. Here in this the-

sis, we specifically deal with quantum data processed on classical devices. We utilize specific ML

algorithms and show their use cases with quantum data, especially in quantum characterization

and control.

1.5 Characterization and control of quantum dynamics

Introduction to dynamical equations is crucial as they underlie the behavior of diverse physical

systems, spanning classical mechanics, social behavior, economic dynamics, and chemical re-

action dynamics. The quantum realm introduces challenges, where the Schrödinger equation or

Von-Neumann equation governs system behavior, necessitating efficient characterization and con-

trol of quantum dynamics. The involvement of operators in quantum mechanics adds complexity,

making rapid evolution assessment a non-trivial task.

Addressing the challenges in quantum dynamics, this thesis focuses on the development of

computational methodologies for both characterizing and controlling quantum systems. We em-

ploy a recommender system, a machine learning algorithm, in the characterization phase to pre-

dict quantum correlation for unitary and non-unitary evolution. This contributes to an efficient

understanding of quantum dynamics.

In the realm of quantum control problems, applying classical control theory directly is not

straightforward. Therefore, specific control theories tailored for quantum evolution are essential.

Mathematical tools and an NMR test bed are utilized as experimental setups to develop and

validate new control protocols for addressing specific issues in quantum control algorithms.
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Quantum Dynamics

Quantum Control

Expedited 
controls

Quantum Characterization

Push-pull  
controls

ML generated 
controls

Efficient 
Characterization

Figure 1.11: A brief overview of the thesis.

The thesis delves into four main topics:

(i) Recommender system-based efficient characterization of quantum dynamics.

(ii) Utilizing a recommender system to expedite algorithms.

(iii) Enhancing algorithm convergence by deploying orthogonal operators.

(iv) Implementing Physics-Informed Neural Network (PINN) for robust controls,

as described in the accompanying flowchart 1.11. We now move on to explaining each topic in

detail in subsequent chapters.

This comprehensive exploration contributes to advancing the understanding and control of

quantum dynamics, providing valuable insights into both characterization and control method-

ologies.
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CHAPTER 2

Efficient Characterization of Quantum Evolutions via a

Recommender System

Abstract

In this chapter, we demonstrate characterization of quantum evolutions via matrix factor-

ization algorithm, a particular type of the recommender system (RS). A system undergoing

a quantum evolution can be characterized in several ways. Here we choose (i) quantum

correlations quantified by measures such as entropy, negativity, or discord, and (ii) state-

fidelity. Using quantum registers with up to 10 qubits, we demonstrate that a RS can effi-

ciently characterize both unitary and non-unitary evolutions. After carrying out a detailed

performance-analysis of the RS in two-qubits, we show that it can be used to distinguish a

clean database of quantum correlations from a noisy or a fake one. Moreover, we find that

the RS brings about a significant computational advantage for building a large database

of quantum discord, for which no simple closed-form expression exists. Also, RS can

efficiently characterize systems undergoing non-unitary evolutions in terms of quantum

discord reduction as well as state-fidelity. Finally, we utilize RS for the construction of

discord phase space in a nonlinear quantum system.

Reported in

Priya Batra, Anukriti Singh, and T. S. Mahesh, Efficient Characterization of Quantum

Evolutions via a Recommender System, Quantum, 5, 598 (2021).

2.1 Introduction

Machine learning is increasingly featuring in almost every aspect of our understanding of the

world. A popular class of machine learning, namely the Recommender System (RS), is often
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used to orient consumers towards certain products according to individual preferences [161–163].

There are many approaches to build an RS, such as the content based system, where recommenda-

tions are based on users’ past experience [164, 165], knowledge based system, where one uses the

knowledge of users and items to render the recommendations [166], and the widely used collab-

orative filtering, which exploits the user-item correlation, i.e., the interconnection between users’

preferences among products with the recommendations provided by other users [167, 168]. Col-

laborative filtering can be implemented by neighborhood methods or by latent-factor modeling.

Matrix factorization algorithm (MFA) is a popular tool for implementing latent-factor modeling

based RS. It can predict the rating of a specific item by a particular user based on the self-rating

of other items as well as others’ ratings of various items [169].

The recent spurt of machine learning applications for quantum information tasks includes

its usage in quantum tomography [149, 170], quantum error correction [171], quantum control

[172], understanding quantum phase transitions [148, 173], and studying quantum-many-body

problems [150, 174]. It has been shown recently that machine learning techniques can work as

state classifiers too. Sirui Lu and co-workers have shown the separability criteria of entangled

state using convex hull approximation and supervised learning [175]. Ma and Yung showed that

it is possible to classify the separable and entangled states using artificial neural networks [176].

The work has been further extended to experimental data [177] and later has been applied to

simultaneous learning of multiple nonclassical correlations as well [178]. Valeria Cimini and co-

workers proposed an artificial neural network to calculate the negativity of the Wigner function

for multi-mode quantum states [179]. The connection between geometric and entropy discord

has also been explored using machine learning [180].

2.1.1 Objectives

In this work, we employ an RS for characterizing quantum evolutions in terms of change in quan-

tum correlations as well as fidelities. Following this,

(i) We perform a detailed study of the RS performance on a two-qubit register with respect to pre-

diction accuracy, dependence on the database dimensions, and dependence on the size of latent

vectors.

(ii) By observing the dependence of prediction efficiency on systematically introduced noise in
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the input database, we infer that an RS can identify a noisy (or fake) database from a genuine one.

(iii) Using two- and three-qubit registers, we compare the computational efficiency of RS predic-

tion of quantum discord with that of the standard method. We demonstrate that, within certain

precision limits, an RS can be considerably faster than the standard method. For example, starting

from a sparse database of quantum discord, RS can completely fill it out an order of magnitude

faster than the standard methods.

(iv) We then show the scalability of RS in larger systems by predicting quantum correlations and

fidelities of unitary evolutions on registers with up to 10 qubits.

(v) We also examine the RS ratings of non-unitary evolutions by predicting discord changes and

fidelities of a two-qubit system subjected to independent single-qubit decoherence channels.

(vi) Finally, we demonstrate another important application of RS prediction in studying quantum

nonlinear systems. Specifically, we use the RS prediction to efficiently construct the phase space

diagram of a quantum kicked top.

These studies help us understand and characterize the behaviour of systems in the deep quan-

tum regime, and thereby aid in building efficient quantum protocols for quantum computing and

information processing tasks.

2.2 Recommender system via matrix factorization

MFA represents the user-item interaction in a lower dimensional latent space [181]. Consider a

set of m users and a set of n items. Each user i is represented using a parameter vector Θ(i) ∈ Rf

and each item j is represented using a feature vector X(j) ∈ R
f (Fig. 2.1(a)). Here Rf is the

coordinate space of dimension f over real numbers. The interaction between a user i and an item

j is modeled by the scalar product

ri,j = Θ(i) ·X(j) =

f∑
l=1

Θ
(i)
l X

(j)
l (2.1)

that is conceived as the predicted rating. Now the task reduces to finding for all users and all

items, the latent vectors consistent with known ratings and thereby making the best predictions

about the unknown elements.
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Figure 2.1: (a) Movie database. (b) Database of change ∆Ci,j in quantum correlations of states ρi caused
by evolutions Uj .

We start with random guesses for the latent vectors and evaluate rating elements ri,j . Let

κ = {(i, j)} be the set of user-item pairs for which the ratings Ri,j are known. The mismatch

between the evaluated and actual ratings is quantified by

J0 =
∑

(i,j)∈κ

(ri,j −Ri,j)
2. (2.2)

The next step is to optimize the latent vectors by minimizing the mismatch J0. Over-fitting is

avoided by including two regularization terms in the objective function

J =
J0
2

+
λ

2

m∑
i=1

∥Θ(i)∥+ λ

2

n∑
j=1

∥X(j)∥, (2.3)

where λ is the regularization parameter and ∥ · ∥ denotes the norm of the vector. We may now

use the first-order gradient descent algorithm for the minimization task. The gradients in the kth
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iteration can be cast as

GΘ(i,k) =
∂J (k)

∂Θ(i,k)

=
∑

j∈κ(i,.)

(r
(k)
i,j −Ri,j)X

(j,k) + λΘ(i,k),

GX(j,k) =
∂J (k)

∂X(j,k)

=
∑

i∈κ(.,j)

(r
(k)
i,j −Ri,j)Θ

(i,k) + λX(j,k), (2.4)

where κ(i,.), κ(.,j) ⊂ κ with the respective indices being fixed. The latent vectors for (k + 1)th

iteration are now updated according to

Θ(i,k+1) = Θ(i,k) − αGΘ(i,k) and

X(j,k+1) = X(j,k) − αGX(j,k) , (2.5)

where α is the suitable step size. After a final number K of iterations, with a desired value of

the objective function, one can calculate the final rating r(K)
i,j = Θ(i,K) · X(j,K) for all unknown

elements (i, j) /∈ κ [181, 182].

2.3 Adapting the recommender system

It is insightful to consider the example of viewers’ ratings of movies. Every viewer rates some

of the movies, thereby leaving an imprint of personal tastes or preferences, apart from assessing

individual movies (Fig. 2.1(a)). The RS aims to predict ratings for movies not yet seen/rated

by the viewer, considering the viewer’s tastes as well as the recommendations provided by other

viewers. In our RS, quantum states are viewers and quantum evolutions are movies (Fig. 2.1(b)).

A state transformed by a quantum evolution undergoes a change in its internal quantum correla-

tion that can be labeled as the state’s rating of the evolution. Our objective is to predict unknown

ratings in the state-evolution database.

Consider a database R formed by ns randomly generated quantum states {ρ1, ρ2, · · · , ρns}

and nu randomly generated unitary operators {U1, U2, · · · , Unu}. A random unitary operator is
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generated by matrix exponentiation of a random anti-Hermitian generator. Random pure states

are generated simply by normalizing a random vector of complex elements. We use Bures method

[183, 184] to generate a random mixed state ρ = RR†/Tr[RR†] with R = (1 + U)A, where 1

is the identity matrix, U is a random unitary operator, and A is a random complex matrix. An

element of the database matrix R, corresponding to ith state and jth unitary operator is the change

in a measure C of quantum correlation,

Ri,j = ∆Ci,j = C(UjρiU
†
j )− C(ρi). (2.6)

We consider the following three measures of quantum correlation:

(i) Von Neumann Entropy S(ρAi ) = −Tr[ρAi log ρAi ] of a pure state ρAB
i = |ψAB

i ⟩⟨ψAB
i | [185].

The entropy change ∆Si,j = S(Ujρ
A
i U

†
j )− S(ρAi ) is listed in the database as entropy rating.

(ii) Negativity of a general quantum state ρAB
i , pure or mixed N(ρAB

i ) = ∥RA∥−1
2

, where

RA is the partial transpose of ρAB with respect to the subsystem A, and ∥RA∥ = Tr
√
R†

ARA

is the trace norm of RA. The change in negativity brought about by a unitary operator Uj is

∆Ni,j = N(Ujρ
AB
i U †

j )−N(ρAB
i ). Since the two-qubit negativity is bounded between 0 and 1/2,

it is convenient to compare twice of negativity with other measures.

(iii) Discord D(ρAB
i ) = I(ρAB

i )−max{ΠA}J(ρ
AB
i ),where I(ρAB

i ) = S(ρAi )+S(ρ
B
i )−S(ρAB

i )

and J(ρAB
i ) = S(ρBi )− S(ρBi |ρAi ) are the classically equivalent measures of mutual information

[48, 186]. Discord is estimated numerically by maximizing J over all possible measurement

bases {ΠA} in subsystem A. Despite being a stronger measure of quantum correlation, it has

no simple analytical expression unlike entropy and negativity. Yichen Huang has recently shown

that the complexity for computing discord is NP complete and the computational resource for

computing discord is set to grow exponentially with the dimension of the Hilbert space [187].

Therefore it is interesting to see how well machine learning performs in predicting the change in

quantum discord ∆Di,j = D(Ujρ
AB
i U †

j ) − D(ρAB
i ). Of course, for an uncorrelated initial state,

the prediction is an estimate of the discord content in the transformed state itself.
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2.4 Rating unitary evolutions

Figure 2.2: Red dots represent the RS predictions of changes in two-qubit correlations: entropy change
∆S (a), negativity change 2∆N (b), and discord change ∆D (c), plotted against the actual values (∆S0,
2∆N0, ∆D0) and the number nr of unknown elements in a database of 1000 states and 1000 unitary
operators. Blue lines represent the ideal case ∆C0 = ∆C. The RMSD value δC is also shown in each
case.
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2.4 Rating unitary evolutions

We first consider a million-element rating database R formed by ns = 1, 000 randomly generated

two-qubit quantum states and nu = 1, 000 randomly generated two-qubit unitary evolutions.

From the complete database, we randomly remove a set κ̄ = {(i, j)} of nr elements, which are

to be predicted by the RS. The prediction error is measured by the root-mean-square deviation

(RMSD)

δC =

 ∑
(i,j)∈κ̄

(∆C0i,j −∆Ci,j)
2

1/2

, (2.7)

between the actual correlation changes {∆C0i,j} and their predicted values {∆Ci,j}. Results of

the RS predictions for a two-qubit register are displayed in Fig. 2.2 (a-c). Here, the predicted

values ∆C are plotted versus the actual values ∆C0 for various numbers nr of unknown ratings.

Entropy ratings (Fig. 2.2(a)) are for pure states, while the negativity (Fig. 2.2(b)) and discord

ratings (Fig. 2.2(c)) are for mixed states. It is clear that the RS is quite successful in predicting

the changes in all the correlation measures. Particularly, the discord predictions are impressive,

and even better than that of other correlations. The RMSD values remained below 0.05, except

for nr = 9 × 105 which corresponds to 90% of the million-element database being unknown. A

systematic growth of RMSD w.r.t. nr is also observed, which is expected since, as the database

becomes more and more sparse, the minimum in latent space turns shallower, and accordingly

more uncertain will be the predictions.

2.4.1 Rating the Werner state

To observe the RS in action with a concrete example, we replace one of the random evolutions

with the two-qubit controlled-NOT operation UCNOT = |0⟩⟨0|⊗12+|1⟩⟨1|⊗σx,where 12 is the

2×2 identity operation and σx is the NOT gate. Additionally, we choose one of the input states to

be the separable state, ρ− = (1− ϵ)14/4 + ϵ|−⟩⟨−| ⊗ |1⟩⟨1|, where |−⟩ = (|0⟩ − |1⟩)/
√
2 is the

single-qubit superposition state and the scalar quantity ϵ is the purity of state. While the state ρ−

is a pure state for ϵ = 1 and becomes completely mixed for ϵ = 0, it is separable for all values of

ϵ, and hence has zero negativity and discord. Upon acted by the CNOT operation, ρ− transforms

into the Werner state ρW = (1 − ϵ)14/4 + ϵ|S0⟩⟨S0|, which is the convex sum of the maximally
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mixed state and the singlet state S0 = (|01⟩−|10⟩)/
√
2. While ρW is quantum correlated and has

nonvanishing discord for all values ϵ > 0, it is entangled and has nonzero negativity for ϵ > 1/3

[186]. Here the RS is interesting as the initial state ρ− is quantum uncorrelated and therefore the

predictions correspond to the amount of discord or negativity in ρW itself. Fig. 2.3 plotting the

predicted values ∆N and ∆D versus the purity factor ϵ shows an excellent agreement between

actual and predicted values. RMSD also remained less than 0.05 indicating the high quality of

predictions.
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Figure 2.3: Symbols indicate the predicted values of ∆N and ∆D values for the quantum uncorrelated
input state ρ− transformed into the Werner state ρW by the CNOT operation. Solid lines represent actual
values and symbols represent predicted values as indicated by the legend box. The RMSD values are
δ2N = 0.026 and δD = 0.038.

2.4.2 Dependence on the dimensions of database and latent vector

Here we consider the two-qubit case. We can fix the number of unknown ratings nr = 100, and

vary the dimension of the database. We constructed a set of databases with number of states ns

varying from 10 to 10,000, and the number of unitaries nu varying from 10 to 1000. Fig. 2.4(a-c)

display RMSD values of entropy, negativity, and discord respectively. As expected, for a fixed

number nr of unknown ratings, the RS efficiency in terms of RMSD improves with the size of the

database. We observe an interesting diagonal symmetry indicating better efficiency with roughly
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equal number of states and evolutions. It is also interesting to note that while the entropy rating

is the most sensitive to the database size, the discord rating is least sensitive.
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Figure 2.4: RMSD values of entropy (a), negativity (b), and discord (c), for various sizes of the database,
but with fixed number nr = 100 of unknown ratings.
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Figure 2.5: RMSD values of discord predictions versus number of features (f ) for 50% sparse 1000×1000
database.

Since the latent-vectors capture the mathematical structure of the database and thereby help

predicting the unknown ratings, the dimension of the latent space, i.e., number of features f ,

becomes very important. In the following example (Fig. 2.5) we consider a 1000 × 1000 two-

qubit database of discord ratings with 50% of elements being removed and predicted (i.e., nr =

500, 000). On running the RS for varying number of f , we find that if the latent vectors are too

short, the prediction error becomes too large, since the RS fails to capture the underlying rules

of the database. Too large latent vectors also render the RS over-determined and inefficient. One
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can find the appropriate number of features with a few trial and error runs. In this particular case,

f ∼ 102 would suffice.

2.4.3 Identifying noisy database

Figure 2.6: (a-d) Discord predictions with varying noise parameter η. (e) RMSD δD versus η. The number
of unknowns nr = 500, 000, which is 50% of the 1000×1000 database.

What would be the dependence of prediction efficiency, if the input database itself is noisy,

unreliable, or even fake? What if there are no underlying structures in the database so that no

latent space exists? Can we use this dependency for asserting if a database, with or without a large

number of unknown elements, is genuine or not? In order to probe these questions, we choose

discord rating in a two-qubit register. We first construct a 1000×1000 noise-free discord database

R(0), from which we setup a noisy database R(η) = ηS+(1−η)R(0),where S is a random matrix

of same dimensions and the noise parameter η ∈ [0, 1]. Thus, as η discretely varies from 0 to 1,

the corresponding database goes from a clean discord database to a random matrix. In each

database, corresponding to a fixed value of η, we randomly remove 500,000 entries constituting
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50% of elements. We now attempt to predict the missing elements starting from each of these

databases. The results shown in Fig. 2.6 indicates that for small noise parameter η ≤ 0.01, there

is no significant effect on the RMSD value. However, as the noise builds up, the RS finds it

increasingly difficult to rate the entries, and RMSD increases by about five times for 10% noise.

Finally, as expected, the RS completely fails for the completely random database corresponding

to η = 1. Thus, if a control database is provided, the RS can help assess the quality of a target

database.

2.4.4 Computational Time

Since computing quantum discord is hard, it is interesting to compare the computational time τRS

for the RS prediction of quantum discord with the calculation time τstd by the standard approach

that involves subtracting maximum possible classical correlation from total correlation [48, 186].
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Figure 2.7: Computational advantage τstd/τRS (left-vertical axes) and RMSD δD (right-vertical axes) vs
database sparsity (in this case nr/10000) for two- (a) and three-qubit (b) registers.

First we consider a 1000×1000 two-qubit database. For a two-qubit system, an optimal set

of measurements exists that substantially reduces computational time for estimating the discord

[188]. Even in this case, RS brings about a substantial advantage by factors ranging from 3

to 20 for 10% to 90% sparsity of the database, while ensuring RMSD values below 0.1 (Fig

2.7(a)). Unlike the two-qubit case, no optimal measurement-sets are known for larger registers.

Therefore we also analyze the RS computational efficiency in a 1000×1000 three-qubit database

(Fig 2.7(b)). In this case, the computational advantage is up to 40, i.e., almost doubled over the

two-qubit case, albeit at the cost of higher RMSD values. Thus RS predictions, within certain
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precision limits, can be much faster than the standard calculations.

2.4.5 Predicting state fidelity

Like predicting quantum correlations, one can also predict the state-fidelity in the same manner.

For a set of pure input states {|ψi⟩} and unitary evolution {Ui}, the database elements Ri,j =

Fi,j(ψi, Uj) = |⟨ψi|Uj|ψi⟩|2 describe the fidelity of output state Uj |ψi⟩ with the input state |ψi⟩.

Similarly, for a set of mixed input states {ρi} we may use the Uhlmann trace distance Ri,j =

Fi,j(ρi, Uj) =

∣∣∣∣Tr
√
ρ
1/2
i UjρiU

†
j ρ

1/2
i

∣∣∣∣2. Of course, here instead of the input state, one could have

also chosen any other target state. The results of the fidelity predictions using a database of 1000

random states and 1000 unitary evolutions with nr unknown elements are shown in Fig. 2.8.

Interestingly, the rating is extremely successful for pure states (Fig. 2.8(a)), for which up to 50%

of unknown elements (nr = 5× 105) can be predicted with a low RMSD δF ≤ 0.003. For mixed

states the RMSD values are relatively higher, but still δF ≤ 0.02 for predicting up to 50% of

unknown elements. However, in both cases the predictions fail for 90% of unknown elements.

Figure 2.8: Predicted fidelity F versus actual fidelity F0 and the number nr of unknown elements for pure
(a) and mixed (b) states. Blue lines represent the ideal case F = F0. The RMSD value δF is shown in each
case.

2.4.6 Identifying local and nonlocal operators:

Suppose the objective is not to obtain quantitative values for the changes in quantum correlations

introduced by unitary operators, but rather to identify local and nonlocal unitary operators. For

55



Chapter 2

this purpose, we generate a database with 1000 randomly generated unitaries, 500 of which are by

construction local operators of the form UA ⊗ UB that do not change quantum correlations. The

remaining 4 × 4 dimensional random unitaries UAB are mostly nonlocal and introduce changes

in quantum correlations. These propagator act on 1000 randomly generated initial states, so that

the overall size of the database is 106.

Figure 2.9: Binning unitaries into local or nonlocal by predicting the changes in quantum correlations.
Subplots correspond to different numbers nr of predicted ratings as indicated in each case.

Fig. 2.9 shows the three-dimensional simultaneous plots of predicted entropy, negativity, and

discord values for various numbers nr of unknown ratings. It is clear that most of the points

fall into one of the two bins - negligible correlation changes resulting from local unitaries, or
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significant correlation changes brought about by nonlocal unitaries.

2.4.7 Scaling to larger registers

We now study the efficiency of the RS in larger quantum registers, with sizes up to 10 qubits.

For each register, we constructed a database with 100 random unitary operators and 100 random

quantum states. The number of unknown ratings was fixed at nr = 100. In larger registers, there

are multiple ways of partitioning the system for estimating quantum correlations. For the sake of

simplicity, we first partition the whole system of nq qubits into two parts: a two-qubit part P and

nq − 2 qubit part Q. We estimated quantum correlations in the two-qubit part ρP = TrQ[ρPQ],

after tracing out Q. Owing to the small subspace selected, the absolute change of correlation

decreases rapidly with the number of qubits. For comparison purposes, we use the rescaled

correlation change ∆C/mq, with mq = max{|∆C0i,j |, |∆Ci,j|} where maximum is taken over

all the nr rated elements corresponding to the nq-qubit register. Fig. 2.10 displays the predicted

values of changes in entropy (Fig. 2.10(a)) as well as discord (Fig. 2.10(b)) versus the actual

values for various sizes of quantum registers with up to 10 qubits. Here the RMSD values are

calculated with respect to the rescaled correlation changes. Despite the smaller size of database,

the predictions were largely in agreement with the actual values, and the RMSD values mostly

remained below 0.3, thus confirming the feasibility of the RS predictions for various system sizes.

We have also studied the fidelity rating in multi-qubit registers. Fig. 2.10 also displays the

results of the fidelity rating of pure (Fig. 2.10(c)) and mixed (Fig. 2.10(d)) states in registers

with up to 10 qubits. In each case, we used a database of 100 states and 100 unitaries, while the

number of unknown entries was fixed to 100. It is clear that the fidelity rating is largely successful

in all these cases.

2.5 Rating nonunitary evolutions

Here we consider a noisy two-qubit system with independent single-qubit decoherence channels

each of which having an operator-sum representation in terms of Kraus operators {Mk} [189].
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Figure 2.10: RS predictions of (a) entropy, (b) quantum discord, (c) fidelity of pure states, and (d) fidelity
of mixed states, for registers with nq qubits. The RMSD values δ are shown in each case and the maximum
range mq (in parenthesis) are shown in (a) and (b).

An input state ρAB
i transforms according to

Ej(ρAB
i ) =

1

2

∑
k

(M jA
k ⊗ 1)ρAB

i (M
j†A
k ⊗ 1)

+
1

2

∑
l

(1⊗M jB
l )ρAB

i (1⊗M
j†B
l ), (2.8)
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wherein the single-qubit channels jA and jB belong to one of the following channels: bit-flip,

phase-flip, bit & phase-flip, depolarization, and amplitude damping as shown below.

(i) Bit-flip: MX

1 =
√
x 1, MX

2 =
√
1− x σx,

(ii) Phase-flip: MZ

1 =
√
z 1, MZ

2 =
√
1− z σz,

(iii) Bit & phase-flip: MY

1 =
√
y 1, MY

2 =
√
1− y σy,

(iv) Depolarization: MD

1 =
√

1− 3d
4
1, MD

2 =
√
d
2
σx,

MD

3 =
√
d
2
σy, M

D

4 =
√
d
2
σz, and

(v) Amplitude damping:

MA

1 =

 1 0

0
√
1− a

 ,MA

2 =

 0
√
a

0 0

.

Here x, y, z, a, d are randomly chosen channel probabilities and σx, σy, and σz are Pauli operators.

Figure 2.11: The RS predictions of nonunitary evolutions. Predicted values (red points) for changes in
discord (a) and fidelity (b) versus actual values and the number nr of unknown elements. In each case, the
size of the database is 1000× 1000. Blue lines represent the ideal curves. The RMSD values are shown in
each case.

We form a random database of 1000 mixed two-qubit states and 1000 nonunitary evolutions,

with a particular pair of channel probabilities, acting independently on the individual qubits. Fig.

2.11 displays the predicted values of change in discord ∆Di,j = D(Ej(ρi))−D(ρi) (Fig. 2.11(a))
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and of Fidelity Fi,j(ρi, Ej) =
∣∣√√

ρiEj(ρi)
√
ρi
∣∣2 (Fig. 2.11(b)), plotted versus the actual values

for various numbers nr of unknown elements. Since the decoherence channels only reduce quan-

tum correlations, ∆D is essentially negative. It is evident that the prediction is highly successful,

with the RMSD values being 0.01 or lesser even at 90% of unknown elements.

2.6 Construction of quantum phase space

As the demonstration of a specific application of RS predicted quantum correlation database,

we now describe an efficient construction of discord phase space for studying quantum chaos.

Implications of quantum chaos for quantum information processing is well studied [190, 191].

Classical chaos is often studied by observing the trajectory of a dynamical system in a certain

phase space [192]. It has been shown that quantum discord phase space can be used to study

quantum chaos of a dynamical quantum system [193]. However, the discord calculation is not

based on a compact analytical expression, instead requires expensive computation overhead. In

the following, we show that RS can efficiently generate discord phase space for quantum dynam-

ical systems, such as a quantum kicked top (QKT) with the Hamiltonian

H =
κ

2jτ
J2
z +

π

2
Jx

∞∑
n=0

δ(t− nτ). (2.9)

Here J = [Jx, Jy, Jz] is the angular momentum vector of an effective spin-j system. The first

term represents the nonlinear evolution for a duration τ with chaoticity parameter κ. The second

term represents periodic linear kicks. The time evolution is governed by the Floquet propagator

UQKT = e−i(π/2)Jxe−iκJ2
z /(2j). (2.10)

We model the QKT system using 2 qubits. Starting from an initial state |00⟩, we prepare the

spin coherent state |θ, ϕ⟩ ⊗ |θ, ϕ⟩, where

|θ, ϕ⟩ = cos(θ/2) |0⟩+ eiϕ sin(θ/2) |1⟩ (2.11)

by first rotating each qubit with an angle θ about the y-direction followed by an angle ϕ about the
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z-direction in the Bloch sphere.

Figure 2.12: Discord phase space plots (a-f) for chaoticity parameter κ = 0.5 (first column) and for
κ = 2.5 (second column). The exact phase space plots in (a) and (b) are constructed with standard method,
while the other phase space plots are predicted by RS method with sparsity value of either 40% (c,d) or
80% (e,f). The RMSD values (δD) quantifying the mismatch between the exact and the RS predicted phase
space plots, as well as the corresponding time advantage factors (τstd/τRS) are also plotted against varying
sparsity values (g,h).

Fig. 2.12 shows discord phase space plots of the two-qubit QKT for two chaoticity values

viz., κ = 0.5 (first column) and κ = 2.5 (second column) obtained by averaging over 100 kicks

with a 51× 51 grid of θ and ϕ coordinates. We compare the exact discord phase space diagrams

(Fig. 2.12 (a,b)) with those predicted by RS (c-f) using a total feature number nf = 100. As

expected, at low chaoticity value of κ = 0.5, the QKT mostly undergoes a regular dynamics
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and the phase space exhibits large regions of closed trajectories. However, at a higher chaoticity

value of κ = 2.5, it undergoes a rather complex dynamics whose phase space exhibits intricate

patterns with smaller regular islands surrounded by chaotic ocean. It is evident that for κ = 0.5,

RS predicted phase space plots are almost identical with the exact plot even for sparsity value of

80%. It is interesting to see that at higher chaoticity value of κ = 2.5, RS prediction matches

well for the sparsity value of 40%, while worsens for 80%. This further reinforces the idea that

the chaotic regimes of dynamical systems are hard to predict in general. The sensitivity of QKT

to experimental imperfections in such chaotic regimes has been reported earlier by Krithika et

al. [194]. Hence, it is natural that RS finds it challenging to recognize the underlying patterns

in the database, based on which it can predict the missing entries. In spite of this difficulty, the

overall predicted phase space pattern with 80% sparsity is qualitatively similar to the exact one.

The RMSD values (δD) between the exact and the predicted plots, along with the computational

time-advantage (τstd/τRS) are plotted versus sparsity values in Fig. 2.12 (g,h). While there is a

trade off between the prediction error and the time-advantage, it is clear that the RS prediction is

quite robust and efficient, and is about four times faster for 80% sparsity. The advantage is likely

to be even higher for larger dimensional quantum systems.

2.7 Summary and outlook

We have adapted a class of recommender systems, called the matrix factorization algorithm, to

characterize quantum evolutions in terms of quantum correlations as well as state-fidelity. First,

using two-qubit databases, we have carried out a detailed analysis of the recommender system

predicting three types of correlations, namely entropy, negativity, and discord. We found that

the recommender system was able to efficiently predict well over 50% of unknown elements in

the database. As a particular example, we showed that predictions of negativity and discord of

Werner state prepared with different purities matched very well with the expected values. By

introducing noise into the database in a systematic way, we observed the prediction efficiency de-

teriorating with noise. We proposed that this fact, along with a reference database, could be used

to distinguish a genuine or clean database form a noisy or a fake database. Predicting quantum

discord of a general state, for which a closed-form expression does not exist, is most interesting.
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The analysis of computational time shows that the machine prediction, within certain precision

limits, can be far more efficient. In million-element databases of two- and three-qubit registers,

we observed over an order of magnitude improvement in computational time. To show that the

characterization of quantum evolutions via recommender system is scalable with system size,

we have demonstrated predicting quantum correlations as well as fidelities of unitary evolutions

on larger multiqubit registers with up to ten qubits. We have also demonstrated the capability

of the recommender system in characterizing nonunitary evolutions by subjecting it to predict

correlation and fidelity ratings of states undergoing certain decoherence channels. Finally, we

demonstrate a robust RS prediction of discord phase space diagrams useful to study quantum

chaotic systems.

When does the RS fail? We have earlier discussed the noisy database having no underlying

pattern and thus fails to converge. RS can fail in many other scenarios. For example, the RS can

not predict elements of an empty row or column of a database. We have demonstrated that for a

fixed number of unknowns, the prediction error gets worse by shrinking the database along any

dimension. Rating a state (or gate) that is far away from all other members of the database may be

difficult. We also found that too short latent vectors also fail to capture the mathematical structure

beneath the database. For an intricate database, like that of long-range quantum correlations, one

needs larger latent vectors and more powerful global optimization methods.

Although here we have only discussed databases of random states and random evolutions, it

is straightforward to adapt it to other interesting scenarios such as quantum process tomography

[195] and in predicting quantum correlations in a time-evolving many-body system initialized

with various possible states. It would also be interesting to predict the behavior of quantum

systems under evolutions dictated by more sophisticated master equations. Further improvisations

in the precision and speed of machine predictions will go a long way as well. The remarkable

efficiency of the recommender system in characterizing quantum evolutions hints at an underlying

mathematical structure that may deserve further exploration. We anticipate that such machine

learning techniques not only aid the evolution of quantum technologies but also provide deeper

insights into mathematical structures in quantum theory itself.
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CHAPTER 3

Recommender System Expedited Quantum Control

Optimization

Abstract

Quantum control optimization algorithms are routinely used to synthesize optimal quantum

gates or to realize efficient quantum state transfers. The computational resource required

for the optimization is an essential consideration in order to scale toward quantum con-

trol of larger registers. Here, we propose and demonstrate the use of a machine learning

method, specifically the recommender system (RS), to deal with the challenge of enhancing

computational efficiency. Given a sparse database of a set of products and their customer

ratings, RS is used to efficiently predict unknown ratings. In the quantum control problem,

each iteration of a numerical optimization algorithm typically involves evaluating a large

number of parameters, such as gradients or fidelities, which can be tabulated as a rating

matrix. We establish that RS can rapidly and accurately predict elements of such a sparse

rating matrix. Using this approach, we expedite a gradient ascent based quantum control

optimization, namely GRAPE, and demonstrate the faster construction of two-qubit CNOT

gate in registers with up to 8 qubits. We also describe and implement the enhancement of

the computational speed of a hybrid algorithm involving simulated annealing as well as

gradient ascent. Moreover, the faster construction of three-qubit Toffoli gates further con-

firmed the applicability of RS in larger registers.

Reported in

Priya Batra, M. Harshanth Ram, and T.S. Mahesh, Recommender system expedited quan-

tum control optimization, Physics Open, page 100127, 2022
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3.1 Introduction

Quantum control is crucial for the trending quantum technology tasks such as quantum sensing

[196], scalable quantum information devices [197], quantum simulations [198], quantum thermo-

dynamics [199], quantum metrology [200], etc. In general, quantum control optimization deals

with finding the best implementation of desired quantum dynamics on a given physical hardware

[201, 202]. Such optimization algorithms are routinely used for control tasks like unitary synthe-

sis, state transfer [203], quantum parameter estimation [204], etc. There has been a tremendous

progress in this area and numerous optimization algorithms have been developed, such as gra-

dient based algorithms [205, 206], variational principle based algorithms [207, 208], chopped

basis optimization [209, 210], and metaheuristic algorithms [211, 212]. Lately, machine learning

algorithms such as reinforcement learning (RL), have also been used for the tasks like unitary

transformation [213], state preparation [214], robust controls [215], as well as to control non-

integrable quantum systems [216]. More recently, machine learning protocols have also been

used to control quantum thermal machines [217].

A variety of quantum control algorithms have been designed to address different aspects [218,

219]. Superior convergence rate was realized using methods such as variational methods [207,

208], higher-order gradient methods (eg. Quasi-Newton BFGS) [220], using chopped random

basis [209, 210], and by push-pull algorithm [221]. Searching for global optimum was made

possible by evolutionary algorithms [212, 222]. Robust solutions that overcome imperfections

in the control fields can be realized by adiabatic methods [223], combining gradient methods

with simulated annealing [224], machine learning [215], etc. Control sequences with physical

constraints such as total/maximum power, bandwidth etc., can be achieved by using methods such

as incoherent error compensation [225], functional space quantum control [226], auto-GRAPE

[227, 228] etc. It is also possible to accommodate environmental effects to improve robustness

against decoherence [229–231]. Hybrid methods have also been developed that address multiple

aspects simultaneously [224, 232, 233]. An important aspect is the computational efficiency of

the algorithm. While there have been several attempts in this direction [222, 234, 235], here

we propose a machine learning approach that efficiently evaluates the control sequence, thereby

greatly improving the computation speed.
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   Gradient based  
     (e.g. GRAPE)

               Metaheuristic  
               (e.g. SA)

         Machine learning 
          (e.g. RS)

Figure 3.1: Expediting gradient method, metaheuristic method, as well as a hybrid of both by using
machine learning.

3.1.1 Objectives

In the field of machine learning, the recommender system (RS) algorithm is widely used to rec-

ommend products to consumers [236, 237]. Here we propose RS assisted speed up of quantum

control algorithms. Although the method is quite general and is applicable to a variety of algo-

rithms, we choose to describe it in two cases, namely, a gradient based algorithm and a meta-

heuristic algorithm, as described below (see Fig. 3.1). Importantly, we demonstrate a significant

time advantage of RS expedited algorithms without sacrificing their convergence. In particular,

we have performed the following:

(i) An optimization method with an analytical expression for the gradient is an efficient way

to find a local optimum in the parameter space. One such class of optimization algorithms for

quantum control applications is based on gradient ascent pulse engineering (GRAPE) [205] and

its variants (for example, [220, 221, 226]). The most time-expensive task in GRAPE is the cal-

culation of gradients for every segment of a control sequence in each iteration, which involves

exponentiation of matrices. We show that, given a set of exactly calculated gradients, RS can

accurately and rapidly predict the remaining ones. Thus, we can significantly improve the time-

efficiency of the GRAPE optimization algorithm.

(ii) Although GRAPE works well for a smooth parameter space, it becomes problematic if there

are too many sub-optimal local solutions restricting the algorithm from reaching an optimal so-
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lution. On the other hand, metaheuristic algorithms can escape the local optima and therefore

perform a robust search in the parameter space. The metaheuristic algorithms such as the Nelder-

Mead simplex method [211], evolutionary algorithms [212, 222, 238, 239], simulated annealing

(SA) [224], etc. have been successfully adapted for quantum control optimization.

(iii) However, unlike the gradient methods, the metaheuristic algorithms often suffer from slow

convergence. To overcome this issue, recently the SAGRAPE algorithm, a hybrid of SA and

GRAPE, has been proposed [224]. SA involves a large number of function evaluations in the

neighborhood of an iterative solution, which makes it computationally heavy. Here we also

demonstrate expediting SA using RS by efficiently predicting the fidelities of the neighborhood

points.

3.2 Quantum Control Optimization

We consider a quantum system with a constant internal Hamiltonian H0 and m control Hamilto-

nians {Hj}, such that the time-dependent Hamiltonian is given by

H(t) = H0 +
m∑
j=1

ωj(t)Hj. (3.1)

Here ωj(t) is the time-dependent strength of the jth control Hamiltonian Hj . For a closed system

undergoing Schrödinger evolution for the time duration T , the corresponding unitary is given by

U(T ) = De−i
∫ T
0 H(t)dt. (3.2)

Here D is the Dyson time ordering operator and we have set ℏ = 1. Considering the difficulty

in evaluating the propagator of a general time-dependent Hamiltonian, we discretize the control

function ωj(t) by dividing it into N segments, each with a constant amplitude ωj,k and duration

δ = T/N . The corresponding unitary for the kth segment would be

Uk = exp

[
−iδ

(
H0 +

m∑
j=1

ωj,kHj

)]
. (3.3)
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The total time propagator U(T ) for the entire control sequence can be expressed as the product

of segment unitaries

U(T ) = UNUN−1 · · ·U2U1. (3.4)

In this article, we mainly focus on unitary synthesis, although same methods can be adapted

for state preparation. Thus, the optimization procedure is aimed at achieving a specific target

unitary Ut by numerically generating the control sequence {ωj,k}. Optimization function is given

by the gate fidelity

F =
∣∣Tr [U †(T )Ut

]∣∣2 , (3.5)

which is the overlap of target unitary Ut with the evolved unitary U(T ). An improved optimiza-

tion function would maximize the fidelity while minimizing resources. Typically, it amounts to

minimizing the power consumption of control fields. Therefore the modified optimization func-

tion J can be cast as follows

J = F −
∑
j,k

λj ω
2
j,k, (3.6)

where λj are the scalar penalty parameters. In the following, we discuss two optimization meth-

ods, first a gradient method and second a metaheuristic method.

3.2.1 Gradient Ascent Pulse Engineering (GRAPE)

The GRAPE algorithm has the following steps:

• Start with a random control sequence {ω(0)
j,k}.

• Forward propagate the initial unitary operatorU0 = 1 till kth segment, i.e.,Xk = UkUk−1 · · ·U1U0.

• Backward propagate the target unitary Ut till kth segment, i.e., Pk = U †
k+1U

†
k+2 · · ·U

†
NUt.

• Calculate the gradient for each segment using the first-order (in the norm ||δH(t)||) expres-

sion [205]

gj,k = 2Re
(
−iδTr

[
P †
kHjXk

]
Tr
[
X†

kPk

])
. (3.7)
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• Update control amplitudes in the direction of gradients, i.e., ωj,k → ωj,k + ϵgj,k, where ϵ is

the step size.

GRAPE is remarkable to have such a simple analytical form for the gradient function.

In a practical scenario, no physical hardware is perfect. For example, a control field is typ-

ically associated with a distribution of amplitudes around the nominal value [205]. We need to

have a robust quantum control even with such imperfect hardware. To this end, one minimizes

the overall cost function 1 − J = 1 −
∑

i piJi obtained by summing over the costs 1 − Ji of

individual elements in the distribution with respective probabilities pi.

3.2.2 Simulated Annealing (SA)

In metallurgy, annealing involves heating a material to high temperatures followed by slow cool-

ing to allow the material reach a stable crystalline form by finding its ground state. The same idea

is adopted in the numerical procedure namely, simulated annealing (SA) [240, 241]. Given an op-

timization problem, SA starts with a high-temperature configuration, wherein even non-optimal

solutions are selected with a certain probability. As the iterations pass, the temperature parame-

ter is gradually reduced, and optimal solutions are increasingly favored. This stochastic process

allows the algorithm to overcome the local minima and reach the global minimum.

The steps for SA are as follows [224]:

• Start with a random control sequence {ω(0)
j,k}. Set the temperature to a high value T 0.

• In the ith iteration, determine the control sequence {ω′
j,k} with the best fidelity F ({ω′

j,k})

among a random set of points in the neighbourhood of the current solution {ω(i)
j,k}.

• If ∆F
i
= F ({ω′

j,k})− F ({ω(i)
j,k}) ≥ Qi, where

Qi = −min
[
1, T i exp

(
∆F

i
/T i
)]

then

{ω(i+1)
j,k } = {ω′

j,k}; else, {ω(i+1)
j,k } = {ω(i)

j,k}.

• After ith iteration, set the temperature to a reduced value T (i+1) = γT (i), where γ < 1

controls the cooling rate.

The above steps are iterated until the desired optimization function is reached or the maximum

number of iterations are completed. Note that, for higher temperatures the algorithm may take
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a new solution {ω′
j,k} even if its fidelity is lower than the current solution {ω(i)

j,k}. This stage

is known as exploration. As temperature goes down, the algorithm gradually switches to the

exploitation mode and it looks for solutions that are either better or only slightly inferior than

the current solution. The combination of exploration and exploitation helps SA to escape local

optima and travel towards the global optimum.

In our previous work, we had combined SA with GRAPE to form the hybrid SAGRAPE

algorithm and demonstrated its superior convergence [224]. In the following, we first describe

recommender system, a particular type of machine learning technique, and then explain how it

can be used to expedite GRAPE as well as SAGRAPE.

3.3 Recommender System (RS)

Collaborative filtering is one of the most popular types of RS that is based on the experience of

any particular consumer along with relative preferences among all consumers [242, 243]. Here we

use the matrix factorization algorithm for collaborative filtering [169, 244]. It involves setting up

a database R in the form of a rating matrix, wherein each row represents a particular consumer

and each column represents a particular product that is being recommended [237, 245]. The

rating matrix can be decomposed in terms of latent vectors of the same dimension f , known as

the number of features. Let the parameter vector Θ(i) ∈ Rf and the feature vector Φ(j) ∈ Rf

encode latent vectors in real space Rf for ith consumer and jth product. The predicted rating is

then modeled by scalar products

ri,j = Θ(i) · Φ(j). (3.8)

Depending on the problem at hand, one can specify products, users, as well as ratings, and

accordingly set up the rating matrix. One such example, for a hypothetical quantum control

problem of executing certain specific tasks with various available control fields, is illustrated in

Fig. 3.2. In this example, tasks are users, control fields are products, and the ratings are different

levels of feasibility of implementing tasks. The job of RS is to efficiently predict the unknown

ratings.

Given a sparse rating matrix R, where missing elements correspond to unknown preferences,

our goal is to fill those missing elements with the help of the collective information embedded in
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Figure 3.2: Illustrating an example application of RS. Here the rating matrix corresponds to different
levels of feasibility of various tasks with certain available control fields. The goal of RS is to predict the
unknown ratings.

the overall database. Let κ = (i, j) be the elements in the rating matrix for which actual ratings

Ri,j are known. The discrepancy between predicted rating ri,j and actual rating Ri,j is quantified

by the function K0 as

K0 =
∑

(i,j)∈κ

(ri,j −Ri,j)
2. (3.9)

Here, the objective is to minimize the cost function K0. Generally two regularization pa-

rameters (ΛΘ,ΛΦ) are used to avoid over-fitting, so that the altered cost function can be written

as

K =
K0

2
+

ΛΘ

2

m∑
i=1

∥Θ(i)∥+ ΛΦ

2

n∑
j=1

∥Φ(j)∥. (3.10)

The latent vectors Θ(i) and Φ(j) are then determined by minimizing the cost function using any

standard minimization algorithm. In our case, we use the Polack-Ribiere flavour of conjugate

gradients to compute search directions and a line-search using quadratic and cubic polynomial

approximations for this purpose [182, 246, 247].
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3.4 RS enhanced GRAPE and SAGRAPE

We shall now explain how we can use RS to speedup GRAPE as well as SAGRAPE. For the sake

of clarity, we use the context of quantum control of spin-dynamics via nuclear magnetic resonance

(NMR). To study RS enabled speedup, we consider a spin system of M = 2 + n on-resonant

heteronuclear qubits and construct a controlled-NOT (CNOT) gate on the first two qubits, which

are coupled by an indirect spin-spin interaction of strength (J12). For simplicity, we treat the

remaining n qubits as noninteracting spectator spins, which contribute to the dimension of the

overall Hilbert space but not to the complexity of the CNOT gate. This helps us to demonstrate

the efficiency of RS expedited algorithms for varying size of qubit register with the same gate

complexity. The internal NMR Hamiltonian for the system in the multiply-rotating frame is

given by

H0 = 2πJ12I
1
z I

2
z , (3.11)

where I iz represents the z-component of the ith spin operator. For the kth segment of the n + 2

channel control sequence, the total Hamiltonian

Hk = H0 +
2+n∑
j=1

ωx,j,kI
j
x + ωy,j,kI

j
y . (3.12)

Here ωx,j,k and ωy,j,k are the x and y components of radio frequency (RF) field on the jth nuclear

species in kth segment of the control sequence. In practice however, there exists a spatial RF

inhomogeneity (RFI) of amplitudes over the volume of the sample. One usually models RFI with

an L-point distribution and associates a scaling factor {ξj,l} with respective probabilities {pj,l}.

Thus, the Hamiltonian for the kth control segment with the lth RFI element is

H
(l)
k = H0 +

2+n∑
j=1

ξj,lωx,j,kI
j
x + ξj,lωy,j,kI

j
y . (3.13)

As explained in the last part of Sec. 3.2.1, the overall cost function 1−J = 1−
∑

l plJl is obtained

by the weighted sum of cost functions of all the individual elements in the RFI distribution. In

the following, we describe how we can incorporate RS to expedite GRAPE.
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RFI l = 1 · · ·
Qubits j=1 · · · j=2+n

segments (k)

phases
x y x y

1 gx,1,1,1 gy,1,1,1 ? gy,2+n,1,1

2 gx,1,2,1 ? gx,2+n,2,1 ?
3 gx,1,3,1 gy,1,3,1 ? gy,2+n,3,1

4 ? gy,1,4,1 gx,2+n,4,1 ?
...

...
...

...
...

Table 3.1: The rating matrix for RSGRAPE. Here rows correspond to various segments (k = 1, 2, · · · , N )
and columns correspond to the x(y) RF amplitudes on all the heteronuclear qubits (j = 1, 2, · · · , 2 + n)
with various RFI distribution elements (l = 1, 2, · · · , L). The elements gx(y),j,k,l are the gradients, and the
goal of RS is to predict the unknown elements (indicated by ‘?’).

3.4.1 RS expedited GRAPE (RSGRAPE)

Let us first consider the GRAPE algorithm for the NMR context described above. As explained

in Sec. 3.2.1, the x(y) gradients for the jth channel in kth segment with lth RFI element are

expressed by the explicit form of Eq. 3.7, i.e.,

gx(y),j,k,l = 2Re
(
−iδTr

[
P †
k,lI

j
x(y)Xk,l

]
Tr
[
X†

k,lPk,l

])
. (3.14)

Here Xk,l and Pk,l are respectively the forward and backward propagators for the k segment with

lth RFI element. In the traditional GRAPE algorithm, one evaluates all the gradients and then

calculates the update values for the control amplitudes as described in Sec. 3.2.1. This is the heart

of the algorithm and involves evaluating a large number of propagators via matrix exponentiation.

Accordingly, this is the bottleneck for numerical efficiency, especially for the larger number of

qubits. Here comes the application of machine learning. Instead of evaluating all the gradients,

we only need to evaluate a fraction of the gradients, form a rating matrix, and then let RS predict

the rest of the gradients. In the language of RS, we treat each segment as a consumer and each

RF amplitude (corresponding to indices x(y), j, l) as a product. The corresponding rating matrix

is in the form of the TABLE 3.1.

We first study the dependence of RSGRAPE on the sparsity of the rating matrix. To this end,

74



3.4 RS enhanced GRAPE and SAGRAPE

we generate a two-qubit CNOT gate while varying the sparsity of the rating matrix from 0% to

90%. In each case, we monitor, at the end of 500 iterations, the final infidelity and the time

advantage

Γ(RSGRAPE) = τ(RSGRAPE)/τ(GRAPE), (3.15)

the ratio of computational times of RSGRAPE and GRAPE.

We now demonstrate RSGRAPE for generating an optimal control sequence implementing a

CNOT gate on the first two qubits of the 2+n qubit system. In our analysis we have varied 2+n

from 2 to 8 and in each case generated an optimal control sequence with N = 200 segments.

For RS prediction we used latent vectors of dimension 10. RFI is modeled by L = 5 point

distribution with ξj,l ∈ {0.8, 0.9, 1.0, 1.1, 1.2} and uniform probability pj,l = 0.2. Firstly, we

vary the sparsity (s) from 10% to 90% and compare the gradients for the standard GRAPE (ga) vs

gradients predicted by RS (gp) as shown by red dots in Fig. 3.3 (a). For reference, also shown are

the ideal expected curves ga = gp (in blue lines in Fig. 3.3 (a)). It’s clear that RS is able to predict

the gradients quite efficiently, especially for sparsity values below 70%. As expected, for larger

sparsity values, the RS predictions gradually become inaccurate, and therefore convergence of

the algorithm is affected.

Now, we iterate (for i = 1, · · · , 500) GRAPE as well as RSGRAPE algorithms. In Fig. 3.3

(b), we plot the final infidelity 1 − F (circles) as well as time advantage Γ(RSGRAPE) (stars)

vs sparsity (s) for two (solid curves) and four (dashed curves) qubit systems. Here for reliable

analysis, all the data points are obtained by averaging 10 independent trials each starting from

a random initial guess. We find that the final infidelity remains low (< 0.005) till about 70%

sparsity and increases afterward. Also, we achieve time advantages up to a factor of two or more,

for both two and four qubits systems.

We now set the sparsity of the rating matrix to 50%, meaning only half the number of gradients

randomly selected out of the total 2N(2+n)L elements need to be evaluated using Eq. 3.14. The

rest of the gradients in each iteration are predicted by the RS algorithm. Again, for reliable

analysis, we average the results of 15 independent trials of RSGRAPE algorithm each starting

from a random initial guess. For comparison, we also carry out the standard GRAPE algorithm

in each case and monitor the time advantage Γ(RSGRAPE). Fig. 3.3 (c) shows the infidelity
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Figure 3.3: (a) Exact ga and predicted gp gradients vs sparsity (s in %). (b) Infidelity 1− F (circles) and
time advantange Γ(RSGRAPE) (stars) vs sparsity (s in %) of a CNOT gate generated using RSGRAPE
in two (solid line) and four (dashed line) qubit systems. (c) Infidelity 1 − F vs number i of iterations
varying from 1 to 500 and for size 2 + n of the qubit register varying from 2 to 8. Here solid-red and
dashed-blue lines correspond to RSGRAPE and GRAPE algorithms. (d) Γ(RSGRAPE) vs size 2 + n of
the qubit register. Here (c) and (d) are obtained with a sparsity value of 50 %.

(1 − F ) versus iteration number i for various sizes 2 + n of the qubit register. It is clear that

the convergence of RSGRAPE is not compromised compared to the standard GRAPE algorithm,

despite only 50% of the gradients being exactly evaluated. In all the cases, the infidelity was well

below 0.01.

Fig. 3.3 (d) shows the time-advantage for various sizes of the qubit register with 50% sparsity

of the rating matrix. For small qubit registers (up to 4 qubits), the advantage is above 20%, while

for larger registers (for 8 qubits), we find almost 100% time advantage. This is because the RS

overhead is dependent on (i) the dimension of the rating matrix, which increases only linearly

with the size of the qubit register, and (ii) the dimensions of latent vectors. Therefore, as the

complexity of GRAPE algorithm increases exponentially with the size of the qubit register, the

RS overhead becomes increasingly insignificant, and the time-advantage improves. However, for

50 % sparsity, Γ(RSGRAPE) remains bounded by a factor of 2.

We now discuss the importance of efficient prediction of gradients. To this end, we randomly
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Figure 3.4: Averaged final infidelity (1− F̄ ) vs sparsity for three different schemes of handling the sparse
elements.

select s% of the sparse elements in the rating matrix in each iteration and apply one of the follow-

ing three schemes: (i) RS predicted gradients, (ii) zero-gradients, i.e., segments unchanged from

the previous iteration, and (iii) random gradients. We now compare the final infidelity (i = 500)

for a two-qubit CNOT gate obtained with these methods. The results averaged over 10 inde-

pendent trials are shown in Fig. 3.4. As expected, replacing the sparse elements with random

gradients completely fails the optimization. Keeping zero-gradients, or retaining the segments

from the previous iteration for a small sparsity is tolerable. However, RS predicted gradients are

most efficient and lead to the least final infidelity values even up to 80% sparsity.

To further demonstrate RS prediction in a multiqubit register, we generated a 1000 segment

(δ = 20 µs) Toffoli gate on a three qubit register with J12 = 1000 Hz, J23 = 1000 Hz, and

J13 = 100 Hz. Fig. 3.5 displays the infidelity of GRAPE (dashed line) and RSGRAPE (solid

line) with 50% sparsity averaged over five independent trials. In this case, we obtained an average

time advantage Γ(RSGRAPE)= 1.42.

To emphasize the scalability with larger registers, we now consider the case of a 6 qubit

system having the similar Hamiltonian structure as shown previously. The task is to create a two-

qubit CNOT gate between the first two qubits. Fig. 3.6 (a) represents the infidelity vs iteration for

GRAPE (blue) and RSGRAPE (red) obtained with 50 % sparsity. Here, the thick lines indicate
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Figure 3.5: Average infidelity vs iteration number for the 3-qubit Toffoli gate obtained by GRAPE (dashed
line) and RSGRAPE (solid line) with a sparsity of s = 50%.

the average of 20 independent trials, each shown by a thin line. Fig. 3.6 (b) plots infidelity vs the

CPU time for each of the 20 trials (thin line) and their average (thick line). It’s clear from Fig. 3.6

(b) that RSGRAPE (red) takes considerably lesser time than GRAPE (blue) to reach the similar

infidelity. Fig. 3.6 (c) and (d) respectively show the x and y components for the GRAPE (blue)

and RSGRAPE (red) pulse shapes from one of the trial runs. It is easy to note that even with 50

% sparsity, the GRAPE and RSGRAPE pulses are remarkably similar, further indicating that the

speedup, by almost a factor of two, is not gained at the cost of quality.

3.4.2 RS expedited SAGRAPE (RSSAGRAPE)

We now explain the RS expedited hybrid SAGRAPE algorithm. As explained in Sec. 3.2.2, an

important step in SA in every iteration is to scan the neighborhood points of the current solution.

To obtain a set of neighborhood points, we add random deviation functions to the current control

sequence (of each heteronuclear qubit). Since one needs to scan a large number of neighbourhood

points, this step forms a bottleneck in the standard SAGRAPE algorithm. This is where RS can

bring about a significant speedup.

The entire control sequence of current iteration can be represented in the matrix form Ω(i) ≡

{ω(i)
x(y),j,k} of dimension N × 2(2 + n). In our method, we first select a set of Q spline vectors
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Figure 3.6: Comparison of GRAPE (blue) and RSGRAPE (red) for a 6 qubit system. (a) Iteration (i) vs
infidelity (1 - F ) average over 20 independent trials (thick lines). (b) Infidelity (1 - F ) vs CPU time (thick
line). (c) x component of pulse shape for each channel C. (d) y component of pulse shape for each channel
C corresponding to one of the trials.

{sq}, each of dimension N × 1. We also choose a set of M random scaling vectors {cm}, each

of size 1 × 2(2 + n). We now setup the neighborhood points by adding the deviation function

w(i)sq · cm, i.e.,

Ωq,m = Ω(i) + w(i)cm · sq, (3.16)

where w(i) is a scalar weight parameter which can be gradually reduced with iteration number

to shrink the neighbourhood region. Now, we determine the average fidelity F q,m and form the

rating matrix (see TABLE. 3.2). In the RS expedited algorithm, we don’t need to evaluate all the

elements of the rating matrix, but only a set of randomly selected elements. Rest of the elements

are efficiently predicted by RS. The sequence Ωq,m corresponding to the maximum fidelity F q,m

is then passed to the SA algorithm for comparing with the threshold function as explained in Sec.

3.2.2.

Based on the procedure explained above, we now employ RSSAGRAPE to generate a CNOT
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spline (sq)

scaling (cm)
c1 c2 c3 c4 · · ·

s1 F 1,1 F 1,2 ? F 1,4

s2 F 2,1 ? F 2,3 ?
s3 F 3,1 F 3,2 ? F 3,4

s4 ? F 4,2 F 4,3 ?
...

...
...

...
...

Table 3.2: The rating matrix for the RSSAGRAPE algorithm. Here rows correspond to various spline
functions sq and columns correspond to the scaling factors cm. Each element of rating matrix is the
fidelity F q,m of the neighbourhood point (q,m) obtained from the current solution by adding the deviation
function w(i)sq · cm.

gate on a two-qubit system, using five iterations of GRAPE after every iteration of SA. We used

N = 200 segment control sequence and scanned 100 neighbourhood points (using Q = 10 spline

functions and M = 10 scaling vectors) in each SA iteration. We again set the dimension of the

latent vectors to 10. The red dots in Fig. 3.7(a) correspond to the exact fidelities (Fa) plotted

against the predicted fidelities (Fp) for a set of random neighborhood points at various values of

sparsity s. The blue lines corresponding to expected distribution Fp = Fa are also shown for

reference. Evidently, we see a good correlation of the predicted fidelities with the exact values,

thus confirming the effectiveness of RS, especially for lower sparsity values.

Figure 3.7: (a) Exact (Fa) and predicted (Fp) fidelities of random neighbourhood points versus sparsity (s
in %) in a particular SA iteration. (b) Infidelity 1 − F vs number of iterations i for a 2 qubit system with
SAGRAPE (dashed blue line) or RSSAGRAPE (solid red line). In (b) RS was carried out with sparsity
s = 50 %.
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We now set the sparsity of the rating matrix to 50%, meaning only half the neighborhood

points are evaluated exactly, while the remaining ones are predicted by RS. Fig. 3.7(b) displays

the infidelity 1−F (averaged over 10 independent trials each starting with a random initial guess)

plotted versus iteration number i for SAGRAPE (dashed blue line) as well as RSSAGRAPE

(solid red line). It is clear from the average infidelity trajectory that the convergence is not sacri-

ficed by the partial prediction of the rating matrix by RS. Furthermore, when compared with the

SAGRAPE algorithm, we found a time advantage

Γ(RSSAGRAPE) =
τ(SAGRAPE)
τ(RSSAGRAPE)

= 1.9, (3.17)

meaning the RS enhancement has almost doubled the speed of the SAGRAPE algorithm.

0 50 100 150 200
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Figure 3.8: Average infidelity vs iteration number for the 3-qubit Toffoli gate obtained by SAGRAPE
(dashed line) and RSSAGRAPE (solid line) with a sparsity of s = 50%.

Again, we study the performance of RS prediction by generating a Toffoli gate on a three-

qubit register (same couplings and other parameters as in the case of RSGRAPE). The infidelity

averaged over 10 independent trials are plotted vs iteration number in Fig. 3.8. It is evident that

the convergence of RSSAGRAPE (with 50% sparsity) is as good as SAGRAPE, but yields an

average time-advantage of Γ(RSSAGRAPE) = 1.99.
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3.5 Summary and outlook

Machine learning techniques are increasingly being utilized in almost every field of science. Here

we use the recommender system (RS) a type of machine learning technique to enhance the ef-

ficiency of quantum control algorithms. Although, in principle RS can be adopted for any op-

timization routine, we demonstrate it in two specific cases: a gradient method (GRAPE) and a

meta-heuristic method (simulated annealing (SA)). Because of the analytical form for gradients,

GRAPE is a powerful tool, but evaluating gradients for all the constant-Hamiltonian segments is a

computationally intensive task. Here we address this issue by employing RS to efficiently predict

a significant fraction of gradients and thereby to remarkably speed up the GRAPE algorithm. We

demonstrated the RSGRAPE algorithm for up to eight qubits.

The superiority of the final infidelity of RSGRAPE compared to no prediction (zero-gradients)

as well as with random gradients confirmed the importance of RS prediction.

Going further, we incorporated RS even in SA, for rapid evaluation of a large set of random

neighborhood points. Finally, by expediting both SA and GRAPE simultaneously, we demon-

strated almost doubling the speed of SAGRAPE algorithm.

Also, to demonstrate the feasibility of RS prediction in larger registers, we generated three-

qubit Toffoli gates using RSGRAPE as well as RSSAGRAPE, both of which yielded significant

time advantages.

The entirely different approaches of using RS in GRAPE and SA exemplifies the flexibil-

ity and freedom of incorporating RS in quantum control problems. Note that the particular ap-

proaches we have used are not unique. One can think of different ways of encoding consumers

and products to set up a rating matrix for implementing RS. The generality of RS approach should

allow its application in conjunction with other gradient methods such as BFGS [220], function-

space control [226], etc. RS can also be used to enhance other meta-heuristic algorithms as well

as global search methods such as genetic algorithm [222].

There are a few points to keep in mind while adopting RS. It may fail when the elements of

the matrix are convoluted, i.e., when none of the elements can be calculated independently and

parallelly. RS may be inefficient or inaccurate if there exists no underlying structure in the rating

database, for example, one with high sparsity. When there are multiple options, the rating matrix
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needs to be carefully chosen to maximize the RS efficiency. Since RS needs at least a fraction of

database to predict the rest, it can only be used in conjunction with another method, which also

determines the overall efficiency.

Nonetheless, we believe, the present work encourages further applications of machine learn-

ing protocols in quantum information tasks.
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CHAPTER 4

Push-Pull Optimization of Quantum Controls

Abstract

Optimization of quantum controls to achieve a target process is centered around an ob-

jective function comparing the realized process with the target. We propose an objective

function that incorporates not only the target operator but also a set of its orthogonal oper-

ators, whose combined influences lead to an efficient exploration of the parameter space,

faster convergence, and extraction of superior solutions. The push-pull optimization, as

we call it, can be adopted in various quantum control scenarios. We describe adopting it

to a gradient based and a variational-principle based approaches. Numerical analysis of

quantum registers with up to seven qubits reveal significant benefits of the push-pull opti-

mization. Finally, we describe applying the push-pull optimization to prepare a long-lived

singlet-order in a two-qubit system using NMR techniques.

Reported in

Priya Batra, V. R. Krithika, and T. S. Mahesh, Push-Pull Optimization of Quantum Con-

trols, Phys. Rev. Research 2, 013314 (2020).

4.1 Introduction

Optimal control theory finds applications in diverse fields such as finance, science, engineer-

ing, etc. [248, 249]. Quantum optimal control has also gained significant attention over the

last several years [250, 251] and is routinely used in robust steering of quantum dynamics as

in chemical kinetics [252, 253], spectroscopy [254–256], quantum computing [257, 258], and

many more[203]. Here we focus on optimization of quantum controls to either transfer from one

state to another, henceforth called state control, or to realize a target unitary evolution, hence-
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forth called gate control. Relevant numerical techniques fall into several categories including:

stochastic-search methods such as strongly modulating pulses [211]; gradient based approaches

such as gradient ascent pulse engineering (GRAPE) [205, 259] and gradient optimization of an-

alytical control (GOAT) [260]; variational-principle based Krotov optimization [208, 261, 262];

truncated basis approach such as chopped random basis optimization (CRAB) [263, 264]; ge-

netic algorithm enabled bang-bang controls [265, 266]; and machine learning based approaches

[267, 268]. These control schemes have been implemented on various quantum architectures such

as NMR [211, 256, 265, 269], NV centers [197], ion trap [270], superconducting qubits [271],

magnetic resonance imaging [272], cold atoms [258] etc.

4.1.1 Objectives

This work introduces a newly developed method for quantum control. In particular,

(i) An objective function evaluating the overlap of the realized process with the target process

is at the core of an optimization algorithm and therefore should be chosen carefully [273, 274].

Here we propose a hybrid objective function that not only depends on the target operator, but also

on a set of orthogonal operators. One may think of control parameters being pulled by the target

operator as well as pushed by the orthogonal operators. Accordingly, we refer to this method as

Push-Pull Optimization of Quantum Controls (PPOQC).

(ii) We describe adopting PPOQC for GRAPE and Krotov algorithms and demonstrate its superior

convergence over the standard pull-only methods.

(iii) We also experimentally demonstrate the efficacy of PPOQC in a NMR quantum testbed by

preparing long-lived singlet-order.

4.2 The optimization problem

Consider a quantum system with an internal or fixed Hamiltonian H0 and a set of M control op-

erators {Ak} leading to the full time-dependent Hamiltonian H(t) = H0+
∑M

k=1 uk(t)Ak, where

control amplitudes uk(t) are amenable to optimization. The propagator for a control sequence

of duration T is D exp
(
−i
∫ T

0
H(t′)dt′

)
, where D is the Dyson time-ordering operator. The

standard approach to simplify the propagator is via piecewise-constant control amplitudes with
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Figure 4.1: (a) Piecewise-constant control parameter ujk versus the segment number j. (b) Infidelity 1−F
versus ujk.

N segments each of duration τ (see Fig. 4.1(a)). In this case, the overall propagator is of the form

U1:N = UNUN−1 · · ·U2U1, where Uj = exp(−iHjτ) is the propagator for the jth segment and

Hj = H0 +
∑M

k=1 ujkAk. Our task is to optimize the control sequence {ujk} depending on the

following two kinds of optimizations:

(i) Gate control (GC): Here the goal is to achieve an overall propagator (gate) Ut that is in-

dependent of the initial state. This is realized by maximizing the gate-fidelity F (U1:N , Ut) =

|⟨Ut|U1:N⟩|2 =
∣∣∣Tr{U †

t U1:N}
∣∣∣2.

(ii) State control (SC): Here the goal is to drive a given initial state ρ0 to a desired target state

ρt. This can be achieved by maximizing the state-fidelity F (ρ1:N , ρt) = ⟨ρt|ρ1:N⟩ = Tr {ρtρ1:N},

where ρ1:N = U1:Nρ0U
†
1:N .

In practice, hardware limitations impose bounds on the control parameters {ujk} and therefore

it is desirable to minimize the overall control resource rk =
∑

j u
2
jk. To this end, we use the

performance function J = F −
∑M

k=1 λkrk, where λk are penalty constants.

PPOQC: Be it gate control or state control, for a d-dimensional target operator, we can effi-

ciently setup d − 1 orthogonal operators via Gram-Schmidt orthogonalization procedure [275].

The target operator pulls the control-sequence towards itself, whereas the orthogonal operators
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push it away from them (see Fig. 4.1(b)). We define the push fidelities as

GC: Fo(U1:N , {Vl}) =
1

L

L∑
l=1

F (U1:N , Vl) and

SC: Fo(ρ1:N , {Rl}) =
1

L

L∑
l=1

F (ρ1:N , Rl), (4.1)

where {Vl} and {Rl} are L ≤ d−1 orthogonal operators such that F (Ut, Vl) = 0 and F (ρt, Rl) =

0. Of course, d increases exponentially with the system size, but as we shall see later, a small

subset of L orthogonal operators can bring about a substantial advantage. Also, note that for a

given target operator, the set of orthogonal operators is not unique and can be generated randomly

and efficiently in every iteration. We define the push-pull performance function

JPP = F − αFo −
M∑
k=1

λkrk. (4.2)

The push weight α can be a constant or adoptively adjusted. In the following, we describe incor-

porating PPOQC into two popular optimal quantum control methods.

4.2.1 GRAPE optimization

Being a gradient based approach, it involves an efficient calculation of the maximum-ascent direc-

tion [205]. While it is sensitive to the initial guess and looks for a local optimum, it is nevertheless

simple, powerful, and popular. The algorithm iteratively updates control parameters {ujk} in the

direction of gradient g(i)jk = ∂J (i)/∂u
(i)
jk :

GC: g(i)jk (Ut) = 2τ Im{⟨Pj|AkU1:j⟩⟨U1:j|Pj⟩}

SC: g(i)jk (ρt) = −iτ⟨ρ̃j|[Ak, ρ1:j]⟩, (4.3)

where i denotes iteration number, Pj = U †
j+1:NUt and ρ̃j = U †

j+1:NρtUj+1:N [205]. Collective

updates u(i+1)
jk = u

(i)
jk + ϵg

(i)
jk after iteration i on all the segments with a suitable step size ϵ,

proceeds with monotonic convergence.
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4.2 The optimization problem

Push-pull GRAPE (PP-GRAPE): Using Eq. 4.2 we recast the gradients as

GC: G(i)
jk (Ut, {Vl}) = g

(i)
jk (Ut)−

α

L

L∑
l=1

g
(i)
jk (Vl) and

SC: G(i)
jk (ρt, {Rl}) = g

(i)
jk (ρt)−

α

L

L∑
l=1

g
(i)
jk (Rl), (4.4)

and the update rule as u(i+1)
jk = u

(i)
jk + ϵG

(i)
jk . The revised gradients form the basis of PP-GRAPE.

4.2.2 Krotov optimization

Based on variational-principle, this method aims for the global optimum [276]. Here the perfor-

mance function is maximized with the help of an appropriate Lagrange multiplier Bj . One sets

up a Lagrangian of the form [256],

L = F −
M∑
k=1

λkrk −
N∑
j=1

Re
〈
Bj

∣∣∣∣ ddt + iHj

∣∣∣∣U0:j

〉
, (4.5)

where the first two terms are same as the performance function J , and looks for a stationary

point satisfying ∂L
∂F

= 0, ∂L
∂ujk

= 0, and, ∂L
∂Bj

= 0. The second differential equation leads to

ujk = 1
λk

Im⟨Bj|AkU0:j⟩, and the last differential equation constrains evolution according to the

Schrödinger equation Ḃ(t) = −iH(t)B(t).

At every iteration i, the Krotov algorithm evaluates the control sequence {u(i)jk} as well as

its co-sequence {ũ(i)jk}. Starting with a random guess {u(0)jk } = {ũ(0)jk }, forward propagation of

the sequence {u(0)jk } gives U1:j and backward propagation of the co-sequence {ũ(0)jk } from the

boundary BN = ∂F/∂U1:N leads to Bj . Specifically,

GC: BN = ⟨Ut|U0:N⟩Ut

SC: BN = ρtU0:Nρ0 + κU0:N . (4.6)

Here U0:N = U0U1:N , U0 = 1, and κ is a positive constant that ensures the positivity of fidelity.
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Back propagating the co-sequence, we obtain

Bj = Ũ †
j+1 · · · Ũ

†
N−1Ũ

†
NBN , (4.7)

where Ũj = exp
(
−iH̃τ

)
and H̃j = H0 +

∑M
k=1 ũjkAk. Now the sequence {u(i)jk} is updated

according to

u
(i)
jk = (1− δ)ũ

(i−1)
jk +

δ

λk
Im⟨B(i−1)

j |AkU
(i)
0:j−1⟩ (4.8)

and propagatorU (i)
0:j is evaluated. Iterating the last two steps delivers propagatorsU (i)

0:1, U
(i)
0:2, · · · , U

(i)
0:N .

The terminal Lagrange multiplier B(i)
N is evaluated using the Eq. 4.6. To setup the co-sequence

{ũ(i)jk} we first evaluate the terminal control ũNk using

ũ
(i)
jk = (1− η)u

(i)
jk +

η

λk
Im⟨B(i)

j |AkU
(i)
0:j⟩ (4.9)

with j = N . The Lagrange multiplier B(i)
N−1 = Ũ †

NB
(i)
N is now evaluated by back-propagating

with the updated amplitude ũ(i)Nk. Iterating the last two steps updates the whole co-sequence {ũ(i)jk}.

The algorithm is continued until the desired fidelity is reached.

Push-pull Krotov (PP-Krotov): Here we use L additional co-sequences {ṽ(i)jkl} corresponding

to orthogonal operators {Vl} or {Rl}. Terminal Lagrange multipliers {CNl} are obtained using

similar equations as in Eq. 4.6: GC: CNl = ⟨Vl|U0:N⟩Vl and SC: CNl = RlU0:Nρ0 + κU0:N .

Revised update rule is

u
(i)
jk = (1− δ)ũ

(i−1)
jk +

δ

λk
Im⟨B(i−1)

j |AkU
(i)
0:j−1⟩

+
αδ

L

L∑
l=1

[
ṽjkl −

1

λk
⟨C(i−1)

jl |AkU
(i)
0:j−1⟩

]
, (4.10)

where ṽ(i)jkl =
αη
L

[
u
(i)
jk − 1

λk

∑L
l=1 Im⟨C(i)

jl |AkU
(i)
0:j⟩
]

and α is the push weight as in Eq. 4.2.

4.3 Numerical analysis

Results of PPOQC analysis in a model two-qubit Ising-coupled system are summarized in Fig.

4.2. For GC, we use CNOT gate as the target, while for SC, the task is a transfer from |00⟩ state
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Figure 4.2: Performance analysis on a two-qubit system for GRAPE US (1st column), GRAPE SS (2nd
column), Krotov US (3rd column), and Krotov SS (4th column). (a-d) Infidelity 1 − F of two-qubit
controls versus iteration number (i) and number (L) of orthogonal operators for GRAPE and Krotov as
indicated. Black lines represent mean infidelities. (e-h) Mean infidelity versus i. Curves for L = 0 (red)
and for L leading to the maximum final fidelity (green) are highlighted. (i-l) Mean final infidelity (left
axis) and relative computing time (right axis) versus L. Error bars represent one standard deviation. (m-p)
Probability versus advantage factor.

to singlet state |S0⟩ = (|01⟩ − |10⟩)/
√
2. In each case, we use a fixed set of one hundred random

guess-sequences. PP-GRAPE and PP-Krotov algorithms were run for various sizes of orthogonal

sets (L ∈ [1, 15] with push weight α = 0.2) and compared with the pull-only (L = 0) results

(Fig. 4.2(a-d)). PPOQC outperformed the pull-only algorithms in terms of the mean final fidelity

in all the cases (Fig. 4.2 (e-h)). More importantly, while the pull-only fidelities tend to saturate

by settling into local minima, the push-pull trials appeared to explore larger parameter space and

thereby extracted solutions with better fidelities. While the computational time for PP-GRAPE

is weakly dependent on L, we find a slow but linear increase in the case of PP-Krotov (Fig. 4.2

(i-l)). To quantify the advantage of PPOQC over the standard algorithms, we define the advantage

factor (1−F (L = 0))/(1−F (Lbest)), where Lbest corresponds to the one with maximum mean of
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Figure 4.3: Infidelities for 40 random guesses (thin lines) and their mean (thick lines) versus iteration
number i with Krotov (red) and with PP-Krotov (blue; L = 1; α = 0.2) for QFT on qubit-registers of
varying sizes (n as indicated).

final-fidelity (Fig. 4.2 (m-p)). In all the cases PPOQC (L ≥ 1) resulted in superior convergences

than the standard pull-only (L = 0) algorithms. In particular, PP-Grape SC and PP-Krotov GC

reached advantage factors up to 64, while PP-Krotov SC reached up to 16. Only in PP-Grape GC,

the advantage factor was modest 2.

To analyze the performance of PPOQC in larger systems, we implement Quantum Fourier

Transform (QFT), which is central to several important quantum algorithms [256]. We implement

the entire n-qubit QFT circuit, consisting of n local and O(n2) conditional gates, into a single

PP-Krotov GC sequence. The results, with registers up to seven qubits, shown in Fig. 4.3 assure

that PPOQC advantage persists even in larger systems.

The push-pull technique can also be combined with other convergence improvement tech-

niques such as conjugate-gradient [277], which is illustrated by the best performance of conju-

gate PP-GRAPE in Fig. 4.4 (a). Moreover, in the pull-only algorithms, the step-size ϵ may be

optimized to ensure the best convergence. Similarly, in PPOQC, one can simultaneously optimize

both the step-size ϵ and the push-weight α to realize the best convergence rate. This is illustrated

in Fig. 4.4 (b). Notice that we now obtain an order of magnitude improvement in the infidelity

compared to the pull-only algorithm.
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4.3 Numerical analysis

Figure 4.4: Mean infidelities (thick lines) of GRAPE sequences implementing a two-qubit CNOT gate.
(a) Performance with/without conjugate gradients. (b) Pull-only (L = 0) with adoptive step-size ϵ (red)
and Push-Pull (L = 15) with simultaneously adopted step-size as well as push-weight α (blue).

4.3.1 Rapid parameter search in push-pull approach

To gain insight into the superiority of push-pull over pull-only approach, we observed how the

gradients evolve over time. Fig. 4.5 displays the evolution of gradients versus control amplitudes

over several iterations. The simulations are carried out for a two-qubit CNOT gate with both

pull-only and push-pull GRAPE algorithms. Push-pull algorithm ultimately converged to a better

fidelity (0.993) than the pull-only algorithm (0.981). Notice that the push-pull gradients show

more rapid changes than the pull-only algorithm, indicating a more robust parameter search in

action. This behavior appears to be the crucial factor for the faster convergence of the push-pull

approach.

4.3.2 Push-weight

Fig.4.6 displays infidelities of PP-GRAPE as well as PP-Krotov algorithms versus the push-

weight α. We notice that, on the positive side, the infidelity is generally superior to the pull-
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Figure 4.5: Top row: X and Y amplitudes for a two-qubit CNOT gate with pull-only GRAPE (red) and
push-pull PP-GRAPE (green; L = 5) algorithms. Bottom row: Eovlution of X and Y gradients versus
iteration number for one particular segment (segment number 78). Notice how the mean push gradients
(blue) from the orthogonal operators modulate the effective push-pull gradients (green).

only algorithm (α = 0). In each case, there exists an optimal push-weight roughly in the range

α ∈ [0.1, 0.3] at which the PPOQC works best. It is interesting to see that some negative regions

also display superior performances.

4.4 NMR experiments

We now study the efficacy of PPOQC via an important application in NMR spectroscopy, i.e.,

preparation of a long-lived state (LLS). Carravetta et al. had demonstrated that the singlet-order

of a homonuclear spin-pair outlives the usual life-times imposed by spin-lattice relaxation time

constant (T1) [278, 279]. Prompted by numerous applications in spectroscopy and imaging, sev-

eral efficient ways of preparing LLS have been explored [280]. In the following, we utilize
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Figure 4.6: Infidelity versus the push-weight α for L = 6. Error bars indicate one standard deviation.
The black point at α = 0 corresponds to the standard pull-only algorithms. The green and red regions
respectively indicate superior and inferior performances of PPOQC w.r.t. pull-only algorithm.

PP-Krotov SC optimization for this purpose.

We prepare LLS on two protons of 2,3,6-trichlorophenol (TCP; see Fig. 4.7 (a)). Sample

consists of 7 mg of TCP dissolved in 0.6 ml of deuterated dimethyl sulfoxide. The experiments

are carried out on a Bruker 500 MHz NMR spectrometer at an ambient temperature of 300 K.

Standard NMR spectrum of TCP shown in Fig. 4.7 (a) indicates resonance offset frequencies

±∆ν/2 to be ±63.8 Hz and the scalar coupling constant J = 8.8 Hz. The internal Hamiltonian

of the system, in a frame rotating about the direction of the Zeeman field at an average Larmor

frequency is H0 = −π∆νIAz + π∆νIBz + 2πJIAz I
B
z , where IAz and IBz are the z-components of

the spin angular momentum operators IA and IB respectively.

The thermal equilibrium state at high-field and high-temperature approximation is of the form

ρ0 = IAz + IBz (up to an identity term representing the background population). The goal is to

design an RF sequence {ux(t), uy(t)} introducing a time-dependent Hamiltonian

H(t) = H0 + ux(t)(I
A
x + IBx ) + uy(t)(I

A
y + IBy )
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Figure 4.7: (a) Thermal and LLS spectra of TCP (molecule in inset). (b) PP-Krotov SC sequence (L = 5)
preparing LLS directly from the thermal state. (c) LLS fidelity evolution during the sequence in (b) at
different RF inhomogeneity levels. (d) T1 values measured by the inversion recovery experiment and the
TLLS measured by storage under spin-lock.
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4.5 Summary and outlook

that efficiently transfers ρ0 into zero-quantum singlet-triplet order ρS = −IA · IB. Under an RF

spin-lock the triplet order decays rapidly while the singlet order ρLLS remains long-lived. The

PP-Krotov SC pulse-sequence shown in Fig. 4.7 (b) consists of 1000 segments in a total duration

of 45 ms, which is 30% shorter than the standard sequence that requires 1
2J

+ 3
4∆ν

= 63 ms [279].

The fidelity profile shown in Fig. 4.7 (c) indicates the robustness of the sequence against 10% RF

inhomogeneity distribution with an average final fidelity above 95%. The LLS spectrum shown in

Fig. 4.7(a) is the characteristic of the singlet state ρS . Fig. 4.7 (d) shows the experimental results

of LLS storage under 1 kHz WALTZ-16 spin-lock. It confirms the long life-time TLLS of about

24.5 s or about 4.5 times TA
1 and TB

1 measured by inversion recovery experiments. A comparison

with the standard method (as in ref. [279]) revealed 27% higher singlet order, further indicating

the superiority of the PP-Krotov SC sequence.

4.5 Summary and outlook

At the heart of optimization algorithms lies a performance function that evaluates a process in re-

lation to a target. Using a hybrid objective function that simultaneously takes into account a given

target operator as well as a set of orthogonal operators we devised the push-pull optimization of

quantum controls. Combined influences of these operators not only results in a faster conver-

gence of the optimization algorithm, but also effects a better exploration of the parameter space

and thereby generates better solutions. Although the orthogonal set grows exponentially with

the system size, it is not necessary to include an exhaustive set. Even a small set of orthogonal

operators, generated randomly during the iterations, can bring about a significant improvement in

convergence.

While the push-pull approach can be implemented in a wide variety of quantum control rou-

tines, we described adopting it into a gradient based as well as a variational-principle based op-

timizations. We observed considerable improvements in the convergence rates, without over-

burdening computational costs. The numerical analysis with up to seven qubits confirmed that

push-pull method retained superiority even in larger systems. Combining push-pull method with

conjugate gradients also resulted in a better performance. Numerical analysis revealed a further

improvement with adoptive step-sizes and adoptive push-weights.
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Finally, using NMR methods, we experimentally verified the robustness of a push-pull Krotov

control sequence preparing a long-lived singlet order. Further work in this direction includes opti-

mizing the functional forms of orthogonal gradients and generalization to open quantum controls.
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CHAPTER 5

Physics-Informed Neural Network for Robust Quantum

Control

Abstract

Machine learning is becoming increasingly integral across various domains. In this con-

text, we present a novel approach utilizing a Physics Informed Neural Network for con-

structing quantum gates. We focus on creating a two-qubit CNOT gate and a protocol for

state-to-state transfer, specifically designing a pulse to prepare a long-lived singlet state.

These sequences are implemented on a nuclear magnetic resonance platform to assess the

algorithm’s effectiveness. We also show the robustness of singlet-state preparation under

noise. On the other hand, the significance of geometric quantum computation lies in its

inherent robustness against certain types of parameter noise. Therefore, it becomes imper-

ative to devise innovative algorithms for generating geometric quantum gates applicable to

diverse quantum platforms. Our study highlights the robust nature of the one-qubit phase

gate compared to the conventional hard pulse approach. This comparison sheds light on

the algorithm’s resilience, a critical aspect of developing practical quantum computing so-

lutions.

Reported in

Priya Batra, and T. S. Mahesh, manuscript under preparation.

5.1 Introduction

Quantum control has become one of the central topics in the upcoming quantum technology. It

deals with the problem of efficient transfer of one state to another and unitary synthesis. Finding

hardware-specific controls is another essential task. It has a long history of successful devel-
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opment of various numerical optimization algorithms [89, 90, 106, 122, 256]. One of the most

necessary criteria of these optimization algorithms relies on the initial discretization of the con-

trol sequence. It is a valuable approximation; however, there are problems of under and over-

discretization. On the other side, noise is another crucial factor affecting these control pulses’

performance in practical quantum systems. The geometric phase offers a distinct paradigm by

inherently becoming robust against certain types of noises. Panchratnam first proposed the idea

of a geometric phase using polarised light [281]. It was first mathematically formalized by Berry

in the adiabatic setting [282] and was later extended to the non-adiabatic limit by Aharonov and

Anandan [283]. Wilczek and Zee extended it to the non-commuting (non-abelian) geometric

phase in the adiabatic limit [284]. It was again performed to a non-abelian phase using a similar

approach as shown in [283] useful for universal quantum computation [285]. In the adiabatic

limit, it reduces to Wilczek and Zee holonomy [284]. Sjoqvist et al. [286, 287] have reviewed

all the possible settings of geometric phase, which include adiabatic or non-adiabatic, Abelian, or

non-Abelian in the context of geometric quantum computation. It has been experimentally real-

ized in a variety of platforms such as NMR [288–291], superconducting qubits [290, 292, 293],

Rydberg atoms [294, 295], NV center [296], etc. Recently, Li et al. [297, 298] presented the

inverse engineering of Hamiltonian, which beforehand includes the two necessary conditions of

cyclic evolution and parallel transport for geometric gates. One can directly generate the desired

evolution by following the path of time-dependent Hamiltonian parameters.

The use of machine learning protocols for different quantum problems has been a point of at-

tention recently [299, 300]. A physics-informed neural network (PINN) is a type of ML algorithm

that takes information about physical procedures in the form of differential equations. After suc-

cessfully implementing a neural network for solving Navier Stokes’s equation [301, 302], PINN

started to gain attention for solving various other types of differential equations [303, 304]. It

is said to be a universal function approximator [305]. Recently, it has been proposed to solve

Schrödinger’s equation [132] as well as the open quantum system Lindbladian equation [133].

An essential strength of the PINN algorithm is that it utilizes smooth basis functions to convert

network parameters into the control function. Therefore, it generates smooth controls with low

bandwidth that are easier to implement in experimental hardware [132]. PINN also avoids the

need for any pre-discretization prevalent in other quantum control algorithms.
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5.1.1 Objectives

In this work, we dive into the problem of piece-wise constant approximation, applicability of

PINN in practical quantum setup and noise in quantum systems. In the following sections, we

discuss

(i) We utilize PINN to design a state-to-state transfer to prepare a two-qubit long-lived singlet

(LLS) state and a two-qubit CNOT gate. We also check the noise robustness for the LLS state by

solving the open quantum system Lindbladian equation.

(ii) We then execute these control pulses on NMR hardware to check the efficacy of PINN.

(iii) The effect of discretization on time-dependent continuous control pulses in simulation and

experiments has also been explored in both unitary evolution and state-to-state transfer cases.

(iv) We engineer a one-qubit geometric phase gate having built-in robustness against control

errors.

5.2 Physics-informed neural networks (PINNs)

Consider the total Hamiltonian H(t) consisting of two components, a constant part H0 and a

time-dependent part such that

H(t) = H0 +
M∑
k=0

uk(t)Hk, (5.1)

where uk(t) are the time-dependent control amplitudes and Hk are corresponding control opera-

tors. The task of a general quantum control problem is to find the uk(t) to achieve a target unitary

Ut or a target state ρt efficiently. For this purpose, we utilize a deep learning-based method called

a physics-informed neural network (PINN).

We employ a feed-forward network, as shown in figure 5.1, with the time t as input and control

amplitudes uk(t) as output of the network. The output of the first layer is written as

L1 = Γ(W1 · t+B1), (5.2)

where W1 and B1 are the weight and bias matrices for the first layer, and Γ is the activation
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Figure 5.1: (top) Neural network; (bottom) Mathematical processing of a neural network where xi are
inputs, wi,j are the weights, bj are bias, and yj are output.

function. In our work, we use the hyperbolic tangent function as the activation. The neural

network output can be cast as the consecutive operations of different layers,

uk(t) = LK ◦ LK−1 ◦ ... ◦ L1. (5.3)

Here K represents the number of layers in the network. The output of the network is used in the

eq. 5.1 to reconstruct Hamiltonian H(t). It is important to notice that our control parameters are a
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function of time and network parameters. One needs to find the optimized network parameters to

get the desired controls for target unitary Ut or state ρt. To this end, we inject Hamiltonian H(t)

into Schrödinger’s equation and solve it.

We use JAX’s ordinary differential equation solver to solve the Schrödinger equation [306].

We simulate the neural network with Jax’s Haiku library [307]. We start with the random value

of network parameters and calculate the fidelity or optimization function

F =
∣∣∣Tr(U †

t U(T )
)∣∣∣2

or

= Tr(ρ(T )ρt), (5.4)

where U(T ) and ρ(T ) are the simulated unitary and state respectively. The goal here is to maxi-

mize the optimization function by updating the parameters of the network. After calculating the

fidelity, we take the derivative of the fidelity function with respect to network parameters. We

use the auto differentiation (autodiff) algorithm in the Optax module [308] until we maximize

the fidelity function. Automatic differentiation is different from symbolic differentiation. Unlike

GRAPE and other quantum control algorithms, we do not take derivatives directly with respect to

controls. We parameterize the controls as network parameters and then use autodiff. It is based

on converting the program into a sequence of primitive operations. Autodiff is efficient (linear in

the cost of computing the value) and numerically stable.

5.3 State to state transfer

We aim to drive an initial state ρi to a target state ρt using external time-dependent parameters

uk(t). The quality of the process can be quantified using the fidelity function between target state

ρt and simulated state ρ(T ) after total time T given as

F = Tr(ρ(T )ρt). (5.5)

We use NMR as our test bed to simulate state-to-state transfer.
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5.3.1 Preparation of long-lived singlet state in NMR

We prepare a special state called the singlet state, which is long-lived compared to the inherent

relaxation time. The singlet state is written as

|S0⟩ =
|01⟩ − |10⟩√

2
. (5.6)

We use a 2-qubit sample 2,3,6-trichlorophenol (TCP) (shown in the inset of fig. (a) 5.2) in a liquid

state in a 500 MHz NMR spectrometer. To prepare the singlet state, we utilize the two protons of

TCP. The internal Hamiltonian for TCP is given by

H0 = 2πJI1zI2z − 2πν1I1z − 2πν2I2z, (5.7)

where coupling between two qubits is J = 8.75 Hz and chemical shift difference is ∆ν =

ν2 − ν1 = 127.5 Hz with Iz representing the z-component of spin operator. The external RF field

has the following Hamiltonian

HRF (t) = ωx(t)(I1x + I2x) + ωy(t)(I1y + I2y), (5.8)

with ωx(t) and ωy(t) being the x and y-control amplitudes.

The pulse sequence is then applied to the NMR spectrometer. Since the LLS state has no

magnetization, the pulse sequence is followed by a π/2-pulse to bring the magnetization to x-

axis. The antiphase LLS spectra are shown 5.2 (a). To prepare the singlet state, we start with

thermal equilibrium ρi = I1z + I2z. We employ the PINN to find the control amplitudes so

that ρi reaches ρt = |S0⟩ ⟨S0|. Figure 5.2 (b) shows the simulated pulse sequence. To measure

the lifetime of LLS, we keep the singlet state under the WALTZ-16 spin lock for a duration of

T = 0− 44 sec. Due to the symmetry of LLS, it decays very slowly under spin lock and follows

an exponential behavior. Fig 5.2 (c) shows the magnetization vs time.

Effect of discretization

In most numerical quantum control optimization algorithms (such as GRAPE or Krotov), one

starts with a pre-discretized pulse shape, which undergoes iterative optimization. The pulse thus
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5.3 State to state transfer

Figure 5.2: (a) LLS spectrum (b) Pulse sequence, x and y control amplitudes for 1H as a function of time
(c) Decay of singlet magnetization under WALTZ 16 spin-lock. The T1 values of the two protons are 5.5 s
and 5.6 s. Thus, LLS outlives the single-spin non-equilibrium magnetization by a factor of around 5. (d)
Effect of discretization on continuous time pulse in simulation as well as experiments.

generated does not necessarily harness the full capability of the experimental hardware. Under-

digitization often compromises the fidelity of the pulse. On the other hand, over-digitization is

not only computationally expensive but also might prohibit the pulse from being realized in a

given hardware of a specific memory.

One of the critical features of PINN is that it encodes the entire shape of the control ampli-

tudes in terms of the network parameters. This allows one to extract a vectorized pulse shape

with optimal discretization for any given hardware. Thus, PINN avoids the need for any prior
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discretization of pulse shape. The neural network may also provide a compact way to store the

pulse shape that can be extracted as a discretized vector of arbitrary precision when required.

In figure 5.2 (d), we also study the effect of under and over-discretization of pulse shapes in

simulations and experimental hardware. The result for discretization vs fidelity in the simulated

case is plotted with a purple line, while discretization vs total singlet magnetization in experiments

is plotted with a green line.

5.3.2 Effect of noise on singlet state preparation

To have a robust singlet state, we need to counter the effect of noise. We solve the Lindbladian

equation for this, considering the noise to build the control sequence. We prepare the singlet state

with robustness against control noise. The Lindbladian equation can be given as

dρS
dt

= − i

ℏ
[HS(t), ρS] +

∑
n

γn

(
Vn ρS V

†
n − 1

2
{ρS, V †

nVn}
)
. (5.9)

Control noise plays a significant role in NMR or in almost all architectures. For this purpose,

Figure 5.3: Fidelity vs control noise (in percentage) for different gamma values for LLS state preparation.
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5.3 State to state transfer

we take V1 = I1x + I2x and V2 = I1y + I2y and γ1 = γ2 = γ which we vary to see the nature

of robustness. We use the parameters of the 2-chloroacrylonitrile (CAN) with J = 17.22 Hz and

δv = v2 − v1 = 45.13 Hz to simulate the robustness response.

Figure 5.3 plots the fidelity of singlet state vs control error in percentage for different gamma

values. Here, the blue line represents robustness without any external noise being considered

while achieving the pulse sequence. However, as we increase the value of gamma, it is evident

from the red line that robustness increases quite a bit. As we further increase the value of gamma,

the noise part starts dominating during optimization, and the overall fidelity and robustness de-

crease. It is interesting to see that at around γ = 40, there is a sudden change in the robustness

behavior.

5.3.3 Unitary synthesis

Logic gates are important ingredients for quantum computation. Single-qubit gates and a two-

qubit CNOT gate comprise a universal set of gates. Here, we employ PINN to prepare a 2-qubit

CNOT gate and implement it on the NMR set-up. We use a 2-qubit system, diethyl fluoromalonate

(DEFM) (shown in inset 5.4), in a liquid state in a 500MHz spectrometer. DEFM has a 1H and
19F nucleis which work as two distinct qubits. The internal Hamiltonian for the system is

H0 = 2πJI1zI2z, (5.10)

where J = 48.2Hz is scalar coupling and Iz is the z-component of spin operator. The external

RF Hamiltonian is of the following form

HRF (t) = ω1x(t)I1x + ω2x(t)I2x + ω1y(t)I1y + ω2y(t)I2y, (5.11)

with ω1(2),x(y) being the x(y) control amplitudes for qubit 1(2). In our case 19F is the control

qubit while the 1H is the target qubit. The pulse sequence and NMR spectrum for both qubits are

shown in fig 5.4.

We also show the effect of discretization while synthesizing the unitary. We prepare the

CNOT gate in DEFM as described below. We then plot fidelity vs the number of segments in

simulation and experiments. We perform diagonal tomography in experiments to calculate the
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Figure 5.4: (a) x and y amplitude and NMR spectra (c) for 19F , (b) x and y amplitude and NMR spectra
(d) for 1H , (e) Effect of discretization in terms of fidelity of final state in the experiment (green) and
simulation (purple).

fidelity of the CNOT gate. For that, we do not need to perform multiple experiments. Instead, we

need to perform one experiment. The signal obtained after one experiment for 19F and 1H is used

along with the magnetization matrix to achieve the state after applying CNOT. The corresponding

transitions are shown in figure 5.4 (e).
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5.4 Geometric quantum gates

5.4 Geometric quantum gates

The geometric phase has the exquisite properties of being inherently robust for parameter fluctu-

ations [297, 298]. Considering an N -dimensional quantum system with Hamiltonian H(t) and

it’s time-dependent quantum states {|ϕk(t)⟩}Nk=1. For a quantum system evolving cyclically with

period τ , the time-dependent state is

|ϕ(τ)⟩ = exp[iα(τ)] |ϕ(0)⟩ , (5.12)

where total phase α(τ) = β(τ)+γ(τ) is the sum of dynamical phase β(τ) = −
∫ τ

0
⟨ϕ(t)|H(t)|ϕ(t)⟩ dt

and non-adiabatic geometric phase γ(τ).

For a system having only a geometric phase, we design an inverse problem of finding H(t)

such that,

|ϕ(τ)⟩ = exp[iγ(τ)] |ϕ(0)⟩ (5.13)

and

⟨ϕ(t)|H(t)|ϕ(t)⟩ = 0. (5.14)

The equation 5.13 and 5.14 are also known as cyclic evolution and parallel transport condi-

tions, respectively. To find the Hamiltonian satisfying above conditions, we start with find-

ing an auxiliary set of basis vector {|vk(t)⟩}Nk=1 such that |vk(t)⟩ = exp[−iγk(t)] |ϕk(t)⟩ and

|vk(τ)⟩ = |vk(0)⟩ = |ϕ(0)⟩.

Since ϕk(t) is the quantum state and thus satisfies Schrödinger equation

i|ϕ̇k(t)⟩ = H(t) |ϕk(t)⟩ . (5.15)

By choosing auxiliary basis, we want |ϕk(t)⟩ = exp[iγk(t)] |vk(t)⟩ which modifies the Hamilto-
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nian in equation 5.15,

H(t) = i

N∑
k=1

|ϕ̇k(t)⟩ ⟨ϕk(t)|

= i
N∑
l ̸=k

⟨vl(t)|v̇k(t)⟩ |vl(t)⟩ ⟨vk(t)| . (5.16)

The above equation 5.16 satisfies the cyclic evolution and parallel transport condition. Thus, by

choosing the auxiliary basis appropriately, we can inverse engineer the Hamiltonian under which

we only achieve states with geometric phases, thus having inherent robustness in parameter space.

One-qubit case
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Figure 5.5: (a) Pulse sequence for x, y, and z components of Hamiltonian (b) Robustness of x and y control
errors in PINN generated sequence as well as hard pulse sequence.

To prepare a universal set of one-qubit gate, we choose the auxiliary basis |v1(t)⟩ and |v2(t)⟩

in terms of computational basis |0⟩ and |1⟩, such that,

|v1(t)⟩ = cos

(
ϑ(t)

2

)
|0⟩+ eiφ(t) sin

(
ϑ(t)

2

)
|1⟩ (5.17)

|v2(t)⟩ = eiφ(t) sin

(
ϑ(t)

2

)
|0⟩ − cos

(
ϑ(t)

2

)
|1⟩ , (5.18)
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where ϑ(t) and φ(t) are the time-dependent parameters in the 2-dimensional Hilbert space. By

inserting the above basis vectors in equation 5.16, we obtain the Hamiltonian H(t) given as

H(t) =− 1

2
[ ˙ϑ(t) sinφ(t) + ˙φ(t) sinϑ(t) cosϑ(t) cosφ(t)]σx

+
1

2
[ ˙ϑ(t) cosφ(t)− ˙φ(t) sinϑ(t) cosϑ(t) sinφ(t)]σy

+
1

2
˙φ(t) sin2 ϑ(t)σz, (5.19)

where {σk}k=x,y,z are the Pauli operators.

By employing PINN here, we insert time t as the neural network input and get the time-

dependent parameters ϑ(t) and φ(t) as neural network output. We take the neural network of size

(1,40,40,2) and construct a one-qubit PH gate. We then compare the robustness against control

errors x and y for the PINN pulse sequence compared to the hard pulse.

5.5 Summary and outlook

At the core of optimization algorithms is the essential requirement of piece-wise constant approxi-

mation. Employing a physics-informed neural network (PINN), which offers smooth controls and

eliminates the need for discretization, we formulate the control sequence for a two-qubit CNOT

gate and the preparation of a Long-Lived Singlet (LLS) state. Exploiting the inherent advantage

of geometric phases, we also utilize PINN to create a one-qubit phase gate, showcasing improved

robustness compared to dynamical phase approaches. While PINN proves adaptable across var-

ious quantum systems, we specifically illustrate its application in Nuclear Magnetic Resonance

(NMR) for implementing unitary operations and generating LLS states.

Future endeavours in this domain involve extending geometric gates to holonomic gates and

integrating noise with geometric conditions to enhance robustness. This research trajectory aims

to advance the versatility and effectiveness of quantum control protocols based on PINN.
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Appendix

Below, we provide the sample code for preparing the LLS state starting from thermal equilibrium

in the TCP molecule. Code has three major parts: first importing necessary modules, second

defining the Hamiltonian parameters for TCP, third building a neural network, and then employing

its optimization.
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In [ ]: ####### Import necessary package
import numpy as np
import jax
import jax.numpy as jnp
from jax import grad, value_and_grad, jacfwd, jacrev, vmap, jit
from jax.experimental import ode
from jax.example_libraries import optimizers, stax
import jax.nn as nn
import time
import haiku as hk
import optax
from scipy import linalg
import matplotlib.pyplot as plt
from jax.config import config
config.update('jax_enable_x64', True)
import jax.lax.linalg as lax_linalg
import random
from jax.numpy import trace as TR, kron as KRON, array as ar, \
sqrt as SQRT, sin as sin
from datetime import datetime, date

## Load the Hamiltonian parameters
#Pauli matrices
sx = 0.5*ar([[0,1],[1,0]])
sy = 0.5*ar([[0,-1j],[1j,0]])
sz = 0.5*ar([[1,0],[0,-1]])
I = jnp.identity(2)

rhoi = KRON(sz, I) + KRON(I, sz)
rhof = -2*(KRON(sx,sx) + KRON(sy,sy))

n = 2
J = 8.75
T = 0.02
dim = 2**n
Ns = 500
t1 = jnp.linspace(0.0001, T, Ns)
dt = T/(Ns)
v1 = -63.75
v2 = 63.75

#Neural network
def FeedForward(t):

mlp = hk.Sequential([hk.Flatten(), jnp.tanh, 
hk.Linear(40), jnp.tanh,
hk.Linear(40), jnp.tanh,
hk.Linear(4),])

return mlp(t)

learning_rate = 8e-3
model = hk.transform(FeedForward)



optimizer = optax.adam(learning_rate)
rng = jax.random.PRNGKey(42)

@jit
def neural_net(weights,t):

Hin = jnp.array([t])
H = Hin
pt = model.apply(weights, rng, H)
H0 = 2*jnp.pi*J*(KRON(sz, sz)) - 2*jnp.pi*v1*KRON(sz, I) \
- 2*jnp.pi*v2*KRON(I, sz)
Ht = 2*jnp.pi*(pt[0]*sin(pt[1])*(KRON(sx, I) + KRON(I, sx)) 
+ pt[2]*sin(pt[3])*(KRON(sy, I) + KRON(I, sy)))
return [H0,Ht,pt]

@jit
def rhs(rhot,t, weights):
    [H0,Hf1,_] = neural_net(weights,t)

Ht = Hf1
rh = -1j*((H0+Ht)@rhot - rhot@(H0+Ht))
return rh

@jit
def fidelity(rhof, weights):

rhot = ode.odeint(rhs, rhoi+1J*0, jnp.array([0.0, T]), weights) 
fid = jnp.real(TR(rhot[-1]@rhof)/SQRT(TR(rhot[-1]@rhot[-1]) \
*TR(rhof@rhof)))
return fid

@jit
def loss(weights):

fid = fidelity(rhof,weights) 
J = 1 - fid
return J

##Optimization    
params = model.init(rng, jnp.array([T]))
opt_state = optimizer.init(params)
epochs = 5000
IF = []   

for steps in range(1, epochs+1):
grads = grad(loss)(params)
updates, opt_state = optimizer.update(grads, opt_state)
params = optax.apply_updates(params, updates)
ls = 1 - fidelity(rhof,params)
IF.append(ls)
if steps%10 == 0:

print("IF : {:.4f}".format(ls))
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Figure T1: Summary of the thesis, and concepts covered in the chapters therein.

In this thesis, we have explored new computational methodologies including machine learn-

ing for quantum characterization and control using NMR architecture. Quantum characterization

was done for quantum dynamics using quantum correlations such as entanglement and discord,

as well as state fidelity. For this, a machine learning based technique called recommender sys-

tem was utilized and prediction of phase-space plot was done for a non-linear quantum kicked

top model. Quantum control algorithms were shown to expedite using the recommender system

based method and have better convergence using push-pull method which employed orthogonal

operators. Another control algorithm based on physics informed neural network resulted in robust

control against control errors. These control algorithms were implemented on NMR test bed to

check their efficacy. This thesis highlights some relevant studies of quantum dynamics and appli-

cations of these algorithms for usage in quantum computing as well as other upcoming quantum

technologies.
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[113] Mads S. Vinding, Ivan I. Maximov, Zdeněk Tošner, and Niels Chr. Nielsen. Fast numerical

design of spatial-selective rf pulses in MRI using Krotov and quasi-Newton based optimal

control methods. J. Chem. Phys., 137(5):054203, August 2012. ISSN 0021-9606. doi:

10.1063/1.4739755.

[114] Xiangzhen Zhou, Sanjiang Li, and Yuan Feng. Quantum Circuit Transformation Based

on Simulated Annealing and Heuristic Search. IEEE Trans. Comput.-Aided Des. Integr.

Circuits Syst., 39(12):4683–4694, December 2020. ISSN 1937-4151. doi: 10.1109/TCAD.

2020.2969647.

[115] Haozhen Situ and Zhimin He. Using simulated annealing to learn the SDC quan-

tum protocol. Eur. Phys. J. Plus, 137(1):98, January 2022. ISSN 2190-5444. doi:

10.1140/epjp/s13360-021-02336-5.

[116] M. Harshanth Ram, V. R. Krithika, Priya Batra, and T. S. Mahesh. Robust quantum control

using hybrid pulse engineering. Phys. Rev. A, 105(4):042437, April 2022. doi: 10.1103/

PhysRevA.105.042437.

[117] Ehsan Zahedinejad, Sophie Schirmer, and Barry C. Sanders. Evolutionary algorithms

for hard quantum control. Phys. Rev. A, 90(3):032310, September 2014. doi: 10.1103/

PhysRevA.90.032310.

[118] Gaurav Bhole, V. S. Anjusha, and T. S. Mahesh. Steering quantum dynamics via bang-

bang control: Implementing optimal fixed-point quantum search algorithm. Phys. Rev. A,

93(4):042339, April 2016. doi: 10.1103/PhysRevA.93.042339.

[119] Deepak Khurana and T. S. Mahesh. Bang-bang optimal control of large spin systems:

Enhancement of 13C–13C singlet-order at natural abundance. J. Magn. Reson., 284:8–14,

November 2017. ISSN 1090-7807. doi: 10.1016/j.jmr.2017.09.006.

[120] Hailan Ma, Chunlin Chen, and Daoyi Dong. Differential Evolution with Equally-Mixed

130



Strategies for Robust Control of Open Quantum Systems. In 2015 IEEE Int. Conf. Syst.

Man Cybern., pages 2055–2060, October 2015. doi: 10.1109/SMC.2015.359.

[121] Patrick Doria, Tommaso Calarco, and Simone Montangero. Optimal Control Technique

for Many-Body Quantum Dynamics. Phys. Rev. Lett., 106(19):190501, May 2011. doi:

10.1103/PhysRevLett.106.190501.

[122] Tommaso Caneva, Tommaso Calarco, and Simone Montangero. Chopped random-basis

quantum optimization. Phys. Rev. A, 84(2):022326, August 2011. doi: 10.1103/PhysRevA.

84.022326.

[123] N. Rach, M. M. Müller, T. Calarco, and S. Montangero. Dressing the chopped-random-

basis optimization: A bandwidth-limited access to the trap-free landscape. Phys. Rev. A,

92(6):062343, December 2015. doi: 10.1103/PhysRevA.92.062343.

[124] J. J. W. H. Sørensen, M. O. Aranburu, T. Heinzel, and J. F. Sherson. Quantum optimal

control in a chopped basis: Applications in control of Bose-Einstein condensates. Phys.

Rev. A, 98(2):022119, August 2018. doi: 10.1103/PhysRevA.98.022119.

[125] Re-Bing Wu, Haijin Ding, Daoyi Dong, and Xiaoting Wang. Learning robust and high-

precision quantum controls. Phys. Rev. A, 99(4):042327, April 2019. doi: 10.1103/

PhysRevA.99.042327.

[126] Shai Machnes, Elie Assémat, David Tannor, and Frank K. Wilhelm. Tunable, Flexible,

and Efficient Optimization of Control Pulses for Practical Qubits. Phys. Rev. Lett., 120

(15):150401, April 2018. doi: 10.1103/PhysRevLett.120.150401.

[127] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den

Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,

Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timo-

thy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis.

Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):

484–489, January 2016. ISSN 1476-4687. doi: 10.1038/nature16961.

131



[128] Marin Bukov, Alexandre G. R. Day, Dries Sels, Phillip Weinberg, Anatoli Polkovnikov,

and Pankaj Mehta. Reinforcement Learning in Different Phases of Quantum Control. Phys.

Rev. X, 8(3):031086, September 2018. doi: 10.1103/PhysRevX.8.031086.

[129] Murphy Yuezhen Niu, Sergio Boixo, Vadim N. Smelyanskiy, and Hartmut Neven. Uni-

versal quantum control through deep reinforcement learning. npj Quantum Inf, 5(1):1–8,

April 2019. ISSN 2056-6387. doi: 10.1038/s41534-019-0141-3.

[130] Zheng An and D. L. Zhou. Deep reinforcement learning for quantum gate control. EPL,

126(6):60002, July 2019. ISSN 0295-5075. doi: 10.1209/0295-5075/126/60002.

[131] Xiao-Ming Zhang, Zezhu Wei, Raza Asad, Xu-Chen Yang, and Xin Wang. When

does reinforcement learning stand out in quantum control? A comparative study on

state preparation. npj Quantum Inf, 5(1):1–7, October 2019. ISSN 2056-6387. doi:

10.1038/s41534-019-0201-8.

[132] Utkan Güngördü and J. P. Kestner. Robust quantum gates using smooth pulses and

physics-informed neural networks. Phys. Rev. Res., 4(2):023155, May 2022. doi:

10.1103/PhysRevResearch.4.023155.

[133] Ariel Norambuena, Marios Mattheakis, Francisco J. González, and Raúl Coto. Physics-

informed neural networks for quantum control, June 2022. Comment: 14 pages, 9 figures

Comment: 14 pages, 9 figures.

[134] Frank Schäfer, Michal Kloc, Christoph Bruder, and Niels Lörch. A differentiable pro-

gramming method for quantum control. Mach. Learn.: Sci. Technol., 1(3):035009, August

2020. ISSN 2632-2153. doi: 10.1088/2632-2153/ab9802.

[135] Ilia Khait, Juan Carrasquilla, and Dvira Segal. Optimal control of quantum thermal ma-

chines using machine learning. Phys. Rev. Research, 4(1):L012029, March 2022. ISSN

2643-1564. doi: 10.1103/PhysRevResearch.4.L012029.

[136] S. Machnes, U. Sander, S. J. Glaser, P. de Fouquières, A. Gruslys, S. Schirmer, and

T. Schulte-Herbrüggen. Comparing, optimizing, and benchmarking quantum-control algo-

132



rithms in a unifying programming framework. Phys. Rev. A, 84(2):022305, August 2011.

doi: 10.1103/PhysRevA.84.022305.

[137] Reuven Eitan, Michael Mundt, and David J. Tannor. Optimal control with accelerated

convergence: Combining the Krotov and quasi-Newton methods. Phys. Rev. A, 83(5):

053426, May 2011. doi: 10.1103/PhysRevA.83.053426.

[138] Anthony Kiely and Steve Campbell. Fast and robust magnon transport in a spin chain. New

J. Phys., 23(3):033033, March 2021. ISSN 1367-2630. doi: 10.1088/1367-2630/abea43.

[139] Priya Batra, M. Harshanth Ram, and T. S. Mahesh. Recommender system expedited quan-

tum control optimization. Phys. Open, 14:100127, February 2023. ISSN 2666-0326. doi:

10.1016/j.physo.2022.100127.

[140] Andriy Burkov. The Hundred-page Machine Learning Book. Andriy Burkov, 2019. ISBN

978-1-9995795-0-0.

[141] Drew Conway and John Myles White. Machine Learning for Hackers: Case Studies and

Algorithms to Get You Started. "O’Reilly Media, Inc.", February 2012. ISBN 978-1-4493-

3053-8.

[142] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, Novem-

ber 2016. ISBN 978-0-262-03561-3.

[143] Dastan Maulud and Adnan M. Abdulazeez. A Review on Linear Regression Comprehen-

sive in Machine Learning. J. Appl. Sci. Technol. Trends, 1(4):140–147, December 2020.

ISSN 2708-0757. doi: 10.38094/jastt1457.

[144] Jonathon Shlens. A Tutorial on Principal Component Analysis, April 2014.

[145] Sreerama K. Murthy. Automatic Construction of Decision Trees from Data: A Multi-

Disciplinary Survey. Data Min. Knowl. Discov., 2(4):345–389, December 1998. ISSN

1573-756X. doi: 10.1023/A:1009744630224.

[146] Jeannette Lawrence. Introduction to Neural Networks. California Scientific Software,

USA, 1993. ISBN 978-1-883157-00-5.

133



[147] M. Arif Wani, Mehmed Kantardzic, and Moamar Sayed-Mouchaweh. Deep Learning

Applications. Springer Nature, February 2020. ISBN 9789811518164.

[148] Juan Carrasquilla and Roger G. Melko. Machine learning phases of matter. Nat. Phys, 13

(5):431–434, May 2017. ISSN 1745-2481. doi: 10.1038/nphys4035.

[149] Giacomo Torlai, Guglielmo Mazzola, Juan Carrasquilla, Matthias Troyer, Roger Melko,

and Giuseppe Carleo. Neural-network quantum state tomography. Nat. Phys, 14(5):447–

450, May 2018. ISSN 1745-2481. doi: 10.1038/s41567-018-0048-5.

[150] Giuseppe Carleo and Matthias Troyer. Solving the quantum many-body problem with

artificial neural networks. Science, 355(6325):602–606, February 2017. doi: 10.1126/

science.aag2302.

[151] Zhaokai Li, Xiaomei Liu, Nanyang Xu, and Jiangfeng Du. Experimental Realization of

a Quantum Support Vector Machine. Phys. Rev. Lett., 114(14):140504, April 2015. doi:

10.1103/PhysRevLett.114.140504.

[152] Vasil S. Denchev, Nan Ding, S. V. N. Vishwanathan, and Hartmut Neven. Robust classifi-

cation with adiabatic quantum optimization. In Proc. 29th Int. Coference Int. Conf. Mach.

Learn., ICML’12, pages 1003–1010, Madison, WI, USA, June 2012. Omnipress. ISBN

978-1-4503-1285-1.

[153] Iordanis Kerenidis and Anupam Prakash. Quantum Recommendation Systems. In Chris-

tos H. Papadimitriou, editor, 8th Innov. Theor. Comput. Sci. Conf. ITCS 2017, volume 67

of Leibniz International Proceedings in Informatics (LIPIcs), pages 49:1–49:21, Dagstuhl,

Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-

029-3. doi: 10.4230/LIPIcs.ITCS.2017.49.

[154] Adam Smith, M. S. Kim, Frank Pollmann, and Johannes Knolle. Simulating quantum

many-body dynamics on a current digital quantum computer. npj Quantum Inf, 5(1):1–13,

November 2019. ISSN 2056-6387. doi: 10.1038/s41534-019-0217-0.

[155] Sepehr Ebadi, Tout T. Wang, Harry Levine, Alexander Keesling, Giulia Semeghini, Ahmed

Omran, Dolev Bluvstein, Rhine Samajdar, Hannes Pichler, Wen Wei Ho, Soonwon Choi,

134



Subir Sachdev, Markus Greiner, Vladan Vuletić, and Mikhail D. Lukin. Quantum phases
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metrology with full and fast quantum control. Quantum, 1:27, September 2017. ISSN

2521-327X. doi: 10.22331/q-2017-09-06-27.

[201] Constantin Brif, Raj Chakrabarti, and Herschel Rabitz. Control of quantum phenomena:

Past, present and future. New J. Phys., 12(7):075008, 2010.

[202] Domenico d’Alessandro. Introduction to Quantum Control and Dynamics. Chapman and

hall/CRC, 2021.

[203] Steffen J Glaser, Ugo Boscain, Tommaso Calarco, Christiane P Koch, Walter Köcken-

berger, Ronnie Kosloff, Ilya Kuprov, Burkhard Luy, Sophie Schirmer, Thomas Schulte-

Herbrüggen, et al. Training Schrödinger’s cat: Quantum optimal control. Eur. Phys. J. D,

69(12):1–24, 2015.

[204] Jing Liu, Haidong Yuan, Xiao-Ming Lu, and Xiaoguang Wang. Quantum Fisher informa-

tion matrix and multiparameter estimation. J. Phys. Math. Theor., 53(2):023001, 2019.

[205] Navin Khaneja, Timo Reiss, Cindie Kehlet, Thomas Schulte-Herbrüggen, and Steffen J

Glaser. Optimal control of coupled spin dynamics: Design of NMR pulse sequences by

gradient ascent algorithms. J. Magn. Reson., 172(2):296–305, 2005.

[206] Shai Machnes, Elie Assémat, David Tannor, and Frank K. Wilhelm. Tunable, flexible,

and efficient optimization of control pulses for practical qubits. Phys. Rev. Lett., 120(15):

150401, April 2018. doi: 10.1103/PhysRevLett.120.150401.

139



[207] José P. Palao and Ronnie Kosloff. Optimal control theory for unitary transformations.

Phys. Rev. A, 68(6):062308, December 2003. doi: 10.1103/PhysRevA.68.062308.

[208] Daniel M Reich, Mamadou Ndong, and Christiane P Koch. Monotonically convergent

optimization in quantum control using Krotov’s method. J. Chem. Phys., 136(10):104103,

2012.

[209] Patrick Doria, Tommaso Calarco, and Simone Montangero. Optimal control technique

for many-body quantum dynamics. Phys. Rev. Lett., 106(19):190501, May 2011. doi:

10.1103/PhysRevLett.106.190501.

[210] D. J. Egger and F. K. Wilhelm. Adaptive hybrid optimal quantum control for im-

precisely characterized systems. Phys. Rev. Lett., 112(24):240503, June 2014. doi:

10.1103/PhysRevLett.112.240503.

[211] Evan M Fortunato, Marco A Pravia, Nicolas Boulant, Grum Teklemariam, Timothy F

Havel, and David G Cory. Design of strongly modulating pulses to implement precise

effective Hamiltonians for quantum information processing. J. Chem. Phys., 116(17):

7599–7606, 2002.

[212] Ehsan Zahedinejad, Sophie Schirmer, and Barry C. Sanders. Evolutionary algorithms

for hard quantum control. Phys. Rev. A, 90(3):032310, September 2014. doi: 10.1103/

PhysRevA.90.032310.

[213] Zheng An and DL Zhou. Deep reinforcement learning for quantum gate control. EPL

Europhys. Lett., 126(6):60002, 2019.

[214] Xiao-Ming Zhang, Zezhu Wei, Raza Asad, Xu-Chen Yang, and Xin Wang. When does

reinforcement learning stand out in quantum control? A comparative study on state prepa-

ration. Npj Quantum Inf., 5(1):1–7, 2019.

[215] Murphy Yuezhen Niu, Sergio Boixo, Vadim N Smelyanskiy, and Hartmut Neven. Uni-

versal quantum control through deep reinforcement learning. Npj Quantum Inf., 5(1):1–8,

2019.

140



[216] Marin Bukov, Alexandre G. R. Day, Dries Sels, Phillip Weinberg, Anatoli Polkovnikov,

and Pankaj Mehta. Reinforcement learning in different phases of quantum control. Phys.

Rev. X, 8(3):031086, September 2018. doi: 10.1103/PhysRevX.8.031086.

[217] Ilia Khait, Juan Carrasquilla, and Dvira Segal. Optimal control of quantum thermal ma-

chines using machine learning. Phys. Rev. Research, 4(1):L012029, March 2022. doi:

10.1103/PhysRevResearch.4.L012029.

[218] TS Mahesh, Priya Batra, and M Harshanth Ram. Quantum optimal control: Practical

aspects and diverse methods. J. Indian Inst. Sci., pages 1–17, 2022.

[219] Christiane P Koch, Ugo Boscain, Tommaso Calarco, Gunther Dirr, Stefan Filipp, Steffen J

Glaser, Ronnie Kosloff, Simone Montangero, Thomas Schulte-Herbrüggen, Dominique

Sugny, et al. Quantum optimal control in quantum technologies. Strategic report on current

status, visions and goals for research in Europe. EPJ Quantum Technol., 9(1):19, 2022.

[220] P. de Fouquieres, S.G. Schirmer, S.J. Glaser, and Ilya Kuprov. Second order gradient

ascent pulse engineering. J. Magn. Reson., 212(2):412–417, 2011. ISSN 1090-7807. doi:

10.1016/j.jmr.2011.07.023.

[221] Priya Batra, V. R. Krithika, and T. S. Mahesh. Push-pull optimization of quantum controls.

Phys. Rev. Research, 2(1):013314, March 2020. doi: 10.1103/PhysRevResearch.2.013314.

[222] Gaurav Bhole, V. S. Anjusha, and T. S. Mahesh. Steering quantum dynamics via bang-

bang control: Implementing optimal fixed-point quantum search algorithm. Phys. Rev. A,

93(4):042339, April 2016. doi: 10.1103/PhysRevA.93.042339.

[223] Michael Garwood and Lance DelaBarre. The return of the frequency sweep: Designing

adiabatic pulses for contemporary NMR. J. Magn. Reson., 153(2):155–177, 2001.

[224] M. Harshanth Ram, V. R. Krithika, Priya Batra, and T. S. Mahesh. Robust quantum control

using hybrid pulse engineering. Phys. Rev. A, 105(4):042437, April 2022. doi: 10.1103/

PhysRevA.105.042437.

[225] N. Boulant, K. Edmonds, J. Yang, M. A. Pravia, and D. G. Cory. Experimental

demonstration of an entanglement swapping operation and improved control in NMR

141



quantum-information processing. Phys. Rev. A, 68(3):032305, September 2003. doi:

10.1103/PhysRevA.68.032305.

[226] Dennis Lucarelli. Quantum optimal control via gradient ascent in function space and the

time-bandwidth quantum speed limit. Phys. Rev. A, 97(6):062346, June 2018. doi: 10.

1103/PhysRevA.97.062346.

[227] Yao Song, Junning Li, Yong-Ju Hai, Qihao Guo, and Xiu-Hao Deng. Optimizing quan-

tum control pulses with complex constraints and few variables through autodifferentiation.

Phys. Rev. A, 105(1):012616, January 2022. doi: 10.1103/PhysRevA.105.012616.

[228] Mao Zhang, Huai-Ming Yu, Haidong Yuan, Xiaoguang Wang, Rafał Demkowicz-
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