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Abstract

In this thesis, we study pattern formation in a stack of periodically driven quasi one-

dimensional dipolar Bose-Einstein condensates. We study the excitation spectrum of the

spatially separated dipolar condensates using Bogoliubov theory. The excitations are collec-

tive in nature due to the long-range nature of the dipole-dipole interaction. The parametric

modulation of the s-wave scattering length leads to density modulations whose dynamics

depends on the lowest Bogoliubov mode. The nature of the Bogoliubov modes depends on

the orientation of the dipoles. When the dipoles are aligned such that the inter-tube dipolar

interactions are attractive, the lowest mode corresponds to in-phase density modulations,

leading to transient stripe patterns. In contrast, when the inter-tube interactions are repul-

sive, the lowest mode has out-of-phase character, resulting in checkerboard patterns. We

also study the dynamics of quenching the dipole angle up on initial pattern formation and

observe that it leads to a dynamical transition between the patterns.
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Chapter 1

Introduction

The phenomenon of pattern formation has been widely studied in both classical and quantum

systems. The analysis of the patterns and their underlying origin gives us valuable infor-

mation about the instabilities of the system under study. Faraday patterns are a prominent

example of pattern formation in periodically driven systems [1]. In Bose-Einstein conden-

sates(BECs), periodic driving has been explored both theoretically [2–5] and experimentally

[6–10] via parametric modulation of the s-wave scattering length or the periodic modulation

of the optical lattice.

The dipole-dipole interactions(DDIs) are long-ranged and anisotropic in nature which gives

rise to a range of interesting phenomena in quantum gases [11–15]. In contact-interacting

BECs, physically separated condensates have no e↵ect on each other and they can be treated

as distinct systems. On the other hand, the long-range nature of the DDIs leads to inter-

layer e↵ects which can have consequences on the collective phenomena and stability [11,

16–21]. Additionally, they also lead to hybrid excitations [22–24], soliton complexes [20,

25] and coupled density patterns [26]. Recently, an experiment on a stack of bilayers of

dipolar 162Dy(µ = 10µB where µB is the Bohr magneton) atoms observed strong dipole-dipole

interactions via inter-layer cooling and coupled collective excitations [27]. This was possible

due to a new super-resolution scheme that allowed them to reduce the spacing between two

layers from the previous standard of 500nm to 50nm which means that the dipolar e↵ects

are 1000 times stronger. Additionally, the long-sought condensation of dipolar molecules was

achieved [28, 29] through improved collisional shielding techniques to reduce the two and
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three body losses. These developments open up several prospects of novel physics, including

inter-layer e↵ects, dipolar droplets, self-organized crystal phases and dipolar spin liquids in

optical lattices.

In this thesis, we study transient density patterns in a stack of quasi one-dimensional

dipolar BECs via parametric modulation of the s-wave scattering length. The inter-tube

DDIs lead to collective modes which are described by Bogoliubov theory. We therefore

study the Bogoliubov spectrum for two di↵erent orientations of the dipoles. When the inter-

tube interactions are attractive, the excitation of the lowest mode leads to a stripe density

pattern, whereas repulsive inter-tube interactions lead to a checkerboard pattern. We shall

also study the quenching of the dipolar angle, which leads to a dynamic transition between

patterns.

The structure of the thesis is as follows:

• Chapter 2: We discuss the general phenomenon of Bose-Einstein condensation and

the phenomenon of Faraday pattern formation. We first discuss the weakly-interacting

BECs with short-range interactions and move on to discuss dipolar BEcs - their mean-

field description, introduce the Gross-Pitaevskii equation(GPE) and also discuss con-

densates in lower dimensions and elementary excitations. We then introduce Faraday

patterns and discuss Faraday patterns in nondipolar and dipolar BECs.

Chapters 3 and 4 discuss the results obtained in [30].

• Chapter 3: This chapter introduces the model and discusses the Bogoliubov spectrum.

We discuss the governing GPEs and the corresponding Bogoliubov-de Gennes equations

for our setup. We obtain the Bogoliubov spectrum for two di↵erent dipolar orientations

and show that the lowest mode in the Bogoliubov spectrum can be engineered to be

in phase or out of phase density modulations depending on the dipole orientation.

• Chapter 4: In this chapter, we discuss the parametric driving of the s-wave scattering

length which excites the lowest Bogoliubov mode and leads to transient stripe and

checkerboard patterns. We then discuss the dynamics of quenching the dipole angle.

We observe a dynamical transition between the patterns upon quenching the dipole

angle once the initial pattern is formed. We study the abrupt and linear quench

scenarios.
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• Chapter 5: We provide the summary and outlook of the thesis.
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Chapter 2

Faraday patterns in Bose-Einstein

condensates

Ultracold atomic and molecular gases have attracted considerable attention since the ex-

perimental observation of Bose-Einstein condensation and quantum degenerate Fermi gases.

Much of the interest in these systems is due to the incredible degree of control and tunability

they o↵er. As such, these systems serve as a test bed for theoretical predictions from conven-

tional condensed matter systems to even high-energy physics. Interparticle interactions are

at the core of much of the properties of matter. Even in the weakly interacting regime, the

shape, density and excitations are dictated by interactions. Below, we describe the general

phenomenon of Bose-Einstein condensation, starting from the weakly interacting Bose gases

with short-range interactions.

2.1 Bose-Einstein condensation

The phenomenon of Bose-Einstein condensation was first predicted by Einstein in 1924 [31]

after S. N. Bose had proposed quantum statistics for quanta of light, now known as photons

[32]. Einstein extended the ideas to massive particles and predicted that at extremely low

temperatures, non-interacting bosons would condense into a single quantum state. In the

grand-canonical ensemble, the occupation number of a quantum state with energy ✏i is given
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by

hnii = f(✏i) =
1

e(✏i�µ)/kBT � 1
(2.1)

where T is the temperature and µ is the chemical potential - the change in the energy of

the system upon the addition or removal of a particle. The above equation requires µ < ✏0

in order to be consistent where ✏0 is the ground state energy of the gas. However, the

occupation of the ground state becomes macroscopic when µ ! ✏0. This is the phenomenon

of Bose-Einstein condensation.

The discussion of the ideal Bose gas, although it is instructive, remains primarily aca-

demic. Inter-particle interactions dramatically alter the properties of Bose-Einstein con-

densates even when the gases are very dilute. The interactions are described by scattering

theory, specifically the scattering length of the processes involved. These scattering processes

are su�ciently described at low enough temperatures by the s-wave scattering length. In a

su�ciently dilute gas, the mean separation between two particles is larger than the s-wave

scattering length. Below, we discuss weakly interacting Bose gases, starting with a brief

description of short-range interactions.

2.1.1 Short-range interactions

The energy is extensive in the thermodynamic limit for a system of particles with contact

interactions. This means that the following integral for the interaction potential U(r) con-

verges at large distances Z 1

r0

d
D
rU(r) (2.2)

where D is the dimensionality and r0 is some cut-o↵. For U(r) that go as 1/rn, this means

that D < n for short-range interactions.

The actual interaction potential U(r) is non-trivial to incorporate while solving for  (r).

Instead, we focus on the most relevant information provided by U(r), the s-wave scattering

length. We therefore replace the actual potential with one that reproduces the correct

scattering length and is easier to perform calculations with. The simplest form of potential

satisfying the above requirements is the zero-range potential

U(r� r
0) = g�(r� r

0) (2.3)
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Figure 2.1: (a) A two channel model illustrating the coupling between the entrance(open)
channel with energy E and the bound(closed) channel of energy Ec. The relative energy E�
Ec can be tuned via external magnetic fields. (b) Experimental observation of a magnetically
tuned Feshbach resonance in a Bose-Einstein condensate of sodium atoms. The scattering
length diverges near the resonance and leads to a loss of atoms from the trap. The figure is
taken from [33].

which, using the Born approximation and the form of scattering amplitude in the low energy

limit, gives the short-range coupling strength

g =
4⇡~2asc

m
(2.4)

In the above equations, we have ignored a regularization operator that becomes important if

the wavefunction has a 1/r divergence but is irrelevant in the r ! 0 limit. Eq. 2.3 together

with Eq. 2.4 will be used throughout our discussion to model the short-range interactions.

We also note that |kasc| ⌧ 1 for the model potential to accurately describe the interactions

in the system.

Tuning the short-range interactions

One of the main reasons for the interest in ultracold systems is their incredible degree of

control and tunability. In addition to controlling the strength of inter-particle interactions

ranging from strong to weak interactions, we can even alter the nature of these interactions

from attractive to repulsive and vice versa. This can be done through magnetic or optical

Feshbach resonances(FRs), where, in the presence of an external field, the scattering length
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undergoes large fluctuations.

A scattering or a collisional channel corresponds to a distinct scattering potential Vch(r).

In Feshbach resonances, these distinct channels can be coupled by o↵-diagonal terms of

the potential at finite r. Furthermore, the dissociation thresholds(Vch(r ! 1)) can be

tuned relative to one another(using magnetic fields in magnetic FRs for example). The two

colliding atoms have kinetic energy E above the threshold Eop and are said to be in the open

channel(the potential Vbg(r) in Fig. 2.1), as they can be infinitely far away from each other.

In contrast, a closed channel(the potential Vc(r) in Fig. 2.1) has a higher dissociation energy

Ecl > E. The o↵-diagonal terms induce the mixing of the two channels, and the atoms

temporarily form a quasi-bound state which alters the scattering properties of the colliding

pair, thereby changing the scattering length.

Particularly, when the corresponding magnetic moments are di↵erent, one can use magnetic

fields to tune the relative energy of the channels, Ecl�Eop in a magnetically tuned Feshbach

resonance. The scattering length a can be tuned with the magnetic field B around the

resonance B0 as

a(B) = abg

✓
1� �

B � B0

◆
(2.5)

where abg is the background scattering length associated with the open channel(Vbg(r)), and

� is the resonance width which relates to the strength of the coupling between the bound

and scattering states. Such magnetic FRs are routinely used in ultracold atom experiments,

for a review, see [12] and [33]. Apart from magnetic FRs, optical Feshbach resonances have

been proposed and demonstrated in alkali, alkaline earth and non-magnetic lanthanides [34–

37]. They are useful as they allow ultrafast and local control of inter-particle interactions.

However, optical Feshbach resonances have yet to be demonstrated in magnetic atoms but

are promising in lanthanides due to their spectra.

2.1.2 The dipole-dipole interaction

In general, the interaction between two dipoles with dipole moment d(can be electric or

magnetic moment) and position vectors r1 and r2 with the separation vector r is given by

Vd(r) = gd
r̂1 · r̂2 � 3(r̂1 · r̂)(r̂1 · r̂)

r3
(2.6)
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Figure 2.2: The long-range and anisotropic nature of the dipole-dipole interaction. (a) Two
dipoles oriented in the same direction interact via the long range dipolar force. (b) Head-
to-tail dipoles are attractive, whereas side-by-side dipoles repel each other.

where, in case of electric dipoles, gd = d
2
/4⇡✏0(✏0 is the vacuum permittivity) and for

magnetic dipoles, gd = µ0d
2
/4⇡(µ0 is the vacuum permeability). When the dipoles are

polarized along the same direction(Fig. 2.2), we can simplify the expression to

Vd(r) = gd
1� 3 cos2 ✓

r3
(2.7)

✓ is the angle between the polarization direction and the separation vector. In section 2.1.1,

we saw that the short-range interactions lead to extensive energy in the thermodynamic

limit and D < n for a short-range potential that goes as 1/rn(D is the dimensionality). In

contrast, dipolar interactions are long-ranged in 3D as they go as 1/r3. The anisotropy of the

DDIs can be seen from Eq. 2.7 as ✓ varies from 0 to ⇡/2, the factor 1�3 cos2 ✓ varies from �2

to 1 which implies that for dipoles oriented head-to-tail(✓ = 0) the DDI is attractive whereas

for side-by-side dipoles(✓ = ⇡/2), the dipolar interactions are repulsive(see Fig. 2.2) and

for ✓ = arccos 1/
p
3, the DDI are zero. The dipolar interactions also modify the scattering

properties of the condensate. Due to their long-range nature, the phase shifts �l ⇠ k at low k

for all partial waves, and hence, we need to consider the contributions from all partial waves.

11



2.1.3 Mean field description

The many-body Hamiltonian of N interacting bosons in an external trap Vext is given by

Ĥ =

Z
dr ̂†(r)


�~2
2m

r2 + Vext(r)

�
 ̂(r)+

1

2

Z
dr

Z
dr

0 ̂†(r) ̂†(r0)V (r�r
0) ̂(r0) ̂(r) (2.8)

where  ̂†(r) and  ̂(r) are the bosonic field operators that create and annihilate a particle

at position r respectively and V (r� r
0) is the inter-particle interaction potential. For short-

range interacting gases, the inter-atomic potential is the delta potential discussed previously.

In the presence of DDIs, V (r� r
0) is modified to

V (r� r
0) = Vsr(r� r

0) + Vd(r� r
0) = g�(r� r

0) + gd
1� 3 cos2 ✓

|r� r0|3 (2.9)

which was first discussed by L. You and S. Yi [38, 39] for the general case of anisotropic

potentials using the ladder approximation. The field operators obey the usual bosonic com-

mutation relations:

[ ̂(r),  ̂†(r0)] = �(r� r
0), [ ̂(r),  ̂(r0)] = 0, [ ̂†(r),  ̂†(r0)] = 0 (2.10)

However, it is often di�cult to deal with the entire many-body Hamiltonian and hence it is

converted to a single body problem through the mean-field approach. Instead of solving for

all the pairwise interactions of a particle, we assume that the particle is in a potential that is

averaged over all its interactions. The field operators are written in terms of single particle

states �k(r) and the creation and annihilation operators as

 ̂(r) =
X

k

�k(r)âk and  ̂†(r) =
X

k

�k(r)â
†
k

(2.11)

The field operator can be separated into the condensate(k = 0) term and the non-condensate

terms(k 6= 0)

 ̂(r) = �0(r)â0 +
X

k 6=0

�k(r)âk (2.12)

In the limit of macroscopic occupation of the condensate state, N0 ' N , the operators â0

and â
†
0 can be approximated by the c-number

p
N0. This was first proposed by Bogoliubov

in the context of superfluidity and is known as the Bogoliubov approximation [40]. This is

equivalent to treating the condensate term as a classical field and Eq. 2.12 can be rewritten

12



as

 ̂(r) =  0(r) + � ̂(r) (2.13)

The function  0(r) is the expectation of the field operator and is treated as the wave function

of the condensate,  0(r) = h ̂(r)i = | 0(r)|eiS0(r) where S0(r) is the phase of the condensate

and is related to the coherence. The order parameter is non-zero in the condensate phase

and vanishes in the non-condensed phase. We can also see that the U(1) symmetry(here, the

ability to choose the phase without a↵ecting physical properties) is spontaneously broken in

the condensate phase as it chooses a particular phase and hence, serves to characterize the

phase transition. The O↵-Diagonal Long Range order(ODLRO) of the BEC state can be

described by  0(r). The one-body density matrix is given by

⇢(r� r
0) = h ̂†(r) ̂(r0)i (2.14)

A system is said to possess ODLRO if in the limit r� r
0 ! 0, the density matrix is non-zero,

⇢(r� r
0) 6= 0.

lim
r�r0!0

⇢(r� r
0) ⇡ h ̂†(r)i h ̂(r)i =  

⇤(r) (r) = n0 (2.15)

where n0 is the density of the BEC.

Gross-Pitaevskii equation

The time evolution of the field operator in the Heisenberg picture is given as

i~ @
@t

 ̂(r, t) = [ ̂(r, t), Ĥ] =

"
�~2
2m

r2 + Vext(r, t)

+

Z
dr

0 ̂†(r0, t)V (r� r
0) ̂(r0, t)

#
 ̂(r, t) (2.16)

At zero temperature, all the particles are in the condensate and we can ignore the non-

condensate part in Eq. 2.13 and replace the field operator by its expectation, the condensate

wave function  0(r). We also employ the two-body potential(Eq. 2.9) to arrive at the

13



Gross-Pitaevskii equation(GPE) for the dynamics of the condensate

i~@t (r, t) =
"
� ~2

2m
r2 + Vext(r) + g| (r, t)|2

+

Z
dr

0| (r0, t)|2Vd(r� r
0)

#
 (r, t) (2.17)

which is an integro-di↵erential equation. Eq. 2.17 is also known as Non-linear Schrödinger

equation and was independently derived by Eugene Gross and Lev Pitaevskii [41, 42].

The time-independent GPE describes the steady state of a Bose-Einstein condensate near

zero temperature. It can be derived from the many-body Hamiltonian(see Eq. 2.8) assuming

a Hartree-Fock ansatz for the condensate wave function and we obtain the following equation

for the energy functional1

E[ ] =

Z
dr

 
� ~2

2m
|r |2 + Vext| |2 +

g

2
| |4

+
1

2
| |2

Z
dr

0| (r0)|2Vd(r� r
0)

!
(2.18)

which can be minimised to obtain the ground state of the dipolar BEC(dBEC) [11, 14, 43].

The validity of the above mean-field description has been explored in Refs. [44, 45] using

the di↵usive Monte Carlo(DMC) method. The conclusion was that the GPE remains valid

away from shape resonances and as long as the e↵ect of dipolar interactions on the s-wave

scattering length is taken into account. Although we have ignored the e↵ect of DDIs on the

coupling parameter g, it is still valid as the main contribution to the dipolar integral in Eq.

2.17 comes from large inter-particle distances [13]. The above equation is then variationally

solved to obtain the time-independent GPE

µ (r) =

✓
� ~2
2m

r2 + Vext + g| (r)|2 +
Z

dr
0| (r0)|2Vd(r� r

0)

◆
 (r) (2.19)

Here, µ appears as a Lagrange multiplier, and physically represents the chemical potential

of the system. It is now easy to see that the stationary solution of Eq. 2.19 is given by

 0(r, t) =  0(r)e�iµt/~.

1
We have assumed a time-independent potential for which the energy is conserved.
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(a) (b)

Figure 2.3: Lower dimensional condensates. (a) Quasi two-dimensional condensate. (b)
Quasi one-dimensional condensate. Red and black arrows denote strong and weak confine-
ment respectively.

2.1.4 Lower dimensional condensates

The properties of the condensate change drastically when the condensate is constrained along

one or more directions. Such systems have been analyzed both theoretically [46–48] as well

as experimentally [49–51] due to the advancements in trapping techniques.

In a 3D BEC, the relevant length scales are the radial extension of the BEC cloud R⇢, its

axial length Rz and its healing length ⇠ which is the minimum distance over which the

condensate heals or in other words, returns to its bulk value when it is locally perturbed. It

can be derived by equating the quantum pressure and the interaction terms ~2/m⇠2 = gn

giving ⇠ = ~/pmgn. When R⇢, Rz � ⇠, the condensate is in the three dimensional regime.

However, under tight confinement in one or more directions, the condensate particles can

only perform zero-point oscillations along the tightly confined directions and the dynamics

is reduced to the weakly confined direction.

We consider the external potential to be harmonic, V (x, y, z) = 1
2m(!2

⇢
(x2+y

2)+!2
z
z
2)(cylindrical

symmetry) and the corresponding lengths li =
p

~/m!i. When R⇢ � ⇠ � Rz or equiv-

alently when ~!z � gn � ~!⇢, then condensate is said to be in the quasi 2-D regime

and the condensate appears pancake shaped(Fig. 2.3). The condensate does not have su�-

cient energy to overcome the confinement along the strongly confined direction and hence,

we can approximate the wave function along the strongly confined direction to be in the

harmonic ground state �(z) = 1
⇡1/4

p
lz
e
�z

2
/2l2z . We can separate the total wave function as
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 (x, y, z, t) =  (x, y, t)�(z) and then integrate over z in Eq. 2.17 to obtain the quasi 2-D

GPE

i~ @
@t
 (x, y, t) =

"
� ~2

2m
(@2

x
+ @

2
y
) + Vext(x, y) + g2D| (x, y, t)|2

+

Z
dz|�(z)|2

Z
dr

0| (r0, t)|2Vd(r� r
0)

#
 (x, y, t) (2.20)

where g2D = gp
2⇡lz

is the e↵ective 2D coupling parameter.

A BEC is in the quasi 1D regime when R⇢ ⌧ ⇠ ⌧ Rz or equivalently ~!⇢ � gn � ~!z.

As we did previously, we assume the radial wave functions to be in the harmonic ground

state and separate the wave function into radial and axial parts,

 (x, y, z, t) = �⇢(x, y) (z, t) (2.21)

where �⇢(x, y) = 1p
⇡l⇢

e
�(x2+y

2)/2l2⇢ . Again, integrating out the radial directions, we get the

quasi 1D GPE

i~ @
@t
 (z, t) =

"
� ~2

2m
@
2
z
+ Vext(z) + g1D| (z, t)|2

+

Z
dxdy|�⇢(x, y)|2

Z
dr

0| (r0, t)|2Vd(r� r
0)

#
 (z, t) (2.22)

with g1D = g

2⇡l2⇢
. Physically, the condensate is an “oblate” form where it is elongated along

z direction(Fig. 2.3). Such a condensate is also known as cigar-shaped due to its apparent

resemblance. Quasi 1D geometry can also be used to study strongly correlated systems such

as the Tonks-Girardeau gas, which can be described by the hard-core limit(g ! 1) of the

Lieb-Liniger model [12, 52, 53]. This system has been used to study thermalization in 1D

Bose gases and it was experimentally shown that the system is integrable and hence doesn’t

thermalize [54]. However, the addition of DDIs breaks the integrability [55].
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2.1.5 Elementary excitations

In this section, we shall describe small deviations from the condensed phase, i.e. the changes

in the condensate wave function are small with respect to the stationary solution. We

consider small deviations of the condensate wave function from the mean-field solution of

the form

 (r, t) =  (r, t) + � (r, t) =  (r, t) + u(r)e�i!t + v
⇤(r)ei!t (2.23)

Substituting this ansatz(called the Bogoliubov ansatz) in the GPE and linearizing around the

ground state wave function  (r), we arrive at the coupled Bogoliubov de Gennes equations

for a dipolar condensate

"
� ~2

2m
r2 � µ+ Vext(r) + 2�dd(r)

#
u(r) + �dd(r)v(r) = ~!u(r)

"
� ~2

2m
r2 � µ+ Vext(r) + 2�dd(r)

#
v(r) + �dd(r)u(r) = �~!v(r) (2.24)

where we have introduced �dd(r) =
R
dr

0
V (r� r

0)| (r0)|2 for clarity and V (r) is the com-

bined potential defined in Eq. 2.9. We can see that these equations are reduced to the

non-dipolar case when we exclude the dipolar contributions. Generally, the BdG equations

require numerical solutions for the energies and eigenfunctions. In special cases however,

analytical solutions can be derived which provide us valuable insights. Consider a uni-

form(homogeneous) gas. Its ground state can be assumed to be constant  0(r) =
p
n and

the eigenfunctions of the excitations are simply plane waves,

u(r) =
1p
V
uqe

iq.r
, v(r) =

1p
V
vqe

iq.r (2.25)

The excitation spectrum is the famous Bogoliubov spectrum for a homogeneous Bose gas

✏k =
q

Ek

�
Ek + 2n (g + Vd(k))

�

=
q

Ek

�
Ek + 2gn (1 + ✏dd(3 cos2 ✓k � 1))

�
(2.26)
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where Ek = ~2k2
/2m is the kinetic energy, ✓k is the angle between the dipole orientation

and the direction of the propagation of the excitation and we have defined

✏dd =
gdm

3~2a =
add

a
(2.27)

with add as the ‘dipolar length’ analogous to the s-wave scattering length. ✏dd is a measure

of the dipolar strength relative to the contact interactions and has to be non-negligible in

order to observe dipolar e↵ects. However, note that when ✏dd & 1, the 3D homogenous

gas is unstable against collapse. This can be seen from Eq. 2.26 as the phonons (low

momentum excitations) have imaginary frequencies. This is known as the phonon instability

and is direction dependent for dipolar condensates, contrary to the non-dipolar case which

is isotropic and occurs when g < 0.

The spectrum Eq. 2.26 is obtained for a three dimensional condensate. Following the

procedure of dimensional reduction(see Sec. 2.1.4), we can obtain the spectrum for a quasi

1D dipolar condensate [26]

✏(q) = ~! =

s

Eq

✓
Eq + 2gn0 +

2gdn0

3
F0(ql⇢)

◆
(2.28)

where

F0(q) = 1 +
3

2
q
2
e
q
2
/2Ei(�q

2
/2) (2.29)

with Ei(�q
2
/2) as the exponential integral function. The spectrum 2.28 is plotted in Fig.

2.4 for representative values of the parameters. We see that the spectrum for a non-dipolar

gas(gd = 0) is monotonous and tends to the free-particle regime at high momenta. For

low momenta, the excitations are collective in nature and behave as phonons ✏k ⇠ k. In

contrast, the spectrum for a dipolar gas can be non-monotonous where the energy is linear

for low momenta(phonons) and for higher momenta, there is a maximum in energy(maxon)

followed by a minimum(roton). This is the celebrated roton-maxon spectrum2 which was first

discovered in dipolar condensates for an infinite quasi 2D dipolar condnesate with dipoles

perpendicular to the trap plane [58]. However, this is due to the attractive nature of the

DDI at large momenta, Vd(k) < 0 for k > 1/lz where lz is the harmonic oscillator length.

The roton in Fig. 2.4 is due to g < 0 which is why it occurs for much smaller momenta.

When the roton touches zero and the energy becomes imaginary, the condensate becomes

2
This was first proposed by Landau in the context of superfluid

4
He [56, 57]
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Figure 2.4: Excitation spectra for a quasi one dimensional non-dipolar(green dashed line)
and dipolar(blue solid line) condensate. The spectrum for a non-dipolar gas is monotonous
whereas the spectrum for a dipolar condensate is non-monotonous for chosen parameters.

unstable. This is known as the roton instability and is qualitatively di↵erent from the phonon

instability discussed previously.

Experimental observation of roton mode

The roton mode was first experimentally observed in Ref. [60], where they used Bragg

spectroscopy to study the momentum distribution of BECs of highly magnetic 166Er atoms

in a cigar shaped geometry with the dipoles oriented along one of the tightly confined di-

rections. They also studied the instability dynamics of the roton mode by quenching the

contact interaction parameter(s-wave scattering length) to a regime where the roton mode

had imaginary energy(roton instability described above). Subsequently, Ref. [59] measured

the rotonic excitation spectrum in a stable dipolar condensate of 166Er using the method of

Bragg spectroscopy following a number of theoretical proposals to measure the excitation

spectrum [61–63]. The dynamic structure factor S(q,!) is a measure of the response of

a condensate to a Bragg pulse and turns out to be an excellent probe for the excitation

spectrum(see Fig. 2.5) with an enhancement of the response of the condensate when the

frequency and momenta of the Bragg pulse are close to that of the roton mode. Recently,

Ref. [64] studied the roton excitations in a 162Dy BEC by an analysis of the in situ density

fluctuations. They could directly measure the static structure factor S(k), which shows a
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Figure 2.5: Roton excitation spectrum of a 166Er cigar shaped dBEC. (a) Measured dis-
persion relation(dots) along with the predicted dynamic structure factor from Bogoliubov
theory(colorcode).(b) Measured ✏(krot) vs scattering length(circles). The solid line shows the
theoretical prediction with the shading denoting the calculations for the prediction interval
of as. Inset shows the comparison of ✏(krot)(circles) and ✏(kmax)(triangles). The figure is
taken from [12, 59].

maximum in the presence of a roton and diverges where the roton softens(roton instability).

This further confirms that the density-density correlations are enhanced in the presence of

a roton. The static structure factor can be related to the excitation spectrum through a

particularly simple formula known as the Feynman-Bijl formula,

S(k) =
E(k)

✏(k)
(2.30)

where E(k) is the kinetic energy and ✏(k) is the dispersion relation. Eq. 2.30 makes it easy

to see why there is a maximum in the static structure factor when there is a roton in the

excitation spectrum.

2.2 Faraday patterns

Faraday instability is a type of modulation instability that occurs when a parameter in the

system is periodically modulated. Faraday waves were first observed by Michael Faraday on
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C. D.

Figure 2.6: (a) Faraday pattern in a quasi one dimensional non-dipolar condensate. The wave
number q of the pattern satisfies ~!m = ✏(q) where !m is the modulation frequency and l?
is the harmonic oscillator length. (b) Filled circles(red) show the most unstable momentum
as a function of the modulation frequency for the phonon spectrum in Fig. 2.4. Numerically,
the most unstable momentum has a peak in the momentum space density, as shown in the
inset for the pattern in (a). For (a), we have taken a finite width in the transverse direction
for better visualization. C. D. denotes condensate density.

the surface of a vibrating liquid subjected to transverse oscillations. The patterns oscillate

at half the frequency of the driving frequency. The type of the pattern depends on the

system under consideration and can include stripes, squares, hexagonals, spirals and so on.

The wave numbers of the patterns satisfy the dispersion relation !m = !(k) where 2!m is

the modulation frequency, and in more complicated systems, there can be multiple wave

numbers that constitute pattern formation.

In Bose-Einstein condensates, Faraday patterns have been studied theoretically as well

as experimentally by modulating the non-linearity in the condensates. The periodic driving

includes the parametric modulation of the s-wave scattering length [4, 10, 65–67] or the

modulation of the transverse trap frequency [68–70], leading to the growth of the instabilities

and formation of patterns on top of the condensate. Floquet analysis can be used to study

pattern formation, which reveals that the excitations can be written as f(t)e�t where � is

known as the Floquet/Mathieu characteristic exponent and f(t) is a periodic function. The

Mathieu exponent � is complex in general, and Re(�) > 0 indicates the instability of the

condensate against periodic driving, and the excitations grow exponentially. The dominant

wave number corresponds to max(Re(�)) and is determined by the excitation spectrum of the
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Figure 2.7: Non-trivial wave number selection in dipolar condensates with a roton-maxon
spectrum. The red solid line shows the most unstable momentum as a function of driving
frequency for the rotonic spectrum in Fig. 2.4. The roton leads to a cut o↵ in the most
unstable momenta by making the higher harmonics more unstable, contrary to the phonon
case in Fig. 2.6.

Figure 2.8: Pattern selection as a function of driving frequency. The solid lines correspond
to excitation branches. The circles indicate the most unstable momenta for a given driving
frequency. For driving frequency above a critical frequency, the most unstable modes cor-
respond to anti-symmetric patterns whereas for lower frequencies, the most unstable mode
represent symmetric patterns. The figure is taken from [26].
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condensate through parametric resonances n~!m = ✏(q) for small modulation amplitudes,

similar to the classical case. In non-dipolar gases, the first harmonic(n = 1) has the largest

Re(�) and � ⇠ q
2, which means that the wave number of the patterns increases monotonously

with the driving frequency as the spectrum is monotonous(see Fig. 2.6).

Faraday patterns have also been studied in dipolar condensates in quasi 2D [71] and

quasi 1D geometries [26, 72, 73]. The presence of the roton-minimum significantly modifies

the wave number selection for dipolar condensates. For a given range of the modulation

frequency !roton < !m < !maxon, there are now three unstable modes q1 < q2 < q3 instead of

the single unstable mode in scalar BECs. Which mode is the most unstable depends on the

details of the system. For a quasi 2D dipolar BEC, it was found in Ref. [71] that the most

unstable mode corresponds to the intermediate momentum q2 < qroton.

Faraday patterns in a pair of quasi one dimensional dipolar condensates was explored

in [26]. The long-range nature of the dipolar interactions leads to collective excitations in

the pair of condensates. Consequently, the Bogoliubov spectrum splits into two branches

corresponding to in phase and out of phase density modulations. The parametric modula-

tion of the dipolar strength gd leads to excitation of the modes and the most unstable mode

corresponds to the one with the larger momentum q3 > qroton. Additionally, in the presence

of a roton, the higher harmonics n = 2, 3, . . . become more unstable at lower modulation fre-

quencies, thereby leading to a cuto↵ in the wave number of the patterns as shown in Fig. 2.7.

Interestingly, they also observed a transition from a symmetric(in phase) Faraday pattern

to an anti-symmetric(out of phase) pattern as the modulation frequency is increased(see

Fig. 2.8).

Faraday patterns have also been studied in other Bose-Einstein condensate systems, such

as multi-component non-dipolar BECs [74, 75]. In Ref. [74], they studied pattern formation

in binary Bose-Einstein condensates via parametric modulation. They observed oscillatory

patterns at the interface of the immiscible condensates when the scattering length of the

inner condensate was periodically varied. In Ref. [75], upon periodic modulation of the radial

confinement, they observed Faraday waves and two experimentally relevant stationary-state

configurations. Pattern formation in spin-orbit coupled BECs was studied in Ref. [76],

where they observed density and spin waves due to the spin-orbit coupling and a quench of

the relative phase of two lasers. Faraday patterns have also been observed in spinor Bose-

Einstein condensates [77, 78]. In Ref. [78], they observed a competition between density
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pattern and spin-mixing dynamics.
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Chapter 3

Setup and Bogoliubov excitations

In this chapter and the next one we shall discuss the results of [30]. We shall study a stack

of quasi one-dimensional dipolar BECs subjected to periodically varying s-wave scattering

length. We shall begin by describing the non-linear GPEs governing the dynamics. We will

then move on to study the Bogogliubov excitation spectrum and show that we can engineer

the lowest-lying Bogoliubov mode by changing the dipole orientation. The lowest Bogoliubov

mode determines the nature of the patterns and it can be engineered to be in phase or out

of phase density modulations between the neighbouring condensates depending on whether

the inter-tube dipolar interaction is attractive or repulsive respectively.

3.1 Setup

We study a stack of N homogenous, quasi one-dimensional dipolar BECs as shown in Fig.

3.1. The condensates form an array along the y direction. The distance between neighbouring

condensates � is chosen such that there is no overlap between the condensates. For reference,

the overlap between two neighbouring condensates separated by � = 5l? is of the order 10�3

assuming a gaussian width in the transverse directions whereas for � = 6l?, the overlap is

of the order 8 ⇥ 10�4 and l? =
p
~/m!? is the harmonic oscillator length with !? as the

harmonic trapping frequency in the transverse directions. The condensates experience strong

harmonic confinement in the x and y directions and no confinement in the z direction. The

dipoles are polarized in the xy plane, making an angle � with the y-axis. The intra-tube
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Figure 3.1: The schematic setup of a stack of Q1D dipolar BECs. The angle �, between the
dipole moment and the y-axis (in the plane), determines the nature of inter-tube DDIs, and
� is the separation between the adjacent condensates along the y-axis.

dipolar interactions are always repulsive while the inter-tube interactions are attractive for

� = 0 and repulsive for � = 90 degrees. The dipoles have a dipole moment d; the results

are equally valid for magnetic or electric dipoles. The three dimensional Gross-Pitaevskii

equations describing the condensates in each tube are

i~@ j(r, t)

@t
=

"
� ~2

2M
r2 + g3D| j(r, t)|2 +

NX

m=1

Z
dr

0
nm(r

0)Vd(r � r
0)

#
 j(r, t), (3.1)

where  j(r, t) is the wave function of the jth condensate. The parameter g3D = 4⇡~2as/m
quantifies the short-range interaction strength with as being the s-wave scattering length.

Vd(r) = gd(1� 3 cos2 ✓)/r3 is the dipole-dipole interaction potential where gd / µ
2 provides

the strength of the DDIs and ✓ is the angle between the dipole orientation and the separation

vector r between two dipoles. Due to the strong harmonic confinement, we can assume

that the condensates remain in the ground state of the harmonic oscillator in the x and y

directions(single mode approximation) given by

�
?
j
(x, y) =

1p
⇡l?

e
� 1

2l2?
(x2+(y�j�)2)

(3.2)
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such that  j(r, t) can be separated as  j(r, t) = �
?
j
(x, y) j(z, t). We then multiply both sides

with �?⇤
j
(x, y) and integrate over the x and y directions to obtain a set of coupled non-local

Gross-Pitaevskii equations(NLGPEs) that describe the system at very low temperatures,

i~@ j(z)

@t
=

"
� ~2

2M

@
2

@z2
+ gnj(z) +

gd

3

NX

l=1

Z
dq

2⇡
e
iqz
nl(q)F|l�j|(q)

#
 j(z), (3.3)

where  j(z) is the wave function of the jth condensate, nj(z) = | j(z)|2 is the density of

the jth condensate. g = g3D

2⇡l2?
is the 1D contact interaction strength, nl(q) is the Fourier

transform of the condensate density, and

Fp(q,�) =

Z 1

0

dk
ke

� 1
2k

2
l
2
?

k2 + q2

⇥
(k2 � 2q2)J0(pk�)� 3k2 cos (2�) J2(pk�)

⇤
, (3.4)

It can be easily seen from Eq. 3.4 that F0(k) which represents intra-tube dipolar interactions

is independent of � as expected and Fp 6=0(k) representing inter-tube interactions depends on

�. Jn(x) is the Bessel function of the first kind. The quasi 1D nature of the condensates

requires that µj ⌧ ~!?, 8j where µj is the chemical potential of the jth condensate. The

calculation to obtain Fp(q,�) is briefly outlined below. First, we rewrite the dipolar term in

the momentum space using the convolution theorem,

Z
drVd(r� r

0)| (r0, t)|2 =
Z

dk

(2⇡)3
e
ik.r

Vd(k)| (k, t)|2 (3.5)

where Vd(k) is the Fourier transform of the dipole-dipole potential and is given by,

Vd(k) =
4⇡

3
gd

 
3k2

x
sin2

�+ 3kxky sin 2�+ 3k2
y
cos2 �

k2
x
+ k2

y
+ k2

z

� 1

!
(3.6)

We then integrate over x and y and convert the remaining integral to cylindrical coordinates

kx = k sin ✓ and ky = k cos ✓ to obtain the form of Eq. 3.4.

3.2 Bogoliubov spectrum

In this section we calculate the Bogoliubov excitation spectrum to be able to identify the

stability and the behaviour of the excitations. We consider the Bogoliubov ansatz discussed
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previously(refer Secs.2.1.5) - we consider a homogeneous ground state due to no confinement

along z, and plane-wave like excitations

 j(z, t) = e
�iµt/~ ⇥p

n0 + uje
�i(qz�!t) + v

⇤
j
e
i(qz�!t)

⇤
(3.7)

where n0 is the linear density of the condensate, uj and v
⇤
j
are the quasiparticle amplitudes

for particles and holes respectively. Substituting the above ansatz in the coupled GPEs

and linearizing in the quasiparticle amplitudes, we obtain the corresponding Bogoliubov de

Gennes equations for the excitations,

(gn0 + Eq) uj + gn0vj +
gdn0

3

NX

l=1

F|l�j|(q)[ul + vl] = ~!juj

(gn0 + Eq) v
⇤
j
+ gn0u

⇤
j
+

gdn0

3

NX

l=1

F|l�j|(q)[u
⇤
l
+ v

⇤
l
] = �~!jv

⇤
j

(3.8)

It can be seen from Eq. 3.8 that the excitations are collective in nature due to the dipole-

dipole interactions(see Fig. 3.4) and there are N number of solutions for N numberof layers.

For two layers, the spectrum splits into two branches corresponding to in phase and out of

phase density modulations,

✏±(q) = ~!± =

s

Eq

✓
Eq + 2gn0 +

2gdn0

3
(F0(ql?)± F1(ql?))

◆
(3.9)

The spectrum for two layers is plotted in Figure 3.2 for � = 0 and � = 90 degrees and

for di↵erent parameter regimes. As discussed previously, the dipole-dipole interactions are

attractive for � = 0 and the lowest Bogoliubov mode corresponds to in phase density mod-

ulations whereas the dipolar interactions are repulsive for � = 90 degrees and the density

modulations are out of phase between neighbouring condensates. As we increase the dipole

angle from 0 degrees, the magnitude of the dipolar interactions as well as the attractive

nature decrease and reach a minimum at the ‘magic angle’(� = cos�1 (1/
p
3)). Further

increasing the dipole angle increases the magnitude, however the interactions are repulsive

and reach a maximum at 90 degrees.

When the excitation energy is real and a monotonic function of the momentum, the spec-

trum is said to be phononic; when the energy is real but non-monotonous, the spectrum is

rotonic and when the energy is imaginary, it is said to have a roton instability if the un-

stable momenta are finite, and the condensates have a phonon instability if the instability

28



Figure 3.2: Bogoliubov excitation spectra for two layers. (a) � = 0 with i. phonon gn0 =
�0.06~!? (green dotted line) ii. roton gn0 = �0.09~!?(blue solid line) iii. roton instability
gn0 = �0.1~!?(red dashed line). (b) � = 90 degrees. gdn0 = 0.14~!? and � = 5l? in all
the plots.

occurs at zero momentum. We can go from one regime to another by making g increasingly

negative keeping other parameters fixed or by increasing gd, thereby increasing the strength

of the dipolar interactions. However, we cannot increase g or gd beyond a point as the quasi

one-dimensional character breaks down.

The BdG equations 3.8 are generally solved numerically because although analytical

expressions for the excitation energies can be obtained in principle, the expressions become

too complicated to be useful after N = 4. We can rewrite the BdG equations in the form

of a matrix equation and the problem reduces to an eigenvalue problem making it easier to

handle. In general, for N layers the BdG matrix is 2N ⇥ 2N dimensional and the matrix

equation is given by,

0

BBBBBB@

bd b0 . . . bn�1 bn�1

�b0 �bd . . . �bn�1 �bn�1

. . .

bn�1 bn�1 . . . bd b0

�bn�1 �bn�1 . . . �b0 �bd

1

CCCCCCA

0

BBBBBB@

u1

v1
...

un

vn

1

CCCCCCA
= ~!

0

BBBBBB@

u1

v1
...

un

vn

1

CCCCCCA
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(a) (b)

Figure 3.3: Bogoliubov spectrum of ten Q1D homogeneous dipolar condensates with gn0 =
�0.06~!?, gdn0 = 0.14~!?, and � = 5l? with the dipole orientation (a) � = 0 degrees and
(b) � = 90 degrees. Filled circles (red) show the most unstable momentum for the amplitude
of modulation ↵ = 0.06 as an increasing function of driving frequency !m (refer Sec. 4.1),
which follows the lowest branch. In (a), the roton minimum (marked by a star) causes
a nontrivial wavenumber selection when !m < !r, where !r is the roton mode frequency.
In particular, the higher harmonics such that n!m ' !r with n = 2, 3, . . . become more
unstable, putting a lower bound to the unstable momenta appearing in the system

where we have defined

bd = Eq + gn0 +
gdn0

3
F0(ql?)

b0 = gn0 +
gdn0

3
F0(ql?)

bm =
gdn0

3
Fm(ql?) (3.10)

We plot the Bogoliubov spectrum for ten Q1D condensates in Figure 3.3 for both orienta-

tions. The spectra have ten branches and the character of the lowest mode depends on dipole

orientation. The spectrum for � = 0 is sparse and has a roton minimum(note that this is

because we have g < 0) whereas the spectrum is dense for � = 90 degrees. The parameters

used are the same as the ones that give a phonon spectrum for two layers. This property

is known as roton softening(not be confused with the terminology for when roton frequency

touches zero which can be considered as a special case) where, for the same parameters, the

roton mode frequency keeps decreasing on increasing the number of layers; and eventually,

the system enters the roton instability regime. For the parameters used in the figure 3.3,

this occurs when we have N = 13(see Fig. 3.5). In what follows, we have restricted the
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Figure 3.4: Quasiparticle amplitudes for the lowest Bogoliubov mode at ql? = 0.5 for (a)
� = 0 and (b) � = 90 degrees. The modes are collective in nature and have contributions
from all the tubes. The amplitudes in (a) are in phase whereas the amplitudes of the
neighbouring condensates are out of phase with each other in (b).

parameters such that the spectrum is purely real and the Lee–Huang–Yang (LHY) quantum

correction to the chemical potential from quantum fluctuations can be neglected [79, 80].

E↵ect of increasing the number of tubes

We take a detour to mention what happens when we increase the number of tubes. We have

discussed the case when the dipoles are oriented head-to-tail(� = 0). In this case the roton

frequency decreases as we increase the number of tubes and eventually the system develops

roton instability where the homogenous ground state is dynamically unstable. On the other

hand, when the dipoles are side-by-side(� = 90 degrees) the spectrum becomes denser as

we increase the number of tubes(see Fig. 3.5) and as we shall discuss in the next section,

multiple Bogoliubov modes become equally(nearly) unstable and grow simultaneously. This

leads to a superposition of patterns with many unstable momenta.
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(a) (b)

Figure 3.5: E↵ect of increasing the number of layers on the Bogoliubov spectrum. (a)
N = 13, � = 0 degrees and (b) N = 20, � = 90 degrees. In (a), a roton instability develops
and grows deeper as we further increase the number of layers. In (b) the spectrum is dense
and leads to a superposition of patterns when periodically driven. The parameters used are
gn0 = �0.06~!?, gdn0 = 0.14~!?, and � = 5l?.
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Chapter 4

Stripe and checkerboard patterns

We have seen in the previous chapter that we can engineering the lowest Bogoliubov mode

to correspond to in phase and out of phase density modulations by changing the dipole

orientation. In this chapter, we shall see that the parametric modulation of the s-wave

scattering length induces stripe(in phase) or checkerboard(out of phase) density patterns

depending on the dipole angle. Further, we shall discuss the dynamics of quenching the

dipole angle once the initial pattern has formed via periodic driving. The results discussed

here are from [30].

4.1 Parametric driving

In this section, we consider the parametric modulation of the s-wave scattering length. This

can be achieved experimentally via the modulation of the magnetic field near a Feshbach

resonance which leads to a modulation of the scattering length. The scattering length is

modulated as,

as(t) = ās[1 + 2↵ cos (2!mt)] (4.1)

where ↵ is the strength of the modulation and !m is the modulation frequency. This leads to

the growth of the instabilities in the system and consequently leads to density modulations.

To understand the pattern selection, we consider the following solution to the coupled GPEs
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in Eq. 3.3,  j(z, t) =  
H

j
(z, t) [1 +Kj(t) cos qz] where

 
H

j
(z, t) =

p
n0 exp

✓
�i


µjt

~ +
↵ḡn0

~!j

sin (2!mt)

�◆
(4.2)

is the homogeneous solution in the presence of periodic modulation and ḡ = 2~2ās
ml

2
?
. Kj(t) =

rj(t) + isj(t) is the complex amplitude of the density modulation. We replace this ansatz

in Eq. 3.3 and only retain the terms that are linear in Kj(t). This is justified since we are

assuming small amplitude modulations and the higher-order terms can be ignored. We then

separate the real and imaginary terms to get,

~drj
dt

=
~2q2
2m

sj

�~dsj
dt

=
~2q2
2m

rj + 2g(t)n0 +
2

3
gd

NX

l=1

F|l�j|(q)rl (4.3)

The coupled equations above can be combined into a single second-order equation which

reads,

~2d
2
rj

dt2
+ Eq [Eq + 2g(t)n0] rj +

2

3
gdEq

NX

l=1

F|l�j|(q)rl = 0, (4.4)

We again rewrite the above equation in terms of a matrix equation

~2d
2R(t)

dt2
+AR(t) = 0 (4.5)

where A = Eq [Eq + 2g(t)n0] I+G(q), I is a N ⇥N identity matrix and R = (r1, r2, . . . rN)T .

The matrix G(q) is given by,

G(q) = 2

3
gdEq

0

BBBB@

F0(q) F1(q) . . . FN�1(q)

F1(q) F0(q) . . . FN�2(q)

F2(q) F1(q) . . . FN�3(q)
...

...
...

. . .

1

CCCCA
. (4.6)
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where Fp(q) is given in Eq. 3.4. Finally, we can decouple Eq. 4.5 into N independent

Mathieu-like equations,

~2d
2
r̄j

dt2
+
⇥
✏
2
j
(q) + 4↵ḡn0Eq cos (2!mt)

⇤
r̄j = 0, (4.7)

where r̄j = g
T

j
R is the collective modulation amplitude of the stack of dipolar Q1D conden-

sates with gm being the mth eigenvector of A and ✏j(q) = ~!j is the Bogoliubov dispersion.

Note that the index j in ✏j(q) refers to the Bogoliubov mode and not the layer index. Refer

to Appendix A for the details of the calculations.

Floquet theory

Floquet theory is a branch of Ordinary Di↵erential equations that deals with periodic linear

di↵erential equations of the form ẋ = A(t)x where A(t+T ) = A(t) is a periodic function with

period T . The main result of Floquet’s theorem is that we can define a coordinate change

y = B
�1(t)x with B(t + 2T ) = B(t) such that the above equation can be transformed into

a tradition linear di↵erential equation with constant coe�cients. Its application to Mathieu

equations gives the result that the solutions of the Mathieu equations are of the form f(t)e�t

where f(t+ ⇡

!
) = f(t) is a periodic function and � is called the Floquet/Mathieu exponent.

The real part of the Floquet exponent is known as the Lyapunov exponent in non-linear

dynamics. The solutions are said to be Lyapunov stable if the Lyapunov exponents are

non-negative and unstable if they are positive.

In our system, the solutions of Eq. 4.7 take the form r̄j(t) = fj(t)e�jt where fj(t) =

fj(t + ⇡/!m). Re(�) > 0 indicates the dynamical instability of the condensates to the

periodic modulation and leads to the growth of transient Faraday patterns before they are

eventually destroyed. In the limit of small modulation amplitudes ↵ ! 0, the pattern

selection is determined by the resonances n~! = ✏j(q), 8j. The solution with the largest

Re(�) grows the fastest and hence dominates the dynamics. If the condensates are driven

for a long time, all the modes become more and more unstable leading to larger and larger

excitations before the condensates are inevitably destroyed and out of the mean-field regime.

For a phonon spectrum and for the first harmonic(n = 1), there are N unstable momenta

and the one corresponding to the lowest branch will be the most unstable. Hence, the most

unstable momenta follows the lowest branch in the Bogoliubov spectrum. In contrast, for
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(a) (b)C. D.

Figure 4.1: (a) Stripe density pattern and (b) the corresponding density-density correlations
in a stack of ten Q1D dipolar condensates for � = 0 degrees, gn0 = �0.06~!?, gdn0 =
0.14~!?, � = 5l?, ↵ = 0.01 and !m = 0.07!?. The snapshot of the pattern is taken
at !?t = 6185. The average density-density correlation �̄

� is shown for nearest (� = �)
and next-nearest condensates (� = 2�). While plotting, we have taken a finite width of
the condensate along the transverse y-direction for better visualization. C.D. stands for
condensate density.

a roton spectrum and the first harmonic, the number of unstable momenta will be higher

due to the presence of the roton in a given range of frequency !roton < !m < !maxon. The

most unstable momenta now depends on the geometry of the condensates as we discussed

previously.

When the modulation frequency !m < !roton, the situation is more involved if the spectrum

has a roton mode. The higher harmonics n = 2, 3, . . . start to play a role in pattern selection

and hence the most unstable momentum acquires a non-trivial character.

We now discuss the numerical study of the time evolution of the coupled GPEs(Eq. 3.3)

under periodic modulation and the observation of transient density patterns.

4.1.1 Stripe pattern

We first consider the case of the dipoles oriented along y-axis(� = 0 degrees). The inter-tube

interactions are attractive, and the lowest Bogoliubov mode has symmetric character. We

consider the case in Fig. 3.3 (a) which has a roton minimum in the lowest branch which is
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marked by a star. The periodic modulation leads to the growth of instablities and as we

have seen, the lowest mode is the most unstable. The excitation of the lowest mode leads

to stripe density pattern as shown in Fig. 4.1, where we have shown the numerical results

for ten condensates. We also show the wave function density of the central condensate in

momentum space in Fig. 4.3. The wave function shows a central peak at k = 0 corresponding

to the condensate and two other symmetric peaks corresponding to the excited modes. The

momenta corresponding to the peak satisfy the resonance condition ✏j(q) = ~!. We see from

Fig. 4.1 that the central condensates have a larger amplitude than the outer condensates

due to the finite number of tubes. Consequently, the contrast between the high and low

density regions is also lower for the outer condensates. As discussed previously, the presence

of roton leads to non-trivial wave number selection. The first harmonic is the most unstable

for !m > !r, whereas for !m < !r, the higher harmonics having energy closer to the roton

are more unstable.

To quantify the nature of the pattern, we calculate the density-density correlation between

a pair of condensates,

�
(j,k)(t) =

R
dzSj(z, t)Sk(z, t)q�R

dz S
2
j
(z, t)

�q�R
dz S

2
k
(z, t)

� (4.8)

where Sj(z, t) = nj(z, t)� n0 with nj denoting the density of the jth tube along the y-axis.

Experimentally, these correlations can be measured from the simultaneous in situ imaging

of the density of all tubes [64, 81, 82]. The average density-density correlation among all

pairs of tubes separated by a distance � is defined as,

�̄
�(t) =

1

N � �/�

N��/�X

j=1

�
(j,j+�/�)(t). (4.9)

We plot the average density-density correlation between nearest(� = �) and next-nearest

neighbouring condensates for the stripe pattern in Fig. 4.1(b). Since the density modulations

are in phase, �̄� is positive irrespective of �. �̄� = 1 indicates maximal correlation and we

see that the correlations tend to one for the stripe pattern. We also observe oscillations

in the correlations �̄� due to the oscillations in the amplitude with the frequency !m. The

maximum value of the correlation also decreases with increase in � as can be expected since

the e↵ect of the dipolar interactions decreases.
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(a) (b)C. D.

Figure 4.2: (a) Checkerboard density pattern and (b) the corresponding density-density
correlations in a stack of ten Q1D dipolar condensates for � = 90 degrees, gn0 = �0.06~!?,
gdn0 = 0.14~!?, � = 5l?, ↵ = 0.06 and !m = 0.08!?. The snapshot of the pattern is
taken at !?t = 6500. We have taken a finite width of the condensate along the transverse
y-direction for better visualization. The average density-density correlation �̄� is shown for
nearest (� = �) and next-nearest condensates (� = 2�). C.D. stands for condensate density.

E↵ect of noise: We embed a tiny uniform random noise(⇠ 10�4) on top of the homoge-

neous density(⇠ 1) in the condensate wave function at the start of the simulation to seed

the instabilities. Increasing the magnitude to the noise leads to decrease in the correlations

and also the time taken to form the density patterns. We need to be careful as a high value

of noise can lead to a high value of the kinetic energy at the start which may break down

the quasi 1D nature assumed.

4.1.2 Checkerboard pattern

We now consider dipoles oriented along x-axis(� = 90 degrees). The lowest Bogoliubov

mode corresponds to anti-correlated density modulations between the neighbouring con-

densates and its excitation leads to a checkerboard pattern as shown in Fig. 4.2. The

spectrum is monotonous and hence the most unstable momentum follows the lowest Bo-

goliubov branch(see Fig. 3.3). The Fourier space density is plotted in Fig. 4.3 and shows

two peaks(apart from the condensate peak) characterizing the excited momenta. Since the

density modulations between the neighbouring condensates are out of phase, the nearest
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(a) (b)

Figure 4.3: Momentum space density for (a) Stripe pattern(� = 0 degrees) and (b) checker-
board pattern(� = 90 degrees). The peaks at at the momenta satisfying the resonance condi-
tion ✏j(q) = ~!? for the lowest branch and the first harmonic since !m > !r. The snapshots
are taken at (a) !?t = 6185 and (b) !?t = 6500. The parameters used are (a) ↵ = 0.01
and ! = 0.07!?, (b) ↵ = 0.06 and ! = 0.08!?. Other parameters are gn0 = �0.06~!?,
gdn0 = 0.14~!?, � = 5l?.

neighbour correlation �̄�=� ! �1 whereas the next-nearest neighbour density modulations

are in phase, hence leading to �̄�=2� ! 1 at intermediate times. The behaviour of �̄� can be

summarized as negative correlations for condensates separated by odd multiples of � and

positive correlations for condensates separated by even multiples of �. We again observe

oscillations in �̄�(t) with frequency !m.

Stripe vs checkerboard patterns: In addition to the di↵erences we discussed above, the

stripe and checkerboard patterns di↵er in terms of the time taken to form/have a significant

amplitude. This is evident from the Figs. 4.1, 4.2 and 4.3 as the strength of modulation

in the case of checkerboard pattern is higher and yet, the amplitude of the density pattern

around the same time as the stripe pattern is smaller. This can be attributed to the fact that

the dipolar interactions are twice as strong in the stripe case compared to the checkerboard

case and hence stripe patterns grow faster.
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C. D.(a) (b) (c)

Figure 4.4: Stripe to checkerboard transition upon instantaneous quench of dipole angle. � is
quenched from 0 ! 90 degrees. The time for each snapshot is shown at the top of each plot.
!m = 0.07!? and ↵ = 0.01 before we quench at !?t = 6250, The dipole orientation is shown
at the top right for each plot. Other parameters are gn0 = �0.06~!?, gdn0 = 0.14~!?, and
� = 5l?.

4.2 Abrupt quench

We periodically modulate the scattering length until the stripe or the checkerboard pattern

is formed. We then simultaneously stop the periodic driving and abruptly quench the dipole

angle. There are two possible scenarios - i. We initially form the stripe pattern(� = 0) and

quench the angle to � = 90 degrees. ii. We first create the checkerboard pattern(� = 90

degrees) and immediately quench the angle to � = 0 degrees. Interestingly, we observe a

dynamic transition between the two patterns, and their dynamics di↵er significantly. We’ll

first describe the stripe to checkerboard transition.

4.2.1 Stripe to checkerboard transition

We first form the stripe pattern by periodic driving 4.4(a). We then stop the periodic driving

simultaneously quench � to 90 degrees. The qeuenching makes the stripes unstable as the

dipole angle changes from � = 0 degrees(maximally attractive) to � = 90 degrees(maximally

repulsive). The stripes eventually break apart 4.4(b) and align themselves into the checker-

board pattern as shown in Fig. 4.4(c). This dynamical transition can be described by the

40



density-density correlation coe�cient which is plotted in Fig. 4.5. For the stripe to checker-

board transition, �̄�=� corresponding to nearrest-neighbour correlations, changes from a

maximum value of 1 indicating maximal positive correlations, to a value of �1 indicating

the neighbouring condensates are maximally anti-correlated and the patterns transition to

checkerboard. Note that �̄�=2� representing next-nearest neighbour correlations remains

positive throughout.

Interestingly, we observe that the time taken for the patterns to transition is dependent

on various factors. All parameters being the same, the transition time is di↵erent even for a

di↵erent noise realization. The amplitude of patterns at a given time varies from realization

to realization and the maximum amplitudes of the condensate wave functions oscillate in

time with frequency !m due to the periodic driving while there is an overall exponential

increase in time. We found that the time taken for transition depends critically on the

maximum amplitude of the pattern before the quenching. We verified this by observing the

dynamics for a large number of di↵erent noise realizations. The relevant quantity is the

maximum amplitude before quenching and not the amplitude at the instant of quenching.

The transition time is higher for a low amplitude of the patterns before quenching and if the

amplitude is very low, there may not be a transition at all.

In order to quantify our observations we calculated the energy functional for our system.

We defined the energy functional for a dipolar gas in Eq. 2.18. We plot the normalized

energies in Fig. 4.6 where we have normalized by the (box size⇥number of tubes). We can

see from the figure that the kinetic energy increases exponentially before the quench after

which it oscillates and increases during the transition. This increase can be attributed to the

motion of the density peaks during the transition. Corresponding to the increase in kinetic

energy, there has to be a decrease in other energies as we have stopped the periodic driving

and are no longer supplying energy to the system. This decrease can be seen in the contact

and dipolar energies(Fig. 4.6(b) and (c)). Thus there is a critical amplitude to observe the

transition for a given set of parameters. Also note that in the long time limit, other modes

become unstable leading to the destruction of the patterns and eventually the condensate.
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PD PQ

PD PQ

(a) (b)

Figure 4.5: Average density-density correlation �̄
�(t) for the abrupt quench. (a) Stripe

to checkerboard transition(� = 0 to � = 90 degrees). and (b) checkerboard to stripe
transition(� = 90 to � = 0 degrees). The modulation parameters are (a) ! = 0.07!?
and ↵ = 0.01 before the quench at !?t = 6250 and (b) ! = 0.08!?, ↵ = 0.08 before the
quench at !?t = 4850. Other parameters are same as Fig. 4.4. PD stands for periodic
driving and PQ stands for post-quench.

(a) (b) (c)

Figure 4.6: Normalized energy plots for the stripe to checkerboard transition. (a) Kinetic
energy (b) Contact energy and (c) dipolar energy. The time of the quenching is shown by a
black solid vertical line. The inset in (c) shows the zoomed in plot of dipolar energy during
the transition. The kinetic energy increases during the transition whereas the contact and
dipolar energies decrease.
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C. D.(a) (b) (c)

Figure 4.7: Checkerboard to stripe transition. � is quenched from 90 ! 0 degrees. The time
for each snapshot is shown at the top of each plot. !m = 0.08!? and ↵ = 0.08 before we
quench at !?t = 4850, The dipole orientation is shown at the top right for each plot. Other
parameters are the same as Fig. 4.4.

4.2.2 Checkerboard to stripe transition

Periodic modulation of the scattering length at � = 90 degrees leads to a checkerboard

pattern Fig. 4.7(a). Abruptly changing the dipole angle to 0 changes the dipolar interactions

to maximally attractive making the checkerboard unstable. Each of the density peaks in the

checkerboard pattern splits into two due to the attraction from the density peaks on either

sides in the neighbouring tubes, eventually forming a stripe pattern(see Fig. 4.7(b) and (c)).

As the density peaks split to form the stripe pattern, the periodicity of the stripe pattern

is half that of the initial checkerboard. The corresponding density-density correlations are

shown in Fig. 4.5(b). We see that the pattern transition occurs almost immediately, which

is contrary to the stripe to checkerboard transition. This can be explained as follows -

the strength/magnitude of the inter-tube dipolar interactions when the dipoles are head-

to-tail(� = 0) is twice as strong when they are side-by-side(� = 90 degrees). Hence, upon

quenching the dipolar interactions become stronger and the transition happens immediately.

We can also see from Fig. 4.5(b) that the nearest neighbour correlation �̄�=� changes from

�1 to a value of 1 after the quench and oscillates between the two. This is also seen in

the density patterns as they oscillate between checkerboard and stripe patterns. The next-

nearest neighbour correlation �̄�=2� ⇠ 1 throughout.
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(a) (b) (c)

Figure 4.8: Normalized energy plots for the checkerboard to stripe transition. (a) Kinetic
energy (b) Contact energy and (c) dipolar energy. The time of the quenching is shown by a
black solid vertical line. The inset in (c) shows the zoomed in plot of dipolar energy during
the transition. The kinetic and contact energies oscillate out of phase with each other during
the transitions, whereas the dipolar energy oscillates without change throughout.

The normalized energies are plotted in Fig. 4.8. The kinetic energy increases exponen-

tially before the quench and oscillates with the modulation frequency !m. The kinetic and

contact energies oscillate out of phase with each other after the quench meaning the contact

energy is transferred to the kinetic energy and vice versa. The dipolar energy oscillates with

no change during the transitions. We also observed that when the amplitude of the patterns

before quenching was very high, the condensates get destroyed almost immediately after the

quench

4.3 Linear quench

The quenching of the dipolar angle can be implemented experimentally by varying the mag-

netic field. However, this means that the abrupt quench may be di�cult to achieve in

practice. Therefore, we numerically study a linear quench of the dipole angle to see if the

transitions still occur. We periodically drive the condensates until we obtain the stripe or

checkerboard pattern as before. We then stop the periodic driving and quench the dipole

angle in steps of one degree every few time steps. We plot the correlation coe�cients for the

transitions in Fig. 4.9. We see that there is no qualitative change in the dynamics; however,

the transition time has increased as the dipolar interactions take longer time to become

attractive/repulsive. We also verified that the qualitative dynamics remains the same if we
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(a) (b)

Figure 4.9: Average density-density correlation �̄
�(t) for the linear quench of the dipole

angle. (a) stripe to checkerboard transition(� = 0 to � = 90 degrees) and (b) checkerboard
to stripe transition(� = 90 to � = 0 degrees). The parameters are the same as Fig. 4.5. In
(a) the quench starts at !?t = 6250 and ends at !?t = 6695 and in (b) from !?t = 4850 to
!?t = 5295. The dipole angle is changed in increments of one degree every !?t = 5. The
total time of quench is 89!?t = 445. PD denotes periodic driving, Q for the regime of the
linear quench and PQ for postquench.

change the quench rate; however note that a very slow quench can lead to suppression of

the vibrational modes of the pattern and a complete revival of the initial pattern may not

be possible. The normailzed energies are plotted in Fig. 4.10. This further confirms that

there is no qualitative change in the dynamics. As we discussed before, the amplitude of

the patterns have to be above a threshold value for the transitions to occur. To illustrate

this, we plot the average density-density correlations �̄� in Fig. 4.11 for both cases where

the transition is delayed/doesn’t occur. The dynamics of the condensates remains the same

before the quench. However, we now quench earlier than before to study the dynamics. We

see from Fig. 4.11(a) for the stripe to checkerboard transition that the transition happens at

a later time than before(see Fig. 4.9(a)) whereas in Fig. 4.11(b), the transition to the stripe

pattern does not occur. Further, we verified that performing the quench at a later time leads

to a transition.

We also performed simulations where we increased the dipole angle in steps of nine degrees

and simulations with di↵erent quench rates which resulted in similar qualitative dynamics.

Additionally, when we start from an intermediate angle � = 45 degrees and periodically

drive the condensates, quenching the dipole angle to � = 0 results in a transition to a stripe

pattern which gets destroyed quickly, and we did not observe a transition when we quenched
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(a) (c)

(d) (e) (f)

Figure 4.10: Normalized energy plots for the linear quench.(a)-(c) show the kinetic, contact
and dipolar energies for the stripe to checkerboard transition. (d)-(f) show the same for the
checkerboard to stripe transition. Notably, the kinetic energy decreases in (a) whereas it
increases for (b). The qualitative properties remain the same while the transition time is
prolonged.

(a) (b)

Figure 4.11: E↵ect of quenching the dipole angle earlier. (a) stripe to checkerboard transition
and (b) checkerboard to stripe transition. The transition is delayed in (a) whereas it doesn’t
occur in (b).
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the angle to 90 degrees(for a long time). This solidified our conjecture that the amplitude is

the primary factor deciding the transition time.
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Chapter 5

Summary and outlook

In this thesis, we studied stripe and checkerboard pattern formation in a stack of quasi one

dimensional dipolar Bose-Einstein condensates upon parametric modulation of the s-wave

scattering length. We showed that we can engineer the Bogoliubov spectrum via changing the

orientation of the dipoles. The presence of inter-tube dipolar interactions leads to a collective

nature of the excitations and the spectrum splits into di↵erent branches corresponding to

di↵erent modes. The nature of the lowest mode can be engineered to be in phase or out

of phase density modulations by changing the dipole orientation. The modulation of the

s-wave scattering length leads to the excitation of the lowest Bogoliubov mode resulting

in the observation of stripe and checkerboard patterns for attractive(� = 0 degrees) and

repulsive(� = 90 degrees) dipolar inter-tube interactions respectively. The wave number

selection can be analyzed through Mathieu-like equations and Floquet theory. The nature of

the patterns can be described by average the density-density correlation coe�cient �̄� which

tends to 1 for positive correlations and to �1 indicating anti-correlations. All the condensates

are in phase in the stripe pattern resulting in �̄
� ⇠ 1 whereas for checkerboard pattern,

nearest neighbour condensates are out of phase �̄�=� ⇠ �1 and next-nearest neighbours are

in phase �̄�=2� ⇠ 1.

We then study the dynamics of quenching the dipole angle once the initial pattern has

formed via periodic driving. We observe a dynamical transition between the patterns upon

quenching � abruptly or linearly. The transition can be described by the average correlation

coe�cient �̄� which changes from 1 to �1 for the stripe to checkerboard transition, and from
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�1 to 1 for the checkerboard to stripe transition. The checkerboard to stripe transition occurs

almost immediately upon quenching whereas the transition from stripe to checkerboard

happens at a later time. The time taken for the transition depends primarily on the pattern

amplitude before quenching, in addition to various other factors. Further, we calculated the

energy functionals to support our results.

Our studies o↵er several prospects. One possible study would be to design schemes to

selectively excite any given Bogoliubov mode. Another possibility would be to study the

patterns at an arbitrary angle and the dynamics upon quenching di↵erent parameters. The

study could also be extended to quasi two dimensional condensates and anti-parallel dipoles

which could lead to novel perspectives. It would also be interesting to study the addition of

dissipation and investigate the steady state patterns or the hysteresis.
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Appendix A

Mathieu equations

We start with the following equation.

~2d
2
rj

dt2
+ Eq [Eq + 2g(t)n0] rj +

2

3
gdEq

NX

l=1

F|l�j|(q)rl = 0, (A.1)

which can be written as,

~2d
2R(t)

dt2
+ (Eq [Eq + 2g(t)n0] I+G)R(t) = 0. (A.2)

Here I is an N ⇥N identity matrix, R = (r1, r2, . . . rN)T and

G(q) =
2

3
gdEq

0

BBBB@

F0(q) F1(q) F2(q) . . .

F1(q) F0(q) F1(q) . . .

F2(q) F1(q) F0(q) . . .

...
...

...
. . .

1

CCCCA
. (A.3)
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Uncoupling the set of equations

We write (A.1) as,

~2d
2R(t)

dt2
= �AR(t), (A.4)

where matrix A = Eq [Eq + 2g(t)n0] I + G. Assume the matrix A is diagonalizable. Then

we obtain the following diagonal matrix as,

⇤ = S
�1AS (A.5)

where the matrix S is given by,

S =
⇣
g1 g2 ... gn

⌘
(A.6)

Here, the column vector gi is the i-th eigenvector of the matrixA. SinceA is a real symmetric

matrix, S will be an orthogonal matrix, i.e. S�1 = S
T . We multiply S

�1 on the right of the

equation,

~2 d
2

dt2

⇥
S
�1R(t)

⇤
= �S

�1AR(t), (A.7)

and then insert identity as SS�1 on the RHS.

~2 d
2

dt2

⇥
S
�1R(t)

⇤
= �S

�1ASS
�1R(t) = ⇤S�1R(t) (A.8)

We define R̄(t) = S
�1R(t) = S

TR(t). Since,

S
T =

0

BBBB@

gT

1

gT

2
...

gT

n
,

1

CCCCA
(A.9)
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where gT

i
are row vectors and transpose of the eigenvectors, we have the

R̄(t) = S
TR(t) =

0

BBBB@

gT

1 R(t)

gT

2 R(t)
...

gT

n
R(t)

1

CCCCA
(A.10)

We can see that r̄i = gT

i
R(t) (which is a scalar) is a linear combination of ri and is used as

the new set of variables.

~2d
2R̄(t)

dt2
= �⇤R̄(t) (A.11)

Since the ⇤ is diagonal, the new sets of variables are uncoupled from each other.

Eigenvectors of G

Here we note that since A = Eq [Eq + 2g(t)n0] I +G, the eigenvectors of A and G are the

same. It can be shown as follows,

⇤ = S
�1AS

= Eq [Eq + 2g(t)n0]S
�1IS + S

�1GS

= Eq [Eq + 2g(t)n0] I+ S
�1GS (A.12)

Since ⇤ and I are diagonal, S�1GS is diagonal as well, implying that the set of eigenvectors

are same of both A and G. This also ensure that the eigenvectors gi are time-independent,

which is required for the previous set of derivation to be valid.
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Relation to the Bogoliubov dispersion

The entries of the diagonal matrix ⇤, say �i, are the eigenvalues of A. They can be written

as,

�i = Eq [Eq + 2g(t)n0] + µi (A.13)

where µi are the eigenvalues of G. It happen to be that the eigenvalues coincides with ✏j(q).

This is checked explicitly and verified for the di↵erent set of interaction parameters.
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[29] Niccolò Bigagli, Weijun Yuan, Siwei Zhang, Boris Bulatovic, Tijs Karman, Ian Steven-

son, and SebastianWill.Observation of Bose-Einstein Condensation of Dipolar Molecules.

2023. arXiv: 2312.10965 [cond-mat.quant-gas].

[30] S Nadiger, SM. Jose, R Ghosh, I Kaur, and R Nath. “Stripe and checkerboard patterns

in a stack of driven quasi-one-dimensional dipolar condensates”. In: Phys. Rev. A 109

(3 2024), p. 033309. doi: 10.1103/PhysRevA.109.033309.

[31] A. Einstein. “Quantentheorie des einatomigen idealen Gases”. In: Albert Einstein:
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