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Abstract

Gravitational lensing due to intervening matter distributions such as galaxies or clusters can
(de)–magnify a gravitational-wave (GW) event, which can introduce a bias in the measurement
of the astrophysical source’s properties. Hierarchical Bayesian inference on the catalog of
detected GW events is performed to study the population properties of compact binaries,
such as their mass and redshift distributions. Currently, the lensing probability is low and it
is assumed that the events are not significantly (de)–magnified. A higher lensing probability
(as expected for the next-generation detectors), can lead to biases in our estimation of the
population hyper–parameters. In this work, we investigate the biases in population inference
due to lensing, and develop a Bayesian hierarchical inference formalism for correct estimation
of both the GW source population hyper–parameters, and the lenses.
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Preliminaries





Chapter 1

Introduction

Since the first direct detection of gravitational waves (GWs) in 2015, the LIGO-Virgo-KAGRA
network of interferometers have detected many tens of binary blackhole mergers over three
observing runs, including a few binary neutron star (BNS) and neutron star – black hole
(NSBH) coalescences. With the 4th observing run that started in May 2023, it is expected
that hundreds of more events will be detected. With such a large number of mergers, one
can now start asking questions about the underlying population properties of binary black
holes in the universe, like what is the mass distribution of black holes in the universe, merger
rates and their evolution with redshift etc. An interesting feature about GWs from CBCs is
that they are a standard siren without requiring any distance ladder calibration. This means
that the luminosity distance to the merger can directly be estimated from the data along
with the redshifted mass. Thus knowing the luminosity distance and the redshifted mass, we
can also calculate the source frame masses by assuming a cosmology. One can then study
the intrinsic population properties of the binary black holes. However, this assumes that
the luminosity distance is unbiased. Gravitational waves, like electromagnetic waves, can be
gravitationally lensed by intervening matter like galaxies and clusters. This can provide a
(de)–magnification to the amplitude of the gravitational waves, which leads to the luminosity
distance to be underestimated, and the source masses to be overestimated, thus leading to a
bias in the measurements. Thus, lensing of events can bias the source mass measurements
and thus also bias the population properties of the black holes. In order to accurately study
the intrinsic properties of the merging binary black hole population, one needs to account
for the fact that the detected GW events may be gravitationally lensed. Currently, the
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lensing probabilities calculated from the merger rates and known lens population models
are expected to be quite small and none of the currently confirmed events are thought to
be significantly lensed. However, as the reach of the current GW detectors increases in the
future observing runs, the volume of universe probed also increases as well as the chances of
detecting a significant number of lensed events. Thus, it is essential to study in detail what
features can GW lensing leave on the source population distributions, and how to account
for them to understand our true source population. In this project we will use the framework
of hierarchical bayesian inference to study the population distributions of the merging BBH’s
and study the consequences of including lensing in such models.

1.1 A very brief outline of the rest of this thesis

This thesis is divided into three parts. Part I provides some background and overview
into what are gravitational waves and what have we learned from them. It also provides a
brief introduction to gravitational lensing, before delving deeper into lensing of gravitational
waves, their current status and future prospects. Part II then describes some of the bayesian
methods used to study individual gravitational wave events, as well as populations from a
catalog of detections. We also develop a bayesian hierarchical formalism on how to include
lensing in population studies of gravitational waves. In Part III, we apply the methods
developed in the previous sections to explore the effects of lensing in population studies and
demonstrate that our modified inference procedure can mitigate the resulting biases. We then
conclude with a summary of our work and its key points, along with some future directions
to extend this study.



Chapter 2

What are Gravitational Waves

Credit: New Yorker comic for the
announcement of the first detection

From electromagnetism, we known that radiation can be generated by accelerating charges.
This can make one ponder, can accelerating masses do the same? The answer is yes, as was
predicted by Einstein more than a century ago using his General Theory of Relativity (GR).
Such radiation is called gravitational waves (GWs), which are literally ripples in the fabric of
spacetime. GWs can be generated by any source of matter or energy that has a time varying
quadruple moment, which implies that spherically symmetric motions do not generate GWs.

5



6 Effect of gravitational lensing on the population inference of BBH using GW observations

Additionally, in GR, these waves propagate at the speed of light, and have 2 polarisation
states, called the "+" and "×" polarisations. However, in alternate theories of gravity, GWs
may have different propagation effects and there may also be up to 6 polarisation states.
Now that we have briefly described what GWs are, how does one actually produce them,
astrophysically speaking, and can we detect them? In this section, our focus will be on the
ground–based GW detectors, which operate in the few Hz to kilo-Hz frequency regime. This
is well suited to study transient sources of GWs [1], and the most common among them, and
the sole ones detected thus far, are the compact binary coalescences (CBC). The inspiral and
merger of 2 compact objects orbiting each other generates gravitational waves that propagate
towards us at the speed of light. The amplitude and frequency of the waves increases with time
till the merger, giving them a characteristic "chirp" like shape. Other plausible sources, that
the ground–based detectors may be able to detect, but haven’t been seen yet are gravitational
waves generated by nearby core-collapse supernovae, long–duration continuous gravitational
waves from spinning neutron stars that have some ellipticity or asymmetry, and the stochastic
gravitational wave background from a collection of gravitational wave sources that may not
be individually resolvable.

2.1 Too weak to detect?

Thankfully(?), the CBC’s that we have detected and expect to detect in the future will
be very far from us. This results in the amplitude of the GWs at the detector to be very
small, as the amplitude diminishes inversely with the distance to the source1. The strain
amplitude, h for an inspiral can be approximately written as [2] –

h ∼ 1.4× 10−22

(
f

100Hz

)2/3( M
1.22M⊙

)5/3(
10Mpc

r

)
(2.1)

where f denotes the gravitational wave frequency, M represents the chirp mass, which
is a combination of the 2 component masses, and r is the luminosity distance to the source.
As can be seen by the constant pre-factor, GWs for the usual astrophysical sources will
always be very weak, with strains of the order of O(10−22). Thus, directly detecting them has

1This is unlike electromagnetic radiation where the flux/energy falls off as the square of the distance from
the source
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Figure 2.1: PSD of the existing LIGO detectors, and some future planned ground based
detectors. Reproduced from Fig 3.3 in [7]

been a challenging effort over multiple decades. We now have kilometer–long ground–based
laser interferometers for direct detection, with the current network consisting of the 2 LIGO
detectors in Hanford and Livingston in the USA [3], the Virgo detector in Italy [4], and
the underground KAGRA detector in Japan [5], with more observatories joining soon in
the future [6]. Fig. 2.1 shows the power spectral density (PSD) of the current and future
ground–based detectors. The PSD provides an estimate of the frequency–dependent noise in
the detectors, and includes contributions from most possible terrestrial noise sources. They
have a characteristic shape, which is due to poor sensitivity at the 2 extremes in the frequency
space. On the low–frequency side, the ground based detectors encounter the seismic noise
wall, which makes them insensitive to the very early parts of the inspiral, as well as the
merger of extremely massive sources which merge at low frequencies. On the other side,
quantum noise limits the detector performance at high frequencies.

Even with the most sensitive instruments ever constructed, the detection of GWs is still
a challenging task as they are typically buried in noise from terrestrial sources. One of
the methods to search for GWs in the data is called Matched Filtering [8, 9], where we
cross–correlate the data with waveform models, that are created based on our understanding
of what the signal from CBCs looks like. The cross–correlation is done with a large template
bank, covering a range of different possible values of the source parameters like their masses
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to find the best possible set of parameters that match with the data. GW interferometers
have poor sky resolution, hence it is beneficial to have multiple detectors spread across Earth
for better sky localization of the sources, especially to aid in electromagnetic followup with
ground and space-based telescopes. Having multiple detectors also increases the significance
of candidate events, as often, transient noise sources can mimic as a GW event, but having
the same transient noise in all the detectors at roughly the same time is much less likely.

2.2 Gravitational Wave Astronomy: Past, Present and

Future

Around 1.4 billion years ago, in a galaxy far, far away, a pair of black holes, each weighing
approximately 30M⊙ collided with each other. Their inspiral dance and subsequent merger
generated gravitational waves. On the 14th of September in 2015, the Laser Interferometer
Gravitational Wave Observatory (LIGO) at Hanford and Livingston directly detected these
waves, thereby opening a new window to listen to the universe [10]. This was the culmination
of decades of effort, by a worldwide collaboration of scientists building the most sensitive
detectors ever made. This was a watershed moment in understanding our universe, akin to
when Galileo pointed his telescope in the night sky 400 years back, allowing us to look at the
heavens in a completely new way. The subsequent birth of modern electromagnetic astronomy
has completely revolutionized our understanding of the universe in the past few centuries,
occurring hand–in–hand with the development of ever more sophisticated instruments to
study and explore various astrophysical phenomena.

Similar is the importance of the first direct detection of gravitational waves. This is
just the start, a glimpse of more to come with this new probe of the dark universe in our
hands. Since the first detection in 2015, the LVK network of interferometers has detected the
inspiral and merger of more than 50 binary black holes (BBH), a couple of binary neutron
stars (BNS), and a couple of neutron star–black hole (NSBH) mergers [11]. The ongoing
fourth observing run has also found many tens of signals from this final dance and collision
of compact objects.

2.3 One to Many

Each detection tells us a story, something unique about the sources that gave rise to
the detection. This could be the masses or spins of the compact objects that collided, the
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Figure 2.2: The whitened strain timeseries and the Q-Scan for the first detection, GW150914

direction in the sky in which they came from, or how far away did the merger occur. These,
and a few other observables can be directly inferred from the data of each detection. However,
that is just the tip of the iceberg of what we can achieve with GWs. We can also stitch
together the individual short stories from each detection, into a coherent picture, a common
thread that is shared by these fascinating events. This is the realm of population analyses
of gravitational wave events, where we use our catalog of detections to understand the
astrophysical population properties of black holes and neutron stars [12], as well as questions
in cosmology [13]. For example, we can ask whether all the GW events that we observe arise
from a common population, or are there multiple distinct sub-populations, each forming
compact binaries in different environments. What is the mass function of black holes and
neutron stars, how are they distributed in redshift, and what are their different formation and
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Figure 2.3: Masses in the Stellar Graveyard : The masses of all the events and their merger
remnants found in GWTC-3. Figure Credit: Aaron Geller/ Northwestern

evolution channels. These can help us understand properties about the stellar progenitors
that formed the compact binaries. Since massive stars are the ones that collapse to form
neutron stars and black holes, we can also learn about massive star evolution, and how it
interplays with binary evolution to produce the gravitational waves that we detect at the
end of their life-cycle. We can also use mergers involving a neutron star to infer its interior
properties, such as it’s equation of state, which has yet remained elusive [14]. Population
analysis of GW events have also been used to measure the Hubble constant (H0) [13], and
study the implications of the stochastic gravitational-wave background (SGWB) [15].

2.4 What have we learned?

It has been less than 10 years since we have opened the window to the gravitational
wave universe. Nevertheless, with the current catalog of fewer than hundred events, we have
learned a lot about the astrophysical properties of black holes and neutron stars. Population
studies usually focus on the mass, spin and redshift distribution of compact objects, as
different formation channels of how these compact binaries form and evolve often leave
unique fingerprints on the mass and spin distributions of the merging binaries. Some of the
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interesting questions pertaining to the mass distribution are –

Figure 2.4: The primary mass distribution (left) and the mass ratio distribution (right) of
black holes as inferred using GWTC-3

1. Features in the mass distribution? This is a particularly interesting question as
observations of black holes through both X-Ray binaries and gravitational waves have
hinted at a possible dearth of black holes between 3 − 5M⊙, i.e there seems to be a
lower mass gap [12, 16] between the most massive neutron stars and the lightest black
holes. This has important implications for understanding how massive stars die, and
gravitational waves can help identify this feature in the mass distribution if it exists.
An upper mass gap in the black hole mass function is also postulated to exist due to
the (Pulsational) Pair-instability supernovae. This roughly predicts an absence of black
holes formed due to stellar collapse in the range of ∼ 50 − 120M⊙ [17]. The exact
location of the edges of the mass gap are dependent on several unknown factors, such as
uncertain physics of massive star evolution, nuclear reaction rates etc. Using GWTC-3
[11], the LVK has inferred the mass distribution of the heavier (primary) black hole
to be well fit by a POWERLAW + PEAK model [12]. There is no definite evidence of an
upper mass gap in the data yet, but there is a possible pileup of black holes around
∼ 35M⊙, for which the source of origin is unknown. More detections will provide crucial
information about the presence and exact location of possible mass gaps, bumps and
valleys in the mass distribution, which will help better understand the formation of
black holes. If we find black holes in the upper mass gap that we do not expect from
isolated binary evolution, they may hint towards the presence of additional formation
channels, such as dynamical formation in dense star clusters [18], where hierarchical
mergers can populate the upper mass gap.
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Figure 2.5: The evolution of the merger rate density across redshift of merging black holes
as inferred using GWTC-3

2. Redshift Evolution of Merger Rate: Typically, black holes and neutron stars form
when massive stars collapse at the end of their lives. The expected merger rate of
compact objects would then certainly depend on the the number of such massive stars
present at any given time, which is traced by the star formation history, probability
of occurring in a binary, and also how much time does it take for a pair of compact
binaries to merge after formation, also called the "delay–time distribution" [19–21].
The delay–time distribution is unknown, and there are several other uncertainties in
the formation and evolution of compact binaries, which results in their expected merger
rate to have large uncertainties with many competing models. This is why it is essential
to empirically measure the merger rate of different types of compact binaries (BBH,
BNS, NSBH) directly with observations [12], as this can help better understand the
number of events that we expect to see with our detectors. Measuring the evolution
of the merger rate across redshift [12] would also help in understanding how compact
binaries have formed and evolved across cosmic time, and its relation with the star
formation history of the universe. This can also have important implications for the
strength of the SGWB, which strongly depends on the number of merging binaries
present at high redshifts [22].
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Figure 2.6: The horizon distances for the current and various planned future detectors. Fig
3.3 in [7]

2.5 The Future

In the coming observing runs, and with the addition of a new LIGO detector in Aundha
[23], thousands of detections are expected in this decade, and with possible future upgrades
to existing detectors, this number could rise significantly. The 2030s and 40s will likely see
the start of the next generation of ground–based gravitational wave observatories, such as
US–based Cosmic Explorer [7] and the Einstein Telescope [24] in Europe. These will see
millions of mergers every year, and will be sensitive to mergers till very high redshifts. There
will be an enormous explosion in the rich data from these detections, which will help probe
several questions in astrophysics and cosmology [25], some of which we have mentioned above.

In fact, that is not all that we can see in gravitational waves. We know that we can observe
electromagnetic radiation at different frequencies with different instruments, and they often
probe different astrophysical sources and emission mechanisms. Similarly. the ground–based
detectors are sensitive to a very narrow part of the GW frequency spectrum, i.e the high
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frequency range. However, there are a lot of interesting astrophysical and cosmic sources at
lower frequencies as well. Recently, Pulsar Timing Arrays across the globe announced evidence
for the detection of the nanohertz gravitational wave background [26–29]. These extremely
low frequency GWs could have been produced by an ensemble of merging supermassive black
holes that reside in the centers of galaxies, or from other exotic sources. The 2030s will also
see the launch of LISA, the Laser-Interferometer Space Based Antenna [30], which will be
sensitive to sources in the milli–Hz regime. This window includes a wide variety of sources
such as double white dwarf binaries in the Milky Way, extreme mass ratio inspirals, and
massive black hole mergers at high redshifts.



Chapter 3

Gravitational Lensing

When Einstein formulated GR, one of its first successes was in the correct prediction of the
anomaly in the precession of Mercury’s perihelion. Another major prediction was the bending
of distant starlight as it passes near the limb of the Sun, due to the Sun’s gravity1. This was
experimentally verified during the 1919 Total Solar Eclipse by Arthur Eddington and others.
In GR, light follows null geodesics, which are straight lines in flat spacetime. However, if
there is a massive body present in a photon’s path, it bends the spacetime around it. Now,
due to a change in the metric due to the gravitational potential of a massive object, null
geodesics are no longer straight lines between the source and the observer. Light rays now
follow a curved path near the massive object. This phenomenon is known as gravitational
lensing, and it has led to enormous discoveries in astronomy in the past few decades, and has
also become the bedrock for performing several studies in cosmology.

3.1 The Lens Equation

Before we describe some of the the interesting phenomena caused due to lensing, in this
section, we will briefly describe the mathematical framework to calculate the change in source
positions and magnifications due to a lensing potential, which could be any massive source
such as stars, galaxies or clusters of galaxies etc. We will roughly follow the references [31,
32].

1Famously, the GR deflection is twice the deflection predicted in Newtonian gravity.
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Firstly, we will assume that we are working in the geometrical optics limit. This is
when the wavelength λ of the propagating radiation is much smaller than the length scale
associated with the lens mass, i.e λ≪ GMlens

c2
. This is practically always true for lensing of

electromagnetic radiation, but as we will see later, it need not always hold true for lensing of
GWs due to their large wavelength. However we will work in this limit, which is valid for
lensing due to large lens masses, such as galaxies or clusters, which is the focus of our study.

Figure 3.1: Lensing sketch depicting the geometry and various angular vectors involved for
the source and image positions [32].

To proceed further, we will make another assumption (valid for the usual astronomical
lens), which is called the thin-lens approximation. We assume that the size of the lens is
much smaller than the distances involved between the lens, source or observer.

In this framework, we can now calculate the deflection angle –
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β⃗ = θ⃗ − α⃗(θ⃗) (3.1)

This equation is widely known as the lens equation. In this context, β⃗ represents the
actual angular position of the source, θ⃗ denotes its apparent angular position, and α⃗ signifies
the deflection angle of a light ray originating from the source, which bends due to the presence
of the intervening lens. This equation looks relatively simple, but all the rich physics about
the natures of the lens and the distances involved are included in the term α⃗(θ⃗). To make
things clearer, we introduce the effective lensing potential Ψ̂ below, which is obtained by
projecting the 3D lens potential Φ with some appropriate scaling factors. It is given by –

Ψ(θ⃗) =
Dds

DdDs

2

c2

∫
Φ(Ddθ⃗, z)dz =

1

πΣcr

∫
dθ′Σ(θ′)ln|θ − θ′| (3.2)

where Σcr =
c2

4πG
Ds

DdDds
is called the critical surface density of the lens which depends on

the angular diameter distances involved, and Σ(θ′) is the surface mass density of the lens.

As it turns out (we will skip the derivation), the deflection angle and the effective potential
are related by –

∇Ψ⃗(θ⃗) = α⃗(θ⃗) (3.3)

We can now write our lens equation as –

β⃗ = θ⃗ −∇Ψ⃗(θ⃗) (3.4)

This equation explicitly shows us how to calculate the true source position given the
apparent source positions and the geometry of the lens, which includes the distances between
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the lens, source and observer, and the mass profile of the lens. Common mass profiles used
to treat lens systems are the SIS model which stands for Singular Isothermal Sphere, and on
relaxing the spherical symmetry assumption, we get the Singular Isothermal Ellipsoid (SIE)
model.

Note that, if we are given the true source position and the lens geometry, the lens equation
can have multiple solutions for θ⃗, i.e the apparent source positions in the sky. This corresponds
to the phenomena of multiple images that may be seen during strong lensing of a source by a
lens.

Interestingly, lensing can also cause magnification and distortion of images, because of
differential deflection of different regions of an extended source. We can study these effects
by assuming the source is much smaller than the angular size at which the lens’ properties
change. This allows us to linearize the lens equations, and we can write down the jacobian
matrix A between the lensed and unlensed coordinates as –

Aij =
∂βi
∂θj

= δij −
∂αi

∂θj
(3.5)

We can use the relation between the deflection angle and the effective potential to rewrite
the above equation as –

Aij = δij −
∂2Ψ

∂θi∂θj
(3.6)

We can now decompose the jacobian into 2 parts, one that is trace-free and anti-symmetric,
quantifying "shear", which describes the source getting distorted tangentially around the lens.
The remaining part of the matrix is symmetric, and quantifies "convergence", which simply
describes the (de)-magnification of the source. We can exactly evaluate the magnification
factor µ of the source by calculating the determinant of the inverse of the jacobian–
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µ = detA−1 =
1

detA
(3.7)

Having briefly described a simplified mathematical framework to understand gravitational
lensing, we will now show a few examples about how all these interesting phenomena show
up in the universe. Gravitational lensing can affect background sources of light in multiple
ways such as –

Figure 3.2: A Quadruply lensed quasar HE 0435 1223. The foreground galaxy acts as a
lens and splits the background quasar into 4 almost evenly spaced images. Image Credit:
NASA/ESA/Hubble

1. Multiple Images: As we have studied, in certain situations, there can be multiple
solutions for the projected images of a background source of light (such as a galaxy)
due to the presence of a massive lens in between (could be another galaxy or a cluster
of galaxies). Fig. 3.2 depicts one such example of a quadruply lensed quasar.

2. Time Delay: If there are multiple images, the light rays travel around different paths
around the lens exploring different areas of the lens potential, and this could lead to a
gap between the time of arrival of photons that were emitted by the source at the same
time. Fig. 3.3 depicts the time–shifted light curve of the same quadruply lensed quasar,
where the original quasar undergoes intrinsic variability which can be well measured.
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In fact, The time delay distribution is particularly sensitive to the value of the Hubble
constant, H0 [33].

Figure 3.3: Time shifted light curves of the 4 images of a quad quasar, HE 0435 1223
[34]. The background quasar is intrinsically variable, which is seen in the 4 images as well.
Importantly, the 4 light curves have a time delay between them due to lensing.

Figure 3.4: An Einstein Ring, a highly distorted and magnified background galaxy due
to very good alignment between us, the lens and the background source. Image Credit:
NASA/ESA/Hubble

3. Magnification: Lensing does not create or destroy photons, it only changes their path
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as we have studied, and can concentrate them towards our line of sight. This can lead
to (de)–magnification of the sources, making them appear (dimmer)brighter than they
actually are.

4. Distortion: If the background source is an extended object, different regions within the
source would get bent along different paths due to the massive lens, This could lead
to an apparent distortion of its original shape. If the distortion increases its apparent
size, it would appear brighter due to the conservation of surface brightness in lensing
as explained above. Fig. 3.4 depicts one such extreme example, where the background
galaxy has been distorted and appears as almost a ring like image due to lensing.

3.2 Lensing done in 2 ways

Depending on how the source, lens and observer are arranged geometrically, lensing
broadly occurs in 2 different regimes – strong lensing [35, 36], and weak lensing [37]. To first
order, these depend on the angular separation between the lens and the source, and also on
the critical surface density.

1. If the angular separation between them is sufficiently small, i.e they are aligned close
to our line of sight, we observe strong lensing which may lead to a variety of rich
phenomena that we described above, such as multiple images, and these may be highly
distorted as well if the background source is an extended object.

2. Conversely, if the angular separation between them is large, the effects of lensing are
small and subtle, i.e we observe weak lensing. This only leads to minute changes in the
shape of the background galaxies. These changes are invisible for a single background
source, since we do not always know their intrinsic shape, but the effects of weak lensing
can be extracted by averaging over an ensemble of galaxies in a region, since they
encounter a similar gravitational potential due to the lens, and there is a coherent
distortion in their shapes. Weak lensing has become a particularly powerful tool for
precision cosmology in recent years in the era of big–data, especially with the start of
large–sky–surveys such as DES, and soon the LSST etc.
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Figure 3.5: An explanatory cartoon of the weak lensing phenomenon. We can see that
background galaxies undergo small distortions due to an intervening lens. The distortion
field is only noticeable for an ensemble of galaxies. Image Credit: Wikipedia



Chapter 4

Lensing of Gravitational Waves

GWs, like electromagnetic radiation can also be lensed by intervening matter between the
source and the observer, such as galaxies or clusters [38]. A confident detection of lensing of
gravitational waves has remained elusive, however with more observing runs and the third
generation of detectors detecting millions of events every year up to very high redshifts, the
possibilities of finding lensed GWs is not a question of if, but when?

Lensing of gravitational wave signals may provide important information about funda-
mental physics through tests of General Relativity, and also in probing cosmology as it may
enable the measurement of the Hubble constant as well as constrain properties of dark matter.

But before we proceed further, it is worthwhile to describe what exactly does lensing do
to a gravitational wave?

4.1 Gravitational Waves: Meet Gravitational Lensing

In general, lensing distorts the gravitational wave signal, but the exact nature of the
distortion depends on the size of the lens. In the geometrical optics regime, which is relevant
for lensing due to massive lenses such as galaxies or clusters of galaxies, lensing does not
affect the frequency evolution of the signal, but it can (de)magnify its amplitude1 [38]. It can
also lead to other interesting effects, such as multiple signals that may be separated by a time

1There can be additional phase effects in some situations which we will describe later.
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Figure 4.1: Top: Strong lensing of GWs in the geometrical–optics regime, which leads
to multiple images seen at the detector with a time delay, and having identical frequency
evolution but with differing amplitudes due to lensing (de)–magnification. Bottom: Lensing
of GWs in the wave optics–regime due to a smaller lens. This leads to frequency dependent
modulations of the gravitational wave signal, beating patterns etc. Figure Credit: LIGO
Scientific Collaboration

delay of minutes to months for galaxies, and up to years for clusters. For low mass lenses,
such as stars and compact objects like black holes or small dark matter halos, lensing occurs
in the wave–optics regime. This leads to frequency–dependent modulations to the signal [39],
such as beating patters in the signal due to the superposition of multiple images. These
are extremely fascinating sources and one can learn a lot from the (non–)detection of such
signals. Fig. 4.1 depicts the regimes of GW lensing. However, in this work we will only focus
on lensing in the geometric optics regime, where only the amplitude is modified. We will also
ignore the possibilities of multiple images, which is relevant in the regime of strong–lensing,
as a majority of the sources may only be weakly lensed.



Lensing of Gravitational Waves 25

4.2 An Aside on what does a GW signal really tell us?

In astronomy, Cepheid variables were one of the first sources that could be used to measure
how far away they are from us. They were known to have their observed brightness change
periodically over time, and Henrietta Leavitt noticed that this oscillation cycle was related
to the luminosity of the star, i.e its intrinsic brightness. Then by measuring the observed
brightness, we could measure how far away the star is. Such objects are called "standard
candles", where we can use some quantity that can we directly measure to infer an intrinsic
property about the source. GWs from CBC’s are not too different2, and are called "standard
sirens" (since we are listening not seeing). Essentially, a GW signal is a waveform whose
frequency and amplitude changes with time. The frequency evolution is set by General
Relativity, and tells us about the masses of the merging objects. To first order, the frequency
evolution is given by [40] –

df

dt
=

96

5
π8/3

(
GM
c3

)5/3

f 11/3 (4.1)

where M is the "chirp mass", which is a combination of the component masses is defined
as –

M =
(m1m2)

3/5

(m1 +m2)1/5
(4.2)

The chirp mass is the best measured parameter of a GW signal, since it directly enters
the first order evolution of the signal, which is often well measured. We can obtain the
component masses from the chirp mass and another parameter, called the symmetric mass
ratio η, which is given by –

η =
m1m2

(m1 +m2)2
(4.3)

2I thank Prof. BS Sathyaprakash for the analogy between Cepheids and GWs from CBC’s.
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Meanwhile, from the amplitude of the signal, we can measure how far away the source
is, i.e its luminosity distance dL, as the amplitude falls over as the inverse of the luminosity
distance. However, as the universe is expanding, the GWs also suffer from cosmological
redshift and are stretched. What this means with respect to parameter estimation is that we
are sensitive to not the source chirp mass Ms, but the redshifted chirp mass Md, which is
also called the detector–frame chirp mass. They are related by –

Md = Ms(1 + z) (4.4)

This is known as the "mass–redshift degeneracy" which basically says that the frequency
evolution of a nearby, massive source is identical to that of a distant, lighter source. In
normal scenarios, this degeneracy can be broken as we have an additional observable, the
amplitude, which directly gives us the luminosity distance dL to the source. By assuming a
cosmology, we have a z(dL) relation, and we can infer the source chirp mass using Eqn 4.4 –

Ms =
Md

1 + z(dL)
(4.5)

4.3 Oh, but lensing?

The breaking of the mass–redshift degeneracy in Eqn 4.5 relied on the correct measurement
of the luminosity distance to the source. However, as we learned in Section 4.1, lensing
modifies the amplitude of the GW, which restores the degeneracy. To be more precise, lensing
of a GW (in the geometric optics regime) can be described by a magnification factor µ. The
new luminosity distance due to this magnification factor is given by [38] –

d̃L =
dL√
µ

(4.6)

If one directly uses this new luminosity distance to infer the source mass, we get –
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Figure 4.2: An example of an unlensed waveform, and the corresponding lensed waveform
with a µ = 4

z̃ = z(d̃L) = z(
dL√
µ
) (4.7)

m̃s(1 + z̃) = ms(1 + z) (4.8)

m̃s = ms

(
1 + z

1 + z̃

)
(4.9)

Eqn 4.9 shows us that the source mass that we infer of a lensed signal is biased and not
equal to the true source mass. Note that to derive this, we used the fact that the detector
frame masses are unchanged due to lensing, as they solely depend on the frequency evolution
of the signal.

In general, we would never be able to identify the individual magnification factors of
weakly lensed events, as they would just appear as a perfectly normal GW signal at our
detector. If we measure the source parameters using the standard procedure, we would make
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biased estimates of its source masses and redshift as demonstrated above.

4.4 Current Searches for Gravitational Wave Lensing

GW150914, the first direct detection of GWs came from a binary black hole merger,
with each black hole weighing an enormous 30M⊙. This was sufficiently unexpected, as
the stellar mass black holes observed through electromagnetic observations (mainly through
X-Ray Binaries) are much lower in mass. With further detections, it was soon realised that
there is indeed a population of stellar mass black holes of such heavy masses that can be
formed through stellar collapse etc, and aided by LIGO/Virgo’s better sensitivity for heavier
mergers, it is not surprising that these are the sources that are often detected. However,
some groups still claim that the heavy black holes that the LVK has detected do not exist,
and that almost all the mergers are strongly lensed events [41]. This requires making a
different set of assumptions, such as a merger rate that is high at high redshift, and yet
still explain the non–observation of the SGWB. Such models may get quite convoluted and
require making untested assumptions, however more events detected in future observing runs
will be significantly helpful in better understanding the lensing of GW events.

But this raised an interesting question about the possibility of observing gravitationally
lensed GWs, and what could be their implications. But the first question that arises is how
would one confidently claim a detected signal to be lensed? and how many such lensed
signals should one expect? This has led to an entire effort both within and outside the LVK
collaboration to develop methods to search for GW lensing, and the intriguing astrophysical
and cosmological questions one could probe with them. In this section, we give a brief
overview about such searches.

4.4.1 How does one know a GW signal is lensed?

In electromagnetic astronomy, lensing can be relatively easily identified by just directly
observing multiple images, distorted shapes, Einstein rings in our telescope images. However,
the complication for GWs is that they have really poor spatial resolution, i.e we cannot
localize their sky location accurately. Conversely, they have excellent temporal resolution,
i.e we can accurately detect when a GW signal arrives at the detector, and infer the source
parameters. Let us assume for now that we are in the strong lensing and geometrical optics
regime. Multiple images in this scenario would correspond to repeated GW events at the
detector, coming from the same location in the sky, but with a time delay due to lensing. The
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events would also undergo different magnifications, and therefore have different amplitudes,
but the frequency evolution would remain unchanged. The time delays between the events
can be of the order of minutes to days for lensing due to galaxies, and up to months or years
for large galaxy clusters. How would one then identify a pair (or more) of events to be lensed
among hundreds to thousands of unlensed events? To do this, we can take advantage of
the fact that the different images will have common parameters, except for their luminosity
distance, since it is degenerate with the lensing magnification of the source. We can define an
a Posterior Overlap statistic called BL

U that computes the ratio of the overlap of the posteriors
for the common set of parameters (except luminosity distance) for the 2 images under 2
hypotheses, i) the 2 events are a lensed pair, ii) the 2 events are not lensed. It is is give by
[42] –

BL
U =

p({d1, d2}|HL)

p({d1, d2}|HU)
=

∫
p(θ⃗|d1)p(θ⃗|d2)

p(θ⃗)
dθ⃗ (4.10)

We can also account for the time–delay in the arrival of 2 events, as the time–delay
distribution for lensed pairs is different from unlensed GW events. For unlensed GW events,
the rate of observing GW events follows a Poisson process, while for lensed pairs, the time
delay distribution is qualitatively different, depending on the lens model and geometry. This
is called the Rgal statistic [42] and is given by –

Rgal =
p(t0|HL)

p(t0|HU)
(4.11)

Earlier, we mentioned that strong lensing in the geometric optics limit only affects the
amplitudes. But it turns out that it can also introduce a phase–shift (also called the Morse
phase) in the waveform which can be identified for a particular class of images called type II
images [43, 44]. In the geometrical optics regime, we can write down a lensed waveform in
terms of the unlensed waveform in full generality as –
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hL(f ; Λ, µ,∆t,∆ϕ) =
√
|µ|h(f ; Λ,∆t)ei∆ϕsign(f) (4.12)

where ∆ϕ is a constant difference that takes tha values 0, π/2, π depending on whether it
is a type I,II,III image.

For low mass lenses, such as stars or compact objects, GW lensing occurs in the wave-
optics regime, and this leads to frequency–dependent modulations in the waveform, which
can lead to beating patterns. This is called microlensing, and with some lens modelling
assumptions, methods exist to find such microlensing signatures in a signal [39, 45].

Current searches have looked for signatures of lensing in the data up to the third observing
run, and there has not been any confident detection of gravitational wave lensing yet [45, 46].
However, with thousands of events expected to be detected in the coming observing runs, it
is not a matter a question of if, but when? Current lens models predict 0.1− 1% of events to
be strongly lensed [47, 48].

Nevertheless, the absence of a detection also tells us something! Current detections help us
constrain the merger rate of BBH at low redshifts. But due to the limited detector sensitivity,
the merger rate is poorly understood at high redshifts. The only information we have is
an upper limit from the non–observation of the stochastic GW background. Similarly, the
non–observation of lensing signatures in the detected events can help in constraining the
merger rate at high redshifts [45]. In fact, the non–observation of microlensing signatures till
now can also help constrain the number of lenses that can cause microlensing. In particular,
objects of such masses could be dark matter candidates, for which there are several mass
windows where their abundance is unconstrained. Non-observation of microlensing limits the
number of such objects, and this can put a limit on their contribution to being a constituent
of dark matter [45].

4.5 Gravitational Wave lensing as a tool

In the previous sections, we have described how lensing could affect the original grav-
itational wave signal from a source, how it modifies the waveform and can lead to biases
in parameter estimation. But, similar to lensing of electromagnetic radiation, lensing of
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gravitational waves can probe numerous questions in astrophysics, cosmology and the nature
of gravity. This active area of current research has been explored in several studies, some of
which we highlight below.

that time delays between arrival of different images in strong lensing is particularly
sensitive to the value of the H0, and the Hubble tension is a particularly challenging problem
that remains unsolved. This method of using time delays to measure H0 has been implemented
by observing lensed supernovae where the time differences of the different lensed copies of
the same supernova can be measured at the order of a day. Observing multiple copies of
the same GW signal will be extremely useful in this regard, as their time of arrival can be
measured at the precision of a few milliseconds. With the third generation of detectors (3G),
[49] showed that the number and delay–time distribution of lensed events could be used for
estimating cosmological parameters in a redshift range not explored by other cosmological
probes, thereby aiding in resolving the Hubble tension and also measuring the evolution of
the Hubble parameter across redshift.

As has been mentioned earlier, the GW signal is sensitive to the detector frame mass,
and it would be extremely useful to obtain a signal’s redshift estimate, which would enable
extracting the source–frame masses and also for measuring the Hubble constant. However,
GW signals typically have large sky localizations, with many possible host galaxies. In some
cases, such as BNS or NSBH mergers, it is possible to directly obtain a redshift estimate if
an electromagnetic (EM) counterpart is present and detected. But for BBH mergers, which
typically do not have EM counterparts, [50] showed that one can use multiple copies of a
lensed GW signals to improve sky-localization, and in some cases achieve sub-arcsecond
regions which would aid in reducing the number of possible host–galaxies to a few or even
just one.

Additionally, in theories with modifications to GR, different polarisations of the GW
(such as + or ×) can propagate at different speeds in the vicinity of a lens. This is called
lens-induced birefringence (LIB) which essentially introduces a time delay between the arrival
of different polarisations of the signal. [51] searched for LIB signatures using GWTC-3. They
did not find evidence for LIB, which helped in constraining the modified gravity theories.
Observing multiple copies of GW signals can also help in better extracting the different
polarisations in the signal, as each copy measures a different linear combination of the
polarisation states. This can be used to test GR, which predicts only 2 polarisation modes,
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but modified theories can have up to 6 of them.

Gravitational lensing has also been used to predict the approximate time of arrival of a
lensed SNe signal, using previously identified images and lens modelling. [52] showed that for
lensed BNS or NSBH with an identified electromagnetic counterpart, one can predict the
time of arrival of the next image hours to days before the merger. This can help in pointing
telescopes at the source to study any EM emission prior to or just after the merger, which
has never been observed before.

In recent years, we have detected numerous Fast radio Bursts (FRB’s), however their
source of origin and emission mechanism is still unknown, with several different proposed
models, including compact binary coalescenses. [53] showed that just from the associated
time delays between different FRB images and CBC images (which can be measured up to
a precision of nanoseconds and milliseconds correspondingly), we can make a unambiguous
> 5σ association between them, which would significantly help in understanding where and
how FRB’s are generated.

4.6 Magnification Probability Distribution

Previously, we showed that the GW amplitude is affected by an unknown magnifica-
tion factor, µ. In this section,we describe the probability distribution function of lensing
magnifications, as expected in our universe.

Let us say we have a pair of black holes merging at a source redshift z. What is the
probability that such a merger is lensed by a magnification factor µ. If we assume that
mergers are uniformly distributed on the source plane at redshift z, a random merger has a
probability

dP =
dP (µ; z)

dlnµ
dlnµ (4.13)

of being magnified by µ, where dP (µ;z)
dlnµ is the lensing magnification probability density

function (PDF), which would obviously depend on redshift, as one would expect. Since the
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total solid angle is approximately conserved, the mean magnification is ≈ 1 [54, 55], i.e –

⟨µ⟩ =
∫ ∞

0

dP (µ; z)

dlnµ
dlnµ ≈ 1 (4.14)

In general, this PDF has a contribution from all intervening matter that is present between
the source and the observer, and therefore includes both the weak lensing regime and the
strong lensing regime at high magnifications. These functions have been well studied with the
help of ray–tracing through large—scale—structure in simulations, and have a characteristic
shape. At high magnifications, they have a universal power-law of dP/dµ ∼ µ−3, and its
amplitude increases rapidly with redshift, because of the larger lensing optical depth. Such
a power law behaviour is also theoretically predicted, and is a generic feature that arises
when a point background source is located near the caustics in the lens plane [56]. Fig. 4.3
shows an analytical fit for the lensing magnification PDF as given in [38], and it is important
to note that lensing can cause de–magnifications as well, as can be seen by the non zero
probabilities of µ < 1, particularly at high redshift.

Figure 4.3: The weak lensing + strong lensing magnification distribution as it varies with
source redshift.

Caveat: There are some uncertainties in the lensing magnification distribution as well, as
different groups use different simulations to derive it, and some may or may not include the
contributions of baryons in the central galaxies of the lens, which can affect the behaviourof
the tail at high magnifications.
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Part II

Developing the tools





Chapter 5

Methods

Credit: xkcd comic for the
announcement of the first detection

5.1 Parameter Estimation in a Nutshell

Having found a GW signal in the noisy data, what can one do with it? One might want
to know what kind of merger produced such a signal? Is it a BBH, a BNS, a NSBH merger or
some other exotic source? This often requires one to know the masses of the merging compact
object. One might also want to know where in the sky did the merger occur, and how far is it
from us. This is important for following up on the detection with electromagnetic telescopes
in the space and on ground, to look for a electromagnetic counterpart. To answer all these
questions, and many more, we need to measure the parameters of the source that created the
GW signal. Since the detector data is noisy, we can never measure the parameters accurately
with perfect precision, but with some uncertainty in them. Typically, parameter estimation

37
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methods estimate the source properties using the framework of bayesian inference. In this
section, we will give a very short overview about how this is done. For more details, we refer
the reader to [57] for a brief introduction to parameter estimation of GWs, and [58, 59] for a
more exhaustive review.

5.1.1 Bayesian Inference

In the past few years, bayesian inference has become the bedrock of modern statistical
analysis, especially in astronomy, where we are using observations, that are often noisy, to
learn about some hidden underlying physics. These methods often require us to assume a
model that can directly allow us to compare between theory and data. In gravitational wave
astronomy, this theory is General Relativity, which gives us an excellent prediction of the
gravitational waves that are generated from the inspiral, merger and ringdown of compact
objects, such as black holes or neutron stars. We detect these signals at our interferometer, but
along with the GW signal, there is also noise, often from a range of terrestrial disturbances.
Bayesian analysis are extremely useful in such situations, to measure the parameters of
merging binaries using noisy data. It provides us the full probability distributions of these
parameters, which allows us to statistically quantify the uncertainties in our measurements as
well. Here, we briefly describe Bayesian inference, in a context specific to gravitational wave
astronomy, as we will see similar techniques being used later as well. The main ingredient
in Bayesian Inference is Bayes’ theorem, which is essentially a statement about conditional
probabilities. Specifically, suppose we have 2 events, even A, and event B. Using Bayes’
theorem, we can write:

p(A|B) =
p(B|A)p(A)

p(B)
(5.1)

But what do A and B correspond to in GW astronomy, particularly in the context of
parameter estimation, where we are trying to infer the parameters of the CBC’s that produced
the GW signal that we have detected. Note that here, we will always assume that we know
our underlying model, GR, i.e we know what the signal would look like given its parameters.
Let θ (could be one or multiple parameters) refer to the parameters of the binary, and let d
refer to the data segment that contains the signal which we have detected1 (like the strain

1We will ignore the definition of what is considered a detection. Different search methods have separate
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timeseries measured at the detector). We can rewrite Bayes’ theorem by using A = θ and
B = d. We obtain –

p(θ|d) = p(d|θ)p(θ)
p(d)

(5.2)

where p(θ) denotes the prior distribution (henceforth called π(θ)), which encapsulates
our prior belief regarding the parameters before detecting the signal. Consequently, p(θ|d) is
called the posterior probability distribution. The term p(d|θ) is usually called the likelihood
function L(d|θ). It encodes our knowledge about both the detector noise and the underlying
data generation model. It tells us how likely are we to have observed the data d if the binary
parameters that produced the signal are θ. The denominator, p(d) is a normalizing factor,
referred to as the marginalized likelihood or the evidence Z.

Z =

∫
L(d|θ)dθ (5.3)

The evidence is useful when we want to compare between different models, for example
between GR and other alternative theories of gravity. We can ignore it for now, as are
sole interest is in estimating the posterior probability distribution, having already fixed our
underlying model.

Lets say we found a GW signal in a data–segment d. Assuming that the noise n is additive,
we can write –

d = h(θ) + n (5.4)

Now, the main goal of parameter estimation algorithms based on bayesian inference is to
evaluate the posterior probability distribution p(θ|d).

detection criteria for example, the matched filter SNR. If we somehow perform parameter estimation on a
data segment that does not contain a signal, we would likely recover broad posteriors that resemble more to
our initial prior.
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p(θ|d) ∝ L(d|θ)π(θ) (5.5)

Since the detector noise is gaussian to an excellent approximation, the likelihood is called
the Whittle likelihood and it looks like –

L(d|θ) ∝ exp

(
−1

2
(d− h(θ)|d− h(θ))

)
(5.6)

(a|b) denotes the inner product, which is mathematically written as –

(a|b) = 2

∫ ∞

0

ã(f)b̃∗(f) + ã∗(f)b̃(f)

Sn(f)
df (5.7)

where Sn(f) denotes the PSD of the noise in the detectors. ã, b̃ are the fourier transforms
of the data or signal, and ∗ represents their complex conjugate.

The prior function π(θ) is also chosen by us. When we do not know anything about
the parameters before analyzing the signal, we can use uniform/isotropic prior distributions
during parameter estimation. However, in some situations, other prior choices may be
more beneficial. We refer the reader to [22] for a collection of the common priors used in
gravitational wave astronomy.

5.1.2 Evaluating the posterior

Typically, GW signals are completely described by at least 15 parameters. These are the
8 intrinsic parameters, 2 for the component masses (m1,m2), and 6 for their corresponding
spin vectors (χ⃗1, χ⃗2). The usual 7 extrinsic parameters are the luminosity distance to the
source (dL), its inclination/ orientation (θJN), location in the sky (α, δ), the polarization
angle of the detector ψ, and the coalescence time and phase (tc, ϕc). For mergers involving
neutron stars, there can be up to 2 additional parameters (Λ1,Λ2) for the tidal deformation
of the neutron star which is an important probe of the neutron star interior.

The posterior distributions in most cases are not simple distributions that we can directly
sample from. One can also not calculate the posterior by simply evaluating it on a grid, as
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Figure 5.1: GW150914 corner plot for the 2 component source frame masses

the grid is at least 15 dimensional, and we suffer from the curse of dimensionality. Instead,
the common approach to solve such inverse problems with many parameters is to use
stochastic samplers such as MCMC [60], nested sampling [61] and other similar methods
to explore this multi–dimensional parameter space. PyCBC Inference [62], Bilby [63, 64],
and LALInference [65] are packages specifically developed for various inference tasks in
gravitational wave analyses, and provide the implementation of numerous stochastic samplers.
The end goal of such sampling algorithms is to generate a set of N multi–dimensional posterior
samples θ⃗, such that they approximately resemble the distribution p(θ⃗|d), i.e –

{θ⃗j}Nj=1 ∼ p(θ⃗|d) (5.8)

Fig. 5.1 demonstrates one such example. It shows the posterior distribution of the analyses
results for the first detection, GW150914 [10], as evaluated using 2 different waveform models.
The corner plot shows the 2D probability density for the component source frame masses,
along with their individual marginalized posterior distributions on the 2 axes.
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5.2 Population Inference in a nutshell

Lets assume we have a catalog of N confirmed GW detections, and we have performed
parameter estimation on each of them to obtain the posterior distributions of the event–level
parameters. Let us focus on only one of those parameters, which we refer to as θ, and our goal
is to infer the underlying population distribution of θ, which could be for example the mass
function of the black hole and neutron stars. We parameterize the underlying probability
distribution of θ with hyper-parameters Λ, i.e π(θ|Λ), and our aim is to infer the posterior
distribution for Λ. This is done via bayesian hierarchical inference, and in this section we
provide a very brief overview about the derivation of the population likelihood following
[57]. For a more exhaustive treatment about hierarchical inference and the many intricacies
involved in it, we refer the reader to [66].

We want to evaluate L(d⃗|Λ), where d⃗ is the data of the catalog of N detections. Assuming
that the N events are independently drawn from the population, we can decompose the
likelihood and write it as –

Lpop(d⃗|Λ) =
N∏
i=1

Lpop(di|Λ) (5.9)

To evaluate Lpop(di|Λ), we can marginalize over θ as follows –

Lpop(di|Λ) =
∫
dθL(di|θ)π(θ|Λ) (5.10)

where L(di|θ) is the likelihood used for analysis of individual events. Now, using Eqn 5.10
in Eqn 5.9, we get –

Lpop(d⃗|Λ) =
N∏
i=1

∫
dθL(di|θ)π(θ|Λ) (5.11)
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Given the population likelihood, we can write down the posterior for Λ using our friendly
neighbourhood Bayes’ theorem –

p(Λ|d⃗) = Lpop(d⃗|Λ)π(Λ)∫
dΛLpop(d⃗|Λ)π(Λ)

(5.12)

where the denominator is now called the "hyper-evidence", and like the evidence in
individual event analyses, it is used to compare between different population models.

Evaluating the hyper–posterior involves a lot of multi-dimensional integrals, but we can
simplify this by estimating the individual integrals for each event with the help of the event
level posteriors, that were obtained during their parameter estimation. We can rewrite Eqn
5.11 as –

Lpop(d⃗|Λ) ∝
N∏
i=1

∫
dθp(θ|di)

π(θ|Λ)
π(θ|PE)

(5.13)

where π(θ|PE) is the prior used for parameter estimation of an individual event, and we
used Bayes’ theorem to rewrite L(di|θ). We can now estimate the integral as a weighted
Monte Carlo sum, using the posterior samples p(θ|di) from the parameter estimation analyses
of the i’th event.

∫
dθp(θ|di)

π(θ|Λ)
π(θ|PE)

∼ 1

ni

ni∑
j=0

π(θji |Λ)
π(θji |PE)

∣∣∣∣
θi∼p(θ|di,PE)

(5.14)

where ni is the number of posterior samples for the i’th event. Using Eqn 5.14, we can
now write the posterior for the hyper-parameters as –



44 Effect of gravitational lensing on the population inference of BBH using GW observations

p(Λ|d⃗) ∝ π(Λ)
N∏
i=1

1

ni

ni∑
j=0

π(θji |Λ)
π(θji |PE)

∣∣∣∣
θi∼p(θ|di,PE)

(5.15)

This is much simpler to evaluate, since essentially all we need are the posterior samples
from parameter estimation analysis of individual events in our catalog (which we do have!).

In this derivation, we made an important assumption that does not hold true in practice.
We have assumed that our catalog of detections represents an unbiased subset of our underlying
population. But GW detectors suffer from selection effects ("Malmquist Bias"), and we will
delve into this in more detail soon, but before that we provide some of the frequently used
models in GW population inference to fit the mass and redshift distribution of BBH.

5.3 Common Population Models

5.3.1 Redshift Model

Power Law Model

This simple redshift evolution model has only one parameter, λ and is defined as follows
[12] –

p(z|λ) ∝ dVc
dz

1

1 + z
(1 + z)λ (5.16)

where dVc

dz
is the differential comoving volume. In this model, λ = 0 refers to a merger rate

density that does not intrinsically evolve across redshift, i.e it is uniform in comoving volume
and source–frame time. The factor (1 + z)−1 is required for conversion from detector–frame
time to source–frame time. However, we can have more complicated redshift evolution models
as well, for example if the BBH merger rate follows the cosmic star formation rate (SFR) of
the universe, we can use a redshift evolution model given by –
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p(z|{λ}) ∝ dVc
dz

1

1 + z
ψ(z) (5.17)

with ψ(z) denoting the specific SFR. One particular parameterization for ψ(z) is –

ψ(z) =
(1 + z)γ

1 + ( 1+z
1+zp

)κ
(5.18)

where ψ(z) roughly behaves as a power law will slope γ at lower redshifts, zp is roughly
where the function peaks, after which there is a power law drop–off at high redshifts with
slope κ. This is similar to the parameterization used for the cosmic SFR, which is well fit by
the Madua-Dickinson model given by [67] –

ψ(z) = 0.015
(1 + z)2.7

1 + [(1 + z)/2.9]5.6
M⊙yr

−1Mpc−3 (5.19)

5.3.2 Mass Model

Different formation channels of compact binary mergers predict different mass distributions
for the merging binaries. Some of them may predict a mass gap in the distribution as well. A
simple model describing the BBH primary mass distribution is that of a power law model
between a minimum and maximum mass. Using the catalog of detections, it is possible to
infer the lower and upper edges of the mass function (mmin,mmax), as well as the slope of the
power law, α. The distribution is given by [12] –

ppow(m) ∝ m−α : mmin ≤ m ≤ mmax (5.20)

However, such a model is quite simple, and may not be able to fit the rich diversity of
features that might be present in the true mass function. In fact, it has been shown that
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such a model is disfavoured by the data [12, 68], as it cannot explain the current catalog of
detections. To account for this, we try to make our models more complicated, with more
parameters to fit for the extra features seen in addition to a simple power law. Commonly
used models in LVK analyses is the POWERLAW + PEAK model, which has a gaussian feature
and a smoothening at lower masses. This model searches for bumps in the mass distribution,
and has been used to identify the tentative peak seen at 35M⊙ in the data. It has 7 free
hyper-parameters and is give by [12] –

p(m1|α,mmin, δm,mmax, λpeak, µm, σm) = [(1− λpeak)B(m1| − α,mmax)

+λpeakG(m1|µm, σm)]S(m1|mmin, δm)
(5.21)

where B(m1| − α,mmax) is a power law with slope −α and a upper cutoff at mmax.
G(m1|µm, σm) is the gaussian component for modelling any peak present in the mass dis-
tribution, with λpeak fixing the fraction of mergers in the power law component, B, and
the gaussian component, G. As mentioned above, there is a tapering at the lower end,
which is modeled by the smoothing function S(m1|mmin, δm) which increases from 0 to 1 in
(mmin,mmin + δm). It is given by –

S(m|mmin, δm) =



0 (m < mmin)

1
f(m−mmin,δm)+1

(mmin ≤ m < mmin + δm)

1 (m ≥ mmin + δm)

(5.22)

with

f(m′, δm) = exp

(
δm
m′ +

δm
m′ − δm

)
(5.23)

The mass–ratio distribution is usually modelled as a conditional power-law with spectral
index βq and is give by [12] –
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p(q|βq,mmin,m1) ∝


qβq if mmin < m2 < m1

0 otherwise

(5.24)

where q = m2/m1 is the mass ratio of a binary.

5.4 An Aside on Selection Effects

Gravitational waves are rather weak by the time of arrival at Earth, which is why it took
decades of effort to build the current interferometers sensitive enough to detect them. But
still, the signals are buried in the detector noise, and search algorithms need to parse through
this data to look for signals, which are literally needles in the haystack. These algorithms can
only identify events if they cross some threshold, such as their SNR should be high enough
for an event to be considered real. What this also means is that the current interferometers
are not sensitive to all the compact binary coalescences occurring in the universe, but only a
subset of them which cross the detection threshold. Only the loudest signals would cross these
thresholds. The strength of a GW when it reaches Earth depends on several factors, including
properties of the source and the noise sensitivity of the ground–based interferometers. For
example, the amplitude of the GW falls as we increase the luminosity distance. This implies
that if the other properties remain fixed, nearby mergers would have a higher SNR than
distant ones. Similarly, heavier mass mergers are louder than lighter ones, but this is only
true as long as the merger remains in the frequency band where the detectors are sensitive.
Essentially, we observe a biased subset of the true population of mergers occurring in the
universe. This is extremely important to consider when we are trying to use detected signals
to infer properties about the underlying population. Not including this information would lead
to biases in population inference, and we would not infer the correct underlying population
in the universe. In this section we briefly describe about how selection effects are handled in
population analyses. We refer the reader to [66], which provides an exhaustive treatment of
how to handle selection effects in population inference.

5.4.1 The Detection Fraction

Essentially, our goal is to calculate the detection fraction, α(Λ) where Λ are the parameters
describing the underlying population. The detection fraction represents the proportion of
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events that would be detected from a population of mergers that occur in the universe
described by the population parameters. One can write it down explicitly as –

α(Λ) =

∫
dθπ(θ|Λ)p(D|θ) (5.25)

where π(θ|Λ) is the population distribution, p(D|θ) denotes the probability of an event
characterized by parameters θ crossing the set threshold of detection. Mathematically, it is
written as –

p(D|θ) =
∫
ρ(d)↑

ddp(d|θ) (5.26)

where d are all possible data realizations, and ρ(d)↑ refers to when the data realization
crosses the detection threshold. Eqn 5.25 is complicated to evaluate, and in most cases, does
not have an analytical form. The usual technique to get around this is with a monte-carlo
approach. Essentially, we draw Ndraw samples from a reference population with parameters
Λref , inject the corresponding signals into real detector data that includes noise, run the
detection algorithms to look for signals in the data, and record the observations which are
detected. Using the detected samples, we can estimate the detection fraction of any general
population with parameters Λ using a weighted monte-carlo integral which is given by [69] –

α(Λ) ≈ 1

Ndraw

Ndet∑
j=1

π(θj|Λ)
π(θj|Λref)

(5.27)

There are a few caveats to this, since this is just a point estimate of the integral which
has an uncertainty. The uncertainty can be estimated by –

σ2(Λ) ≡ α2(Λ)

Neff

≈ 1

N2
draw

Ndet∑
j=1

[
π(θj|Λ)
π(θj|Λref)

]2
− α2(Λ)

Ndraw

(5.28)
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where we have introduced Neff that approximately denotes the effective number of samples
used for calculating the detection fraction. The accuracy of such an estimate of the detection
fraction increases as we increase Ndraw. As a rule of thumb, if we want to infer the population
usingNobs detections, we must have at least a sufficient number ofNdraw such thatNeff > 4Nobs

[69].

We demonstrate the above procedure with a mock injection population. We simulate
N = 100000 non-spinning GW signals from BBH that come from a population where the
primary black hole comes from a power-law distribution, the mass–ratio distribution is also
a conditional power-law distribution and they are distributed in the universe such that the
merger rate density does not intrinsically evolve across redshift (κ = 0), with no events above
a maximum redshift of 2. The parameters for the model are –

1. α = 1.6

2. mmin = 10

3. mmax = 300

4. βq = 1.7

5. κ = 0

We randomize rest of the extrinsic parameters, such that the binaries are randomly
oriented and isotropically distributed in the sky. We evaluate their SNR’s using only a single
detector network, i.e LIGO–Livingston at O3 sensitivity. Setting the detection threshold to
be an SNR=8, we find that out of 100000 signals, only 2904 are detected, which corresponds
to a detection fraction of 0.02904. Now using the draw probabilities of these 2904 signals,
we can estimate the detection fraction for any other simulated population as well as the
uncertainty in it using the procedure described above. We show how the detection fraction
changes as we change the population parameters in Fig. 5.2, where we vary each parameters
individually, and fix the remaining to the corresponding reference population values. The
shaded band around the point estimates of the detection fraction show the 2σ uncertainty
evaluated using Eqn. 5.28. We can clearly see that as we go away from the parameters that
were used to generated the injected reference population, the uncertainty in our estimate
increases. In Fig. 5.3, we repeat the same process with N = 1000000 events. The factor of 10



50 Effect of gravitational lensing on the population inference of BBH using GW observations

increases clearly decreases the uncertainty in our estimates, as we can see the narrower bands
in all the panels. This illustrates the significance of having a huge injection population, so as
to have an accurate estimate of the detection fraction throughout the space of parameters
that we are interested in.

Figure 5.2: The detection fraction as a function of the population parameters evaluated
using an injection set of 100000 events. In each panel, one of the population parameters is
varied, while the others are fixed to their values as per the injected population. The bands
depict the 2σ uncertainty in the estimate of the detection fraction.

Figure 5.3: Same as Fig. 5.2, but using an injection set of 1000000 events to show that the
uncertainty in the estimate of the detection fraction decreases with more signals.

We can also notice some interesting trends in how the detection fraction pdet depends on
the population parameters, and it is worthwhile to explore why that is the case.

1. pdet vs α. This trend can be understood by 2 competing factors, i) heavier mass events
are easier to detect than lower mass events, but this is only true up to a certain limit,
since very high mass events also merge at lower frequencies, and can get redshifted
out of the detectors sensitivity bands. Since α is the negative slope spectral index, a
larger alpha corresponds to more lower mass mergers and less heavier mass mergers.
This explains why the detection fraction increases as we slowly decrease α, but after a
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certain point, when there are a lot of extremely heavy mergers, our sensitivity towards
them decreases, and we see that as a decrease in pdet.

2. pdet vs mmin. This trend is relatively easier to understand. As we increase the minimum
mass in our population, we have a larger chance of detecting more signals, as we do
not have the lower mass signals in our population anymore which have a lower SNR in
general.

3. pdet vs mmax. This trend is also intuitive, as increasing the maximum mass in our
population allows us to have more heavier mass signals and we have a larger chance of
detecting more signals. But the flattening and subsequent shallow decrease in pdet is
because of the reason we mentioned earlier, i.e extremely heavy masses are not easy to
detect as they merge outside the detectors sensitivity band.

4. pdet vs β. This trend is not directly obvious. It relies on the fact that for GWs
from CBC’s, symmetric mass mergers have a higher SNR than asymmetric mergers,
everything else remaining equal. This is why pdet increases as βq increases, as it allows
for more mergers in the population with a mass ratio closer to 1.

5. pdet vs κ. This trend is fairly intuitive. Since the GW amplitude falls off inversely
with distance, nearby mergers are easier to detect than more distant ones. A larger κ
denotes a merger rate that increases with redshift, and we have more events at a higher
redshift than at κ = 0. This explains why we see that pdet decreases as κ increases.

Having discusses how to evaluate the selection function, we can now include selection
effects in bayesian hierarchical inference. We will ignore the derivation, which is given in
detail in [66], and will only show the final result.

In the presence of selection effects, the only difference that arises is that Eqn 5.10 includes
the detection fraction in the denominator, i.e

Lpop(di|Λ) =
1

α(Λ)

∫
dθL(di|θ)π(θ|Λ) (5.29)

Using this, Eqn 5.15 now looks like –
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p(Λ|d⃗) ∝ π(Λ)
N∏
i=1

1

α(Λ)ni

ni∑
j=0

π(θji |Λ)
π(θji |PE)

∣∣∣∣
θi∼p(θ|di,PE)

(5.30)

5.5 Population Inference in the presence of Lensing

Let’s assume that we want to learn the underlying mass and redshift distribution of
binaries in the universe from a catalog of detected events. We parameterize the mass function
with Λm and the redshift function with Λz. The likelihood now reads as –

Lpop({di}|Λm,Λz) ∝
N∏
i

1

α(Λm,Λz)

∫
dθL(di|θ)p(θ|Λm,Λz) (5.31)

For now, we will assume that we can de–couple the remaining event–level parameters
from the mass and redshift parameters which we call m, z. We now have –

Lpop({di}|Λm,Λz) ∝
N∏
i

1

α(Λm,Λz)

∫
dmdzL(di|m, z)p(m, z|Λm,Λz) (5.32)

where p(m, z|Λm,Λz) is the population model for the mass and redshift function that is
assumed beforehand. It important thing to notice here is that if we want to study the true
underlying population, we need to make sure that we are using the correct and unbiased mass
and redshift measurements. But as we learned in Section 4.3, we measure biased mass and
redshifts for events that are lensed. The strength of the bias depends on the magnification
factor µ. If we knew the µ values for all the events in our catalog, we could in principle just
"de-lens" them on a event–by–event basis prior to performing population studies. However,
the crucial issue here is that we cannot measure the magnification factors of individual events,
since lensing in the geometrical optics regime only appears as a (de)–magnification of the
amplitude of the signal. So how do we get around this? Will we never be able to understand
the underlying population in the presence of lensing? Luckily, our universe does not assign
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magnification factors to events randomly. Events that are further away are more likely to have
µ’s that are non-unity than events that are nearby, due to the fact that the lensing optical
depth increases with redshift due to more intervening matter. Let us assume that along
with parameters representing the population of binaries, there is also an underlying lensing
magnification distribution in the universe, which we parameterize with Λlen. Essentially, we
want to evaluate p(mb, zb|Λm,Λz,Λlen) where mb, zb are the inferred source mass and redshifts
that could be biased due to lensing. Λlen does not tell us about the individual magnifications
of the events, but only the overall probability distribution. So what can we do, if we know
the lensing magnification distribution, but not the exact µ? We can marginalize over all
possible magnification factors! Condensing {Λm,Λz} together as Λpop, we can write down
p(mb, zb|Λm,Λz,Λlen) as –

p(mb, zb|Λpop,Λlen) =

∫
p(mb, zb, µ|Λpop,Λlen)dµ (5.33)

If we know the µ for a given mb, zb, we can de-lens them and obtain the true masses and
redshifts, which we refer to as ms, zs. They are given by –

zs = z (
√
µdL(zb)) (5.34)

ms = mb

(
1 + zb
1 + zs

)
(5.35)

This implies that there is a 1–1 transformation between {ms, zs, µ} and {mb, zb, µ}. Taking
advantage of this relation, we can rewrite the integrand in Eqn. 5.33 as –

p(mb, zb, µ|Λpop,Λlen) = p(ms, zs, µ|Λpop,Λlen)
∂(ms, zs, µ)

∂(mb, zb, µ)
(5.36)

where we have introduced the jacobian to account for the transformation of variables.
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Below, we list a few equations that will be needed to calculate the jacobian –

∂ms

∂mb

=
1 + zb
1 + zs

(5.37)

∂zs
∂zb

=
√
µ
dz

ddL

∣∣∣
dLs

ddL
dz

∣∣∣
zb

(5.38)

Now, the jacobian is given by –

∂(ms, zs, µ)

∂(mb, zb, µ)
=



∂ms

∂mb

∂ms

∂zb

∂ms

∂µ

∂zs
∂mb

∂zs
∂zb

∂zs
∂µ

∂µ
∂mb

∂µ
∂zb

∂µ
∂µ


(5.39)

∂(ms, zs, µ)

∂(mb, zb, µ)
=



∂ms

∂mb

∂ms

∂zb

∂ms

∂µ

0 ∂zs
∂zb

∂zs
∂µ

0 0 1


(5.40)

∂(ms, zs, µ)

∂(mb, zb, µ)
=

(
∂ms

∂mb

)(
∂zs
∂zb

)
(5.41)

∂(ms, zs, µ)
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(
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1 + zs

)
√
µ
dz

ddL

∣∣∣
dLs

ddL
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∣∣∣
zb
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Now, using Eqn 5.36 and Eqn 5.42, we can rewrite Eqn 5.33 as –

p(mb, zb|Λpop,Λlen) =

∫
p(mb, zb, µ|Λpop,Λlen)dµ (5.43)

p(mb, zb|Λpop,Λlen) =

∫
p(ms, zs, µ|Λpop,Λlen)

∂(ms, zs, µ)

∂(mb, zb, µ)
dµ (5.44)

p(mb, zb|Λpop,Λlen) =

∫
p(ms, zs, µ|Λpop,Λlen)

(
1 + zb
1 + zs

)
√
µ
dz

ddL

∣∣∣
dLs

ddL
dz

∣∣∣
zb
dµ (5.45)

The closed–form expression of the derivative of luminosity distance with respect to redshift
in flat spacetime is given by [70] –

ddL
dz

=
dL

1 + z
+ (1 + z)

dH
E(z)

(5.46)

where dH denotes the Hubble distance, and E(z) is the ratio of the Hubble expansion
rate at redshift z with respect to the current rate –

E(z) =
√

Ωm(1 + z)3 + ΩΛ (5.47)

To simplify things further, we define a dummy variable A(z) as –

A(z) = dL(z) +
(1 + z)2dH
E(z)

(5.48)

This helps us rewrite Eqn 5.45 as –
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p(mb, zb|Λpop,Λlen) =

∫
p(ms, zs, µ|Λpop,Λlen)

A(zb)

A(zs)

√
µdµ (5.49)

p(mb, zb|Λpop,Λlen) =

∫
p(ms|Λpop)p(zs|Λpop)p(µ|zs,Λlen)

A(zb)

A(zs)

√
µdµ (5.50)

Eqn. 5.50 shows us how to correctly incorporate lensing in our framework, so that we can
jointly estimate the population and lensing parameters in an unbiased manner, even if our
individual measurements are biased.

This result can be easily accommodated for additional population parameters. For
example, if we also wish to infer the mass–ratio distribution, the final result can be written
as –

p(mb, qb, zb|Λpop,Λlen) =

∫
p(ms, qs|Λpop)p(zs|Λpop)p(µ|zs,Λlen)

A(zb)

A(zs)

√
µdµ (5.51)

where it is important to note that qb = qs, since both the component masses are affected
in the same manner by lensing. Hence the jacobian transformation remains the same, and
there are no additional modifications to our result.



Part III

Major Takeaways & Discussion





Chapter 6

Results and Discussion

We have now explored what are GWs, what is gravitational lensing, and how does lensing
affects GWs. We have also developed all the tools necessary for performing analyses of
individual events, using a catalog of detections to understand the underlying population, and
how to account for lensing in population analyses. We can now explore how gravitational
lensing really affects population studies of GWs, and whether the tools that we have developed
can handle lensing.

6.1 Toy Model

As a proof–of–principle, we first demonstrate the biases caused by lensing under a simplified
framework, and later on mitigate the resulting biases using our modified population inference
procedure that we described in Section 5.5. We list down certain assumptions that we make
below for ease in computational expense. These do not hold in reality, however they provide
a good starting point to understand, test, and interpret the implications of our method. The
assumptions that we make are as follows:

1. All mergers in the universe are detected (no selection effects), and their masses and
redshifts are measured with perfect accuracy, with no measurement uncertainties or
noise1. We also assume the binaries to be equal–mass as well for simplicity and reduce
the number of population parameters.

1This essentially means that we aren’t really performing parameter estimation on an individual event here.
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2. We only model 2 properties of the population of merging binaries, i.e their mass and
redshift distributions.

3. The true lensing magnification distribution is a power–law in µ, and does not depend
on the source redshift.

6.1.1 True Population

We assume the true mass function of merging black holes to be a gaussian distribution,
i.e –

p(m|µm, σ) ∼ N (µm, σ) (6.1)

This population distribution has 2 hyper-parameters, i.e the gaussian’s mean and standard
deviation, for which we set their true values to be µm = 20M⊙ and width to be σ = 2M⊙.

Similarly, we assume the redshift distribution is a POWERLAW model, that we described
in Section 5.3.1. This model has 1 hyper-parameter, κ which measures the evolution of
the merger rate across redshift. We set its true value to be κ = 0, which means that there
is no intrinsic evolution in the merger rate across redshift. The probability distribution is
normalized by assuming that there are no mergers in the universe beyond zmax = 32.

Lastly, our magnification distribution model is also a power–law distribution, i.e –

p(µ|γ) ∝ µ−γ ; µ ∈ [1, 10] (6.2)

In general, strongly magnified events are less likely to occur than weakly magnified events,
hence the negative factor in the definition. We have one hyper-parameter in this model, for
which we set the true value as γ = 3.

2The zmax is not a free population parameter in our analyses, but in principle we could also try to keep it
as a free variable and infer it from the data.
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Figure 6.1: The blue solid curve in the left and middle panel show the mass and redshift
distribution for binaries in our toy population mode, while the orange dashed curve shows the
corresponding lensed population. The right panel shows the lensing magnification distribution
that we have assumed.

Caveat: This is partly true, as the lensing magnification distribution in the strong–lensing
regime is indeed a power–law of spectral index -3, i.e p(µ) ∝ µ−3. However, the complete
magnification distribution includes the contribution of the weak lensing regime also, and
the overall distribution depends on the source redshift as well. In fact, most mergers in the
universe would only be weakly lensed, with only a small fraction among them being strongly
lensed.

Now that we have everything set-up, we generate 2 mock catalogs of N = 500 events each
–

1. Unlensed (True) Population: We draw N samples from the true mass and redshift
distributions as defined earlier. Since there are no selection effects, our detected event
catalog consists of all the events, with their masses and redshifts perfectly measured.
Since there is no lensing, these measurements are also unbiased.

2. Lensed Population: We repeat the same procedure as above, but along with the mass
and redshift samples, we correspondingly also draw N samples from the magnification
distribution. Now using the mass, redshift and mu samples, we calculate the biased
mass and redshifts that we would measure. Although the measurements would be
perfect, they would not be the "precise" true values due to lensing biases.

Now that we have 2 catalogs of 500 detected events, we use them to infer the underlying
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population. We use our mechanism of bayesian hierarchical inference for this purpose. To
demonstrate the biases in population inference due to lensing, and that our modified procedure
is successful in mitigating the resulting biases, we perform three studies –

1. Standard population inference on the unlensed population. This can be thought of
as our control study because there is no lensing, hence we expect to recover the true
population parameters that we had created our catalog from.

2. Standard population inference on the lensed population. This is to demonstrate the
biases that lensing might cause in population studies.

3. Modified population inference on the lensed population. This includes the marginaliza-
tion over µ step as we had described earlier. This is to demonstrate that biases on a
population level can be corrected if we include the lensing magnification model in our
inference procedure.

6.2 Toy Model results

In our first study, we recover our injected population parameters reasonably well. We
have shown the 3D posteriors (corner plot) for the hyper-parameters in Fig. 6.2, where the
black dashed lines denote the 90% credible intervals (C.I), with the orange lines marking the
true values. The plots along the diagonal are the marginalized posteriors for the 3 population
parameters. The width of these posteriors would decrease as the number of events in our
catalog increases3.

In our second study, where we perform standard population inference on our lensed
population. The masses and redshifts of each event in our catalog are biased from their true
values, but we are not correcting for it in our population inference procedure. Hence we see
biases in the inferred population–parameter posteriors. For example, we estimate µm to be
higher than injected. This is intuitive because in our model, lensing biases masses to higher
values. We also see that the parameter for the redshift distribution κ is inferred to be lower
than the true value. This is also intuitive because lensing biases redshifts to lower values than

3One might think that since we had perfect measurements for all our detected events, shouldn’t the
hyper–posteriors be centered exactly on the true values? This is actually not true, as we are working with a
finite sized catalog, and the maximum posteriori estimate (maximum likelihood estimate in case of a uniform
prior) need not lie on the true value.
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Figure 6.2: Constraints on the hyper–posteriors of the standard population inference on
our unlensed catalog. The diagonal panels represent the marginalized posteriors for the
population parameters, while the rest of the panels show the two–dimensional posterior
distribution for each pair of hyper–parameters. The orange solid lines mark the true values,
and the number quoted on top is for the median values with the the 90% credible interval,
which is marked by the black dashed lines.

the true values. Hence we see a lot more mergers at lower redshifts than existed in the true
population, and to fit for such an observation, the κ is underestimated. The overestimation
of σ is also obvious when one looks at the orange dashed mass distribution in Fig. 6.1, which
is clearly wider than the blue solid mass distribution.

Finally, in our last study, we show how our modified population inference algorithm can
mitigate the biases that we saw in our second study. We again use our lensed catalog, but
include the marginalization step in population inference to account for lensing. Assuming
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Figure 6.3: Constraints on the hyper–posteriors of the standard population inference on
our lensed catalog to demonstrate that we recover biased population parameters.

that we know our lensing magnification distribution, we set γ = 3, and try to infer only the
population parameters µm, σ, κ. In Fig. 6.4, we can clearly see that even though our catalog
was lensed, we are able to recover the true population parameters reasonably well.

6.3 Can one learn the lensing magnification distribution?

Previously, we showed that we can de-lens our population assuming that we know our
magnification distribution. But we can in fact go a step further by keeping the lensing
distribution parameters as additional hyper-parameters that we can vary and try to infer
from the data. This can help us check if we can recover the correct spectral index of the
power law distribution that we have used. Therefore, we repeat the same study once again,
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Figure 6.4: Constraints on the hyper–posteriors of the modified population inference on
our lensed catalog to demonstrate that we recover the true population parameters.

but with an additional hyper-parameter γ for the spectral index of the lensing magnification
distribution. As we can notice in Fig. 6.5, not only do we recover the correct population
parameters, but also the correct value for the slope of the power–law which was injected at
γ = 3. Essentially, in the presence of lensing, one needs to jointly infer the parameters for
the population and magnification distributions in order to obtain unbiased results.

6.3.1 Correlations between the lensing and population parameters

In the blue panels of Fig. 6.5, we can notice an interesting correlation between the lensing
distribution parameter γ, and the population parameters. Firstly we see a positive correlation
between γ and µm. This can be understood by realizing that a higher γ prohibits large lensing
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Figure 6.5: Constraints on the hyper–posteriors of the modified population inference on our
lensed catalog with the slope of the magnification distribution also as a free hyper parameter.
We demonstrate that we can jointly recover the correct slope of the power law, as well as the
true population parameters.

magnifications, i.e they have a much lower probability. Hence, to fit for the observed mass
distribution, we would need an intrinsic population that itself favours higher masses, which is
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realized by a larger µm. Another interesting feature that can be noticed is an anti–correlation
between γ and κ. A higher γ diminishes the probability of non–unity lensing magnifications,
but since our catalog seems to have an apparent excess of events at low redshift, explaining
them requires a lower κ as it increases the merger rate at low redshift.

6.4 Toy Model for Selection Effects

In all our previous results, we had assumed that we could detect all the events in our
population, irrespective of their source parameters or redshifts. As we have explained in
Section 5.4, this is not true in reality, as our detectors are sensitive to only a biased subset of
the overall population. In reality, we only consider an event to be of astrophysical origin if it
crosses some set threshold, which could be its signal-to-noise-ratio (SNR). An event’s SNR
depends on the data segment that we collect, which includes information both about the
noise realization, and the true signal (which encodes the source parameters). In this section,
we provide a crude demonstration about the biases that may arise in population inference
due to not accounting for selection effects. To demonstrate this, we construct a toy model
for what is considered a detection, while using the same model for the toy population and
lensing. We set the detection threshold to be all events that are within a redshift of 1, i.e
an event in our population is only considered in our detection catalog if it has a z < 1. In
reality, the threshold depends not just on the redshift, but on the source masses, spins, sky
location, noise realization etc., but we ignore such dependencies for now.

Caveat: Since we have assumed perfect measurements of source parameters and zero noise,
we do not need to worry about noise realizations, which can cause an event to be detectable
even if the SNR calculated only from its source parameters is below the detection threshold.
But in reality, it is essential to note that detection thresholds are always conditioned on the
data that we collect, since that is the only thing we have access to in reality. Hence it is
important to make sure that we calculate the detection fraction also based on the data and
not on the source parameters. We refer the reader to [71] for more details.

In Fig. 6.6, we can see the difference in results depending on whether we include the
detection fraction α(Λ) term in our population likelihood or not. The blue corner plot shows
our inferred hyper–parameters when we do not include selection effects. We only see a bias in
the parameter for the redshift distribution κ in the purple panel. This is not surprising since
our simplified detection criteria solely depended on the redshift of an event. We see that κ
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Figure 6.6: Blue: Constraints on the hyper–posteriors of the modified population inference
on our lensed catalog with a detection criterion to demonstrate the biases in κ due to not
accounting for selection effects. Orange: The same description, except that the population
inference procedure accounts for selection effects, and we can see that we recover the correct
redshift distribution parameter κ. The dark gray lines represent the true values for the
hyper–parameters.

is underestimate, which means that the model prefers a merger rate that is higher at lower
redshifts than in reality. This is intuitive as all our detected events have a z < 1, but the



Results and Discussion 69

inference procedure does not account for the fact that this is because we are only sensitive
to detect such events. Meanwhile, if we do include the α(Λ) term, we recover the correct
population and lensing distribution parameters as can be seen in the orange corner plot.

6.5 Towards a realistic scenario

The mass distribution of black holes that we have found is certainly not a gaussian
distribution, and the lensing distribution is also not a power law in reality. Previously, we
worked with a toy model for the population and lensing as a proof–of–principle to demonstrate
that our approach works. But now, we try to modify our original scenario to step towards
a more probable effect of lensing in our universe. We will still ignore selection effects and
measurement uncertainties for computational ease, but will use a more realistic population
model and lensing magnification distribution.

In reality the BBH mass distribution resembles more like a power law distribution4. Now,
we also model the mass–ratio distribution now with the conditional power–law model. For
the redshift distribution, we still use the power law model, but with a zmax = 20 to explore
lensing effects at a high redshift. Therefore, we now have 5 population parameters, i.e
α,mmin,mmax, βq for the mass distribution, and κ for the redshift distribution.

For our true population, we set the parameters to be α = 1.6,mmin = 5,mmax = 50, βq =

1.7, κ = 0.

As mentioned earlier, a power law model for lensing magnification is not realistic, as the
true distribution not only includes contribution from weak lensing and strong lensing, but
also depends on the source redshift. We use the more realistic magnification distribution as
described in [38] (reproduced in Fig. 4.3) to explore lensing biases in this section.

For our catalog generation, we repeat the procedure described previously, i.e we first
sample component masses and redshifts from the true population. For each event in our
catalog, we also sample a µ for the merger using the realistic lensing magnification model that
also utilizes information about the true source redshift. Using them, we can now generate
our lensed catalog. We have shown our lensed and unlensed (true) catalog in Fig. 6.7, each
consisting of 5000 events (all of which we assume to be detected as we do not include selection
effects here). We also show the mass ratio distribution, which remains the same as lensing

4We will ignore the low mass smoothening and the gaussian peak identified in the data for now.
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does not affect the mass ratio measurements. The lower right panel shows the magnifications
of the 5000 events. We can see that not only do we have magnified events (µ > 1), but also
de–magnified events (µ < 1).

Figure 6.7: The blue solid curve in the top panels, and the bottom–left panel show the
primary mass, redshift and mass–ratio distribution of binaries for our new population model,
while the orange dashed curve in the same panels show the corresponding lensed population
as obtained using the more realistic lensing magnification model. The bottom–right panel
depicts the lensing magnification distribution for the events in our catalog, with µ = 1 marked
for reference.

We can immediately notice a few important effects of lensing on the population distribution
directly from this figure, without performing hierarchical inference. Firstly, the lensed mass
distribution does not resemble a power law anymore (especially at the edges), because it has
been biased with magnification factors, and the magnifications depend on the true redshift
distribution and the lensing magnification distribution. Since we would detect events from the
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Figure 6.8: Constraints on the hyper–posteriors of standard population inference on our
unlensed catalog to demonstrate that we recover the true population parameters.

orange dashed distribution, it would be incorrect to perform standard population inference
with a power law mass model and hope to recover the solid blue distribution. Secondly, in the
original population, there exist sharp cutoffs in the mass distribution at the upper and lower
ends (by construction). Due to lensing, these cutoffs may get smeared, as we can have events
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close to (but less than) mmax that get lensed and appear as mergers with masses greater than
the maximum allowed mass. Similarly, some events close to (but greater than) mmin can get
de–magnified due to lensing, and appear to have masses lower than the minimum mass in
the distribution.

Sharp edges in the mass function are particularly useful, since their locations are important
probes of the formation of compact binaries. The location of the upper mass gap in particular
is related to the Pair–Instability Supernovae (PISN) phenomena, and the lower mass gap
has important implications for the maximum possible mass of a neutron star, and the
transition from neutron stars to black holes. In fact, different theoretical models make
different predictions, with some of them predicting a mass–gap between the most massive
neutron stars and the least massive black holes, while others do not predict a gap between
them. Features in the mass distribution have also been proven to be useful in measuring
cosmological parameters, especially through the spectral sirens method [72]. Thus accurately
measuring their locations in the data empirically is crucial to understand not only compact
object formation, but also in other areas in gravitational wave astronomy that utilize features
in the gravitational wave population.

We perform population inference on the unlensed and lensed population using the standard
algorithm that does not account for lensing. As we can see in Fig. 6.8, we infer the correct
population hyper–parameters for our unlensed population as one would expect. For our
lensed population in Fig. 6.9, we can see that we do not recover some of the population
parameters correctly. In particular, there is a mild bias in the recovered slope of the mass
distribution, α. We also underestimate the mmin parameters, and overestimate the mmax

parameter. This was anticipated previously, as we have some events that get magnified and
appear to be greater than the true mmax, while some events get de–magnified and appear to
be lighter than the true mmin. We do not see any noticeable bias in the redshift distribution
parameter κ, but we do see a bias in the mass–ratio spectral index βq. At first, this may
seem counter–intuitive, as we know that the mass–ratio does not change due to lensing, and
the marginal mass–ratio distribution for our lensed and unlensed catalogs looks identical in
Fig. 6.7 for the same reason. But it is crucial to understand that in population inference, we
assume the mass–ratio distribution as a conditional power–law distribution, as defined in
Eqn. 5.24. This distribution clearly depends on m1 and mmin, and biases in them have led to
biases in the inferred βq.
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Figure 6.9: Constraints on the hyper–posteriors of standard population inference on our
lensed catalog to demonstrate the biases in the recovered population–parameters.
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Chapter 7

Conclusion and Future Directions

Gravitational lensing of gravitational waves is an exciting topic that may soon be detected in
the near future with the existing detectors, and surely with the next generation of detectors.
Like in electromagnetic astronomy, lensing of GWs can be a powerful tool to probe several
questions in astrophysics, cosmology and the nature of gravity. However, as we have learned,
lensing can also lead to biases in source mass and redshift measurements of individual events.

Population inference is an important probe of the formation and evolution of compact
binary mergers in the universe, but it relies on accurate measurement of the source parameters
such as masses and redshifts. In this work, we explored the effects of gravitational lensing on
a population of GW sources to show the biases that may occur in population inference. We
also developed a bayesian hierarchical inference algorithm that can mitigate the resulting
biases in the population parameters, by including a step where we marginalize over all possible
lensing magnifications, weighted by their corresponding probabilities. We demonstrated our
approach using a toy population, and also show the biases with a more realistic population.
However, we made several assumptions in our results for ease in computational expense and
better interpretability. In the future, we plan on expanding our study to address and relax
them as follows –

1. Measurement Uncertainties: We had assumed perfect measurements (just 1 posterior
sample at the true value) for each event, but we will next include realistic measurements,
where the properties of the CBC are measured with some uncertainty, i.e we have a
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posterior distribution, and posteriors for different parameters may be correlated with
each other as well (for example source mass and redshifts are often correlated as we
measure their combination, the detector frame mass). The posterior widths of different
parameters depend on the SNR of the detected event as well. To obtain realistic
measurements of the source parameters, we will perform bayesian parameter estimation
for each event in our catalog of detections, including the detector sensitivities of our
network as well.

2. Selection Effects: In most of our results, we did not include detector selection effects,
and only a toy model was implemented in one case where the detection statistic solely
depended on the redshift. In the next step, we plan on including realistic selection
effects for our detector network by calculating the detection fraction with a large–scale
simulation study.

3. De-lensing a realistic population: We demonstrated how we can jointly learn the
population parameters and the slope of the lensing magnification distribution for a
toy model. We also showed the possible biases that may arise with a realistic mass
distribution and a lensing magnification distribution that includes the dominant weak
lensing component as well. In the future, we will demonstrate how we can de-lens any
possible biases in our population parameters for a realistic mass and redshift distribution
that has been lensed by a realistic lensing magnification distribution. We will also
explore the possibilities of learning the free parameters of the weak lensing + strong
lensing magnification distribution along with the population parameters.

Including measurement uncertainties and selection effects would mean that our constraints
on the population–parameters would become poorer, i.e the hyper-posteriors would have
larger widths than they have right now. In that case, it may be possible that any systematic
bias that may be present due to lensing is sub–dominant to the overall uncertainties in our
recovery of the population–parameters. This is the likely situation right now, where we are
data limited, and only have O(100) events in our catalog, with all of them being low redshift
events. In these situations, the systemic error (if present) is likely sub–dominant to the overall
error in the population–parameters, and lensing may not be a concern right now. However,
the uncertainties in recovery will decrease as the number of events in our catalog increases,
and as we probe events till high redshifts with the next generation of detectors.

Lensing of gravitational waves will be an important tool in the future to study various
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interesting phenomena, but at the same time it is imperative to develop methods to make
sure that it does not lead to biases in studies involving GW detections, and in this thesis we
explored one such scenario involving population studies of gravitational waves.



78



References 79

References

[1] B. S. Sathyaprakash and B. F. Schutz. “Physics, Astrophysics and Cosmology with Gravitational Waves”.
In: Living Rev. Rel. 12 (2009), p. 2. doi: 10.12942/lrr-2009-2. arXiv: 0903.0338 [gr-qc].

[2] Advanced Gravitational Wave Detectors. Cambridge University Press, 2012.

[3] J. Aasi et al. “Advanced LIGO”. In: Class. Quant. Grav. 32 (2015), p. 074001. doi: 10.1088/0264-
9381/32/7/074001. arXiv: 1411.4547 [gr-qc].

[4] F. Acernese et al. “Advanced Virgo: a second-generation interferometric gravitational wave detector”.
In: Class. Quant. Grav. 32.2 (2015), p. 024001. doi: 10 . 1088 / 0264 - 9381 / 32 / 2 / 024001. arXiv:
1408.3978 [gr-qc].

[5] T. Akutsu et al. “KAGRA: 2.5 Generation Interferometric Gravitational Wave Detector”. In: Nature As-
tron. 3.1 (2019), pp. 35–40. doi: 10.1038/s41550-018-0658-y. arXiv: 1811.08079 [gr-qc].

[6] M. Bailes et al. “Gravitational-wave physics and astronomy in the 2020s and 2030s”. In: Nature Rev. Phys.
3.5 (2021), pp. 344–366. doi: 10.1038/s42254-021-00303-8.

[7] Matthew Evans et al. “A Horizon Study for Cosmic Explorer: Science, Observatories, and Community”.
In: (Sept. 2021). arXiv: 2109.09882 [astro-ph.IM].

[8] Samantha A. Usman et al. “The PyCBC search for gravitational waves from compact binary coalescence”.
In: Class. Quant. Grav. 33.21 (2016), p. 215004. doi: 10.1088/0264-9381/33/21/215004. arXiv:
1508.02357 [gr-qc].

[9] Surabhi Sachdev et al. “The GstLAL Search Analysis Methods for Compact Binary Mergers in Advanced
LIGO’s Second and Advanced Virgo’s First Observing Runs”. In: (Jan. 2019). arXiv: 1901.08580 [gr-qc].

[10] B. P. Abbott et al. “Observation of Gravitational Waves from a Binary Black Hole Merger”. In: Phys.
Rev. Lett. 116.6 (2016), p. 061102. doi: 10.1103/PhysRevLett.116.061102. arXiv: 1602.03837
[gr-qc].

[11] R. Abbott et al. “GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo during the Sec-
ond Part of the Third Observing Run”. In: Phys. Rev. X 13.4 (2023), p. 041039. doi: 10.1103/PhysRevX.
13.041039. arXiv: 2111.03606 [gr-qc].

https://doi.org/10.12942/lrr-2009-2
https://arxiv.org/abs/0903.0338
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/7/074001
https://arxiv.org/abs/1411.4547
https://doi.org/10.1088/0264-9381/32/2/024001
https://arxiv.org/abs/1408.3978
https://doi.org/10.1038/s41550-018-0658-y
https://arxiv.org/abs/1811.08079
https://doi.org/10.1038/s42254-021-00303-8
https://arxiv.org/abs/2109.09882
https://doi.org/10.1088/0264-9381/33/21/215004
https://arxiv.org/abs/1508.02357
https://arxiv.org/abs/1901.08580
https://doi.org/10.1103/PhysRevLett.116.061102
https://arxiv.org/abs/1602.03837
https://arxiv.org/abs/1602.03837
https://doi.org/10.1103/PhysRevX.13.041039
https://doi.org/10.1103/PhysRevX.13.041039
https://arxiv.org/abs/2111.03606


80 Effect of gravitational lensing on the population inference of BBH using GW observations

[12] R. Abbott et al. “Population of Merging Compact Binaries Inferred Using Gravitational Waves through
GWTC-3”. In: Phys. Rev. X 13.1 (2023), p. 011048. doi: 10 . 1103 / PhysRevX . 13 . 011048. arXiv:
2111.03634 [astro-ph.HE].

[13] R. Abbott et al. “Constraints on the Cosmic Expansion History from GWTC–3”. In: Astrophys. J. 949.2
(2023), p. 76. doi: 10.3847/1538-4357/ac74bb. arXiv: 2111.03604 [astro-ph.CO].

[14] Katerina Chatziioannou. “Neutron star tidal deformability and equation of state constraints”. In: Gen.
Rel. Grav. 52.11 (2020), p. 109. doi: 10.1007/s10714-020-02754-3. arXiv: 2006.03168 [gr-qc].

[15] Rory J. E. Smith et al. “Inferring the population properties of binary black holes from unresolved grav-
itational waves”. In: Mon. Not. Roy. Astron. Soc. 496.3 (2020), pp. 3281–3290. doi: 10.1093/mnras/
staa1642. arXiv: 2004.09700 [astro-ph.HE].

[16] Laura Kreidberg et al. “MASS MEASUREMENTS OF BLACK HOLES IN X-RAY TRANSIENTS: IS
THERE A MASS GAP?” In: The Astrophysical Journal 757.1 (Sept. 2012), p. 36. issn: 1538-4357. doi:
10.1088/0004-637x/757/1/36. url: http://dx.doi.org/10.1088/0004-637X/757/1/36.

[17] R. Farmer et al. “Mind the gap: The location of the lower edge of the pair instability supernovae black
hole mass gap”. In: (Oct. 2019). doi: 10.3847/1538-4357/ab518b. arXiv: 1910.12874 [astro-ph.SR].

[18] Carl L. Rodriguez et al. “Dynamical Formation of the GW150914 Binary Black Hole”. In: Astrophys.
J. Lett. 824.1 (2016), p. L8. doi: 10.3847/2041-8205/824/1/L8. arXiv: 1604.04254 [astro-ph.HE].

[19] Mohammadtaher Safarzadeh, Sylvia Biscoveanu, and Abraham Loeb. “Constraining the delay time dis-
tribution of compact binary objects from the stochastic gravitational wave background searches”. In: As-
trophys. J. 901.2 (2020), p. 137. doi: 10.3847/1538-4357/abb1af. arXiv: 2004.12999 [astro-ph.HE].

[20] Maya Fishbach and Vicky Kalogera. “The Time Delay Distribution and Formation Metallicity of LIGO-
Virgo’s Binary Black Holes”. In: Astrophys. J. Lett. 914.2 (2021), p. L30. doi: 10.3847/2041-8213/
ac05c4. arXiv: 2105.06491 [astro-ph.HE].

[21] Susmita Adhikari et al. “The Binary–Host Connection: Astrophysics of Gravitational-Wave Binaries from
Host Galaxy Properties”. In: Astrophys. J. 905.1 (2020), p. 21. doi: 10.3847/1538- 4357/abbfb7.
arXiv: 2001.01025 [astro-ph.GA].

[22] T. Callister. “A Thesaurus for Common Priors in Gravitational-Wave Astronomy”. In: (Apr. 2021). arXiv:
2104.09508 [gr-qc].

[23] M. Saleem et al. “The science case for LIGO-India”. In: Class. Quant. Grav. 39.2 (2022), p. 025004. doi:
10.1088/1361-6382/ac3b99. arXiv: 2105.01716 [gr-qc].

[24] Michele Maggiore et al. “Science Case for the Einstein Telescope”. In: JCAP 03 (2020), p. 050. doi: 10.
1088/1475-7516/2020/03/050. arXiv: 1912.02622 [astro-ph.CO].

[25] Ish Gupta et al. “Characterizing Gravitational Wave Detector Networks: From A♯ to Cosmic Explorer”.
In: (July 2023). arXiv: 2307.10421 [gr-qc].

https://doi.org/10.1103/PhysRevX.13.011048
https://arxiv.org/abs/2111.03634
https://doi.org/10.3847/1538-4357/ac74bb
https://arxiv.org/abs/2111.03604
https://doi.org/10.1007/s10714-020-02754-3
https://arxiv.org/abs/2006.03168
https://doi.org/10.1093/mnras/staa1642
https://doi.org/10.1093/mnras/staa1642
https://arxiv.org/abs/2004.09700
https://doi.org/10.1088/0004-637x/757/1/36
http://dx.doi.org/10.1088/0004-637X/757/1/36
https://doi.org/10.3847/1538-4357/ab518b
https://arxiv.org/abs/1910.12874
https://doi.org/10.3847/2041-8205/824/1/L8
https://arxiv.org/abs/1604.04254
https://doi.org/10.3847/1538-4357/abb1af
https://arxiv.org/abs/2004.12999
https://doi.org/10.3847/2041-8213/ac05c4
https://doi.org/10.3847/2041-8213/ac05c4
https://arxiv.org/abs/2105.06491
https://doi.org/10.3847/1538-4357/abbfb7
https://arxiv.org/abs/2001.01025
https://arxiv.org/abs/2104.09508
https://doi.org/10.1088/1361-6382/ac3b99
https://arxiv.org/abs/2105.01716
https://doi.org/10.1088/1475-7516/2020/03/050
https://doi.org/10.1088/1475-7516/2020/03/050
https://arxiv.org/abs/1912.02622
https://arxiv.org/abs/2307.10421


References 81

[26] Gabriella Agazie et al. “The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background”.
In: Astrophys. J. Lett. 951.1 (2023), p. L8. doi: 10.3847/2041-8213/acdac6. arXiv: 2306.16213
[astro-ph.HE].

[27] J. Antoniadis et al. “The second data release from the European Pulsar Timing Array - III. Search for
gravitational wave signals”. In: Astron. Astrophys. 678 (2023), A50. doi: 10.1051/0004-6361/202346844.
arXiv: 2306.16214 [astro-ph.HE].

[28] Daniel J. Reardon et al. “Search for an Isotropic Gravitational-wave Background with the Parkes Pul-
sar Timing Array”. In: Astrophys. J. Lett. 951.1 (2023), p. L6. doi: 10.3847/2041- 8213/acdd02.
arXiv: 2306.16215 [astro-ph.HE].

[29] Heng Xu et al. “Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chi-
nese Pulsar Timing Array Data Release I”. In: Res. Astron. Astrophys. 23.7 (2023), p. 075024. doi: 10.
1088/1674-4527/acdfa5. arXiv: 2306.16216 [astro-ph.HE].

[30] Monica Colpi et al. “LISA Definition Study Report”. In: (Feb. 2024). arXiv: 2402.07571 [astro-ph.CO].

[31] Massimo Meneghetti. Introduction to Gravitational Lensing: With Python Examples. 2022.

[32] Matthias Bartelmann and Peter Schneider. “Weak Gravitational Lensing”. In: Physics Reports 340.4 (Jan.
2001), pp. 291–472. issn: 03701573. doi: 10.1016/S0370- 1573(00)00082- X. arXiv: astro- ph/
9912508. url: http://arxiv.org/abs/astro-ph/9912508 (visited on 02/21/2024).

[33] S. Birrer et al. “Time-Delay Cosmography: Measuring the Hubble Constant and other cosmological pa-
rameters with strong gravitational lensing”. In: (Oct. 2022). arXiv: 2210.10833 [astro-ph.CO].

[34] V. Bonvin et al. “H0LiCOW – V. New COSMOGRAIL time delays of HE 0435−1223: H0 to 3.8 per cent
precision from strong lensing in a flat ΛCDM model”. In: Mon. Not. Roy. Astron. Soc. 465.4 (2017), pp. 4914–
4930. doi: 10.1093/mnras/stw3006. arXiv: 1607.01790 [astro-ph.CO].

[35] Tommaso Treu. “Strong Lensing by Galaxies”. In: Annual Review of Astronomy and Astrophysics 48.1
(Aug. 2010), pp. 87–125. issn: 1545-4282. doi: 10 . 1146 / annurev - astro - 081309 - 130924. url:
http://dx.doi.org/10.1146/annurev-astro-081309-130924.

[36] P. Natarajan et al. “Strong Lensing by Galaxy Clusters”. In: Space Science Reviews 220.2 (Feb. 15, 2024),
p. 19. issn: 1572-9672. doi: 10.1007/s11214-024-01051-8. url: https://doi.org/10.1007/
s11214-024-01051-8.

[37] Rachel Mandelbaum. “Weak lensing for precision cosmology”. In: Ann. Rev. Astron. Astrophys. 56 (2018),
pp. 393–433. doi: 10.1146/annurev-astro-081817-051928. arXiv: 1710.03235 [astro-ph.CO].

[38] Liang Dai, Tejaswi Venumadhav, and Kris Sigurdson. “Effect of lensing magnification on the apparent
distribution of black hole mergers”. In: Physical Review D 95.4 (Feb. 10, 2017). Publisher: American Phys-
ical Society, p. 044011. doi: 10.1103/PhysRevD.95.044011. url: https://link.aps.org/doi/10.
1103/PhysRevD.95.044011.

https://doi.org/10.3847/2041-8213/acdac6
https://arxiv.org/abs/2306.16213
https://arxiv.org/abs/2306.16213
https://doi.org/10.1051/0004-6361/202346844
https://arxiv.org/abs/2306.16214
https://doi.org/10.3847/2041-8213/acdd02
https://arxiv.org/abs/2306.16215
https://doi.org/10.1088/1674-4527/acdfa5
https://doi.org/10.1088/1674-4527/acdfa5
https://arxiv.org/abs/2306.16216
https://arxiv.org/abs/2402.07571
https://doi.org/10.1016/S0370-1573(00)00082-X
https://arxiv.org/abs/astro-ph/9912508
https://arxiv.org/abs/astro-ph/9912508
http://arxiv.org/abs/astro-ph/9912508
https://arxiv.org/abs/2210.10833
https://doi.org/10.1093/mnras/stw3006
https://arxiv.org/abs/1607.01790
https://doi.org/10.1146/annurev-astro-081309-130924
http://dx.doi.org/10.1146/annurev-astro-081309-130924
https://doi.org/10.1007/s11214-024-01051-8
https://doi.org/10.1007/s11214-024-01051-8
https://doi.org/10.1007/s11214-024-01051-8
https://doi.org/10.1146/annurev-astro-081817-051928
https://arxiv.org/abs/1710.03235
https://doi.org/10.1103/PhysRevD.95.044011
https://link.aps.org/doi/10.1103/PhysRevD.95.044011
https://link.aps.org/doi/10.1103/PhysRevD.95.044011


82 Effect of gravitational lensing on the population inference of BBH using GW observations

[39] Anuj Mishra et al. “Gravitational lensing of gravitational waves: effect of microlens population in lens-
ing galaxies”. In: Mon. Not. Roy. Astron. Soc. 508.4 (2021), pp. 4869–4886. doi: 10.1093/mnras/
stab2875. arXiv: 2102.03946 [astro-ph.CO].

[40] Curt Cutler and Éanna E. Flanagan. “Gravitational waves from merging compact binaries: How accu-
rately can one extract the binary’s parameters from the inspiral waveform?” In: Phys. Rev. D 49 (6 Mar.
1994), pp. 2658–2697. doi: 10.1103/PhysRevD.49.2658. url: https://link.aps.org/doi/10.
1103/PhysRevD.49.2658.

[41] Jose M. Diego, Tom Broadhurst, and George Smoot. “Evidence for lensing of gravitational waves from
LIGO-Virgo data”. In: Phys. Rev. D 104.10 (2021), p. 103529. doi: 10.1103/PhysRevD.104.103529.
arXiv: 2106.06545 [gr-qc].

[42] K. Haris et al. Identifying strongly lensed gravitational wave signals from binary black hole mergers. July 18,
2018. doi: 10.48550/arXiv.1807.07062. arXiv: 1807.07062[gr-qc]. url: http://arxiv.org/
abs/1807.07062 (visited on 06/21/2023).

[43] Jose María Ezquiaga et al. “Phase effects from strong gravitational lensing of gravitational waves”. In:
Phys. Rev. D 103.6 (2021), p. 064047. doi: 10.1103/PhysRevD.103.064047. arXiv: 2008.12814
[gr-qc].

[44] Liang Dai et al. “Search for Lensed Gravitational Waves Including Morse Phase Information: An Intrigu-
ing Candidate in O2”. In: (July 2020). arXiv: 2007.12709 [astro-ph.HE].

[45] R. Abbott et al. “Search for gravitational-lensing signatures in the full third observing run of the LIGO-
Virgo network”. In: (Apr. 2023). arXiv: 2304.08393 [gr-qc].

[46] Justin Janquart et al. “Follow-up analyses to the O3 LIGO–Virgo–KAGRA lensing searches”. In: Mon.
Not. Roy. Astron. Soc. 526.3 (2023), pp. 3832–3860. doi: 10.1093/mnras/stad2909. arXiv: 2306.
03827 [gr-qc].

[47] A. Renske A. C. Wierda et al. “Beyond the Detector Horizon: Forecasting Gravitational-Wave Strong
Lensing”. In: Astrophys. J. 921.2 (2021), p. 154. doi: 10 . 3847 / 1538 - 4357 / ac1bb4. arXiv: 2106 .
06303 [astro-ph.HE].

[48] Ken K. Y. Ng et al. “Precise LIGO Lensing Rate Predictions for Binary Black Holes”. In: Phys. Rev. D
97.2 (2018), p. 023012. doi: 10.1103/PhysRevD.97.023012. arXiv: 1703.06319 [astro-ph.CO].

[49] Souvik Jana et al. “Cosmography Using Strongly Lensed Gravitational Waves from Binary Black Holes”.
In: Phys. Rev. Lett. 130 (26 June 2023), p. 261401. doi: 10.1103/PhysRevLett.130.261401. url:
https://link.aps.org/doi/10.1103/PhysRevLett.130.261401.

[50] Otto A. Hannuksela et al. “Localizing merging black holes with sub-arcsecond precision using gravitational-
wave lensing”. In: Mon. Not. Roy. Astron. Soc. 498.3 (2020), pp. 3395–3402. doi: 10.1093/mnras/
staa2577. arXiv: 2004.13811 [astro-ph.HE].

https://doi.org/10.1093/mnras/stab2875
https://doi.org/10.1093/mnras/stab2875
https://arxiv.org/abs/2102.03946
https://doi.org/10.1103/PhysRevD.49.2658
https://link.aps.org/doi/10.1103/PhysRevD.49.2658
https://link.aps.org/doi/10.1103/PhysRevD.49.2658
https://doi.org/10.1103/PhysRevD.104.103529
https://arxiv.org/abs/2106.06545
https://doi.org/10.48550/arXiv.1807.07062
https://arxiv.org/abs/1807.07062 [gr-qc]
http://arxiv.org/abs/1807.07062
http://arxiv.org/abs/1807.07062
https://doi.org/10.1103/PhysRevD.103.064047
https://arxiv.org/abs/2008.12814
https://arxiv.org/abs/2008.12814
https://arxiv.org/abs/2007.12709
https://arxiv.org/abs/2304.08393
https://doi.org/10.1093/mnras/stad2909
https://arxiv.org/abs/2306.03827
https://arxiv.org/abs/2306.03827
https://doi.org/10.3847/1538-4357/ac1bb4
https://arxiv.org/abs/2106.06303
https://arxiv.org/abs/2106.06303
https://doi.org/10.1103/PhysRevD.97.023012
https://arxiv.org/abs/1703.06319
https://doi.org/10.1103/PhysRevLett.130.261401
https://link.aps.org/doi/10.1103/PhysRevLett.130.261401
https://doi.org/10.1093/mnras/staa2577
https://doi.org/10.1093/mnras/staa2577
https://arxiv.org/abs/2004.13811


References 83

[51] Srashti Goyal et al. “Probing lens-induced gravitational-wave birefringence as a test of general relativ-
ity”. In: Phys. Rev. D 108.2 (2023), p. 024052. doi: 10.1103/PhysRevD.108.024052. arXiv: 2301.
04826 [gr-qc].

[52] Sourabh Magare et al. “Gear Up for the Action Replay: Leveraging Lensing for Enhanced Gravitational-
wave Early Warning”. In: Astrophys. J. Lett. 955.2 (2023), p. L31. doi: 10.3847/2041-8213/acf668.
arXiv: 2302.02916 [astro-ph.HE].

[53] Mukesh Kumar Singh et al. “Déjà-vu et Déjà-entendu: Associating fast radio bursts with compact bi-
nary mergers via gravitational lensing”. In: (Apr. 2023). _eprint: 2304.02879.

[54] S. Weinberg. “Apparent luminosities in a locally inhomogeneous universe.” In: The Astrophysical Jour-
nal Letters 208 (Aug. 1976), pp. L1–L3. doi: 10.1086/182216.

[55] Nick Kaiser and John A. Peacock. “On the bias of the distance–redshift relation from gravitational lens-
ing”. In: Mon. Not. Roy. Astron. Soc. 455.4 (2016), pp. 4518–4547. doi: 10.1093/mnras/stv2585.
arXiv: 1503.08506 [astro-ph.CO].

[56] Peter Schneider, Jürgen Ehlers, and Emilio E. Falco. Gravitational Lenses. 1992. doi: 10.1007/978-
3-662-03758-4.

[57] Eric Thrane and Colm Talbot. “An introduction to Bayesian inference in gravitational-wave astronomy:
parameter estimation, model selection, and hierarchical models”. In: Publications of the Astronomical
Society of Australia 36 (2019), e010. issn: 1323-3580, 1448-6083. doi: 10.1017/pasa.2019.2. arXiv:
1809.02293[astro-ph]. url: http://arxiv.org/abs/1809.02293 (visited on 06/17/2023).

[58] Nelson Christensen and Renate Meyer. “Parameter estimation with gravitational waves”. In: Rev. Mod.
Phys. 94.2 (2022), p. 025001. doi: 10.1103/RevModPhys.94.025001. arXiv: 2204.04449 [gr-qc].

[59] Javier Roulet and Tejaswi Venumadhav. “Inferring Binary Properties from Gravitational Wave Signals”.
In: (Feb. 2024). doi: 10.1146/annurev-nucl-121423-100725. arXiv: 2402.11439 [gr-qc].

[60] Joshua S. Speagle. “A Conceptual Introduction to Markov Chain Monte Carlo Methods”. In: (Sept. 2019).
arXiv: 1909.12313 [stat.OT].

[61] John Skilling. “Nested Sampling”. In: Bayesian Inference and Maximum Entropy Methods in Science
and Engineering: 24th International Workshop on Bayesian Inference and Maximum Entropy Methods
in Science and Engineering. Ed. by Rainer Fischer, Roland Preuss, and Udo Von Toussaint. Vol. 735.
American Institute of Physics Conference Series. Nov. 2004, pp. 395–405. doi: 10.1063/1.1835238.

[62] C. M. Biwer et al. “PyCBC Inference: A Python-based parameter estimation toolkit for compact binary
coalescence signals”. In: Publ. Astron. Soc. Pac. 131.996 (2019), p. 024503. doi: 10.1088/1538-3873/
aaef0b. arXiv: 1807.10312 [astro-ph.IM].

[63] Gregory Ashton et al. “BILBY: A user-friendly Bayesian inference library for gravitational-wave astron-
omy”. In: Astrophys. J. Suppl. 241.2 (2019), p. 27. doi: 10.3847/1538-4365/ab06fc. arXiv: 1811.
02042 [astro-ph.IM].

https://doi.org/10.1103/PhysRevD.108.024052
https://arxiv.org/abs/2301.04826
https://arxiv.org/abs/2301.04826
https://doi.org/10.3847/2041-8213/acf668
https://arxiv.org/abs/2302.02916
https://doi.org/10.1086/182216
https://doi.org/10.1093/mnras/stv2585
https://arxiv.org/abs/1503.08506
https://doi.org/10.1007/978-3-662-03758-4
https://doi.org/10.1007/978-3-662-03758-4
https://doi.org/10.1017/pasa.2019.2
https://arxiv.org/abs/1809.02293 [astro-ph]
http://arxiv.org/abs/1809.02293
https://doi.org/10.1103/RevModPhys.94.025001
https://arxiv.org/abs/2204.04449
https://doi.org/10.1146/annurev-nucl-121423-100725
https://arxiv.org/abs/2402.11439
https://arxiv.org/abs/1909.12313
https://doi.org/10.1063/1.1835238
https://doi.org/10.1088/1538-3873/aaef0b
https://doi.org/10.1088/1538-3873/aaef0b
https://arxiv.org/abs/1807.10312
https://doi.org/10.3847/1538-4365/ab06fc
https://arxiv.org/abs/1811.02042
https://arxiv.org/abs/1811.02042


84 Effect of gravitational lensing on the population inference of BBH using GW observations

[64] I. M. Romero-Shaw et al. “Bayesian inference for compact binary coalescences with bilby: validation and
application to the first LIGO–Virgo gravitational-wave transient catalogue”. In: Mon. Not. Roy. Astron.
Soc. 499.3 (2020), pp. 3295–3319. doi: 10.1093/mnras/staa2850. arXiv: 2006.00714 [astro-ph.IM].

[65] J. Veitch et al. “Parameter estimation for compact binaries with ground-based gravitational-wave ob-
servations using the LALInference software library”. In: Phys. Rev. D 91.4 (2015), p. 042003. doi: 10.
1103/PhysRevD.91.042003. arXiv: 1409.7215 [gr-qc].

[66] Salvatore Vitale et al. “Inferring the properties of a population of compact binaries in presence of se-
lection effects”. In: 2021, pp. 1–60. doi: 10.1007/978-981-15-4702-7_45-1. arXiv: 2007.05579[astro-
ph,physics:gr-qc]. url: http://arxiv.org/abs/2007.05579 (visited on 06/17/2023).

[67] Piero Madau and Mark Dickinson. “Cosmic Star Formation History”. In: Ann. Rev. Astron. Astrophys.
52 (2014), pp. 415–486. doi: 10.1146/annurev-astro-081811-125615. arXiv: 1403.0007 [astro-ph.CO].

[68] The LIGO Scientific Collaboration et al. “Binary Black Hole Population Properties Inferred from the
First and Second Observing Runs of Advanced LIGO and Advanced Virgo”. In: The Astrophysical Jour-
nal 882.2 (Sept. 11, 2019), p. L24. issn: 2041-8213. doi: 10.3847/2041-8213/ab3800. arXiv: 1811.
12940[astro-ph]. url: http://arxiv.org/abs/1811.12940 (visited on 12/20/2023).

[69] Will M. Farr. “Accuracy Requirements for Empirically Measured Selection Functions”. In: Research Notes
of the AAS 3.5 (May 2019). Publisher: The American Astronomical Society, p. 66. issn: 2515-5172. doi:
10.3847/2515-5172/ab1d5f. url: https://dx.doi.org/10.3847/2515-5172/ab1d5f (visited on
07/30/2023).

[70] David W. Hogg. Distance measures in cosmology. Dec. 15, 2000. arXiv: astro-ph/9905116. url: http:
//arxiv.org/abs/astro-ph/9905116 (visited on 09/18/2023).

[71] Reed Essick and Maya Fishbach. DAGnabbit! Ensuring Consistency between Noise and Detection in Hi-
erarchical Bayesian Inference. Oct. 3, 2023. arXiv: 2310.02017[astro-ph,physics:gr-qc]. url:
http://arxiv.org/abs/2310.02017 (visited on 01/08/2024).

[72] Jose María Ezquiaga and Daniel E. Holz. “Spectral sirens: cosmology from the full mass distribution
of compact binaries”. In: Physical Review Letters 129.6 (Aug. 3, 2022), p. 061102. issn: 0031-9007, 1079-
7114. doi: 10.1103/PhysRevLett.129.061102. arXiv: 2202.08240[astro-ph,physics:gr-qc].
url: http://arxiv.org/abs/2202.08240 (visited on 08/24/2023).

https://doi.org/10.1093/mnras/staa2850
https://arxiv.org/abs/2006.00714
https://doi.org/10.1103/PhysRevD.91.042003
https://doi.org/10.1103/PhysRevD.91.042003
https://arxiv.org/abs/1409.7215
https://doi.org/10.1007/978-981-15-4702-7_45-1
https://arxiv.org/abs/2007.05579 [astro-ph, physics:gr-qc]
https://arxiv.org/abs/2007.05579 [astro-ph, physics:gr-qc]
http://arxiv.org/abs/2007.05579
https://doi.org/10.1146/annurev-astro-081811-125615
https://arxiv.org/abs/1403.0007
https://doi.org/10.3847/2041-8213/ab3800
https://arxiv.org/abs/1811.12940 [astro-ph]
https://arxiv.org/abs/1811.12940 [astro-ph]
http://arxiv.org/abs/1811.12940
https://doi.org/10.3847/2515-5172/ab1d5f
https://dx.doi.org/10.3847/2515-5172/ab1d5f
https://arxiv.org/abs/astro-ph/9905116
http://arxiv.org/abs/astro-ph/9905116
http://arxiv.org/abs/astro-ph/9905116
https://arxiv.org/abs/2310.02017 [astro-ph, physics:gr-qc]
http://arxiv.org/abs/2310.02017
https://doi.org/10.1103/PhysRevLett.129.061102
https://arxiv.org/abs/2202.08240 [astro-ph, physics:gr-qc]
http://arxiv.org/abs/2202.08240

	Front Matter
	Abstract
	Contents
	List of Figures

	I Preliminaries
	Introduction
	A very brief outline of the rest of this thesis

	What are Gravitational Waves
	Too weak to detect?
	Gravitational Wave Astronomy: Past, Present and Future
	One to Many
	What have we learned?
	The Future

	Gravitational Lensing
	The Lens Equation
	Lensing done in 2 ways

	Lensing of Gravitational Waves
	Gravitational Waves: Meet Gravitational Lensing
	An Aside on what does a GW signal really tell us?
	Oh, but lensing?
	Current Searches for Gravitational Wave Lensing
	How does one know a GW signal is lensed?

	Gravitational Wave lensing as a tool
	Magnification Probability Distribution


	II Developing the tools
	Methods
	Parameter Estimation in a Nutshell
	Bayesian Inference
	Evaluating the posterior

	Population Inference in a nutshell
	Common Population Models
	Redshift Model
	Power Law Model

	Mass Model

	An Aside on Selection Effects
	The Detection Fraction

	Population Inference in the presence of Lensing


	III Major Takeaways & Discussion
	Results and Discussion
	Toy Model
	True Population

	Toy Model results
	Can one learn the lensing magnification distribution?
	Correlations between the lensing and population parameters

	Toy Model for Selection Effects
	Towards a realistic scenario

	Conclusion and Future Directions

	References

