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Abstract

This thesis presents a framework to quantify the clustering of gravitational wave (GW) transient
sources and measure their spatial cross-correlation with the large-scale structure of the universe
using k-nearest neighbour (kNN) distributions and two-point summary statistics. We extend the
kNN formalism, initially developed to study 3D clustering in cartesian coordinates, to 2D clus-
tering in angular coordinates. As a first application to data, we measure the nearest-neighbour
distributions of 53 suitably selected Binary Black Hole (BBH) mergers detected in the first three
observation runs of LIGO-Virgo-KAGRA and cross-correlate these sources with ∼1.7×107 galax-
ies and quasars from the WISE×SuperCOSMOS all-sky catalogue. To determine the significance
of the clustering signal while accounting for observational systematics in the GW data, we create
135 realisations of mock BBHs that are statistically similar to the observed BBHs but spatially un-
clustered. We find no evidence for spatial clustering or cross-correlation with large-scale structure
in the data and conclude that the present sky localisation and number of detections are insuffi-
cient to get a statistically significant clustering signal. As a second application of our analysis
framework, we investigate the feasibility of detecting the BBH-galaxy cross-correlation with fu-
ture GW observing runs and stage-IV large-scale structure surveys. We forecast 10 years of GW
observations with a network of 5 ground-based detectors consisting of 3 advanced LIGO detectors
(Hanford, Livingston, India) operating at A+ sensitivity and Virgo, KAGRA operating at design
sensitivity. The resulting BBH catalogue consists of ∼2.8× 104 BBHs, of which ∼1.6× 104

have a 68% credible sky localisation area less than 50 sq. deg. We cross-correlate these mod-
estly well-localised BBHs with the simulated galaxy overdensity field of an LSST Y1-like survey
and find that the second nearest neighbour distribution captures a nearly statistically significant
cross-correlation signal at ∼1◦ angular scales. We further show that this signal is not measured
by the two-point cross-correlation function, demonstrating the ability of the nearest neighbour dis-
tributions to extract higher-order, non-Gaussian clustering from the small spatial scales accessible
with upcoming GW observations and large-scale surveys that makes them more robust measures
of spatial clustering than two-point clustering statistics that capture only the Gaussian clustering
on all scales.
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Chapter 1

Introduction

Large-scale surveys of the universe reveal a beautiful structure in the spatial distribution of galax-
ies (Adelman-McCarthy et al., 2006; Strauss et al., 2002; Stoughton et al., 2002; Falco et al., 1999;
Geller & Huchra, 1989; Huchra et al., 1999; Davis et al., 1982), implying that the constituents of
the universe are not distributed randomly, but are inherently clustered. The clustering properties
of objects, such as galaxies, that trace this structure formation contain a wealth of information that
can be used to test our understanding of cosmology and probe new physics beyond the standard
model (see, e.g., Fumagalli, A. et al., 2024; Amon et al., 2023; DES Collaboration et al., 2023;
Miyatake et al., 2023; Dvornik et al., 2023; DES Collaboration et al., 2022a,b,c). The detection of
gravitational waves by the LIGO-Virgo-KAGRA (LVK) collaboration (LIGO Scientific Collabora-
tion and Virgo Collaboration et al., 2016) has unveiled potential new tracers of structure formation
in the form of merging binaries of compact stellar remnants such as black holes and neutron stars.

Gravitational waves allow a direct measurement of the luminosity distance to their sources (see,
e.g., Holz et al., 2018; Holz & Hughes, 2005; Schutz, 1986) without the need for a hierarchical
distance ladder or an empirical calibration process, with the only fundamental assumption being
that general relativity is valid, making merging compact binaries ‘standard sirens’. Hence, grav-
itational waves provide a mechanism to study the expansion history of our universe if the source
redshifts can be estimated. This led Schutz (1986) to suggest that merging compact binaries can
be used to constrain the Hubble-Lemaı̂tre parameter H0, which characterises the present-day rate
of expansion of the universe.

Since the redshift of a merging binary cannot be inferred directly from its gravitational waves,
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many techniques have been developed in the literature to measure H0 using additional astrophysical
observations (see Mastrogiovanni et al. (2024) for a recent review). For example, the ‘bright siren’
method uses direct electromagnetic counterparts of the merger events to obtain redshifts (Abbott
et al., 2017). In contrast, the statistical dark siren method (see Gair et al. (2023) for a review)
uses galaxy surveys to identify potential hosts of the merger events inside the localisation volumes
provided by gravitational wave observations (Alfradique et al., 2024; Abbott et al., 2021; Palmese
et al., 2020; Soares-Santos et al., 2019). MacLeod & Hogan (2008) proposed a method that uses
galaxy clustering to extract redshift information for a sample of merger events in a statistical sense
to estimate H0 without needing to identify host galaxies for individual merger events. Methods
have also been proposed that try to estimate the redshift of gravitational wave sources by breaking
the mass-redshift degeneracy in gravitational wave analyses; this can be achieved, for example, by
constraining the neutron star tidal deformability or by combining features in the mass distribution
and redshift evolution of merger rate (the so-called ‘spectral siren method’), to measure the source
masses (Abbott et al., 2023; Mancarella et al., 2022; Ezquiaga & Holz, 2022; Mastrogiovanni et al.,
2021; Farr et al., 2019).

All of these methods, however, have various drawbacks (Mastrogiovanni et al., 2024). The
bright siren method relies on detecting rare events accompanied by electromagnetic counterparts
and possibly only applies to binary neutron star (BNS) mergers. The dark siren method suffers
from difficulties due to large localisation volumes of gravitational wave events and is susceptible
to potential biases in the inference of H0 due to the incompleteness of galaxy catalogues (Trott
& Huterer, 2022). The mass-redshift degeneracy method is model-dependent; uncertainties in the
modelling of the neutron star equation of state, or a wrong model of the binary merger rate, can
introduce systematic biases in the cosmological inference (see section 2.3.3 of Mastrogiovanni
et al. (2024) and references therein).

If star-forming regions follow the fluctuations in the underlying cosmological matter field,
merging compact binaries are expected to be inherently clustered and spatially correlated with
other tracers such as galaxies and galaxy clusters (Scelfo et al., 2018). The strength of the cross-
correlation between sources of gravitational waves and the large-scale structure of the universe
is sensitive to cosmological parameters. It can, therefore, be used as an independent probe of
the Hubble-Lemaı̂tre constant (Mukherjee et al., 2022, 2021; Bera et al., 2020; Oguri, 2016), after
marginalizing over the other relevant parameters. As long as the gravitational wave sources and the
galaxy sample trace fluctuations in the same underlying density field, a measurement of their spatial
cross-correlation does not require uniquely identifying the source of each merger event (Fang et al.
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(2020) have a similar discussion in the context of cross-correlations between high-energy neutrinos
and large-scale structure). Therefore, the cross-correlation method of determining H0 does not
suffer from biases due to the incompleteness of the galaxy catalogues used (see Bera et al., 2020,
for a systematic study). Moreover, this method does not require any direct assumptions about the
population properties of the merging binaries. Therefore, it measures H0 nearly independently of
merging binary population models1.

Since the various techniques of measuring H0 using gravitational wave sources discussed above
do not utilise information in the temperature fluctuations of the cosmic microwave background
(CMB) (Aghanim et al., 2020; Ade et al., 2016) or cosmic distance ladder distance measurements
from supernovae and other standard candles (Riess et al., 2022; Riess, 2020; Wong et al., 2020;
Riess et al., 2019, 2018), measuring the cross-correlation between gravitational wave sources and
the large-scale structure of the universe is important in the context of the so-called Hubble Tension
(see Hu & Wang (2023) and Valentino et al. (2021) for comprehensive reviews). In addition to
cosmology, these cross-correlation measurements can also be used to study the astrophysical ori-
gins and formation channels of gravitational wave sources (see, e.g., Gagnon et al., 2023; Adhikari
et al., 2020; Scelfo et al., 2018; Raccanelli et al., 2016). With the third generation of gravitational
wave detectors likely to bring in ∼105 more detections per year (Iacovelli et al., 2022; Borhanian
& Sathyaprakash, 2022), measuring the clustering of these objects and modelling it as a function
of cosmological parameters will, therefore, play an essential role for both precision cosmology and
compact binary astrophysics in the coming decade.

There have been a few attempts to measure the angular two-point correlation function (Zheng
et al., 2023; Cavaglià & Modi, 2020) and the angular power spectrum (Zheng et al., 2023) of the
currently detected LVK events, as well as attempts to measure their spatial cross-correlation with
galaxy catalogues (Mukherjee et al., 2022), but a statistically significant detection of clustering
has not yet been achieved. Studies using forecasts for future detectors have also been performed
(Gagnon et al., 2023; Vijaykumar et al., 2023b; Balaudo et al., 2023; Libanore et al., 2022, 2021;
Calore et al., 2020; Scelfo et al., 2018; Namikawa et al., 2016), primarily focusing on two-point
summary statistics.

In this thesis, we present a framework to quantify the clustering of gravitational wave sources
1It is to be noted, however, that the clustering of gravitational wave sources is also expected to be a function of

bias parameters that model the tracer-matter connection. One needs to marginalise over these parameters to obtain
constraints on cosmological parameters (see, e.g., Peron et al., 2023; Banerjee et al., 2022, and references therein).
Since the bias parameters are controlled by the source population properties (Peron et al., 2023; Raccanelli et al.,
2016), an indirect dependence on population models is introduced in the measurement of H0.
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and their spatial cross-correlation with large-scale structure catalogues using the k-nearest-neighbour
distributions (Banerjee & Abel, 2021a) as summary statistics. The nearest-neighbour measure-
ments are sensitive to all N-point correlation functions of the tracers and hence are a much more
powerful probe of clustering, compared to the two-point function, on scales where the underlying
matter field is not well-approximated as a Gaussian random field, and the effect of gravitational
nonlinearities cannot be neglected (Banerjee & Abel, 2023, 2021a,b). Application of these statis-
tics could, in principle, lead to a detection of the clustering signal from the same datasets used in
previous two-point analyses. To enable this new analysis, we extend the kNN formalism, originally
presented for 3D clustering in cartesian coordinates, to angular clustering in the sky.

As a first application of our analysis framework to data, we compute the auto-correlation of a
suitable subset of the binary black holes (BBHs) detected in the first three observing runs of LVK
and their cross-correlation with the WISE×SuperCOSMOS all-sky survey. We also compare the
results of the two-point and nearest-neighbour analyses. As a second application, we investigate the
feasibility of detecting the BBH-galaxy cross-correlation with future gravitational wave observing
runs and stage-IV large-scale structure surveys. Although we focus on BBHs in this work, our
framework can easily be extended to study the clustering of other gravitational wave transients like
binary neutron stars and neutron star-black hole binaries.

The rest of the thesis is structured as follows. In chapter 2, we develop the mathematical
formalism for clustering statistics and discuss how to compute them numerically. We present the
clustering analysis using the current data in chapter 3. In this chapter, we describe the data used in
this study in section 3.1 and discuss the application of the clustering formalism to this particular
data in section 3.2. Section 3.3 outlines our procedure to determine the statistical significance of
the clustering signal and discusses the hypothesis-testing framework used for this purpose. We
describe the angular scales used in the clustering analysis in section 3.4. In section 3.5, we present
an illustrative example that demonstrates the potential boost in the clustering signal of sparsely
sampled tracers expected from the nearest-neighbour measurements on small spatial scales over
the two-point summary statistics. We present our results in section 3.6 and conclude chapter 3 by
discussing some interesting aspects of our findings in section 3.7. Chapter 4 presents the results of
our forecast study. We describe the mock data created for the forecasts in section 4.1 and present
our findings in section 4.2. Finally, we summarise, draw conclusions, and discuss possible future
directions in chapter 5. Some additional material is presented in the appendices.

10



Chapter 2

Mathematical Formalism

In this chapter, we describe the summary statistics used to quantify clustering strength. For each
statistic, we give a mathematical definition followed by a computational recipe to calculate the
clustering strength for given data using that particular statistic. We discuss the auto-clustering of
a set of discrete tracers in section 2.1, the cross-clustering between two different sets of tracers
in section 2.2, and the cross-clustering between a set of discrete tracers and a continuous field in
section 2.3.

2.1 Auto-clustering

Consider a set X of NX discrete, point-like tracers or data points1.

X ≡ {(δ1,α1) ,(δ2,α2) , ...,(δNX ,αNX )} (2.1)

where δi, αi represents the declination and right ascension of the ith tracer in celestial equatorial
(J2000) coordinates. In polar coordinates, the position of the ith tracer is given by

θi = δi −π/2 (2.2)

φi = αi (2.3)

1We use tracer and data point interchangeably.
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To study clustering, we need a metric for the distance between two points (δ1,α1) ,(δ2,α2) in
the sky. A natural choice is the great-circle distance given by d = θ , where θ is the central angle
between the two points on the sphere. Note that we treat the sky as a unit sphere; hence, the radius
term that usually multiplies the angle to get the distance is absent. The central angle between
(δ1,α1) ,(δ2,α2) is computed using the haversine formula (RIOS, 1795)

hav(θ) = hav(δ2 −δ1)+ cosδ1 cosδ2hav(α2 −α1) (2.4)

where hav(θ)≜ sin2 (θ/2) is the haversine function.

2.1.1 Two-point statistics

The sky positions of the tracers X can be used to define a number density field nX(θ ,φ) in the sky,
such that ∫

Allsky
nX(θ ,φ)sinθdθdφ = NX (2.5)

This can be done numerically, for example, by dividing the sky into equal-area pixels using some
pixelating scheme and counting the number of tracers in each pixel divided by the area of each
pixel. Let the average tracer number density in the sky be n̄X = NX

4π
. The overdensity field is given

by

δX(θ ,φ) =
nX(θ ,φ)

n̄X
−1 (2.6)

The overdensity field contains all the information about the auto-clustering of the tracer set A. By
expanding δX(θ ,φ) into spherical harmonics, one can derive the angular power spectrum C X ,X

ℓ , a
widely used two-point summary statistic for clustering:

δX(θ ,φ) = ∑
ℓm

α
X
ℓmYℓm(θ ,φ) (2.7)

C X ,X
ℓ =

1
2ℓ+1

ℓ

∑
m=−ℓ

|αX
ℓm|2 (2.8)

Where ℓ goes from 0 to ∞ and m takes values from −ℓ to ℓ. In practice, the summation is cut
off at some ℓmax determined by the resolution of the numerical grid on which the field is defined.
The power spectrum CX ,X

ℓ at a particular value of ℓ quantifies the clustering strength at an angular
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scale corresponding roughly to θ ≈ π/ℓ. In this study, we use the HEALPix2 scheme (Górski
et al., 2005) as implemented in the python library healpy3 (Zonca et al., 2019) to compute the
overdensity field on a grid of equal-area pixels in the sky. We use the healpy’s anafast routine
to compute the power spectra. We choose the default high-ℓ cutoff of 3NSIDE - 1 in our analysis.

An equivalent measure of spatial clustering of a set of tracers is the two-point auto-correlation
function, wX ,X(θ), which captures the excess probability of finding two data points separated by an
angular distance of θ in the sky over finding two points drawn from a random (Poisson) distribution
in the sky. Mathematically,

wX ,X(θ) =

〈
δX(Ω̂1)δX(Ω̂2)

〉
Ω̂1·Ω̂2=cosθ

(2.9)

where Ω̂1 and Ω̂2 are unit vectors separated by an angular distance θ in the sky such that Ω̂1 ·Ω̂2 =

cosθ , and the angular brackets denote an average over all such configurations of Ω̂1 and Ω̂2. It can
be shown that the angular power spectrum is related to the two-point function of the tracers in the
following way:

wX ,X(θ) =
1

4π
∑
ℓ

(1+2ℓ)C X ,X
ℓ Pℓ (cosθ) (2.10)

Where Pℓ (cosθ) denotes the Legendre polynomial of order ℓ and argument cosθ . Therefore, the
two-point function and the angular power spectrum encode the same physical information about
the clustering of the tracer set X ; the angular power spectrum is a two-point clustering statistic.

In practice, the two-point function is numerically computed directly from the angular positions
of the NX data points and a set of Nr randomly distributed points using the Landy-Szalay estimator
(Landy & Szalay, 1993)

ŵX ,X(θ) =
(N2

r )DD(θ)−2(NrNX)DR(θ)+(N2
X)RR(θ)

(N2
X)RR(θ)

(2.11)

where DD, DR and RR refer to the number of data-data, data-random and random-random pairs
separated by an angular distance θ . Typically, the number of randoms is chosen to be significantly
larger than the number of data points (Nr ≫ NX ).

2https://healpix.sourceforge.io/
3https://healpy.readthedocs.io/en/latest/
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2.1.2 Nearest-neighbour distributions

The nearest-neighbour distributions as a measure of spatial clustering in 3D were introduced in
Banerjee & Abel (2021a). Here, we briefly summarise the idea behind these statistics and extend
the mathematical formalism to 2D clustering in the sky using angular coordinates.

The key idea that motivates the nearest-neighbour clustering framework is as follows: all the
physical information about the clustering of a set of discrete tracers is contained in the distribution
of their number counts, ie., the number of tracers enclosed inside a randomly chosen spatial region
of a given spatial extent. The spatial regions can have an arbitrary geometrical shape, as long as
there is a way of assigning a spatial extent to them. Since we are concerned with tracers in the sky,
which is represented by the surface of a 3-sphere, we choose to work with spherical caps of area
A = 2π(1− cosθ) to study clustering at an angular scale θ 4.

Suppose we are given the positions of a set X of discrete tracers. Given the discussion above,
the fundamental quantity that quantifies their clustering at spatial scale θ is the probability Pk|A
of finding k data points of X in a randomly placed spherical cap of area A in the sky. Pk|A can be
written in terms of a generating function as

P(z|A)≜
∞

∑
k=0

Pk|Azk (2.12)

or,

Pk|A =
1
k!

[(
d
dz

)k

P(z|A)
]

z=0

(2.13)

For the case of spherical caps, it can be shown that the generating function is given by (Banerjee
& Abel, 2021a)5

P(z|A) = exp
[

∞

∑
k=1

n̄k
X (z−1)k

k!

∫
A
...

∫
A

dΩ̂1...dΩ̂kω
(k) (

Ω̂1, ...Ω̂k
)]

(2.14)

where ω(N) are the N-point correlation functions of the underlying field of the tracers X , with
ω(0) = 0 and ω(1) = 1 by definition6. Equation 2.14 shows the connection between the number

4Henceforth, we use θ and A interchangeably.
5See appendix A of Banerjee & Abel (2021a) or references therein for a derivation in the context of 3D clustering

in cartesian coordinates.
6Note that the N-point functions are defined analogously to the two-point auto-correlation function defined earlier.
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count distribution and the correlation functions that are usually employed to measure clustering.

An equivalent measure of clustering is the cumulative distribution of the tracer number counts,
which represents the probability P>k|A of having more than k tracers in a randomly chosen spher-
ical cap of A. By definition, this is equal to the sum of the probabilities of having k+1, k+2, ...
tracers in area A:

P>k|A = 1−
k

∑
m=0

Pm|A (2.15)

P>k|A can also be expressed in terms of a generating function C(z|A)

C(z|A)≜
∞

∑
k=0

P>k|Azk (2.16)

By plugging in equation 2.15 in equation 2.16 and simplifying the resulting expansion following
Banerjee & Abel (2021a), we can express C(z|A) in terms of P(z|A) as

C(z|A) = 1−P(z|A)
1− z

(2.17)

which allows us to determine P>k|A

P>k|A =
1
k!

[(
d
dz

)k

C(z|A)
]

z=0

(2.18)

From equations 2.14 to 2.18, it is not clear how to compute these distributions without first com-
puting all higher-order correlation functions. Following Banerjee & Abel (2021a), we now discuss
another interpretation of the cumulative count distributions that allows us to compute P>k|A di-
rectly from the positions of the tracers. The count distributions Pk|A can then be calculated trivially
using Pk|A = P>k−1|A −P>k|A.

Consider a set of Nr area-filling, randomly distributed query points in the sky, such that Nr ≫
NX . Each query point will have a data point in X that is nearest to it, a data point that is second-
nearest to it and so on. The distributions of the distances to these neighbouring data points, over
all query points in the sky, are directly connected to the count distributions discussed above. We
argue that the cumulative distribution function (CDF) of the distances from the query points to the

In fact, ω(2) ≡ w. However, for N > 2, ω(N) are defined as functions of N unit vectors
{

Ω̂1, ...,Ω̂N
}

instead of a single
angular separation θ , and the average is performed over all possible configurations preserving the polyhedron formed
by the N vectors.
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k-nearest-neighbour data point, or kNN-CDF, is precisely equal to P>k−1|A.

To understand this connection, let us examine the case of k = 1. Consider Nr spherical caps of
area A = 2π (1− cosθ), the centres of which are distributed randomly in the sky. The fraction of
such caps enclosing at least 1 data point is equal to that of cap centres with the angular distance to
their nearest neighbour less than θ . The nearest-neighbour CDF at angular scale θ is the precise
measure of the fraction of query points (equivalent to centres of the spherical caps) for which
the nearest data point is at a distance less than θ . This argument can be easily generalised if we
consider the k-nearest-neighbour instead of the first nearest-neighbour. Therefore, we conclude

P>k−1|A = CDFkNN(θ) (2.19)

In practice, the kNN-CDFs are simple to calculate in a computationally efficient manner. We
start by creating a HEALPix grid of query points with a sufficiently high value of NSIDE, such
that the resolution of the query grid is much finer than the smallest angular scale at which we
want to study spatial clustering. As noted in Banerjee & Abel (2021a), placing query points on a
finely spaced grid gives the same results as randomly distributed query points, as long as the grid
separation is much smaller than the mean interparticle separation of the data. Next, we compute the
distances to the k-nearest-neighbour data point of each query point. The nearest-neighbour search
is carried out very efficiently by constructing a Ball tree structure (Omohundro, 2009) on the data
points. Once a tree is built, it can be used to calculate the distances to the first k neighbouring
data points for all query points simultaneously. Sorting the computed distances for each neighbour
index k immediately gives the empirical CDF of the k-nearest-neighbour distances over a range of
spatial scales. The empirical CDF converges to the true kNN-CDF in the limit of a large number of
query points. In this study, we utilise the sklearn.neighbors.BallTree routine from the library
scikit-learn7 (Pedregosa et al., 2012) with the haversine distance metric for our purposes.

It is evident from equation 2.14 that the count distributions P>k|A, and hence the kNN-CDFs,
are formally sensitive to integrals of all N-point correlation functions of the underlying tracer
field. This makes these summary statistics extremely powerful probes of clustering on small spatial
scales where the higher-order correlation functions contribute significantly. The interested reader is
referred to Banerjee & Abel (2021a) for a detailed study of the gain in clustering measurements as
well as cosmological constraints achieved using the kNN-CDFs over two-point clustering statistics.

7https://scikit-learn.org/
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2.2 Tracer-tracer Cross-clustering

So far, we have worked with a single set of tracers X . Consider now another set of discrete tracers
Y . These could be (possibly biased) tracers of the same underlying field that the set X traces or of
another field that is physically correlated to the field traced by X , in which case the positions of
the tracers X and Y are expected to be cross-correlated. In this section, we describe the summary
statistics that measure the extent of this correlation. Of course, it is also possible that X and Y trace
completely independent fields. In that case, there would be no cross-correlation in the positions of
X and Y . As we will see, the summary statistics defined below can be associated with a unique
fiducial value that indicates the absence of correlations.

2.2.1 Two-point statistics

As discussed in section 2.1.1, we can define overdensity fields δX and δY from the positions of the
discrete tracers X and Y , and expand both δX and δY in spherical harmonics

δX(θ ,φ) = ∑
ℓm

α
X
ℓmYℓm(θ ,φ)

δY (θ ,φ) = ∑
ℓm

α
Y
ℓmYℓm(θ ,φ)

The cross angular power spectrum between X and Y is defined as

C X ,Y
ℓ =

1
2ℓ+1

ℓ

∑
m=−ℓ

{
α

X
ℓm
}∗

α
Y
ℓm (2.20)

We compute the cross angular power spectrum in a similar manner to the auto angular power
spectrum, using healpy’s anafast routine.

Similarly, the two-point cross-correlation function is defined as

wX ,Y (θ) =

〈
δX(Ω̂1)δY (Ω̂2)

〉
Ω̂1·Ω̂2=cosθ

(2.21)

where the angular brackets denote an average over configurations of unit vectors separated by a
fixed central angle θ as before. In practice, the two-point cross-correlation function between X and
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Y is computed using their angular positions in a very similar way to the two-point auto-correlation
function of X . Here we need to create two sets of randoms (one for each tracer set) containing
N1

r ≫ NX and N2
r ≫ NY points. Using these, the Landy-Szalay estimator provides a measure of the

two-point cross-correlation function as (Landy & Szalay, 1993)

ŵX ,Y (θ) =
N1

r N2
r DX DY (r)−N1

r NY D1R2(r)−N2
r NX D2R1(r)+NX NY R1R2(r)

NX NY R1R2(r)
(2.22)

where DX DY , R1R2 and DiR j refer to the number of data-data, random-random and data-random
pairs separated by an angular distance θ 8.

If X and Y trace fields that are statistically independent, ie., if X and Y are spatially uncor-
related, then the angular power spectrum and the two-point cross-correlation function both are
expected to be zero. However, in practice, their measured values can fluctuate from zero even for
uncorrelated tracers due to finite-sampling noise. Therefore, to determine if a non-zero measure-
ment of C X ,Y

ℓ or ŵX ,Y actually represents a cross-clustering signal, it is important to characterize
the errors in these statistics due to sample variance. We will discuss the procedure to do this in
detail in chapter 3.

2.2.2 Nearest-neighbour distributions

The nearest-neighbour framework for measuring the spatial cross-correlations between two sets of
tracers was introduced in Banerjee & Abel (2021b) for 3D cartesian coordinates. In this section,
we briefly discuss the conceptual ideas and extend the mathematical formalism to 2D clustering in
the sky using angular coordinates.

We discussed in section 2.1.2 that the physical information needed to characterize the clustering
of a set of tracers X is contained in the distribution of number counts of X in randomly placed
spherical caps in the sky. Similarly, the extent to which two discrete tracers X and Y are cross-
correlated is characterized by the joint distribution of number counts of X and Y . More precisely,
the quantity of interest is the joint probability PkX ,kY |A of finding kX data points of X and kY data
points of Y in randomly placed spherical caps of area A in the sky. PkX ,kY |A can be expressed in

8Note that the pairs considered in the above expression are always X-Y pairs, and never X-X pairs, since we are
computing a cross-correlation.
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terms of a generating function P(zx,zy|A) as follows (Banerjee & Abel, 2021b)

P(zX ,zY |A)≜
∞

∑
kX=0

∞

∑
kY=0

(
PkX ,kY |A

)
zkX

X zkY
Y (2.23)

or,

PkX ,kY |A =
1

kX !
1

kY !

[(
d

dzX

)kX
(

d
dzY

)kY

P(zx,zy|A)
]

zX ,zY=0

(2.24)

The generating function encapsulates the connection between the joint number counts and the
cross-correlation functions ω(kX ,kY ) between the underlying fields traced by X and Y at all orders,
and is given by (Banerjee & Abel, 2021b)9

P(zX ,zY |A) = exp
[

∞

∑
kX=1

∞

∑
kY=1

n̄kX
X (zX −1)kX

kX !
n̄kY

Y (zY −1)kY

kY !

∫
A

dΩ̂1...dΩ̂kX dΩ̂
′
1...dΩ̂

′
kY

ω
(kX ,kY )

]
(2.25)

Note that ω(kX ,kY ) represents the correlation function between kX factors of δX and kY factors of
δY , and is defined as

ω
(kX ,kY )(Ω̂1...Ω̂kX ;Ω̂

′
1...Ω̂

′
kY
) =

〈
δX(Ω̂1)...δX(Ω̂kX )δY (Ω̂

′
1)...δY (Ω̂

′
kY
)

〉
(2.26)

where the average is over all possible configurations of unit vectors {Ω̂1...Ω̂kX ;Ω̂
′
1...Ω̂

′
kY
} that

form the same polyhedron10. Note that ω(N,0) and ω(0,N) represent the N-point auto-correlation
functions of X and Y respectively, and ω(1,1) represents the two-point cross-correlation function
defined in section 2.2.1.

An equivalent quantity to characterise cross-clustering between X and Y is the joint probability
P≥kX ,≥kY |A of finding more than kX data points of X and more than kY data points of Y in randomly
placed spherical caps of area A. One can define a generating function C(zX ,zY |A) for P>kX ,>kY |A:

C(zX ,zY |A)≜
∞

∑
kX=0

∞

∑
kY=0

(
P>kX ,>kY |A

)
zkX

X zkY
Y (2.27)

9See appendix A of Banerjee & Abel (2021b) for a derivation in 3D cartesian coordinates. The argument is similar
for 2D angular coordinates.

10While the two-point function is a function of an angle, the higher order correlation functions are functions of
polyhedra.
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Now, by definition

P>kX ,>kY |A = 1−
kX

∑
mX=0

PmX |A −
kY

∑
mY=0

PmY |A +
kX

∑
mX=0

kY

∑
mY=0

PmX ,mY |A (2.28)

Using equations 2.27 and 2.28, C(zX ,zY |A) can be written as (Banerjee & Abel, 2021b)

C(zX ,zY |A) =
1−P(zX |A)−P(zY |A)+P(zX ,zY |A)

(1− zX)(1− zX)
(2.29)

where P(z|A) is the generating function for the individual number count distribution given by
equation 2.14. Finally, P>kX ,>kY |A can be expressed as

P>kX ,>kY |A =
1

kX !
1

kY !

[(
d

dzX

)kX
(

d
dzY

)kY

C(zx,zy|A)
]

zX ,zY=0

(2.30)

From the generating function, it is evident that the joint number count distributions are sensitive
to all higher-order correlation functions of the underlying fields traced by X and Y , therefore these
statistics are expected to be more potent measures of clustering than the individual correlation
functions. Now that we have a formalism in place that connects the cumulative joint number
counts of the tracers to the cross-correlation between their underlying fields, we discuss an alternate
interpretation that allows for efficient measurement of these probabilities using the positions of the
tracers without having to compute the higher-order correlation functions. The argument presented
below is very similar to the one presented in section 2.1.2.

Suppose we want to compute the value of P>kX−1,>kY−1|A. Consider a set of Nr area-filling,
randomly distributed query points in the sky, such that Nr ≫ NX ,NY . To each query point, we can
assign two nearest-neighbour data points, one belonging to the tracer set X and the other to Y .
The same can be done for the second-nearest neighbour, third-nearest neighbour and so on. Then,
we can compute the query point’s distances to the kX -nearest neighbour in X and the kY -nearest
neighbour in Y . We argue that the cumulative distribution function (CDF) of the larger of these
two distances, evaluated at distance θ , is exactly equal to the probability P>kX−1,>kY−1|A. We call
this CDF the joint {kX ,kY}NN-CDF of the tracers X and Y .

To understand this connection, consider the case of kX = kY = 1. At a fixed distance scale θ , the
value of the joint {1,1}NN-CDF represents the fraction of spherical caps of area A centred at the
query points for which the angular distances to the nearest-neighbour data point in X and Y are both
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smaller than θ , since it is defined as the fraction for which the larger of the two nearest-neighbour
distances is smaller than θ . In the limit of large and area-filling query points, this fraction is
equivalent to the probability of finding at least one data point of both X and Y in randomly chosen
spherical caps of area A. This argument easily generalises for any given kX ,kY pair. Hence, we
conclude,

P≥kX ,≥kY |A = CDFkX ,kY (2.31)

Now, it is clear from the generating function (equation 2.25) that the joint CDFs depend not
only on the cross-correlation functions of the two tracers but also on the auto-correlation functions.
As discussed in (Banerjee & Abel, 2021b), there is a way to isolate the dependence on the cross-
correlation functions to get a purer measure of the spatial cross-correlation of X and Y . We describe
this below.

If the fields traced by X and Y are statistically independent, meaning that X and Y are spatially
uncorrelated, then all the cross-correlation functions are identical zero, i.e., ω(kX ,kY ) is non-zero
only when either kX = 0 or kY = 0. This combined with equations 2.25 and 2.29 implies that
the generating functions for the joint number counts and cumulative number counts factorise into
products of the individual number count and cumulative number count distributions (Banerjee &
Abel, 2021b)

P(zX ,zY |A) = P(zX |A)P(zY |A) (2.32)

C(zX ,zY |A) =C(zX |A)C(zY |A) (2.33)

Therefore, for spatially uncorrelated tracers, we have the following factorisation

P≥kX ,≥kY |A = P≥kX |A ×P≥kY |A (2.34)

This fact provides a convenient way to define a summary statistic that measures the excess cross-

correlation between the two sets of tracers

ψkX ,kY ≜ P≥kX ,≥kY |A/
(
P≥kX |A ×P≥kY |A

)
(2.35)

or equivalently
ψkX ,kY = CDFkX ,kY /(CDFkX NN ×CDFkY NN) (2.36)

where CDFkNN is the auto-CDF of a single set of tracers, as defined in section 2.1.2. This is a very
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useful quantity, as a positive (negative) measurement for ψkX ,kY −1 would indicate that the tracer X

is correlated (anti-correlated) with the field δY , while ψkX ,kY −1 = 0 would indicate that the there is
no spatial cross-correlation between them. In this thesis, we report all our cross-correlation results
in the form of the excess cross-correlation ψkX ,kY .

The computational recipe for computing the nearest-neighbour excess cross-correlation is as
follows (Banerjee & Abel, 2021b):

1. Create a set of area-filling query points by creating a finely-spaced HEALPix grid in the sky,
such that the number of pixels Npix is far greater than the number of data points of both sets
of tracers.

2. Build a Ball tree from both sets of tracer positions and estimate the query points’ angular
distances to the kX -nearest neighbour data point in X and the kY -nearest neighbour data point
in Y . For each query point, separately store the larger of the two nearest-neighbour distances.

3. Sort both sets of nearest-neighbour distances to produce the empirical kX and kY NN-CDFs
of X and Y over a range of angular scales θ .

4. Sort the larger set of distances stored in step (ii) to obtain the empirical joint {kX ,kY}NN-
CDF over the range of angular scales considered in step (iii).

5. From the quantities calculated above, compute the excess cross-correlation using equa-
tion 2.36.

2.3 Tracer-field Cross-clustering

We now describe the summary statistics for measuring the spatial cross-correlation between a set
of discrete tracers, X , and a continuous field δY . We only consider continuous fields in the form
of dimensionless fluctuations in a quantity, i.e., fields that are bounded below by -1 and average
to 0. The continuous field could be an overdensity field derived from another sample of tracers,
such as the galaxies relevant for this study, or a true continuum field like the CMB temperature
fluctuations.
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2.3.1 Two-point statistics

The cross angular power spectrum and the two-point cross-correlation function between tracer X

and field Y are both defined exactly as for two tracers X and Y :

C X ,Y
ℓ =

1
2ℓ+1

ℓ

∑
m=−ℓ

{
α

X
ℓm
}∗

α
Y
ℓm

wX ,Y (θ) =

〈
δX(Ω̂1)δY (Ω̂2)

〉
Ω̂1·Ω̂2=cosθ

The only difference is that we do not need to create an overdensity field for Y since it already is one.
The numerical computation for the cross angular power spectrum remains the same. However, the
interpretation of the two-point cross-correlation function and the method to estimate it numerically
differs from the methods followed in section 2.1.1 and section 2.2.1. Using δX = (1+δX)−1 and
rewriting the average in equation 2.21 as an integral, we get

wX ,Y (θ) =
1

N

∫
All sky

dΩ̂1
(
1+δX(Ω̂1)

)∫
Ω̂1·Ω̂2=cosθ

dΩ̂2δY (Ω̂2)−
1

N

∫
All sky

dΩ̂2δY (Ω̂2)

where N is some normalisation constant. Now, by definition, the average of an overdensity field
is zero, so the second term in the above expression drops out. Let us look at the first term in more
detail. Since the data points in X trace the underlying density field n̄X (1+δX), (1+δX) can be
treated as an (unnormalised) probability density function. Therefore, the integral over Ω̂1 can be
approximated by an average over the positions of the tracers X as follows

ŵX ,Y (θ) =
1

NX
∑

Ω̂1∈X

∫
Ω̂1·Ω̂2=cosθ

dΩ̂2δY (Ω̂2)

The summand in the above expression is nothing but the continuous field δY smoothed over a thin
spherical band of inner radius θ and thickness dθ , centred at position Ω̂1. Therefore, the estimator
for the two-point cross-correlation function between the tracers X and continuous field δY is given
by

ŵX ,Y (θ) =
1

NX
∑

Ω̂1∈X

δ
θ
Y,band(Ω̂1) (2.37)
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The field δY smoothed over a thin spherical band is given by

δ
θ
Y,band =

A(θ +dθ)δ θ+dθ

Y −A(θ)δ θ
Y

A(θ +dθ)−A(θ)
(2.38)

where δ θ
Y is the field Y smoothed over a spherical cap of angular size θ and area A(θ). In the limit

of NX → ∞, the estimator ŵX ,Y (θ) approaches the true value for wX ,Y (θ). Therefore, similar to
Banerjee & Abel (2023), in practice, we compute the two-point cross-correlation by averaging δY

in spherical bands at angular radius θ and thickness dθ , around the positions of all data points in
the tracer sample X .

2.3.2 Nearest-neighbour distributions

Banerjee & Abel (2023) generalised the kNN formalism to study tracer-field cross-correlations in
3D using the nearest-neighbour distributions. Here, we summarise the main points in the context
of 2D angular clustering. First, we discuss the behaviour of the kNN-CDFs of a set of tracers of
the field δY as their average number density n̄Y tends to infinity, i.e., the continuum limit of the
kNN-CDFs.

As discussed in section 2.1.2, the probability of finding at least k tracers in a randomly centred
spherical cap of area A = 2π (1− cosθ) in the sky is connected to the kNN-CDF evaluated at the
angular scale θ

P≥k|A = CDFkNN(θ)

Since the tracers represent a local Poisson process on the field δY , the probability of finding exactly
k tracers in a spherical cap of area A centred at point Ω̂ is given by

Pk|A(Ω̂) =

[
λ (Ω̂)

]k

k!
e−λ (Ω̂) (2.39)

where
λ (Ω̂) = n̄Y A

(
1+δ

θ
Y (Ω̂)

)
(2.40)

In the limit n̄Y → ∞ while keeping δY unchanged, as discussed in Banerjee & Abel (2023), the
distribution in equation 2.39 can be well approximated by a Gaussian of vanishingly small width,
which implies

Pk|A(Ω̂)→ δ
D(k−λ (Ω̂))
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where δ D is the Dirac delta function. This, combined with equation 2.40, means the following:
the probability of finding exactly k tracers of δY in a spherical cap of angular radius θ located at a
point is non-zero when δY smoothed on scale θ is vanishingly close to δ ∗ where n̄Y A(1+δ ∗) = k.
In other words, for a given spherical cap, the value of k for discrete tracers gets mapped onto a
specific value of enclosed overdensity, and we can write

Pk|A(Ω̂)→ δ
D(δ θ

Y (Ω̂)−δ
∗)

Since Pk|A depends on the centre of the spherical cap only through the smoothed field, any integral
over the centres Ω̂ can be rewritten as an integral over possible values of the smoothed field δ θ

Y .
Hence, the area-averaged probability of finding k tracers points in spherical caps of angular radius
θ can be written in terms of the probability density function (PDF) φ(δ θ

Y ) of the smoothed field

Pk|A =
∫

All sky
dΩ̂Pk|A(Ω̂)→

∫
δ

D(δ θ
Y −δ

∗)φ(δ θ
Y )dδ

θ
Y ∝ φ(δ ∗)

Finally, the expression for the probability of finding at least k tracers points in spherical caps of
angular radius θ will be mapped onto the probability of getting δ θ

Y > δ ∗

P≥k|A → P>δ ∗(θ) =
∫

∞

δ ∗
φ(δ θ

Y )dδ
θ
Y = 1−CDF(δ ∗) (2.41)

Equation 2.41 implies that the continuum version of the kNN measurements at a spatial scale θ

are thresholded evaluations of the CDF of the smoothed continuous field δ θ
Y . As discussed above,

the nearest-neighbour index k for discrete data maps to a threshold δ ∗ on the smoothed continuous
field11.

Now that we have the analogue of the kNN-CDFs for a continuous field, we discuss the char-
acterisation of spatial cross-correlations using the kNN formalism. Following Banerjee & Abel
(2023), the joint probability P≥k,>δ ∗(θ) of finding at least k tracers and the smoothed continu-
ous field δ θ

Y to cross threshold δ ∗ in spherical caps of angular radius θ is taken as a measure of
the spatial cross-correlations between tracers and a continuous field. Assuming that the tracers X

represent a local Poisson process on the overdensity field δX , we have, similar to Banerjee & Abel
(2023),

Pk,>δ ∗(θ) =
∫

∞

δ ∗

[
λ (δ θ

X )
]k

k!
e−λ (δ θ

X )φ(δ θ
X ,δ

θ
Y )dδ

θ
X dδ

θ
Y (2.42)

11Note that at fixed k, δ ∗ is also a function of θ , as evident from its definition
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where φ(δ θ
X ,δ

θ
Y ) is the joint probability distribution of the two fields when smoothed on angular

scale θ . The quantity of our interest, P≥k,>δ ∗ , can be written in terms of Pk,>δ ∗ as

P≥k,>δ ∗ = P>δ ∗ − ∑
j<k

P j,>δ ∗ (2.43)

Suppose the tracers X are completely uncorrelated and statistically independent of the continuous
field δY . In that case, the joint distribution function can be factored into a product of the individual
PDFs of the smoothed fields, i.e., φ(δ θ

X ,δ
θ
Y ) ∝ φ(δ θ

X ) φ(δ θ
Y ). In this case, we have (Banerjee

& Abel, 2023) P≥k,>δ ∗ = P≥k ×P>δ ∗ . Similar to the case of tracer-tracer cross-correlations
discussed in section 2.2.2, this can be used to define a convenient summary statistic that measures
the excess cross-correlation between the tracers and the continuous field:

ψk,δ∗ ≜ P≥k,>δ ∗/(P≥k ×P>δ ∗) (2.44)

As discussed before, a positive (negative) measurement for ψk,δ∗−1 would indicate that the tracer
X is correlated (anti-correlated) with the field δY , while ψk,δ∗−1 = 0 would indicate that the there
is no spatial cross-correlation between them.

All the physical information about the spatial cross-correlation between fluctuations in the sky
distribution of tracer X and the field Y is contained in the joint distribution φ(δ θ

X ,δ
θ
Y ). There-

fore, it is clear from equations 2.42 to 2.44 that the excess cross-correlation, as defined using the
nearest-neighbour distributions, will be sensitive not just to the linear or Gaussian correlations in
the density fluctuations of the tracers and the continuous field, but to correlations in fluctuations at
all orders (See Banerjee & Abel (2023) for a detailed demonstration). Therefore, the kNN formal-
ism provides a powerful way to characterise cosmological cross-correlations.

The joint probability distributions P≥k,>δ ∗ and excess cross-correlations ψk,δ∗ are simple to
compute numerically. We follow the procedure laid out in Banerjee & Abel (2023)

1. Create a set of area-filling query points by creating a finely-spaced HEALPix grid in the sky,
such that the number of pixels Npix is far greater than the number of data points.

2. Build a Ball tree from the set of tracer positions and estimate the angular distances to the
k-nearest neighbour data points from each query point. For each k, sort the distances to
produce the empirical kNN-CDF over a range of angular scales θ . In the limit of large Npix,
the empirical CDF approaches P≥k.
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3. Smooth the continuous field δY on an angular scale θ using a top-hat filter. The smoothing
is done in harmonic space using the {αY

ℓm} of the field, computed via spherical harmonic
transforms, to speed up the computation time (see appendix A for details). Interpolate the
smoothed field on the query grid defined in step (i).

4. For a given k and threshold δ ∗, compute the fraction of query points for which the kth nearest-
neighbour lies at an angular distance less than θ and the smoothed field, interpolated to that
grid point, exceeds δ ∗. In the limit of large Npix, this fraction approaches P≥k,>δ ∗ .

5. Compute the fraction of query points for which the smoothed field, interpolated to the grid
point, exceeds δ ∗. In the limit of large Npix, this fraction approaches P>δ ∗ .

6. From the quantities calculated above, compute the excess cross-correlation using equa-
tion 2.44.

7. Repeat steps (iii) to (vi) for different values of the angular scale θ .

While the choice of k is straightforward, it is not clear at first how to decide the threshold value
δ ∗ for the continuous field, especially as it varies with the spatial scale being considered. In this
study, we choose the constant percentile threshold described in Banerjee & Abel (2023). We define
δ ∗ = δ75, the value of the 75th percentile of δ θ

Y . This choice implies that P>δ ∗ = 0.25 irrespective
of the smoothing scale θ .
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Chapter 3

Clustering Measurements on Current Data

3.1 Data

In this section, we discuss the data used in this study. We describe the gravitational wave events se-
lected for this work in section 3.1.1. Typically, a mock catalogue of unclustered data points (known
as ‘randoms’ in the literature) is required to get a reliable measurement of the statistical signifi-
cance of the clustering signal in the presence of observational selection biases (see., e.g., Wang
et al., 2022). In section 3.1.2, we motivate this requirement for the specific case of gravitational
wave data, discuss the procedure to create the unclustered catalogue, and present the resulting
mock data. Finally, we describe the large-scale structure catalogue used for cross-correlating the
BBHs in section 3.1.3.

3.1.1 Gravitational Wave Events

This work uses the compact binary merger events detected in the first three observing runs of
LIGO-Virgo-KAGRA, as reported in LIGO Scientific Collaboration et al. (2023b). Following
Zheng et al. (2023), from this parent set of ∼80 events, we select the events detected with a false
alarm rate (FAR) less than 1 per year and crossed a detection threshold of network matched-filtered
signal-to-noise ratio (SNR) greater than 10. Since we are interested in binary black holes (BBHs),
we further restrict our sample to those events that have a probability of being a BBH merger greater
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than 0.51.

Zheng et al. (2023) restrict their sample to events detected in all three detectors that were in
science mode during the LVK observing period, namely LIGO Livingston, LIGO Hanford (LIGO
Scientific Collaboration et al., 2015) and Virgo (Accadia et al., 2012), to get better-localised events.
However, this step removes a significant fraction of the BBHs selected above. Since it is not
clear a priori whether the resulting gain in sky localisation accuracy would compensate for the
reduction in the BBH sample size, we keep two-detector events in our final sample. To ensure
better homogeneity in the sky localisations of the BBHs, we remove all events from our sample
detected before the Virgo detector joined the observing run. Note that a non-detection in one of the
detectors does carry some information about the location of the merger event in the sky. Hence,
the two-detector events not detected in Virgo when it is in science mode are still expected to be
better localised than those observed in the absence of Virgo.

Finally, we are left with 53 BBHs that constitute our observed catalogue. Using the param-
eter estimation posterior samples on declination and right ascension made publicly available by
the LVK collaboration, we generate skymaps for each event representing the uncertainty in their
localisation in the sky. Figure 3.1 shows a combined skymap of all events generated by stacking
the individual skymaps. We summarise the properties of the observed BBHs in Figure 3.2.

3.1.2 Mock BBH Catalogue

In this section, we describe the procedure to create the mock BBH catalogue that will serve as
the set of ‘randoms’ used for the clustering analysis. At first, it appears that simply distributing
points uniformly in the sky should be sufficient, as the resulting data set would be unclustered
and uncorrelated with large-scale structure. This would be a valid approach if we had perfect
observations of a sample of BBHs representative of the entire BBH population in the universe.
Unfortunately, due to the limited sensitivity of the current gravitational wave detectors, the data
are plagued with selection biases and systematic effects; the BBHs selected for this study do not
constitute a representative sample of the population2. Furthermore, the detectors are not equally
sensitive to all regions in the sky; each detector is most sensitive to the merger events that go off

1The classification probabilities were calculated using the GW package of PESummary (Hoy & Raymond, 2021).
2It should be noted, however, that the third generation of gravitational wave detectors is expected to detect almost

all BBH mergers in the universe up to a very high redshift (Iacovelli et al., 2022; Borhanian & Sathyaprakash, 2022;
Hall & Evans, 2019).
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Figure 3.1: Mollweide projection of the combined skymap of the 53 observed events in equatorial (J2000)
coordinates. Each banana-shaped cloud represents a single BBH. Skymaps were generated using parameter
estimation posterior samples for each event through the Healpy package. The colour represents the number
of posterior samples per pixel in a logarithmic scale. The HEALPix NSIDE for this map is 64.

directly on top of it, i.e., perpendicular to the plane of detector arms. This is a consequence of the
transverse nature of gravitational waves. As a result, there is a selection function in the sky for the
detector network as a whole (see Chen et al. (2017) for example). These observational systematics
have to be carefully folded into the clustering analysis to avoid getting biased or spurious signals.

One way of mitigating the selection biases outlined above is to create realistic mock BBHs that
reproduce the properties of the observed BBH sample in a statistical sense but which are inherently
unclustered and spatially uncorrelated with the large-scale structure of the universe. Such a mock
data set allows us to naturally incorporate the effects of observational biases on the clustering
measurements.

We follow a procedure outlined in Zheng et al. (2023) to create our mock catalogue. First,
we distribute a population of BBH merger events isotropically in the sky by sampling their loca-
tions from a uniform distribution (U ), which translates to drawing their right ascension (α) from
U (0,2π) and sine of declination (sinδ ) from U (−1,1). We next draw their source parameters
from the population distributions inferred by the LVK collaboration (LIGO Scientific Collabora-
tion et al., 2023a) as implemented by the GWPopulation package3. These are as follows:

3https://colmtalbot.github.io/gwpopulation/
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Figure 3.2: The top panel shows the distribution of the BBH properties most relevant for clustering, namely
the 1σ sky localisation uncertainty areas (left) and luminosity distances (right) of the observed BBH cat-
alogue. The credible areas are computed using the rapid Bayesian localisation code BAYESTAR (Singer &
Price, 2016). The bottom panel shows the distribution of the component masses (left), chirp masses (mid-
dle) and SNRs (right) of the observed BBH catalogue. In the left panel, the primary (heavier) BBH mass
distribution is shown in blue while the secondary (lighter) BBH mass distribution is shown in orange. The
characteristic peak at ∼30M⊙ is clearly visible.

32



1. Power Law + Peak model for the mass of the primary (heavier) BBH and a power law
distribution for the ratio of component masses (Talbot & Thrane, 2018)

2. power law distribution for redshift evolution of merger rate per unit comoving volume per
unit source-frame time (Fishbach et al., 2018)

The mathematical details of these models are discussed in appendix B. We assume uniform dis-
tributions for inclination angle ι w.r.t. the plane of orbital angular momentum, polarisation an-
gle ψ and phase at coalescence Φc over their allowed physical ranges, i.e., ι ,ψ ∈ U (0,π) and
Φc ∈ U (0,2π), and uniformly sample the BBH merger time during the LIGO observation pe-
riod after Virgo started taking data. For simplicity, we set the black hole spins identically to zero
since we do not expect them to affect the clustering properties or the sky localisation uncertainties,
which are most relevant to us. We have further checked that including the spins does not affect our
analysis; the final mock BBH catalogues with and without spins turned on are statistically similar
in all aspects.

After creating the mock BBH population, we determine which events can be ‘detected’ by the
current gravitational wave detectors to reproduce the selection biases in the data. Here, we consider
a detector network consisting of LIGO Livingston, LIGO Hanford and Virgo, the same network
that collected the data for our observational sample. We conduct the following gravitational wave
data analysis using the rapid Bayesian localisation code for gravitational wave events, BAYESTAR4

(Singer & Price, 2016). First, we simulate the gravitational wave signals for each BBH using the
IMRPhenomXPHM model (Pratten et al., 2021), which is the same waveform used in the LVK anal-
ysis of the data. Next, we inject the simulated signals in stationary Gaussian noise created using
analytic estimates for the third observing run power spectral densities for the LIGO Livingston,
LIGO Hanford and Virgo detectors, as provided by the PyCBC package5. Finally, we compute the
(phase-maximised) network matched-filtered signal-to-noise (SNR henceforth) for each event and
classify the events with an SNR ≥ 10 as ‘detections’6. Once we have the selected events, we use
BAYESTAR to localise them. BAYESTAR also returns the estimated luminosity distances and credible
intervals for the area of sky localisation uncertainty.

4We follow a similar procedure to the one outlined in https://lscsoft.docs.ligo.org/ligo.skymap/quickstart/
bayestar-injections.html.

5http://pycbc.org/pycbc/latest/html/index.html
6Technically, the false alarm rate (FAR) is a better measure of whether an event should be considered detectable,

but computing FARs is computationally expensive, as it requires doing parameter estimation for the full set of injected
events. An SNR cutoff of 10 is a reasonable proxy (see (LIGO Scientific Collaboration et al., 2023b) or (Essick, 2023)
for more details).
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Figure 3.3: Mollweide projection of the combined skymap of the 4 sample realisations of the mock BBH
catalogue in equatorial (J2000) coordinates. Each banana-shaped cloud represents a single BBH. These are
visually similar to figure 3.1. Skymaps were generated using BAYESTAR. As before, the colour represents
the number of posterior samples per pixel in a logarithmic scale. The HEALPix NSIDE for these maps is 64.

Using the procedure outline above, we generate a mock catalogue of 135 realisations of 53
BBHs each. The combined skymaps of 4 sample realisations are shown in figure 3.3, with the
colour palate and resolution identical to figure 3.1 for ease of comparison. The skymaps of the
observed and mock BBHs are visually similar.

To investigate if the mock catalogue is statistically similar to the observational data, we com-
pare the distribution of BBH properties, averaged over the 135 mock realisations, with the corre-
sponding distributions measured in the data. The results are shown in figure 3.4.

Within the limit of sample variance across the realisations, the mock catalogue is reasonably
statistically similar to the observed BBH sample. However, it includes more events with higher
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Figure 3.4: The top panel shows the distribution of the 1σ sky localisation uncertainty areas (left) and
luminosity distances (right) of the observed (bold histograms) and mock (light histograms) BBHs, while the
bottom panel shows the distribution of the primary masses (left), chirp masses (middle) and SNRs (right)
of the observed and mock BBH catalogue. The error bars on the mock histograms show the variance over
135 realisations of the mock catalogue. Except for one or two bins, the mocks and the data agree reasonably
within the error bars, signifying that the mock dataset statistically reproduces the observations.
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uncertainty in the sky localisation, as seen from the ∼3σ deviation from the observed distribution
in the second last histogram bin of figure 3.4a. However, this is not expected to bias the clustering
results since it would only lead to slightly larger measurement errors for the clustering statistics
of each mock realisation. As we discuss in section 3.3.2, the relevant quantity for measuring the
significance of the clustering signal is the variance across the realisations, which is independent of
the measurement errors on the individual realisations.

3.1.3 Galaxy Catalogue

We use galaxies and quasars from the publicly available WISE×SuperCOSMOS (hereafter WSC)
catalogue (Bilicki et al., 2016), which is a cross-match between two parent full-sky catalogues: the
AllWISE release (Cutri et al., 2013) from the Wide-field Infrared Survey Explorer (WISE) (Wright
et al., 2010), a mid-infrared (λ∼µm) space survey; and the SuperCOSMOS Sky Survey (Hambly
et al., 2001), consisting of data from digitised optical photographic plates taken by the United
Kingdom Schmidt Telescope (UKST) in the southern hemisphere7 and the Palomar Observatory
Sky Survey-II (POSS-II), in the northern hemisphere (Reid et al., 1991). WISE, a NASA space-
based mission, surveyed the entire sky in four bands, W1 = 3.4µm, W2 = 4.6µm, W3 = 12µm, and
W4 = 23µm, while SuperCOSMOS has data in three optical bands, B, R, and I. The interested
reader is referred to Bilicki et al. (2016) for more details on the WISE and SuperCOSMOS surveys
and the cross-matching procedure. We use photometric redshifts for the WSC catalogue provided
by Bilicki et al. (2016), which have been estimated using the artificial neural network code ANNz

(Collister & Lahav, 2004).

We work with the ‘SVM’ release of the WSC catalogue (Krakowski et al., 2016), which clas-
sifies sources into galaxies, stars and quasars using a support vector machines (SVM) learning
algorithm. The reason for choosing the SVM catalogue is as follows: in creating the original WSC
catalogue, colour cuts were placed that already removed the quasars. Since we expect quasars to
trace the large-scale fluctuations in the universe alongside galaxies, removing quasars is unneces-
sary for a cross-correlation study like ours. We remove the sources classified as ‘stars’ in the SVM
catalogue and select the remaining objects to form our raw catalogue. Finally, we remove sources
lying in problematic regions in the sky with unreliable data using the publicly available WSC mask
to create the final catalogue cross-correlated with the BBH catalogue created in section 3.1.1. This
process removes regions such as those obscured by the plane of the Milky Way and by the Large

7https://www.roe.ac.uk/ifa/wfau/ukstu/telescope.html
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Figure 3.5: Mollweide projection of the skymap of ∼1.7×107 galaxies and quasars in the WSC catalogue,
in equatorial (J2000) coordinates. Skymaps were generated from the sky locations of the sources using the
Healpy package. The colour represents the number of sources per pixel on a linear scale. The colour bar has
been limited to a maximum of 50 samples per pixel to enhance contrast, which makes it easier to visualise
the large-scale structure in the distribution of the galaxies and quasars. The empty navy regions represent
regions in the sky with unreliable data and have been masked out. The HEALPix NSIDE for this map is 256.

and Small Magellanic Clouds (SMC and LMC) and the areas with high stellar contamination (see
Bilicki et al. (2016) for a detailed description of the masking procedure). Some authors (for ex-
ample, Mukherjee et al., 2022) impose additional colour cuts on E(B−V ) and/or on W1 −W2 to
mitigate dust extinction and further reduce stellar contamination. However, this increases the pu-
rity of the galaxy sample at the cost of completeness, which is undesirable for cross-correlation
studies. Since we do not expect nearby stars to correlate with the extragalactic BBHs, we do not
impose any additional colour cuts.

After masking out regions in the sky with unreliable data, we are left with a catalogue that
covers ∼3π steradians in the sky, corresponding to a sky coverage of ∼68%. This makes this
catalogue suitable for a cross-correlation study with BBH catalogues which are inherently all sky
since gravitational waves are not susceptible to medium propagation effects8. The distribution of
the WSC galaxies and quasars is shown in figure 3.5.

Furthermore, the redshift distribution of the WSC sources significantly overlaps with that of

8Note that gravitation waves, like light, are indeed susceptible to weak gravitational lensing (Meena & Bagla, 2019;
Oguri, 2016).
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Figure 3.6: A comparison of the redshift distributions of the observed BBHs (red histogram) and the WSC
catalogue sources (blue histogram). There is a significant overlap between the redshifts of the two datasets,
which is crucial for conducting cross-correlation studies since we do not expect cosmological fluctuations
at different redshifts to be correlated. Also plotted are filled histograms showing the distribution of galaxy
(orange) and quasar (green) redshifts separately. The quasars are at a higher redshift on average.

the BBHs selected for this study, as shown in figure 3.6. This is important for cross-correlation
studies since we do not expect cosmological fluctuations at different redshifts to be correlated.
Note that the redshifts of the BBHs are not direct observables but are computed from the luminos-
ity distances, assuming a cosmological model for the expansion history of the universe. For this
dataset, the LVK collaboration (LIGO Scientific Collaboration et al., 2023b) assumed a cosmolog-
ical model consistent with the Planck 2015 results (Ade et al., 2016).

The final catalogue contains ∼1.7× 107 sources, with ∼15 million classified as galaxies and
∼2 million as quasars. This translates to an average number density of more than 600 sources per
sq. deg. in the sky.

3.2 Application of clustering formalism to data

The formalism to study clustering developed in chapter 2 is applicable to discrete tracers that can
be treated as point objects in the sky, i.e., objects that can be localised to a single sky position
(δ ,α). However, as shown in section 3.1, due to the limited resolving power of gravitational wave
detectors, we can only assign each event with a probability distribution over an extended region
in the sky (see figure 3.1 for example). Moreover, as discussed in section 3.1, certain regions in
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the sky do not have reliable galaxy data. Hence, we can not define the galaxy overdensity field
there. In this section, we discuss our strategy to deal with these challenges, namely the uncertain
sky localisation of the BBHs and the complicating effects due to the presence of the WSC mask.
In chapter 2, we described two methods of computing cross-correlations, namely the tracer-tracer
and tracer-field formalisms. In this section, we also discuss which of the two is more appropriate
for the specific data under consideration.

3.2.1 Strategy to deal with the uncertainty in BBH sky localisations

In this section, we discuss our strategy to deal with the extended sky localisation of the BBHs.
For each BBH, we have a probability distribution in the sky. Since we need a single location
for the BBHs, one possible approach is to assign each BBH the most probable position in its
sky localisation area, i.e., the position where the probability distribution is maximised. However,
the sky posteriors of many events show signs of bimodality, and assigning a single representative
location to them is problematic. Furthermore, in reducing a probability distribution to a single
point, we lose a lot of information contained in the shapes of the posteriors. For example, utilising
the full sky distribution can allow us to characterise the measurement errors on the clustering
strength naturally. Therefore, we adopt a different strategy in this work, which is as follows

1. for each BBH, draw an (RA, Dec) pair from the sky location posterior

2. using the drawn samples as the ‘true’ locations of the events, compute the auto-clustering
statistics as defined in section 2.1

3. repeat steps (i) and (ii) for 1000 draws from the posteriors

The average over the 1000 draws gives the estimated value of the clustering strength, while the
variance over the 1000 draws gives the estimated measurement error due to the uncertainty in the
sky localisation of the BBHs. Therefore, our strategy naturally preserves the information present
in the full sky distribution of each BBH while giving us an estimate of the measurement errors on
the clustering strength. Vijaykumar et al. (2023b) took a similar approach in a recent clustering
analysis with forecast BBH data for the third generation of gravitational wave detectors.
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3.2.2 Cross-clustering: Tracer-Tracer, or Tracer-Field?

There are two possible approaches to quantify the cross-clustering between the BBHs and the WSC
catalogue:

1. directly cross-correlate the WSC source positions with the BBH positions
2. cross-correlate fluctuations in the WSC source number density field and the BBH positions.

Although both approaches sound similar and ultimately capture the same physical quantity, there
is a subtle conceptual difference: approach (i) treats the galaxies and quasars as discrete point
sources, while approach (ii) treats the entire catalogue as a continuous field, discarding the idea of
individual sources and their positions. How do we choose between the two approaches?

Given that galaxies and quasars are, in fact, discrete objects, and there is no underlying physical
‘galaxy field’9, taking approach (i) is, in principle, the correct decision, whereas taking approach
(ii) would need careful justification. However, the vast discrepancy between the number densi-
ties of the WSC and BBHs makes implementing approach (i) difficult using nearest-neighbour
measurements.

As discussed in chapter 2, the relevant measure of cross-correlation between two sets of tracers
X and Y is the joint probability of finding ≥ kX data points of X and ≥ kY data points of Y in
randomly placed spherical caps of fixed angular radius in the sky. If the number density of Y is
much larger than X , it can be shown that this joint probability approaches the auto kX NN-CDF of
X . Thus, if we treat the WSC galaxies as discrete tracers, we would only be able to capture the
auto-clustering of the BBHs.

Conceptually, this is easy to understand: the angular scales involved in the clustering analysis
are determined by the sparser tracer X and are of the order of the mean inter-particle separation of
X , which is much larger than the mean inter-particle separation of Y . The probability of finding
≥ ky tracers of Y in spherical caps of such large angular radii would saturate to 1. As a result, the
joint probability of finding ≥ kX data points of X and ≥ kY data points of Y is practically the same
as the unconditional probability of finding ≥ kX data points of X .

A possible solution to this problem is to down-sample the galaxies to match the number densi-
9Although there is a physical matter field, galaxies are biased tracers, and the galaxy positions are not results of a

Poisson process on the same.
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Figure 3.7: The angular power spectrum for the WSC sources computed using healpy’s anafast routine,
with the shot (Poisson sampling) noise plotted for reference. The power spectrum is well above the shot
noise up to an ℓmax∼103, corresponding to spatial scales much smaller than those considered in this analysis.
Therefore, the treatment of the WSC sources as a continuous field is a reasonable approximation.

ties of the BBHs, compute the joint CDF, and perform a bootstrap average over many realisations
of the down-sampling procedure to account for sample variance. However, this step is computa-
tionally prohibitive given that we would need to average over ∼ 105 bootstrap samples to get a
single measurement.

In this work, we adopt approach (ii) and compute the BBH-Galaxy cross-clustering using a
tracer-field cross-correlation formalism. Since the WSC catalogue has an average number density
of more than 600 sources per sq. deg. in the sky, and the angular scales involved in our analysis
are of the order of 1◦ or larger, treating the galaxy number density as a continuous field is a
reasonable approximation. Furthermore, as shown in figure 3.7, the Poisson sampling noise, or shot
noise, is subdominant to the angular power spectrum at all scales of interest. This means that the
(fictitious) underlying galaxy density field is well-sampled by WSC source positions. Therefore,
taking approach (ii) is justified.

3.2.3 Strategy to deal with the WSC Mask

The computational procedure outlined in chapter 2 gives unbiased measurements for the tracer-
field cross-correlations only when the continuous field is defined on the entire sky. However, we
do not have reliable data in regions outside the WSC mask. How do we compute cross-correlations
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with the BBHs in this scenario? One possible approach is to assign a δGal = 0 to all pixels in the
masked region since that is the expected average value of an overdensity field. Although this would
not bias the results since the BBHs outside the mask would not contribute to the cross-correlation
signal, it would unnecessarily add to the noise budget. Instead, we take the approach of removing
the BBH events that lie outside the mask. However, since the BBHs are not perfectly localised, we
must be careful while handling the events whose sky localisation areas are partly inside the mask.
We follow the following strategy:

1. Draw 1000 samples of 53 (RA, Dec) pairs from the sky location posteriors of the BBHs
2. for each sample, remove the sky locations that lie outside the WSC mask

By keeping the posterior samples for events which are partly outside the mask, our method not
only preserves the information in the sky distribution of the BBHs but also leads to more number
of BBHs contributing to the analysis than simply removing all BBHs whose localisation area in-
tersects the mask would. However, this process leads to different tracers in each sample. Since
the kNN-CDFs are highly sensitive to the number density of the tracers (see equation 2.14), care
needs to be taken to ensure that averaging the CDFs over samples with different number densi-
ties does not lead to any issues. An important check is whether the distribution of the number of
events inside the mask over the 1000 samples for the mock catalogue generated in section 3.1.2 is
statistically similar to that of the data. Figure 3.8 shows that, indeed, that is the case, and hence
any systematics that arise due to this would affect the clustering of the observed and mock BBHs
equally.

We now have positions for the BBHs, from which we can compute the overdensity fields needed
to compute the cross angular power spectrum. Since there is no data outside the mask, the value of
the overdensity field computed there would be artificially low (negative). To account for this, we set
the BBH overdensity fields outside the mask to zero before calculating their spherical transforms.

To compute the BBH-Galaxy cross-correlation, we need to smooth the galaxy density field
on various spatial scales. To minimise the effects due to the mask, we set the field outside the
mask to zero before smoothing. Moreover, we take the following precautions to avoid biasing the
measurement of the cross-correlation signal:

1. We compute the two-point cross-correlation function for a large number of randomly sam-
pled points inside the mask and subtract this from the two-point function computed for the
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Figure 3.8: Distribution of the number of unmasked events over 1000 samples drawn from the sky distri-
butions of the observed (bold histogram) and mock (light histogram) BBHs. The error bars on the mock
histogram show the variance over 135 realisations of the mock catalogue. There is an excellent match be-
tween the two distributions within error bars. Therefore, any systematics that arise due to differing number
densities between different samples would affect the clustering of the observed and mock BBHs equally.

tracers. This ensures that the two-point function of the tracers is unbiased, as any system-
atic effects get cancelled out during the subtraction, whereas the true clustering signal is
preserved10.

2. We restrict the query points to inside the mask. This is needed because the query points
outside the mask would have artificially large nearest-neighbour distances and would skew
the measured distributions. We also remove all query points within a certain angular dis-
tance from the mask boundaries to ensure that the smoothed density field interpolated at the
query points is not affected by spurious contributions from the regions outside the mask.
Wang et al. (2022) followed a similar procedure to analyse the spatial clustering of SDSS
clusters using kNN-CDFS in a recent study. In practice, we observe that a threshold dis-
tance of roughly half the maximum angular scale used in the analysis leads to an unbiased
measurement of the excess cross-correlation.

Note that these steps are not necessary for computing auto-clustering of the BBHs as we have BBH
data on the entire sky.

10Note that this is similar to how random points are used in the Landy-Szalay estimator for the auto-correlation
function.
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3.3 Hypothesis-testing Framework

Now that we have a pipeline for computing the summary statistics that quantify the clustering
of BBHs and their spatial cross-correlations with the WSC sources, how do we interpret the sta-
tistical significance of such measurements performed on data? We address this problem using a
hypothesis-testing approach: we consider a null hypothesis, which proposes that there is no sta-
tistical significance for a clustering signal in the data, and attempt to rule it out by investigating
the likelihood of reproducing the observed data, assuming the null hypothesis to be true. To test
the null hypothesis, we require a control dataset consistent with its premise. We already described
the procedure for creating a catalogue of unclustered mock BBHs in section 3.1.2. This mock
catalogue automatically serves as a control set to test the null hypothesis.

We describe our null hypothesis in section 3.3.1 and discuss the method to calculate the statis-
tical significance of the clustering signal in section 3.3.2.

3.3.1 Null Hypothesis

Our null hypothesis is as follows

The BBHs currently detected by the LVK collaboration are spatially unclustered, dis-

tributed uniformly (isotropically) in the sky and are not spatially correlated with other

tracers of the large-scale structure of the universe, such as galaxies and quasars.

Any dataset consistent with this hypothesis would not contain a statistically significant clustering
signal.

3.3.2 Statistical significance

In this section, we describe the way we compute the statistical significance of the clustering mea-
surements once the summary statistics have been computed for the observed and mock BBHs.
Consider a summary statistic as a function of angular scale, S(θ), which could be the angular
power spectrum, the two-point function or the nearest-neighbour distribution, either as a measure
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of the BBH auto-correlation or BBH-Galaxy cross-correlation. Let the scales considered in the
analysis be {θ1, ...,θp}. We define the data vector Da as the summary statistic S evaluated on
the observed BBH catalogue at angular scale θa. Similarly, we define a mock vector Mi

b as S(θb)

evaluated on the ith realisation of the mock BBH catalogue for each of the n realisations. Note
that S(θ) represents the summary statistic already averaged over 1000 samples drawn from the sky
distribution of the BBHs, as prescribed in section 3.2.1. To characterise the noise properties of the
measurement, we compute the covariance matrix

Σ
′
ab =

〈(
Mi

a −⟨Ma⟩
)(

Mi
b −⟨Mb⟩

)〉
(3.1)

where the angular brackets denote an average over the n realisations of the mock catalogue. The
covariance matrix is, by definition, a p× p matrix. The object that is relevant for the statistical
calculations is the inverse of the covariance matrix, which is multiplied by the Hartlap correction
factor (Hartlap, J. et al., 2007) to get an unbiased estimate

Σ
−1 =

n− p−2
n−1

(
Σ

′)−1
(3.2)

Once we have the corrected inverse covariance matrix, we characterise the signal-to-noise for
clustering using the χ2 statistic. For the observed BBHs and each realisation of the mock BBHs,
we define the χ2 value as

χ
2
D =

(
D−⟨M⟩

)T
Σ
−1(D−⟨M⟩

)
(3.3)

χ
2
Mi =

(
Mi −⟨M⟩

)T
Σ
−1(Mi −⟨M⟩

)
(3.4)

where D ≜ {D1,D2, ...,Dp} and Mi ≜ {Mi
1,M

i
2, ...,M

i
p}. The distribution of χ2

Mi (henceforth the
null distribution) represents the signal-to-noise expected from data consistent with the null hypoth-
esis, and χ2

D represents the signal-to-noise measured from the data. A larger value for χ2
D relative

to the null distribution implies a stronger statistical significance of the clustering signal.

From the null distribution and the measured signal-to-noise, we compute the p-value, or prob-
ability of reproducing the observations assuming the null hypothesis is true, by estimating the
area enclosed under the (normalised) null distribution curve after it crosses the measured signal-
to-noise. In practice, this can be estimated by counting the fraction of mock realisations with
χ2

Mi > χ2
D. If the signal is strong enough that none of the mock realisations have a larger χ2 than

the data, then one must fit a χ2 distribution to the null distribution to compute the p-value. The
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null hypothesis is ruled out if the p-value is smaller than a chosen detection threshold.

3.4 Angular scales

We conduct the clustering analysis on angular distance scales from ∼1◦ to ∼35◦, equivalent to
ℓ= 6 to ℓ= 180. This choice ensures that

1. we have sufficient sampling in the nonlinear regime, where the nearest-neighbour distribu-
tions can capture information not accessible through two-point statistics

2. the measurements are not affected by the lack of sampling towards the right tail of the auto
kNN-CDF (see Banerjee & Abel (2021a) for a discussion)

These angular distances correspond to projected transverse distance scales of ∼15 to ∼400 Mpc
for a median redshift of ∼0.2 for the WSC catalogue. We choose 10 log-spaced angular bins
and 10 linearly-spaced ℓ bins in the given range, which leads to a Hartlap factor of 0.92 for 135
realisations of the mock catalogue.

For computing the overdensity fields and the query points for the nearest-neighbour measure-
ments, we use an NSIDE = 256 HEALPix grid with ∼7.8×105 pixels and an angular resolution of
∼0.22◦. As required for the nearest-neighbour analysis, the number of query pixels is much larger
than the number of data points, and the query grid has sufficient resolution to sample the smallest
spatial scales analysed.

As discussed in section 3.2.3, we remove all query points within 20◦ of the WSC mask bound-
aries for computing nearest-neighbour excess cross-correlation to avoid any biases due to the pres-
ence of the WSC mask.

3.5 An illustrative example

As discussed in chapter 2, the nearest-neighbour distributions are sensitive to all higher-order
cross-correlation functions of the discrete tracers and the continuous field. Consequently, nearest-
neighbour measurements are expected to measure a stronger clustering signal significant than the
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two-point summary statistics at small angular scales where the underlying fields are non-Gaussian,
and these higher-order correlation functions cannot be neglected. In this section, we demonstrate
the gains in clustering power obtained using the kNN tracer-field formalism compared to the an-
gular power spectrum using an illustrative example.

We create a set of discrete tracers by picking the centres of 36 pixels in the WSC footprint11 that
have the highest number density of sources in the sky, and compute their spatial cross-correlations
with the full WSC overdensity field using both the nearest-neighbour measurements and the angu-
lar power spectrum. We further assume that we know the locations of these tracers perfectly. To
estimate the cosmic variance associated with the clustering measurements, we also compute these
clustering statistics for 100 realisations of 36 randomly chosen points in the sky. We compute the
cross-correlations on angular distance scales from ∼1◦ to ∼35◦, equivalent to ℓ= 6 to ℓ= 180.

The results for the first nearest-neighbour distribution are shown in the left panel of figure 3.9,
and those for the power spectrum are shown in the right panel. The inset in the right panel presents
a zoomed-in version of the full subplot focusing on the smaller scales. In each plot, the solid
line shows the excess cross-correlation between the highest-density locations, the shaded band
represents the cosmic variance, and the dash-dot line represents the expected value in the absence
of cross-correlation.

The excess cross-correlation as measured by the first nearest-neighbour distribution lies well
outside the shaded region representing the 3σ cosmic variance in the randoms at all angular scales
smaller than ∼4◦, whereas the power spectrum fluctuates within the shaded band, barely crossing
the detection threshold on one or two bins. Thus, figure 3.9 clearly demonstrates that the nearest-
neighbour measurements are able to capture a statistically significant clustering signal on small,
nonlinear scales for a well-localised sample of rare, highly biased tracers, whereas the power spec-
trum can not.

We would like to draw the attention of the reader to the following important implication of the
example studied above: with a set of < 50 well-localised events, the nearest-neighbour measure-

ments on small spatial scales are statistically robust enough to investigate whether BBHs reside

in highly biased environments in the universe. It should be noted however that on large scales,
the nearest-neighbour distributions do not perform any better than the power spectrum, and there
is no detectable signal in either statistic. This is because, on large scales, the galaxy density field
is well approximated by a Gaussian random field, and the higher-order correlation functions are

11This is chosen to match the average number of mock BBHs in the WSC footprint, see figure 3.8 for details.
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Figure 3.9: The excess cross-correlation between 36 locations with the highest density of WSC sources
and the WSC overdensity map as measured by the first nearest-neighbour distribution (left) and the cross
angular power spectrum (right). The inset on the right panel shows a zoomed-in view of the power spectrum
at smaller scales. The solid lines represent the measurement on the tracers, the shaded band represents the
3σ variance in the same measurement performed on randomly chosen points in the sky, and the dash-dot
line represents the expected value in the absence of cross-correlation.

negligible.

3.6 Results

In this section, we present the results of our clustering analysis on the data, with section 3.6.1
devoted to the auto and cross angular power spectrum and section 3.6.2 to the nearest-neighbour
measurements. We discuss the implications of our findings in section 3.7

3.6.1 Angular power spectrum

Figure 3.10a shows the angular power spectrum of the BBHs. Filled circles represent the power
spectrum of the observed BBHs, and the error bars are measurement errors, defined as 3 times the
standard deviation across 1000 samples drawn from the BBH skymaps. The bold line and shaded
band show the mean angular power spectrum and 3σ variation around the mean for 135 realisations
of the mock BBH catalogue. The dash-dot line represents the Poisson sampling noise (shot noise)
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corresponding to the number density of the BBH sample, which is equal to 1/(n̄BBH). Since the
error bars make it difficult to visualise the shaded band, we plot a zoomed-in version of the full
figure in the inset.

The mean power spectrum for the mock catalogue is very close to the shot noise, as should
be the case for a dataset consistent with the null hypothesis. The variance over realisations of the
mock catalogue gives an estimate of the cosmic variance expected in the power spectrum if the null
hypothesis holds. It is evident from the figure that with the present number of BBH detections, the
angular power spectrum is shot noise-dominated and cannot capture a clustering signal if any is
present. As can be seen from the figure, the measurement errors on the data are extremely large
and even exceed the cosmic variance. This is a consequence of the significant uncertainties in the
sky-localisation of the BBHs.

The χ2 significance test results for the angular power spectrum are presented in figure 3.10b,
with the histogram representing the null distribution and the solid vertical line representing the
measured χ2 for the observed BBHs. The data is consistent with the null hypothesis with a p-value
of 0.061, calculated by fitting a χ2 function to the null distribution. Note that the relatively small
p-value is most likely caused by the large ( 3σ ) fluctuation at ℓ∼80. As clear from figure 3.10a,
this fluctuation does not indicate a clustering signal. Hence, we conclude that the angular power

spectrum does not capture a statistically significant clustering signal in the presently available

BBH data.

Figure 3.11a shows the cross angular power spectrum measurements between the BBHs and
the WSC sources, with the plotting scheme identical to figure 3.10a. Again, we plot a zoomed-
in version in the inset for better visibility of the shaded band. The mean power spectrum for
the mock catalogue is very close to 0 at all scales, as expected from the null hypothesis, which
stipulates that the BBHs and WSC sources are spatially uncorrelated (the cross power spectrum
is unaffected by shot noise). Even for cross-correlation, the measurement errors on the data are
extremely large and often exceed the cosmic variance. The χ2 significance test for the cross angular
power spectrum, summarised in figure 3.11b, confirms the visual impression given by figure 3.11:
the data is consistent with the null hypothesis at a p-value of 0.572, implying that the cross angular

power spectrum does not capture statistically significant evidence for spatial cross-correlation

between the presently observed BBHs and the WSC sources.
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Figure 3.10: Left: Results of auto-clustering analysis conducted using the angular power spectrum as the
summary statistic, with a zoomed-in view provided in the inset for better visibility. Filled circles represent
the measured angular power spectrum of the observed BBHs, with error bars representing variance across
1000 samples drawn from the BBH skymaps. The bold line represents the angular power spectrum averaged
over 135 realisations of the mock BBH catalogue. The shaded band, which shows the variance of the power
spectrum across realisations, represents the cosmic variance. The dash-dot line shows the shot noise. All
errors are displayed at the 3σ level. It is evident from the figure that with the present number of BBH
detections, the angular power spectrum is shot noise-dominated; visually, there are no signs of a clustering
signal. Right: Results of the statistical significance test for the auto angular power spectrum of the BBHs.
The histogram represents the distribution of χ2 values over 135 realisations of the mock catalogue, and the
curve enveloping it represents the best-fit χ2 distribution. The vertical line represents the measured χ2 value
for the data. The data is consistent with the null hypothesis at a p-value of 0.061, calculated using the CDF
of the best χ2 fit. There is no evidence for a statistically significant clustering signal in the present data.
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Figure 3.11: Left: Results of BBH-Galaxy cross-clustering analysis conducted using the cross angular power
spectrum as the summary statistic, with a zoomed-in view provided in the inset for better visibility. The plot-
ting scheme is identical to figure 3.10a, except the dash-dot line, y = 0, represents the cross power spectrum
of two uncorrelated data sets. With the present number of BBH detections, no visual evidence exists for a
clustering signal in the cross angular power spectrum. Right: Results of the statistical significance test for
the BBH-Galaxy cross angular power spectrum. The plotting scheme is the same as figure 3.10b. The data is
consistent with the null hypothesis at a p-value of 0.572, calculated using the CDF of the best χ2 fit. There
is no statistical evidence for spatial cross-correlation between the presently detected BBHs and the galaxies
and quasars from the WSC catalogue.
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3.6.2 Nearest-neighbour measurements

Figure 3.12 shows the first two kNN-CDFs of the BBHs in blue and orange standing for the first
and second neighbours, respectively. The plotting scheme is similar to figure 3.10a, except the
dash-dot line represents the expectation for the kNN-CDFs of an unclustered, Poisson-distributed
dataset in the sky. The analytic expression for the kNN-CDFs of Poisson distributed points is only
a function of n̄BBHA, as can be seen from equation 2.14 (see also Banerjee & Abel (2021a)).

The left panel shows that CDF1NN is smaller than CDF2NN at all scales. This is intuitive since,
for each query point, the distance to the kth nearest-neighbour is always smaller than the distance
to the (k + 1)th nearest-neighbour. As a result, for a given scale θ , the fraction of query points
with the first nearest neighbour at a distance less than θ would be larger than those with the second
nearest neighbour. This generally holds, i.e., the kNN-CDFs always shift towards larger angular
scales with increasing k.

Since the CDFs span a large range relative to the error bars, it is difficult to visualise the results
from the left panel. We plot the CDFs normalised by the mean of the mock catalogue in the right
panel of figure 3.12. It is clear from these plots that the mean of the mock catalogue is consistent
with the expected value for Poisson distributed data. As a consequence of the uncertainties in
the sky localisation of the BBHs, the measurement errors on the CDFs of the observed BBHs are
large, even exceeding the variance across the mock catalogue, similar to what was observed for the
angular power spectrum in figure 3.10a.

Note how the variance across the mock realisations for the CDF1NN becomes vanishingly small
as we approach the smallest angular scales. This happens because at spatial scales much smaller
than the mean tracer-tracer separation, the CDF1NN approaches the expected value for a Poisson
distribution regardless of the positions of the tracers. Mathematically, as the area A goes to 0, the
leading order term in the summation inside the exponential in equation 2.14 dominates. Since the
leading term does not contain any correlation functions, it corresponds to the CDF for a Poisson
distribution. Hence, any deviations from the Poisson expression, either due to a clustering signal
or due to sampling noise, are exponentially suppressed (see also Banerjee & Abel, 2021a).

The data seems to indicate no presence of a clustering signal in any of the kNN-CDFs. To
confirm the visual intuition, we perform a χ2 significance test using measurements at 5 spatial bins
each from the first and second nearest-neighbour distributions and find that the data is consistent
with the null hypothesis at a p-value of 0.081. Note that in this case, since the null distribution is
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Figure 3.12: Left panel: Results of auto-clustering analysis conducted using the first and second nearest-
neighbour cumulative distribution functions as the summary statistic. The plotting scheme is similar to fig-
ure 3.10a, except the dash-dot line represents the analytic expectation for the kNN-CDFs of an unclustered,
Poisson-distributed dataset in the sky. Different colours represent different values of the nearest-neighbour
index k, with blue and orange standing for k = 1 and 2, respectively. Right panel: CDFs divided by the
mean over the mock catalogue to reduce the dynamic range of the plot. The error bars for the bottom plot
have not been shown to the full extent to make the rest of the plot clearer. With the present number of BBH
detections, there is no visual evidence for a clustering signal in the kNN-CDFs.
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Figure 3.13: Results of the statistical significance test for the combined first and second nearest-neighbour
cumulative distribution functions. The plotting scheme is the same as figure 3.10b. The data is consistent
with the null hypothesis at a p-value of 0.081, calculated by counting the number of mock realisations with
χ2

Mi > χ2
D since the best chi-square fit does not characterise the right tail of the distribution well. There is no

evidence for a statistically significant clustering signal in the present data.

heavy-tailed and poorly characterised by a χ2 function, we compute the p-value by counting the
number of mock realisations with χ2

Mi > χ2
D. These results are summarised in figure 3.13. We con-

clude that the nearest-neighbour distributions do not capture a statistically significant clustering

signal in the presently available BBH data.

Figure 3.14 shows the excess cross-correlation between the BBHs and the quasars and galaxies
from the WSC catalogue, as measured by the first and second nearest-neighbour measurements.
The plotting and colour schemes are identical to figure 3.12, except the dash-dot line here rep-
resents the expected excess cross-correlation between two spatially uncorrelated datasets and is
identically equal to 1 at all scales. The inset on the right shows a zoomed-in version of the full
subplot for better visibility. The mean of the mock catalogue is consistent with 0, as expected from
the null hypothesis. As was the case for the other summary statistics, the measurement errors on
the data are extremely large even for the excess cross-correlation12.

Interestingly, the nearest-neighbour distributions indicate a mild anti-correlation between the
BBHs and the WSC catalogue at all angular scales considered, which is not picked up by the cross
angular power spectrum. However, even though the anti-correlation seems to manifest in both

12Note that the excess cross-correlation, by definition, cannot take negative values; the error bars extending to
negative values is an effect of the choice to plot the mean ± 3 × standard deviation, but the actual measurements are
always positive.
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Figure 3.14: The excess BBH-Galaxy cross-correlation measured by the first (left) and second (right)
nearest-neighbour measurements. The plotting scheme is identical to the right panel of figure 3.12, except
the dash-dot line here represents the expected excess cross-correlation between two spatially uncorrelated
datasets and is identically equal to 1. Since the error bars for the right panel make visualising the rest of the
figure difficult, a zoomed-in view is provided in the inset. The plots visually indicate a mild anti-correlation
between the BBHs and the WSC catalogue at all angular scales.

the nearest-neighbours systematically, extreme care needs to be taken while analysing such plots
of the nearest-neighbour distributions; since nearest-neighbour measurements are cumulative, a
noise-driven fluctuation on one spatial scale can affect the measurement at nearby scales, and
our visual intuition can not be trusted. We need to take this into account by calculating the full
covariance matrix before reaching any conclusions. Moreover, the deviation from ψ = 1 in each
case is well within the limits of cosmic variance as characterised by the mock catalogue. This is
likely an effect of sample variance due to the small number of observed BBHs, and we will return
to this point in section 3.7.

We perform a χ2 significance test using 5 spatial bins each from the first and second nearest-
neighbour distributions and find that the data is consistent with the null hypothesis at a p-value
of 0.444. Similar to the auto-CDFs, the null distribution here also is heavy-tailed. Hence, we
compute the p-value by counting the number of mock realisations with χ2

Mi > χ2
D. Figure 3.15

shows the summary plot of this analysis. We conclude that the nearest-neighbour measurements

do not capture statistically significant evidence for spatial cross-correlation between the presently

observed BBHs and the WSC sources.
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Figure 3.15: Results of the statistical significance test for the excess BBH-Galaxy cross-correlation as mea-
sured using a combination of the first and second nearest-neighbour measurements. The plotting scheme is
the same as figure 3.10b. The data is consistent with the null hypothesis at a p-value of 0.444, calculated by
counting the number of mock realisations with χ2

Mi > χ2
D since the best chi-square fit does not characterise

the right tail of the distribution well. This implies that despite a visual indication for an anti-correlation,
there is no statistical evidence for any spatial cross-correlation between the presently detected BBHs and the
galaxies and quasars from the WSC catalogue.

3.7 Discussion

As we saw in section 3.6, none of the summary statistics considered in this study were able to
capture a statistically significant signal, either for the auto-clustering of BBHs or for spatial cross-
correlations of BBHs with the large-scale structure of the universe, in the presently available data.
Our results are consistent with previous attempts in the literature (see, for example, Zheng et al.
(2023), Cavaglià & Modi (2020) and Mukherjee et al. (2022)). What explains these results? If
BBHs reside primarily in galaxies, where most stars in the universe live and die, their locations are
expected to be clustered and spatially cross-correlated with the observed fluctuations in large-scale
structure surveys.

We believe two aspects of the data conspire to obscure the clustering signal: first, the observed
BBHs constitute a statistically small sample that is susceptible to sample variance; with only ∼50
data points, it is very difficult to tell apart a clustered sample from a Poisson-distributed one.
Second, with the current sensitivities of the gravitational wave detectors, there is considerable
uncertainty in the sky localisation of the BBHs, which tends to smear out any clustering signal at
small scales that the nearest-neighbour distributions are the most sensitive to. Of course, there is
always the possibility that the null hypothesis is true, in which case, we would not see a clustering
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signal even if we had perfect observations and a statistically large sample of BBHs.

The detection of a clustering signal in a small sample such as the one selected for this study
would imply that binary black holes reside in extremely biased environments, such as highly dense
nodes of the cosmic web or huge cosmic voids. As discussed in section 3.5, the nearest-neighbour
distributions are statistically powerful enough to detect the clustering of rare and highly biased
tracers at nonlinear scales. Unfortunately, the non-detection of a clustering signal in the current
BBH data does not rule out the possibility of BBHs being highly biased tracers because the un-
certainty in the sky localisations would completely wash it out even if a signal existed. Repeating
this analysis with better-localised events from future gravitational wave observations would be a
worthwhile exercise.

We briefly discussed in section 3.6 that the cross-correlation measurements indicate a mild anti-
correlation between the observed BBHs and the WSC sources, albeit statistically insignificant. To
investigate this further, we plot, in figure 3.16, the most probable sky locations of the observed
BBHs on top of the galaxy overdensity field smoothed on 10◦ scale using a top-hat filter. Many
of the observed BBHs appear to lie near large-scale underdense regions. Due to the small sample
size, this is picked up as a mild anti-correlation in the nearest-neighbour distributions. However,
this is not evidence for anti-correlation, as established earlier using the χ2 test. We have further
checked that a significant number of the mock realisations show similar behaviour, which is most
likely a result of sample variance.
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Figure 3.16: Mollweide projection of the overdensity field for the WSC catalogue smoothed on a 10◦ scale
using a top-hat filter, with the superimposed white dots representing the most probable positions of the
observed BBHs. Warmer colours represent a higher density of galaxies and quasars, while cooler colours
represent underdensities. Many of the observed points happen to lie near large-scale underdensities, leading
to a slight anti-correlation in the cross-clustering measurements. We believe that this may be due to sample
variance since the anti-correlation is not statistically significant, and a significant number of the mock reali-
sations show similar behaviour.
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Chapter 4

Forecasts

In chapter 3, we found no evidence for spatial cross-correlations between the currently observed
catalogue of binary black holes and large-scale structure tracers from the WISE×SuperCOSMOS
galaxy catalogue. In this chapter, we investigate the feasibility of detecting the spatial clustering
of BBHs in the coming decades using the nearest neighbour distribution. To achieve this goal,
we attempt to measure the BBH-galaxy cross-clustering signal in forecast data for future LIGO
observing runs and stage-IV large-scale structure surveys. Specifically, we cross-correlate the
overdensity field of galaxies expected from the first year of operations of the Vera C. Rubin Obser-
vatory’s Legacy Survey of Space and Time1 (LSST Y1, Željko Ivezić et al., 2019) with the BBH
catalogue expected from 10 years of gravitational wave observations by a network of 5 ground-
based detectors, namely LIGO Hanford, LIGO Livingston (LIGO Scientific Collaboration et al.,
2015), LIGO India (Saleem et al., 2022), Virgo (Accadia et al., 2012) and KAGRA (Akutsu et al.,
2020).

4.1 Simulated Data

In this section, we describe the simulated data used to conduct the forecast study. We discuss
the forecast LSST Y1 galaxy density field in section 4.1.1 and the mock BBH catalogues in sec-
tion 4.1.2.

1https://www.lsst.org/
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4.1.1 Galaxy Overdensity Field

For conducting forecast studies of angular clustering in the sky, we need simulated data that mim-
ics observational data from large-scale surveys. Such observations typically consist of the angular
positions and redshifts of tracers of structure formation, such as galaxies. The more distant these
tracers are, the higher their observed redshifts are. Furthermore, as we survey deeper into the sky,
we cover larger and larger cosmological volumes. For example, a survey that observes out to a
redshift of 1 covers a (comoving) cosmological volume of ∼157 Gpc3. However, it is computa-
tionally prohibitive to simulate such large volumes; cosmological simulations typically focus on
rectangular regions in space (known as a boxes) with comoving volumes of the order of 1 Gpc3,
and produce ‘snapshots’ of the contents of these boxes at different redshifts2. Therefore, to recreate
the observations expected from large-scale surveys, one must arrange many such simulated boxes
in spherical shells around a fictitious observer, and project the 3D positions of the simulated tracers
in the boxes on the ‘sky’ of the observer. Each shell contains snapshots at the same redshift, and
shells that are further from the observer have a higher redshift than shells that are closer. The re-
sulting simulation product is often referred to as a lightcone in the literature. In this work, we use
the simulated LSST Y1 galaxy overdensity fields implemented in the Agora lightcone3 (Omori,
2022).

The Agora lightcone is constructed using data products from the MultiDark Planck 2 (MDPL2)
simulation4 (Klypin et al., 2016), which is a dark matter-only N-body simulation that contains
38403 dark matter particles in a 1 h−1 Gpc box5. Here, we present a brief summary of the process
followed by Omori (2022) to create the lightcone from the individual boxes MDPL2. The inter-
ested reader is requested to refer to Klypin et al. (2016) for further details on MDPL2 and to Omori
(2022) for a detailed description of the lightcone construction.

To construct the lightcone, Omori (2022) create a tesselation of the simulation snapshots and
their associated halo catalogues using periodic boundary conditions and extract concentric spher-
ical shells of thickness 25 h−1 Mpc from the tiled volume. Then, they randomly rotate the shells
every 1 h−1 Gpc (See figure 3 of Omori, 2022) to avoid repeating structures along the line of sight.
Finally, they project the dark matter particles in the boxes onto HEALPix shells of NSIDE = 8192.

2All elements of a snapshot have the same redshift.
3https://yomori.github.io/Agora-docs/#/
4https://www.cosmosim.org/metadata/mdpl2/
5h refers to the value of the Hubble constant assumed in the simulation, in units of 100 Km s−1 Mpc−1
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Omori (2022) compute galaxy overdensity fields corresponding to the LSST Y1 survey6 in 5
redshift bins. For each bin, they multiply the projected dark matter overdensity shells lying in
the given redshift range by the expected linear galaxy bias values for LSST Y1 galaxies, weigh
the shells by the LSST Y1 redshift distribution n(z) in that bin, and sum the weighted shells to
obtain the desired projected galaxy overdensity field (see section 3.7 of Omori, 2022, for more
details). The values for the bias and the redshift distributions of the LSST Y1 galaxies are derived
using analytic relations given in the Dark Energy Science Collaboration Scientific Requirement
Document (The LSST Dark Energy Science Collaboration et al., 2018)7.

We calculated the combined redshift distribution and the combined overdensity field by per-
forming a number-density weighted average over the redshift distribution and overdensity fields of
the individual bins. The individual n(z) for the 5 bins and the overall n(z) for the total sample are
displayed in figure 4.1.
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Figure 4.1: The modelled n(z) for galaxies from the LSST Y1 survey. The lighter dashed lines show the
distribution for data in 5 redshift bins, while the solid line shows the combined redshift distribution obtained
by performing a number-density weighted average of the individual n(z). The distribution peaks at z∼0.4
and has support till a redshift of about 4.

The Agora galaxy density fields are computed on an 8192 NSIDE grid. Such fine resolution
is unnecessary for our purpose, and we downgrade the density field to a NSIDE=1024 to speed up
calculations, using healpy’s pixelfunc.ud grade method. We have checked that the angular

6Note that here, galaxies always refer to the so-called clustering galaxies in the LSST survey, and NOT the back-
ground galaxies.

7see Omori (2022) for the values of the linear bias parameters and the analytic expressions for the redshift distri-
butions.
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Figure 4.2: Mollweide projection of the combined LSST Y1 overdensity field simulated using the Agora
lightcone. Warmer colours represent a higher density of galaxies, while cooler colours represent underden-
sities, and the colour bar is in logarithmic scale to enhance contrast. The empty grey regions represent the
portion of the sky expected to be outside the LSST survey footprint (see text and references for the procedure
to create the mask). Note that the simulations produce an all-sky density map; we artificially remove the
data outside the mask to mimic the expected observations. The HEALPix NSIDE for this map is 64.

power spectrum of the galaxy density field is preserved in the downgrading process.

The Agora simulations create an all-sky galaxy density field. However, the survey footprint of
LSST does not cover the entire sky. To make the study more realistic, we restrict the simulated data
to the expected survey footprint of −70◦ < Dec < 12.5◦, following the DESC Recommendations
for optimizing the LSST Observing Strategy (Lochner et al., 2018). Since data close to the plane of
the Milky Way is also expected to be contaminated, we further remove data with absolute galactic
latitude less than 15◦. This process results in a mask with ∼43.3% sky coverage corresponding
to an area of ∼1.78×104 sq. deg. Figure 4.2 displays the simulated LSST Y1 overdensity fields,
further downgraded to NSIDE = 64 to enhance the density contrast.

4.1.2 Mock BBH Catalogues

In this section, we describe the BBH catalogues used in this forecast study. We create a set of
BBHs that are clustered and spatially correlated with the simulated LSST Y1 galaxy density field,
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and 100 realisations of spatially unclustered and randomly distributed BBHs that are otherwise
statistically identical to the clustered BBH catalogue. The clustered set serves as a proxy for future
‘data’ while the unclustered realisations serve as the ‘control’ data used to account for selection
effects and quantify the cosmic variance in the cross-correlation measurements.

We begin with the description of the unclustered catalogue. The procedure to create the injected
population of the BBHs is very similar to the one followed in section 3.1.2 to create the mock BBH
used in the analysis of the currently available data.

First, we distribute a population of BBH merger events isotropically in the sky by sampling
their locations from a uniform distribution. Next, we draw their component masses assuming a
Power Law + Peak model for the primary mass and a power law distribution for the mass ratio.
The mass model is described in detail in appendix B.

As discussed in section 4.1.1, the redshift distribution of the LSST Y1 galaxy sample extends
up to z∼4. Therefore, we must incorporate redshifts beyond z∼1 in the injected BBH popula-
tion. In section 3.1.2, we sampled the redshifts of the BBHs from a power law redshift evolution
model with the power law index set at the value inferred in the LVK population analyses using
the presently observed BBHs. However, since the LVK collaboration has only observed BBHs
till a redshift of ∼1, this model is currently constrained only at small redshifts, and we need to
be extremely careful while extrapolating it to higher redshifts. In most formation channels, black
holes have a stellar origin. Consequently, the formation rate for BBHs is expected to be related to
the rate at which stars are formed in the universe (see, e.g., Fishbach & Kalogera, 2021, and refer-
ences therein). A recent study by Vijaykumar et al. (2023a) indicates that current observations also
favour a BBH merger rate that follows the star formation rate. Since the star formation rate peaks
at z∼2 and falls off subsequently (Madau & Dickinson, 2014), there is no physical motivation to
assume that the BBH merger rate should keep increasing with redshift as a power law at higher
redshifts.

For the purposes of this forecast study, following Iacovelli et al. (2022), assume that the redshift
evolution of the BBH merger rate per unit comoving volume per unit source-frame time follows
the Madau-Dickinson profile (Madau & Dickinson, 2014) for the star formation rate density. As a
caveat, we emphasize that this assumption is only a first approximation which serves as a starting
point in the absence of observation constraints; there are physical effects, such as time delays
between the formation and merger of the binaries (Fishbach & Kalogera, 2021), and metallicity-
dependent effects (Santoliquido et al., 2021; Chruślińska, 2024), that could result in the redshift
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evolution of the BBH merger rate deviating from the evolution of the star formation rate. As our
understanding of the redshift evolution of compact object merger rates improves with upcoming
gravitational wave observing runs, future studies will have to be updated to account for these
effects.

The mathematical details of our redshift model are discussed in appendix B. We sample from
this distribution out to a redshift of 4. This high-redshift cutoff for the injected population is chosen
to match the redshift distribution of the galaxy sample; any BBHs detected at redshifts that have
very few or no galaxies would not contribute to the cross-correlation signal between the BBHs and
the galaxy density field. Finally, following Iacovelli et al. (2022), we assume that the BBH merger
rate per unit comoving volume per unit source-frame time at z = 0 is equal to 17 Gpc−3Yr−1, as
inferred in LIGO population analyses using the GWTC-3 catalogue.

Once we have assigned the masses and redshifts to the injected BBHs, we draw their inclina-
tion angles, polarisation angles and phases from uniform distributions over their allowed physical
ranges, similar to section 3.1.2. We sample the BBH coalescence times uniformly over the ob-
serving period of 10 years. The black hole spins are again set identically to zero. As discussed in
section 3.1.2, we do not expect the spins to affect the clustering properties or the sky localisation
uncertainties, which are most relevant for our spatial cross-correlation study.

After creating the mock BBH population, we determine which events can be ‘detected’ by a
gravitational wave detector network consisting of 5 ground-based detectors, LIGO Hanford, LIGO
Livingston, Virgo, LIGO India and KAGRA (henceforth, HLVIK). Following Calore et al. (2020),
we assume that each detector has a duty cycle of 80%, i.e., is in science mode for 80% of the
observing period. Following the procedure outlined in section 3.1.2, we first simulate the gravita-
tional wave signals for each BBH using the IMRPhenomXPHM model. Next, we inject the simulated
signals in stationary Gaussian noise created using analytic estimates for the power spectral densi-
ties for detectors provided by the PyCBC package, assuming the advanced LIGO A+ sensitivities
for the 3 LIGO detectors and design sensitivities for Virgo and KAGRA. Finally, we compute the
network matched-filtered signal-to-noise for each event and classify the events with an SNR ≥ 10
as ‘detections’. This results in ∼2.8× 104 detections on the entire sky, of which ∼1.1× 104 lie
inside the expected LSST Y1 survey footprint. Hence, an HLVIK detector network observing at

an A+ sensitivity and an 80% duty cycle for a period of 10 years is expected to detect ∼2.8×104

merging binary black holes per year. Our findings are consistent with other forecasts in the litera-
ture. For example, with the same detector network, duty cycle and observing period, Calore et al.

64



120° 60° 0° 300° 240°

-45°

0°

45°

19 1201+Samples/pixel

Figure 4.3: Mollweide projection of the combined skymap of the ∼2.8×104 BBHs constituting one reali-
sation of the unclustered mock BBH catalogue. The colour represents the number of posterior samples per
pixel in a logarithmic scale. The HEALPix NSIDE for this map is 64. This plot represents what the BBH
skymap is expected to look like after 10 years of gravitational wave observations with an HLVIK detector
network operating at A+ sensitivity.

(2020) find that ∼2× 104 BBHs are detected. Their numbers are slightly different because they
use design sensitivities for the LIGO detectors instead of A+ sensitivities, and an SNR cutoff of
8 instead of 10. We have explicitly checked that with their analysis choices, we reproduce their
numbers.

Once we have the selected events, we use BAYESTAR to localise them. BAYESTAR also returns
the estimated luminosity distances, the offsets between the injected and highest probability sky
locations, and credible intervals for the area of sky localisation uncertainty for each detected event.
Figure 4.3 plots the combined skymap of the detected BBHs and represents the expected BBH
skymap from 10 years of data taken with an HLVIK detector network operating at A+ sensitivity.

Figure 4.4 shows the distribution of various BBH properties of the unclustered BBH catalogue.
It is evident from a comparison of figures 3.4a that the addition of LIGO India and KAGRA,
combined with better sensitivities of each detector, results in significant improvements in sky lo-
calisation of the detected BBHs.

So far, we have created one realisation of the unclustered mock BBH catalogue. In principle,
one can generate the full catalogue by repeating the procedure outlined above 100 times, with
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Figure 4.4: The top panel shows the distribution of the BBH properties most relevant for clustering, namely
the 1σ sky localisation uncertainty areas (left), angular offset between injected and inferred sky locations
(middle), and luminosity distances (right) of the unclustered mock BBH catalogue. The light (bold) his-
togram in the right subplot represents the distribution of the inferred (injected) distances. The bottom panel
shows the distribution of the component masses (left), chirp masses (middle) and SNRs (right) of the mock
catalogue. In the left panel, the primary (heavier) BBH mass distribution is shown in blue while the sec-
ondary (lighter) BBH mass distribution is shown in orange.
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a different random seed chosen each time for creating the injected BBH population. However,
generating the skymaps for ∼2.8× 104 events is computationally expensive. Furthermore, it de-
mands a significant storage requirement (∼30 GB for one realisation). Therefore, generating 100
realisations from scratch is practically infeasible8. Fortunately, there exists a symmetry in the
sky distribution of the BBHs that allows us to generate multiple realisations of the unclustered
catalogue from just one realisation.

As discussed before, gravitational wave detectors are most sensitive to sky locations directly
above the plane of their arms, which results in the sensitivity of the detector network to a gravita-
tional wave signal being a function of the declination and right ascension of its source. Due to the
earth’s rotation about its axis, this selection function peaks at different right ascensions in the sky
at different times during the day, but at the same declination. This is because the detectors move
along lines of constant latitude with the rotation of the earth. As a result, the dependence of the
selection function on right ascension gets averaged out over the large number of complete rota-
tions in the observing run, and the final selection function is expected to be only a function of the
declination of the sources9. To verify this, we plot the number counts, sky localisation uncertainty,
and offsets of the detected BBHs against their right ascensions, and show the results in figure 4.5.
As expected, we find no correlation between these properties and the right ascension. Hence, it is
safe to assume that the BBH properties most important for clustering are independent of the right
ascension of the BBHs.

We utilise this symmetry to generate 100 realisations of the unclustered catalogue from the
BBH sample created originally. The BBHs in each new realisation are created by randomly dis-
placing the posterior distributions of the original BBHs in the sky along constant declination lat-
itudes. In practice, this is achieved by adding a random number between 0 and 2π to the right
ascensions of the BAYESTAR posterior samples10.

Now that we have the control set of unclustered mock BBHs, we describe the methodology to
create the clustered catalogue that will serve as the proxy for future BBH events. There is only

8If we are to finish the Master’s Thesis in time.
9This is not strictly true for observations, since the overall sensitivity of the detectors is also a function of the

time of the day. For example, detectors are more sensitive at times when human activity is minimal. This can lead
to residual selection effects on the right ascension. However, this is a higher-order effect that can be ignored for the
purposes of a study with simulated data.

10Note that the same random number is added to all samples from a single BBH to preserve the shape of the
distribution, but different random numbers are added to different BBHs. Moreover, each BBH is shifted by different
random numbers to create different realisations. For example, to create 100 realisations of 28,000 BBHs, we need
2,800,000 random numbers.
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Figure 4.5: Left: the distribution of the right ascension of the unclustered mock BBHs, with the light
histogram representing the inferred values and the bold histogram representing the injected values. Middle:
scatter plot showing the variation of the 1σ sky localisation uncertainty area with right ascension. The
dashed curve shows the best-fit straight line through the data. Right: same as the middle panel, but for the
offset between injected and inferred sky locations. These plots demonstrate that the BBH properties most
important for clustering, namely number counts, sky localisation uncertainty, and offsets, are uncorrelated
with the right ascension of the BBHs. Therefore, the procedure for creating the other realisations of the
unclustered catalogue by randomly shifting the posteriors of each event along constant declination latitudes
is justified.

step we need to do differently from the procedure for creating the control data: since we need
the injected population of BBHs to be inherently correlated with the simulated LSST Y1 map, we
cannot distribute their positions isotropically in the sky. In this study, we implement the following
steps to assign positions to the injected BBH population that are correlated with the galaxy density
field:

1. First, we create a set of points that represent a local Poisson process on the simulated
LSST Y1 galaxy density field δGal. In practice, this is done by assuming that the proba-
bility for a BBH to merge at a location (δ ,α) is proportional to 1+ δGal(δ ,α). We use the
healpytools.rand pix from map method from the python library astrotools11 for this
purpose, which implements inverse CDF sampling to draw random pixels from a HEALPix
map12. For each randomly sampled pixel, we assign the centre of the pixel as a temporary
BBH location.

2. Step (i) creates a set of tracers that sample the galaxy density field in an unbiased manner,

11https://astro.pages.rwth-aachen.de/astrotools/index.html
12The choice of NSIDE = 1024 for the LSST field created in section 4.1.1 results in a small dynamic range for

1+ δGal, leading to the CDF being saturated quickly, which causes systematic effects at large angular scales in the
distribution of the samples created using an inverse CDF sampling procedure. To mitigate this, we downsample the
field to NSIDE = 512 before drawing the samples.
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meaning that the bias for the BBH population and the galaxy sample with respect to the un-
derlying matter field are identical. This is an undesirable situation since there is no physical
reason to assume that the bias of these two samples should be the same. To correct this,
we randomly scatter the temporary BBH positions on scales of ∼0.15◦13, which correspond
to transverse spatial scales of ∼4 Mpc for a median redshift of ∼0.4 for the LSST galax-
ies. This scale represents an estimate for the typical displacement of a BBH system from
the centre of its host galaxy, which is expected to be smaller than the size of typical dark
matter halos14. This step serves another purpose: it ensures that the injected BBH posi-
tions no longer lie on a grid, unlike the temporary postitions that were taken to be centres of
HEALPixels.

3. Figure 4.6 indicates that there is a ∼80% overlap between the redshift distributions of the
unclustered BBHs and the LSST Y1 galaxies. This overlap is expected to be similar for
the clustered mock BBHs. Therefore, if we draw all injections from the LSST Y1 density
field, ∼20% of the clustered mock BBHs that will have inferred redshifts outside the overlap
region will be spuriously correlated with the galaxy field, leading to artificial enhancement in
the clustering measurement. To mitigate this potential bias, we replace 20% of the injections
by random draws from a Poisson distribution in the sky.

Once we have the positions, the rest of the procedure for creating the spatially clustered cat-
alogue is identical to the one followed for creating the unclustered one. We have checked that
the two catalogues are identical in all respects other than their clustering properties, but omit the
analogue of figure 4.4 for the clustered catalogue for brevity.

4.2 Cross-correlation Analysis

In this section, we present a preliminary analysis of the spatial cross-correlation between the mock
HLVIK BBH catalogues and the simulated LSST Y1 galaxy density field created in the previous
section.

13In practice, this corresponds to shifting each BBH by a random angular distance drawn from a Gaussian of
standard deviation 0.15◦, along a randomly chosen great circle intersecting its temporary location.

14Note that dark matter halos are typically 1-2 Mpc in size, and we take a more conservative value to account for
low redshift events, for which the projected angular size would be larger.
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Figure 4.6: A comparison of the distribution of inferred redshifts for the unclustered mock BBHs (red curve)
and the modelled n(z) for LSST Y1 galaxies (blue curve). There is a ∼80% overlap between the two redshift
distributions, as shown by the orange curve.

In chapter 3, we used the angular power spectrum as the two-point statistic of choice. Here, we
focus on the two-point cross-correlation function instead15. As before, we also compute the excess
cross-correlation as measured by the first and second nearest neighbour distributions.

4.2.1 Robustness of cross-clustering statistics

Since we are conducting a forecast study with simulated data, we have the ‘true’ (injected) sky
locations of the ‘detected’ BBHs in addition to their ‘observed’ (inferred) posterior probability
distributions in the sky. Therefore, we can perform two measurements:

1. cross-correlation between the observed (inferred) sky distributions of the mock BBHs and
the galaxy density field

2. cross-correlation between the true (injected) sky locations of the mock BBHs and the galaxy
density field

The first measurement provides a prediction of the cross-correlation signal expected from realistic

15There is no objective reasoning for this decision since the two-point function and the power spectrum are com-
pletely equivalent measures of clustering. We choose to work with the correlation function simply because we have
already explored the power spectrum in the previous chapter.
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future data and the second measurement estimates the signal expected if all detected BBHs were
perfectly localised.

The additional information present in the second measurement is extremely valuable for the
following reasons. As discussed in the previous chapter, the uncertainty in the sky localisation of
the BBHs tends to reduce the strength of the clustering signal. By comparing the cross-correlation
signal detected in the inferred sky distribution of the BBHs against that in the injected distribution
(which is the true underlying signal), we can judge the robustness of the summary statistic used
to perform the measurement in the presence of uncertainties in sky localisation. For example, a
summary statistic that can measure the clustering signal using the injected locations but not using
the inferred distributions is less robust than another summary statistic that can detect the signal
using both the injected and inferred distributions.

In order to compare the measurements with each other and determine the robustness of the
summary statistics to the presence of sky localisation uncertainty, we need to ensure that both
are computed using exactly the same procedure. As discussed in chapter 3, performing the first
measurement requires computing the summary statistics using random samples from the posterior
distributions of the BBHs and averaging over many such samples (see sections 3.2.1 and 3.2.3).
However, each BBH has a unique injected sky location and this sampling-averaging procedure is
not applicable to the second measurement. How do we ensure consistency in the treatment of the
two measurements?

For the purposes of this preliminary study, we assign each BBH the most probable position in
its sky localisation area to perform the first measurement. Although not the most realistic approach
for computing the clustering of objects with uncertain sky localisations16, it is a reasonable first ap-
proximation for the BBH catalogue considered in this forecast study, which has much fewer events
with bimodal sky distributions and significantly improved sky localisations than the data consid-
ered in chapter 317. However, we caution the reader that the measurements presented here are not
realistic predictions, since we neglect the information in the full sky distributions of the individual
BBHs. We will compute the realistic measurements using the sampling-averaging procedure in
future work.

16See the discussion in section 3.2.1.
17This is partly due to the addition of two more detectors (LIGO India and KAGRA) to the network and partly

because of the increased sensitivities of each detector.
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4.2.2 Angular scales

We conduct the clustering analysis on angular distance scales from ∼0.1◦ to ∼3◦. These angular
distances correspond to projected transverse distance scales of ∼3 to ∼90 Mpc for a median
redshift of ∼0.4 for the LSST Y1 galaxies. The majority of these scales are in the nonlinear or
quasi-nonlinear regime. For computing the overdensity fields and the query points for the nearest-
neighbour measurements, we use an NSIDE = 1024 HEALPix grid with ∼1.2×107 pixels and an
angular resolution of ∼0.06◦. As required for the nearest-neighbour analysis, the number of query
pixels is much larger than the number of data points, and the query grid has sufficient resolution
to sample the smallest spatial scales analysed. We remove all query points within 2◦ of the WSC
mask boundaries for computing nearest-neighbour excess cross-correlation to avoid any biases due
to the presence of the mask.

4.2.3 Results

In this section, we present the results of our preliminary analysis18. We focus on evaluating the
robustness of the summary statistics to the presence of offsets between the injected and inferred
sky locations of the BBHs, and leave realistic clustering measurements for future work.

Figure 4.7 plots the excess cross correlation between the ∼1.1× 104 BBHs of the clustered
mock catalogue and the simulated LSST Y1 galaxy density field as measured by the first (top panel)
and second (bottom panel) nearest neighbour distributions. In each panel, the left plot shows cross-
correlation measurements using the ‘true’ (injected) sky location for each BBH, while the right plot
shows the measurements using the highest probability (inferred) sky location for each BBH. The
solid line in each subplot represents the measurement for the clustered BBH catalogue, while the
dashed line and shaded band represent the mean and 3σ deviations over the 100 realisations of
the unclustered BBH catalogue. The dash-dot line indicates the expected value in the absence of
cross-correlations.

18We emphasize that these results do not represent the realistic cross-correlation signals expected in the forecast
data since we do not account for the full sky distributions of the individual BBHs.
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Figure 4.7: Excess cross correlation between the ∼1.1×104 clustered mock BBHs and the simulated LSST
Y1 galaxy density field as measured by the first (top panel) and second (bottom panel) nearest neighbour
distributions. The plotting scheme for each subfigure is as follows: the solid line represents the measure-
ment for the clustered BBH catalogue, while the dashed line and shaded band represent the mean and 3σ

deviations over 100 realisations of the unclustered BBH catalogue. The dash-dot line indicates the expected
value in the absence of cross-correlations. In each panel, the left plot shows cross-correlation measurements
using the ‘true’ (injected) sky location for each BBH, while the right plot shows the measurements using
the highest probability (inferred) sky location for each BBH. The y-axis scales for the left and right plots
have been made identical for ease of comparison. Both nearest neighbour distributions capture a statistically
significant cross-correlation signal between the distribution of the true locations of the detected BBHs and
the galaxy density field but are not able to detect any cross-correlation signal using the inferred locations of
the BBHs.

As demonstrated in figure 4.7a, both nearest neighbour distributions capture a large, statisti-
cally significant cross-correlation signal between the true locations of the detected BBHs and the
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galaxy density field, but are not able to detect any cross-correlation signal using the inferred lo-
cations of the BBHs. Similar behaviour is observed for the two-point cross-correlation function,
plotted in figure 4.8, which captures a much weaker signal than the nearest neighbour distributions
using the true locations, and no signal using the inferred locations.
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Figure 4.8: The two-point cross-correlation function of the ∼1.1×104 clustered mock BBHs and the simu-
lated LSST Y1 galaxy density field. The plotting scheme is similar to figure 4.7. The y-axis scales for the left
and right plots have been made identical for ease of comparison. The correlation function is able to detect a
cross-correlation between the distribution of the true locations of the detected BBHs and the galaxy density
field, but the signal is much weaker as compared to the nearest neighbour distributions (cf. figure 4.7a).
Similar to the nearest neighbour distributions, the two-point function can not detect any cross-correlation
signal using the inferred locations of the BBHs.

These results imply the following: the expected sample size of BBHs detected in 10 observing

years of an HLVIK-like detector network is large enough to allow for the detection of spatial

cross-correlations with an LSST-like galaxy survey, but the uncertainty in the sky localisation of

the BBHs leads to a significant reduction in the measured signal. As shown in figure 4.4b, there
are even 10◦−100◦ offsets between the injected and inferred locations for a significant fraction of
the BBHs. Given that we are performing the measurement on ∼1◦ scales, such large offsets are
likely to wash out any clustering signal.

Figure 4.9 shows that the offset between the injected and inferred sky locations of the BBHs
is highly correlated with the 1σ sky localisation area. As expected, on average, better-localised
events are also localised closer to their ‘true’ locations in the sky.
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Figure 4.9: Scatter plot showing the variation of the offset between injected and inferred sky locations of
the BBHs with their 1σ sky localisation uncertainty area. The dashed curve shows the best-fit straight line
through the data. As expected, there is a clear correlation between the sky localisation uncertainty and the
offsets, and on average, better-localised events are localised closer to their ‘true’ locations in the sky.

Since the number of BBHs in the mock catalogue is more than enough to detect a clustering
signal using the true locations, one way of reducing the impact of the sky localisation uncertainty
might be to restrict the sample to well-localised BBHs that have smaller offsets. To test this hy-
pothesis, we remove all events with 1σ sky localisation area greater than 50 sq. deg. from the
clustered and unclustered mock BBH catalogues19. After performing this cut, we are left with
∼1.6×104 BBHs in total and ∼6.7×103 BBHs inside the simulated LSST survey footprint, for
which we compute the clustering signal. The results for the nearest neighbour measurements and
the two-point correlation function are shown in figures 4.10 and figure 4.11 respectively.

19Note that we cannot place a cut on offsets since they are not observables, unlike the sky localisation areas, which
can be measured in data.
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Figure 4.10: Same as figure 4.7, but only using the ∼6.7×103 BBHs with 1σ sky localisation areas less than
50 sq. deg. The y-axis scales for the left and right plots have been made identical for ease of comparison.
Both nearest neighbour distributions continue to capture a statistically significant cross-correlation signal
between the distribution of the true locations of the restricted BBH sample and the galaxy density field as
before. The loss in signal in going from injected to inferred sky locations is smaller for the restricted BBH
sample than for the entire sample, resulting in an almost statistically significant detection in the second
nearest neighbour distribution.
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Figure 4.11: Same as figure 4.8, but only using the ∼6.7×103 BBHs with 1σ sky localisation areas less than
50 sq. deg. The y-axis scales for the left and right plots have been made identical for ease of comparison.
For this restricted BBHs sample, the correlation function detects a much weaker cross-correlation signal
between the distribution of the true locations of the detected BBHs and the galaxy density field than the
nearest neighbour distributions (cf. figure 4.10), and the cross-correlation signal is completely lost when the
inferred locations of the BBHs are used instead.

Even after removing ∼40% events with sky localisation uncertainty above the chosen thresh-
old, both nearest neighbour distributions continue to capture a statistically significant cross-correlation
signal between the distribution of the true locations of the detected BBHs and the galaxy density
field. Due to the offsets for the set of better-localised BBHs being smaller, the loss in the cross-
correlation signal is significantly less pronounced in both distributions as compared to the loss in
signal for the entire BBH sample (cf. figure 4.7), and the second nearest neighbour distribution al-
most captures a statistically significant signal even using the inferred sky locations at scales larger
than ∼0.5◦. Note how the small scales are strongly affected by the offsets, and the loss in signal
reduces as we go to larger scales. The two-point correlation function, on the other hand, detects
a much weaker signal even for the true sky locations and is not able to detect any signal for the
inferred BBH locations.

As a further test, we also repeat the analysis with all events localised to 1σ areas more than
20 sq. deg. removed from the BBH catalogues. This leaves us with ∼9×103 events in total and
∼3.6×103 events in the LSST footprint. The results are presented in figure 4.12 and 4.13.
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Figure 4.12: Same as figure 4.7, but only using the ∼3.6×103 BBHs with 1σ sky localisation areas less than
20 sq. deg. The y-axis scales for the left and right plots have been made identical for ease of comparison.
For the BBHs that satisfy this (more stringent) selection criteria, the cross-correlation signal between the
distribution of the true locations of the detected BBHs and the galaxy density field is detected only in the
first nearest neighbour distribution, and no signal is detected using the inferred sky locations in either of the
two distributions.
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Figure 4.13: Same as figure 4.8, but only using the ∼3.6×103 BBHs with 1σ sky localisation areas less than
20 sq. deg. The y-axis scales for the left and right plots have been made identical for ease of comparison.
For the BBHs that satisfy this (more stringent) selection criteria, the two-point function does not capture a
correlation signal using either the injected or the inferred sky locations.

We observe that with this more stringent cut on sky localisation, the number density of BBHs
becomes so small that even for the injected locations, the signal is detected only in the first near-
est neighbour distribution, and none of the summary statistics are able to measure any cross-
correlations using the inferred locations.

4.2.4 Discussion

The main takeaways of our analysis are as follows:

• Two opposing factors determine whether a BBH-galaxy cross-correlation signal can be de-
tected: the sample size of the BBHs and the offsets between true and inferred sky locations.

• If no restrictions are placed in the sky localisation uncertainty of the events, the sample
size of the BBHs is large enough to detect a significant clustering signal using the true
sky locations, but the resulting large offsets lead to a non-detection using the inferred sky
locations.

• On the other hand, the gains from smaller offsets achieved by placing too aggressive sky
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localisation cuts become redundant since the remaining sample of BBHs becomes too small
for a clustering signal to be detected even in the true locations.

• A 50 sq. deg. selection criteria leads to an optimal combination of sample size and offsets:
there are enough BBHs left in the sample to get a significant clustering measurement for the
true locations, and the offsets are small enough to not smear out the observed signal at the
angular scales of interest.

• The number density of BBHs with ∆Ω68% < 50 sq. deg. expected from 10 years of obser-
vations by an HLVIK-like detector network is sufficient to allow for a marginal detection of
their spatial cross-correlations with an LSST-like galaxy survey in the second nearest neigh-
bour distribution, but not large enough to allow for a detection in the two-point correlation
function or the first nearest neighbour distribution.

• The first nearest neighbour distribution captures a larger cross-correlation signal for per-
fectly localised BBHs than the second nearest neighbour distribution, but the second nearest
neighbour distribution is more robust to uncertainty in sky localisation than the first nearest
neighbour.

• The nearest neighbour distributions are more robust to sky localisation uncertainty than the
two-point correlation function.

Currently, we do not understand why the second nearest neighbour distribution seems to be
more robust to offsets than the first nearest neighbour distribution. We leave a systematic investi-
gation of this behaviour to future work.
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Chapter 5

Conclusion and Outlook

In this thesis, we developed a framework for quantifying the spatial clustering of sources of gravi-
tational waves and their cross-correlation with the large-scale structure of the universe, using two-
point summary statistics and nearest-neighbour distributions as summary statistics. We extended
the k-nearest-neighbour formalism, originally developed in Banerjee & Abel (2021a) and Banerjee
& Abel (2023) for 3D clustering, to angular clustering in the sky. Our framework implements ro-
bust strategies to deal with the extended sky localisation of sources and selection biases associated
with gravitational wave detections. It can handle observational systematics due to the presence of
masked regions in the sky with unreliable electromagnetic observations.

We illustrated the statistical power of the nearest-neighbour distributions as measures of spa-
tial clustering of sparsely sampled and highly biased tracers by cross-correlating the overdensity
field of the WISE×SuperCOSMOS (WSC) all-sky catalogue with 36 tracers residing in the highest
density regions in the sky. Even with such a small sample size, the first nearest-neighbour distri-
bution captured a statically significant signal at small scales where the angular power spectrum
did not. Through this example, we demonstrated that the nearest-neighbour distributions are able
to access information in the higher-order correlation functions at small scales where cosmological
fluctuations are non-Gaussian.

As a first application to data, we measured the angular power spectrum and nearest-neighbour
distributions of the Binary Black Hole (BBH) mergers detected in the first three observation runs
of LIGO-Virgo-KAGRA and cross-correlated these sources with galaxies and quasars from the
WSC catalogue. We adopted a hypothesis-testing approach to determine the significance of the
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clustering signal, with the null hypothesis stipulating that BBHs are distributed uniformly in the
sky. To mitigate observational biases in the BBH data, we created a catalogue of mock BBHs that
statistically reproduce the observed properties of the detected BBHs but are spatially unclustered
and uncorrelated with the large-scale structure of the universe. This sample served as a natural
control set to compare with the data while testing the null hypothesis.

Using chi-squared distributions to measure statistical deviations from the null hypothesis, we
found no evidence for spatial clustering of BBHs or their cross-correlation with large-scale struc-
ture in the presently available data. These results are consistent with similar studies in the literature
(Zheng et al., 2023; Mukherjee et al., 2022; Cavaglià & Modi, 2020). We discussed that an absence
of a clustering signal is not unexpected, given the small sample size and large uncertainty in the
sky localisation of the BBHs.

A detection of clustering with so few events would indicate that BBHs reside in extremely
biased environments in the universe, such as cosmic web nodes and massive voids. However, a
non-detection of this cross-correlation in currently available data does not rule out this scenario,
since the sky localisation uncertainty smears out the clustering signal at small scales where the
measurements are most sensitive. We demonstrated that with well-localised BBHs, the kNN tracer-
field formalism has the exciting potential to test the possibility of BBHs being highly biased tracers
of large-scale structures.

Although we were not able to measure the clustering signal in the presently available data
on binary black hole mergers, our framework provides a powerful means to study spatial cross-
correlations between continuous fields and transient events with uncertain sky localisation in the
presence of selection effects and observational systematics, as demonstrated by the results of our
forecast study for future observing runs of LIGO and stage-IV galaxy surveys.

We forecast 10 years of GW observations with a network of 5 ground-based detectors, resulting
in a mock BBH catalogue of ∼2.8×104 BBHs, of which ∼1.6×104 were localised to better than
50 sq. deg. and ∼9×103 to better than 20 sq. deg. in the sky. We cross-correlated 3 sets of BBHs
(the full sample and the two sets having maximum allowed sky localisation uncertainties of 50 and
20 sq. deg. respectively) with the simulated galaxy overdensity field of an LSST Y1-like survey
and found that the second nearest neighbour distribution captures a nearly statistically significant
cross-correlation signal for the modestly-localised ∼1.6× 104 BBHs with sky localisation area
smaller than 50 sq. deg., while the two-point cross-correlation function does not capture a clear
signal. Our analysis demonstrates that the nearest neighbour distributions can extract higher-order,
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non-Gaussian clustering from the small spatial scales.

None of the clustering statistics detected a signal using the inferred locations of the other two
samples. This can be understood as follows: if no restrictions are placed in the sky localisation
uncertainty of the events, the sample size of the BBHs is large enough to detect a significant clus-
tering sample using the true sky locations, but the resulting large offsets lead to a non-detection
using the inferred sky locations. On the other hand, placing an aggressive sky localisation cut
(e.g., 20 sq. deg.) is not effective either since the remaining sample of BBHs becomes too small
for a clustering signal to be detected even in the true locations. Our findings suggest that a mod-
erate selection criterion (such as sky localisation area less than 50 sq. deg.) leads to an optimal
combination of sample size and offsets that ensures a large enough sample size to get a significant
clustering measurement for the true locations while keeping the offsets are small enough to not
smear out the observed signal at the angular scales of interest.

With a statistically significant population of even better-localised merger events expected to be
detected in future observing runs of the third generation of gravitational wave detectors (Iacovelli
et al., 2022; Borhanian & Sathyaprakash, 2022; Hall & Evans, 2019), we would have access to
even smaller scales where the nearest-neighbour distributions are expected to offer significant gains
over a two-point analysis (Banerjee & Abel, 2023, 2021b,a). Hence, the techniques developed in
this thesis would be crucial for measuring the clustering of gravitational wave sources that will
be detected in the coming decades. In future work, we will conduct forecast studies analysing
the angular clustering of BBHs expected to be detected by the third-generation detectors, as well
as their cross-correlations with forecast galaxy data for stage-IV large-scale surveys (Gupta &
Banerjee 2024 in prep.).

We focused on binary black holes in this work, but our framework can also be applied to
study binary neutron star mergers or neutron star black hole mergers with minor modifications.
In addition to gravitational wave sources, other astrophysical transients such as gamma-ray bursts
are also often poorly localised (see Michael Burgess, J. et al. (2021) and references therein). The
methods presented in this thesis will be useful for conducting multi-messenger studies with these
objects. Similarly, the tracer-field correlation formalism discussed here can be applied to conduct
cross-correlation studies between large-scale structure and cosmological fields, such as the cosmic
microwave background and the cosmological 21 cm neutral hydrogen signal.
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Programming Software and Data
Availability

The iPython notebook environment JupyterLab 1 and the python libraries healpy2, NumPy3,
pandas4, scikit-learn5 and SciPy6 were used extensively in this work. All plots in this thesis
were made using Matplotlib7.

The following publicly available data were used in this thesis: the gravitational wave parameter
estimation data and skymaps for the parent BBH catalogue, which can be found at https://zenodo.
org/records/5546663, and the WSC SVM catalogue and mask, which can be found at http://ssa.
roe.ac.uk/WISExSCOS.html. The simulation products of the Agora lightcone were obtained on
request from Dr. Yuuki Omori, and are gratefully acknowledged. The data generated in this study,
including the mock BBH catalogues, are available upon reasonable request.

1https://jupyterlab.readthedocs.io/en/latest/index.html
2https://healpy.readthedocs.io/en/latest/
3https://numpy.org/
4https://pandas.pydata.org/
5https://scikit-learn.org/
6https://scipy.org/
7https://matplotlib.org
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Annalen der Physik, 536, 2200180

Meena A. K., Bagla J. S., 2019, Monthly Notices of the Royal Astronomical Society, 492, 1127

Michael Burgess, J. Cameron, Ewan Svinkin, Dmitry Greiner, Jochen 2021, A&A, 654, A26

90

http://dx.doi.org/10.3847/1538-4357/ac9cd4
http://dx.doi.org/10.1093/mnras/stw248
http://dx.doi.org/10.1093/mnras/stw248
http://dx.doi.org/10.1051/0004-6361/201629165
http://dx.doi.org/10.1051/0004-6361/201629165
http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1088/0264-9381/32/7/074001
http://dx.doi.org/10.1103/PhysRevX.13.011048
http://dx.doi.org/10.1103/PhysRevX.13.041039
http://dx.doi.org/10.1086/172900
https://ui.adsabs.harvard.edu/abs/1993ApJ...412...64L
http://dx.doi.org/10.1088/1475-7516/2021/02/035
http://dx.doi.org/10.1088/1475-7516/2022/02/003
http://dx.doi.org/10.48550/arXiv.1812.00515
https://ui.adsabs.harvard.edu/abs/2018arXiv181200515L
http://dx.doi.org/10.1103/PhysRevD.77.043512
http://dx.doi.org/10.1146/annurev-astro-081811-125615
http://dx.doi.org/10.1103/PhysRevD.104.062009
http://dx.doi.org/https://doi.org/10.1002/andp.202200180
http://dx.doi.org/10.1093/mnras/stz3509
http://dx.doi.org/10.1051/0004-6361/202039461


Miyatake H., et al., 2023, Physical Review D, 108, 123517

Mukherjee S., Wandelt B. D., Nissanke S. M., Silvestri A., 2021, Phys. Rev. D, 103, 043520

Mukherjee S., Krolewski A., Wandelt B. D., Silk J., 2022, Cross-correlating dark
sirens and galaxies: measurement of $H 0$ from GWTC-3 of LIGO-Virgo-KAGRA,
doi:10.48550/arXiv.2203.03643, http://arxiv.org/abs/2203.03643

Namikawa T., Nishizawa A., Taruya A., 2016, Phys. Rev. Lett., 116, 121302

Oguri M., 2016, Phys. Rev. D, 93, 083511

Omohundro S. M., 2009. https://api.semanticscholar.org/CorpusID:61067117

Omori Y., 2022, arXiv e-prints, p. arXiv:2212.07420

Palmese A., et al., 2020, The Astrophysical Journal Letters, 900, L33

Pedregosa F., et al., 2012, Scikit-learn: Machine Learning in Python, https://arxiv.org/abs/1201.
0490v4

Peron M., Libanore S., Ravenni A., Liguori M., Artale M. C., 2023, arXiv e-prints, p.
arXiv:2305.18003

Pratten G., et al., 2021, Physical Review D, 103, 104056

RIOS J. d. M. Y., 1795, Memoria sobre algunos Métodos nuevos de calcular la Longitud por las
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Appendix A

Smoothing in harmonic space

Consider a field δ (Ω) defined in the sky. The expression for the field smoothed on an angular scale
θ is given by

δ
θ (Ω) =

1
2π(1− cosθ)

∫
arccos(Ω̂·Ω̂′

)≤θ

dΩ̂
′
δ (Ω̂

′
) (A.1)

The smoothed field is equivalent to the field averaged over spherical caps of angular radius θ .
Equation A.1 can be re-written as

δ
θ (Ω) =

∫
All sky

dΩ̂
′
δ (Ω̂

′
)W θ (Ω′,Ω) (A.2)

where W θ (Ω′,Ω) is the top-hat filter in configuration space, given by

W θ (Ω′,Ω) =

 1
2π(1−cosθ) arccos(Ω̂ · Ω̂′

)≤ θ

0 otherwise
(A.3)

The integral in equation A.3 is computationally expensive to perform in configuration space, but
one can use properties of the spherical harmonics and massively speed up the calculation by go-
ing to harmonic space. Let the expansions of the smoothed and unsmoothed fields in spherical
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harmonics be given by

δ (Ω̂) = ∑
ℓm

αℓmYℓm(Ω̂) (A.4)

δ
θ (Ω̂) = ∑

ℓm
α

θ
ℓmYℓm(Ω̂) (A.5)

Since the top-hat filter represents a homogeneous and isotropic smoothing kernel that is only a
function of the central angle θ between Ω̂ and Ω̂

′
, it can be expanded in terms of the Legendre

polynomials Pℓ(cosθ) as:
W θ = ∑

ℓ

bℓPℓ(cosθ) (A.6)

It can be shown, by substituting equations A.4 to A.6 in equation A.2, that the spherical harmonic
expansion coefficients αθ

ℓm of the smoothed field are given by the product of the αℓm of the un-
smoothed field and the Legedre expansion coefficients bℓ of the top-hat filter (Devaraju, 2015)1:

α
θ
ℓm = 4π

bℓ
2ℓ+1

αℓm (A.7)

This expression makes sense since computing the integral in equation A.3 is equivalent to per-
forming a spatial convolution on the surface of a sphere. A convolution in configuration space
corresponds to a product in harmonic space. It is to be noted that for a general inhomogeneous
smoothing kernel, however, spatial smoothing is not equivalent to a convolution since each point
on the sphere has a different kernel. For such cases, equation A.7 would be different. See chapter
2 of Devaraju (2015) for a nice discussion on the topic.

In practice, we compute the {αℓm} for the unsmoothed field using the healpy package. The
{bℓ} for the top-hat function are computed as follows. By definition,

bℓ =
2ℓ+1

2

∫ 1

−1
W θ Pℓ(cosθ)d(cosθ)

=
2ℓ+1

2
1

2π(1− cosθ)

∫ 1

cosθ

Pℓ(cosθ)d(cosθ) (A.8)

1Note that we have an additional factor of 4π not present in the expression derived by Devaraju (2015), since we
use a normalised definition for the top-hat filter that already incorporates an extra factor of 1/4π that appears in their
equivalent of equation A.2.
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Using the recursion relation

Pℓ(x) =
1

2ℓ+1
d
dx

[Pℓ+1(x)−Pℓ−1(x)] (A.9)

we get

bℓ =
1

4π(1− cosθ)
[Pℓ−1(cosθ)−Pℓ+1(cosθ)] (A.10)
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Appendix B

Population Models for Binary Black Holes

For creating the mock BBH catalogues, we assume the Power Law + Peak model for the mass of
the primary (heavier) BBH and a power law distribution for the ratio of component masses. For
the analysis using the currently available data, we assume a power law distribution for redshift
evolution of merger rate per unit comoving volume per unit source-frame time, as specified in
LIGO Scientific Collaboration et al. (2023a), while for the the forecast study, we assume that the
BBH merger rate follows the Madau-Dickinson star formation rate density (Madau & Dickinson,
2014).

B.1 Mass Model

Let m1 denote the mass of the primary black hole, and q denote the mass ratio, such that the mass
of the secondary black hole is qm1. The population distribution model for m1 is given by

π(m1|λpeak,α,mmin,δm,mmax,µm,σm) =[
(1−λpeak)P(m1|−α,mmax +λpeakG(m1|µm,σm)

]
S(m1|mmin,δm) (B.1)

where P(m1|−α,mmax) is a power law distribution with spectral index −α and high-mass cut-
off mmax, G(m1|µm,σm) is a Gaussian distribution with mean µm and standard deviation σm, and
λpeak is the mixing fraction that determines the relative importance of the power law and Gaus-
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Parameter Value
α 3.4
βq 1.08

mmin 5.08
mmax 86.85
λpeak 0.04
µm 33.73
σm 3.56
δm 4.83

Table B.1: Power Law + Peak model parameters

sian components. The lower mass end of the distribution is tapered using a smoothing function
S(m1|mmin,δm) which rises from 0 to 1 over the interval (mmin,mmin +δm), given by

S(m1|mmin,δm)

=


0 m < mmin

[ f (m−mmin,δm)+1]−1 mmin ≤ m < mmin +δm

1 m ≥ mmin +δm

(B.2)

with

f (m,δm) = exp
(

δm

m
+

δm

m−δm

)
(B.3)

The conditional mass ratio distribution is given by a power law, also smoothed at the lower mass
end

π(q|m1,βq,mmin,δm) ∝ qβqS(qm1|mmin,δm) (B.4)

The values for the model parameters assumed in this work are taken from the publicly available
LVK population analysis results and are summarised in table B.1.
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B.2 Redshift Evolution Models

The power law redshift evolution model parameterises the merger rate density per comoving vol-
ume and source-frame time as

R(z) =
dN

dVcdts
= R0(1+ z)κ (B.5)

where R0 is the merger rate density at z = 0, ts is the source-frame time, related to observer-
frame time as ts = to/(1+ z) due to cosmological redshift. This implies that the observed redshift
distribution is

dN
dz

=
∫

dto
dVc

dz
R0(1+ z)κ−1

= tobsR0
dVc

dz
(1+ z)κ−1 (B.6)

where tobs is the total observation time and dVc
dz is the differential comoving volume. The probability

distribution function for redshifts is given by normalising equation B.6

π(z|κ,zmax) =
dVc
dz (1+ z)κ−1∫ zmax

0 dzdVc
dz (1+ z)κ−1

(B.7)

where zmax is the maximum redshift out to which the population has been created. Note that
the constants R0 and tobs drop out of the expression since they are simply normalisation constants
and do not affect the shape of the distribution. However, they do indeed control the total number
of mock events to be drawn from the normalised distribution. Although the zmax in LIGO analyses
is typically taken to be 2.3, we assume a zmax of 0.7 since assuming a lower value of zmax is
computationally less demanding. We have checked that inputting a higher zmax value does not
affect our mock catalogue. This is due to the fact that a negligible fraction of injections outside
this redshift are detected by our assumed network. We assume κ = 3 in our analysis.

The Madau Dickinson star formation rate profile gives the star formation rate density per co-
moving volume and source-frame time as

ψ(z) ∝
(1+ z)2.7

1+
( 1+z

1+1.9

)5.6 (B.8)
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We assume that the BBH merger rate follows the star formation rate exactly (see section 4.1.2 for
details), therefore, we must have

R(z) = R0
(1+ z)2.7

1+
( 1+z

1+1.9

)5.6 (B.9)

As before, R0 is approximately1 the merger rate density at z = 0 and ts is the source-frame time,
related to observer-frame time as ts = to/(1+ z) due to cosmological redshift. This implies that the
observed redshift distribution is

dN
dz

=
∫

dto
dVc

dz
R0

(1+ z)1.7

1+
( 1+z

1+1.9

)5.6

= tobsR0
dVc

dz
(1+ z)1.7

1+
( 1+z

1+.9

)5.6 (B.10)

where tobs is the total observation time and dVc
dz is the differential comoving volume. The probability

distribution function for redshifts is given by normalising equation B.10

π(z|zmax) =

dVc
dz

(1+z)1.7

1+( 1+z
1+1.9)

5.6∫ zmax
0 dzdVc

dz
(1+z)1.7

1+( 1+z
1+1.9)

5.6

(B.11)

where zmax is the maximum redshift out to which the population has been created. For the
forecast study, we set zmax = 4, tobs = 10 and R0 = 17 Gpc−3 Yr−1 in our analysis.

1This is a very good approximation, since R(0)≈ R0
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