
Drift and Trapping of Particles under
Biased Motion on Disordered Lattices

A Thesis

submitted to

Indian Institute of Science Education and Research Pune

in partial fulfillment of the requirements for the

BS-MS Dual Degree Programme

by

Hunnervir Singh

Indian Institute of Science Education and Research Pune

Dr. Homi Bhabha Road,

Pashan, Pune 411008, INDIA.

April, 2024

Supervisor: Prof. Deepak Dhar

© Hunnervir Singh 2024

All rights reserved









This thesis is dedicated to the love of learning.









Acknowledgments

Firstly, I would like to thank my supervisor, Prof. Deepak Dhar, whose expert guidance

enabled me to complete my work while learning a lot. I would also like to thank Prof.

Sreejith G.J. for being available even when he was on a sabbatical. Finally, I would like to

thank my parents, friends, and family for their continued support.

ix



x



Abstract

This project deals with the properties of systems of biased random walkers on disordered

lattices. We use a percolation cluster to model the disordered lattice and study how the

motion of the walkers is affected by the disorder in the lattice. I developed an algorithm

to find the backbone and branches of a cluster. We find the steady state for a system of

non-interacting biased walkers on a percolation cluster theoretically. Using this, we plot

the average velocity of the walkers as a function of the bias. We simulate interacting biased

random walkers with hard-core interactions on a percolation cluster to understand the current

of the walkers as a function of bias and walker density. The long-time velocity-velocity

autocorrelation function is a slowly varying function of the bias for interacting random

walkers on a regular comb. This slow decay is due to the dynamic heterogeneity in the

random walkers’ motion, which means there are different regions where the walkers’ motion

differs. In the region inside the branches, the average velocity of the walkers is low as most

are trapped beneath other walkers. Meanwhile, closer to the backbone, the walkers are free

to move and have a larger average velocity. The velocity-velocity autocorrelation function

also shows bumps corresponding to the walkers trapped at different depths. We find the

occupation probabilities in a regular comb using the partition function and compare it to

the occupation probabilities in our simulations and the theoretical occupation probability

for an infinite comb. A walker deep inside the trap stays there for a long time, which can be

observed by plotting the probability that the trapping time is greater than τ vs τ , which is

a slowly decaying function of τ and shows steps corresponding to the walkers being trapped

at different depths.

xi



xii



Contents

Abstract xi

1 Preliminaries 5

1.1 Percolation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Markov Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Modelling the Percolation Clusters 9

2.1 Hoshen-Kopelman Algorithm to Identify Different Clusters . . . . . . . . . . 9

2.2 Identifying the Backbone and Branches on a Cluster using DFS . . . . . . . 12

3 Simulation of Non-interacting Biased Random Walkers on the Percolation
Cluster 15

3.1 Definition of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Simulation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Using Markov Matrix to Study a Single Walker 19

4.1 Defining the Markov Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Time Evolution using the Markov Matrix . . . . . . . . . . . . . . . . . . . . 20

4.3 Steady-State Using Gauss-Seidel Method . . . . . . . . . . . . . . . . . . . . 20

xiii



4.4 Simulation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Interacting Biased Random Walkers 25

5.1 Definition of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Simulation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Interacting Biased Random Walkers on a Regular Comb 31

6.1 Definition of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.2 Finding the Theoretical steady-state for an Infinite Regular Comb . . . . . . 32

6.3 Simulation details for approaching the steady-state . . . . . . . . . . . . . . 33

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.5 Finding the Steady-state Using the Partition Function . . . . . . . . . . . . 35

6.6 Simulation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.7 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.8 Finding the velocity-velocity Autocorrelation Function . . . . . . . . . . . . 38

6.9 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.10 Trapping Time Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.11 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7 Conclusion 43

xiv



Introduction

The motion of fluids has been a fundamental problem in physics for a long time. We get

an idea of the importance of this problem by the fact that one of the Millennium Prize

Problems in mathematics is proving the existence of smooth solutions of the Navier-Stokes

equation governing fluid flow. Difficulties in finding exact solutions have led to physicists

trying simpler models to model fluid flow and transport phenomena. Random walkers have

been used to model Brownian motion, diffusion processes and fluid flow for a long time[1].

Broadbent and Hammersley studied the percolation problem in 1957[2], and percolation

clusters have been used as the prototypical model of disordered media ever since. The

motion of random walkers on a disordered medium was studied by de Gennes in 1976 using

the percolation cluster as the disordered medium[3].

Biased diffusion in a disordered medium is when particles are subjected to an external

field when passing through a porous medium. Biased diffusion happens during the seepage

of pollutants into the groundwater systems under gravity or during the displacement of

molecules in gel electrophoresis under the influence of an electric field. We use biased random

walkers moving on the percolation cluster with a bias g to model biased diffusion in a

disordered medium. Barma and Dhar argued that for biased random walkers with no mutual

interactions, the asymptotic velocity of the particles becomes zero at a finite value of the

biasing field gc after increasing linearly with g initially[4]. This happens due to the dead-end

branches in the direction of the electric field. It is difficult for the particles to escape from

such branches at high field values, so they stay in these branches for a long time. Thus, they

are also known as trapping branches/ traps.

We model the short-range interactions between the particles using hard-core interactions.

A simple process for studying transport phenomena is the asymmetric simple exclusion

process (ASEP) defined by Frank Spitzer in 1970[5]. This process has become the paradigm

1



for studying transport phenomena and non-equilibrium statistical physics in general[6]. We

simulate walkers following this process. R. Ramaswamy and M. Barma previously studied

the transport of interacting biased random walkers on a percolation cluster in 1987[7]. They

studied the behaviour of the average velocity of the particles as a function of the density and

the bias.

A recent paper by C. Iyer, Barma and Dhar has claimed that the fractional number of

particles that have been in the same side branch for a time interval greater than Tw varies

as ∼ exp (−c
√

log(Tw)) for large Tw, where the constant c depends only on the bias[8]. This

slow decay is a general feature of systems showing dynamic heterogeneity, meaning that

different regions show different particle motion behaviours. In the region close to the deep-

end traps, particles stay stuck for a long time, whereas in the region close to the backbone,

the particles are free to move.

I verified the non-linear velocity of non-interacting biased random walkers on a perco-

lation cluster as a function of bias. We used simulations and the steady-state probability

distribution for this system of biased noninteracting walkers on a cluster. I simulated inter-

acting random walkers with hard-core interactions to study the velocity of the walkers as a

function of bias and the density of walkers. To understand the trapping times in a single

branch, we used a conceptually simpler lattice: the regular comb. I measured the long-time

velocity-velocity autocorrelation function. The slow decay in this function indicates that the

velocity of a walker remains similar for a long time. This function also shows bumps corre-

sponding to the trapping at different depths. I also found how different depths contribute

to the different trapping times of the particle by plotting the probability that the trapping

time is greater than τ vs τ given different maximum depths reached by the walker.

In Chapter 1, I recall some basic features of the percolating systems in Section 1.1 and

an introduction to Markov processes is given in Section 1.2, a familiarity with these topics

is needed to understand the rest of my thesis work. Chapter 2 deals with the percolation

clusters. Section 2.1 outlines the algorithm for finding the percolation clusters. I did most of

my simulations of the random walkers’ motion on spanning percolation clusters. In Section

2.2, I discuss the algorithm for finding a cluster’s backbone and branch sites. The knowledge

of these sites is essential because the time-averaged current of the walkers through a branch

site must be zero for t → ∞.

In Chapter 3, we simulate a single biased random walker on a percolation cluster. For

2



random walkers with no mutual interactions, it is known that the asymptotic velocity of

the particles becomes zero at a finite value of the bias Ec after increasing linearly with E

initially[4]. This happens due to the presence of branches of random lengths in the direction

of the biasing field. As it is difficult for the particles to escape from such branches at high

values of biases, particles stay in them for a long time. Thus, they are also known as trapping

branches/ traps.

Previous studies have shown that the time taken by the walker current to reach its

steady-state value is very high and can be hard to compute in a reasonable CPU time using

simulations only. The time needed to see the asymptotic behaviour diverges roughly as

exp(c/|Ec−E|), as E approaches Ec from below, as L → ∞[9]. So, we study the Markovian

evolution using simulations to study how the probability of the walker being at different sites

evolves with time in Chapter 4. We observe that the system tends to a steady state. This

steady state is found exactly in Section 4.3 by solving the eigenvalue equation of the Markov

time evolution matrix.

In Chapter 5, we simulate interacting biased walkers and discuss how the system’s be-

haviour changes upon adding interactions to our system. Chapter 6 discusses the results

of our simulation of interacting biased random walkers on the regular comb. Here, we try

to understand the dynamic heterogeneity in the system by using the velocity-velocity auto-

correlation function. Using the partition function, we find the occupation probabilities at

different depths for a finite lattice. We also find the distribution of trapping times for this

lattice. Chapter 7 will outline my thesis work’s conclusions and directions for some future

work.

3



4



Chapter 1

Preliminaries

1.1 Percolation Theory

Consider a lattice, for instance, a square lattice consisting of occupied and unoccupied sites,

and let p be the probability of a vertex vi being occupied (occupation probability). Two

occupied sites are said to be connected if we can go from one site to the other using a set of

occupied neighbouring sites. A cluster is a maximally connected lattice component. Different

clusters correspond to different maximally connected lattice components, as shown in Fig.

1.1. Broadbent and Hamersley have studied such clusters and their properties in 1957[2].

There has been a lot more subsequent work in this field known as percolation theory [10].

An important property of the percolation process is the existence of two phases: with

and without long-range connectivity. A second-order phase transition occurs at p = pc. At

p > pc, the largest cluster spans the length of the entire lattice (meaning that we get an

infinite length cluster in the L → ∞ limit), which is not the case for p < pc. This value

pc is the percolation threshold. We define the backbone and the branches on this spanning

cluster. Sites in this cluster with two disjoint paths leading to infinity belong to the backbone.

The rest of the sites belong to the branches. There is another threshold at which there is a

change in the properties of the cluster at p = pd > pc, where pd is the directed percolation

threshold. At p > pd, a directed path exists through the lattice along the occupied sites. A

directed path is a path that does not ‘turn back’; that is, along that path, the component

of displacement is always non-negative along a specific direction.[10]

5



Figure 1.1: Examples of different percolation clusters on a square lattice with l = 30 are
shown in different colours. All clusters at p = 0.5 are shown (left), all clusters at p = 0.6
(centre), largest percolating cluster at p = 0.6(right). Site percolation threshold for a square
lattice, pc = 0.59274605

1.2 Markov Process

A system is said to undergo a continuous time Markovian evolution if the state of the system

at time t+ dt depends only upon the state of the system at time t, which means:

dPn(t)

dt
=
∑
m

(WnmPm(t)−WmnPn(t)) (1.1)

Pn(t) is the probability that the system is in configuration n at time t. Wmn is the Markov

matrix element, and the probability that the system goes from configuration n to configura-

tion m is Wmndt in an infinitesimal time dt. Where, Wnn = 1−
∑

m̸=nWnm.

In the discrete-time case, we can rewrite the equation for the Markovian evolution(Eq.

1.1) using a vector |P (t)⟩ = {Pn(t)} containing the probabilities of the system’s different

configurations at time t, and the Markov matrix W where Wij is the probability of going

from configuration j to configuration i in one timestep, the evolution equation becomes:

|P (t+ 1)⟩ = W |P (t)⟩ (1.2)

If our Markov process is such that there is a path from every state to every other state,

the chain is called irreducible. The process always has a unique steady-state probability

distribution if our chain is irreducible. The steady state corresponds to the state vector

6



|P (t)⟩ being independent of time. So, it corresponds to the eigenvector |P ∗⟩ with eigenvalue

1 of the above matrix W :

|P ∗⟩ = W |P ∗⟩ (1.3)

7



8



Chapter 2

Modelling the Percolation Clusters

We use a 2-D matrix containing all zeroes to represent a square lattice containing all unoc-

cupied sites. We randomly assign 1’s at each site with probability p to generate a realisation

of the percolation process on a square lattice with occupation probability p. This lattice

with occupied and unoccupied sites contains several clusters. To identify these clusters, we

use the Hoshen-Kopelman algorithm.[11]

2.1 Hoshen-Kopelman Algorithm to Identify Different

Clusters

In the Hoshen-Kopelman Algorithm, we scan the lattice from left to right row by row,

starting from the first row, and check the given site and its top and left neighbours. We

make a 2-D matrix containing all zeroes. This matrix will store the cluster numbers of the

occupied sites on the lattice. In the first scan, we assign cluster no. 1 to the first occupied

site. For successive sites, we follow the following rule:

• If the scanned site has an already scanned site neighbour to the top or left, we give

the site the same cluster number as the minimum cluster number of its neighbours.

• If the scanned site does not have an already scanned neighbour to the top or left, we

give the site a cluster number that is one larger than the highest cluster number we

9



(a) initial Hoshen-Kopelman clusters (b) final Hoshen-Kopelman clusters

Figure 2.1: Numbering in the initial step of the Hoshen-Kopelman algorithm, and the final
numbering for an l = 10 lattice at p = 0.4, identified clusters are shown in different colours.
The initial cluster identification is incomplete.

have assigned.

One scan is complete after doing this for all sites on the lattice. If the coloured sites

represent the occupied sites, an example of the cluster numbers we get at this step’s end is

shown in Fig. 2.1a. So, we have generated the initial clusters without using the periodic

boundary condition. Now, we redefine the neighbours using the periodic boundary condi-

tions. Using these initial clusters, we scan the lattice repeatedly until there is no discrepancy

between the neighbouring cluster numbers. The rules for this algorithm are as follows:

• During a scan, we search and compare each site with the neighbours to the top and

left and give it the minimum cluster number among its neighbours(including the site

itself).

• For this comparison, we use a list of connectivities such that list[i] is the smallest

cluster number connected to the ith cluster.

• We start with list[i] = i for all i. Whenever we find a discrepancy in cluster numbers

between sites i, its top neighbour j or its left neighbour k, we change the cluster

numbers list[i], list[j], list[k] to min(list[i], list[j], list[k]) so that now they are a part

of the same cluster numbered min(list[i], list[j], list[k]).

10



(a) Different tilted clusters (b) Largest cluster among the tilted clusters

Figure 2.2: Different clusters found using the Hoshen-Kopelman algorithm on a tilted lattice
using Periodic Boundary conditions at p = 0.6, in a 20× 20 lattice.

• When there is no discrepancy left, we change the list to make list[i] = list[list[i]] by

making sure that every cluster number that we have stored for the connecting cluster

is the minimum cluster number found connected to that cluster in this iteration.

• We again scan the lattice and repeat this algorithm until list[i] = list[list[i]] without

changing the list after checking the discrepancies.

• Now, we enumerate the clusters with the final cluster numbers by changing i to list[i]

in the original cluster numbers matrix.

We save the cluster with the largest number of sites in a file. This cluster corresponds to

the infinite cluster for p > pc, and we use it to study the motion of biased random walkers

on the infinite percolation cluster. For a tilted square lattice, we have to slightly modify

this algorithm to find the infinite cluster on a tilted lattice because of the difference in the

definition of the periodic boundary conditions.

A tilted percolation cluster differs from a percolation cluster on a regular square lattice

in the boundary conditions. Figure 2.2 shows the boundary conditions for tilted clusters.

11



We use these boundary conditions to define each site’s top-left, top-right, bottom-left and

bottom-right neighbours and find the largest cluster using the Hoshen-Kopelman algorithm.

Using the Hoshen-Kopelman algorithm, in this case, will require comparing the cluster num-

ber on our given site to its top-left and top-right neighbours instead of the top and left

neighbours during each scan.

2.2 Identifying the Backbone and Branches on a Clus-

ter using DFS

We defined the backbone for infinite clusters as the set of sites with two disjointed paths

leading to infinity. The clusters in our simulations are finite in size. So, we define the

backbone as the cluster’s largest biconnected component. A biconnected component is a

subcluster that cannot be broken into two disconnected parts by removing a single site. The

remaining sites on the cluster are called branch sites. We use the DFS (Depth First Search)

algorithm to identify the backbones and branches on the cluster.[12] Initially, we define the

backbone list as the list of all sites on the cluster. Then, we remove all the sites in a simple

dead end. Figure 2.3a shows the removed simple dead ends. These are the dead ends whose

last site is attached to the backbone only through sites with two neighbours. Removing one

neighbour from any of those sites will make that site a new dead-end site. To remove such

dead ends:

• We remove all sites with only one neighbour from the backbone list, as one neighbour

means the dead-end site which does not belong to the backbone.

• We repeat this with the new backbone list obtained until no site with one neighbour

is left.

We must go beyond this simple algorithm to remove the more complicated branches. In

this, we use the DFS algorithm to partition the cluster into different biconnected components

and remove all the smaller ones until the biconnected components belonging to the backbone

are the only ones left.

12



(a) Simple dead ends shown in blue are removed (b) Final backbone and branches

Figure 2.3: The largest cluster on a 50× 50 lattice, at p = 0.6 is shown. The backbone sites
are shown in red, and the branch sites are shown in blue.

• We start a loop over all the sites remaining in the backbone list. We label the chosen

site start.

• We remove the start site from the backbone array if it has one or zero neighbours and

only progress with the next step if it has two neighbours.

• Now, we will decide if the start site with degree two belongs to the backbone. We use

another loop under the previous loop that ends only when it decides whether this site

belongs to the backbone.

• We traverse along one start’s neighbours. During this traversal, we visit only the new

sites we have not visited previously and save the path as P1. We keep going until we

reach a site where no new neighbouring sites are available.

• When we reach such a site, we go back along the path P1 until we return to a previously

visited site with unvisited neighbours.

• From this site, we go to the unvisited neighbours and save all the visited sites into a

list visited1.

13



• We repeat this algorithm till we are back at the starting site. If we have visited all

the sites in the backbone array, the site start is biconnected. Otherwise, we start

traversing toward the second neighbour of start.

• We use a similar traversal algorithm(DFS) for traversal in the direction of the other

neighbour, and the visited sites are saved into the list visited2. We will continue until

we are back at the start site.

• If we have now visited all the sites in the backbone array, this means that site start is

biconnected.

• If both visited1 and visited2 lists are smaller than the backbone list, we cannot visit all

the sites through any one path. So, the site start is not biconnected (is an articulation

point).

• We now see which list is smaller visited1 or visited2, and remove all the sites belonging

to the smaller list, which means that they are the sites in the direction of the dead end

of the backbone starting from one of the neighbours of start.

Figure 2.3b shows the backbone and branches on a tilted infinite cluster found using our

algorithm. This figure shows that our algorithm works well for finding the backbone and

branch sites on a percolation cluster.

14



Chapter 3

Simulation of Non-interacting Biased

Random Walkers on the Percolation

Cluster

3.1 Definition of the Model

In a system containing many non-interacting random walkers, the motion of one walker is

not affected by the presence/ absence of other walkers. So, we use a single walker to simulate

multiple non-interacting random walkers. To simulate the biased motion of a single walker on

the percolation cluster found above, we use what is known in the literature as a blind random

walker. By ‘blind’, we mean that at each time step, the particle chooses a neighbouring site

randomly with p(up) = p(down) = 1/4 and p(left) = 1/4 − E, p(right) = 1/4 + E where

0 ≤ E ≤ 1/4 without considering its occupation as shown in Fig. 3.1a. The walker jumps

to the chosen site only if that site is occupied. Otherwise, it remains stationary for the time

step. So, the probability of going up and down is independent of the biasing field(E), which

is towards the right, thus biasing the motion of the random walker towards the right (higher

probability). We measure the displacement of the walker at each timestep, using which we

calculate the average velocity. Because of the periodic boundary conditions, we cannot find

the velocity simply by using the difference between the final and initial positions.

15



(a) Biases for walkers on a square lattice, where
0 ≤ E ≤ 1/4

(b) Biases for walkers on a tilted square lattice,
where 0 ≤ g ≤ 1

Figure 3.1: Biases for the walkers on different types of lattices used in our simulations

3.2 Simulation Details

We simulated the motion of a single biased random walker for 10, 000 timesteps on the

largest percolation cluster on a 1000× 1000 square lattice at occupation probability p = 0.8.

We averaged our simulation results over 500 runs of the walker starting from random initial

positions on the cluster.

3.3 Results and Discussions

For random walkers with no mutual interactions, the asymptotic velocity of the particles

becomes zero at a finite value of the bias Ec after increasing linearly with E initially.[4] This

happens due to the presence of trapping branches. Using our simulation, we checked the

non-linearity of velocity as a function of the biasing field by plotting the mean displacement

vs bias(E) graph, as shown in Figure 3.2.

The density of traps of length r is an exponentially decreasing function of r, and Prob(r) ∝
e−Ar, where A is a constant for a particular value of the occupation probability p. Whereas

16



0.00 0.05 0.10 0.15 0.20 0.25
E

50

75

100

125

150

175

200

225

m
ea

n 
di

sp
la

cm
en

t
mean disp. at t=10,000 vs E, biased blind rw, p=0.7

(a) v vs E at p = 0.7

0.00 0.05 0.10 0.15 0.20 0.25
E

200

400

600

800

1000

m
ea

n 
di

sp
la

cm
en

t

mean disp. at t=10,000 vs E, biased blind rw, p=0.8

(b) v vs E at p = 0.8

0.00 0.05 0.10 0.15 0.20 0.25
E

500

1000

1500

2000

2500

m
ea

n 
di

sp
la

cm
en

t

mean disp. at t=10,000 vs E, biased blind rw, p=0.9

(c) v vs E at p = 0.9

Figure 3.2: Result of Mean displacement vs E for Monte Carlo random walks of 500 non-
interacting walkers on a percolation cluster at p = 0.8 on a 1000× 1000 square lattice after
10, 000 timesteps. (for a square lattice, pd = 0.70548)[13]

the trapping time in a trap of depth r varies as λr, where λ = (1+4E)/(1− 4E) is the ratio

of the probability of the walker moving along and opposite to the bias. So the average time

a walker stays in branches is given by:

< τ >=
∞∑
r=0

λre−Ar (3.1)

The current goes to zero when the average trapping time → ∞. This sum goes to infinity

at E = Ec. As the sum of a geometric progression, it goes to ∞ only when λe−A > 1. In

the right-hand side of equation 3.1, there is a more significant contribution to the trapping

time due to the larger branches when λe−A > 1.[14] But our simulations are on a finite-size

lattice and did not have very large traps. Thus, we cannot observe the zero current regime in

Figure 3.2. We try to keep p > pd for the walkers because we want at least one path through

which the walkers can move without an opposing bias, such that it is always possible for a

walker to keep on moving constantly through the lattice even at very high bias values.

If we define the quantity bias-induced length (L(E)) as the length of the trap in which

the occupation probability of a walker changes by a factor of e. Then the probability that a

walker gets out of a trap of length d is given by:

Prob(d) = e−d/L(E), where L(E) =

(
log

(
1 + E/4

1− E/4

))−1

Walkers spend most of the time inside the bias-induced length of a trap. So, the walkers can

leak out of the traps to give a finite current when the average length of the traps is lesser

17



Figure 3.3: Result of Mean Displacement square vs no. of steps for Monte Carlo random
walks of 500 non-interacting walkers in a 1000×1000 square lattice with p = 0.8 for different
values of E.

than the bias-induced length. This condition is derived from the previous condition for the

the zero current phase found from equation 3.1.

Previous studies have shown that the regime where the current of the particles goes to

zero takes a significant amount of time to observe using only simulations as the time needed

to see the asymptotic behaviour diverges roughly as exp(c/|Ec − E|), as E approaches Ec

from below, as L → ∞.[9] We can also observe from Figure 3.3 that the steady state is not

reached instantaneously. Initially, the velocity is faster for higher values of E, but as the

walkers approach larger traps, the velocity becomes slower for the higher values of E because

of the more strongly trapped walkers.

18



Chapter 4

Using Markov Matrix to Study a

Single Walker

4.1 Defining the Markov Matrix

The system containing a single random walker on the percolation cluster follows a Markovian

evolution in discrete time, as the system’s state at time t + 1 depends only upon the state

of the system at time t. Let Pn(t) be the probability that the walker is on the site n at time

t. Let Wmn be the mnth element of the transition matrix, which is the probability that the

walker goes from site n to site m in one timestep. So:

Wmn =



1/4 if m is occupied and above/below n

1/4 + E if m is occupied and to the right of n

1/4− E if m is occupied and to the left of n

0 if |m⃗− n⃗| > 1 or m or n is unoccupied

1−
∑

m̸=n Wmn if m is occupied and m = n

(4.1)

Where Wnn is the probability that the random walker stays at the same site n for one time

step, and its value depends upon the occupancy of the neighbouring sites of n. Now, we

can rewrite the equation for the Markovian evolution of this system using the discrete-time

Markovian evolution equation(Eq. 1.2). Here, the vector |P (t)⟩ = {Pn(t)} contains the

19



probabilities of the particle being at different sites at time t.

Starting from |P (0)⟩ = ei, where ei is the i’th standard basis, we can use the Markov

Matrix to see how the system evolves with time as:

|P (t)⟩ = W t|P (0)⟩ (4.2)

The resulting vector |P (t)⟩ tells us the probability of the walker being at each site at time t

after starting from the i’th site. The results of this evolution are shown in Figure 4.1.

4.2 Time Evolution using the Markov Matrix

Using the Markov matrix, we observe how the probability distribution evolves with time in

Figure 4.1. We can see in Figure 4.1c that the probability distribution evolves to the right

side of the starting point as the bias E is towards the right direction. Also, Figure 4.1e and

4.1f show that the probability distribution of a walker becomes stationary after some time,

independent of the initial conditions. We reached this state starting from a random initial

position of the walker; this implies that this system reaches a steady state after a long time

independent of the initial position.

The movement of a single-biased random walker on a connected cluster with a finite bias

is a Markov process where every site is reachable. If our specific Markov process is such that

there is a path from every state to every other state, then there is always a steady state.

This steady state is reached as t → ∞, giving us the probability of random walkers being

at different sites in the steady state. In the next section, we will discuss the method to find

this steady state and use the steady state distribution to calculate the average velocities of

the walkers.

4.3 Steady-State Using Gauss-Seidel Method

The system is at a steady state, which means that the state vector |P (t)⟩ does not change
with time. So, it corresponds to the eigenvector |P ∗⟩ with eigenvalue 1 of the above matrix

W . We use the Gauss-Seidel method to solve the eigenvalue equation 1.3. Gauss-Seidel

20



(a) Lattice with the starting
site position shown in red

(b) Probability distribution
on the lattice at t = 0

(c) Probability distribution
on the lattice at t = 10

(d) Probability distribution
on the lattice at t = 100

(e) Probability distribution
on the lattice at t = 1000

(f) Probability distribution
on the lattice at t = 10000

Figure 4.1: Time evolution of the probability distribution on the lattice shown in 4.1a from
the initial p = 1 at a single point shown in 4.1b. Darker means a higher probability of being
at that place after t timesteps starting from 4.1b. The lattice is of size 31 × 31, and the
occupation probability is p = 0.7.

21



Figure 4.2: An example of exact steady-state found using the Gauss-Seidel method on a
square lattice of size 31× 31, at p = 0.7, and E = 0.1.

method is a basic iterative method for solving linear equations[15]. We use this method

instead of Gaussian elimination as numerical methods are better for a large set of equations

computationally than elimination methods because of the large round-off errors during the

elimination process. We can also specify the maximum error allowed in our answer when

finding the solution using the Gauss-Seidel method.

In the Gauss-Seidel Method, we start with a guess solution to the eigenvector equation

and keep on improving this guess solution at each iteration till it converges. Let the guess

eigenvector at the 0th iteration be |P ∗⟩G0 = 1/n to satisfy the normalisation condition.

Where n = no. of occupied sites. We use Equation 1.3 to write |P ∗⟩Gti(guess steady state

probability at the tth iteration of the Gauss-Seidel method at site i) in terms of values

|P ∗⟩Gtj’s for j > i and |P ∗⟩G(t−1)j’s for j < i. At each iteration we start from i = 1 and

update the value of |P ∗⟩Gt1 in terms of |P ∗⟩G(t−1)j’s for j ̸= 1. Using this new value of |P ∗⟩Gt1

and the previous values for all |P ∗⟩G(t−1)j(j = 1, n and j ̸= 1, 2) we calculate |P ∗⟩Gt2 and so

on using the expression:

PGti =

∑i−1
j=1WijPGtj +

∑n
j=i+1 WijPG(t−1)j

1−Wii

(4.3)

One iteration of the Gauss-Seidel method is complete when we have found |P ∗⟩Gtj for

all the sites j using the values of |P ∗⟩Gti’s for 1 < i < j and the values of |P ∗⟩G(t−1)i’s for

j < i < n using equation 4.3. After each iteration, we renormalise |P ∗⟩Gt to make the total

22



probability 1. We stop this algorithm when the absolute difference in the eigenvector at the

t+1’th iteration and the t’th iteration becomes smaller than a previously specified tolerance

value. This tolerance value specifies the round-off error in the solution of our eigenvalue

equations, i.e. |P ∗⟩. Thus, we find the steady-state eigenvectors |P ∗⟩ containing the steady-

state probabilities at different sites {p∗i }. The steady-state probability distribution on the

lattice studied in Figure 4.1a is shown along with the lattice in Figure 4.2.

Using the steady-state probability distribution {p∗i }, we can calculate the mean velocity

of a random walker in the steady state of the lattice. Where p∗iWji is the probability that a

walker is present at site i in the steady state and that the walker moves to the site j at the

next time step. So, we can write the mean velocity at a timestep as:

v⃗walk =
∑
i,j

(⃗j − i⃗)p∗iWji (4.4)

Where j⃗ represents the position of site j.

4.4 Simulation Details

We find the largest percolation clusters for six lattices, each of lengths L = 51, L = 71,

and L = 101 at p = 0.7, p = 0.8 and p = 0.9 on a regular square lattice. This gives us 54

different clusters, six for each L and p. We find the steady-state probability distributions for

the Markov matrix defined in Equation 4.1 on these clusters at different values of E from

E = 0.01 to E = 0.24 with 0.01 increment. We use the Gauss-Seidel method to find the

steady-state distributions. Our algorithm ends when tolerance=0.01. Using these steady-

state probabilities, we find the steady-state velocity on a lattice at a particular value of E

using Equation 4.4. Averaging the velocity for different lattices of the same length, for the

same value of p and E, we get Figure 4.3.

4.5 Results and Discussion

We can see that the steady-state probability distribution is similar to the long-time prob-

ability distribution of the position of a random walker starting from any initial state, as

23



(a) v vs E at p = 0.7 (b) v vs E at p = 0.8 (c) v vs E at p = 0.9

Figure 4.3: Graphs of mean velocity vs bias obtained using the steady-state of non-interacting
walkers over six different lattices at lattice sizes of 51 shown in blue, 71 shown in yellow and
101 shown in green with tolerance for the convergence of Gauss-Seidel algorithm= 0.01.

shown in 4.1f. This similarity in the long-time state and the exact steady-state implies that

the system eventually reaches this steady-state probability distribution. We can also observe

that the probability of the walker being in a large trap is significantly higher than at other

places in Figure 4.2. So, we can see that at significant values of bias E, a walker is more

likely to be in a trap.

We observe that the peak of the random walker current shifts towards higher biases E

for higher occupation probability p. Two factors contribute to the nonmonotonic behaviour

of the v vs E graph. The increase in current happens due to the increase in the probability

of hopping in the direction of the bias. Meanwhile, the decrease in current happens because

of the increase in trapping. At higher values of p, the density of large traps decreases,

decreasing the effect of trapping. So the current keeps on increasing till higher values of E

until finally, the effect of trapping, even in these small number of branches, is higher than

the effect of the increase in hopping.

We can also observe that the graphs shown in Figure 4.3 are smoother than those in

Figure 3.2 because here we are using the exact steady state of the system. Whereas, in

Chapter 3, the walkers were not at the exact steady state because the time required to reach

the steady state is very large. However, in our simulations, we could not see the zero velocity

phase because traps of large sizes are absent in our simulations. Although the current at a

given p and E is expected to be a decreasing function of length L of the lattice, our graphs

do not show any significant L dependence for L from 51 to 101, which might be due to the

small lattice sizes used in our simulations.

24



Chapter 5

Interacting Biased Random Walkers

5.1 Definition of the Model

We use hard-core interactions between the particles to simulate interacting biased random

walkers. Hard-core interaction means that the walkers follow an additional constraint on

their motion, meaning that multiple walkers cannot simultaneously be at the same site. We

can no longer study the walkers’ motion using a single random walker as now the interaction

between the walkers, which depends upon the walker density (ρ), also affects the motion of

the walkers. We start with a specified density of walkers ρ and place the walkers randomly

to a fraction ρ of the occupied sites. Let the no. of random walkers placed on the lattice be

n. This system is shown in Figure 5.1

For the time evolution, we randomly select a walker. The selected walker chooses one

neighbouring site randomly with probabilities p(up) = p(down) = 1/4 and p(left) = 1/4−E,

p(right) = 1/4 +E where 0 ≤ E ≤ 1/4, but the walker jumps to that site only if that site is

occupied and no other walker is present at that site. Otherwise, it remains stationary. After

each attempted move, the clock time increases by 1/nMCS(Monte-Carlo Steps). We say that

one Monte Carlo Step is complete after attempting n moves for n randomly chosen walkers,

where one walker can move more than once during one MCS. We store the displacement of

each walker at each step and use this displacement to find the velocity of the walker. The

results of this simulation are shown in Figure 5.2.

25



Figure 5.1: Figure showing a 10×10 slice of a large percolation cluster at p = 0.72 where
density of walkers ρ = 0.5. Here, the red dots are the random walkers, and the yellow squares
represent the sites belonging to the cluster. Black sites are the sites on the lattice that do
not belong to the infinite cluster.

5.2 Simulation Details

We simulate the motion of walkers on the spanning percolation cluster on a 100×100 lattice

at p = 0.72. We measure the net displacement of all the walkers after 1000 MCS. We find

the average velocity of the walkers for five walks on a cluster starting from different initial

conditions on five clusters at the p = 0.72. We do these simulations for different values of ρ

from ρ = 0.01 to ρ = 0.1 and ρ = 0.9 to ρ = 0.99 with 0.01 increment and for ρ = 0.1 to

ρ = 0.9 with 0.1 increment. We do this for E values ranging from E = 0.01 to E = 0.24

with 0.01 increment. We have shown the results of our simulations for v vs E for different

walker densities in Figures 5.2a,5.2b and 5.2c. We have shown the results for v × ρ vs ρ for

different values of E in Figure 5.2d.

26



0.00 0.05 0.10 0.15 0.20 0.25
Electric Field(E)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Ve
lo

cit
y(

v)

density=0.010
density=0.040
density=0.070

(a) v vs E at low density

0.00 0.05 0.10 0.15 0.20 0.25
Electric Field(E)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Ve
lo

cit
y(

v)

density=0.200
density=0.500
density=0.800

(b) v vs E at intermediate density

0.00 0.05 0.10 0.15 0.20 0.25
Electric Field(E)

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

Ve
lo

cit
y(

v)

density=0.910
density=0.940
density=0.970

(c) v vs E at high density

0.0 0.2 0.4 0.6 0.8 1.0
Denisty of walkers(rho)

0.000

0.005

0.010

0.015

0.020

de
ns

ity
*v

el
oc

ity
(v

)

E=0.02
E=0.06
E=0.1
E=0.14
E=0.18
E=0.22

(d) v × ρ vs ρ at different E

Figure 5.2: Results of our simulation on a 100×100 lattice, averaged over five different
clusters at p = 0.72. On each cluster, we calculate the velocity after 1000 steps averaged
over five different iterations of the random walk

27



5.3 Results and Discussions

At low densities of walkers, the random walkers rarely interact. So, the velocity of the walkers

as a function of the bias is similar to that of non-interacting walkers and shows nonmonotonic

behaviour, as shown in Figure 5.2a. As we increase the density of the walkers, more and

more traps get filled by the walkers, and in the steady state, some walkers remain trapped

for a long time. However, most of the walkers are free to move without getting trapped

due to the lowering of the effective trap length, which leads to an increase in velocity on

increasing the density at low-density values, as seen in Figure 5.2a. The increase in velocity

with density happens till all the dead-end branches get filled by the walkers.

After filling the dead-end branches to a certain extent such that the effective trap length

now becomes lesser than the bias-induced length, the velocity increases monotonically with

the increase in the biasing field, as shown in Figure 5.2b as the non-trapped walkers behave

like the walkers in the nonzero current phase. However, a further increase in the density

of walkers only leads to greater traffic through the backbone, decreasing the velocity of the

walkers. Even though velocity remains monotonically increasing because of the already filled

trapping branches, as seen in Figure 5.2b.

On increasing the density beyond ρ = 0.9, we get back the nonmonotonic velocity be-

haviour, as seen in Figure 5.2c. This non-monotonicity is because, at such high densities,

the particles have already occupied all the traps in the direction of the biasing field and all

the paths through which the particles flow could have been possible. So, the particles cannot

move freely. The only way for a particle in the backbone to move now is when a backbone

site is vacant, which happens when another particle moves into a branch opposite to the

bias, creating a vacancy for the first particle to move to. As the probability that a walker

moves into such a branch (in the opposite direction of the bias) decreases with the increase

in bias, the velocity of walkers also decreases. This velocity keeps decreasing with increasing

density, as at the limiting case of ρ = 1, the net current must be zero.

Alternatively, we can think of the walker moving to the right in terms of a vacancy moving

to the left, as every time a walker moves to a vacant site, a vacancy moves in the opposite

direction. So, the total current of the vacancy would be the same as the total current of

the walkers but in the opposite direction. So, the current for the vacancy plus the walkers

28



should be zero. As, current= density of the walkers × average velocity of the walkers:

ρ× vwalk(ρ) + (1− ρ)× vvac(1− ρ) = 0 (5.1)

Where, vwalk(ρ) = mean velocity of a walker at the density of walkers ρ, and vvac(1 − ρ) =

the mean velocity of a vacancy when the density of vacant sites is (1− ρ) (same as the case

when the density of walkers is ρ).

A walker moving to the right with a probability of 1/4 + E to a vacant site leads to a

vacancy moving to the left with a probability of 1/4 + E to a site with a walker. We can

make a similar statement for the motion of the walkers and corresponding vacancies in every

orientation. Adding the convention that a vacancy does not move to the site where another

vacancy is already present, the evolution of vacancies is the same as that of the walkers but

in the opposite direction. So, putting the condition vwalk(ρ) = −vvac(ρ) into equation 5.1 we

get:

ρ× vwalk(ρ) = (1− ρ)× vwalk(1− ρ)

We have verified this relation by plotting the graph v× ρ vs ρ as shown in Figure 5.2d. This

relation is true as the graph is symmetric and has the same values at ρ and 1−ρ. At high ρ,

(1− ρ) is small and thus vwalk(1− ρ) shows non-monotonic behaviour. At a particular value

of ρ, this relation implies that vwalk(ρ) also shows nonmonotonic behaviour at high densities.

29



30



Chapter 6

Interacting Biased Random Walkers

on a Regular Comb

6.1 Definition of the model

To study the dynamical heterogeneity of interacting walkers under a bias, we study the

motion of these walkers on a conceptually simpler regular comb. A regular comb is a lattice

consisting of a backbone and side branches of constant length. The use of this lattice is

motivated by the fact that it makes it easier for us to get exact results, as will be discussed

in section 6.2. Also, the trapping mechanism of the particles on this lattice is the same

as that of the particles in the dead ends of percolation clusters, which we are interested

in understanding. A regular comb is shown in Figure 6.1. We assume periodic boundary

conditions for the backbone of the comb.

We randomly place the walkers at fraction ρ of the sites on the comb. The bias is at 45 deg

to the backbone, as shown in Figure 6.1. So, the walker chooses a neighbouring site randomly

with p(down, left) = p(down, right) = (1 + g)/4, and p(up, left) = p(up, right) = (1− g)/4

as shown in Figure 3.1b, where 0 ≤ g ≤ 1. However, the walker goes to this site only if the

site belongs to the comb and no walker is present. We use MCS time in our simulations to

study the motion of the walkers.

31



Figure 6.1: A tilted regular comb is shown with a backbone size=8 and branch length=3 on
which the particles move downwards under Biasing Field E⃗ at ρ = 0.7.

6.2 Finding the Theoretical steady-state for an Infinite

Regular Comb

Due to the periodic boundary conditions, all the branches are equivalent. Let ρi be the occu-

pation probability in a branch at depth i. All the branches must have the same occupation

probability at depth i because of their equivalence. So, knowing the occupation probability

at the backbone ρ0, we can find the occupation probability at any depth in the steady state

using the Master’s equation. We use the fact that in the steady state, the rate at which a

walker goes from a site at depth i to a site at depth i + 1 is equal to the rate at which the

walker goes from a site at depth i+ 1 to a site at depth i:

ρi(1 + g)(1− ρi+1)

4
=

ρi+1(1− g)(1− ρi)

4

=⇒ Zi+1 =

(
1 + g

1− g

)
Zi (6.1)

32



Where, Zi = ρi/(1 + ρi) is the activity at depth i. We can find the activity Zi at any depth

from Z0 using the recursion relation in equation 6.1, this implies:

Zi =

(
1 + g

1− g

)i

Z0

We can get ρi in terms of ρ0 from this equation. To find ρ0, we use the condition that

the total occupation probability of the backbone site plus the corresponding branch sites is

the same as the average number of walkers in a backbone site plus the corresponding branch

sites:
br∑
i=0

ρi = ρ(br + 1) (6.2)

Where br = length of a branch and (br + 1) is the total number of sites (the backbone site

plus the corresponding branch sites).

6.3 Simulation details for approaching the steady-state

We solve equation 6.2 numerically using the command fsolve from the scipy.optimize module

in Python. The solution to this gives us the steady state occupation probability at each

depth. We measure the fraction of sites at a particular depth occupied at some time and

average this fraction over five timesteps to find the occupation fraction in a time interval.

We do this simulation on a comb with a backbone of length bb = 10 and a branch of length

br = 5 with ρ = 0.8. We compare the occupation probabilities calculated for an infinite

cluster with the occupation fraction in our simulations to see the approach to the steady

state. We have shown the approach to the steady state in figure 6.2.

6.4 Discussion

Figure 6.2 shows the variation of the occupation fraction at different depths with time. We

can see that the initial occupation fractions are close to ρ at time t = 0 because the initial

distribution of the walkers is random. The occupation fractions start changing rapidly with

time and fluctuate about the steady-state value. For deeper trap depths, at depths four

33



(a) ρ0 vs t (b) ρ1 vs t

(c) ρ2 vs t (d) ρ3 vs t

(e) ρ4 vs t (f) ρ5 vs t

Figure 6.2: Graphs of measured occupation fraction(ρ) vs time(t) are shown in blue. The
theoretical steady-state densities for an infinite regular comb are shown in yellow.

34



and five, we can see that the occupation fraction remains one most of the time and rarely

fluctuates from this value due to the strong trapping at these depths, which makes it tough

for the walker to move.

A more detailed analysis of the occupation probabilities in our simulation shows that the

occupation probability tends to a different value than the one we calculated. The mistake

in calculating the steady-state occupation probability is the assumption that the probability

at a site at depth d depends only on the same branch’s probability at depth d − 1. This

assumption works well for the limiting case of an infinite lattice. However, for a finite lattice,

due to the conservation of the number of particles, the occupation probability at a particular

site depends not only on its neighbours but also on the occupation probability of the non-

neighbour sites. So, to find the theoretical probabilities for a finite lattice, we have to use a

different method. In section 6.5, we use the partition function for calculating the occupation

probabilities for a finite lattice.

6.5 Finding the Steady-state Using the Partition Func-

tion

We define a partition function that gives us the probabilities for different configurations on

a regular comb for a given branch size br, a backbone size bb, and a given bias g. We define

α = (1 + g)/(1 − g) as the ratio of activities at different depths. The site at depth i has

more probability of being occupied than the site at depth zero by a factor αi, the partition

function for a configuration {z} is given by:

Ω({z}) = (
br∏
i=0

(1 + zαi))bb (6.3)

In our simulations, we have a particular no. of walkers in the comb(let N). So, the

reduced partition function for N walkers is given by:

ΩN = Coefficient of zN in

(
br∏
i=0

(1 + zαi)

)bb

(6.4)

35



ΩN gives us the measure of the probability of N walkers on the lattice. We also use a

modified Partition function:

Ω({z}, {bj}) =

(1 + bjzα
j)

∏
i∈[0,bs]−{j}

(1 + zαi)

bb

(6.5)

In this partition function, the coefficient of bkj gives us the measure of the probability of

the configuration where k sites are occupied at the depth j. So, the measure of k sites being

occupied at depth j when the total no. of walkers is N is:

ΩNjk = Coefficient of zNbkj in

(1 + bjzα
j)

∏
i∈[0,bs]−{j}

(1 + zαi)

bb

(6.6)

So, the occupation probability at depth j is given by:

ρj =
bb∑

k=1

(
ΩNjk

ΩN

)(
k

bb

)
(6.7)

6.6 Simulation Details

We use Mathematica to find the Coefficients of the different terms in the partition func-

tion and calculate the occupation probabilities for finite lattices. We find the occupation

probabilities for infinite lattices by solving equation 6.2 numerically, which gives us correct

results up to 8 decimal places. We measure the occupation probability in our simulations

on six lattices with backbone sizes bb = 5, 10, 20, 30, 40 and 60 with branch size br = 5 at

ρ = 0.8. We do this simulation for 107 MCS on lattices bb = 5 and bb = 10 and for 106

MCS on lattices with bb = 20, 30, 40, 60. After each MCS, we find the fraction of occupied

sites at each depth and average it over the number of timesteps to find the mean occupation

probability. We have plotted the results of our calculations and simulations for occupation

probabilities at different depths vs 1/bb in figure 6.3.

36



(a) ρ0 vs 1/L (b) ρ1 vs 1/L

(c) ρ2 vs 1/L (d) ρ3 vs 1/L

(e) ρ4 vs 1/L (f) ρ5 vs 1/L

Figure 6.3: Graphs of occupation probability(ρ) vs 1/L. Occupation probability measured
using our simulations is shown in blue. The theoretical steady-state densities for an infinite
regular comb are shown in yellow. The theoretical steady-state densities for a given size of
regular comb found using the partition function are shown in red.

37



6.7 Results and Discussions

Our simulations show that the steady-state occupation probabilities depend on the backbone

size; this is why the occupation probability in our simulations does not match the infinite

comb occupation probability calculated in Section 6.2. We can see that the measured oc-

cupation probabilities for our simulations match the theoretical values calculated using the

partition function for a given backbone size in Figure 6.3. The occupation probabilities’

limiting value is the value of the occupation probability for an infinite regular comb which

is reached with an increasing backbone length as 1/L.

The occupation probability at the backbone decreases with the increase in backbone

length in Figure 6.3a. Meanwhile, the occupation probability at any other depth decreases

with increasing backbone length; this means that the walkers are trapped more strongly on

a finite lattice than on an infinite one. The increased trapping on a finite lattice is due

to finite-size effects. For instance, when a walker deep inside a branch tries to escape, the

decrease in the density of the branch leads to an increase in the density everywhere else on

the comb for a finite comb. However, this is not the case for an infinite comb where the

change in occupation probabilities is only local.

6.8 Finding the velocity-velocity Autocorrelation Func-

tion

We find the velocity-velocity autocorrelation function using our simulations of biased inter-

acting random walkers on the regular comb lattice with bb = 100 and br = 5 for 5 × 106

MCS. The simulation rules are tweaked slightly to make the simulation numerically faster,

meaning that more walkers move at each timestep, even though the probability distribution

remains unchanged. We save the displacement of each walker at each timestep. These dis-

placements are zero for most walkers, so we must average the autocorrelation function over

many timesteps to measure any significant correlation, especially for walkers trapped deep

inside the branches, which is not computationally feasible. We solve this problem by finding

the total displacement of all the walkers in a particular interval instead of displacement at a

single timestep. We now use the average velocity of the walkers in that interval to find the

38



100 101 102 103 104 105 106 107

Time-lag( )

0.012

0.010

0.008

0.006

0.004

0.002

0.000

0.002

0.004
<

v(
t)v

(t
+

)>
c

Connected part of the Autocorrelation function for a given Time-lag
Simulation

Figure 6.4: Connected part of the autocorrelation function(< v(t)v(t+ τ) >c) vs lag(τ) with
a logarithmic x-scale. The autocorrelation function is found for a single simulation run on a
regular comb with a backbone of size bb = 100 and branches of size br = 5.

autocorrelation function, as it is less likely to be zero. The length of this interval is called

the bin size. If the bin size << τ , then the connected part of the autocorrelation function is

independent of the bin size. In our simulations, we find the total displacement of the walkers

for bin size 100 MCS to find the velocities, which are then used to calculate the velocity-

velocity autocorrelation function. The not-normalised connected part of the autocorrelation

after time τ is given by:

C(τ) =< v(t)v(t+ τ) > − < v(t) >2 (6.8)

We measure the autocorrelation function for different τ on a regular comb with bb = 100,

br = 5, at ρ = 0.8 for a single run of 5 × 106 MCS and average it over time and all the

walkers. For τ < 1000, we use the velocity at each timestep to measure the velocity-velocity

autocorrelation function averaged over 5 × 105 timesteps. For higher values of τ > 1000,

we use the velocities in bin size 100 to calculate the autocorrelation function over all the

available timesteps (which means the 5×104 available timesteps for bin size 100). The graph

showing the connected part of the autocorrelation function is shown in figure 6.4 along with

a zoomed-in inset at large times.

39



6.9 Results and Discussions

In figure 6.4, we can see that the connected part of the velocity-velocity autocorrelation

function is negative at small values of τ . This happens because the largest contribution to

the velocity-velocity autocorrelation at short times is due to the motion of the walkers in

the backbone, which is anti-correlated at small τ due to crowding in the backbone, giving

negative autocorrelation. At considerable time lags, the dominant part in the velocity-

velocity autocorrelation is due to the trapped walkers. As the fraction of the trapped walkers

decreases on increasing τ , the autocorrelation function also decreases and shows bumps

corresponding to the trapping at different depths. These bumps are visible in the zoomed-in

inset in figure 6.4. These bumps are present because the velocities of particles at depth i are

no longer correlated after the trapping time at depth i (τi) as these particles are no longer

trapped with zero velocity. So, at τ > τi, the autocorrelation is only due to the particles at

depths > i+1, which leads to bumps at these time scales. Some walkers remain trapped for

a long time, so the connected part of the autocorrelation function remains significant even

at large times. It is about one-tenth of its maximum value even at 5× 106 MCS.

6.10 Trapping Time Distribution

Using our simulations, we find the probability that the trapping time of a walker is t (P (t))

by finding the time a walker takes to exit the branch it enters. We save the maximum depth

the walker reaches along with this time, as the trapping time is a function of the maximum

depth reached. Let the probability that a randomly selected walker has been in the branch

for time t be P̃ (t). As each walker with trapping time t stays in the branch for t steps, we

have:

P̃ (t) = tP (t)

Then, the probability that a randomly selected walker has been in a branch for a time greater

than τ is given by:

P (> τ) =

∫ ∞

τ

P̃ (t) dt

We can also find the probability that a randomly selected walker has been in the branch for

a time greater than τ , and the maximum depth it reached is d. In our simulation, we used

40



Figure 6.5: Probability that the trapping time is greater than τ vs τ . The graph for all
the trapping times is shown in blue as the histogram. The points give the probability that
the trapping time is greater than τ given the maximum depth the walker reaches. Axes are
plotted on the log scale.

interacting biased random walkers moving on a comb with backbone length 100 and branch

length 5 at ρ = 0.7 density of walkers for 106 timesteps. We used the histogram data to

find P (t) for logarithmic bins. We find P (> τ) by numerically integrating the histogram for

tP (t). Using logarithmic bins, we plot the histogram for P (> τ) on logarithmic axes. We

also plotted the P (> τ) graphs given the maximum depth reached for different depths on

the same graph.

6.11 Results and Discussions

Figure 6.5 shows the probability that the trapping time is greater than τ vs τ . This figure also

shows the probabilities that the trapping time is greater than τ given different maximum

depths reached. We can see that the net histogram shows step-like behaviour when the

contribution to the trapping times becomes significant for a new depth. Namely, all the

contributions for high trapping times are due to the walkers reaching a maximum depth

of 5. On decreasing τ , the contribution to the trapping times for a walker that reaches a

41



maximum depth 4 becomes significant, and then we can see a step-like behaviour in the net

histogram. The same happens when the contribution to the trapping times for a walker that

reaches a maximum depth of 3 becomes significant, although this step is less prominent.

These results match the results obtained by C. Iyer, M. Barma and D. Dhar using a different

method[8].

42



Chapter 7

Conclusion

In our work, we first simulated noninteracting and interacting biased random walkers on a

percolation cluster. We were not able to find the zero velocity limit for these walkers. It

is not easy to find the zero velocity limit for the noninteracting walkers numerically, which

has been a topic of debate in the literature for a long time. However, we could observe

the nonmonotonic behaviour of the noninteracting walkers using our simulations and the

steady state distribution on a finite percolation cluster. We also saw the nonmonotonic v

vs E graph become monotonic when the density of walkers was increased beyond a certain

value for interacting walkers and how it again became nonmonotonic at very high densities

of walkers.

We used the Hoshen-Kopelman and DFS algorithms to find the different clusters and

backbones of clusters, respectively. Using these algorithms on a percolation cluster with

periodic boundary conditions is non-trivial, and it took a lot of trial and error. We saw the

approach to the steady-state distribution and the steady-state distribution’s dependence on

the lattice’s length for the simulations of interacting biased random walkers on a regular

comb. We could also find the exact steady state for a comb of finite size and match it with

our measured simulation data. Using numerical simulations, we confirmed the findings of C.

Iyer, M. Barma and D. Dhar[8] for the trapping time distribution. We also found the relation

between the trapping time distribution and the maximum depth reached by a walker. We

also found the connected part of the velocity-velocity autocorrelation function. This graph

shows that the autocorrelation in the walker velocities is significant even at large times. This

43



graph also shows bumps corresponding to particles being trapped at different depths.

Further work can be done based on the work in my thesis. Understanding the trapping

time distribution and the velocity-velocity autocorrelation function on a percolation cluster

is an interesting question; it was the motivation for much of my thesis work, but it is still not

understood well. There are some arguments based on the distribution of side branches on a

random comb, which imply that the Probability that the trapping time is greater than Tw is

∼ exp (−c
√
log(Tw)) on a percolation cluster [8], but these results need to be studied more

rigorously. Further work can be done to understand the results on the percolation cluster

based on the results found in this thesis for a single branch.

44



Bibliography

[1] Karl Pearson. “The problem of the random walk”. In: Nature 72.1865 (1905), pp. 294–

294.

[2] Simon R Broadbent and John M Hammersley. “Percolation processes: I. Crystals and

mazes”. In: Mathematical proceedings of the Cambridge philosophical society. Vol. 53.

3. Cambridge University Press. 1957, pp. 629–641.

[3] Pierre Gilles de Gennes et al. “La percolation: un concept unificateur”. In: La recherche

7.72 (1976), pp. 919–927.

[4] Mustansir Barma and Deepak Dhar. “Directed diffusion in a percolation network”. In:

Journal of Physics C: Solid State Physics 16.8 (1983), p. 1451.

[5] Frank Spitzer. “Interaction of Markov processes”. In: Advances in Mathematics 5.2

(1970), pp. 246–290. issn: 0001-8708. doi: https : / / doi . org / 10 . 1016 / 0001 -

8708(70)90034- 4. url: https://www.sciencedirect.com/science/article/

pii/0001870870900344.

[6] Kirone Mallick. “The exclusion process: A paradigm for non-equilibrium behaviour”.

In: Physica A: Statistical Mechanics and its Applications 418 (2015), pp. 17–48.

[7] Ramakrishna Ramaswamy and Mustansir Barma. “Transport in random networks in a

field: interacting particles”. In: Journal of Physics A: Mathematical and General 20.10

(1987), p. 2973.

[8] Chandrashekar Iyer, Mustansir Barma, and Deepak Dhar. “Asymmetric simple exclu-

sion process on the percolation cluster: Waiting time distribution in side-branches”.

In: arXiv preprint arXiv:2312.15508 (2023).

[9] Deepak Dhar and Dietrich Stauffer. “Drift and trapping in biased diffusion on disor-

dered lattices”. In: International Journal of Modern Physics C 9.02 (1998), pp. 349–

355.

45



[10] Dietrich Stauffer and Ammon Aharony. Introduction to percolation theory. CRC press,

2018.

[11] Joseph Hoshen and Raoul Kopelman. “Percolation and cluster distribution. I. Cluster

multiple labeling technique and critical concentration algorithm”. In: Physical Review

B 14.8 (1976), p. 3438.

[12] Thomas H Cormen et al. Introduction to algorithms. MIT press, 2022.

[13] Iwan Jensen. “Low-density series expansions for directed percolation: I. A new effi-

cient algorithm with applications to the square lattice”. In: Journal of Physics A:

Mathematical and General 32.28 (1999), p. 5233.

[14] Steven RWhite and Mustansir Barma. “Field-induced drift and trapping in percolation

networks”. In: Journal of Physics A: Mathematical and General 17.15 (1984), p. 2995.

[15] William Ford. Numerical linear algebra with applications: Using MATLAB. Academic

Press, 2014.

46


