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Abstract

Credit-granting institutions provide loans to customers, who may sometimes fail to repay

their debts, leading to default. To manage this risk, firms use quantitative credit risk man-

agement techniques. These methods help them to estimate and regulate credit risk, ensuring

that the firm’s risk exposure aligns with its risk tolerance. This contributes to the overall

stability of the firm and the broader economy. One of the key metrics estimated through

quantitative credit risk management techniques is the Probability of Default (PD), which

serves as an input for calculating the Expected Loss (EL).

In this thesis, we focus on applying survival analysis techniques to assess the risk of credit

default, by calculating the Probability of Default (PD). Survival analysis involves studying

subjects over time in anticipation of encountering an event of interest, such as default. We

use survival analysis models such as Cox’s proportional hazards model and its extension to

mixture cure models. These models have a baseline hazard component, which we estimate

by approximating it using a linear combination of di↵erent basis functions. We use Markov

Chain Monte Carlo (MCMC) techniques with Hamiltonian Monte Carlo sampling for the

Bayesian analysis of these models. We apply these models to both Bondora credit data and

German credit data, comparing them with traditional estimation procedures such as partial

likelihood maximization and the EM algorithm. To evaluate the predictive performance, we

discuss the use of ROC curves and the adjustments required for ROC curves when dealing

with censored data.
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Chapter 0

Introduction

Risk refers to “any event or action that may adversely a↵ect an organization’s ability to

achieve its objectives and execute its strategies”. Everyone, from individuals to organizations

and countries, face risks. Risks can happen in many areas, like finance, health, or safety.

While we can’t get rid of all risks, we can manage them with safety guidelines to reduce

how often and how bad things can be. Managing risks means figuring out what risks might

happen, how often they might happen, and how bad they might be. By doing this, individuals

and organizations can make smart decisions, understanding the risks and rewards of di↵erent

options while minimizing potential losses. This applies to areas like finance, health, and

cybersecurity. Sometimes, risks come from things we can’t predict, and they can cost a lot

of money. Therefore, managing risks is an important part of keeping organizations healthy

and successful in today’s world. Quantitative risk management techniques help experts make

better decisions about managing risk within reasonable limits.

Banks and financial institutions lend money to customers. But sometimes, customers

don’t pay back the money they owe or don’t follow the terms of their agreements with the

bank. The potential loss a bank might face if a borrower doesn’t meet his/her obligations is

called credit risk. When a customer fails to pay back the financial institution what he/she

owes, then the customer is considered as a defaulter. Examples of defaults include not

paying back a loan, missing three consecutive loan payments, or not paying credit card bills.

Di↵erent types of defaults have di↵erent levels of seriousness.

It’s crucial for institutions that lend money to assess the creditworthiness of borrowers.
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CIBIL score, credit score, and probability of default are some ways to measure credit risk

quantitatively. In this thesis, we concentrate on estimating the probability of default, which

is the likelihood that a customer won’t fully or timely repay their loan and will default.

Mathematically, various techniques like regression models, survival analysis, discriminant

analysis, and random forests are used for quantification. While logistic regression has been

around for a while, survival analysis, traditionally used in medical and engineering fields,

is becoming more important in credit scoring. Narain (1992) (25) was the first to apply

survival analysis techniques in a credit risk context.

Regression models, particularly logistic regression, are commonly used. However, Stepanova

and Thomas (2002) (26) note that while logistic regression and survival analysis achieve sim-

ilar accuracy, Tong et al. (2012) (8) highlight key advantages of survival analysis methods.

Two of them are as follows:

1. Survival analysis naturally considers the most recent data, even if it is censored. On

the other hand, in logistic regression, if one is interested in predicting the probability

of default within 24 months, one can’t include customers who joined within the past

24 months when building the model. Thus, survival analysis techniques can include

the censored data, while logistic regression removes this partially observed data.

2. In survival analysis for credit risk scoring, the goal is to model the distribution of the

time until default or some related event. As a result, it becomes feasible to calculate

probability of default over any chosen time period, whereas logistic regression is limited

to predicting over a single fixed time period.

In classical survival analysis, it is assumed that all observations will eventually experience

the event of interest, even with censoring. But in credit risk data, many borrowers will repay

their loans and avoid defaulting. These borrowers are called “cured” individuals. With cured

individuals present, it is uncertain whether censored individuals will experience the event in

the future or not. To deal with this, classical survival analysis has been extended with the

mixture cure models. Boag (1949) (28) and Berkson and Gage (1952) (27) were the first to

introduce this concept.

When we classify a loan to be good or bad, it is important to measure how accurate

our model is. One common way to do this is by calculating the probability of classification
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error, which is when a good loan is mistakenly labeled as bad, or vice versa. However, this

approach does not consider the severity of these errors. Mistakenly classifying a good loan

as bad isn’t as serious as labeling a bad loan as good, which can result in real losses. To

address this, we use receiver operating characteristic (ROC) curves to assess the predictive

performance of the classifier. ROC curves help us find the best threshold for classification,

balancing sensitivity (true positives) and specificity (true negatives). ROC curves are used

in various fields, such as medicine, meteorology, and in machine learning to evaluate di↵erent

classification algorithms.

In our study, we’re using mixture cure models, particularly emphasizing the Cox pro-

portional hazards model, to analyze credit data. Our aim is to estimate both the survival

probability and the probability of default for borrowers. The thesis is structured as follows:

• Chapter 1 covers survival analysis concepts and Bayesian techniques.

• Chapter 2 focuses on the Bayesian estimation of the Cox proportional hazards model

with a more flexible baseline hazard and compare it with the traditional partial likeli-

hood approach using simulated and real datasets.

• In Chapter 3, we introduce the Bayesian mixture cure model and discuss implementing

ROC curves when dealing with censored data.

• Chapter 4 involves implementing the Bayesian mixture cure model on a real dataset

and comparing its predictive performance with other parametric mixture cure models

estimated using the EM algorithm.

• Finally, Chapter 5 outlines potential future research directions.
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Chapter 1

Preliminaries: Some Basics of

Survival Analysis and Bayesian

Estimation

1.1 Survival Data and Survival Analysis

Survival analysis is a branch of statistics that is dedicated to the analysis of time-to-event

or survival data. Time-to-event means the time from a well defined origin till the occurence

of a particular event of interest. A typical example is time until death of an individual due

to a particular terminal disease, after its detection. Similarly, in the context of credit risk,

we can consider the time until a loan becomes default. One of the important characteristics

of such types of data is that the event of interest may not be observed for all the subjects as

it is not possible to follow all the subjects for a longer (may be infinite) time period. This

core feature of survival data is known as “censoring”

In “classical” survival analysis, it is generally assumed that even if the data has censoring,

all the subjects are susceptible to the event of interest and will experience it eventually.

However, it might happen that some fraction of subjects might never experience the event.

This is the case, when credit default is the event of interest. A large fraction of loans issued

will not default as they will be paid back by the borrower. Since the event never occurs, such
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subjects are considered as long term survivors and called as “cured” or “non-susceptible”.

In order to account for the cure fraction present, mixture cure models are used in survival

analysis. In this section, we introduce survival data, we further formulate the credit risk

problem in terms of survival analysis,.

1.1.1 Survival data

Survival analysis observes subjects spanning time until an event occurs. Cox (1972)(14)

states that survival data requires three elements:

1. Time origin; the time when the subject became at risk

(In the credit risk context, it is the time when the loan contract begins)

2. Time scale; the passage of time

(In the credit risk context, the amount of time in months or days from the start of the

loan contract)

3. Event or set of events; defined clearly according to our interest

(an event of default or early repayment)

1.1.2 Hazard and Survival Functions

Let T be the duration until a particular event occurs. In credit risk context, this T represents

the time until a borrower defaults on a loan. T represents the duration of survival and it is

a non negative random variable. We generally treat T as a continuous variable.

The distribution of T can be represented in three equivalent forms, namely the survival

function S(t), hazard rate function h(t) and the cumulative hazard function H(t).

The survival function represents the probability of the subject surviving beyond time t.

It is the probability that the event of interest has not occurred till time t. That is:

S(t) = P (T > t) = 1� F (t) = 1�
Z

t

0

f(u)du (1.1)
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where F (t) is the cumulative distribution function and f(u) is the density function of T . The

function S(t) is right continuous and monotonically decreasing in time t with S(0) = 1. As

T is assumed to be continuous random variable, the survival function will be a continuous

and strictly decreasing function.

The hazard rate corresponds to the instantaneous risk of occurrence of the event given

that the subject of interest has not occurred till time t. It is defined as

h(t) = lim
�t!0

P (t  T < t+�t|T � t)

�t
(1.2)

The hazard function can take various shapes with the only restriction being h(t) � 0.

It is defined as the area under the hazard function up to time t, that is

H(t) =

Z
t

0

h(u)du (1.3)

When T is a continuous random variable, the Survival function and density function can

be written in terms of hazard function as follows: From (1.2),

h(t) = lim
�t!0

P (t  T < t+�t)

�t

1

P (T � t)
=

f(t)

S(t)
= �dln(S(t))

dt
(1.4)

Therefore,

S(t) = e�
R t
0 h(u)du = e�H(t) (1.5)

and

f(t) = h(t)S(t) = h(t)e�
R t
0 h(u)du = h(t)e�H(t) (1.6)

The hazard rate h(t) can also be referred to as the default rate in the context of credit

risk. However, for consistency, we will use the term “hazard rate.” The density function

f(t) represents the probability density of the event of interest, which in this case is default.

Therefore, when discussing the estimation of the probability of default, we are essentially

estimating the density function of default. It’s important to understand that the relationships

1.4, 1.5, 1.6 are important because estimating any one of h(t),f(t) or S(t) uniquely determines

the other two.
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For further details about these basic survival quantities, one can refer to Klein and

Moeschberger (2005)(16)

1.1.3 Censoring

One important characteristics of survival data is the existence of censored observations. The

exact event time is unobserved for these observations and it is only known to have occurred in

certain interval, if it did. Thus such observations provide partial or incomplete information

about the event time. Various factors lead to censoring, such as:

• Subjects may drop out of a study or become lost to follow-up,

• the study may conclude before (or start after) the occurrence of the event of interest.

Depending on the kind of information a censored observation provides, censoring can be

mainly classified into three types:

Left Censoring

Left censoring occurs when it is only known that the event has occurred before a certain

time but the exact time is unknown.

Interval Censoring

Interval censored observations are those for which it is only known that the event has occurred

between two certain time stamps but when exactly within the interval is not known.

Right Censoring

In right censored data, events are observed only if they occur before a specified time. The

simplest form is Type I censoring, where all censored subjects have the same censoring times

because the study ends for everyone at a predetermined time. Other version is generalized
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Type I censoring, where subjects may enter the study at di↵erent times, but the endpoint

is fixed. Type II censoring occurs when the study stops after a certain number of subjects

experience the event, with the remaining subjects being right-censored. Regardless of the

type, the total number of subjects in the study is predetermined. Random censoring is

another type, where censoring times are random variables. For instance, accidental deaths

lead to random censoring as patients can’t be followed up.

In cases of right-censored data, we typically observe the follow-up time, Y , and a cen-

soring indicator, �, rather than directly observing the event time, T . Here, Y represents

the minimum of the event time T and the censoring time C, while � indicates whether the

event has occurred before censoring ( � = 1 if T  C, and � = 0 otherwise). It’s commonly

assumed that event and censoring times are independent.

In our study, unless stated otherwise, we assume random right censoring. This aligns well

with the credit risk data, where censoring occurs when the loans mature without default, end

without default, or are terminated due to reasons like borrower’s death. All these situations

represent instances of right censoring, while other forms of censoring are very rare in the

context of credit risk analysis.

1.1.4 Likelihood

Censoring has a far reaching consequence on the construction of the likelihood function given

the survival data. It’s necessary to recognize that each observation contributes varying levels

of information based on its censoring status. In this thesis, our focus will be solely on right-

censored data. An observation corresponding to the event time provides information for

the likelihood of the event happening precisely at that time. Whereas, a right-censored

observation o↵ers information solely about the event not occurring until the observed follow-

up time.

Let (Yi, �i), i = 1, 2, .., n be the n independent and identically distributed random reali-

sations of (Y, �). Under the important assumption of the independence of event time T and

the censored time C, the likelihood function for right censored data is given by,

L =
nY

i=1

f(Yi|✓)�iS(Yi|✓)1��i (1.7)
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equivalently, given that f(Yi) = h(Yi|✓)S(Yi|✓), this likelihood can also be expressed as:

L =
nY

i=1

h(Yi|✓)�iS(Yi|✓) (1.8)

1.1.5 Kaplan-Meier Estimator

Censoring poses a significant impact on the estimator of the survival function. When cen-

soring occurs, the complement of the empirical distribution function cannot be used to

estimate the survival function as it exclude censored observations. And excluding censored

observations from estimation would result in the loss of the potential information that these

observations could contribute. To address this issue for the right-censored data, Kaplan and

Meier (1958) (17) introduced a widely used estimator for the survival function, known as the

Kaplan-Meier estimator or product-limit estimator. This method serves as a non-parametric

alternative to the survival function estimator derived from the empirical distribution func-

tion in scenarios without censoring. This estimator is the product over the failure times of

the conditional probabilities of surviving to the next failure time. Formally, it is given by

Ŝ(t) =
Y

tit

(1� di
ni

) (1.9)

where ni is the number of subjects at risk at time ti, and di is the number of individuals

who fail at time ti. In the credit risk context, ni is the number of all the accounts which

are not defaulted till time ti and di is the number of the accounts defaulted at time ti.The

Kaplan-Meier estimator is a step function that decreases monotonically, with discontinuities

occurring at observed event times.The jump size is influenced by both the count of subjects

experiencing the event at each ti and the arrangement of the censoring times before ti. It is

easy to understand that when there is no censoring, Kaplan- Meier estimator turns out to

be the empirical survival function (similar to the empirical distribution function)

1.1.6 Survival Analysis Methods in Credit Risk Modeling

The standard survival analysis methods focuses on data from homogeneous populations.

However, real-world data often includes individual characteristics that influence the survival
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times. Predicting an individual’s survival distribution based on their covariates is a common

problem of interest. In order to incorporate the influence of associated covariates usually

the estimators are adjusted. This adjustment involves the use of conditional probabilities

(probability given covariates) in the quantitative definitions of survival and likelihood func-

tions. (Equations (1.1),(1.2),(1.3),(1.7)). In this thesis, we will explore the single event Cox’s

proportional hazards model and its extension to the mixture cure model. Both study the

same random variable i.e the time to default

1. Cox proportional hazards Model: This model assumes that all customers will default

eventually. The observed defaults are uncensored cases and the customers not observed

to default are right censored.(14)

2. Mixture cure Cox Model: It relaxes the stringent condition of Cox’s Model that all

customers will eventually default. This model assumes that the population has a

fraction of customers not susceptible to default. In this case, the observed defaults

are uncensored cases and the customers not observed to default are either from non-

susceptible population or right censored.

1.1.7 Cox proportional hazards Model

The Cox proportional hazards model is a fundamental component in survival analysis where

the logarithm of hazard for a subject is written as the sum of linear combination of covari-

ates and logarithm of the baseline hazard.Let Ti denote the event time for subject i and Ci

represent the corresponding non-informative right censoring time, thus yielding the observ-

able survival time Yi = min(Ti, Ci) . Each observed Yi, denoted as yi (where i= 1,..., n),

serves either as a recorded event time (�i = 1) or as a censoring time (�i = 0).Let there be

k explanatory covariates organized in the vector xT

i
= [x1, ..., xk] available for each subject

and let � be the associated vector of parameters. The observed data becomes (yi,xi, �i) and

can be used to estimate the Cox model given as follows:

h(t|xi) = h0(t)e
xT
i � (1.10)

Here, h0(t) represents the baseline hazard, which is essentially the hazard for an individual

when all covariates are set to zero, at time t. And xT

i
� is the linear predictor computed for
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individual i at time t.

The Cox model is often known as the “proportional hazards” (PH) model due to its

characteristic of maintaining proportional hazards between subjects. This means that the

hazard ratio between two distinct subjects, such as A and B, remains constant over time.

hA(t|xA)

hB(t|xB)
= e(x

T
A�x

T
B)�

This constant ratio is referred to as the relative risk.

To estimate the parameters �T = [�1, ..., �k] in (1.10),the usual maximum likelihood

procedure can be used. However, the maximum likelihood estimation requires a strong

assumption of the parametric form of the baseline hazard like constant hazard (Exponential

model) or monotonically increasing or decreasing (Weibull model). Since h0(t) is unspecified

for most of the real datasets, it cannot be done directly. So, partial likelihood approach,

introduced by Cox (14) and employed by Breslow (1974)(22), is being used to do inference

about the model parameters, �.

The general idea is to express a model parameter as a function of other parameters,

eliminating it from the likelihood function. This technique is commonly employed when

dealing with a ‘nuisance’ parameter.(i.e the baseline hazard in the case of Cox PH model).

In Cox PH model, this is done as follows:

1. Estimate the baseline hazard h0(t) non-parametrically given �

2. Substitute h0(t) by its estimator in the likelihood

Assuming that the observed times (yi) are in increasing order, the partial likelihood

function, when there are no uncensored ties (i.e., no two uncensored observations have the

same observed time), takes the following form:

L(�) =
nY

i=1

"
ex

T
i �

P
k2R(yi)

ex
T
k �

#�i

(1.11)

The numerator depends only on information from the subject who experiences the event

of interest at the observed time yi, whereas the denominator considers information from all
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subjects in the risk set R (i.e: those who have not yet experienced an event). Estimation of

� is carried out by maximizing (1.11).

Using these estimates of �, the Breslow’s estimator for cumulative baseline hazard is

given by (in case of no uncensored ties):

Ĥ0(t) =
X

yit

ĥ0(yi) =
X

yit

1
P

k2R(yi)
ex

T
k �

(1.12)

where

ĥ0(t) =

8
<

:

1
P

k2R(t) e
xT
k
�

if t is an event

0 otherwise
(1.13)

1.1.8 Mixture Cure Models

When survival data includes a cure fraction, we classify observations into two types:

1. Those experience the event are considered susceptible or ‘uncured’

2. Those never experience the event are considered non-susceptible or ‘cured’.

In such a case, survival function, hazard rate etc. will undergo a modification, justifying the

use of cure models.

When dealing with a cure fraction, it is a common practice to assume that a cured subject

has T = 1, indicating that the event never occurs, while T < 1 for a non-cured subject.

As a result, as time t ! 1, a portion of the observations may remain free from the event.

Therefore,

lim
t!1

S(t) > 0

This limiting value, represented by 1 � p, is the proportion of cured or non-susceptible

fraction, known as the cure rate. Similarly, the cumulative hazard function is bounded from

above:

lim
t!1

H(t) < 1

It means, as t grows, the accumulated instantaneous risk of experiencing the event does
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not approach infinity but rather reaches a plateau, indicating that some subjects will not

experience the event.

Due to censoring, the susceptibility status is not directly observed. If we denote the sus-

ceptibility status as S (where S = 1 if T < 1), it is clear that an uncensored observation,

� = 1, has S = 1 because Y = T . On the other hand, for censored observations, � = 0,

and therefore, Y = C. However, since censoring a↵ects both susceptible and non-susceptible

subjects: non-susceptible individuals because the event never occurs, and susceptible indi-

viduals because follow-up is not infinite, we cannot determine S in those cases. Hence, the

susceptibility status is only partially observed through the censoring indicator.

An implication of the partially observed cure status is when building the likelihood func-

tion. In cure survival analysis, observations fall into two categories: censored or uncensored,

similar to classical survival analysis. Uncensored observations contribute to the likelihood

function through the density function, while censored observations contribute through the

survival function. Notably, there’s no distinction between cured and uncured censored sub-

jects. Although the likelihood function retains the same form as (1.7), the survival and

density functions di↵er to accommodate the presence of a cure fraction.

When the Kaplan-Meier estimator of the survival function shows a plateau in the right

tail, it indicates the presence of a non-susceptible or cured fraction in the population.
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1.2 The Bayesian Estimation

Bayesian estimation allows us to easily add external knowledge into statistical inference

through prior distributions. Incorporating such knowledge can enhance the precision of

estimates, reduce errors, improve small sample properties, and refine survival estimates.

However, improper integration of external knowledge may lead to biased estimates and

increased error rates (18).

In this section, we discuss some of the Bayesian concepts that we have used in this thesis.

Now in Bayesian inference, any kind of statistical question one can ask has to come down to

manipulation of the posterior, which is given by the Bayes theorem as

Posterior / Likelihood⇥ Prior (1.14)

When the model is too complex, obtaining a closed form expression for the posterior is

challenging due to the computation of the normalization factor, which involves di�cult

integration. This is where Markov Chain Monte Carlo (MCMC) methods come in. Instead

of directly handling the posterior density, MCMC represents the posterior with a set of

samples. These samples allow for e�cient computation of expectations, simplifying the

process.

1.2.1 Markov Chain Monte Carlo

The term “Markov Chain Monte Carlo” (MCMC) refers to a range of techniques that help

us to simulate observations from the posterior density and compute the required estimator

using this generate samples :

1. We aim to sample from a complex density or probability mass function ⇡. This density

often arises from Bayesian computations, known as posterior density.

2. Markov chains usually attains a stationary distribution if it exists under certain con-

ditions. By simulating from such a Markov chain for a long enough time with certain

restrictions, we can obtain a sample from the chain’s stationary distribution.

3. We want to create a Markov chain whose stationary distribution matches the functional
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form of the posterior density ⇡.

4. We want to sample values from this Markov chain. After su�cient burn-in of initial

samples, the sequence of values of ✓’s will turn out to be independent samples generated

from the posterior density ⇡.

A Markov chain is a stochastic process that evolves over time by transitioning into dif-

ferent states. The sequence of states is denoted by the collection Xi and the transition

probabilities satisfy

P (Xt|Xt�1, Xt�2, ..., X0) = P (Xt|Xt�1)

This property is known as Markov property. It means that the probability distribution

of the process at time t, given all of the previous values of the chain, is the same as the

probability distribution given only the the previous value. This property helps in determining

the distribution of our next value given just our current value.The set of all possible states

that a Markov chain can visit is called the state space and the quantity that governs the

probability that the chain moves from one state to another state is the transition kernel or

transition matrix.

For a Markov chain with a discrete state space and transition matrix P , let ⇡n be the

probability distribution of the states after n transitions with initial starting probability

distribution ⇡0 and ⇡⇤ be such that ⇡⇤P = ⇡⇤. Then ⇡⇤ is a stationary distribution of the

Markov chain and the chain is said to be stationary if it attains this distribution. The basic

limit theorem for Markov chains says that, under a specific set of assumptions given below,

||⇡⇤ � ⇡n|| ! 0

, as n ! 1, where ||.|| is the total variation distance between the two densities.

The assumptions are as follows:

1. The stationary distribution ⇡⇤ exists..

2. The chain is irreducible. Irreducible chain means every state can be reached from every

other state.

3. The chain is aperiodic. A chain is considered aperiodic if the number of steps needed
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to transition between two states is not a multiple of any integer. In other words, the

chain is not restricted to moving in cycles of fixed lengths between specific states.

Time Reversibility

Definition 1.2.1. A Markov chain is time reversible if

(X0, X1, ..., Xn)
D
= (Xn, Xn�1, ..., X0)

The sequence of states moving in the “forward” direction (with respect to time) is equal

in distribution to the sequence of states moving in the “backward” direction. Further, the

definition above implies that

(X0, X1)
D
= (X1, X0)

,

The time reversibility property tells us that for all the states, x, y,

P (X0 = x,X1 = y) = P (X1 = x,X0 = y)

P (X0 = x)P (X1 = y|X0 = x) = P (X0 = y)P (X1 = x|X0 = y)

⇡(x)P (x, y) = ⇡(y)P (y, x)

The last line is called as local balance equation. If the local balance equations are satisfied

for a transition matrix P and distribution ⇡, then ⇡ serves as the stationary distribution of

a chain governed by the transition matrix P .

Time reversibility gives us a way to construct a Markov chain that converges to a given

stationary distribution. As long as we can show that a Markov chain with a given tran-

sition kernel/matrix P satisfies the local balance equations with respect to the stationary

distribution ⇡, we can know that the transition distribution will converge to the stationary

distribution.
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1.2.2 Metropolis-Hastings

We use Metropolis Hastings algorithm to simulate sample from the stationary distribution

of the Markov chain. Let q(Y |X = x) be a transition density for X and Y from which we

can easily simulate and let ⇡(X) be our target density (i.e. the stationary distribution that

our Markov chain will eventually converge to). The Metropolis-Hastings procedure is an

iterative algorithm where at each stage, there are three steps. Suppose we are currently in

the state x and we want to know how to move to the next state in the state space.

1. Simulate a candidate value y ⇠ q(Y |X). Note that the candidate value depends on

our current state x.

2. Let

↵(y|x) = min

⇢
⇡(y)q(x|y)
⇡(x)q(y|x) , 1

�

↵(y|x) is referred to as the acceptance ratio.

3. Simulate u ⇠ Unif(0, 1). If u  ↵(y|x), then the next state is equal to y. Otherwise,

the next state is still x.

This three step process represents the transition kernel for our Markov chain from which we

are simulating. IfK(y|x) is the transition kernel embodied by the three steps above, it can be

shown that the Markov chain generated by this transition kernel is time reversible.Eventually,

we can be reasonably sure that the samples that we draw from this process are draws from the

stationary distribution, i.e. ⇡(X). For more details about MCMC and Metropolis-Hastings

algorithm, one can refer to Peng (2022) (19)

1.2.3 Hamiltonian Monte Carlo Sampling

When exploring the space, we use di↵erent transition kernels based on how we choose q(y|x).
Some common samplers like random walk, independence sampler, slice sampler, and hit and

run sampler are ine�cient in exploring the space. While the Gibbs sampler is e↵ective, it

doesn’t explore the posterior space coherently, and in high dimensions, the chains may get

stuck or fail to explore. Additionally, the running times of these algorithms are not ideal

when we have access to additional information such as the gradient of posterior. They are
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unable to utilize this higher-order information e�ciently. This is particularly problematic

in high dimensions because the probability of selecting a random point with a high enough

density decreases, making it essential to propose points in a way that respects the target

density. Hamiltonian Monte Carlo (HMC) sampling addresses this issue.

HMC sampling has a very solid physics background and exploring the posterior space

using the vector field constructed by the Hamiltonian dynamics gives the coherency for good

exploration.

Hamiltonian Monte Carlo

Let ⇡(x) be a probability distribution ( here x are the parameters of the distribution) that

is to be explored using Hamiltonian dynamics.The idea of the Hamiltonian Monte Carlo is

to introduce an auxiliary variable and sample jointly from this bigger space. Consider the

space (x, v) 2 Rd+d, where v 2 Rd is called as the momentum. The joint density of this

space is given by

q(x, v) = ⇡(x)N(v|0,⌃) / f(x)N(v|0,⌃) (1.15)

where ⌃ is a parameter which we can choose. In other words, the joint density q is the product

of two independent densities, ⇡ on the x part and a normal density on the momentum v

part. Let

U(x) = �log(f(x)) K(v) = �log(N(v|0,⌃)), (1.16)

so that,

q(x, v) =
1

Z
e�U(x)e�K(v) (1.17)

where Z be the normalization constant. Suppose we have a ball at position x with momentum

v, then make this ball move on the log density U(x) by using Hamiltonian dynamics. That

is,
dx

dt
=

dK

dv
,
dv

dt
= �dU

dx
(1.18)

Let the solution at time t by following the Hamiltonian flow say,  t(x, v) be (xt, vt) from

some initial point (x, v), that is,

(xt, vt) =  t(x, v)

From the conservation properties of the Hamiltonian dynamics, the Hamiltonian flow  t is

time reversible. And hence after su�cient samples drawn from this process, eventually we

19



will be sampling from the stationary distribution, that is, ⇡(x)

Each step of the HMC Markov chain (X0, X1, ...) is determined first by sampling a new

independent momentum ⇠ ⇠ N(0,⌃ = Id), and then running Hamiltonian dynamics equa-

tions for a fixed time T, that is, Xi =  T (Xi�1, ⇠).This is called as the idealized HMC.

Input: First-order oracle for f : Rd ! R, an initial point X0 2 Rd, T 2 R>0, k 2 N
for i = 1 to k do

Sample a momentum ⇠ ⇠ N (0, Id);

Set (Xi, ⇠) = ( T (Xi�1, ⇠), ⇠);

end

Output: Xk

Algorithm 1: Idealized Hamiltonian Monte Carlo Algorithm (20)

The following theorem from (20) asserts that the HMC chain using the above construction

preserves the target density.

Theorem 1.2.1. Let f : Rd ! R be a di↵erentiable function. Let T � 0 be the step size of

the HMC. Suppose (X, V )is a sample from the density

⇡(x, v) =
e�f(x)� 1

2 ||v||
2

R
e�f(y)� 1

2 ||w||2dµ(y, w)

Then the density of  T (X, V ) is ⇡ for any T � 0. Moreover the density of  T (X, ⇠), where

⇠ ⇠ N(0, Id) is also ⇡. Thus, the idealized HMC algorithms preserves ⇡.

This is a very preliminary introduction to the Hamiltonian Monte Carlo and one can

refer to Vishnoi (2021)(20), Betancourt, M. (2017) (35) and (21) for more details.
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Chapter 2

Bayesian Estimation of Cox

Proportional Hazards Model with

Flexible Baseline Hazards

As we discussed, Survival analysis involves following a subject till an event occurs. If event

does not occur, the subject is considered to be right censored. The Cox proportional hazards

model is a fundamental component in survival analysis where the logarithm of hazard for a

subject is written as the sum of linear combination of covariates and logarithm of the baseline

hazard. Various applications of the Cox model, such as modelling probability of default or

estimating survival probabilities are of interest. Regression coe�cients of the Cox model are

estimated by maximizing the partial likelihood Cox (1972)(14). And the baseline hazard is

not required while estimating these coe�cients. The popularity of the partial likelihood is

mainly due to its

1. ability to skip the estimation of baseline hazard and focusing mainly on the regression

coe�cients.

2. ability to establish the asymptotic properties of the regression coe�cients estimates

However the partial likelihood approach has the following shortcomings:

1. When the size of the sample is small and there is high censoring, partial likelihood

21



estimates turn out to be less accurate.(Heinze and Dunkler, 2008, (36))

2. The baseline hazard needs to be estimated indirectly.

Roysten, (2011) (2) suggests that there should be explicit estimation of the baseline

hazard function. He proposes a method to approximate the logarithm of the baseline hazard

using fractional polynomials and restricted cubic splines. But, this method requires the

input of partial likelihood estimates of the regression coe�cients. The method does not

jointly estimate the regression coe�cients and the baseline hazard.

Ma et al. (2014) (1) has developed a maximum likelihood approach that can avoid

the shortcomings discussed. Sole above estimation of regression coe�cients will not cause

problem if the inference is just related to covariate marginal e↵ects or relative risk. But

if we want to study survival probability or instantaneous probability of hazard or hazard

rate, then baseline hazard estimation is required. As suggested in Hosmer et al. (2008)(3),

the Breslow method does provide estimate of baseline hazard for which partial likelihood

estimates are required as inputs, but the resulatant hazard estimates are very volatile.

In this thesis, we estimate the baseline hazard and regression coe�cents using a bayesian

approach. We closely follow the methodology discussed in Ma et al. (2014)(1)

2.1 The likelihood function

We use the same notations that we have used while discussing the Cox Proportional hazards

model in the previous chapter. Let the data be of the form (yi, �i, xi) 8 i=1 to n , and hi(y) =

h0(y)ex
T
i � be the hazard of the ith subject with covariates xT

i
. Let �T = [�1, ..., �k] be the

regression covariate parameters. Then as discussed in the previous chapter the uncensored

observations contribute to the likelihood function through the density function while censored

observations through the survival function. Therefore the likelihood function is

L(�, h0(y)) =
nY

i=1

Li(�, h0(yi)), (2.1)
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where yi is the observed time and �i is the censor indicator for the ith subject and Li(�, h0(yi)) =

f(yi)�iS(yi)1��i . The log-likelihood then takes the form

l(�, h0(y)) =
nX

i=1

{�ilog(f(yi)) + (1� �i)log(S(yi))} (2.2)

We can substitute in the above equation the following from the fact that

log(S(y)) = �H(y) = �H0(y)e
x
T
�

and

f(y) = h(y)S(y)

Then the log-likelihood can be written as follows:

l(�, h0(y)) =
nX

i=1

�i[log(h(yi)) + log(S(yi))] + (1� �i)log(S(yi)) (2.3)

= �
nX

i=1

H(yi) +
nX

i=1

�ilog(h(yi))

Now catering for the covariates, we get

l(�, h0(y)) = �
nX

i�1

H0(yi)e
x
T
i � +

nX

i=1

�i(log(h0(yi)) + xT

i
�) (2.4)

Estimating the baseline hazard h0 can be very di�cult since it can take di↵erent shapes.

Since we do not want the baseline hazard h0(y) to be restricted to a few parametric forms,

we use a more common approach of replacing h0(y) by a function with finite dimensions.

Assume  1, 2, ... m form a basis of this finite dimensional space, then we set

h0(y) =
mX

u=1

✓u u(y), (2.5)

where  u are non negative basis functions. While many suitable non-negative basis functions

for  u(y) are possible we focus on the following functions:
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1. B-splines

B-splines are piecewise polynomial functions used in numerical analysis and computer

graphics. They consist of basis functions stitched together to form spline curves. B-

splines are versatile tools for approximating complex curves. These basis functions

are typically defined recursively using a process known as the Cox-de Boor recursion

formula.

Let k be the number of knots, ⇠1 and ⇠k be 2 boundary knots such that ⇠0 < ⇠1 and

⇠k < ⇠k+1. Now define the augmented knot sequence ⌧ as

• t1  t2  ...  tM  ⇠0

• tj+M = ⇠j, j = 1, 2, ...k

• ⇠k+1  tk+M+1  tk+M+2...  tk+2M

The actual values of the additional knots beyond the boundaries can be set arbitrarily

and it is conventional to make them all same and equal to ⇠0 and ⇠k+1

Let Bi,m(x) be the ith B-spline basis of degree m. Then Bi,m(x) is defined recursively

as

Bi,m(x) =

✓
x� ti

ti+m � ti

◆
Bi,m�1(x)+

✓
ti+m+1 � x

ti+m+1 � ti+1

◆
Bi+1,m�1(x) for i = 1, 2, ..., k+2M�m

(2.6)

and

Bi,1(x) =

8
<

:
1 ti  x < ti+1

0 otherwise
(2.7)

for i = 1, 2, ...K + 2M � 1

Although these B-spline basis functions are defined recursively, they are polynomials

and hence closed form of their integrals and derivatives can be calculated.

2. M-Splines (4)

M-Splines, also refereed as “Curry–Schoenberg B-splines” in De Boor (1978) (33) are

considered as normalized B-Splines satisfying

Mi,m(x) =
(m+ 1)Bi,m(x)

ti+m+1 � ti
(2.8)

such that
R

tK+2M

t1
Mi,m(x) = 1
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3. Indicator functions (0-degree B-Spline basis) which results in a piece-wise constant

hazard

Figure 2.1 shows examples of M-splines and B-splines and their integrals

(a) Cubic M-Spline Basis (b) Integral of the Cubic M-Spline Basis

(c) 0 degree B-Spline basis (d) Integral of the 0 degree B-Spline basis

Figure 2.1: Examples of M-splines and B-splines and their integrals

The baseline hazard can be made more smooth and flexible by approximating it using

Cubic M-Splines and Cubic B-Splines as a function of time. The M-Spline and B-spline basis

function matrices can be calculated using the methods from the splines2 R package, Wang

(2018)(5) From equation (2.5), the cumulative baseline hazard is given by

H0(y) =

Z
y

0

h0(s)ds =
mX

u=1

✓u

Z
y

0

 u(s)ds =
mX

u=1

✓u u(y) (2.9)
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where  u(y) =
R

y

0  u(v)dv. Therefore, the log-likelihood in this case can be written as:

l(�,✓) = �
nX

i=1

mX

u=1

✓ue
x
T
i � u(yi) +

nX

i=1

�i(log(
mX

u=1

✓u u(yi)) + xT

i
�) (2.10)

We wish to jointly estimate [�T ,✓T ] using a Bayesian approach and subject to the constraint

✓u � 0 for u = 1, ...,m

2.2 The Bayesian Framework

Ma et al. (2014)(1) develop a constrained optimization method that conditionally optimizes

one parameter given all the others. But this method is too computationally intensive to

implement. Hence we use a Bayesian approach with Hamiltonian Monte Carlo (HMC)

which is a form of Markov Chain Monte Carlo (MCMC). HMC calculated the gradients of

the posterior distribution and uses it to explore the posterior space more e�ciently. We use

Stan for computation which implements a specific form of the HMC.

In Bayesian estimation, the regression parameters and spline coe�cients are considered

as random variables and have to be assigned with prior distributions. However, most of the

times these priors are non-informative. But one can choose priors such that they include

external judgements and expert insights on the parameters or default rates in the case of

credit risk.

2.2.1 Regression Coe�cients Priors

Since the regression coe�cients can take any value between (�1,1), one can choose an

uninformative prior distribution for the �’s such as normal, t, and Cauchy distribution. (15)

2.2.2 Baseline Hazard Priors

The hazard/default rate h0 is non negative. Since the M-Spline basis functions of the baseline

hazard are always non negative, the spline coe�cients must also be non negative. However
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while drawing samples if all ✓’s tend to zero, then we start getting divergent transitions.

Therefore it is advisable to add one more parameter r � 0 for normalizing constant and

estimate ✓’s such that
P

m

u=1 ✓u = 1. The hazard can be written as:

h0(y) = r ⇤
mX

u=1

✓u u(y)

.

A Dirichlet prior can be used for ✓ = (✓1, ✓2, ..., ✓m)T and a lognormal prior for r as it is

non negative.

Posterior Distribution

For Bayesian estimation we use the following independent prior distributions to perform the

MCMC with a Hamiltonian dynamics:

1. All regression coe�cient �i ⇠ N(0, 5)

2. Spline coe�cient

✓ ⇠ Dirichlet([1, ..., 1]1⇤m)

3. Normalizing constant r ⇠ lognormal(0, 1)

The log posterior distribution can be obtained using the Bayes theorem as follows:

log(p(�,✓, r|y, �, x) = �
nX

i=1

mX

u=1

r ⇤ ✓uex
T
i � u(yi) +

nX

i=1

�i(log(
mX

u=1

r ⇤ ✓u u(yi)) + xT

i
�)

�
kX

j=1

(
�j
12

)2 � 1

2
(log(r))2 � log(r) + constant

(2.11)

where the constant comes from the denominator part of the Bayes theorem.
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2.3 Results

In this section, we report the results of a simulation study, where we compare the Bayesian

MCMC estimates of the regression coe�cients �s with those obtained from the partial like-

lihood. Additionally, we also compare the baseline hazard estimates obtained through both

methods. Then, we fit a Cox model to estimate the probability of default using the Bondora

credit data.

2.3.1 Simulation Study

The survival times ti are simulated from a hazard function given as follows:.

hi(t) = 0.3 ⇤ t2e�0.5x1�2x2 (2.12)

We generate censoring times ci, independent of ti, from a uniform distribution U(0, ⌫),

where ⌫ is chosen to achieve a desired censoring proportion. This process results in indepen-

dent observations (yi, �i) for i = 1, ..., n, where �i denotes the censoring indicator.

The model described in (2.12) is a proportional hazards model with baseline hazard h0(t)

as Weibull hazard with scale parameter 0.1 and shape parameter 3 respectively. Regression

coe�cients are �1 = �0.5 and �2 = �2 and values for covariates x1 and x2 are generated

from binomial distributions: x1 ⇠ Bin(1, 0.5) and x2 ⇠ Bin(3, 0.4).

In order to know how each method is a↵ected by sample size n, and censoring proportion,

we choose n=200 and n=2000 with approximate censoring proportions of 18% and 70% for

each value of n. Regression coe�cients �1 and �2 are estimated using Cox’s partial likelihood

approach and spline approximated Bayesian MCMC estimation approach. We approximate

h0(t) as a linear combination of 6 cubic M-spline basis functions, with knots selected to

ensure equal event counts in each basis.

The estimated coe�cients along with their bias, standard deviation (SD) and mean

squared error (MSE) are given in Table 2.1. We observe that for both Partial Likelihood

Estimation (PLE) and Bayesian MCMC, the variance increases with censoring proportion

but decreases with sample size. Although in these examples the Bayesian MCMC estimates
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Table 2.1: Regression coe�cients comparison using simulated samples with sizes n=200 and
n=2000. For each sample size there are approximately 18%, 70% independent censoring.

n=200 n=2000

19% censoring 69% censoring 17% censoring 70.8% censoring

�1 =
�0.5

PLE -0.2042 -0.6248 -0.4632 -0.4483

Bias 0.2958 -0.1248 0.0368 0.0517

SD 0.1594 0.2601 0.0501 0.0839

MSE 0.112906 0.08322705 0.00386425 0.0097121

Bayesian -0.0975 -0.5098 -0.4428 -0.4272

Bias 0.4025 -0.0098 0.0572 0.0728

SD 0.1408 0.2605 0.0497 0.0845

MSE 0.1818309 0.06795629 0.00574193 0.01244009

�2 =
�2

PLE -1.9871 -2.0807 -2.0973 -1.9208

Bias 0.0129 -0.0807 -0.0973 0.0792

SD 0.1619 0.2663 0.0511 0.0780

MSE 0.02637802 0.07742818 0.0120785 0.01235664

Bayesian -1.668 -1.665 -2.036 -1.861

Bias 0.3320 0.3350 -0.036 0.1390

SD 0.1408 0.2090 0.0509 0.0718

MSE 0.1300486 0.155906 0.00388681 0.02447624

are not as e�cient as PLE, the plotted Figures (2.2),(2.3),(2.4) and (2.5) of the baseline

hazard by both methods show that the Breslow method estimated baseline hazard is having

high variability.

2.3.2 Application to Bondora Credit Data

The Bondora dataset (32), obtained from the European P2P lending platform Bondora,

consists of 179,236 loan instances spanning from February 2009 to July 2021, and having

112 covariates. These covariates include borrower demographic details, financial information,

and loan transaction features. Follow-up time is measured in days from the loan start date to

either the contract end date or the default date, with censoring status assigned accordingly.

For our analysis, we selected 9 covariates out of the total, which may influence or explain

the probability of default. Categorical variables are encoded according to the provided
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Figure 2.2: Breslow’s Baseline hazard Estimate for n=200 and 17% Censoring

Figure 2.3: Bayesian MCMC Baseline hazard Estimate for n=200 and 17% Censoring
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Figure 2.4: Breslow’s Baseline hazard Estimate for n=2000 and 70.8% Censoring

Figure 2.5: Bayesian MCMC Baseline hazard Estimate for n=2000 and 70.8% Censoring
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covariate descriptions, while numerical variables are standardized by subtracting the mean

and dividing by the standard deviation. A sample of 10,000 observations was chosen from

this dataset, with approximately 45.74% of the observations being censored. Further details

on the covariates can be found at (31).

We apply the Bayesian MCMC method to fit the Cox’s proportional hazards model to

the Bondora credit data. The model can be expressed as follows:

h(t) =
20X

u=1

✓u u(t)e
P9

i=1 �ixi (2.13)

We approximate the baseline hazard as a linear combination of 20 indicator functions,

with knots chosen to ensure an equal number of observed events within each piecewise con-

stant interval. To compare the regression coe�cient estimates obtained from this Bayesian

MCMC approach with those from the partial likelihood approach, we select only the signif-

icant covariates identified by the PLE method, since we have not developed a significance

testing procedure for the Bayesian MCMC method. The selected covariates and the esti-

mated regression coe�cients �’s are given in Table 2.2. The estimated regression coe�cients

from both methods are found to be close to each other, indicating that they lead to the

same conclusions. The numerical estimates of the baseline hazard, along with 95% credible

intervals, are provided in Figure 2.7.

The Breslow baseline hazard estimate given in Figure 2.6 has significantly more variability

compared to the smoother estimate obtained from the Bayesian MCMC method. Figure 2.7,

shows that the the baseline hazard of default initially peaks and then gradually decreases,

suggesting that individuals who survive beyond time 2000 are less likely to default. Our

analysis not only yields regression coe�cients comparable to those obtained using the partial

likelihood approach, but also provides an accurate estimation of the baseline hazard.

While the “stansurv” package (15) o↵ers an option to approximate the baseline hazard

using splines and indicator functions in the Cox’s Proportional Hazards model, we needed

to extend this functionality to the mixture cure model. Therefore, we have developed all the

necessary codes independently.
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Figure 2.6: Breslow’s method estimated baseline hazard for Bondora Credit data

Figure 2.7: Plot of baseline hazard and it’s 95% credible interval for Bondora Credit data
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Table 2.2: Comparison of the regression coe�cient estimates

Covariate Parameter Partial Likelihood Estimate Bayesian Estimate

�1 (NewCredit Customer) 0.258750 0.2573

�2 (Verification Type) -0.102859 -0.1043

�3 (Age) -0.140354 -0.1410

�4 (Country) 0.409807 0.4089

�5 (Applied Amount) 0.052778 0.05367

�6 (Interest) 0.363773 0.3650

�7 (Use Of Loan) 0.020712 0.02034

�8 (Education) -0.098560 -0.1013

�9 (Marital Status) 0.077125 0.0762
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Chapter 3

Bayesian Estimation of Mixture Cure

Cox Model and its Application to

Credit Risk Modelling

Mixture cure models originated in medical statistics with the aim of explaining the prolonged

survival rates of cancer patients. These models classify patients into two distinct groups:

those who achieve a permanent cure and are unlikely to experience a recurrence of cancer,

and and those who do not achieve a cure and remain susceptible to the cancer. In this study,

we apply mixture cure models to credit risk modelling, where, similar to the medical context,

a considerable proportion of subjects may not default, throughout the loan duration.

In standard survival analysis, the survival function is the probability that the subject

will not face the event of interest till some stated time t. i.e S(t) = P (T > t) = 1 � F (t)

where T is the event time and F is the distribution function of the random variable T . It

is assumed that as t ! 1, S(t) ! 0 and all the subjects would eventually experience the

event of interest. But this need not true in the case of credit data because not every subject

would default. A significant portion of accounts might not default throughout the entire loan

period. And therefore, the survival function will be plateau at some non-zero levels. These

accounts are not susceptible to defaults. Mixture cure models are extensions of classical

survival models they are recently becoming popular in the context of credit risk modelling.

They are used to model the default rate in terms of two distinct subpopulations Dirick
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(2017)(6). In one subpopulation, accounts that are non-susceptible and will not default,

while the other subpopulation contains accounts that are susceptible and will default sooner

or later.

We have implemented the mixture cure models, which can predict whether borrowers will

default or not. These models comprises two components, the incidence, which models the

probability of susceptibility of an individual, and the latency, which models the survival dis-

tribution for susceptible sub-population. An incidence model is essentially a binary classifier

like a logistic regression model or advanced classification methods like tree based methods

and clustering algorithms. However we use logistic regression for incidence model as the

interpretation becomes somewhat straight. For the latency part, many parametric survival

forms have been used in the literature. We use the semi-parametric Cox proportional hazard

model that we have introduced in the Chapter 1.

Although the Expectation Maximization (EM) algorithm is frequently used to estimate

this model, it does not directly provide estimates of the baseline hazard for susceptible

customers or variance estimates for model parameters without further computational steps

(7). Therefore, we opt for Bayesian methods of estimation.

3.1 Mixture Cure Model

The mixture cure model di↵erentiates between the two subpopulations of accounts based on

the susceptibility to default. The subpopulation that will not default (long term survivors)

and another sub-population for those that will eventually default. Hence a binary random

variable S is defined, S = 1 denoting that the account is susceptible to default and will

default at some time though it may be censored in the dataset. S = 0 means the account is

non-susceptible to default and hence cured. Let � be the censoring indicator, � = 1 indicates

non censored account and � = 0 indicates a censored account. Thus, if an account did not

default during study period, then it will either not default in the future or is right censored

and given su�cient time, it would eventually default. Hence for any account, there are 3

possible states (8):

1. � = 1 and S = 1; uncensored, susceptible, therefore the account is observed to default;
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2. � = 0 and S = 1; censored, susceptible, hence the account would eventually default;

3. � = 0 and S = 0; censored, non-susceptible, hence the account will not default.

Note that the susceptibility status of censored subjects remains unobserved.

The mixture cure model is given by

S(t|x,w) = ⇡(w)S(t|S = 1,x) + (1� ⇡(w)) (3.1)

where S(t|w,x) is the unconditional survival function for the entire population, ⇡(w) is the

incidence function representing the proportion of accounts susceptible to default given the

covariate vector w = (w1, w2, ..., wk) and S(t|S = 1,x) = P (T > t|S = 1,x) is the latency

function conditional on the account being susceptible to default given the covariate vector

x = (x1, x2, ..., xs). Also note that x may or may not contain the same covariates as w. Also

as t ! 1, S(t|x,w) ! (1� ⇡(w)).

The susceptible population proportion given by ⇡(w) is modelled using a binary regression

model. We use logistic regression because of its convenient parameter interpretation based on

the log odds ratio. For the latency part, we use the semi-parametric Cox proportional hazard

model. Let ↵ and � be the regression coe�cients associated with w and x respectively and

and h0(t) be the baseline hazard for the susceptible population. We consider the following

specifications:

The incidence part:

⇡(w) =
1

1 + e�wT↵
(3.2)

The latency part: ( given that the account is susceptible to default i.e S = 1) we model the

hazard rate /default rate using Cox proportional hazards model given by

h(t|S = 1,x) = h0(t)e
x
T
� (3.3)

And therefore, the cumulative hazard is

H(t|S = 1,xi) =

Z
t

0

h(t|S = 1,xi) = ex
T
�

Z
t

0

h0(s)ds = H0(t)e
x
T
� (3.4)
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where H0(t) =
R

t

0 h0(s)ds is the cumulative baseline hazard.

Using the relation that S(t) = e�
R t
0 h(s)ds , we can write the conditional survival function

given that the account is susceptible to default i.e S = 1 as follows:

S(t|S = 1,x) = e�
R t
0 h(s|S=1,x)ds = e�

R t
0 h0(s)ex

T �
ds = e�H0(t)ex

T �
(3.5)

Using the relation that �dS(t)
dt

= f(t), we can calculate the probability density function

associated with the default random variable T as follows:

f(t|x,w) = � d

dt
S(t|x,w) = ⇡(w)f(t|S = 1,x) (3.6)

f(t|S = 1,x) is the conditional probability density function of default at t given that the

account i is susceptible.Again using the relation f(t) = h(t) · S(t) the f(ti|S = 1,x) can be

written in terms of baseline hazard h0(t) and cumulative baseline hazard H0(t) as follows:

f(t|S = 1,x) = h(t|S = 1,x) ⇤ S(t|S = 1,x)

= h0(t)e
x
T
� ⇤ e�H0(t)ex

T �
(3.7)

Note that the mixture cure model given in equation (3.1) is completely specified by equations

(3.2) and (3.4).

3.2 Methodology and Likelihood

Let the D = {(ti, �i,wi,xi); i = 1 to n} be the dataset containing all outcomes, and �i = 1

if ti is uncensored and �i = 0 otherwise. Then, the uncensored subjects contribute to

the likelihood function through the density function f(t|x,w) while censored observations

through the survival function S(t|x,w).

Hence the likelihood becomes

L(↵, �, h0(t)) =
nY

i=1

f(ti|xi,wi))
�iS(ti|xi,wi)

1��i (3.8)
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L(↵, �, h0(t)) =
nY

i=1

(⇡(wi)f(ti|Si = 1,xi))
�i(1� ⇡(wi) + ⇡(wi)S(ti|Si = 1,xi))

1��i (3.9)

The complete likelihood consists of both the logistic and the proportional hazards (PH)

component. In cases where there is no non-susceptible fraction, meaning ⇡(wi) = 1, the

likelihood function for the mixture cure model simplifies to that of a standard survival

model.

Taking logarithm of 3.9,

l(↵, �, h0(t)) =
nX

i=1

�i[log(⇡(wi) + log(f(ti|Si = 1,xi)]

+ (1� �i)log[1� ⇡(wi) + ⇡(wi)S(ti|Si = 1,xi)]

(3.10)

l(↵, �, h0(t)) =
nX

i=1

�i[log(⇡(wi) + log(h0(ti)) + xT

i
� �H0(ti)e

x
T
i �]

+ (1� �i)log[1� ⇡(wi) + ⇡(wi)e
�H0(ti)e

xTi �

]

(3.11)

Estimating the baseline hazard h0 can be cumbersome since it can take di↵erent shapes.

Since we do not want the baseline hazard h0(t) to be restricted to a specific parametric form,

we use a more common approach of replacing h0(t) by a function with finite dimension.

Assume  1, 2, ... m form a basis of this finite dimensional space, then we set

h0(t) =
mX

u=1

✓u u(t) (3.12)

. where  u are non negative basis functions.

While many suitable non-negative basis functions for  u(t) are possible we focus on the

following functions:

1. B-splines

2. M-Splines (4)

3. Indicator functions (0-degree B-Spline basis) which results in a piece-wise constant
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hazard

The baseline hazard can be made more smooth and flexible by approximating it using Cubic

M-Splines and Cubic B-Splines as a function of time. The M-Spline and B-spline basis

function matrices can be calculated using the methods from the splines2 R package (5).

From equation (3.12), the cumulative baseline hazard is given by:

H0(t) =

Z
t

0

h0(s)ds =
mX

u=1

✓u

Z
t

0

 u(s)ds =
mX

u=1

✓u u(t) (3.13)

where  u(ti) =
R

ti

0  u(v)dv.

Therefore the log-likelihood becomes

l(↵, �, ✓) =
nX

i=1

�i(log(⇡(wi)) + log(
mX

u=1

✓u u(ti)) + xT

i
� � (

mX

u=1

✓u u(ti))e
x
T
i �)

+(1� �i)log(1� ⇡(wi) + ⇡(wi)e
(
Pm

u=1 ✓u u(ti))e
xTi �

)

(3.14)

We wish to jointly estimate [↵T , �T ,✓T ] using a Bayesian approach and subject to the

constraints ✓u � 0 for u = 1, ...,m

3.3 Bayesian Framework

Considering the mixture cure model given in (3.1), along with the log-likelihood (3.14), we

estimate the parameters using a Bayesian approach with Hamiltonian Monte Carlo Sampling.

The choices of the priors for the both, latency �’s and incidence ↵’s regression coe�cients

remain the same as discussed in the previous chapter. For baseline hazard rate, we add a

one more parameter r > 0 as a normalizing constant and estimate ✓’s such that

mX

u=1

✓u = 1 and h0(t) = r
mX

u=1

✓u u(t)
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. A Dirichlet prior is used for ✓ = (✓1, ✓2, ..., ✓m)T and a lognormal prior for r, as h0(t) is

non negative.

3.3.1 Posterior Distribution

We use the following independent prior distributions to perform the MCMC with Hamilto-

nian dynamics (15):

1. All latency regression coe�cient �i ⇠ N(0, 6)

2. All incidence regression coe�cient ↵i ⇠ N(0, 6)

3. Spline coe�cient

✓ ⇠ Dirichlet([1, ..., 1]1⇤m)

4. Normalizing constant r ⇠ lognormal(0, 1)

After determining the likelihood function and fixing the prior distributions for the parame-

ters, the log posterior distribution was obtained using the Bayes theorem as follows:

log(p(↵,�,✓, r|D) =
nX

i=1

(�i ⇤ (log(⇡(wi)) + log(r ⇤
mX

u=1

✓u u(ti)) + xT

i
� � (r ⇤

mX

u=1

✓u u(ti))e
x
T
i �)

+(1� �i) ⇤ log(1� ⇡(wi) + ⇡(wi)e
(r⇤

Pm
u=1 ✓u u(ti))e

xTi �

))

�
kX

i=1

(
↵i

12
)2 �

sX

j=1

(
�j
12

)2 � 1

2
(log(r))2 � log(r) + constant

(3.15)

where the constant comes from the denominator part of the Bayes theorem.

3.3.2 Survival Probability and Probability of Default Prediction

Once the model parameters are estimated, we can predict the survival probability (3.1) and

default probability density function (3.6) at time t for a new subject as follows:
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Suppose that associated with some account j⇤ , latency covariate vector xj⇤ and incidence

covariate vector wj⇤ is known. Then the predicted survival probability of remaining default

free at time 0 < t  tmax where tmax = max(ti) for 1=1,2,... n, denoted by Ŝj⇤(t|xj⇤ , wj⇤) (i.e

survival probability at the new data point, from (3.1) can be calculated by taking expectation

with respect to the posterior p(↵,�,✓, r|D):

Ŝj⇤(t|xj⇤ , wj⇤) =

Z
Sj⇤(t|xj⇤ , wj⇤ ,↵,�,✓, r)p(↵,�,✓, r|D)d↵d�d✓dr (3.16)

Similarly, f̂j⇤(t|xj⇤ , wj⇤) (i.e probability of default at the new data point, from (3.6) can

be calculated by taking expectation with respect to the posterior p(↵,�,✓, r|D):

f̂j⇤(t|xj⇤ , wj⇤) =

Z
fj⇤(t|xj⇤ , wj⇤ ,↵,�,✓, r)p(↵,�,✓, r|D)d↵d�d✓dr (3.17)

We approximate the above expectations (3.16) and (3.17) by using samples of MCMC

draws from the posterior as follows:

Ŝj⇤(t|xj⇤ , wj⇤) =
1

K

KX

k=1

Sj⇤(t|xj⇤ , wj⇤ ,↵
(k),�(k),✓(k), r(k)) (3.18)

f̂j⇤(t|xj⇤ , wj⇤) =
1

K

KX

k=1

fj⇤(t|xj⇤ , wj⇤ ,↵
(k),�(k),✓(k), r(k)) (3.19)

where (↵(k),�(k),✓(k), r(k)) is the kth (k = 1, ..., K) draw from the MCMC independent

samples of the posterior distribution

3.4 ROC Curves Estimation

Typically, the Receiver Operating Characteristic, (ROC) curves are one way to assess the

predictive performance of a continuous binary classifier. However the classical ROC curve

approach (10) is inappropriate since the partially unobserved susceptibility status due to the

presence of censoring in survival data. Here we will discuss the adjustments required for
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Table 3.1: Possible outcomes of a binary classification.

Di = 0 Di = 1

Mi = 0 true negative false negative

Mi = 1 false positive true positive

ROC curves when dealing with censored data, as described by Amico, M et al. (2021)(9).

Let Di be a binary indicator associated with account i (true state of the account) such

that,

Di =

8
<

:
0 denotes no default

1 denotes default

Let Mi be a binary classifier (obtained using estimated incidence) associated with account i

(predicted state of the account) such that,

Mi =

8
<

:
0 if predicted no default

1 if predicted default

A classifier is said to have classified the default status of an observation correctly if the

values of D and M are the same i.e. when an observation belongs to true positive (TP)

or true negative (TN) subjects. Clearly, on the other hand, if an observation belongs to

the false positive (FP) or false negative (FN) category, then the classifier has incorrectly

classified the default status of an account.

To evaluate if a classifier M, classifies the accounts correctly into default and no default

classes, one needs to consider the sensitivity and specificity. Sensitivity tells us the proportion

of accounts correctly classified as default when they actually belong to default class, while

the specificity indicates the proportion of accounts correctly classified as no default when

they actually did not default. When the classifier M is assessed on a continuous scale, it

must be divided into two categories in order to conduct binary classification. Therefore, we

consider an account i is classified as default when its classifier Mi meets a certain threshold

k. That is Mi � k, for k 2 R. Since k can vary, we get multiple sensitivities and specificities.

Since k can take multiple values, there are several possible sensitivities and specificities.To

summarize all the information, we need to consider ROC curve, which graphically represents
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all possible combinations of the sensitivity, and one minus the specificity:

Se(k) = Pr(M � k|D = 1) (3.20)

Sp(k) = Pr(M < k|D = 0) (3.21)

Equations (3.20) and (3.21) can be obtained from all possible dichotomized versions of

the classifier M , based on the value of the threshold k. The ROC curve is sensitivity plotted

against one minus specificity for all possible values of k 2 R and is given by:

ROC(u) = Se {(1� Sp)}�1 (u), 0 < u < 1 (3.22)

where u is an index. A perfect classifier is such that it achieves the probability Pr(M �
k|D = 1) = 1 and Pr(M � k|D = 0) = 0 for some threshold k. In that case all observations

are perfectly classified. Graphically, this corresponds to a point of coordinates (0, 1). On

the other hand, an uninformative classifier is such that Pr(M � k|D = 1) = Pr(M �
k|D = 0) for all k. In this situation, the distribution of M is the same in the two classes

and the ROC curve is equal to the bisector. Alongside the ROC curve, the area under curve

(AUC) is usually defined AUC =
R 1

0 ROC(u)du, which summarizes the performance of the

classifier M into a single value. An area under the curve (AUC) equal to 1 corresponds to a

perfect classifier, while an area under the curve equal to 0.5 corresponds to an uninformative

classifier.

3.4.1 Infeasible Estimators

Let T be a non negative random variable which represents the survival time (time to default).

We assume that T is subject to random right censoring and instead of observing T we observe

the follow up time Y = min(T,C) and censoring indicator � = I(T  C). C is the censoring

time that is supposed to be independent of T given X and W , and I() is the indicator

function. Let (yi, �i,wi,xi), i=1,2,...n be the iid samples of (Y, �,W,X)

A simple and common nonparametric method to estimate a ROC curve consists in es-

timating the sensitivity and the specificity by their empirical distribution functions given
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by:

ˆSe(k) = 1� 1

N̂1

nX

i=1

Ŵi1 · I(Mi  k) (3.23)

ˆSp(k) =
1

N̂0

nX

i=1

Ŵi0 · I(Mi  k) (3.24)

where Ŵi1 = I(Di = 1), Ŵi0 = I(Di = 0) =1-Ŵi1, N̂1 =
P

n

i=1 Ŵi1 and N̂0 = n - N̂1

When working with survival data having non susceptible population, these estimators

cannot be used as the susceptibility status is unobserved. An alternative approach to address

this di�culty is to categorize subjects into three types based on the susceptibility threshold

proposed by Taylor (1995) (13). This proposal consists in considering an account as non-

susceptible if its censored follow-up time is greater than the last uncensored follow-up time,

denoted by ⌧ = max{ti|ti is uncensored}. This rule makes sense when there is a clear

evidence indicating the existence of a non-susceptible fraction.It is assumed that, when the

follow-up period extends beyond the last uncensored event time ⌧ , observations with censored

follow-up times greater than most event times can be categorized as non susceptible. Based

on this rule, it is therefore possible to distinguish three types of accounts.

1. An uncensored account experiences the event. It then belongs to the susceptible pop-

ulation with certainty, that is, D = 1. ( It has already defaulted).

2. A censored account with follow-up time Y > ⌧ , we predict it as no default D = 0 .

3. A censored account with follow-up time Y  ⌧ , a probability Pr(D = 1|W,X, C, T >

C) replaces the unobserved susceptibility status. When the actual D value is unknown,

one can use its probability as an alternative.

As a result, the estimators for sensitivity and specificity functions for survival data having

non-susceptible fraction are given by,:

˜Se(k) = 1� 1

Ñ1

nX

i=1

W̃i1 · I(Mi  k) (3.25)
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˜Sp(k) =
1

Ñ0

nX

i=1

W̃i0 · I(Mi  k) (3.26)

where W̃i1 = Pr(Di = 1|W = wi,X = xi, C = Ci, T > Ci),

W̃i0 = Pr(Di = 0|W = wi,X = xi, C = Ci, T > Ci) =1-W̃i1,

Ñ1 =
P

n

i=1 Ŵi1 and Ñ0 = n - Ñ1

Using the above sensitivity and specificity estimators, the corresponding ROC curve

estimator can be obtained as,

˜ROC(u) = S̃e
n
(1� S̃p)

o�1

(u), 0 < u < 1 (3.27)

This estimator increases monotonically with u and remains una↵ected by strictly increasing

transformations of the classifier M , both of which are required characteristics of ROC curves,

as outlined by (11). The corresponding estimator for the area under the curve is

˜AUC =
1

Ñ1Ñ0

nX

i=1

nX

j=1

I(Mj > Mi)W̃j1W̃i0 (3.28)

The development of these estimators (3.25),(3.26),(3.27),(3.28) depends on the decomposi-

tion of the sensitivity, the specificity and the area under the curve based on the definition of

the conditional probability. Detailed theoretical elements can be found in Section 1 of the

supplementary material of y Amico, M et al. (2021)(9).

3.4.2 Feasible Estimators

The Pr(D = 1|W = wi,X = xi, C = Ci, T > Ci) is involved in infeasible estimators (3.25)

and (3.26) of the sensitivity and the specificity as well as in the infeasible estimator (3.28)

of the area under the curve.Therefore, it is necessary to estimate this quantity in order to

obtain estimators that can be used in practice. Based on the definition of the conditional
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probability, this probability can be written as:

Pr(D = 1|W,X, C, T > C) =
Pr(T < 1|W,X, C)

Pr(T > C|W,X, C)
=

Pr(T < 1|W,X)

Pr(T > C|W,X, C)
(3.29)

since T and C are independent given W and X. Also, as we suppose that the data is coming

from the mixture cure model (3.1), this quantity can be further written as:

Pr(T < 1|W,X)

Pr(T > C|W,X, C)
=

⇡(w)S(t|S = 1,x)

⇡(w)S(t|S = 1,x) + 1� ⇡(w)
(3.30)

3.5 Results

In this section, we present the results of a simulation study comparing Bayesian MCMC

estimates of the latency part coe�cients �’s and the incidence part coe�cients ↵’s with

their EM (Expectation Maximization) algorithm estimates. We utilized the EM algorithm

via the smcure R package Cao et al.(2012) (12), which employs the Breslow type estimator

for the baseline hazard (1.12). Additionally, we compare the Bayesian MCMC estimated

baseline hazard under varying sample sizes and censoring proportions. Furthermore, we

include simulation results for di↵erent parameter dimensions.

For implementation, users can parameterize the baseline hazard by defining the number

of observed events within each piece-wise constant interval. Typically, the number of knots

is chosen as the cubic root of the total number of events.

3.5.1 Simulation Setting 1

For the simulation study, we first generate survival times using the mixture cure model as

specified in (3.1),(3.2) and (3.4) with n = 200 and n = 2000 observations. We use a Weibull

baseline hazard with shape parameter � = 1.2 and scale parameter ⌫ = 0.8. Covariates

x1 and x2 for the incidence part are generated from normal and binomial distributions,

respectively, with x1 ⇠ N(0, 1) and x2 ⇠ Bin(2, 0.4). For the latency part, we generate

covariate w1 ⇠ N(1, 1). Independent right censoring times for all observations are generated

from a uniform distribution to achieve the desired censoring proportion of approximately
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25% and 60%. The susceptibility status is simulated using a Bernoulli distribution with

probability ⇡i calculated from the logistic model. The model parameters used are �1 = 1,

�2 = �1, and ↵1 = 4. Thus, the model used for simulating the data is specified as follows:

S(t|x1, x2, w1) =
1

1 + e�4w1
⇤ e�1.2⇤t0.8ex1�x2 + (1� 1

1 + e�4w1
) (3.31)

The results from the simulation study are presented in Table 3.2. The Bayesian MCMC

approach demonstrates comparable accuracy for coe�cients in the survival component (�1

and �2) and lower bias for coe�cients in the logistic component ↵1. The standard deviation

(SD) of the estimates follows the trend: SD200,60 > SD200,23 > SD2000,57 > SD2000,27.5,

indicating that larger sample sizes and lower censoring proportions lead to more precise

parameter estimates. Additionally, besides returning estimates for regression parameters, the

Bayesian MCMC method also provides estimates for the baseline hazard of the susceptible

population. The baseline hazard is parameterized using 6 cubic Mspline basis, with knots

selected to ensure a roughly equal number of observed events within each interval. Figure 3.1

illustrates the baseline hazard estimates for di↵erent sample sizes and censoring proportions

with 95% credible interval. Credible intervals behave similarly to the standard deviation

(SD) of covariate parameter estimates. In simpler terms, when there’s less data and more

censoring, the credible interval tends to be wider. As the sample size increases and censoring

decreases, the interval becomes narrower, indicating more precise estimation of the baseline

hazard.

3.5.2 Simulation Setting 2

In this simulation study, we check the e↵ect of increasing the number of parameters in both

the EM and Bayesian MCMC methods. We use a constant baseline hazard i.e, � = 1. We

generate data from two models: one with 5 incidence and 4 latency parameters (Table 3.3),

and another with 12 incidence and 11 latency parameters (Table 3.4). The covariates are

generated as follows: x1 ⇠ N(0, 1), x2 ⇠ Bin(2, 0.4), x3 ⇠ N(1, 2), x4 ⇠ Bin(3, 0.4), x5 ⇠
N(3, 4), x6 ⇠ Bin(4, 0.4), x7 ⇠ N(1, 1), x8 ⇠ Bin(2, 0.2), x9 ⇠ Bin(3, 0.6), x10 ⇠ N(�3, 2),

x11 ⇠ N(�2, 1). Both simulations involve generating 2000 observations. Figures 3.5 and 3.6

show the estimated baseline hazards for both models.
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Table 3.2: Regression coe�cients comparison using simulated samples with sizes N=200 and
N=2000. For each sample size there are approximately 25%, 58% independent censoring.

N=200 N=2000

23% censoring 60% censoring 27.5% censoring 57% censoring

�1 = 1

EM 0.7726 1.0395 1.047 1.0079

Bias -0.2274 0.0395 0.047 0.0079

SD 0.1172 0.1688 0.0350 0.0495

MSE 0.0654466 0.03005369 0.003434 0.00251266

Bayesian 1.0355 1.0344 1.0630 1.0278

Bias 0.0355 0.0344 0.063 0.0278

SD 0.0944 0.1397 0.0347 0.0425

MSE 0.01017161 0.02069945 0.00517309 0.00257909

�2 = �1

EM -0.8003 -0.9617 -0.9472 -1.0715

Bias 0.1997 0.0383 0.0528 -0.0715

SD 0.1208 0.2174 0.0429 0.0615

MSE 0.05447273 0.04872965 0.00462825 0.0088945

Bayesian -1.0775 -1.3098 -0.9681 -1.1248

Bias -0.0775 -0.3098 0.0319 -0.1248

SD 0.1254 0.1824 0.0438 0.0601

MSE 0.02173141 0.1292458 0.00293605 0.01918705

↵1 = 4

EM 1.3444 2.1474 3.6444 1.8735

Bias -2.6556 -1.8526 -0.3556 -2.1265

SD 0.3225 1.6428 0.5027 0.3217

MSE 7.156218 6.130919 0.3791586 4.625493

Bayesian 4.7148 3.6444 3.9337 3.8572

Bias 0.7148 -0.3556 -0.0663 -0.1428

SD 0.9417 1.6342 0.2558 0.4282

MSE 1.397738 2.797061 0.06982933 0.2037471
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(a) n=200 with 60% Censoring (b) n=200 with 23% Censoring

(c) n=2000 with 57% Censoring (d) n=2000 with 27.5% Censoring

Figure 3.1: Bayesian MCMC Baseline hazard Estimate for di↵erent sample sizes and cen-
soring proportions, Red curve indicates the true baseline hazard

Table 3.3: Estimated parameters from simulation with 5 incidence and 4 latency parameters
and constant baseline hazard, N=2000

Incidence EM Algo Bayesian MCMC Latency EM Algo Bayesian MCMC

parameters parameters

↵0 = 0 0.0760 -0.1573

↵1 = 1 0.9545 1.321 �1 = 1 1.0210 1.054

↵2 = �1 -1.0425 -0.7529 �2 = �1 -1.0864 -1.046

↵3 = 2 2.0269 2.083 �3 = 2 2.0495 2.025

↵4 = �2 -2.0759 -2.106 �4 = �2 -2.055 -1.982
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Table 3.4: Estimated parameters from simulation with 12 incidence and 11 latency parame-
ters and constant baseline hazard, N=2000

Incidence EM Algo Bayesian MCMC Latency EM Algo Bayesian MCMC

parameters parameters

↵0 = 0 0.4427 0.4334

↵1 = 1 1.3925 1.429 �1 = 1 0.0986 1.024

↵2 = �1 -1.1869 -1.217 �2 = �1 -0.0076 -0.9690

↵3 � 2 -2.0614 -2.118 �3 = 2 0.2128 1.982

↵4 � 2 -2.4081 -2.473 �4 = �2 -0.0916 -1.881

↵5 = 3 3.1634 3.249 �5 = 3 0.2163 2.996

↵6 � 1 -0.9464 -0.9660 �6 = �3 -0.2485 -3.014

↵7 = 0 0.1258 1.296 �7 = 1 0.0991 1.014

↵8 = �1 -1.2773 -1.299 �8 = �1 -0.0337 -1.033

↵9 = 2 1.8571 1.903 �9 = 2 0.1273 2.018

↵10 = 2 2.1510 2.206 �10 = 2 0.1414 2.033

↵11 = 3 3.0232 3.104 �11 = 1 0.0367 0.9224

In this comparison, we observe that the EM algorithm with the Breslow hazard method

struggles to accurately estimate the latency parameters when faced with a higher number

of parameters. It is also possible that our simulated data, based on a constant hazard,

allowed for better estimates using the piecewise constant indicator function for the baseline.

However, it is important to note that in scenarios of mixture cure models with numerous

parameters, the Breslow method may fail to capture even a constant baseline hazard and

the latency parameters.
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Figure 3.2: Estimated baseline from simulation with 5 incidence and 4 latency parameters
with 95% credible interval, Red curve indicates the true baseline hazard

Figure 3.3: Estimated baseline from simulation with 12 incidence and 11 latency parameters
with 95% credible interval, Red curve indicates the true baseline hazard
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Chapter 4

Data, Implementation and Results

In the previous chapter, we have proposed a Bayesian mixture cure model which has a non

parametric baseline hazard for its susceptible population. The model can be used to assess

the probability of default of a new loan and its borrower given information about di↵erent

characteristics. We also discussed how the performance of a mixture cure model can be

evaluated using ROC curves and the AUC. In this chapter, we compare our model with

other mixture cure models where the the latency part has di↵erent parametric forms. The

performance of these di↵erent models have been compared using the German Credit Data.

4.1 German Credit data

The German credit data (24) is a common dataset in credit risk analysis, with 1000 instances

and 20 attributes. Each loan is labeled as either good or bad. In our analysis, we use the

duration in months (attribute 2) as the observed follow-time, and credit history (attribute

3) which is also the censoring indicator. A value of A34 in the credit history indicates

an uncensored status, while other values indicate censoring. Categorical variables follow a

specific format Aij, where i is the variable index and j depends on the number of categories.

These variables are encoded as Aij = j for ease of use in the models. Numerical variables

are standardized by subtracting the mean and dividing by the standard deviation.Out of the

1000 observations, 293 (29.7%) are considered defaulted. The Kaplan-Meier curve shows a

plateau around 40%, with about 2% of censored observations in the plateau. This suggests
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Figure 4.1: Plot of the Kaplan-Meier curve for the German credit data

a cured fraction in the data, making it suitable for our analysis.

4.2 Implementation and Results

We implemented parametric mixture cure models using the “mixcure” package (23). How-

ever, for the Bayesian estimation of the parameters associated with the Cox proportional

hazards mixture cure model, which is the main focus, we developed our own codes. The

codes are given in the Appendix.

There is a challenge in using the complete data likelihood, which includes the unobserved

susceptibility status S for censored observations. In such situations, the unobserved sus-

ceptibility status needs to be substituted with its expected value, as described in Tong et

al. (2012) (8) and is given by equation (4.1). However, when exploring this posterior using

MCMC chains, we encountered numerous divergent transitions, resulting in highly unreliable

parameter estimates.
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E(Si) =

8
<

:
1 if uncensored observation

Pr(Di = 1|W = wi,X = xi, C = Ci, T > Ci) if censored observation
(4.1)

where

Pr(Di = 1|W = wi,X = xi, C = Ci, T > Ci) =
⇡(wi)S(t|Si = 1,xi)

⇡(wi)S(t|Si = 1,xi) + 1� ⇡(wi)
(4.2)

Another approach of handling missing data problems is to treat the unobserved data as

a parameter and assign a suitable prior. However, in cases where the missing data involves

discrete parameters, such as binary indicators like susceptibility status, Hamiltonian Monte

Carlo (HMC) exploration methods are not applicable. This is because HMC relies on com-

puting gradients, which cannot be done for models with discrete parameters. To overcome

this limitation, we use the marginalized likelihood approach, where the complete data likeli-

hood is integrated out with respect to the missing data. This approach has been successfully

applied by Basu and Tiwari (2010) (30) in their analysis of cancer data using competing

risks mixture cure models.

Choosing the right number of basis functions to approximate the baseline hazard is

crucial. Too few functions might not accurately capture the hazard’s shape, while too many

can lead to overfitting. Therefore, finding an optimal choice is necessary.

We use the German credit data, selecting only significant covariates identified from the

Cox proportional hazards model due to limitations with the mixcure() command when han-

dling more than 10 covariates. The selected covariates were used for both the latency and

incidence parts. Subsequently, we divide the data into training and test sets in a 7:3 ratio.

Next, we apply mixture cure model to the training data, obtaining parameter estimates for

both the latency and incidence parts. We then obtain an estimator for the classifier, M, us-

ing the incidence estimator. However, we do not estimate the ROC curve using the training

data to avoid potential overestimation of M. Instead, we validate our predictions using test

data and construct the ROC curve based on these predictions. The ROC curves for various

mixture cure models applied to the German credit data are given in Figures 4.2 to 4.7.

Table 4.1 presents the estimated AUC values for di↵erent mixture cure models. Notably,
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Table 4.1: Estimated AUC values for di↵erent mixture cure models

Incidence Model Latency Model Estimated AUC

Logistic
Model

Cox Proportional hazard with baseline approximated 0.8669176

using indicator functions (Bayesian)

Cox Proportional hazard with baseline estimated 0.8503274

using Breslow’s Estimator (EM algo)

Exponential (EM algo) 0.9494817

Loglogistic (EM algo) 0.9406592

Log normal (EM algo) 0.9354272

Weibull (EM algo) 0.9244913

the model with an exponential latency model has superior performance compared to others.

Table 4.2 gives the estimated parameters for mixture cure model with exponential latency

model.

Among the di↵erent approaches using standard parametric forms like exponential, log-

logistic, lognormal, and Weibull for the latency model, there is minimal variation in the

estimated AUCs. All models perform better than the Cox PH latency model. Bayesian esti-

mation involves generating 4 MCMC chains, each comprising 5000 iterations (3000 warmup,

2000 sampling, thin=1). The Bayesian estimation of the mixture cure model with Cox PH

latency model uses a baseline hazard parametrized using 6 piecewise constant indicator func-

tions, with knots selected to ensure an equal number of observed events within each piecewise

constant interval. Diagnostic plots of all the estimated parameters are given in Figures 4.11

and 4.12. All chains converge, and the estimates remain stable across di↵erent initial hy-

perparameters. While the mixture cure CPH model with the baseline approximated using

indicator functions slightly performed better than the one with Breslow’s method estimated

baseline, the Bayesian estimated CPH model did not perform well for the German Credit

data. This discrepancy may be due to the fact that the data follows an exponential latency

model, indicating a constant hazard, wherein the use of more flexible approaches reduces the

accuracy.
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Figure 4.2: ROC curve for mixture cure model with latency model as Cox Proportional
hazard with baseline approximated using indicator functions; AUC=0.8669176

Figure 4.3: ROC curve for mixture cure model with latency model as Cox Proportional
hazard with baseline estimated using Breslow’s Estimator; AUC=0.8503274
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Figure 4.4: ROC curve for mixture cure model with Exponential hazard latency model;
AUC=0.9494817

Figure 4.5: ROC curve for mixture cure model with Weibull hazard latency
model;AUC=0.9244913
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Figure 4.6: ROC curve for mixture cure model with Log-normal hazard latency model;
AUC=0.9354272

Figure 4.7: ROC curve for mixture cure model with Log-logistic hazard latency model;
AUC=0.9406592
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Figure 4.8: Plot of the baseline hazard of the Bayesian Mixture Cure model and its 95%
credible interval.

Figure 4.9: Plot of the cumulative baseline hazard of the Bayesian Mixture Cure model and
its 95% credible interval.
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Table 4.2: Estimated parameters for mixture cure model with Logistic incidence model and
exponential latency model

Incidence Parameters Estimated Value Latency Parameters Estimated Value

↵0 -17.74633088 �0 4.03375525

↵1 0.27205641 �1 -0.05285746

↵2 -0.03071058 �2 0.06742929

↵3 1.29987700 �3 0.64196569

↵4 -0.15250675 �4 0.12878702

↵5 1.16889452 �5 0.01894787

↵6 39.10259014 �6 -0.51814832

↵7 -20.57241671 �7 -0.58449089

↵8 -0.82047675 �8 0.61987773

Figure 4.10: MCMC Diagnostics of the Estimated Parameters for the Bayesian Mixture Cure
Model
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(a) Caption for Figure 5

Figure 4.11: MCMC Diagnostics of the Estimated Parameters for the Bayesian Mixture Cure
Model

Figure 4.12: MCMC Diagnostics of the Estimated Parameters for the Bayesian Mixture Cure
Model
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Chapter 5

Conclusions and Future Directions

In Chapter 2, we use a Bayesian approach to estimate the Cox proportional hazards model,

where the baseline hazard is approximated using various spline basis functions. We then

compare the estimates obtained from this Bayesian approach with the partial likelihood

approach using both simulated and real datasets. The analysis of the Bondora dataset reveals

that the Bayesian approach not only produces the estimates of the regression coe�cients

close to those obtained using the partial likelihood approach but also accurately estimates

the baseline hazard.

In Chapter 3, we introduce the mixture cure model, where the latency component is

modelled using Cox’s proportional hazards model. We employ the Bayesian approach to

estimate both the regression coe�cients and the baseline hazard. We then compare these

regression coe�cients with those obtained from the EM algorithm, for various sample sizes

and levels of censoring using simulated data. The simulation study indicates that larger

sample sizes and lower levels of censoring result in more precise estimates for both the

regression parameters and the baseline hazard.

In Chapter 4, we apply the Bayesian mixture cure model to the German credit data and

evaluate its predictive performance by comparing ROC curves with other parametric mixture

cure models estimated using the EM algorithm. We discuss the challenges faced during

this process and note that using standard parametric forms for the latency part performs

better than using the Cox PH model. However, among mixture cure models with the Cox

PH latency model, we find that the Bayesian approach, which utilizes indicator functions
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to approximate the baseline hazard, performs slightly better than the EM approach with

baseline hazard estimated using Breslow’s method.

Following are some of the details and future directions that can be looked into:

• For all the mixture cure models discussed, we only focused on the latency part by

keeping the incidence part as the logistic function. However, by sacrificing some amount

of interpretability, one can substitute the incidence part with more advanced classifiers

like random forests and decision trees and improve the predictive performance.

• We can extend the CPH and mixture cure models to include time varying covariates,

beacuse credit data is typically in a panel format, where new accounts enter, old

accounts leave and each account is observed for a sequential period of time. Therefore,

including time varying covariates might improve the default rate prediction.

• Apart from defaults, credit granting institutions also face the competing risk of early

repayments. By using a similar Bayesian methodology, CPH model, as well as mixture

cure models, can be extended to incorporate this competing risk factor. This results in

a model known as multiple events mixture cure model, which assumes that a fraction

of customers are susceptible of experiencing either credit default or early repayment

(competing risk). Customers not observed to default or early repay fall into either

the non-susceptible population (mature cases) or are right-censored. Such a model

was introduced in the survival analysis context by Dirick (2015) (6) by extending the

parametric competing risk model proposed by Watkins (2014)(34).

• As the mixture cure model involves more parameters, it becomes increasingly complex.

It is crucial to address the issue of determining the optimal number of basis functions to

prevent overfitting or underfitting. Additionally, identifying which covariates are best

suited to explain the incidence part and which are better for explaining the latency

part is also essential. Hence, variable selection and hypothesis testing procedures are

necessary to assess the significance of the involved covariates.

• When approximating the baseline hazard with spline basis functions, adding a penalty

on the spline coe�cients can help to ensure smoother results.

• Lastly, one can expand the idea of mixture cure models to fully non-parametric ap-

proaches where both incidence and latency are estimated without assumptions about
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their functional forms. However, this approach may encounter issues related to the

curse of dimensionality.
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Chapter 6

Appendix

6.1 Simulating Mixture Cure Data

Let h(t) = h0(t)e�
0
x denote the conventional Cox’s Proportional Hazard model with fixed

time covariates, where t denotes time, x is the vector of covariates, � is the vector of regression

coe�cients, and h0(t) is the baseline hazard function (the hazard function of the outcome

occurring for those subjects with x = 0).

The survival function for this model is given by S(t|x) = e�H0(t).e�
0x
, where H0(t) is the

cumulative baseline hazard function, which is defined asH0(t) =
R

t

0 h0(s)ds. The distribution

function of the event times under the Cox proportional hazards model is F (t|x) = 1 �
e�H0(t).e�

0x
. Now using the Inverse CDF Transformation method, we generate the event

times T from the Cox PH model as follows (37):

T = H�1
0 [�log(u)e�

0
x]

, where u ⇠ Unif(0, 1)

In our simulation study, we use Weibull hazard function for the baseline hazard. Let � > 0

and ⌫ > 0 be the shape and scale parameters of the Weibull distribution respectively. Then

the event times T from the Cox PH model with Weibull baseline hazard can be generated
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as follows:

T =

✓
� log(u)

�.e�0x

◆1/⌫

, where u ⇠ Unif(0, 1).

We determine the true susceptibility status by using the logistic function to generate the

actual probability of being susceptible. Then, we assign the susceptibility status based on

the specified size of the susceptible subpopulation. Next, we independently generate uniform

right censoring times for all observations from a distribution with parameters Unif(0, k),

where k is adjustable to achieve the desired censoring proportion in the simulated data.

6.2 R Codes

The following codes are implemented for the Bayesian Mixture Cure Model applied on the

German Credit data.

# Analysis of the german data

library(Matrix)

library(tidyverse)

library(survival)

library(smcure)

library(rstan)

library(splines2)

library(bridgesampling)

library(mixcure)

options(scipen=930)

library(survival)

gerdata_mod <- read.csv("german_clean.csv",header = TRUE)

gerdata_mod\$X<-NULL
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Cox_model<-coxph(Surv(time,status)~V1+V4+V5+V6+V7+V8+V9+V10+

V11+V12+V13+V14+V15+V16+V17+V18+V19+V20+V21,data=gerdata_mod)

summary(Cox_model)

selected_gerdata <- gerdata_mod[, c(1,2,3,4,5,8,13,16,20,21)

, drop = FALSE]

selected_gerdata <- selected_gerdata[order(selected_gerdata\$time), ]

km_fit <- survfit(Surv(time,status) ~ 1, data = selected_gerdata)

plot(km_fit)

freedom<-6

mixbsmsplc <- bSpline(selected_gerdata\$time,degree = 0

,df=freedom,intercept = TRUE)

B1<-mixbsmsplc

plot(mixbsmsplc[,1]~selected_gerdata\$time,

ylim=c(0,max(mixbsmsplc)), type=’l’, lwd=2, col=1,

xlab=" M-spline basis", ylab="")

for (j in 2:ncol(mixbsmsplc))

lines(mixbsmsplc[,j]~selected_gerdata\$time, lwd=2, col=j)

mixcbsmsplc <- bSpline(selected_gerdata\$time,degree=0,df=freedom

,integral = TRUE,intercept = TRUE)

B2<-mixcbsmsplc

plot(mixcbsmsplc[,1]~selected_gerdata\$time,

ylim=c(0,max(mixcbsmsplc)), type=’l’, lwd=2, col=1,

xlab=" M-spline basis cumulative", ylab="")

for (j in 2:ncol(mixcbsmsplc))

lines(mixcbsmsplc[,j]~selected_gerdata\$time, lwd=2, col=j)

extenddf<-cbind(selected_gerdata,mixbsmsplc,mixcbsmsplc)

nrows<-nrow(extenddf)
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random750<-sample(1:nrows,nrows*0.70)

train_data<-extenddf[random750,]

test_data<-extenddf[-random750,]

#Arranging according to time

train_data <- train_data[order(train_data\$time), ]

test_data <- test_data[order(test_data\$time), ]

km_fit2 <- survfit(Surv(time,status) ~ 1, data = train_data)

plot(km_fit2)

X_train <- as.matrix(train_data[, c(1,4,5,6,7,8,9,10)])

B1_train<-as.matrix(train_data[, 11:16])

B2_train<-as.matrix(train_data[, 17:22])

tau<-max(train_data\$time[train_data\$status == 1])

X_test <- as.matrix(test_data[, c(1,4,5,6,7,8,9,10)])

B1_test<-as.matrix(test_data[, 11:16])

B2_test<-as.matrix(test_data[, 17:22])

datalist3<-list(y=train_data\$time,c=train_data\$status

,N=length(train_data\$time),X=X_train, B1=B1_train,B2=B2_train,

num_basis=ncol(B1_train),num_covariates=ncol(X_train),

y_test=test_data\$time,c_test=test_data\$status,

N_test=length(test_data\$time)

,X_test=X_test, B1_test=B1_test,

B2_test=B2_test,tau=tau)

#stanmix10ocubic4<-stan(file=’bondora_stan.stan’,

data=datalist3,chains = 1)

stanmix10ocubic4<-stan(file=’genmixcure_new.stan’,data=datalist3,chains = 4,

control=list(max_treedepth=11),iter=5000,warmup =3000)

print(stanmix10ocubic4)
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source("DBDA2E-utilities.R")

stanmix10o_coda<- mcmc.list(lapply(1:ncol(stanmix10ocubic4), function(x)

{mcmc(as.array(stanmix10ocubic4)[,x,])}))

summary(stanmix10o_coda)

diagMCMC(stanmix10o_coda,parName = c(’t’))

summary(simmix7)

generated_quantities <- as.array(stanmix10ocubic4, "bh0")

dim(generated_quantities)

#view(generated_quantities)

expected_values <- apply(generated_quantities, c(3), mean)

expected_values<-data.frame(expected_values)

expected_values97.5<-apply(generated_quantities, c(3), quantile,probs=0.975)

expected_values2.5<-apply(generated_quantities, c(3), quantile,probs=0.025)

#view(expected_values97.5)

plot(X,Y)

plot(train_data\$time,expected_values\$expected_values,type = "l", col = "blue"

,ylim = c(0,2 ),lty=1,xlab="Time",ylab="baseline hazard")

lines(extenddf\$time,h0_original,type = "l", col = "red",lty=2)

lines(train_data\$time,expected_values97.5,type = "l", col ="black",lty=3)

lines(train_data\$time,expected_values2.5,type = "l", col = "black",lty=3)

generated_quantities2 <- as.array(stanmix10ocubic4, "ch0")

dim(generated_quantities2)

#view(generated_quantities2)

expected_values2 <- apply(generated_quantities2, c(3), mean)

expected_values2<-data.frame(expected_values2)

expected_values97.52<-apply(generated_quantities2, c(3), quantile,probs=0.975)

expected_values2.52<-apply(generated_quantities2, c(3), quantile,probs=0.025)

#view(expected_values97.52)

plot(X,Y)

plot(train_data\$time,expected_values2\$expected_values2,type = "l", col = "blue",
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ylim = c(0,40 ),lty=1,xlab="Time",ylab="baseline hazard")

lines(extenddf\$time,h0_original,type = "l", col = "red",lty=2)

lines(train_data\$time,expected_values97.52,type = "l", col ="black",lty=3)

lines(train_data\$time,expected_values2.52,type = "l", col = "black",lty=3)

#test data analysis for bayesian way

wi1_matrix <- as.array(stanmix10ocubic4, "wi1")

dim(wi1_matrix)

view(wi1_matrix)

wi1 <- apply(wi1_matrix, c(3), mean)

wi1<-data.frame(wi1)

wi0<-1-wi1

M_matrix <- as.array(stanmix10ocubic4, "M")

dim(M_matrix)

#view(M_matrix)

M <- apply(M_matrix, c(3), mean)

M<-data.frame(M)

M2_matrix <- as.array(stanmix10ocubic4, "walpha_test")

dim(M2_matrix)

#view(M2_matrix)

M2 <- apply(M2_matrix, c(3), mean)

M2<-data.frame(M2)

test_df<-cbind(test_data\$time,test_data\$status,wi1,wi0,M,M2)

#test_df\$

#Sensitivity

N1<-sum(test_df\$wi1)

N0<- nrow(test_df)-N1

sensitivity<-function(M,k){

return(1-(sum(wi1*ifelse(M<=k,1,0))/N1))

}
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sensitivity(-test_df\$M,-1)

#Specificity

Specificity<-function(M,k){

return((sum(wi0*ifelse(M<=k,1,0)))/N0)

}

Specificity(-test_df\$M,-0.5)

k <- seq(0, 1, length.out = 101)

#view(k)

Roc_Sensitivity<-rep(0, length(k))

Roc_specificity<-rep(0, length(k))

sensitivity(-test_df\$M,-1)

-k[101]

for (i in 1:length(k)){

Roc_Sensitivity[i]<-sensitivity(-test_df\$M,-k[i])

Roc_specificity[i]<-Specificity(-test_df\$M[i])

}

Roc<-cbind.data.frame(Roc_Sensitivity,Roc_specificity)

plot(1-Roc\$Roc_specificity,Roc\$Roc_Sensitivity,xlim=0:1,ylim=0:1,

xlab="1-specificity",ylab="Sensitivity")

points(1-Roc\$Roc_specificity,Roc\$Roc_Sensitivity)

lines(1-Roc\$Roc_specificity,Roc\$Roc_Sensitivity)

lines(Roc\$Roc_Sensitivity,Roc\$Roc_Sensitivity,type="l",col="blue")

sum(wi1*wi0\$wi1[10]*(1-ifelse(M<=M\$M[10],1,0)))

wi0\$wi1[1]

#AUC<-function(M){

# dsum=0

#for (i in length(M)){
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# dsum=dsum+sum(wi1*wi0\$wi1[i]*(1-ifelse(M<=M[i],1,0)))

# print(dsum)

#}

#return (length(M)*dsum/((length(M)-1)*(N1*N0)))

#}

AUC_matrix <- matrix(0, nrow = length(test_df\$M), ncol = length(test_df\$M))

for (i in 1:length(test_df\$M)) {

for (j in 1:length(test_df\$M)) {

# Apply condition here, for example, product of row and column index

if (-M\$M[j] > -M\$M[i]){

AUC_matrix[i, j] <- wi1\$wi1[j]*wi0\$wi1[i]

}

else{

AUC_matrix[i, j] <-0

}

}

}

AUC<-sum(AUC_matrix)/(N0*N1)

print(AUC)

distances1 <- sqrt((1-Roc\$Roc_specificity - 0)^2 + (Roc\$Roc_Sensitivity - 1)^2)

distances1

K<-(which.min(distances1)-1)/100

closest_point <- Roc[which.min(distances1), ]

point<-c(1-closest_point\$Roc_specificity,closest_point\$Roc_Sensitivity)

#Fitting mixture cure model using em algorithm

german_em <- smcure(Surv(time,status)~1

,cureform=~1,

data=train_data)
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german_em <- smcure(Surv(time,status)~V1+V4+V5

,cureform=~V1+V4+V5,

data=train_data,model=’ph’)

# selected variables : 1,2,3,4,5,8,13,16,20,21 for selected gerdata

german_em_expo <- mixcure(lformula = Surv(time,status)~V1+V4+V5+V8+V13+V16+V20+V21

,iformula = ~1+V1+V4+V5+V8+V13+V16+V20+V21,

lmodel = list(fun = "survreg",dist="exponential"),

data=train_data,savedata = TRUE)

german_em_weibull <- mixcure(lformula = Surv(time,status)~V1+V4+V5+V8+V13+V16+V20+V21

,iformula = ~1+V1+V4+V5+V8+V13+V16+V20+V21,

lmodel = list(fun = "survreg",dist="weibull"),

data=train_data,savedata = TRUE)

german_em_loglogisticl <- mixcure(lformula = Surv(time,status)~V1+V4+V5+V8+V13+V16+

V20+V21,iformula = ~1+V1+V4+V5+V8+V13+V16+V20+V21,

lmodel = list(fun = "survreg",dist="loglogistic"),

data=train_data,savedata = TRUE)

german_em_lognormal <- mixcure(lformula = Surv(time,status)~V1+V4+V5+V8+V13+V16+

V20+V21,iformula = ~1+V1+V4+V5+V8+V13+V16+V20+V21,

lmodel = list(fun = "survreg",dist="lognormal"),

data=train_data,savedata = TRUE)

german_em_gompertz <- mixcure(lformula = Surv(time,status)~V1+V4+V5+V8+V13+V16+V20+V21

,iformula = ~1+V1+V4+V5+V8+V13+V16+V20+V21,

lmodel = list(fun = "survreg",dist="gompertz"),

data=train_data,savedata = TRUE)

german_em_ph <- mixcure(lformula = Surv(time,status)~V1+V4+V5+V8+V13+V16+V20+V21
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,iformula = ~1+V1+V4+V5+V8+V13+V16+V20+V21,

lmodel = list(fun = "coxph"),

data=train_data,savedata = TRUE)

#The test procedure

############################

pd10<-german_em_ph

#summary(pd10)

coef(pd10)

X_test2<-data.frame(X_test)

pred_2<-predict(pd10,

newdata = X_test2, times = test_data\$time)

#summary(pred_2)

uncure_prob <- pred_2\$cure[, 1]

#pred_2\$times

#mix_surv<-pred_2\$surv

mic_uncure_surv<-pred_2\$uncuresurv

uncure_surv <- sapply(seq_along(mic_uncure_surv), function(i)

mic_uncure_surv[[i]][[i]])

wwi1<-(1-uncure_prob)/((1-uncure_prob)+uncure_surv*uncure_prob)

#view(wwi1)

wwi0<-1-wwi1

MM<-uncure_prob

test_df_em<-cbind(test_data\$time,test_data\$status,wwi1,wwi0,MM)

test_df_em<-data.frame(test_df_em)

NN1<-sum(test_df_em\$wwi1)

NN0<- nrow(test_df_em)-NN1

sensitivityem<-function(MM,k){
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return(1-(sum(wwi1*ifelse(MM<=k,1,0))/NN1))

}

Specificityem<-function(MM,k){

return((sum(wwi0*ifelse(MM<=k,1,0)))/NN0)

}

k2 <- seq(0, 1, length.out = 101)

Roc_Sensitivityem<-rep(0, length(k2))

Roc_specificityem<-rep(0, length(k2))

for (i in 1:length(k2)){

Roc_Sensitivityem[i]<-sensitivityem(-test_df_em\$MM,-k2[i])

Roc_specificityem[i]<-Specificityem(-test_df_em\$MM,-k2[i])

}

Roc_em<-cbind.data.frame(Roc_Sensitivityem,Roc_specificityem)

plot(1-Roc_em\$Roc_specificityem,

Roc_em\$Roc_Sensitivityem,xlim=0:1,ylim=0:1,xlab="1-specificity",ylab="Sensitivity")

points(1-Roc_em\$Roc_specificityem,Roc_em\$Roc_Sensitivityem)

lines(1-Roc_em\$Roc_specificityem,Roc_em\$Roc_Sensitivityem)

lines(Roc_em\$Roc_Sensitivityem,Roc_em\$Roc_Sensitivityem,type="l",col="blue")

wwi1<-data.frame(wwi1)

wwi0<-data.frame(wwi0)

AUC_matrixem <- matrix(0, nrow = length(test_df_em\$MM), ncol = length(test_df_em\$MM))

for (i in 1:length(test_df_em\$MM)) {

for (j in 1:length(test_df_em\$MM)) {

# Apply condition here, for example, product of row and column index

if (-test_df_em\$MM[j] > -test_df_em\$MM[i]){

AUC_matrixem[i, j] <- wwi1\$wwi1[j]*wwi0\$wwi0[i]

}
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else{

AUC_matrixem[i, j] <-0

}

}

}

AUCem<-sum(AUC_matrixem)/(NN0*NN1)

print(AUCem)

distances2 <- sqrt((1-Roc_em\$Roc_specificityem - 0)^2 +

(Roc_em\$Roc_Sensitivityem - 1)^2)

#distances2

K2<-(which.min(distances2)-1)/100

closest_point2 <- Roc[which.min(distances2), ]

point<-c(1-closest_point2\$Roc_specificity,closest_point2\$Roc_Sensitivity)

point

K2

#Save all the AUC’s here

AUC_expo<-AUCem

AUC_weibull<-AUCem

AUC_cox<-AUCem

AUC_loglogisticl<-AUCem

AUC_lognormal<-AUCe
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6.3 Stan Codes

Following is the Stan code for the Hamiltonian Monte Carlo Sampling of the posterior ob-

tained from the Mixture Cure Model (Chapter 3):

data {

//Train Data

int N;

int num_basis;

int num_covariates;

real y[N];

real c[N];

matrix[N,num_covariates] X;

matrix[N,num_basis] B1;

matrix[N,num_basis] B2;

real tau;

// Test Data

int N_test;

real y_test[N_test];

real c_test[N_test];

matrix[N_test,num_covariates] X_test;

matrix[N_test,num_basis] B1_test;

matrix[N_test,num_basis] B2_test;

}

simplex[num_basis] theta;

real alpha0;

row_vector[num_covariates] alpha;

row_vector[num_covariates] beta;

//real<lower=0> theta0;

real<lower=0> t;
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}

transformed parameters{

vector[N] h0;

vector[N] H0;

vector[N] walpha;

vector[N] xbeta;

vector[N_test] h0_test;

vector[N_test] H0_test;

vector[N_test] walpha_test;

vector[N_test] xbeta_test;

walpha=alpha0+to_vector(alpha*X’);

xbeta=to_vector(beta*X’);

h0= t*to_vector(theta’*B1’);

H0= t*to_vector(theta’*B2’);

walpha_test=alpha0+to_vector(alpha*X_test’);

xbeta_test=to_vector(beta*X_test’);

h0_test= t*to_vector(theta’*B1_test’);

H0_test= t*to_vector(theta’*B2_test’);

}

model {

//target+= normal_lpdf(beta1 | 1,6);

target+= normal_lpdf(alpha0 | 0,5);

target+= normal_lpdf(beta | 0,5);

target+= normal_lpdf(alpha | 0,5);

//target+= chi_square_lpdf(theta | 6);

target+=dirichlet_lpdf( theta | rep_vector(1, num_basis));

target+= lognormal_lpdf( t | 0, 1);

//target+= chi_square_lpdf(theta0 | 6);

// target+= chi_square_lpdf(theta1 | 6);

for (i in 1:N){

if (c[i]==1){

//Observed data i.e non censored and susceptible
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target+= -log(1+exp(-walpha[i]))

-(H0[i])*exp(xbeta[i])

+ log(h0[i])

+ (xbeta[i]);

} else{

// unobserved

target+= -log(1+exp(-walpha[i]))

+ (-walpha[i])

+ log(1+exp(-(-walpha[i]+(H0[i])*exp(xbeta[i]))));

}

}

}

generated quantities{

// Baseline Hazard

vector[N] bh0;

bh0 = h0;

//Cumulative Baseline Hazard

vector[N] ch0;

ch0 = H0;

// Survival Probability and Probability of Default prediction on the test data

vector[N_test] M;

vector[N_test] wi1;

for (j in 1:N_test){

wi1[j]= if_else(y_test[j]>tau, 1, 0)

+ if_else(y_test[j]<=tau, 1, 0)*if_else(c_test[j]==0, 1, 0)*

((exp(-walpha_test[j]))/(exp(-H0_test[j]*exp(xbeta_test[j]))

+ exp(-walpha_test[j])) );

M[j]=(1/(1+exp(-walpha_test[j]))) ;

}

}
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