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Abstract

Consider a finite simple graph G. One can associate an ideal to the edges of this graph,

called its binomial edge ideal JG. Many homological invariants, such as the Betti numbers,

Castelnuovo-Mumford regularity (reg(JG)) and the projective dimension (pd(JG)) of these

ideals are widely studied. For binomial edge ideals of graphs, these invariants are often

intimately related to graph-theoretic notions such as connectivity, free vertices and so on.

In this thesis, we study the method of Betti splittings applied to binomial edge ideals. We

give some examples of Betti splittings and introduce the notion of a partial Betti splitting.

We demonstrate that removing a vertex from the graph results in a partial splitting of the

associated binomial edge ideal. A similar study is also done to obtain a partial splitting for

the initial ideal of a binomial edge ideal. We also prove new bounds for some homological

invariants of JG and explore some of their implications.
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Chapter 1

Introduction

In recent decades, combinatorial commutative algebra has become a popular field of study.

With the rise of homological methods in commutative algebra, several connections have

been found to geometry and combinatorics. This story begins in the field of geometric

combinatorics. Here, one of the major topics of research is convex and discrete geometry

and their properties.

Consider the space Rd. We say that S ⊂ Rd is convex if it has the property that for any

points x, y ∈ S, the line segment {λx+(1−λ)y : 0 ≤ λ ≤ 1} with endpoints x, y is completely

contained in S. For any set of points P ⊂ Rd, the convex hull of P is the smallest convex

set that contains P . A convex polytope is defined as the convex hull of a finite set of points.

The study of convex polytopes is central in the field of geometric combinatorics. Specifically,

a lot of research is done on the facial structure of these polytopes. One interesting question

is counting the number of faces of different dimensions in different convex polytopes.

One important type of convex polytope is the cyclic polytope C(n, d), which is the convex

hull of n distinct points on the moment curve, which is parametrised by (t, t2, . . . , td),−∞ <

t <∞. In 1970, Peter McMullen proved the Upper Bound Theorem, which states that cyclic

polytopes have the largest number of faces of all convex polytopes with a given dimension

and a fixed number of vertices. In 1975, Stanley extended this result to triangulations of

simplicial spheres via a different method. To do this, he used what would later be known as

the Stanley-Reisner ring. This ring is the quotient of a multivariable polynomial ring with a

square-free monomial ideal. He related algebraic quantities like the Hilbert function to the

number of faces of the polytope. His proof involved a careful study of the Stanley-Reisner

ring, in the case that it was Cohen-Macaulay. This pioneered the use of commutative algebra

to study questions in geometric combinatorics.
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Over the next decade, square-free monomial ideals were widely studied. With the ad-

vent of Gröbner basis, computational techniques to study questions in commutative algebra

became commonplace. One important object that became widely studied is the minimal

graded free resolution of ideals in a polynomial ring. This object has a variety of numerical

invariants associated with it, which give insight into a variety of different properties of the

ideal. Some important invariants we shall see are the graded Betti numbers βi,j(I), the

projective dimension pd(I), and the Castelnuovo-Mumford regularity reg(I). Many different

techniques were developed to study these invariants in the case of monomial ideals.

One such technique was developed in 1990 by Elaihou and Kervaire in [5], where they

study the minimal free resolution of a class of monomial ideals called Boreal fixed ideals.

They defined a new concept called a splittable ideal, I = J +K, where the Betti numbers of

I can be written using the Betti numbers of J,K and J ∩K. This idea was later generalised

by Francisco, Hà, and Van Tuyl in [8], where they introduced the notion of a Betti splitting

of a monomial ideal. An ideal I has a Betti splitting if there exist two other monomial ideals

J and K such that I = J +K and

βi,j(I) = βi,j(J) + βi,j(K) + βi−1,j(J ∩K) for all i, j ≥ 0.

In particular, they gave several criteria for monomial ideals to have Betti splittings, which

helped study the Betti numbers of edge ideals, a monomial ideal associated with a graph.

This idea of splitting the Betti numbers of an ideal into the Betti numbers of ’smaller’ ideals

has only been briefly studied for arbitrary graded ideals.

One important class of ideals to consider are binomial ideals. A binomial belonging to

S = k[x1, . . . , xn] is a polynomial of the form u − v, where u and v are monomials in S. A

binomial ideal is an ideal of S generated by binomials. In the 1990s, the study of binomial

ideals grew popular, when they were seen to have applications to algebra, combinatorics and

statistics. One important type of binomial ideal that is widely studied even today are toric

ideals. The toric ideal of a graph is a binomial ideal that is associated with a finite simple

graph. Much like monomial ideals, these ideals were studied extensively for their homological

properties. The idea of Betti splittings was also modified to study toric ideals by Favacchio,

Hofscheier, Keiper, and Van Tuyl in [7].

In the 2010s, a new class of binomial ideals called binomial edge ideals was introduced

by Herzog, Hibi, Hreinsdóttir, Kahle and Rauh in [11] and independently by Ohtani in

[23], with applications to algebraic statistics. Like edge ideals and toric ideals of graphs,

binomial edge ideals are also ideals associated with graphs. In the polynomial ring S =
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k[x1, . . . , xn, y1, . . . , yn] with k a field, we define the binomial edge ideal of the graph G to

be the ideal given by

JG = ⟨xiyj − xjyi | {i, j} ∈ E(G)⟩.

Over the last few years, there has been a lot of work done on the properties of homological

invariants of these ideals (for some examples, see [19], [16], [27]). The main goal of this thesis

is to try and modify the technique of Betti splittings designed for monomial and toric ideals

and extend it to binomial edge ideals. This can be phrased as follows:

Question 1.1. Let G be a finite simple graph with binomial edge ideal JG. Is it possible to

‘split’ the graph G into two subgraphs, H and K, in a way that reveals a connection between

the graded Betti numbers of JG and those of the JH and JK?

In the course of this thesis, we will answer this question and a related question for the

initial ideals of binomial edge ideals. We will also touch upon new bounds for some invariants

associated with the Betti numbers of the binomial edge ideals of different kinds of graphs.

The following is a brief structure of the thesis:

In Chapter 2, we introduce relevant topics from both graph theory, commutative algebra,

and homological algebra. We also go through important definitions and theorems that will

be used throughout the later chapters.

In Chapter 3, we discuss some examples of complete Betti splittings for binomial edge ide-

als. We discuss a known result on the Betti splitting of graphs with a cut edge and prove

a generalisation of the same. We also survey some results on the linear strand of the Betti

table of any binomial edge ideal. We then apply our results to study Betti numbers of the

binomial edge ideals of trees.

Chapter 4 then introduces the notion of a partial Betti splitting and describes conditions

for the same. We then obtain a partial Betti splitting for the binomial edge ideal of any

graph. We then discuss partial Betti splittings for the initial ideals of binomial edge ideals.

In certain cases, we show that the Betti splitting for the binomial edge ideal JG ’descends’

to the initial ideal, in JG.

In Chapter 5, we give a new bound on some homological invariants of any binomial edge

ideal. Using this new bound, we can partially recover some known bounds and prove new

3



bounds for the regularity of binomial edge ideals of certain types of graphs.

Finally, in Chapter 6, we discuss further extensions of our work. We describe some con-

jectures made during this project and suggest other relevant problems that can be studied.

None of the material in Chapter 2 is original. In Chapters 3, 4 and 5, a lot of the ma-

terial is original content, with some necessary results surveyed along the way.
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Chapter 2

Preliminaries

In this chapter, we survey relevant definitions and theorems in graph theory and commutative

algebra. In the first section, we establish some basic graph theory notation and describe

some types of graphs and graph-theoretic properties that we will encounter in the rest of

the thesis. In the next section, we define complexes and resolutions and describe some of

their properties. We also introduce the minimal free resolution and describe some important

homological invariants associated with it. In section three, we study monomial ideals and

their resolutions. We describe the class of simplicial resolutions for monomial ideals and

introduce the technique of Betti splittings for them. Finally, in the last section, we introduce

binomial edge ideals and describe some of their algebraic properties. We identify a reduced

Gröbner basis, characterise the minimal primes for the binomial edge ideal of any graph,

and give some important bounds on the homological invariants of these ideals.

2.1 Graph theory

In this section, we will describe some basic graph theoretic terminology which will be used

frequently in later sections. Throughout this thesis, we will only be working with finite

simple graphs.

Definition 2.1. A graph is a pair G = (V (G), E(G)), where V (G) is a set whose elements

are called vertices and E(G) is a set of paired vertices, whose elements are called edges.

A finite simple graph is a graph where V (G) is finite and E(G) is a set of distinct

unordered pairs of distinct elements of V (G). In other words, E(G) ⊂ {{u, v} | u, v ∈
V (G), u ̸= v}. Note that this implies that these graphs cannot have edges from a vertex to
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itself and cannot have multiple edges between two vertices.

Graphs can also be visualised by associating the vertices of V (G) with points in space

and the edges of E(G) with line segments between corresponding vertices.

Example 2.2. Consider the finite simple graph G, with V (G) = {1, 2, 3, 4, 5}, where E(G) =
{{1, 2}, {1, 3}, {1, 4}, {4, 5}}. A visual representation of G is given in Figure 2.1.

2

1

4

5

3

Figure 2.1: G

Definition 2.3. Consider a graph G. If e = {u, v} is an edge in E(G), then we say that u

and v are adjacent. Furthermore, the set of all adjacent vertices to a vertex v ∈ V (G) is

called the set of neighbours of v and is denoted by NG(v). In other words NG(v) = {u ∈
V (G) | {u, v} ∈ E(G)}. The degree of a vertex v is the number of vertices adjacent to v.

Hence, deg v = |NG(v)|.

Definition 2.4. A vertex of a graph G that is adjacent to only one other vertex is called

a pendant vertex or a leaf. An edge of G that is incident to a pendant vertex is called a

pendant edge.

Definition 2.5. A subgraph of a graph G is a graph H such that V (H) ⊆ V (G) and

E(H) ⊆ E(G). A subgraph is said to be induced if for all u, v ∈ V (H), if {u, v} ∈ E(G),

then {u, v} ∈ E(H). The induced subgraph of G on S ⊆ V (G) is denoted by G[S].

Example 2.6. Consider the graph G in Example 2.2. Let G1 be a graph with V (G1) =

{1, 2, 3} and E(G1) = {{1, 2}} and let G2 be a graph with V (G2) = {1, 2, 3} and E(G2) =

{{1, 2}, {1, 3}}. It can be seen that both G1 and G2 are subgraphs of G, where G1 is not an

induced subgraph, but G2 is the induced subgraph G({1, 2, 3})

Induced subgraphs show up while studying the Betti numbers of the binomial edge ideals

of a graph, as we shall see later. Given a graph, it is possible to label the vertices in different

ways. In most cases, a graph and its relabelling have identical properties.

6
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1

3

2

1

3

G1 G2

Figure 2.2:

Definition 2.7. Two graphs G1 and G2 are said to be isomorphic, if there exists a function

f : V (G1) → V (G2) such that:

1. f is a bijection

2. {u, v} ∈ E(G1) if and only if {f(u), f(v)} ∈ E(G2).

Example 2.8. Consider the graphs G1 and G2, where V (G1) = V (G2) = {1, 2, 3, 4}. Let

E(G1) = {{1, 2}, {2, 3}, {3, 4}, {1, 4}}} and E(G2) = {{1, 2}, {1, 3}, {3, 4}, {2, 4}}. Clearly

the bijection f : V (G1) → V (G2) defined by f(1) = 2, f(2) = 1, f(3) = 3 and f(4) = 4 is

an isomorphism between G1 and G2.

2 3

1 4

G1

1 3

2 4

G2

Figure 2.3: Isomorphic graphs

We now define the concept of a walk in a graph, which will come up several times in this

thesis.

Definition 2.9. Consider a graph G. A walk is a finite sequence of vertices (v1, v2, . . . , vm)

such that {vi, vi+1} is an edge for all 1 ≤ i < m. The length of a walk is the number of

7



edges in the sequence (v1, v2, . . . , vm). In other words, the length of the walk (v1, v2, . . . , vm)

is m− 1. A path is a walk (v1, v2, . . . , vm), such that all vi are distinct.

Walks which begin and end at the same vertex are also widely studied.

Definition 2.10. A walk (v1, v2, . . . , vm) is said to be closed if vm = v1. A closed walk

where, m ≥ 3 and all vertices in the walk are pairwise distinct, except for v1 and vm, is called

a cycle. In other words, the walk (v1, v2, . . . , vm) is a cycle if vi ̸= vj for all 1 < i < j < m

and v1 = vm. If the cycle is a walk of length m, it is called an m− cycle.

Example 2.11. Consider the graph G with V (G) = {0, 1, 2, 3, 4} and E(G) = {{0, 1}, {0, 3}
, {0, 4}, {1, 2}, {1, 3}, {2, 3}}. Consider the sequence W = (2, 3, 0, 1, 2). Since {2, 3}, {3, 0}
, {0, 1}, {1, 2} are all edges in E(G) and the first and last vertex are the same, we know

that W is a closed walk. All the vertices except the first and last are also pairwise distinct.

Hence, it is a 4−cycle.

2

3

1

0 4

Figure 2.4: The graph G with walk (2, 3, 1, 0).

Definition 2.12. Two vertices u1 and u2 are connected if there exists a walk (v1, . . . , vm)

with v1 = u and vm = u2. A graph is said to be connected if any two vertices in the graph

are connected. A connected component is a maximal connected subgraph of a graph.

Each vertex belongs to exactly one connected component, as does each edge. A graph is

connected if and only if it has exactly one connected component.

Definition 2.13. An edge e in G is a cut edge if its deletion from G yields a graph with

more connected components than G. Let G \ e be the graph with V (G \ e) = V (G) and

E(G \ e) = E(G) \ {e}. Hence, e is said to be a cut edge if and only if G \ e has more

connected components than G.

8



1

2

3

4

Figure 2.5: G = {{1, 2}, {2, 3}, {1, 3}, {1, 4}}.

Example 2.14. ConsiderG with V (G) = {1, 2, 3, 4} and E(G) = {{1, 2}, {2, 3}, {1, 3}, {1, 4}}
from Figure 2.5. Then for e = {1, 4}, G \ e will have two connected components. Hence e is

a cut edge. It can also be seen that no other edge in G is a cut edge.

It is possible to define a notion of connectedness in terms of vertex removal.

Definition 2.15. The connectivity (or vertex connectivity) of a connected graph G is the

minimum number of vertices whose removal makes G disconnected or reduces it to a trivial

graph. This number is denoted by K(G). The graph is said to be k−vertex connected for

all k ≤ K(G).

Example 2.16. Consider the graph G in Example 2.11. It can be seen that removing the

vertex {0} disconnects the graph. Hence, it is 1−vertex connected.

2.1.1 Types of graphs

In this thesis, we will study the binomial edge ideals of many different kinds of graphs. We

will list some important types of graphs which we will use in later chapters. One important

type of graph we will need is the complete graph,

Definition 2.17. A complete graph is a graph in which each vertex is adjacent to every

other vertex. In other words, G is complete if and only if {u, v} ∈ E(G) for all u, v ∈ V (G).

The complete graph on n vertices is denoted by Kn.

Example 2.18. The graph K4 has V (K4) = {1, 2, 3, 4} and E(K4) = {{1, 2}, {2, 3}, {3, 4},
{1, 4}, {1, 3}, {2, 4}}. It is described in Figure 2.6.

9



2 3

1 4
K4

Figure 2.6:

Definition 2.19. A clique of a graph G, is a subset of vertices S of V (G) such that G[S],

the induced subgraph on S, is a complete graph.

Given a vertex in a graph, it is always part of a clique G[{v}], which is the graph with

one vertex and is trivially a complete graph. Hence, a natural extension is to talk about the

largest possible clique in G that contains the vertex v ∈ V (G). To that end, we make the

following definition.

Definition 2.20. A clique G[S] is said to be a maximal clique if for all S ⊊ S ′ ⊆ V (G),

G[S] is a clique and G[S ′] is not a clique.

The above definition tells us that every vertex in a finite simple graph is part of a maximal

clique. A given vertex can be a part of several maximal cliques. An example is given below.

Example 2.21. Consider the graph G with V (G) = {1, 2, 3, 4} and E(G) = {{1, 2}, {2, 3},
{1, 3}, {1, 4}} from Example 2.14. We can see that the vertex {1} is a part of two max-

imal cliques M1 and M2 with G[M1] = G[{1, 2, 3}] = {{1, 2}, {2, 3}, {1, 3}} and G[M2] =

G[{1, 4}] = {{1, 4}}.

Definition 2.22. A free vertex of a graph G is a vertex v ∈ V (G) such that it is contained

in only one maximal clique.

Example 2.23. Consider the graph G from Example 2.21 in Figure 2.5. We can see that the

vertex {2} is contained in only 1 maximal clique M1 where G[M1] = {{1, 2}, {2, 3}, {1, 3}}.
The same is true for the vertex {3}. Hence, they are both free vertices.

Another important class of graphs are cyclic graphs.

10



Definition 2.24. A cycle graph is a graph G, such that there is a cycle C = (v1, . . . , vm)

containing all vertices in V (G), with e = {a, b} ∈ E(G) if and only if a = vi and b = vi+1 for

some 1 ≤ i ≤ m− 1. A cycle graph with n vertices is denoted by Cn.

Example 2.25. Consider the graphG with V (G) = {1, 2, 3, 4, 5, 6} and E(G) = {{1, 2}, {2, 3},
{3, 4}, {4, 5}, {5, 6}, {6, 1}}. Then G is the cycle graph on 6 vertices, C6.

1 2

3

45

6

Figure 2.7: C6

Definition 2.26. A chordal graph G is a graph where for any S ⊆ V (G), the induced

graph G[S] cannot be a cycle with more than three vertices. In other words, G is a graph

where any cycle with four or more vertices, has an edge between two non-consecutive vertices.

Example 2.27. Consider the graph G with V (G) = {0, 1, 2, 3, 4} and

E(G) = {{0, 1}, {0, 2}, {0, 3}, {0, 4}, {1, 2}, {2, 3}, {2, 4}}. It can be seen that this is a

chordal graph.

Chordal graphs have been widely studied in a variety of contexts. There are many

equivalent definitions of these graphs. One useful and important characterisation is the

following.

Definition 2.28. A perfect elimination ordering in a graph is an ordering of the vertices

of the graph such that, for each vertex v, v and the neighbours of v that occur after v in the

ordering form a clique.

Example 2.29. Consider the graphG in Example 2.27 and Figure 2.8. Consider the ordering

1 < 3 < 4 < 2 < 0. Since 1, 3 and 4 are all free vertices with their neighbours occurring

after them, the induced subgraphs with all neighbours greater than them form a clique. The

11



Figure 2.8: The chordal graph G from Example 2.27.

vertex 2 has only 0 greater than it. Thus since there is an edge {0, 2} in E(G), the induced

graph G[{0, 2}] is the clique on two vertices. Since there are no vertices greater than 0 in

the ordering, G[{0}] is trivially a clique.

Thus, the given ordering is a perfect elimination ordering on G.

Theorem 2.30. A graph is chordal if and only if it has a perfect elimination ordering

Proof. See the proof in [4].

The binomial edge ideals of chordal graphs have been widely studied. There are many

different kinds of chordal graphs which simplify the study of the homological properties of

their ideals.

Definition 2.31. A vertex of a graph G is called a cut vertex if its removal increases the

number of connected components in G. A connected subgraph of G that has no cut vertex

and is maximal with respect to this property is called a block.

Definition 2.32. A graph G is called a block graph if every block is a clique in G.

Example 2.33. Consider the graph G with V (G) = {0, 1, 2, 3, 4, 5, 6} and

E(G) = {{0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 5}, {0, 6}, {1, 2}, {3, 4}, {5, 6}}. Here, the blocks are

the induced subgraphs on the vertices S1 = {0, 1, 2}, S2 = {0, 3, 4} and S3 = {0, 5, 6}. Every
block in G is isomorphic to the clique K3.

12



Figure 2.9: The block graph G from Example 2.33.

One common type of block graphs are trees.

Definition 2.34. A graph G where no subgraphs of G are cycles is called a forest. If the

forest is connected, then it is called a tree. Every connected component of a forest is a tree.

There are many equivalent formulations for trees.

Theorem 2.35. Consider a finite graph G where V (G) = [n] := {1, 2, . . . , n}. Then the

following are equivalent.

• G is a tree.

• G is connected and has n− 1 edges.

• Every edge in G is a cut edge.

Proof. Refer to Theorem 1.5.1 in [3].

Example 2.36. Consider the graph G in Figure 2.10 with V (G) = {0, 1, 2, 3, 4, 5} and

E(G) = {{0, 1}, {0, 4}, {1, 2}, {1, 3}, {1, 5}}. It can be seen that G is a tree.

Remark 2.37. Since every edge in a tree T is a cut edge, that means that every vertex that

has a degree greater than one is a cut point. Any connected subgraph of T is a tree. Hence,

13



Figure 2.10: The tree G from Example 2.36.

if that subgraph has more than 2 vertices, then there will be a cut point. Thus, the maximal

connected subgraph of T with no cut points can only be two vertices with an edge between

them. Thus, every block is isomorphic to K2. Hence, T is a block graph.

The star graph is one important type of tree we will study in this thesis.

Definition 2.38. Consider the graph G on V (G) = [n], with

E(G) = {{1, i} | i ∈ {2, . . . , n}}. If H is a graph isomorphic to G, then H is called the star

graph on n vertices. It is denoted by Sn.

Example 2.39. Consider the graphG on V (G) = {0, 1, 2, 3, 4, 5} with E(G) = {{0, 1}, {0, 2}, {0, 3},
{0, 4}, {0, 5}}. Then, G is the star graph on 6 vertices, S6.

Figure 2.11: The star graph S6
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2.2 Homological algebra

In this section, we will introduce necessary topics from homological algebra that will be

important in later chapters. Mainly, we will introduce the minimal free resolution and many

invariants associated with it. Most of this material has been taken from [24] and [9]. All

rings considered in this thesis will be commutative with an identity element.

Definition 2.40. Let R be a ring and A a monoid (a set with an associative binary operation

”+” and an identity element). Then, R is said to have an A-grading if it can be decomposed

into a direct sum of additive groups

R =
⊕
a∈A

Ra

such that

RmRn ⊂ Rm+n

for all m,n ∈ A.

Definition 2.41. A non-zero element of Rn is called a homogeneous element of degree

n. A graded or homogeneous ideal of R is defined to be an ideal that has a system of

homogenous generators.

Remark 2.42. Since R is a direct sum of Ri, every f ∈ R can be written uniquely as a

direct sum of elements of Ri. Thus, f can uniquely be written as f =
∑

i∈A fi, where fi ∈ Ri,

and all but finitely many fi are 0. Each fi is called the homogeneous component of f of

degree i.

In this thesis, we will mainly be studying graded ideals. They have many equivalent

characterisations.

Theorem 2.43. If J is an ideal of the graded ring R =
⊕

a∈A, then the following are

equivalent.

• J is a graded ideal.

• J =
⊕

i∈A Ji, where Ji = Ri ∩ J .

• If f ∈ J , then every homogeneous component of f is in J .

Proof. Refer to Chapter 1 in [24].
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Example 2.44. The graded ring we will study in detail in later chapters is the multivariable

polynomial ring. Let S = k[x1, . . . xn] be the n variable polynomial ring, defined over the

algebraically closed field k.

• Set deg(xi) = 1. Any monomial xc1i · · ·xcnn has degree c1+ · · ·+ cn. For i ∈ N, let Si be
the k−vector space spanned by all monomials of degree i. For i = 0, we have S0 = k.

Then, we can see that S =
⊕

i∈N Si is am N-grading of the polynomial ring S.

• Set deg xi = (0, . . . , 1 . . . , 0) ∈ Nn, (the ith unit vector). Any monomial xc1i · · ·xcnn has

degree (c1, . . . , cn). For a ∈ Nn, let Sa be the k-vector space spanned by all monomials

of degree a. For a = (0, . . . , 0), we have Sa = k. Then, we can see that S =
⊕

a∈Nn Sa

is an Nn-grading of the polynomial ring S. It is also known as a multigrading on S.

We will make use of the gradings in Example 2.44 several times in the subsequent chapters.

It is also possible to generalise the definition of grading to modules.

Definition 2.45. Consider an A-graded ring R. A module M is said to be A-graded if it

has a direct sum decomposition of additive groups M =
⊕

i∈AMi, where Mi are such that

RiMj ⊆Mi+j, for all i, j ∈ A. All elements of Mi are called homogenous elements of degree

i.

Definition 2.46. Let N and T be graded R-modules. We say that a homomorphism ϕ :

N → T has degree i, if deg(ϕ(n)) = deg n + i for all homogeneous elements n ∈ N . The

space of all degree i homomorphisms of N and T is denoted by Homi(N, T ). ϕ is said to

be graded or homogeneous if ϕ ∈ Homi(N, T ) for some i ∈ A. If the map is a bijective

homomorphism, then we call it a graded isomorphism.

Definition 2.47. Consider a graded R-module U . For p ∈ A, we denote by U(−p) the

graded R-module such that U(−p)i = Ui−p for all i. We say that U(−p) is the shifted

module of U by p degrees and p is called the shift.

There are many ways of constructing graded modules from a graded module U .

Theorem 2.48. If f : N → T is a graded homomorphism, then ker(f), Im(f) and coker(f)

are all graded.

Proof. Refer to Proposition 2.9, [24].
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2.2.1 Resolutions

For this section, let A be a monoid and R be an A-graded ring.

Definition 2.49. A complex (F,d) over R is a sequence of R-modules and R-module

homomorphisms

F : · · · −→ Fi
di−−→ Fi−1 −→ · · · −→ F1

d1−−→ F0 −→ . . .

such that di−1di = 0 for all i ∈ Z. The collection of maps d = {di} are called the differen-

tials of F. It is called a left complex if Fi = 0 for all i < 0. The complex (F,d) is said to

be graded if Fi is a graded R-module and each di is a degree zero homomorphism for all i.

If F is graded, we can write,

Fi =
⊕
j∈A

Fi,j

Any element of Fi,j is said to have homological degree i and internal degree j.

Remark 2.50. Since di−1di = 0, that implies that Im(di) ⊆ ker(di−1). Hence, in a complex,

for all i, the image of di is contained in the kernel of di−1.

Definition 2.51. The homology of a complex is defined as

Hi(F) =
ker(di)

Im(di+1)
for all i ∈ Z.

The elements of ker(di) are called cycles and Im(di+1) are called boundaries.

Definition 2.52. A complex is said to be exact if Hi(F) = 0 for all i. A left complex is

said to be acyclic if Hi(F) = 0 for all i > 0.

Definition 2.53. If (F,d) and (G, δ) are two complexes, then a homomorphism ψ of com-

plexes is a set of homomorphisms {ψi} where ψi : Fi → Gi is such that ψi−1di = δiψi. In

other words, the following diagram commutes:

Fi Fi−1

Gi Gi−1

di

ψi ψi−1

δi

Definition 2.54. A short exact sequence of complexes is an exact complex of the form

0 −→ A
f−−→ B

g−−→ C −→ 0
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where A,B and C are complexes and f and g are complex homomorphisms such that each

0 −→ Ai
fi+1−−→ Bi

gi+1−−→ Ci −→ 0

is a short exact sequence of R-modules.

Short exact sequences of complexes can tell us a lot about the homology of the individual

complexes.

Theorem 2.55. Given a short exact sequence of complexes,

0 −→ A
f−−→ B

g−−→ C −→ 0

there exists a connecting homomorphism δn : Hn(C) → Hn−1(A) for all n such that

· · · −→ Hn+1(C)
δn+1−−→ Hn(A) −→ Hn(B) −→ Hn(C)

δn−−→ Hn−1(A) −→ . . .

is an exact sequence.

Proof. Refer to Chapter 1, Section 13, [24].

The previous theorem is very fundamental and is used in proving many basic theorems

in homological algebra.

Definition 2.56. A free resolution of a finitely generated R-module U is a complex

F : · · · −→ Fi
di−−→ Fi−1 −→ · · · −→ F1

d1−−→ F0
d0−−→ U −→ 0

such that:

• All Fi are finitely generated free R-modules, and

• F is an exact complex.

The free resolution is said to be graded if U is a graded module and F is a graded complex.

Theorem 2.57. Every R-module U has a free resolution. In particular, if U is a finitely

generated graded R-module, then it has a graded free resolution.

Proof. Refer to Construction 4.2, [24].
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Free resolutions are an interesting way of studying modules. We know that every finitely

generated R-module can be written as a quotient of a free module, F/K, where F is free.

By picking generators for K and considering the free module on this set, we can inductively

construct a free resolution for the module. This is essentially the argument in Construction

4.2, [24]. This tells us that free resolutions give us some information on relations between

generators of a module, relations between these relations and so on. Fixing particular types

of generating sets can lead to different free resolutions.

Definition 2.58. Let (R,m) be a local ring with maximal ideal m or an N-graded k algebra,

where R0 = k. and m = R+. A free resolution of the finitely generated graded R-module U

F : · · · −→ Fi
di−−→ Fi−1 −→ · · · −→ F1

d1−−→ F0
d0−−→ U −→ 0

is called minimal if Im dn+1 ⊆ mFn for all n ∈ N. It is called a graded minimal free

resolution if F is also a graded free resolution.

Minimal-free resolutions turn out to have some very interesting properties.

Theorem 2.59. Let (R,m) be a local ring with maximal ideal m or an N-graded k algebra,

where R0 = k and the homogeneous maximal ideal m = R+. Let U be a finitely generated

graded R-module. Then the free resolution

F : · · · −→ Fi
di−−→ Fi−1 −→ · · · −→ F1

d1−−→ F0
d0−−→ U −→ 0

is minimal if and only if for all n, Fn is constructed by taking the free module on a minimal

set of generators (homogeneous in the case of a graded algebra R) for ker dn−1.

Proof. Refer to Theorem 4.7 in [24].

The above theorem tells us that finding the minimal free resolution is the same as picking

a minimal homogeneous generating set for all ker di−1.

Definition 2.60. Consider an A-graded ring R and let p ∈ A. A complex of the form:

0 −→ R(−p) 1−−→ R(−p) −→ 0

is called a short trivial complex. If (F,d) and (G, δ) are complexes, then their direct sum

is the complex F ⊕ G with modules (F ⊕ G)i = Fi ⊕ Gi with differential d′i = di ⊕ δi. A

direct sum of short trivial complexes is called a trivial complex.
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Now, we present the main theorem which captures the importance of this construction.

Theorem 2.61. Let (R,m) be a local ring with maximal ideal m or an N-graded k algebra,

where R0 = k and the homogeneous maximal ideal m = R+. If F is a minimal free resolution

of the graded R-module U , any free resolution for U is isomorphic to a direct sum of F with a

trivial complex. In particular, the minimal free resolution of U is unique up to isomorphism.

Proof. Refer to Chapter 9, [24].

Since the minimal free resolution is unique, we can define several associated invariants

for a given R-module U .

2.2.2 Homological Invariants

Throughout this subsection, Let R be a N-graded k algebra, where R0 = k and the homoge-

neous maximal ideal m = R+. Let

F : · · · −→ Fi
di−−→ Fi−1 −→ · · · −→ F1

d1−−→ F0
d0−−→ U −→ 0

be the minimal graded free resolution of a graded finitely generated R-module U .

Definition 2.62. Let F be a minimal graded free resolution of a graded finitely generated

R-module U . For i ≥ 1, the submodule

ker di = Im di+1

of Fi is called the ith syzygy module of U and is denoted by Syzi(U).

Often it is difficult to obtain the exact description of the syzygy modules and the differ-

entials in the minimal free resolution. Hence, the following invariants are widely studied.

Definition 2.63. The ith Betti number of U over R is defined as:

βRi (U) := rank(Fi).

Since the minimal free resolution is unique up to isomorphism, the Betti numbers are

well-defined for any finitely generated graded R-module U . The main goal of this thesis is

to study a certain property of the Betti numbers, for a class of ideals called binomial edge

ideals.
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Theorem 2.64.

βRi (U) = number of minimal generators of SyzRi (U)

= dimk(Tor
R
i (U, k))

Proof. Follow Theorem 11.2 from [24].

By incorporating the grading, we can obtain the graded Betti numbers.

Definition 2.65. Let U be a finitely generated graded R-module. Then, βi,j(U) is defined

as the total number of summands in the free module Fi in the minimal free resolution F of

the form R(−j).
From Theorem 2.64, we can see that

βi,j(U) = dimk(Tor
R
i (U, k)j).

Remark 2.66. In light of the graded Betti numbers, βi(U) are called the total Betti

numbers of U . It is easy to see from the definition that

βi(U) =
∑
j∈N

βi,j(U).

Theorem 2.67. Let c be the minimal degree of a generator in a minimal system of homo-

geneous generators of U . Then,

βi,j(U) = 0

for all j < i+ c. Hence, for any module, βi,j(U) = 0 for all j < i.

Proof. This is proved in Proposition 12.3, [24].

This theorem is incorporated into the representation of the Betti numbers of a module

into its Betti table. Here, the entry in the ith row and jth column, βi,i+j is the Betti number

βi,i+j(U).

β0 β1 β2 . . .

0 β0,0 β1,1 β2,2 . . .

1 β0,1 β1,2 β2,3 . . .

2 β0,2 β1,3 β2,4 . . .

3 β0,3 β1,4 β2,5 . . .
...

...
...

...
. . .
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In general, we also study several other invariants associated with the Betti numbers.

Definition 2.68. The length of a complexG is defined to be len(G) = max{i | Gi(U) ̸= 0}.
We say that G is a finite complex if its length is finite, otherwise, G is infinite. The

projective dimension of a module U is an invariant of U defined as

pd(U) = max{i | βi(U) ̸= 0}.

In other words, it is the length of the minimal free resolution.

The following theorem is a fundamental result which pioneered the study of homological

invariants of ideals and modules.

Theorem 2.69. (Hilbert’s Syzygy Theorem) Let S = k[x1, . . . xn], where x1, x2 . . . , xn are

indeterminates. The minimal graded free resolution of a graded finitely generated S-module

is finite and its length is at most n.

Remark 2.70. The length of all graded finitely generated R- modules is finite, where R is

a N-graded k algebra, where R0 = k and the homogeneous maximal ideal m = R+.

Another important invariant is the following.

Definition 2.71. The Castelnuovo-Mumford regularity of a graded finitely generated

R-module U is defined as

reg(U) = max{j | βi,i+j(U) ̸= 0 for some i}.

Remark 2.72. Just like the projective dimension, the regularity is also finite. This can

be seen as the number of summands in every Fi in the minimal free resolution F is finite.

Hence, the number of distinct j ∈ A such that R(−j) is a summand is also finite.

The above results tell us that the Betti table for any graded finitely generated R-module

has only finitely many non-zero entries. Hence, the table usually has a particular shape. The

Betti numbers at the ‘boundary’ of the table are also widely studied.

Definition 2.73. A graded Betti number βi,i+j(U) of U is called extremal, if βk,k+l(U) = 0

for all pairs (k, l) ̸= (i, j) with k > i and l > j.

One important consequence of Theorem 2.61 is the following.
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Corollary 2.74. Let F be the minimal free resolution of a finitely generated graded R-module

U and let G be another free resolution for U . Then,

rank(Fi)j ≤ rank(Gi)j.

for all homological degrees i and internal degrees j. In particular, βi,j(U) ≤ rank(Gi).

Proof. From Theorem 2.61, G = F ⊕ H, where H is a trivial complex. Thus, since all

elements are free modules, rank(Gi)j = rank(Fi)j+rank(Hi)j. Thus, rank(Fi)j ≤ rank(Gi)j.

and hence βi,j(U) ≤ rank(Gi).

This corollary allows us to get bounds on the Betti numbers, projective dimension and

regularity of different modules, using the ranks of non-minimal free resolutions. We use this

idea extensively in Chapter 5.

2.3 Monomial ideals

For general graded modules, studying the minimal free resolution is difficult. Only a little

is known about the Betti numbers of general ideals and modules. A lot of work has been

done on studying these invariants for different classes of ideals. One widely studied class

are monomial ideals in polynomial rings. Throughout this section let k be a field, and

S = k[x1, . . . , xn] be the polynomial ring in n variables.

Definition 2.75. Consider any (a1, . . . an) ∈ Zn, where ai ≥ 0 for all i. Any product

xa11 · · ·xann is called a monomial in S.

A monomial ideal is an ideal in S generated by monomials.

We now give some basic properties of these ideals.

Theorem 2.76. Let I ⊂ S be an ideal. The following are equivalent:

• I is a monomial ideal.

• For all f ∈ S, f ∈ I if and only if each monomial term of f is in I.

Proof. Refer to Corollary 1.1.3 [10].

Theorem 2.77. Consider the monomial ideal I. Let G be the generating set of I which is

minimal with respect to divisibility. Then G is the unique minimal set of monomial genera-

tors.
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Proof. Refer to Proposition 1.1.6, [10].

Theorem 2.78. If I and J are monomial ideals, then

• I + J is a monomial ideal,

• I ∩ J is a monomial ideal, and

• I : J is a monomial ideal.

Proof. Refer to Section 1.2, [10].

All the above theorems illustrate why monomial ideals are easier to study. Given an

ideal, there are some very useful monomial ideals associated with it.

Definition 2.79. A monomial order is a total order on Mon(S) (the set of monomials of

S) where:

• 1 < u for all u ∈ Mon(S).

• if u < v ∈ Mon(S), then uw < vw for all w ∈ Mon(S).

Example 2.80. Consider the polynomial ring S = k[x1, . . . , xn]. Let a = (a1, a2, . . . , an)

and b = (b1, b2, . . . , bn) ∈ Zn, with ai, bi ≥ 0 for all i. The total order <rev of Mon(S) is

defined by setting xa11 . . . xann <rev x
b1
1 . . . x

bn
n if either one of the following holds.

•
∑n

i=1 ai <
∑n

i=1 bi

•
∑n

i=1 ai =
∑n

i=1 bi and the rightmost nonzero component of the vector a− b is positive.

The total order <rev is a monomial order on S, called the reverse lexicographic order on

S induced by the ordering x1 > x2 > · · · > xn.

Definition 2.81. Fix a monomial order < on Mon(S). Given f =
∑

u∈Mon(S) auu ∈ S, the

initial monomial of f , denoted by in<(f) is the largest monomial with respect to < such

that au ̸= 0.

Consider an ideal I ⊆ S. The initial ideal of I with respect to the monomial order <

is defined as

in<(I) = ⟨{in<(f) | 0 ̸= f ∈ I}⟩.

Initial ideals are widely studied in a variety of contexts. They are intimately related to

the theory of Gröbner basis, which is very important for computing generating sets for ideals

in a polynomial ring. Their relation to Gröbner basis of an ideal also relates the homological

invariants of I and in<(I) as follows:
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Theorem 2.82. Fix a monomial order <. Consider a graded ideal I ⊂ S. Then

βi,j(I) ≤ βi,j(in<(I)).

Proof. Refer to Theorem 22.9, [24].

2.3.1 Stanley-Reisner Correspondance

Certain types of monomial ideals have a nice combinatorial structure.

Definition 2.83. Consider a set P . A simplicial complex on P , denoted by ∆ is a

collection of subsets such that

• if F ∈ ∆, then F ′ ∈ ∆ for all F ′ ⊂ F ,

• {i} ∈ ∆ for all i ∈ P .

Each element of a simplicial complex ∆ is called a face. A maximal face of ∆ (with respect

to inclusion) is called a facet.

Definition 2.84. The dimension of a face is defined as dim(F ) = |F | − 1. The dimension

of the entire simplicial complex is defined as dim(∆) = max{dim(F ) | F ∈ ∆}.
Faces of dimension 0 are called vertices and faces of dimension one are called edges.

The following is an important example of a simplicial complex.

Example 2.85. (Clique complex) Consider a graph G with vertex setV (G) and edge set

E(G). The clique complex of G is a simplicial complex ∆(G) where F ⊂ V (G) is a face

of ∆(G) if and only if the induced subgraph of G on F , GF is a clique. Clearly, every set

{v} ∈ ∆, where v ∈ V (G). If GF is a clique and F ′ ⊂ F , then we know that GF ′ is also a

clique. Hence F ′ ∈ ∆(G). Thus, we can see that ∆(G) is a simplicial complex.

Definition 2.86. Consider the polynomial ring S = k[x1, . . . , xn]. For each F ⊂ [n], we

define

xF =
∏
i∈F

xi.

The Stanley-Reisner ideal of a simplicial complex ∆ is defined as

I∆ = ⟨{xF | F /∈ ∆}⟩.
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In other words, the Stanley-Reisner ideal is generated by the monomials associated with the

minimal non-faces of ∆.

Remark 2.87. Note that I∆ is a monomial ideal generated by square-free monomial gener-

ators. Such ideals are called square-free monomial ideals.

This correspondence between simplicial complexes and square-free monomial ideals goes

both ways.

Definition 2.88. The Stanley-Reisner complex of a square-free monomial ideal I is the

simplicial complex consisting of the monomials, not in I, that is

∆I = {F ⊆ [n] | xF /∈ I}.

Remark 2.89. It is important to note that the simplicial complexes here are not necessarily

defined on [n], but some subset of [n]. This is necessary due to the second condition in the

definition of a simplicial complex.

Theorem 2.90. Given a square-free monomial I and a simplicial complex ∆, the following

are true:

• ∆I∆ = ∆.

• I∆I
= I.

This is called the Stanley-Reisner Correspondence.

This correspondence is important in the study of monomial ideals. In several cases, it

relates the homological properties of square-free monomial ideals to combinatorial properties

of the corresponding Stanley-Reisner complex.

2.3.2 Simplicial Resolutions

In general, finding free resolutions for ideals is not an easy task. As discussed, it involves

finding a generating set for the kernel of each differential map in the resolution. For monomial

ideals, there are reliable methods of constructing free resolutions. In this section, we will

present some important simplicial resolutions, including the Taylor and Lyubeznik resolution.

Simplicial resolutions involve casting various subsets of monomials as faces in a simplicial

complex, with the differentials being the maps deleting vertices one at a time. All the material

in this section has been taken from [20].
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Construction 2.91. Consider the polynomial ring S = k[x1, . . . xn]. Let the grading on S

be the Nn-grading described in Example 2.44. Let M = {m1, . . . ,mr} be a set of monomials

generating a monomial ideal I in S. Consider a simplicial complex ∆ on the set M . Fix an

ordering on M , mj1 < mj2 < · · · < mjr . We know each face in the simplicial complex is a

subset of M . Consider a face F ∈ ∆. For each F we associate the formal symbol [F ]. We

also give [F ] a multidegree (mdeg) as follows

degNn(F ) = degNn(lcm{m | m ∈ F}).

Let Hs be the free S-module generated by the set {[F ] | |[F ]| = s}. We have a map ϕs−1 :

Hs → Hs−1 defined by:

[F ] −→
∑

G⊂F,|G|=|F |−1

ϵFG
lcmF

lcmG
[G],

where ϵFG is the map defined as:

ϵF (G) =


0 |G| < |F | − 1

1 G = F \ {mjk}, k is odd

−1 G = F \ {mjk}, k is even

This construction thus gives us the sequence:

H∆ :0 −→ Hr
ϕr−1−−→ Hr−1 −→ · · · −→ H1

ϕ0−−→ H0 −→
S

I
−→ 0.

From the definition of ϕi, it can be checked that H∆ is a complex, that is

ϕi−1 ◦ ϕi = 0 for all 1 ≤ i ≤ r − 1.

In certain special cases, the complex from Construction 2.91 will be exact, and hence a

resolution. We will describe two important cases where this happens.

Taylor Resolution

Let I be a monomial ideal with generating set M . In this case, the simplicial complex ∆ on

M is taken to be the simplex on M . In other words, every subset of M is a face of ∆. The

faces of dimension i are precisely {G ⊂ M | |G| = i + 1}. Thus the complex described in
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Construction 2.91 is:

H∆ :0 −→ Hr
ϕr−1−−→ Hr−1 −→ · · · −→ H1

ϕ0−−→ H0 −→
S

I
−→ 0

where r = |M | and Hi ̸= 0 for all i ≤ r.

Theorem 2.92. Let I be a monomial ideal I with generating set M . If ∆ is the simplex on

M , then the complex H∆ is exact and hence, a resolution.

Proof. Refer to Theorem 3.4, [20].

Example 2.93. Let S = k[x1, x2], with m = ⟨x1, x2⟩. Let I = ⟨x1x2, x31, x22⟩. Let the

ordering be x1x2 < x31 < x22. Then the corresponding Taylor resolution H is:

0 −→ S[x1x2, x
3
1, x

2
2]


1

−x21
x2


−−−−−→

S[x31, x
2
2]

⊕
S[x1x2, x

2
2]

⊕
S[x1x2, x

3
1]


x31 −x22 0

x1 0 −x2
0 x2 −x22


−−−−−−−−−−−−−→

S[x22]

⊕
S[x31]

⊕
S[x1x2]

(
x2 x31 x1x2

)
−−−−−−−−−−−→ S[∅] −→ S

I
−→ 0

Note that the Taylor Resolution is rarely minimal. In Example 2.93, we can see that

Im(

 1

−x21
x2

) is not contained in mH2, as 1.[x1x2, x
3
1, x

2
2] is mapped to

 1

−x21
x2

 in H2

Lyubeznik Resolution

Let I be a monomial ideal with generating set M . Fix an ordering on the monomials in M ,

say m1 < m2 < · · · < mr.

Definition 2.94. Given a monomialm, we define min(m) = min<{mi ∈M | mi divides m}.
Given a set of monomials F ,

min(F ) = min
<

{mi ∈M | mi divides lcm(F )}.

Definition 2.95. A face F of a simplicial complex is said to be rooted if for all G ⊆ F , we

have min(G) ∈ G.
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Consider the simplicial complex ∆ on M , where the faces are given by {F ⊆ M |
F is rooted}. Hence, the set of all faces of dimension i is {F ⊂ M | F is rooted, |F | =
i+1}. This is called the Lyubeznik simplicial complex associated to I and <. Thus the

associated chain complex is of the form:

H∆ :0 −→ Hr
ϕr−1−−→ Hr−1 −→ · · · −→ H1

ϕ0−−→ H0 −→
S

I
−→ 0.

Theorem 2.96. Let I be a monomial ideal with generating set M . Fix an ordering < on

the monomials in M . Let ∆ denote the Lyubeznik simplicial complex associated to M and

<. Then, the associated chain complex is exact, and hence a resolution. This is called the

Lyubeznik resolution.

Proof. Refer to Theorem 6.5 in [20].

It can be seen from the definitions that the Lyubeznik resolution is a subcomplex of the

Taylor resolution. Hence, it is ‘closer’ to the minimal free resolution. In general, both the

Taylor and Lyubeznik resolutions are often distinct and far from minimal.

2.3.3 Mapping cone Construction

As discussed above, constructing a resolution for a module is often difficult. In this section,

we introduce resolutions that can be constructed via resolutions of other modules. This idea

is explored in the mapping cone construction.

Let I be a graded ideal of S and let the ring R = S
I
. Let ϕ : (U,d) → (U′,d′) be a map

of complexes.

The mapping cone of ϕ is a complex (W, δ) where:

Wi = Ui−1 ⊕ U ′
i ,

and the map δi : Wi → Wi−1 is given by

U ′
i

⊕
Ui−1

d′i ϕi−1

0 di−1


−−−−−−−−→

U ′
i−1

⊕
Ui−2

Theorem 2.97. (W, δ) is a complex.
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Proof. Refer to Section 27, [24].

Theorem 2.98. Assume that (U,d) and (U′,d′) are free resolutions of the modules V and V ′

respectively and the complex map ϕ is induced from an injective homomorphism ψ : V → V ′.

Consider a short exact sequence:

0 −→ V
ψ−−→ V ′ −→ V ′′ −→ 0.

Then the mapping cone (W, δ) is a free resolution of V ′′.

Proof. Refer to Section 27, [24].

Since Theorem 2.98 can be used for any exact sequence, it allows us to test this out on

some well-known exact sequences.

Corollary 2.99. Consider the graded ideals J,K ⊂ S. Let J +K = I. Then we have the

following exact sequence.

0 −→ J ∩K −→ J ⊕K −→ J +K −→ 0.

Consider any resolutions for J,K and J ∩K:

F : · · ·Fi
di−−→ Fi−1

di−1−−→ · · · −→ F1
d1−−→ F0

d0−−→ J ∩K −→ 0

G : · · ·Gi
di−−→ Gi−1

di−1−−→ · · · −→ G1
d1−−→ G0

d0−−→ J −→ 0

H : · · ·Hi
di−−→ Hi−1

di−1−−→ · · · −→ H1
d1−−→ H0

d0−−→ K −→ 0

Then the complex:

· · · −→ G2 ⊕H2 ⊕ F1 −→ G1 ⊕H1 ⊕ F0 −→ G0 ⊕H0 −→ I −→ 0

is a free resolution of I.

Proof. Since G and H are free resolutions of J and K, this implies that the complex G⊕H

is a free resolution for J ⊕K.

Thus, from Theorem 2.98, we have that mapping cone W will be a free resolution for I.

Hence the complex

· · · −→ G2 ⊕H2 ⊕ F1 −→ G1 ⊕H1 ⊕ F0 −→ G0 ⊕H0 −→ I −→ 0
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is a free resolution for I.

Remark 2.100. The above corollary can also give us information on the Betti numbers. If

L denotes the minimal free resolution of I, then from Corollary 2.74, we have that

βi,j(I) ≤ rank(Gi ⊕Hi ⊕ Fi−1)j.

Now let G,H and F be the minimal free resolutions of J,K and J ∩K respectively. Since

the minimal free resolution for J ⊕K is G⊕H, we have that

rank(Gi⊕Hi⊕Fi−1)j = rank(Gi)j+rank(Hi)j+rank(Fi−1)j = βi,j(J)+βi,j(K)+βi−1,j(J∩K).

Hence,

βi,j(I) ≤ βi,j(J) + βi,j(K) + βi−1,j(J ∩K).

This leads us to the idea of Betti splittings.

Betti splittings

Definition 2.101. Let I, J , and K be graded ideals with minimal generating sets G(I),

G(J) and G(K) such that G(I) is the disjoint union of G(J) and G(K). Then I = J +K

is a Betti splitting if

βi,j(I) = βi,j(J) + βi,j(K) + βi−1,j(J ∩K) for all i ∈ N and (multi)degrees j.

In other words, the mapping cone for the short exact sequence

0 −→ J ∩K −→ J ⊕K −→ J +K −→ 0,

is a minimal free resolution of J +K = I.

In this thesis, we extensively study Betti splittings for a class of ideals known as binomial

edge ideals. The mapping cone will not be a minimal free resolution for most ideals. But

under certain conditions, this free resolution becomes minimal.

Theorem 2.102. Let I be a graded ideal in S, and suppose that J and K are graded ideals

in S such that G(I) is the disjoint union of G(J) and G(K). Suppose that for all i and all

(multi)degrees j, βi,j(J ∩K) > 0 implies that βi,j(J) = βi,j(K) = 0. Then

βi,j(I) = βi,j(J) + βi,j(K) + βi−1,j(J ∩K) for all i and j;
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that is, I = J +K is a Betti splitting.

Proof. This is from Theorem 2.3 [8]. Note that the proof in the reference presents the proof

for monomial ideals, but the same proof works for graded ideals. We shall present it again

for clarity.

Since I = J +K, we have the short exact sequence

0 −→ J ∩K ϕ−−→ J ⊕K
ψ−−→ J +K = I −→ 0.

This induces a long exact sequence in Tor, which restricts to a long exact sequence of vector

spaces when taking the graded pieces,

−→ Tori(k, J ∩K)j −→ Tori(k, J)j ⊕ Tori(k,K)j −→ Tori(k, I)j −→ Tori−1(k, J ∩K)j −→

Fix some i and some (multi)degree j. First suppose βi,j(J ∩K) = 0. By the hypothesis, if

βi−1,j(J ∩K) ̸= 0, then βi−1,j(J) = 0 and βi−1,j(K) = 0. Hence this gives us the short exact

sequence:

0 −→ Tori(k, J)j ⊕ Tori(k,K)j −→ Tori(k, I)j −→ Tori−1(k, J ∩K)j −→ 0

Thus, if βi,j(J ∩ K) = 0, then βi,j(I) = βi,j(J) + βi,j(K) + βi−1,j(J ∩ K) for all i and

(multi)degrees j.

Instead, if we have that βi−1,j(J ∩K) = 0, then we have the exact sequence,

0 −→ Tori(k, J)j ⊕ Tori(k,K)j −→ Tori(k, I)j −→ 0,

which again gives us the desired formula.

Finally, assume that βi,j(J ∩K) ̸= 0. This tells us that βi,j(J) = 0 and βi,j(K) = 0. This

gives us the exact sequence

0 −→ Tori(k, I)j −→ Tori−1(k, J ∩K)j −→ Tori−1(k, J)j ⊕ Tori−1(k,K)j −→ · · ·

If βi−1,j(J ∩K) = 0, then that means that Tori(k, I)j = βi,j(I) = 0 and hence, the formula

holds. If βi−1,j(J ∩ K) ̸= 0 then βi−1,j(J) = βi−1,j(K) = 0 which implies that βi,j(I) =

Tori(k, I)j = Tori−1(k, J ∩ K)j = βi−1,j(J ∩ K). Since βi,j(J) = 0 and βi,j(K) = 0, this

agrees with the formula and hence proves the proposition.
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The above theorem and variations to it will be very important throughout this thesis. It

will help give important conditions on Betti splittings for certain binomial edge ideals. This

theorem also gives nice conditions on Betti splittings for monomial ideals.

Definition 2.103. Let I be a monomial ideal in S. Let J be the ideal generated by all

elements of G(I) divisible by xi, and let K be the ideal generated by all other elements of

G(I). We call I = J +K an xi−partition of I. If I = J +K is also a Betti splitting, we

call I = J +K an xi−splitting.

Theorem 2.104. Let I = J + K be an xi−partition of the monomial ideal I in which all

elements of J are divisible by xi. If βi,j(J ∩ K) > 0 implies that βi,j(J) = 0 for all i and

multidegrees j, then I = J +K is a Betti splitting. In particular, if the minimal graded free

resolution of J is linear, then I = J +K is a Betti splitting.

Proof. Refer to Corollary 2.7, [8].

The above corollary can be applied to obtain conditions of the Betti splittings of some

well-known graph ideals.

Definition 2.105. Consider a simple graph G, with V (G) = [n]. Let S = k[x1, . . . , xn] be

the polynomial ring. By associating each vertex to a variable in S, we can define the edge

ideal of G as follows:

I(G) = ⟨{xixj | {i, j} ∈ E(G)}⟩.

Definition 2.106. If i is a vertex of G that is not isolated and such that G\ i is not a graph

of isolated vertices, we call i a splitting vertex of G.

We can now apply Theorem 2.104,

Corollary 2.107. Let G be a simple graph with edge ideal I(G) and splitting vertex i. Let

J be the ideal generated by all elements of G(I) divisible by xi, and K be generated by

G(I(G)) \G(J). Then I(G) = J +K is an xi-splitting.

Proof. J is just xi multiplied by an ideal generated by variables, hence it has a linear reso-

lution. Thus, from Theorem 2.104, the result follows.

Thus, the above result tells us that splitting off a vertex from a graph induces a Betti

splitting. One of the main goals of this thesis is to study this condition for another type of

graph ideal that is, binomial edge ideals.
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2.4 Binomial edge ideals

Just like edge ideals, binomial edge ideals are a type of ideals associated with finite simple

graphs. They are defined as follows:

Definition 2.108. Consider a finite simple graph G, with V (G) = [n]. Let S = k[x1, . . . , xn,

y1, . . . , yn] be the polynomial ring in 2n variables. For i, j ∈ [n], we denote fij := xiyj−xjyi.
The binomial edge ideal JG, is defined:

JG := ⟨{fij | {i, j} ∈ E(G)}⟩.

Remark 2.109. We can see from the definition that JG depends only on the edges of G.

Hence, if G has an isolated vertex v, and G′ = G \ {v}, then JG = JG′ .

Binomial edge ideals are an interesting class of ideals. They were introduced in the early

2010s independently in [11] and [23] and have been shown to have some applications to

conditional independence statements. Since they are ideals defined from a graph, the main

way of studying the algebraic properties of these ideals is to relate them to the combinatorial

properties of the corresponding graph.

2.4.1 Gröbner Basis

Here, we will recall the characterisation of the reduced Gröbner basis for the binomial edge

ideal of any graph.

Definition 2.110. Let G be a simple graph on {0, . . . , n} and let i, j be two vertices of G

with i < j. A path π : i = i0, i1 . . . , ir−1, ir = j is called admissible if:

1. ik ̸= il for k ̸= l,

2. for each k = 1, . . . , r − 1, one has either ik > j or ik < i, and

3. For any proper subset {j1, . . . , js} of {i1, . . . , ir}, the sequence i, j1, . . . , js, j is not a

path.

Example 2.111. Consider the graph G with V (G) = {0, 1, 2, 3, 4, 5} and

E(G) = {{0, 1}, {0, 2}, {0, 4}, {0, 5}, {1, 3}, {1, 4}, {1, 5}, {2, 4}, {3, 4}, {4, 5}}, as in Figure 2.12.

Consider the path p = (2, 4, 3). We can see that all vertices are distinct and since there

{2, 3} /∈ E(G), no subset of vertices forms a path between 2 and 3. Furthermore, 4 > 3 > 2.

Hence, we can see that p is an admissible path.
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Figure 2.12: G with admissible path (2, 4, 3).

Given an admissible path π : i = i0, i1 . . . , ir−1, ir = j from i to j where i < j, we

associate the monomial:

uπ = (
∏
ik>j

xik)(
∏
il<i

yil).

Theorem 2.112. Let > be a monomial order with x0 > · · · > xn > y0 > · · · > yn. Let G be

a simple graph and JG denote the binomial edge ideal of G. Then the set of binomials:

B =
⋃
i<j

{uπfi,j : π is an admissible path from i to j}

is a reduced Gröbner basis of JG.

Proof. Refer to Theorem 2.1, [11].

This theorem can also tell us about the initial ideals of binomial edge ideals

Corollary 2.113. Let > be a monomial order with x0 > · · · > xn > y0 > · · · > yn. Let G be

a simple graph and JG denote the binomial edge ideal of G. Then, in>(JG) is a square-free

monomial ideal.

Proof. From Theorem 2.112, we can see that since⋃
i<j

{uπfi,j : π is an admissible path from i to j}
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is a Gröbner basis, in>(JG) is generated by⋃
i<j

{uπxiyj : π is an admissible path from i to j}.

Hence, since all the vertices in any admissible path π are distinct, all the variables in uπxiyj

are also distinct. Hence, uπxiyj is square-free for any admissible path π. Thus, in>(JG) is a

square-free monomial ideal.

The above theorem is a good illustration of how an algebraic property of JG (the Gröbner

basis) is related to a graph theoretic quantity (the admissible paths of G).

2.4.2 Minimal Primes

The characterisation of algebraic quantities using graph theoretic structures can be further

seen while studying the primary decomposition of JG.

Theorem 2.114. JG is a radical ideal.

Proof. Refer to Corollary 2.2, [11] or Proposition 4.1, [23].

Since JG is radical, it can be written as an intersection of prime ideals.

Definition 2.115. Let G be a simple graph with V (G) = [n]. Consider S ⊆ [n]. Let

T = [n] \ S, and let G1, . . . , Gc(S) be the connected components of G[T ]. For each Gi we

denote by the complete graph on the vertex set V (Gi) as G̃i. Then the ideal PS(G) is defined

as:

PS(G) = ⟨{
⋃
i∈S

{xi, yi}, JG̃1
, . . . , J ˜Gc(s)

}⟩.

Theorem 2.116. PS(G) is a prime ideal.

Proof. Each JG̃i
is the ideal of 2-minors of a generic 2× ni-matrix with ni = |V (Gi)|. Thus,

all JG̃i
as well as the ideal ⟨

⋃
i∈S{xi, yi}⟩ are prime. Since all these prime ideals are in

pairwise disjoint sets of variables, we can conclude that

PS(G) = ⟨{
⋃
i∈S

{xi, yi}, JG̃1
, . . . , J ˜Gc(s)

}⟩ = ⟨
⋃
i∈S

{xi, yi}⟩+
c(s)∑
i=1

JG̃i

is also prime.
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The prime ideals PS(G) play an important role in characterising the primary decompo-

sition of JG.

Theorem 2.117. Let G be a finite simple graph with V (G) = [n]. Then,

JG =
⋂
S⊆[n]

PS(G).

Proof. Refer to theorem 3.2, [11] or Lemma 4.8, [23].

This leads us to a combinatorial characterisation of the minimal primes of JG.

Theorem 2.118. Let G be a connected finite simple graph with V (G) = [n], and S ⊆ [n].

Let T = [n] \ S. Then PS(G) is a minimal prime ideal of JG if and only if S = ∅ or for

S ̸= ∅, each i ∈ S is a cut vertex of the graph G[T ∪ {i}].

Proof. Refer to Corollary 3.9, [11].

This result tells us that the minimal primes for JG are related to the cut points of an

induced subgraph of G.

2.4.3 Regularity and Projective dimension

Homological invariants for binomial edge ideals have been widely studied. Specifically, there

has been a lot of work on relating several interesting graph theoretic invariants of the graph

G to homological invariants of JG. Often, nice graph theoretic invariants can provide good

bounds for otherwise hard-to-understand homological invariants. In this section, we will

review well-known bounds on the Betti numbers, projective dimension and regularity of

different types of binomial edge ideals.

Theorem 2.119. Let G be a simple graph with V (G) = [n],and let S ⊆ [n]. Then, for any

a ∈ Nn with aj = 0 for all j /∈ S, we have

βi,a(JG) = βi,a(JG[S]) for all i ≥ 0.

Proof. Refer to Lemma 2.1, [19].

Remark 2.120. The above theorem tells us that for any induced subgraph G[S] on S ⊆ [n],

we have that

βi,j(JG[S]) ≤ βi,j(JG) for all i, j ∈ N.
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Furthermore, we have the following bound on the regularity for the graph of any binomial

edge ideal.

Theorem 2.121. Let G be a finite simple graph with V (G) = [n]. Let l be the length of the

longest induced path of G. Then,

l + 1 ≤ reg(JG) ≤ n,

where n is achieved if and only if G is a path graph.

Proof. Refer to Theorem 1.1, [19] and Theorem 7.36, [12].

There are also useful bounds on the projective dimension of the binomial edge ideal of

any graph.

Theorem 2.122. Let G be a connected graph with V (G) = [n]. Suppose that G is not the

complete graph and that r is the vertex connectivity of G. Then,

pd(JG) ≥ n+ r − 3.

Proof. Refer to Theorem 3.20, [1].

Theorem 2.123. Let G be a connected graph on [n]. If f denotes the number of free vertices

in G and diam(G) is the diameter of G, then

pd(JG) ≤ 2n− f − diam(G)

Proof. Refer to Theorem 3 in [27].

By looking only at particular types of graphs, bounds for these homological invariants

become stronger.

Theorem 2.124. Let G be an indecomposable block graph on n vertices. Let f be the number

of free vertices in G. Then, βn−1,2n−f (S/JG) and βn−1,2n−f (S/ in < (JG)) are extremal Betti

numbers of S/JG and S/ in(JG), respectively. Moreover,

βn−1,2n−f (S/JG) = βn−1,2n−f (S/ in(JG)) = f − 1

Proof. This lemma is proved in Theorem 6, [14].
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Theorem 2.125. Let G be a graph with V (G) = [n]. Let c(G) denote the number of maximal

cliques in G. Then,

reg(JG) ≤ c(G) + 1.

Proof. Refer to Theorem 3.5, [26].
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Chapter 3

Betti Splittings of binomial edge

ideals

In the previous sections, we have seen the technique of Betti splittings introduced for mono-

mial ideals, with some applications to edge ideals. Our goal in this chapter is to explore

similar kinds of splittings for binomial edge ideals. We first introduce a result by Saeedi

Madani and Kiani in their paper [17], and rephrase it in the context of Betti splittings. We

then extend this result and prove a more general version of the same. We also apply this

result to obtain the 2nd Betti number of the binomial edge ideal of any tree.

Some of the results in this chapter are new. All results used from other sources will be

mentioned.

3.1 Complete Betti splittings

In this section, we will describe some ways to break apart graphs, which translates to Betti

splittings of the corresponding binomial edge ideals. For this, we will introduce some more

graph theoretic terminology. Throughout, G will denote a finite simple graph, with vertices

and edges of the graph G denoted by V (G) and E(G) respectively.

In the study of binomial edge ideals of graphs, free vertices in the graphs simplify the

study of their homological properties. In this thesis, free vertices will appear multiple times,

both in old and new results. We will now present some well-known results on the Betti

numbers of the binomial edge ideals of some graphs, where free vertices play a major role.
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Definition 3.1. A graph G is said to be decomposable if there exist two subgraphs G1

and G2 of G, and a decomposition G = G1 ∪ G2 such that V (G1) ∩ V (G2) = {v}, where v
is a free vertex of G1 and G2.

Example 3.2. Consider the graph G with vertex set V (G) = {1, 2, 3, 4, 5, 6} and edge set

E(G) = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1, 5}, {1, 6}, {5, 6}}. The graph G is de-

composable, withG1 = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}} andG2 = {{1, 5}, {1, 6}, {5, 6}}.
This can be seen in Figure 3.1.

G G1 G2

1

5

6

2

3

4

5

6

1

2

3

4

1

Figure 3.1:

For a module M , we can put all the graded Betti numbers together as a polynomial. It

can be defined as follows:

Definition 3.3. The Betti polynomial is defined as the multivariable polynomial given

by,

BM(s, t) =
∑
i,j

βi,js
itj

We have the following proposition concerning the Betti polynomial of the binomial edge

ideal of decomposable graphs.

Theorem 3.4. Let G be a decomposable graph, and let G = G1 ∪G2 be a decomposition of

G. Then

BS/JG(s, t) = BS/JG1
(s, t)BS/JG2

(s, t).

Proof. Refer to [14], Proposition 3.

42



Remark 3.5. Note that for any ideal I the Betti numbers for I and S/I are closely related.

It can be seen that βi,j(S/I) = βi−1,j+1(I). The above proposition holds for S/I and must

be rephrased for I.

This proposition gives us a way to obtain the Betti numbers of some graphs by breaking

them down into smaller graphs. We shall now see an example of a Betti splitting in certain

graphs.

Definition 3.6. Let G be a simple graph on the vertex set V (G) and e = {i, j} /∈ E(G).

Let NG(i) denote all the neighbours of the vertex i, i.e, NG(i) = {v ∈ V (G) : {i, v} ∈ E(G)}.
Then, we use Ge to denote the graph with,

V (Ge) = V (G) and E(Ge) = E(G) ∪ {(k, l) : k, l ∈ NG(i) or k, l ∈ NG(j)}.

Similarly, if v ∈ V (G), then we use Gv to denote the graph with.

V (Gv) = V (G) and E(Gv) = E(G) ∪ {(k, l) : k, l ∈ NG(v)}.

Example 3.7. Consider the simple graph G with vertex set V (G) = [7] and edge set

E(G) = {(1, 2}, {1, 3}, {2, 3}, {3, 4}, {4, 1}, {5, 6}, {6, 7}, {7, 5}}. We can see that e = {1, 7}
is not an edge in E(G). Therefore, Ge is a simple graph with V (Ge) = [7] and E(Ge) =

{{1, 2}, {2, 3}, {3, 4}, {4, 1}, {2, 4}, {1, 3}, {5, 6}, {6, 7}, {7, 5}}.

G

1

5

6

2

3

4

5

6

1

2

3

4

7 7

G(1,7)

Figure 3.2:

Lemma 3.8. Let G be a simple graph and e = {i, j} /∈ E(G) be a bridge in G ∪ e. Let

fe = xiyj − xjyi. Then, JG : fe = JGe.
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Proof. Refer to [22], Theorem 3.4.

Definition 3.9. A free cut edge e = {u, v} of a graph, is a cut edge, where both u and v

are free vertices in G \ e.

Theorem 3.10. Let G be a graph and let e be a free cut-edge of G. Then

1. βi,j(JG) = βi,j(JG\e) + βi−1,j−2(J(G\e)).

2. pd(JG) = pd(JG\e) + 1.

3. reg(JG) = reg(JG\e) + 1.

Proof. The following proof is from [17] Proposition 3.9 We have J(G\e)e = J(G\e) since e is a

free cut-edge of G. So, one may consider the short exact sequence

0 −→ S(−2)

J(G\e) : fe

×fe−−→ S

J(G\e)
−→ S

JG
−→ 0

By Lemma 3.8, we know that [S/J(G\e)](−2) : fe = [S/J(G\e)e ](−2). We have J(G\e)e =

JG\e since e is a free cut edge of G. Let E be the minimal graded free resolution of S/JG\e.

Now, consider the homomorphism of complexes ϕ : E(−2) → E, induced by multiplication

by fe. The mapping cone over the map ϕ resolves S/JG. In addition, it is also minimal,

because E is minimal and all the maps in the complex homomorphism ϕ are of positive

degrees.

Lemma 3.11. Let G be a simple graph. Consider an edge e ∈ E(G). Then we have JG\e :

fe ∼= J(G\e) ∩ ⟨fe⟩. Furthermore, if e is a cut edge, then βr,j−2(J(G\e)e) = βr,j(J(G\e) ∩ ⟨fe⟩)

Proof. From Lemma 3.8, we have J(G\e)e = JG\e : fe. By definition of quotient ideals, we

have that, JG\e : fe
×fe−−→ J(G\e) ∩ ⟨fe⟩ is an isomorphism of degree 2. Hence this means that:

TorSr (JG\e ∩ ⟨fe⟩, k)j ∼= TorSr (JG\e : fe, k)j−2.

This tells us that βr,j−2(J(G\e)e) = βr,j(J(G\e) ∩ ⟨fe⟩).

Remark 3.12. From the above lemma, we can see that the equation from Theorem 3.10,

can be written as βr,j(JG) = βr,j(JG\e)+βr−1,j(J(G\e)∩⟨fe⟩). Since ⟨fe⟩ is an ideal generated

by one generator, we know that β0,2(⟨fe⟩) = 1 and βi,j(⟨fe⟩) = 0 for i ̸= 0 and j ̸= 2.

This tells us that Theorem 5.15 (1), comes from a complete Betti splitting. In other words,

JG = ⟨fe⟩+ JG\e is Betti splitting.
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Hence, we showed that if G has a free cut-edge, then removing that edge leads to a Betti

splitting. Naturally, it makes sense to wonder what would happen if the ends of the cut edge

were not free. In the rest of this section, we will prove that if e is a cut edge with only one

end free, then the removal of that edge will be a Betti splitting, thus extending the above

result of Saeedi Madani and Kiani.

Theorem 3.13. Let e = {u, v} ∈ E(G), with deg v = 1 (v is a pendent vertex). Then we

have:

1. JG = JG\e + ⟨fe⟩ is a complete Betti Splitting.

2. βr,j(JG) = βr,j(JG\e) + βr−1,j−2(J(G\e)e) for all r ≥ 1 and β0(JG) = β0,2(JG) =

β0,2(JG\e) + 1

Proof. 1. Consider JG = ⟨fe⟩ + JG\e. Let the multigrading on JG be given by the Nn

grading. In other words, deg xi = deg yi = ith unit vector (0, . . . , 0, 1, 0, . . . , 0). Therefore,

all generators of JG\e ∩ ⟨fe⟩ are of the form fxv + gyv and their multigraded Betti numbers

occur within multidegrees a, where its vth component av is non-zero. Since JG\e contains no

generators having xv or yv, βr,j(JG\e ∩K) > 0 implies that βr,j(K) = 0 for all r ∈ N and Nn

multidegrees j as defined above.

We have that β0,2(⟨fe⟩) = 1 and βi,j(⟨fe⟩) = 0 for i ̸= 0 and j ̸= 2 as ⟨fe⟩ is a principal

ideal. Since JG\e ∩ ⟨fe⟩ is generated by polynomials with degree 3 or more, this means that

we have βr,j(JG\e ∩ ⟨fe⟩) > 0 =⇒ βr,j(J) = 0 for all r ≥ 0 and degrees j. It is clear that

since this is true for all degrees j, it holds for all multidegrees in Nn as well.

Therefore, from Theorem 2.102, this implies that (1) holds for all Nn multidegrees j.

Since it is true for Nn-multidegrees, we can combine them to obtain the same result with the

degrees j in the standard grading. Hence we have:

βr,j(JG) = βr,j(⟨fe⟩) + βr,j(JG\e) + βr−1,j(JG\e ∩ ⟨fe⟩) for all r ∈ N.

This shows that JG = ⟨fe⟩+ JG\e is a complete Betti splitting.

2. By (1) and Lemma 3.11, we have that βr,j(JG) = βr,j(⟨fe⟩)+βr,j(JG\e)+βr−1,j−2((JG\e)e)

for all r ∈ N. Since ⟨fe⟩ is an ideal generated by one generator, we know that β0,2(⟨fe⟩) = 1

and βi,j(⟨fe⟩) = 0 for i ̸= 0 and j ̸= 2. Hence, βr,j(JG) = βr,j(JG\e) + βr−1,j−2(J(G\v)u) for all

r ≥ 1 and β0(JG) = β0,2(JG) = β0,2(JG\e) + 1.
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In Theorem 3.13, we have proved that when there is a cut-edge e where one end is a

pendant vertex, then removing e induces a complete Betti splitting. We can now use this to

prove our desired result.

Corollary 3.14. Consider a simple graph G. Let e = {u, v} ∈ E(G), be a cut-edge where v

is a free vertex in G \ e. Then we have:

1. βr,j(JG) = βr,j(JG\e) + βr−1,j−2(J(G\e)e) for all r ≥ 1,

2. JG = JG\e + ⟨fe⟩ is a complete Betti Splitting.

Proof. Let G be connected with cut-edge e = {u, v}. Let G1 and G2 be the connected

components of G \ e. Let u ∈ V (G1) and v ∈ V (G2). By definition, we know that v is a free

vertex in G2. Hence, we can see that G is a decomposable graph, with G = (G1 ∪ {e})∪G2

(since pendant vertices are trivially free vertices and v is a pendant vertex of e). We shall

prove the above splitting for the quotient S/JG and then use Remark 3.11 to obtain the

assertions. Recall that

βi,j(
S

JG
) =

∑
i1≤i,j1≤j

βi1,j1(
S

JG1∪{e}
)βi−i1,j−j1(

S

JG2

). (3.1)

Since e is a cut-edge with a pendant vertex in G1 ∪ {e}, we can now apply Theorem 3.13.

Thus,

∑
i1≤i,j1≤j

βi1,j1(
S

JG1∪{e}
)βi−i1,j−j1(

S

JG2

) =
∑

2≤i1≤i,j1≤j

(βi1,j1(
S

JG1

) + βi1−1,j1−2(
S

J(G1)e

))βi−i1,j−j1(
S

JG2

)

+ (β1,2(
S

JG1

) + 1)βi−1,j−2(
S

JG2

) + βi,j(
S

JG1∪{e}
) + βi,j(

S

JG2

).

(3.2)

Now, by applying Theorem 3.13 to βi,j(
S

JG1∪{e}
) and combining the equations we get

=
∑

1≤i1≤i,j1≤j

βi1,j1(
S

JG1

)βi−i1,j−j1(
S

JG2

) + βi,j(
S

JG1

) + βi,j(
S

JG2

)

+
∑

1≤i1≤i,j1≤j

βi1−1,j1−2(
S

J(G1)e

)βi−i1,j−j1(
S

JG2

) + βi−1,j−2(
S

J(G1)e

) + βi−1,j−2(
S

JG2

)

=
∑

i1≤i,j1≤j

βi1,j1(
S

JG1

)βi−i1,j−j1(
S

JG2

) +
∑

i1≤i−1,j1≤j−2

βi1,j1(
S

J(G1)e

)βi−1−i1,j−2−j1(
S

JG2

). (3.3)

46



Since G1 and G2 are graphs on disjoint sets of vertices, JG1 and JG2 are ideals on disjoint

sets of variables. Hence,

∑
i1≤i,j1≤j

βi1,j1(
S

JG1

)βi−i1,j−j1(
S

JG2

) = βi,j(
S

JG1 + JG2

) = βi,j(
S

JG1∪G2

) = βi,j(
S

J(G\e)
), (3.4)

Similarly, the same is true for (G1)e and G2. Note, that since v is already a free vertex

of G2, we have (G \ e)e = (G1)e ∪G2. Hence,∑
i1≤i−1,j1≤j−2

βi1,j1(
S

J(G1)e

)βi−1−i1,j−2−j1(
S

JG2

) = βi−1,j−2(
S

J(G1)e + JG2

)

= βi−1,j−2(
S

J(G1)e∪G2

) (3.5)

= βi−1,j−2(
S

J(G\e)e
). (3.6)

Thus, combining Equation (3.5) with Equation (3.4) and Remark 3.5, we get:

βi,j(JG) = βi,j(JG\e) + βi−1,j−2(J(G\e)e) for all i ≥ 1

Similar to Theorem 3.13, using Lemma 3.11, we can see that JG = JG\e + ⟨fe⟩ is a complete

Betti splitting.

In general, having a cut edge e = {u, v} where both u and v are not free will not be a

complete Betti splitting. Even simple examples of this fail.

Example 3.15. Consider a simple graph G with V (G) = {1, 2, 3, 4, 5, 6} and E(G) =

{{1, 2}, {2, 3}, {2, 5}, {4, 5}, {5, 6}}. Clearly e = {2, 5} is a cut edge, where {2} and {5} are

both not free. In this case, JG = JG\e + ⟨fe⟩ is not a Betti splitting.

G

1

4

6

2

3

5

4

6

1

2

3

5

G \ e

Figure 3.3: Non example of Example 3.15
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3.2 Betti numbers of trees

In this section, we shall apply our results to study the Betti numbers of trees. We shall

first describe the graded Betti numbers of the star graph. This will be followed by a result

describing β2(JT ) and βk,k+3(T ), for all trees T . We first start by surveying some important

results on the linear strand of the Betti table of binomial edge ideals.

3.2.1 Linear strand

The linear strand of the Betti table for binomial edge ideals is well studied, [13]. The Betti

numbers βk,k+2(JG) are known for the binomial edge ideal for all graphs. Thus complete

characterisation can be obtained through a study of the linear strand of determinantal facet

ideals. These ideals are generated by certain minors of a matrix of indeterminates and are

closely related to binomial edge ideals.

Definition 3.16. Consider an m × n matrix X and let S be an arbitrary set of maximal

minors of X. The ideal generated by such a set S is called a determinantal facet ideal

JS.

Example 3.17. When m = 1, it is clear that X is just a row of indeterminates, X1,j = xj.

We know the maximal minors here will be given by M1,r = xr. Hence, all the pos-

sible determinantal face ideals will be of the form JS = ⟨xa1 , xa2 , . . . , xak⟩, where S =

{M1,a1 , . . . ,M1,ak}.

Example 3.18. When m = 2, the determinantal facet ideals will be generated by arbitrary

sets of maximal minors of a 2 × n matrix X of indeterminates. Denote the indeterminates

by X1,k = xk and X2,l = yl. Then, we can see that the maximal minor of the ith and jth

column is xiyj−xjyi. Hence, given a set S of arbitrary maximal minors, we can see that the

corresponding ideal will be JS = ⟨{xiyj − xjyi |Mi,j ∈ S}⟩. In other words, it is a binomial

edge ideal. Hence, binomial edge ideals turn out to be special cases of determinantal facet

ideals.

In general, the linear strand of determinantal facet ideals has been classified. Note that

if X is an m×n matrix of indeterminates, then the degree of all the maximal minors are the

same and equal to min{m,n}. Hence, if m < n, the linear strand will be the Betti numbers

of the form βi,i+m(JS).
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Definition 3.19. Consider the set [n] = {1, . . . , n} and m ≤ n. A collection of subsets C

is called a m-uniform clutter if |A| = m for all A ∈ C. The elements of C are called

circuits.

We call ∆(C), the simplicial complex generated by C, generated as:

∆(C) = ⟨σ ⊂ [n] | Every subset of σ of cardinality m belongs to C⟩.

Remark 3.20. We can see that ifm < n, then anm-clutter of [n] determines a determinantal

facet ideal. If C is an m-clutter, then the determinantal facet ideal JC is generated by the

maximal minors, whose columns are determined by the circuits of C. From the definition, it

can also be seen that every determinantal facet ideal of an m× n matrix of indeterminates

(m < n) comes from an m-clutter of [n].

Example 3.21. Consider [4] and let the 3-clutter C = {{1, 2, 3}, {2, 3, 4}, {1, 2, 4}}. Thus,

this gives us a 3×4 matrix of indeterminates X. Hence, the maximal minors are determined

by the choice of three columns. Let Ma,b,c be the maximal minor obtained from the ath,

bth and cth columns. Then, for the 3-clutter C, the maximal minors are of the form S =

{M1,2,3,M2,3,4,M1,2,4}.

Theorem 3.22. Consider an m-clutter C. Let the corresponding determinantal facet ideal

be denoted by JC. Then the linear strand of its Betti table is given by:

βi,i+m =

(
m+ i− 1

m− 1

)
fm+i−1(∆(C)),

where fi(∆(C)) denotes the number of faces of ∆(C) of dimension i.

Proof. This theorem is proved in [13].

Corollary 3.23. Let G be a finite simple graph and JG be the corresponding binomial edge

ideal. Then, the linear strand of the Betti table of JG is given by:

βi,i+2(JG) = (i+ 1)fi+1(∆(G)),

where ∆(G) is the clique complex of the graph G and fi+1(∆(G)) is the number of faces in

∆(G) of dimension i+ 1.

Proof. From Example 3.18, we know that every binomial edge ideal is a determinantal facet
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ideal of a matrix of size 2× n. Hence, substituting for m in Theorem 3.22, we get

βi,i+2(JG) =

(
2 + i− 1

2− 1

)
f2+i−1(∆(C)) = (i+ 1)fi+1(∆(C)).

Now, the clutter C here corresponds to the edge set of the graph E(G). Hence the faces of

∆(C) will be σ ⊂ [n] such that all pairs of elements of σ are in C. In other words, it is a

set of vertices σ such that there are edges between any two vertices of σ. Thus, σ must be

a clique. Hence, all faces of ∆(C) are cliques of G. In other words, ∆(C) = ∆(G). Thus,

βi,i+2(JG) = (i+ 1)fi+1(∆(G)).

This previous result completely describes the linear strand of the Betti table for all

binomial ideals. An interesting related question is about which binomial edge ideals have

purely linear minimal free resolutions. These graphs have also been completely classified.

Theorem 3.24. Let G be a finite simple graph and let JG be its binomial edge ideal. Then

the following are equivalent:

1. JG has a linear resolution.

2. G is a complete graph.

Proof. Refer to Theorem 2.1, [18].

Remark 3.25. Note that not all linear resolutions must be minimal, but if there exists a

linear resolution of a module M , then its minimal free resolution must also be linear.

Thus, these theorems give us the total Betti numbers for complete graphs.

Corollary 3.26. Let G be a complete graph on n vertices. Then

βi(JG) = βi,i+2(JG) = (i+ 1)

(
n

i+ 2

)
.

Proof. Since G is the complete graph, ∆(G) is the simplicial complex of subsets of [n].

Hence, the number of elements of dimension i + 1 is
(
n
i+2

)
. Thus from Corollary 3.23 and

Theorem 3.24,

βi(JG) = βi,i+2(JG) = (i+ 1)

(
n

i+ 2

)
.
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Remark 3.27. When G is a complete graph, the binomial edge ideal is nothing but the

ideal generated by all maximal minors of the 2 × n matrix of indeterminates. Hence, it is

a determinantal ideal. Thus, the same result can also be obtained from Theorem 3.24 and

Proposition 2.2 (3) from [21].

Thus we have surveyed results characterising the linear strand and linear resolutions of

binomial edge ideals.

3.2.2 Trees

The results on the linear strand of binomial edge ideals are useful to give some results on

the Betti numbers of the binomial edge ideals of trees. We shall use them often in the many

inductive proofs we discuss in this section.

Theorem 3.28. Let Sn denote the star graph on n-vertices. Then we have:

βk(JSn) = βk,k+3(JSn) = k

(
n

k + 2

)
k ≥ 1.

Proof. Let Kn denote the complete graph on n vertices. Consider the edge e = {0, i}. Since
Sn \ e ∼= Sn−1 (Sn \ e)e = Kn−1, from Theorem 3.13, we have:

βk,j(JSn) = βk,j(JSn−1) + βk−1,j−2(JKn−1) for all k ≥ 1.

We can now use induction to show the above assertion. For n = 2, we can see that S2 is just

an edge. We know that βk,j(JS2) = 0 for all k ≥ 1. Hence, we can see that it agrees with the

above formula as
(
2
r

)
= 0 when r > 2. Now assume the formula holds for n − 1. We must

show that it holds for n.

From Corollary 3.26, we know that βk,k+2(Kn) = (k+1)
(
n
k+2

)
and βk,j(Kn) = 0 if j ̸= k+2.

Hence, using induction and Theorem 3.13, we can see that βk,j(JSn) = βk,j(JSn−1) +

βk−1,j−2(JKn−1) = 0 + 0, when j ̸= k + 3. This also tells us that:

βk,k+3(JSn) = βk,k+3(JSn−1) + βk−1,k+1(JKn−1) = k

(
n− 1

k + 2

)
+ k

(
n− 1

k + 1

)
= k

(
n

k + 2

)
.

Thus, this verifies the above formula.
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Remark 3.29. The above theorem helps characterise all the Betti numbers of Sn, since we

know β0(JSn) = β0,2(JSn) = n− 1.

The above theorem is a restatement of ([15], Proposition 3.8). It tells us the family of

graphs Sn has regularity 3. We can also see that the regularity is achieved at k = 1. Now,

we shall try to use Theorem 3.13 to study the Betti numbers of general trees.

Lemma 3.30. Let T be a tree with v ∈ V (T ) and let Sv = {u ∈ NT (v)| deg u > 1}. Then,

there exists a ∈ V (T ) with deg a > 1 such that:

|Sa| ≤ 1.

Proof. We can prove this via induction on |V (T )|. Let |V (T )| = 2. Then for all v ∈ V (T ),

|Sv| = 0.

Now suppose it is true for all T such that |V (T )| = k. Consider a tree T ′ such that

|V (T ′)| = k+1. Let e = {u, v}, where deg v = 1. Hence, T ′ \ e is a tree with |V (T ′ \ e)| = k.

Hence, there exists a ∈ V (T ′ \ e) such that |Sa| ≤ 1.

• Case 1: u /∈ NT ′(a). In this case, the edge e doesn’t contribute to the degrees of any

vertex in NT ′(a). If u = a, then only a degree 1 vertex is added to NG(a), hence |Sa|
also remains the same.

• Case 2: u ∈ NT ′(a), deg u = 1. Consider NT ′(u) = {a, v} in T ′. Since deg v = 1,

|Su| = 1.

• Case 3: u ∈ NT ′(a), deg u > 1. Here, u is still the only vertex in NT ′(a) whose degree

is greater than one. Hence, |Sa| = 1.

Hence, the induction step has been shown in all possible cases. Therefore, the lemma

holds.

Definition 3.31. A graph G is written in the form T +Km, where T is a tree and Km is a

clique of size m, if G is such that V (G) = V (T )∪V (Qm) and E(G) = E(T )∪E(Qm), where

|V (T ) ∩ V (Qm)| = 1 and E(T ) ∩ E(Qm) = ∅.

Example 3.32. Consider the graph G, with V (G) = {1, 2, 3, 4, 5, 6, 7} and

E(G) = {{1, 2}, {2, 3}, {2, 4}, {4, 5}, {4, 6}, {4, 7}, {6, 7}}. Here, we can see that G = T+K3,

where T is the tree with V (T ) = {1, 2, 3, 4, 5} and E(T ) = {{1, 2}, {2, 3}, {2, 4}, {4, 5}} and

K3 is the clique of size 3, with V (K3) = {4, 6, 7} and E(K3) = {{4, 6}, {4, 7}, {6, 7}}.
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Figure 3.4: G = T +K3

Using our previous results, we can obtain some information about the Betti numbers of

any graph of the form G = T +Km.

Lemma 3.33. Consider a graph that can be expressed in the form G = T +Km. If G and

has n total vertices, then we have:

β1(JG) =

(
n− 1

2

)
+ 2

(
m

3

)
+

∑
vi /∈Km

(
deg vi
3

)
+

(
deg a−m+ 1

3

)
+(n−m− 1)

(
m− 1

2

)
+ (m− 1)

(
deg a−m+ 1

2

)
,

where {a} = V (T ) ∩ V (Km).

Proof. We shall prove this lemma by induction on the number of vertices on the tree T . If

|V (T )| = 1, this means that E(T ) = ∅ and G is a complete graph. Hence, n = m. Therefore,

we have the formula reduced to:

β1(JG) =

(
n− 1

2

)
+ 2

(
n

3

)
−
(
n− 1

2

)
= 2

(
n

3

)
Since this agrees with the formula for β1(Kn) from Corollary 3.26, the base case holds.

Consider a graph G = T +Km. Now let us assume that the lemma is true for |V (T )| =
n−m (total number of vertices is n−1). We must show that it is true for |V (T )| = n−m+1.

53



Since E(T ) ̸= ∅, it follows from Lemma 3.30 that there exists u ∈ V (T ) such that deg u ̸= 1

and |Su| ≤ 1.

Case 1: u ̸= a.

Consider e = {u, v} with deg v = 1. Inductively we know that:

β1(JG\e) =

(
n− 2

2

)
+ 2

(
m

3

)
+

∑
vi /∈Km,vi ̸=u

(
deg vi
3

)
+

(
deg u− 1

3

)
+

(
deg a−m+ 1

3

)
+(n−m− 2)

(
m− 1

2

)
+ (m− 1)

(
deg a−m+ 1

2

)
.

From Theorem 3.13, we have β1(JG) = β1(JG\e) + β0(J(G\e)e). Now, (G \ e)e is obtained
by adding

(
deg u−1

2

)
edges to E(G \ e). Since T is a tree and G = T +Km, we have E(G) =

n−m+
(
m
2

)
. Hence, G \ e has n−m− 1 +

(
m
2

)
= n− 2 +

(
m−1
2

)
edges. This means that:

β0(J(G\e)e) = |E((G \ e)e)| = n− 2 +

(
m− 1

2

)
+

(
deg u− 1

2

)
.

Therefore, substituting into β1(JG) = β1(JG\e)+β0(J(G\e)e), and using the binomial identity(
n
r

)
=

(
n−1
r

)
+
(
n−1
r−1

)
appropriately, we get:

β1(JG) =

(
n− 2

2

)
+ 2

(
m

3

)
+

∑
vi /∈Km,vi ̸=u

(
deg vi
3

)
+

(
deg u− 1

3

)
+

(
deg a−m+ 1

3

)
+(n−m− 2)

(
m− 1

2

)
+ (m− 1)

(
deg a−m+ 1

2

)
+n− 2 +

(
m− 1

2

)
+

(
deg u− 1

2

)
=

(
n− 1

2

)
+ 2

(
m

3

)
+

∑
v1 /∈Km

(
deg vi
3

)
+

(
deg a−m+ 1

3

)
+(n−m− 1)

(
m− 1

2

)
+ (m− 1)

(
deg a−m+ 1

2

)
.

Therefore, we obtain our desired formula.

Case 2: u = a.

Consider e = {a, v} with deg v = 1. Here, since u = a, we must modify the deg a in the

54



inductive formula as well. Hence we have:

β1(JG\e) =

(
n− 2

2

)
+ 2

(
m

3

)
+

∑
vi /∈Km

(
deg vi
3

)
+

(
deg a−m

3

)
+(n−m− 2)

(
m− 1

2

)
+ (m− 1)

(
deg a−m

2

)
Note that |E(G \ e)e| is obtained by adding edges between all vertices in NG(a). Hence,

edges have to be added between all vertices of NG(a) in T . This amounts to a total of(
deg a−(m−1)−1

2

)
=

(
deg a−m

2

)
. Edges must also be added between all vertices in Km and vertices

of NG(a) in T . This adds (m−1)(deg a−m) edges. Note that deg a−m =
(
deg a−m

1

)
. Hence,

the total number of edges added is
(
deg a−m

2

)
+ (m− 1)

(
deg a−m

1

)
. Thus,

β0(J(G\e)e) = |E(G \ e)e| = n− 2 +

(
m− 1

2

)
+

(
deg a−m

2

)
+ (m− 1)

(
deg a−m

1

)
.

Using Theorem 3.13 and the identity
(
n
r

)
=

(
n−1
r

)
+
(
n−1
r−1

)
appropriately, we get:

β1(JG) =

(
n− 2

2

)
+ 2

(
m

3

)
+

∑
vi /∈Km

(
deg vi
3

)
+

(
deg a−m

3

)
+(n−m− 2)

(
m− 1

2

)
+ (m− 1)

(
deg a−m

2

)
+n− 2 +

(
m− 1

2

)
+

(
deg a−m

2

)
+ (m− 1)

(
deg a−m

1

)
=

(
n− 1

2

)
+ 2

(
m

3

)
+

∑
v1 /∈Km

(
deg vi
3

)
+

(
deg a−m+ 1

3

)
+(n−m− 1)

(
m− 1

2

)
+ (m− 1)

(
deg a−m+ 1

2

)
.

Thus, we get the desired formula. This completes the proof.

Remark 3.34. The above formula can be used to obtain the first total Betti number of any

tree. If G = T , it can be trivially written as G = T +K1. Hence, m = 1. Let T ∩K1 = {a}.
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Therefore, from Lemma 3.33, we have:

β1(JT ) =

(
n− 1

2

)
+ 2

(
1

3

)
+

∑
vi /∈K1

(
deg vi
3

)
+

(
deg a− 1 + 1

3

)
+(n− 1− 1)

(
1− 1

2

)
+ (1− 1)

(
deg a−m+ 1

2

)
=

(
n− 1

2

)
+

∑
vi /∈K1

(
deg vi
3

)
+

(
deg a

3

)
=

(
n− 1

2

)
+
∑
vi

(
deg vi
3

)
.

This formula agrees with the corresponding formula for β1(JT ) obtained in Theorem 3.1,

[15].

The above lemma will be very useful while calculating the second total Betti number of

any tree.

Definition 3.35. Consider the graph P , with V (P ) = {1, 2, 3, 4, 5, 6} and E(P ) = {{1, 2}, {2, 3}, {3, 4},
{2, 5}, {3, 6}}. Given a graph G, we define P (G) to be the number of induced subgraphs of

G isomorphic to P .

1

2 3

4
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Figure 3.5: P

Theorem 3.36. Let T be a tree. and JT be its binomial edge ideal. Then:

β2(JT ) =

(
n− 1

3

)
+ 2

∑
vi

(
deg vi
4

)
+
∑
vi

(
deg vi
3

)
(1 + |E(T \ vi)|) + P (T ).

Proof. We can prove this using induction and the previous lemmas. For n = 2, we have that

the tree is an edge. Since JT a principal ideal, we have β2(JT ) = 0, which agrees with the

above formula. Assume the above formula is true for trees with V (T ) = n − 1. We must

show that for any tree with V (T ) = n, the formula holds.
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Consider a tree T with |V (T )| = n. We know from Lemma 3.30 that there exists a vertex

u such that deg u > 1 and |Su| ≤ 1. Let e = {u, v} be an edge such that v is a pendant

vertex. Then, from Theorem 3.13, we have β2(JT ) = β2(T \ e)+β1(J(T\e)e). Let T \u denote

the induced subgraph on V (T ) \ u. Since T is a tree, by the choice of u, we can see that

(T \ e)e = (T \ u) +Kdeg u.

We have that m = deg u and the total number of vertices in (T \ e)e is n − 1. By

definition, we have that (T \ u) ∩ Kdeg u = {Su} = {a}. Since in the construction (T \ e)e
we add m − 2 edges to a, we can see that the degree of the vertex a goes from deg a to

deg a+m− 2 = deg a+ deg u− 2. Thus we have that β1 ((T \ e)e) is given by

β1 ((T \ e)e) =

(
n− 2

2

)
+ 2

(
m

3

)
+

∑
v1 /∈Qm

(
deg vi
3

)
+

(
deg a−m+ 1

3

)
+(n−m− 2)

(
m− 1

2

)
+ (m− 1)

(
deg a−m+ 1

2

)
=

(
n− 2

2

)
+ 2

(
deg u

3

)
+

∑
v1 /∈Qm

(
deg vi
3

)
+

(
deg a− 1

3

)
+(n− deg u− 2)

(
deg u− 1

2

)
+ (deg u− 1)

(
deg a− 1

2

)
Note that |(T \ e) \ u)| = |T \ u| and |(T \ e) \ vi)| = |(T \ vi)| − 1 for all vi ̸= u in T \ e.
Thus, combining the induction hypothesis with Theorem 3.13 we get

β2(JT ) =

(
n− 2

3

)
+

∑
vi ̸=u

(
deg vi
3

)
+

(
deg u− 1

3

)
+ 2

∑
vi ̸=u

(
deg vi
4

)
+2

(
deg u− 1

4

)
+

∑
vi ̸=u

(
deg vi
3

)
(|E(T \ vi)| − 1) +

(
deg u− 1

3

)
(|E(T \ u)|) + P (T \ e)

+

(
n− 2

2

)
+ 2

(
deg u

3

)
+

∑
vi /∈Qm

(
deg vi
3

)
+

(
deg a− 1

3

)
+(n− deg u− 2)

(
deg u− 1

2

)
+ (deg u− 1)

(
deg a− 1

2

)
Note that by the way we have chosen u all its neighbours except a will be degree one vertices

in T \ e. Hence the term
(
deg vi

3

)
is zero for all vi ∈ NT\e(u), where vi ̸= a. Hence, none of

the vi which contribute to the term
∑

vi ̸=u
(
deg vi

3

)
in the above expression end up in Kdeg u

in (T \ e)e. Using this observation on the term
∑

vi ̸=u
(
deg vi

3

)
(|E(T \ vi)| − 1) we can simplify

57



the above expression. After using the identity
(
n
r

)
=

(
n−1
r

)
+
(
n−1
r−1

)
appropriately, we get:

=

(
n− 1

3

)
+

∑
vi ̸=u

(
deg vi
3

)
+

(
deg u− 1

3

)
+ 2

∑
vi ̸=u

(
deg vi
4

)
+ 2

(
deg u− 1

4

)
+

∑
vi ̸=u,a

(
deg vi
3

)
(|E(T ) \ vi)|) +

(
deg a

3

)
(|E(T \ a)| − 1) +

(
deg u− 1

3

)
(|E(T \ u)|) + P (T \ e)

+2

(
deg u

3

)
+

(
deg a− 1

3

)
+ (n− deg u− 2)

(
deg u− 1

2

)
+ (deg u− 1)

(
deg a− 1

2

)
We can see that E(T \ u) will have n − deg u − 1 edges. The only elements of P (T ) which

are not in P (T \ e) are the induced subgraphs which contain the edge e. We also know

the only adjacent vertex to u with a non-zero degree is a. Hence the total number will be

(deg u− 2)
(
deg a−1

2

)
. Therefore, combining all of these:

=

(
n− 1

3

)
+

∑
vi ̸=u

(
deg vi
3

)
+

(
deg u− 1

3

)
+ 2

∑
vi ̸=u

(
deg vi
4

)
+ 2

(
deg u− 1

4

)
+

∑
vi ̸=u,a

(
deg vi
3

)
(|E(T ) \ vi)|) +

(
deg a

3

)
(|E(T \ a)| − 1) +

(
deg u− 1

3

)
(|E(T \ u)|)

+P (T ) + 2

(
deg u

3

)
+

(
deg a− 1

3

)
+ (|E(T \ u)| − 1)

(
deg u− 1

2

)
+

(
deg a− 1

2

)
=

(
n− 1

3

)
+

∑
vi ̸=u

(
deg vi
3

)
+

(
deg u− 1

3

)
+ 2

∑
vi ̸=u

(
deg vi
4

)
+ 2

(
deg u− 1

4

)
+

∑
vi ̸=u,a

(
deg vi
3

)
(|E(T ) \ vi)|) +

(
deg a

3

)
(|E(T \ a)|) +

(
deg u

3

)
(|E(T \ u)|)

+P (T ) + 2

(
deg u

3

)
−

(
deg u− 1

2

)
=

(
n− 1

3

)
+

∑
vi ̸=u

(
deg vi
3

)
+

(
deg u− 1

3

)
+ 2

∑
vi ̸=u

(
deg vi
4

)
+ 2

(
deg u− 1

4

)
+
∑
vi

(
deg vi
3

)
(|E(T ) \ vi)|) +R(T ) + 2

(
deg u

3

)
−
(
deg u− 1

2

)
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=

(
n− 1

3

)
+

∑
vi ̸=u

(
deg vi
3

)
+ 2

(
deg u− 1

3

)
+ 2

∑
vi ̸=u

(
deg vi
4

)
+ 2

(
deg u− 1

4

)
+
∑
vi

(
deg vi
3

)
(|E(T ) \ vi)|) + P (T ) +

(
deg u

3

)

=

(
n− 1

3

)
+ 2

∑
vi ̸=u

(
deg vi
4

)
+
∑
vi

(
deg vi
3

)
(1 + |E(T ) \ vi)|) + P (T ).

As seen in the previous section, the linear strand of binomial edge ideals is well-studied.

But, similar characterisations do not exist for other strands. For a tree T , since all cliques

have at most 2 vertices, the linear strand is such that βk,k+2(JT ) = 0 for all k ≥ 1. Hence,

it becomes possible to use Theorem 3.13 to obtain the values of further strands.

Theorem 3.37. Let T be a tree and JT be its corresponding binomial edge ideal. Then,

βk,k+3(JT ) =
∑

vj∈V (T )

(k − 1)

(
deg vj + 1

k + 1

)
for all k ≥ 2.

Proof. This can be proved using induction. Let n = 2. Then JT is the binomial edge ideal

of a single edge. Since this is a principal ideal, βk,k+3(JT ) = 0 for all k ≥ 2, which agrees

with the formula. Suppose it is true for a T with n−1 vertices. Using Lemma 3.30, consider

e = {u, v} in T where u is such that deg u > 1 and |Su| ≤ 1. Then, using Theorem 3.13, we

get

βk,k+3(JT ) = βk,k+3(JT\e) + βk−1,k+1(J(T\e)e).

Hence, βk,k+3(JT ) depends on the linear strand of (T \ e)e. We know the size of the clique

in (T \ e)e is deg u. Hence using Corollary 3.26 and the inductive hypothesis we get:

βk,k+3(JG\e) =
∑
vj ̸=u

(k − 1)

(
deg vj + 1

k + 1

)
+ (k − 1)

(
deg u

k + 1

)
,

βk−1,k+1(J(G\e)e) = (k − 1)

(
deg u

k

)
.

Thus, substituting into Theorem 3.13 we get:

∑
vj ̸=u

(k − 1)

(
deg vj + 1

k + 1

)
) + (k − 1)

(
deg u

k + 1

)
+ (k − 1)

(
deg u

k

)
=

∑
vj

(k − 1)

(
deg vj + 1

k + 1

)
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Chapter 4

Partial Betti Splittings

In the previous sections, we have seen examples of complete Betti splittings for monomial

ideals and binomial edge ideals. We have also seen some conditions under which splitting

an ideal leads to a Betti splitting. In the case of edge ideals, this condition translates to

splitting off a vertex from the graph. In the case of binomial edge ideals, we shall show that

splitting off a vertex is a partial Betti splitting. We shall also see how this partial splitting

manifests for different types of graphs. From here on, Betti splittings are known as complete

Betti splittings.

4.1 Conditions for partial splittings

While complete Betti splittings are rare, for many ideals, there are ways of decomposing

generators such that some of the Betti numbers are still split. In the case of binomial edge

ideals, defining the notion of a partial Betti splitting, where certain Betti numbers split,

turns out to be useful.

Definition 4.1. Let I, J and K be graded ideals such that G(I) is the disjoint union of

G(J) and G(K). Then I = J +K is an (r, s)-Betti splitting if:

βi,j(I) = βi,j(J) + βi,j(K) + βi−1,j(J ∩K) for all (i, j) with i ≥ r or j ≥ i+ s.

From the definition, we can see that a partial Betti splitting indicates that all Betti

numbers beyond a certain row or column in the Betti table of the ideal are split. Such a

notion can be handy, as it can give us information about important homological invariants

such as the regularity and projective dimension.
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Such a definition of partial Betti splittings allows us to slightly tweak conditions for

complete Betti splittings to suit our needs. We will use a restatement of Theorem 2.102 for

this. As we shall show, the proof remains unchanged except for minor details.

Theorem 4.2. Let I, J and K be graded ideals such that I = J+K and G(I) is the disjoint

union of G(J) and G(K). Suppose for a given i and (multi)degree j we have that:

• βi,j(J ∩K) > 0 implies that βi,j(J) = 0 and βi,j(K) = 0, and

• βi−1,j(J ∩K) > 0 implies that βi−1,j(J) = 0 and βi−1,j(K) = 0.

Then we have:

βi,j(I) = βi,j(J) + βi,j(K) + βi−1,j(J ∩K). (4.1)

Proof. Since I = J +K, we have the short exact sequence

0 −→ J ∩K ϕ−−→ J ⊕K
ψ−−→ J +K = I −→ 0

This induces a long exact sequence in Tor, which restricts to a long exact sequence of vector

spaces when taking the graded pieces,

−→ Tori(k, J ∩K)j −→ Tori(k, J)j ⊕ Tori(k,K)j −→ Tori(k, I)j −→ Tori−1(k, J ∩K)j −→

Fix some i and some (multi)degree j. First suppose βi,j(J ∩K) = 0. By the hypothesis, if

βi−1,j(J ∩K) ̸= 0, that implies that βi−1,j(J) = 0 and βi−1,j(K) = 0. Hence this gives us the

short exact sequence:

0 −→ Tori(k, J)j ⊕ Tori(k,K)j −→ Tori(k, I)j −→ Tori−1(k, J ∩K)j −→ 0.

Since βi,j(J ∩K) = 0, this gives us that βi,j(I) = βi,j(J) + βi,j(K) + βi−1,j(J ∩K).

Instead, if we have that βi−1,j(J ∩K) = 0, then we have the exact sequence,

0 −→ Tori(k, J)j ⊕ Tori(k,K)j −→ Tori(k, I)j −→ 0

which again gives us the desired formula.

Finally, assume that βi,j(J ∩K) ̸= 0. This tells us that βi,j(J) = 0 and βi,j(K) = 0. This

gives us the exact sequence

0 −→ Tori(k, I)j −→ Tori−1(k, J ∩K)j −→ Tori−1(k, J)j ⊕ Tori−1(k,K)j −→ · · ·
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If βi−1,j(J ∩ K) = 0, then that means that Tori(k, I)j = βi−1,j(I) = 0 and hence, the

formula holds. If βi−1,j(J ∩ K) ̸= 0 then βi−1,j(J) = βi−1,j(K) = 0 which implies that

βi,j(I) = Tori(k, I)j = Tori−1(k, J ∩K)j = βi−1,j(J ∩K). Since βi,j(J) = 0 and βi,j(K) = 0,

this agrees with the formula and hence proves the proposition.

We shall see that Theorem 4.2 is very useful to show partial splittings for some graded

ideals.

4.2 Application to binomial edge ideals

The main goal of this section is to apply Theorem 4.2 to binomial edge ideals and obtain

suitable partial splittings. We will show that splitting off a vertex from a graph corresponds

to a partial splitting for its binomial edge ideal and we will also describe the (r, s) of the

induced partial splitting.

Definition 4.3. Consider a graph G with V (G) = [n] and its binomial edge ideal I = JG.

Let s be a vertex in V (G). If J is the ideal generated by all elements in G(I) of the form

fxs+gys and K is the ideal generated by the rest of the elements of G(I), we call I = J+K

an s-partition.

Remark 4.4. If G is the graph of the binomial edge ideal I = JG and I = J + K is an

s-partition as in Definition 4.3, then we can see that J is the binomial edge ideal of the graph

G1 = {{s, k} | k ∈ NG(i)} and K is the binomial edge ideal of the graph G2 = G \ {s}.

Example 4.5. Consider the graphG with V (G) = [5] and E(G) = {{1, 2}, {2, 3}, {3, 4}, {1, 4},
{4, 5}}. Fix 1 ∈ [5]. Then, G1 is the graph with V (G1) = {1, 2, 4} and E(G1) = {{1, 2}, {1, 4}}
and G2 is the graph with V (G2) = {2, 3, 4, 5} and E(G) = {{2, 3}, {3, 4}, {4, 5}}, then

JG = JG1 + JG2 is a 1-partition. The graphs G,G1 and G2 are given in Figure 4.1.

Example 4.6. Let G be a graph with an edge e = {u, v} such that v is a pendant vertex.

Since v has degree one, fe is the only generator which is of the form fxv + gyv. Hence

JG = JG\e + ⟨fe⟩ is a v-partition.

Since every Betti splitting I = J+K involves the intersection J∩K, the following lemma

is useful.
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Figure 4.1: A 1-partition of JG

Lemma 4.7. Consider the graph G on [n] and let JG be its binomial edge ideal. Let JG =

JG1 + JG2 be an s-partition of I, where G1 and G2 are as described in Remark 4.4. Denote

the minimal degree 3 generators of JG1 ∩ JG2 by G(JG1 ∩ JG2)3. Then:

G(JG1 ∩ JG2)3 = {xsfa,b, ysfa,b | a, b ∈ NG(s) and {a, b} ∈ E(G)}.

In other words, (JG1 ∩ JG2)3 = (xsH + ysH)3, where H is the binomial edge ideal of the

induced graph on NG(s).

Proof. Let the vertices of NG(s) be denoted by {v1, . . . , vk}. Since all generators of JG1 ∩JG2

have degree ≥ 3, it is clear that the minimum generators of degree 3 form a basis for the

vector space (JG1 ∩ JG2)3. Hence, we need to prove that the proposed set is a k-basis for

(JG1 ∩ JG2)3. Let B(V ) denote the basis of the vector space V . Then,

B((JG1)3) = {xifa,s, yifa,s | a ∈ {v1, . . . , vk} and i ∈ {1, . . . , n}},

B((JG2)3) = {xifa,b, yifa,b | fa,b ∈ G(JG2) and i ∈ {0, . . . , n}}.

It is easily seen that the above sets generate (JG1)3 and (JG2)3 respectively. Linear indepen-

dence is inferred by considering the Nn multigrading where deg xi = deg yi = (0, . . . , 1, . . . , 0).

Since the only elements in both B((JG1)3) and B((JG2)3) with the same multidegree; xifa,b

and yifa,b are linearly independent, this means that any linear combination of elements from

B((JG1)3) or B((JG2)3) will be zero if and only if all coefficients of the elements in the linear

combination are zero. This tells us that the above sets must be a k-basis of (JG1)3 and (JG2)3

respectively.

64



Consider P =
∑

e∈B((JG1
)3)
cee ∈ JG1 ∩ JG2 , where ce are constants. Let us look at xifa,s

where i /∈ {v1, . . . , vk}. We can rewrite xifa,s as:

xifa,s = xi(xays − xsya) = ys(xixa)− xs(xiya).

It is also clear, since i /∈ {v1, . . . , vk} that the term ysxixa in P , when written as an element

in (JG1)3, only comes from the basis element xifa,s. Since P is in (JG2)3 as well, we can also

write

P = R + ys(cxixa + L) = Q+ ys(
∑

fa,b∈G(K)

c′efa,b), (4.2)

where no terms of R and Q are divisible by ys and L does not have any monomial terms

divisible by xixa. Clearly the above equations implies that cxixa+L =
∑

fa,b∈G(K) c
′
efa,b. Now

by introducing a grading where deg xi = (1, 0) and deg yi = (0, 1) for all i, we can see that xixa

is of degree (2, 0) but the degree of each term fa,b in G(K), is (1, 1). Hence, for Equation (4.2)

to hold, c = 0. The same argument can be made for yifa,s where i /∈ {v1, . . . , vk}.
Now consider the case where i ∈ {v1, . . . , vk}. Here, we can see that the term ysxixa

when written as an element of (JG1)3 only comes from the basis elements xifa,s and xafi,s.

As before, to make sure there are no elements of degree (2, 0), the coefficients of xifa,s and

xafi,s must cancel. It is also clear that cxifa,s − cxafi,s = cxs(xayi − xiya) = cxsfa,i. The

same argument can be applied to ysyixa where i ∈ {1, . . . , k}. Hence from this and the above

equation:

P =
∑

fa,s∈G(JG1
),i∈[n]

ci,axifa,s + c′i,ayifa,s =
∑

a,i∈NG(s)

ci,axsfa,i + c′i,aysfa,i.

Written in terms of the basis of (JG2)3, we can see that

P =
∑

a,i∈NG(s)

ci,axsfa,i + c′i,aysfa,i = xs(
∑

fa,b∈G(K)

da,bfa,b) + ys(
∑

fa,b∈G(K)

d′a,bfa,b),

where da,b, d
′
a,b are all arbitrary constants. Equating coefficients of ys gives us:∑

a,i∈NG(s)

c′a,ifa,i =
∑

fa,b∈G(JG2
)

d′a,bfa,b.

Since {fi,j|{i, j} ∈ V (G)} is a linearly independent set, this implies that c′a,i = 0 for all

a, i ∈ NG(s) where {a, i} /∈ E(G) . The same argument can be made for the coefficients of
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xs. Thus:

P =
∑

a,i∈NG(s),fa,i∈G(K)

ca,ixsfa,i + c′a,iysfa,i.

The proposed set spans (JG1 ∩ JG2)3. Since fa,i ∈ G(K), it is clear that xsfa,i, ysfa,i ∈ JG2 .

We also have xs(xayi−xiya) = xa(xsyi−xiys)−xi(xsya−xays) ∈ JG1 and ys(xayi−xiya) =

ya(xsyi−xiys)−yi(xsya−xays) ∈ JG1 , which means that this set is in (J ∩K)3. To establish

linear independence, we consider the Nn-multigrading deg xi = deg yi = (0, . . . , 1, . . . , 0) on

the set {xsfa,b, ysfa,b | a, b ∈ NG(s) and {a, b} ∈ E(G)}. As before the only elements with

the same multidegree are xsfa,b and ysfa,b. Since these elements are linearly independent,

this means that any linear combination of elements from the proposed set will be zero

if and only if all coefficients of the elements in the linear combination are zero. Hence

{xsfa,b, ysfa,b | a, b ∈ NG(s) and {a, b} ∈ E(G)} is a k-basis of G(JG1 ∩ JG2)3 and the

proposition follows.

This result is very interesting, as it shows that the degree three generators of JG1 ∩ JG2

can be written in terms of the generators of a binomial edge ideal. In particular, there will

be degree three generators of JG1 ∩ JG2 , only when there is a triangle in G containing s.

When JG1 ∩ JG2 has some degree three generators, then the linear strand will be of the form

βk,k+3(JG1 ∩ JG2). We will use some further Betti splittings to characterise the linear strand

in this case.

Theorem 4.8. Consider a graph G and let G′ be the induced subgraph on NG(s). Now

consider the s-partition JG = JG1 + JG2. Then, we have:

βk,k+3(JG1 ∩ JG2) = 2βk,k+2(JG′) + βk−1,k+1(JG′) for all k ≥ 0.

Proof. From Lemma 4.7, we have that the minimal degree 3 generators for JG1 ∩ JG2 are

{xsfa,b, ysfa,b | a, b ∈ NG(s) and {a, b} ∈ E(G)}.

Since, JG1 ∩ JG2 is generated in degree 3 or higher, this tells us that there are no minimal

generators of smaller degrees. Hence, if I is the ideal generated by {xsfa,b, ysfa,b | a, b ∈ NG(s)

and {a, b} ∈ E(G)}, then βk,k+3(JG1 ∩ JG2) = βk,k+3(I).

We now consider the partition I = Ix + Iy, where G(Ix) = {xsfa,b | {a, b} ∈ E(G′)} and

G(Iy) = {ysfa,b | {a, b} ∈ E(G′)}.
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Claim.

Ix ∩ Iy = ⟨{xsysfa,b | {a, b} ∈ E(G′)}⟩.

Proof. It is clear that each xsysfa,b ∈ Ix ∩ Iy. For the other inclusion, consider g ∈ Ix ∩ Iy.
Since g is in both Ix and Iy, we can write it as:

g = xs(
∑

ka,bfa,b) = ys(
∑

k′a,bfa,b),

where ka,b and k
′
a,b are non-zero polynomials. Since, none of {fa,b} are divisible by xs or ys,

we know that some terms of ka,b are divisible by ys, for all (a, b) ∈ G′. Denote all the ka,b

which are divisible by ys with ¯ka,b. Hence, we can write:

g = xs(
∑

k̄a,bfa,b + L) = ys(
∑

k′a,bfa,b)

where k̄a,b are non-zero polynomials divisible by ys, and no term of L is divisible by ys. Since

g must be divisible by ys, we have that ys | L. But since no element of L is divisible by ys,

this implies that L = 0.

Hence, we can write g = xs(
∑
k̄a,bfa,b). If k̄a,b = ysha,b, then g = xsys(

∑
ha,bfa,b) ∈

⟨{xsysfa,b | {a, b} ∈ E(G′)}⟩.

Now we have that G(Ix) = {x0fa,b | {a, b} ∈ E(G′)}, G(Iy) = {y0fa,b | {a, b} ∈ E(G′)}
and G(Ix ∩ Iy) = {x0y0fa,b | {a, b} ∈ E(G′)}. It is clear that JG′

×x0−−→ Ix, JG′
×y0−−→ Iy and

JG′
×x0y0−−−→ Ix ∩ Iy are all isomorphisms of degree 1, 1 and 2 respectively. Now, consider the

Nn multigrading on Ix, Iy and Ix ∩ Iy. Let deg x0 = deg y0 = (1, . . . , 0). The isomorphisms

of the ideals give us:

TorSi (Ix, k)(1,j)
∼= TorSi (Iy, k)(1,j)

∼= TorSi (JG′ , k)j and TorSi (Ix ∩ Iy, k)(2,j) ∼= TorSi (JG′ , k)j

where j is some multigraded degree. By combining all the multigraded Betti numbers, we

can see that βi,j(Ix) = βi,j(Iy) = βi,j−1(JG′) and βi,j(Ix∩Iy) = βi,j−2(JG′). It is also clear that

all Betti numbers of Ix ∩ Iy occur only on multidegrees (2, j) while all Betti numbers of Ix

and Iy occur only at (1, j). Hence, by using Theorem 2.102 and combining all multidegrees,

we have βi,j(I) = βi,j(Ix) + βi,j(Iy) + βi−1,j(Ix ∩ Iy). Therefore,

βk,k+3(JG1 ∩ JG2) = βk,k+3(I) = βk,k+2(JG′) + βk,k+2(JG′) + βk−1,k+1(JG′)
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From this theorem, we can see that the linear strand of JG1 ∩ JG2 is intimately related

to the linear strand JG′ . Hence, we can use this and Theorem 4.2 to get a partial splitting

for the binomial edge ideal of any graph G.

Theorem 4.9. Let JG be the binomial edge ideal of a graph G and let JG = JG1 + JG2 be an

s-partition of G, as defined above. Let c(s) be the size of the largest clique that s is a part

of. Then,

βi,j(JG) = βi,j(JG1) + βi,j(JG2) + βi−1,j(JG1 ∩ JG2) for all (i, j) with i ≥ c(s) or j ≥ i+ 4.

(4.3)

Or in other words, JG = JG1 + JG2 is a (c(s), 4)-Betti Splitting.

Proof. From the previous theorem, we know that

βk,k+3(JG1 ∩ JG2) = βk,k+2(JG′) + βk,k+2(JG′) + βk−1,k+1(JG′).

From Corollary 3.23 we have that βk,k+2(JG′) = (k + 1)fk+1(∆(G)), where fi(∆(G)) is

the number of faces of ∆(G) of dimension i. We know that the largest clique in G′ is of

size c(s) − 1. Hence, βk,k+2(JG′) = 0 for all k ≥ c(s) − 2. Therefore, this means that

βk,k+3(JG1 ∩ JG2) = 0 for all k ≥ c(s)− 1.

Consider the multigrading on JG = JG1 + JG2 to be given by the Nn grading, in other

words, deg xi = deg yi = ith unit vector (0, . . . , 0, 1, 0, . . . , 0). Therefore, all generators of

JG1 ∩ JG2 are of the form fxs + gys and their multigraded Betti numbers occur within

multidegrees a such that its sth component, as is non-zero. Since JG2 contains no generators

of the form fxs + gys, βi,j(JG1 ∩ JG2) > 0 implies that βi,j(JG2) = 0 for all i ∈ N and

multidegrees j as defined above.

From Theorem 3.28, since G1 is a star graph,

βi(JG1) = βi,i+3(JG1) = i

(
n

i+ 2

)
i ≥ 1.

Hence, we can see that for all multidegrees j = (j1, . . . , jn) with
∑

k jk ≥ i+ 4, we have:

1. βi,j(JG1 ∩ JG2) > 0 implies that βi,j(JG1) = 0, and

2. βi−1,j(JG1 ∩ JG2) > 0 implies that βi−1,j(JG1) = 0.

Since the minimal degree of the generators of JG1 ∩ JG2 is 3, and βk,k+3(JG1 ∩ JG2) = 0 for
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all k ≥ c(s) − 1, we also have that βi,j(JG1 ∩ JG2) > 0 implies that βi,j(JG1) = 0 for all

i ≥ c(s)− 1 and multidegrees j.

Therefore, from Theorem 4.2, we have

βi,j(JG) = βi,j(JG1) + βi,j(JG2) + βi−1,j(JG1 ∩ JG2),

for all i and multidegrees j with i ≥ c(s) or
∑n

k=1 jk ≥ i + 4. Thus, the result holds for Nn

multidegrees j. Since it is true for all Nn multidegrees, we can combine them to obtain the

same result in the standard grading.

This result can give us nice splittings for some big classes of graphs.

Corollary 4.10. Let I be the binomial edge ideal of a triangle-free graph T and let I = J+K

be an s-partition of T , as defined above. Then,

βi,j(I) = βi,j(J) + βi,j(K) + βi−1,j(J ∩K) for all i ≥ 1 and multidegrees j. (4.4)

or in other words, I = J +K is a (1,4)-Betti Splitting.

Proof. This follows directly from the Theorem 2.8, as in a triangle-free graph G, G′ will have

no edges. Hence, c(s) = 1.

Remark 4.11. In general a (1, )-Betti splitting is just a complete Betti splitting. Hence,

Corollary 4.10 says that splitting off a vertex is a complete Betti splitting for binomial edge

ideals of triangle-free graphs. Notice, that in Theorem 3.13, splitting off the edge e = {u, v}
is equivalent to splitting off the pendant vertex v. Hence, the complete Betti splitting seen

there turns out to be a special case of Corollary 4.10.

The above theorem and corollary can tell us a lot about the Betti numbers for several

families of graphs. One notable example is the family of bipartite graphs, which is triangle-

free. One difficulty that occurs while using Betti splittings, is that information about JG1 ∩
JG2 is necessary. For example, if we had a characterisation of the minimal generators of

JG1 ∩ JG2 for a triangle-free graph G, using Corollary 4.10, a general formula for β1(G) can

be given. In that direction, we present the following conjecture:

Conjecture 4.12. Let T be a triangle-free graph. If m denotes the number of edges in T ,

and C∗(T ) is the set of induced cycles of T then:

β1(T ) =

(
m

2

)
+
∑
vi

(
deg vi
3

)
+

∑
Ci∈C∗(T )

|Ci| − 1
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In Lemma 4.7, we characterize the degree 3 generators for JG1 ∩JG2 . A similar procedure

can be applied to calculate the generators of degree 4 and above. Unfortunately, the calcu-

lation becomes extremely tedious and characterizing the minimal generators for any degree

n is a tough task without a modification to the methodology.

The above ideas can also give us some nice results regarding the projective dimension

and regularity.

Corollary 4.13. Consider a graph G and let JG = JG2 + JG2 be an s- partition. Then:

1. If pd(JG) ≥ c(s), then:

pd(JG) = max{pd(JG1), pd(JG2), pd(JG1 ∩ JG2) + 1}

2. If reg(JG) ≥ 4, then:

reg(JG) = max{reg(JG2), reg(JG1 ∩ JG2)− 1}

Proof. Given that pd(JG) ≥ c(s), we know that there is a partial splitting for all βi,j(JG),

for all i ≥ c(s). Hence, pd(JG) = max{pd(JG1), pd(JG2), pd(JG1 ∩ JG2) + 1}.
Similarly, if reg(JG) ≥ 4, we know that there is a partial splitting for all βi,j(JG), for all

i ≥ c(s). Hence, reg(JG) = max{reg(JG1), reg(JG2), reg(JG1 ∩ JG2)− 1}. Since reg(JG1) = 3,

we have reg(JG) = max{reg(JG2), reg(JG1 ∩ JG2)− 1}.

Thus finding an (r, s)-splitting, can make the problem of finding the projective dimension

and regularity of JG a little simpler.

4.3 Partial splittings of initial ideals

In the previous section, we gave conditions to obtain a partial Betti splitting for binomial

edge ideals, via JG = JG1 + JG2 from Theorem 4.9. Note that even though JG = JG1 + JG2 ,

this equality does not hold at the level of initial ideals. In other words, there are graphs G

with vertices s ∈ V (G) such that in(JG) ̸= in(JG1) + in(JG1). In this section, we consider

graphs G and vertices s such that in(JG) = in(JG1) + in(JG1). In this case, we prove that

this induces a partial Betti splitting on the initial ideals and characterises the corresponding

(r, s).

The following lemma proves to be useful for our purposes.
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Lemma 4.14. Let G be a finite simple graph and let JG = JG1 +JG2 be an s-partition of G.

If in(JG) = in(JG1) + in(JG2), then

in(JG1 ∩ JG2) = in(JG1) ∩ in(JG2). (4.5)

Proof. This result follows directly from Lemma 1.3, [2].

The above lemma is rather surprising, as in(JG) does not appear in Equation (4.5). But,

since it allows us to write in(JG1) ∩ in(JG2) as in(JG1 ∩ JG2), it is useful to obtain a partial

splitting.

Lemma 4.15. Let JG = JG1 + JG2 be an s-partition, with G1 and G2 as in Remark 4.4.

Then we have that reg(in(JG1)) = 3.

Proof. This follows directly from Corollory 3.3, [28], as reg(JG1) = 3.

The above lemma tells us that the regularity for the initial ideal of any star graph is at

most three. Using this, we can obtain a partial Betti splitting for in(JG).

Lemma 4.16. Consider an s-partition, JG = JG1 + JG2. Then, the degree three generators

for the initial ideal of in(JG1) ∩ in(JG2) is given by:

G(in(JG1) ∩ in(JG2))3 = {xsxayb, ysxayb | a < b ∈ NG(s), {a, b} ∈ E(G)}.

Proof. From Lemma 4.14, we know that the degree three generators of in(JG1)∩ in(JG2) are

the same as that of in(JG1 ∩ JG2) when JG = JG1 + JG2 is an s-partiton. From Lemma 4.7

we have,

G(JG1 ∩ JG2)3 = {xsfa,b, ysfa,b | a, b ∈ NG(s), {a, b} ∈ E(G)}. (4.6)

We know all the minimal generators of JG1 ∩JG2 of degree three form a basis of (JG1 ∩JG2)3.

Consider any degree three polynomial g in JG1 ∩ JG2 . It can be written as:

g =
∑

ei∈G(JG1
∩JG2

)

kiei.

where ki are in the field K. It follows from Equation (4.6) that distinct ei’s have distinct

monomial terms. Note that every generator in Equation (4.6) is made of distinct monomials.

where ki are in the field K. It follows from Equation (4.6) that distinct e′is have distinct

monomial terms. Hence, this means that the coefficient of any monomial in g is the same as
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the coefficient of some ei ∈ G(JG1 ∩ JG2). Hence, the leading term of g is the same as the

leading term of some ei.

We know the leading terms of all ei are of the form {xsxayb, ysxayb | a < b ∈ NG(s), {a, b} ∈
E(G)}. Thus from the above argument, we have

G(in(JG1) ∩ in(JG2))3 = G(in(JG1 ∩ JG2))3 = {xsxayb, ysxayb | a, b ∈ NG(s), {a, b} ∈ E(G)}.

Our goal is to characterise the strand βk,k+3(in(JG1) ∩ in(JG2)). To do this, we use the

help of edge ideals. The following lemmas are useful:

Lemma 4.17. Let G be a finite simple graph, with edge ideal I(G). Then:

βi,j(I(G)) =
∑

S⊆V (G),|S|=j

#comp(G[S]c)− 1 for all i ≥ 0

where G[S]c is the complement of the induced subgraph of G on S.

Proof. This is proved in Proposition 2.1, [25].

Now consider the set W := {xayb| a < b ∈ NG(s), {a, b} ∈ E(G)}. We can see that this

is the generating set of the edge ideal of some bipartite graph G̃s as follows:

Definition 4.18. The graph G̃s is obtained from G as the graph with V (G̃s) = NG(s) ⊔
NG(s). In other words, V (G̃s) = {iA, iB | i ∈ NG(s)}. The edges are given by E(G̃s) =

{{iA, jB} | i < j, {i, j} ∈ E(G)}.

From the definition, we can see that the two independent sets of G̃s are {iA ∈ V (G̃s) | i ∈
NG(s)} and {iB ∈ V (G̃s) | i ∈ NG(s)} and that G̃s is a bipartite graph. We can also see that

the edge ideal of G̃s is generated by W . An example of G and G̃s is given in Example 4.19.

Example 4.19. Consider a graph G with V (G) = {1, 2, 3, 4, 5} and E(G) = {{1, 2}, {2, 3},
{3, 4}, {4, 1}, {1, 5}, {2, 5}, {3, 5}, {4, 5}}. The corresponding bipartite graph G̃5 is given by

V (G̃5) = {1, 2, 3, 4, 1′, 2′, 3′, 4′} and E(G̃5) = {1, 2′}, {2, 3′}, {3, 4′}, {1, 4′}}.

Theorem 4.20. Consider a graph G and its s- partition JG = JG1 + JG2. Let G̃s be its

corresponding bipartite graph as defined above. Let the edge ideal of G̃s be denoted by I(G̃s).

Then, we have:

βk,k+3(in(JG1) ∩ in(JG2)) = 2βk,k+2(I(G̃s)) + βk−1,k+1(I(G̃s).
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Figure 4.2: G and G̃5, in Example 4.19

Proof. From the discussion above,

G(in(JG1) ∩ in(JG2))3 = {xsxayb, ysxayb | a < b ∈ NG(s), {a, b} ∈ E(G)}.

We also know that there are no minimal generators of a smaller degree. Hence, if I is the

ideal generated by G(in(JG1) ∩ in(JG2))3, then βk,k+3(in(JG1) ∩ in(JG2)) = βk,k+3(I).

Now consider the partition I = Ix + Iy, where G(Ix) = {xsxayb | a < b ∈ NG(s), {a, b} ∈
E(G)} and G(Iy) = {ysxayb | a < b ∈ NG(s), {a, b} ∈ E(G)}.

Claim.

Ix ∩ Iy = ⟨{xsysxayb | a < b, {a, b} ∈ E(G)}⟩.

Proof. Since the intersection of two monomial ideals is generated by the least common mul-

tiple of their generators, we have that

G(Ix ∩ Iy) = {lcm(xsxayb, ysxcyd) | a, b, c, d ∈ NG(s), {a, b}, {c, d} ∈ E(G)}.

Case 1: a ̸= c and b ̸= d. lcm(xsxayb, ysxcyd) = xsysxaxcybyd.

Case 2: a ̸= c but b = d lcm(xsxayb, ysxcyd) = xsysxaybyd.

Case 3: a = c but b ̸= d, lcm(xsxayb, ysxcyd) = xsysxaybyd.

Case 4: a = c and b = d, then lcm(xsxayb, ysxcyd) = xsysxayb.

Hence, we can see that xsysxayb | lcm(xsxayb, ysxcyd) for all {a, b} and {c, d} ∈ E(G).

Since lcm(xsxayb, ysxa, yb) = xsysxayb ∈ G(Ix ∩ Iy) for all {a, b}, we know that {xsysxayb |
a < b, {a, b} ∈ E(G)} ⊆ Ix ∩ Iy. Thus,

Ix ∩ Iy = ⟨{xsysxayb | a < b, {a, b} ∈ E(G)}⟩.
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This proves the claim.

Now we have that G(Ix) = {xsxayb | a < b, {a, b} ∈ E(G)},G(Iy) = {ysxayb | a <

b, {a, b} ∈ E(G)} and G(Ix ∩ Iy) = {xsysxayb | a < b, {a, b} ∈ E(G)}. It is clear that

I(G′
s)

×xs−−→ Ix, I(G
′
s)

×ys−−→ Iy and I(G
′
s)

×xsys−−−→ Ix ∩ Iy are all isomorphisms of degree 1, 1 and

2 respectively. Now, consider the Nn multigrading on S, deg xs = deg ys = (0, . . . , 1, . . . , 0).

The isomorphisms of the ideals give us:

TorSi (Ix, k)(1,j)
∼= TorSi (Iy, k)(1,j)

∼= TorSi (I(G̃s), k)j and TorSi (Ix∩Iy, k)(2,j) ∼= TorSi (I(G̃s), k)j

where j is some multigraded degree. By combining all the multigraded Betti numbers, we

can see that βi,j(Ix) = βi,j(Iy) = βi,j−1(JG′) and βi,j(Ix ∩ Iy) = βi,j−2(I(G̃s)). It is also clear

that all Betti numbers of Ix ∩ Iy occur only on multidegrees (2, j) while all Betti numbers

of Ix and Iy occur only at (1, j). As before, by using Theorem 2.102 and combining all

multidegrees, we have βi,j(I) = βi,j(Ix) + βi,j(Iy) + βi−1,j(Ix ∩ Iy). Therefore,

βk,k+3(in(JG1) ∩ in(JG2)) = βk,k+3(I)

= βk,k+2(I(G̃s)) + βk,k+2(I(G̃s)) + βk−1,k+1(I(G̃s))

= 2βk,k+2(I(G̃s)) + βk−1,k+1(I(G̃s).

Now, we are ready to prove the main result of this section.

Theorem 4.21. Consider a graph G and its s-partition JG = JG1 + JG2 such that in(JG) =

in(JG1) + in(JG2). Let G̃s denote the corresponding bipartite graph, as in Definition 4.18. If

Km,n is the largest induced complete bipartite subgraph of G̃s. Then we have:

βi,j(in(JG)) = βi,j(in(JG1)) + βi,j(in(JG2)) + βi−1,j(in(JG1 ∩ JG2)) (4.7)

for all (i, j) with i ≥ c′(s) or j ≥ i + 4, where c′(s) = m + n. In other words, in(JG) =

in(JG1) + in(JG2) is a (c′(s), 4)-Betti Splitting.

Proof. From the previous theorem, we know that βk,k+3(in(JG1 ∩ JG2)) = βk,k+2(I(G
′
s)) +

βk,k+2(I(G̃s)) + βk−1,k+1(I(G
′
s)). From Lemma 4.17 we have

βk,k+2(I(G̃s)) =
∑

P⊆V (G),|P |=k+2

#comp(G̃s[P ]
c)− 1
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where # comp(G̃s[P ]
c) is the number of connected components of the complement of G̃s[P ],

the induced subgraph of G̃s the vertices in P .

Now, consider k = c′(s) − 1. Hence, for all P , with |P | ≥ c′(s) + 1, we can see that

P must contain vertices from the independent sets of G̃s, A and B. Let PA and PB be

the corresponding sets of vertices from A and B respectively. Since the largest complete

bipartite subgraph of G̃s has c
′(s) vertices, we know that G̃s[P ]

c must have at least one edge

from PA to PB. Since PA and PB are both subsets of independent sets in G̃s, GPA
and GPB

are both complete graphs. This implies that # comp(G̃c
s) − 1 = 0. Therefore, this means

that βk,k+3(JG1 ∩ JG2) = 0 for all k ≥ c(s)− 1.

Consider the ideals in(JG) = in(JG1) + in(JG2), with multigrading deg xi = deg yi = ith

unit vector (0, . . . , 0, 1, 0, . . . , 0). Therefore, since all generators of in(JG1) are divisible by

xs or ys, the generators of in(JG1 ∩ JG2), are also divisible by xs or ys and their multigraded

Betti numbers occur within only multidegrees j, where js is non-zero. Since in(JG2) contains

no generators divisible by xs or ys, βi,j(in(JG1 ∩ JG2)) > 0 implies that βi,j(in(JG2)) = 0 for

all i ∈ N and multidegrees j as defined above.

From Lemma 4.15, the regularity of in(JG1) is 3. Hence, we can see that for all multide-

grees j = (j1, . . . , jn) with
∑

k jk ≥ i+ 4, we have:

1. βi,j(in(JG1) ∩ in(JG2)) > 0 implies that βi,j(JG1) = 0, and

2. βi−1,j(in(JG1) ∩ in(JG2)) > 0 implies that βi−1,j(in(JG1)) = 0.

Since the minimal degree of the generators of in(JG1∩JG2) is 3, and βk,k+3(in(JG1∩JG2)) = 0

for all k ≥ c′(s)− 1, we also have that βi,j(in(JG1 ∩ JG2)) > 0 implies that βi,j(in(JG1)) = 0

for all i ≥ c′(s)− 1 and multidegrees j.

Therefore, from Theorem 4.2, we have

βi,j(in(JG) = βi,j(in(JG1) + βi,j(in(JG2) + βi−1,j(in(JG1 ∩ JG2)),

for all i and multidegrees j with i ≥ c′(s) or
∑n

k=1 jk ≥ i + 4. Thus, the result holds for

Nn multidegrees j. Since it is true for Nn multidegrees, we can combine them to obtain the

same result in the standard grading.
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Chapter 5

Bounds on Homological Invariants

In the previous sections, we studied various complete and partial Betti splittings for binomial

edge ideals. In this chapter, we explore a different topic of bounds for various homological

invariants of binomial edge ideals. In particular, we shall give a bound on the maximum

possible total degree of any Betti number of the binomial edge ideal of any graph. Using

this result, we shall partially recover many known results on bounds for the regularity and

projective dimension of the binomial edge ideals of different types of graphs.

Theorem 5.1. Let G be a simple graph on n vertices and let f be the number of free vertices

in G. Then

max{j | βi,j(JG) ̸= 0} ≤ 2n− f.

Proof. Let > be the monomial order with x1 > · · · > xn > y1 > · · · > yn. Consider in(JG)

with its reduced Grobner basis as the generating set G(in(JG)). From Theorem 2.112, we

know that G(in(JG)) = {uπxiyj | where π is an admissible path with endpoints i < j}.
Now, consider the Taylor resolution on the set of monomials G(in(JG)), as defined in

Section 2.3.2, with the N2n multidegree, defined as deg xi = ith unit vector = (0, . . . , 1, . . . , 0)

and deg yi = (n+ i)th unit vector. Hence, we have that Ti is the free modules generated with

basis {[F ] | F ⊆ G(in(JG)), |F | = i} and map ϕi : Ti → Ti−1 such that:

ϕi(F ) =
∑

G⊂F,|G|=|F |−1

ϵFG
lcm(F )

lcm(G)
[G].

with ϵFG as defined in Construction 2.91.

From the Construction 2.91, we can see that the final term in the Taylor resolution is

the free module generated by one element, S[G(in(JG))]. Hence, its multidegree will be
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degN2n(lcm(G(in(JG)))). Since in(JG) is a square-free ideal in S = K[x1, . . . , xn, y1, . . . , yn],

we know that the maximum possible N2n multidegree will be (1, . . . , 1, . . . , 1). Since this is a

refinement of the Nn multidegree defined by deg xi = deg yi = (0, . . . , 1, . . . , 0), this implies

that the maximum possible Nn multidegree will be (2, . . . , 2).

Fix a free vertex v in G. We shall now consider the Lyubeznik resolution as defined in

Section 2.3.2, on the set of monomials G(in(JG)). To study this resolution, we need a total

ordering on G(in(JG)). Represent the elements of G(in(JG)) with {m1, . . . ,mk}. Consider

any total ordering which satisfies the following property:

If xv | mi or yv | mi, and xv ∤ mj and yv ∤ mj, then mj < mi.

In simpler terms, we want a total order where any monomial containing xv or yv is greater

than a monomial that does not contain either of them. An example of such an ordering is

the lexicographic ordering, starting with the vth unit vector.

Since every face F in the Lyubeznik simplicial complex is rooted (refer to Section 2.3.2),

we know that for all E ⊂ F , min(E) ∈ E. In other words, the smallest monomial according

to the total ordering in G(in(JG)) which divides lcm(E) is in E for all E ⊂ F .

Claim. If F is a subset of G(in(JG)), with mi,mj ∈ F and i ̸= j such that xv | mi and

yv | mj, then F is not rooted.

Proof. Consider E = {mi,mj} ⊂ F such that xv | mi and yv | mj. Since mi and mj are

in G(in(JG)), they are of the form uπ1xiyj and uπ2xkyl, where π1 : i = l0, l1, . . . , ls = j and

π2 : k = k0, . . . , kr = l are admissible paths with endpoints i < j and k < l respectively.

Since xv | mi and yv | mj, this implies that v must be a vertex in both π1 and π2.

Since v is free, all its neighbours have edges between them. By the definition of admissible,

we know that no subset of vertices from π1 or π2 form a path. If uk, v, uk+1 were the

neighbours of v in the path π1, then since v is free, there would be an edge between uk and

uk+1, which would imply that π1 is not admissible. The same argument can be made for π2

as well. Hence, the only possibility of such an mi and mj is if v is an endpoint of π1 and π2.

Therefore, we assume mi = uπ1xvyj and mj = uπ2xkyv.

We know all vertices in π2 are such that ki < k or ki > v and all vertices in π1 are such

that li < v or li > j. Let lq be the first vertex in π1 such that k < lq < v. Note that there is

an edge from kr−1 to l1 since v is free. Thus we have that π′ : k, . . . , kr−1, l1, . . . , lq is a path

in G. All vertices in π′ are clearly either < k or > lq. Hence, π
′ is a walk on G which satisfies

Property 2 of being an admissible path. Hence, this implies that we can take a subset of

vertices {j1, . . . , jt} such that π′′ : k, j1 . . . , jt, lq is an admissible path.
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Figure 5.1: π1 and π2

Consider the monomial uπ′′xkylq . Note that for any vertex ki ∈ π1, ki < k or ki > v, and

hence from the definition of lq, ki > lq. Hence the monomial xki or yki associated to ki in uπ′′

is the same as in uπ1 . Similarly, all l1, . . . , lj−1 are such that li > j > iq or li < v, which from

the definition of lq, implies that li < k. Hence the monomial xli or yli associated to li in uπ′′

is the same as in uπ2 . It is also clear that xk | uπ2xkyv, uπ′′xkylq and ylq | uπ1xkyv, uπ′′xkylq .

Hence, this implies that uπ′′xkylq divides lcm(m1,m2). Thus, from the total ordering, since π′′

doesn’t contain v, it is less than both uπ1xvyj and uπ2xkyv, which implies that min(G) /∈ G.

In case there exists no such iq, consider π
′ : k, . . . , kr−1, i1, . . . , j. Since none of the vertices

in π1 are in the interval (k, v), we know that all vertices in π1 are either less than v or greater

than j. Hence, π′ satisfies Property 2 in the definition of an admissible path. Hence there

exists a subset of vertices {j1, . . . , jt} such that π′′ : k, j1 . . . , jt, j is an admissible path. As

before, it can also be seen that uπ′xkyj will divide lcm(uπ1xvyj, uπ2xkyv), from the definition

of uπ′ .

Thus, in either case, we will have min(G) /∈ G. Hence, F cannot be rooted.

From the above claim, no face in the Lyubeznik simplicial complex will contain monomials

having both xv and yv for the free vertex v. Therefore, looking at the Nn multidegree, it is

clear that lcm(F ) when F is rooted has mdeg(lcm(F ))v ≤ 1.

Since we chose any arbitrary free vertex in G, this can be used to give free resolutions

with this property for any free vertex in G. Therefore, since the minimal free resolution F
of in(JG) has the property that rank(Fi)j ≤ rank(F′

i)j, where F′ is any free resolution of

in(JG), this means that for all Nn multidegrees a such that βi,a(in(JG)) ̸= 0, we have that

av ≤ 1, for all free vertices v in G. Therefore, from the Taylor resolution and the above
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arguement, we have that

max{j | βi,j(in(JG)) ̸= 0} ≤
∑

i∈[n],i is not free

2 +
∑
i is free

1 = 2n− f.

Since βi,j(JG) ≤ βi,j(in(JG)), the maximum possible total degree j of JG is less than that of

in(JG). Hence,

max{j | βi,j(JG) ̸= 0} ≤ max{j | βi,j(in(JG)) ̸= 0} ≤ 2n− f.

Remark 5.2. The following theorem can be restated in a form more representing the regu-

larity as follows:

max{i+ r | βi,i+r(JG) ̸= 0} ≤ 2n− f.

In different cases, this can lead to some nice bounds, as with the corollary below.

Corollary 5.3. If JG is such that it has only one extremal Betti number, then we have

pd(JG) + reg(JG) ≤ 2n− f.

Proof. In the case that JG has only a single extremal Betti number, that means that the

regularity is achieved at the projective dimension as well. In other words, βpd,pd+ reg(JG) ̸= 0.

Therefore, from Theorem 5.1, we have that pd(JG) + reg(JG) ≤ 2n− f.

Using further bounds on the projective dimension and regularity respectively, we can use

the above to obtain bounds on the other. One example is below

Corollary 5.4. If G is a connected graph which is r-vertex connected (refer to Defini-

tion 2.15) and JG has exactly one extremal Betti number, then

reg(JG) ≤ n− f − r + 3.

Proof. From Corollary 5.3 and Theorem 2.122 we have

n+ r − 3 + reg(JG) ≤ 2n− f.

Hence, reg(JG) ≤ n− f − r + 3.
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This corollary can be used to partially obtain some well-known bounds on the regularity

of block graphs.

Corollary 5.5. If G is an indecomposable block graph which is JG has exactly one extremal

Betti number, then

reg(JG) ≤ n− f + 2.

Proof. If G is an indecomposable block graph and G ̸= Kn, then we know that it must be

1−vertex connected. Hence, from Corollary 5.4, if JG has a single extremal Betti number,

then reg(JG) ≤ n− f + 2.

Remark 5.6. The above corollary was proved in Theorem 8, [14] where they show that for

any indecomposable block graph G, the ideal JG has a single Betti number if and only if

reg(JG) = n− f + 2.

We can also obtain other bounds on the regularity of block graphs.

Corollary 5.7. Let G be an indecomposable block graph. Then,

pd(JG) + reg(JG) ≥ 2n− f.

Proof. From Theorem 2.124, we know that βn−2,2n−f (JG) ̸= 0. Hence, from Theorem 5.1,

this implies that

max{j | βi,j(JG) ̸= 0} = 2n− f.

Hence, pd(JG) + reg(JG) ≥ 2n− f.

Corollary 5.8. Let G be an indecomposable block graph. Then,

reg(JG) ≥ diam(G)

Proof. From Corollary 5.7 and Theorem 2.123,

reg(JG) + 2n− diam(G)− f ≥ 2n− f.

Thus, reg(JG) ≥ diam(G)

Remark 5.9. The above lower bound for the regularity in block graphs is weaker than the

bound given in Theorem 8, [14]. But this bound will apply to other types of graphs which

satisfy the condition that pd(JG) + reg(JG) ≥ 2n− f .
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Chapter 6

Future Directions/Conjectures

There are many directions in which one can proceed while further studying the Betti numbers

of binomial edge ideals. We shall now list a few ideas and conjectures we had during this

project.

1. One of the main results of this thesis is applying Theorem 3.13 to obtain the second

Betti number of any tree. On studying the formula of the Betti numbers, we can

see some interesting patterns. For example, while checking the second Betti number

of trees, we can see that it depends on the term P (T ), which is the number of a

particular type of induced subgraph present in T . Furthermore, we can see that the

term 2
∑

vi

(
deg vi

4

)
is similar to a term from the second Betti number of the induced

star graph on each vertex. Similarly, from Theorem 3.1, [15], we know that the formula

for the first Betti number of any tree is given by:

Theorem 6.1. Let G be a tree with V (G) = [n]. Then,

β1(JG) = β2(S/JG) = β2,4(S/JG) =

(
n− 1

2

)
+

∑
v∈V (G)

(
deg v

3

)
.

Again, here we can see that the term
(
deg v
3

)
for each v is nothing but the first Betti

number of the induced star graph centred at each vertex.

Hence, it might be reasonable to think that higher Betti numbers depend upon certain

induced subgraphs in the tree T . Furthermore, since we can see that P (T ) has a larger

diameter than any induced star graph, it might be true that the higher Betti numbers

depend upon the induced subgraphs of larger diameter. Going forward, understanding
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what types of induced subgraphs show up in higher Betti numbers and in what form,

might be an interesting endeavour.

2. Another important result we have proved in this thesis, is Theorem 4.9, which tells us

that splitting off the induced graph on a vertex v is a (c(v), 4)-Betti splitting. This

idea of a partial Betti splitting has been first introduced in this thesis. Another way

of framing this result is to say that the mapping cone of I obtained from the exact

sequence

0 −→ J ∩K ϕ−−→ J ⊕K
ψ−−→ J +K = I −→ 0,

agrees with the minimal free resolution of I for all Fi with i ≥ c(v). Hence, this same

property can be investigated for other exact sequences as well. One line of inquiry could

be to study other types of ideals and try to understand if there could be a partial Betti

splitting in those cases as well. In particular, the class of monomial ideals could be a

possible source of interesting results. An example of this is the partial Betti splitting

proved in Theorem 4.21 for the initial ideals of certain binomial edge ideals.

One can also study partial splittings for other exact sequences of binomial edge ideals.

One such important sequence comes from Lemma 4.8, [23]. This exact sequence has

been used several times in different contexts and slightly different forms (See also

Theorem 1.1, [6] and Theorem 1, [27].) Let i be some vertex in V (G), that is not

free. We have JG = Q1 ∩ Q2 where Q1 = JG\v + ⟨xv, yv⟩ and Q2 = JGv . Clearly,

Q1 +Q2 = JGv\v + ⟨xv, yv⟩ Consider the exact sequence

0 −→ S/JG −→ S/Q1 ⊕ S/Q2 −→ S/(Q1 +Q2) −→ 0. (6.1)

One can study if the mapping cone of this exact sequence agrees with the minimal free

resolution of JG and from what i this happens. This idea could be helpful for inductive

arguments and can be used to tackle some conjectures on homological invariants such

as the regularity of block graphs.

3. The technique of using partial Betti splittings may also apply to many other well-

known problems. One such problem is on the extremal Betti numbers of binomial edge

ideals. In the past, Herzog has conjectured the following (Introduction, [14]):

Conjecture 6.2. If the initial ideal of a graded ideal I ⊂ S is a square-free monomial

ideal, then the extremal Betti numbers of I and in>(I) coincide in their positions and

values.

84



This has been proved for toric rings by Strumfels in [29]. Since binomial edge ideals also

have square-free initial ideals, the conjecture should still apply. Partial Betti splittings

could be a useful tool to study the case where the extremal Betti numbers occur after

the point where the partial splittings begin.

Another important problem is the subadditivity problem for binomial edge ideals.

Definition 6.3. Consider a graph G and its binomial edge ideal JG. We define

ti(JG) = sup{j | βi,j(JG) ̸= 0}.

In other words, ti is the i
th maximal graded shift of the minimal free resolution of JG.

The subadditivity problem is defined as follows:

Problem 6.4. Is it true that for any binomial edge ideal that

ta(S/JG) + tb(S/JG) ≥ ta+b(S/JG) for all a, b ≥ 1.

For what kind of graphs can this property hold?

As with the previous conjecture, having a partial Betti splitting can give some insight

into this question for βi,j(JG), with i ≥ c(v), or i+ j ≥ 4.

4. Finally, the last important result we have proved in this thesis is Theorem 5.1. In

particular, we have shown that max{j | βi,j > 0} ≤ 2n − f . As we have seen, this

bound is achieved in the case of block graphs. An interesting question is to investigate

whether this bound is obtained for other types of graphs as well. To that end, we make

the following conjecture:

Conjecture 6.5. Let G be a chordal graph, with binomial edge ideal JG. Then we have

max{j | βi,j(JG) ̸= 0} = 2n− f,

where f is the number of free vertices in G.

We expect the following method can be proved using an inductive argument, following a

slightly modified version of the exact sequence, 6.1, but the details are non-trivial and need

to be worked out.
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