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Abstract

Deep Reinforcement Learning (DRL) is a sub-field of Machine Learning (ML)
that combines reinforcement learning (RL) with deep learning techniques.
DRL has showcased promising results in gaming environments as well real-
world applications such as self driving vehicles and even natural language
processing. However, DRL agents are susceptible to faulty observations due
to sudden interference like blackouts, frozen observation, or adversarial in-
terference in practical applications. These scenarios can hamper the learning
and performance of DRL agents if they are not resilient. Drawing inspira-
tion from causal inference, the Causal Inference Architecture (CIA) explores
a Deep Q-Network (DQN) and a Proximal Policy Optimization (PPO) frame-
work that undergoes training with an additional task focusing on training for
observational interference. Through an evaluation conducted in the gymna-
sium Cartpole-v1 environment, the experimental findings demonstrate that
the CIA exhibits enhanced performance and greater resilience against obser-
vational interference in both DQN and PPO implementations.

The CIA is further explored using quantum networks and hybrid quantum-
classical networks and are tested for their resilience in noisy environments.
A novel Quantum-Enhanced CIA (QCIA) is proposed which could replicate
the functioning of the CIA using Variational Quantum Circuits (VQCs) and
is benchmarked against the corresponding classical architectures for its per-
formance using both DQN and PPO implementations.
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Chapter 1

Introduction

With recent advances in machine learning (ML) and Artificial Intelligence
(AI), we have seen the benefits we can reap from this technology. AI is
already embedded in our daily lives, from digital personal assistants to rec-
ommendation systems and even autonomous vehicles (1). However, current
AI models have limitations, including the computational power required for
training and the handling of complex tasks (2).

On the other hand, quantum computing stands at the brink of a new era
of computation, promising to unlock unprecedented computational power
for certain tasks.(3). Quantum computing harnesses the principles of quan-
tum mechanics to process information in a manner fundamentally different
from classical computing (4). Quantum computing is currently in the Noisy
Intermediate-Scale Quantum (NISQ) era (5), where significant limitations
constrain computational capabilities. The presence of noise and errors in
current quantum devices hampers the accuracy of calculations (5). The lack
of full-fledged quantum error correction makes it challenging to mitigate the
impact of these errors. As a result, the NISQ era primarily focuses on near-
term applications that can leverage the limited capabilities of these devices.

This thesis specifically delves into the exploration of Quantum-Enhanced
RL (QRL). RL involves agents learning policies and making decisions based
on a state space provided to them.

In the context of real-world applications, agents utilizing DRL face nu-
merous challenges. The primary issues arise from the environment’s unpre-
dictable and often disruptive nature, which introduces uncertainties that can
significantly impact an agent’s performance and reliability (6). Real-world
scenarios involve inherent observational uncertainty, which could be caused
by external attackers or noisy sensors. This uncertainty can lead to faulty
observations, disrupting the learning process and impacting the decision-
making ability of the DRL agent. For example, in an autonomous driving

6



scenario, various unforeseen events such as sudden blackouts, frame-skipping
due to network instabilities, or temporary blindness while driving, can cause
abrupt interference in the observations received by the DRL agent. These
interruptions can lead to serious issues for the agent’s learning and decision-
making processes.

DRL agents need to be resilient against these interferences. They must
be able to diagnose observations accurately, filter out irrelevant disruptions,
and make correct inferences about reward information despite the interfer-
ence. The CIQ framework in Ref. (6) is designed to train RL agents to
effectively handle unforeseen and potentially catastrophic interference by in-
corporating observational disruptions as an auxiliary task during training.
This involves providing interference labels during training and guiding the
RL agent to learn to discern and adapt to interference. Specifically, the RL
agent is trained to recognize interference labels using uncertain noise gen-
erators, enabling it to embed a latent state into its model, preparing it to
handle such interference during deployment in the field.

To bolster an RL agent’s resilience against interference, utilizing causal
inference models can help the agent reason about desired rewards despite
intermittent disturbances (6). The RL agent can focus on relevant reward
information associated with an unobserved confounder, allowing it to make
informed decisions in the presence of disruptions. The CIQ algorithm lever-
ages causal inference on state variables and employs treatment switching
methods to embed latent variables into the agent’s decision-making process.
CIQ uses the learned model to estimate the latent state and interference label
during testing, enabling the RL agent to navigate and make decisions despite
observational disruptions. The amalgamation of latent states through causal
inference enhances the Q-network’s ability to collect rewards in challenging
environments affected by observational interference.

This thesis explores an adaptation of the CIQ called Causal Inference
Architecture (CIA). This architecture is easily adapted to both DQN (7)
and PPO algorithms. It further explores quantum processing in certain or
all the modules of the CIA.

VQC’s (8) are employed for the agent’s networks and test their perfor-
mance in the Gymnasium (9) CartPole-v1 environment.

The results of this paper show the feasibility of VQCs and Hybrid Quantum-
Classical networks to provide competent resilience and performance as classi-
cal networks, when utilizing much lower number of parameters in the model.

A significant part of the research presented here has been published as a
part of the COMSNETS 2024 conference, which can be referred to from (10)
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Chapter 2

Background

2.1 Machine Learning

ML makes use of statistical techniques and computational algorithms to ana-
lyze data, make predictions and model complicated functions without relying
heavily on explicit programming instructions. It instead allows algorithms
to learn purely from past data or experience. The algorithm autonomously
learns the most effective approach to solving the problem by trying to opti-
mize some objective function, representing the task.

ML techniques come under three broad categories (11):
Supervised Learning: These algorithms aim to learn from labeled data,

where each input is associated with a corresponding "correct" output label.
They analyzing patterns in the labeled data and learn to predict or classify
new, unseen data instances.

Unsupervised Learning: These algorithms operate on unlabeled data,
aimed at trying to discover classifications and structures within the data.
Without explicit guidance, the algorithms aim to identify groupings among
data points, enabling tasks such as clustering or dimensionality reduction.

Reinforcement Learning: RL algorithms aim to train an agent to make
sequential decisions in an interactive environment. The environment provides
feedback in the form of rewards or penalties to the agents as they navigate
the environment. Through trial and error, reinforcement learning algorithms
learn optimal strategies to maximize cumulative rewards over time.

The versatility of ML techniques allow them to address a variety of chal-
lenges, ranging from image recognition and natural language processing to
financial forecasting and robotics.
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2.1.1 Supervised vs. Unsupervised Learning

Supervised learning constitutes a category of ML dedicated to deriving a
function that effectively addresses labelled problems. It operates on a des-
ignated training set, comprised of data points {(xi, y(xi))}, where xi repre-
sents input values and yi = y(xi) denotes the corresponding expected output
(11). This training set serves as a reference for evaluating the efficacy of the
method. When the scores on the training data reach a satisfactory thresh-
old, the model is considered ready to be deployed to generate predictions for
previously unseen data.

In contrast, unsupervised learning focuses on identifying patterns within
unstructured data. Common objectives include grouping or classification
tasks wherein data points exhibiting similar characteristics, as determined by
a specified metric, are clustered together. Conversely, dissimilar points are
assigned to distinct groups. Unsupervised learning usually aims to minimize
a specific cost function, like the sum of the Euclidean distance between points
in clusters.

2.2 Reinforcement Learning

RL is an ML algorithm that aims to train networks by making use of positive
and negative feedback. In an RL problem, an agent navigates an unknown
environment and needs to choose suitable actions at each step to manipu-
late and interact with the environment. The goal of the agent is to map
the possible states in an environment to possible actions, using an optimized
policy, to maximize a cumulative reward signal from the environment. The
policy serves as a strategy for the agent to navigate the environment. RL
is commonly used for autonomous systems in dynamic environments such as
robotics, game agents, and even self driving vehicles.

The different aspects in RL include (12):

Environment: The external system with which an agent interacts. The
environment provides feedback to the agent based on the actions taken, in-
fluencing the subsequent state and rewards.

State: A state is usually represented as a vector that describes informa-
tion about the current configuration that the environment is in. The state
is crucial because the agent’s policy is often based on its perception of the
current state.
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Agent: The agent can observe the state of the environment and take
actions to interact with it. The agent takes actions in the environment based
on its current knowledge or policy and tries to learn how to maximize rewards.

Action: The set of possible moves that the agent can make. The agent
actions, in turn, influence the state of the environment.

Policy: A strategy that the agent follows to determine its actions. The
policy can be deterministic, mapping states to specific actions, or stochastic.

Reward: The environment returns a reward value for actions taken by
the agent, based on the current state of the environment. The reward signal
is used to guide the agent’s learning, indicating the desirability of the action
taken in the given state.

Reward Function: A mapping that defines the reward an agent receives
for each possible state-action pair.

Value Function: An estimation of the expected cumulative reward that
an agent can obtain from a given state.

Exploration: Exploration involves trying new actions to collect data on
their effects on the environment and learn strategies.

Exploration: Exploitation involves selecting actions based on knowledge
from previous data to obtain high rewards based on the agent’s policy.

Episode: A single run of interactions between the agent and the envi-
ronment. An episode typically starts with the initial state, involves a series
of actions, and ends when a termination condition is met.

RL faces unique challenges compared to the other paradigms ML algo-
rithms in significant ways (13):

1. Training data is collected by the agent dynamically as it learns the
environment, in an unsupervised manner, instead of being curated be-
forehand.

2. Actions taken now may have long term consequences and reception of
feedback for that action is delayed. Additionally, the goal of the agent
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is not to maximize the reward for a decision taken in the current state
of the environment, but to maximize the cumulative reward earned in
the episode.

3. Non-stationarity: Data collected at different times during the training
procedure will not be I.I.D (Independently Identically Distributed).
The agents actions determine the training data it gets access to (14).

RL has emerged as a powerful paradigm in ML, showcasing remarkable
achievements across various domains. In particular, RL has revolutionized
game-playing, demonstrated by AlphaGo Zero’s performance through self-
play (15). Recent advancements include DeepMind’s DeepNash agent achiev-
ing competitive levels in Stratego and Meta’s Cicero agent attaining human-
level performance in Diplomacy (16), leveraging RL and language modeling
techniques (17).

Furthermore, RL has found applications beyond gaming, in diverse indus-
tries such as quantitative finance (18), self-driving car technology (19), and
computer hardware design (20). Notably, OpenAI’s ChatGPT (21) model
utilizes RL, specifically Proximal Policy Optimization (PPO) with human
feedback, to optimize language generation quality, highlighting the versatil-
ity of RL methodologies.

In framing RL problems, two primary approaches are commonly em-
ployed: model-based and model-free RL. Model-based RL involves learning
a representation of the environment’s dynamics and state transitions, dis-
tinct from action strategy learning. Conversely, model-free RL agents focus
only on learning optimal actions without explicit modeling of environment
dynamics.

RL methodologies are further categorized into online and offline methods.
Online RL involves incremental updates to the model as agents interact with
the environment and observe outcomes. In contrast, offline RL leverages
external datasets to approximate functions without direct interaction with
the environment, offering advantages in scenarios with limited interaction
capability (22).

Additionally, RL techniques vary between value-based and policy-based
methods. In value-based RL, agents estimate discounted future rewards for
actions at a given state, optimizing actions to maximize expected future
rewards. Conversely, policy-based RL directly models a probability distri-
bution over possible actions at each state, essentially capturing the policy
itself.
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2.3 Postulates of Quantum Mechanics

Quantum mechanics aims to provide a mathematical foundation that de-
scribes the behavior of particles in the size scales of electrons. The theory is
based on a set of postulates that define the mathematical framework govern-
ing the quantum world (23).

2.3.1 Postulate 1: State of a Quantum System

The state of a quantum system is described by a vector in a complex vector
space known as a Hilbert space. This vector is called the state vector or
wavefunction, often denoted by |ψ⟩ in the bra-ket notation. The state vector
contains all the information about the system’s physical properties, including
position, momentum, and spin.

2.3.2 Postulate 2: Observables and Operators

Observable quantities, such as position, momentum, and energy, are repre-
sented by linear, Hermitian operators in quantum mechanics. Operators act
on the state vector to extract information about the corresponding observ-
able. For example, the position operator x̂ operates on the state vector to
yield the position of the particle.

2.3.3 Postulate 3: Measurement and Probability

When an observable is measured in quantum mechanics, the outcome is prob-
abilistic rather than deterministic. The probability of obtaining a particular
measurement outcome is given by the square of the absolute value of the inner
product between the state vector and the eigenvector corresponding to that
outcome. Mathematically, for an observable represented by the operator
Â with eigenvalues ai and corresponding eigenvectors |ai⟩, the probability
of measuring the outcome ai when the system is in state |ψ⟩ is given by
p(ai) = |⟨ai|ψ⟩|2.

2.3.4 Postulate 4: Expected Values

The expected value of any operator Â is given by

⟨A⟩ =
∫∞
−∞ Ψ∗ÂΨdτ∫∞
−∞Ψ∗Ψdτ

.
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2.3.5 Postulate 5: Evolution of Quantum Systems

The time evolution of a quantum system is governed by the Schrödinger
equation, which describes how the state vector changes over time. The
Schrödinger equation is given by iℏ ∂

∂t
|ψ⟩ = Ĥ |ψ⟩, where ℏ is the reduced

Planck constant, ∂
∂t

is the partial derivative with respect to time, Ĥ is the
Hamiltonian operator representing the total energy of the system, and i is
the imaginary unit.

2.3.6 Postulate 6: Antisymmetry principle

The complete wavefunction is antisymmetric to the interchange of the coordi-
nates of two particles. The intrinsic "spin" is also a part of these coordinates.
The Pauli exclusion principle arises from this postulate.

2.4 Quantum Computing

2.4.1 The Qubit

A qubit is a quantum system in a two-dimensional state space. In the com-
putational basis, it is defined as the superposition

|ψ⟩ = a|0⟩+ b|1⟩.

A qubit can be visualized on a Bloch sphere. The coefficients a and b must
be normalized such that |a|2 + |b|2 = 1. From the Euler formula eix =
cos(x) + i sin(x), we can rewrite the equation, as

|ψ⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩,

where the real numbers θ and ϕ define a point (sin θ cosϕ, sin θ sinϕ, cos θ)
on the Bloch sphere as shown in Fig. 2.1.

2.4.2 Quantum Gates

Quantum gates are fundamental building blocks in quantum computing that
operate on qubits, the basic units of quantum information. These gates are
analogous to classical logic gates used in classical computing but have unique
properties due to the principles of quantum mechanics.
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In quantum computing, gates are represented by unitary matrices that act
on the state of qubits. A unitary matrix preserves the length of the quantum
state vector, ensuring that the probabilities of all possible outcomes sum to
one. This property is essential for maintaining the principles of quantum
mechanics, such as superposition and entanglement.

The RX, RY, and CZ gates are examples of commonly used quantum
gates which are used in this research (24):

1. RX Gate (Rotation around the X-axis): The RX gate rotates
the qubit state vector around the X-axis of the Bloch sphere by a specified
angle. It is expressed as:

RX(θ) =

[
cos( θ

2
) −i sin( θ

2
)

−i sin( θ
2
) cos( θ

2
)

]
Here, θ is the rotation angle. The RX gate allows the qubit to be rotated
between the computational basis states |0⟩ and |1⟩, enabling the manipulation
of phase and amplitude.

2. RY Gate (Rotation around the Y-axis): Similar to the RX gate,
the RY gate rotates the qubit state vector, but this time around the Y-axis
of the Bloch sphere. It is expressed as:

RY (θ) =

[
cos( θ

2
) − sin( θ

2
)

sin( θ
2
) cos( θ

2
)

]
The RY gate is particularly useful for manipulating the probability ampli-
tudes of the qubit states, allowing for the creation of superposition states.

3. CZ Gate (Controlled-Z Gate): The CZ gate is a two-qubit gate
that performs a conditional phase shift on the target qubit depending on the
state of the control qubit. It is expressed as:

CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


When the control qubit is in state |1⟩, the CZ gate applies a phase shift of −π
to the target qubit’s state |1⟩. Otherwise, it leaves the target qubit’s state
unchanged. The CZ gate is often used in quantum circuits for entangling
qubits and implementing quantum algorithms.

2.4.3 Quantum Circuits

Qubits are the unit of information in quantum computing like the classical
bit in classical computers. However, a significant difference is that classical
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φ

θ

x̂

ŷ

ẑ = |0⟩

−ẑ = |1⟩

|ψ⟩

Figure 2.1: Bloch sphere representation of a single qubit. (14)

bits can only be in either of the binary states - 0 or 1 but qubits can be in a
superposition of two states (14). It can represented as:

|ψ⟩ = α|0⟩+ β|1⟩ =
[
α
β

]
,

where α and β are two complex numbers and |0⟩ and |1⟩ are the two
states in the computational basis. After a measurement, the probability that
the qubit’s wavefunction collapses to state |0⟩ is P (|0⟩) = |α|2 and to state
|1⟩ is P (|1⟩) = |β|2.

When the qubit remains unobserved, it is in a superposition of these basis
states. We represent the state of the qubit diagrammatically, on the surface
of the Bloch sphere:

Quantum operators are linear maps from a Hilbert space to itself and are
represented using unitary matrices. Given a Hilbert space H, an operator U
is a linear map H → H such that:

UU † = U †U = I,

where U † is the Hermitian conjugate of U .
Gates are amalgamation of operators performed in series on qubits. We

can put these gates together to form quantum circuits. Gates can act on
multiple qubits at a time, resulting in a linear transformation. Since quantum
operators must be unitary functions, the composition of these functions is
also unitary.
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There are many similarities between NNs and quantum circuits. They
are both a set of operations acting sequentially on inputs, and produce mea-
surable outputs.

Quantum machine learning (QML) makes use of quantum circuits for
ML with the potential to revolutionize both fields. QML aims to leverage
the principles of quantum mechanics to enhance traditional machine learning
algorithms and solve computational problems more efficiently.

One of the key promises of QML lies in its ability to harness superposi-
tion and entanglement to process and manipulate data in ways that classical
computers cannot. Quantum computers can represent and manipulate vast
amounts of information simultaneously, offering exponential speedup for cer-
tain algorithms compared to classical counterparts.

Several approaches to QML have emerged, each leveraging different as-
pects of quantum computing. Quantum-enhanced algorithms, such as quan-
tum support vector machines (25) and quantum neural networks, aim to
improve the performance of classical machine learning tasks by exploiting
quantum parallelism and interference. These algorithms hold promise for
tasks such as optimization, classification, and pattern recognition.

Another approach is to use quantum computers to directly implement and
execute classical machine learning algorithms, albeit with potential perfor-
mance gains due to quantum parallelism. Quantum annealing and adiabatic
quantum computing are examples of this approach, focusing on solving op-
timization problems efficiently (26).

Despite its promise, QML is still in its early stages, facing significant
challenges and limitations. One major challenge is the development of quan-
tum hardware with sufficient coherence times and qubit fidelity to support
complex QML algorithms. Additionally, the lack of standardized software
tools and programming frameworks hinders the widespread adoption and
development of QML algorithms.

2.5 Causal Modelling

Causal modeling, a field drawing from disciplines like econometrics, epidemi-
ology, and computer science, focuses on understanding causal relationships
within systems.

A causal model is a mathematical representation of these causal relation-
ships, encapsulating the causal structure of a system. This structure enables
us to predict the outcomes of interventions, allowing us to understand how
changing certain variables affects the overall system behavior.

Unlike correlation, which merely identifies associations between variables,
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causal modeling delves deeper into the mechanisms behind these associations.
By uncovering causal relations, we gain insights into how variables interact
and influence each other.

Causal models consist of three key components: the system itself, the
probabilistic distribution of the system’s variables, and the causal graph
representing the causal relationships among variables. The causal graph,
composed of nodes and directed arrows, illustrates which variables directly
influence others.

In reinforcement learning, incorporating causal graphs can provide valu-
able guidance for decision-making. By understanding the causal relationships
between actions and outcomes, agents can make more informed decisions and
adapt to changing environments more effectively. Additionally, causal model-
ing can help identify confounding variables and mitigate bias in the learning
process.

Moreover, causal modeling doesn’t just provide insights into observed
data; it also allows for hypothetical interventions. By simulating the effects
of potential interventions, we can anticipate how changes to the system will
impact future outcomes.

Reinforcement learning has seen considerable progress and excitement in
recent years. It holds promise for further advancement by embracing causal
techniques. In online reinforcement learning, there is an inherent causal
structure, wherein the environment responds to the agent’s actions, and the
agent learns from these outcomes. Causal reinforcement learning introduces
causal information, such as causal graphs and models, into the standard
reinforcement learning framework.

One significant advantage of causal inference is its capability to integrate
domain knowledge. This aspect makes causality particularly attractive for
reinforcement learning, where enhancing agent performance can be achieved
by incorporating external knowledge about the environment. For example,
in healthcare applications of reinforcement learning, prior knowledge about
drug interactions, commonly known to medical professionals, can be encoded
using causal methods.

Moreover, two key challenges in reinforcement learning are sample effi-
ciency (the number of episodes needed for an agent to achieve satisfactory
performance) and the effective utilization of offline data (data collected by
observing another agent in a similar system) in an online learning scenario.
As discussed later, researchers in causal reinforcement learning are leveraging
causal techniques to address these challenges.
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Chapter 3

Methods

3.1 Neural Networks

A neural network is a computational model inspired by the structure and
function of the human brain’s neural networks. It consists of interconnected
nodes, called neurons, organized into layers. These neurons receive input,
perform computations, and produce output signals.

In a typical neural network, there are three main types of layers:
Input Layer: receives the initial input data, which could be images, text,

or numerical values. Each neuron in the input layer represents a feature or
attribute of the input data.

Hidden Layers: These are intermediary layers between the input and
output layers. Each neuron in a hidden layer takes input from the neurons
in the previous layer, performs a computation using weighted connections,
and passes the result to the neurons in the next layer.

Output Layer: The output layer produces the final output of the neural
network, which could be a classification label, a regression value, or some
other form of prediction. The number of neurons in the output layer depends
on the nature of the task the neural network is designed to perform.

Neural networks need to first learn from training data approximate pat-
terns and relationships in the input data into functions. During training,
the network adjusts its weights and biases based on the input-output pairs
provided in a training dataset. This adjustment process, often referred to
as backpropagation, aims to minimize the difference between the network’s
predictions and the actual outputs.

Neural networks use activation functions to introduce non-linearities into
the model (27). Without activation functions, the network would essentially
be a linear regression model, which can only learn linear relationships between
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input and output.

1. Linear Transformations: In a neural network layer, each neuron
performs a linear transformation of the input data by computing the
dot product of the input vector with the weights and adding a bias
term.

2. Activation Functions: After the linear transformation, the output is
passed through an activation function. Activation functions introduce
non-linearities by applying a non-linear transformation to the input.
This allows the network to learn complex patterns and relationships in
the data.

3. Non-linear Mapping: The non-linearities introduced by activation
functions enable the neural network to learn non-linear mappings from
the input data to the output. This is crucial for capturing the complex
relationships that exist in real-world data, such as images, text, and
time series.

There are various activation functions used in neural networks, each with
its own properties and advantages. Common activation functions include sig-
moid, tanh, ReLU (Rectified Linear Unit), Leaky ReLU, and softmax. These
functions have different shapes and behaviors, allowing them to capture dif-
ferent types of non-linearities in the data.

Once trained, a neural network can generalize its learning to make predic-
tions on new, unseen data. Neural networks have demonstrated remarkable
success in various applications, including image and speech recognition, natu-
ral language processing, medical diagnosis, and autonomous driving, among
others (28). They continue to be a key component of many cutting-edge
artificial intelligence systems. Fig. 3.1 represents a NN.

3.2 Variational Quantum Circuits
Quantum circuits with variable parameters as gates can be employed to ap-
proximate a function to addresses a specific problem. The tunable parameters
of the circuits are optimized iteratively by classical optimizers in the same
way as NNs.

VQCs offer flexibility in terms of circuit depth and show some resilience
to noise, which is crucial in the current scenario lacking robust quantum error
correction. Despite limitations in current NISQ devices, quantum machine
learning algorithms utilizing VQCs can navigate quantum errors effectively.
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Figure 3.1: A simple 3 layered NN. Every connection represents a set of
weights, biases and activation functions The whole neural network is a com-
position of all these functions.

Simulating quantum circuits with a large number of qubits using classical
computers presents a formidable challenge due to the exponential growth in
computational state-space dimensions. Although current quantum devices
have limitations, recent breakthroughs, such as Google’s demonstration of
quantum sampling, highlight the potential of quantum computing.

VQCs, in some cases, require fewer parameters than conventional neural
networks, making them promising for modeling complex environment (11).
For example, simulating a 100-qubit physical system on classical computers
demands immense computational resources. In contrast, a VQC could repre-
sent such systems with fewer parameters, potentially outperforming classical
neural networks in terms of efficiency and scalability. Fig. 3.2 represents a
VQC.

3.3 Q-Learning

RL stands as a foundational pillar in the field of artificial intelligence, aiming
to enable agents to learn optimal behaviors through interaction with their
environment. Among the various algorithms in reinforcement learning, Q-
learning has emerged as a fundamental and widely utilized technique which
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|0⟩ RX∗ RY RZ

|1⟩ RX∗ RY RZ

|2⟩ RX∗ RY RZ

|3⟩ RX∗ RY RZ

Figure 3.2: ith Quantum layer ansatz. Gates with (∗) are non-trainable and
used for encoding and data re-upload. RX, RY and RZ are rotational gates.
Finally, the CZ gates are used to entangle qubits with their adjacent qubits.

is effectiveness in solving a diverse range of problems.
Q-learning is a model-free RL algorithm, meaning it does not require prior

knowledge of the environment’s dynamics (29). Instead, it learns through
trial and error, gradually improving its decisions based on feedback received
from the environment. Q-learning belongs to the class of value-based meth-
ods, where the goal is to learn a value function that estimates the expected
return or cumulative reward associated with taking a particular action in a
given state.

The central concept in Q-learning is the Q-function, also known as the
action-value function. The Q-function maps state-action pairs to their corre-
sponding expected returns, indicating the quality or utility of taking a spe-
cific action in a particular state. Mathematically, the Q-function is defined
as follows:

Q(s, a) = E[Rt|s, a]

Where Q(s, a) represents the expected return (cumulative reward) obtained
by taking action a in state s, and E[Rt|s, a] denotes the expected value of
the sum of rewards starting from state s, taking action a, and following the
optimal policy thereafter.

The key objective in Q-learning is to iteratively update the Q-values based
on observed transitions in the environment. This is typically achieved using
the Bellman equation, which expresses the relationship between the Q-values
of successive states:

Q(s, a)← Q(s, a) + α
[
R + γmax

a′
Q(s′, a′)−Q(s, a)

]
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Where α is the learning rate, R is the immediate reward received after taking
action a in state s, γ is the discount factor that controls the importance of
future rewards, s′ is the next state, and a′ is the action chosen in the next
state according to the current policy.

One of the key advantages of Q-learning is its ability to handle environ-
ments with large state and action spaces. This is made possible through
the use of function approximation techniques, such as neural networks, to
approximate the Q-function. Deep Q-learning, which employs deep neural
networks to approximate the Q-values, has gained significant attention and
achieved remarkable success in solving complex tasks, such as playing video
games and controlling robotic systems.

Despite its effectiveness, Q-learning is not without its challenges and lim-
itations. One notable issue is the trade-off between exploration and exploita-
tion, where the agent must balance between trying out new actions to dis-
cover potentially better strategies (exploration) and exploiting its current
knowledge to maximize rewards (exploitation). Various exploration strate-
gies, such as epsilon-greedy and softmax exploration, have been proposed to
address this challenge.

In recent years, advancements in Q-learning have extended its applicabil-
ity to diverse domains such as robotics, autonomous vehicles, finance, and
healthcare. Moreover, research efforts continue to explore novel variants and
enhancements to Q-learning, such as double Q-learning, prioritized experi-
ence replay, and distributional Q-learning, to further improve its efficiency
and stability.

3.4 Deep Q-Network

Deep Q-Network (DQN) leverages the power of deep neural networks to ap-
proximate the Q-function in complex environments. Building upon the foun-
dation of Q-learning, DQNs overcome the limitations of traditional tabular
Q-learning by enabling the handling of high-dimensional state spaces and
complex decision-making tasks. DQNs extend the principles of Q-learning
by employing deep neural networks, to approximate the Q-values.

The architecture of a DQN typically consists of multiple layers of neurons,
with the input layer receiving state observations and the output layer repre-
senting Q-values for each action. During training, the network is trained to
minimize the discrepancy between predicted Q-values and target Q-values,
obtained using some variant of the Bellman equation.

The training process involves iteratively updating the network’s weights
to minimize a loss function, such as the mean squared error between predicted
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and target Q-values. This process is often facilitated by optimization algo-
rithms like stochastic gradient descent (SGD) or its variants, which adjust
the network’s parameters to improve its performance over time.

Here’s a step-by-step explanation of how the DQN algorithm works:

1. Initialization:

• Initialize the DQN with random weights.

• Define a replay memory buffer to store experiences (state, action,
reward, next state, and done flags) encountered during training.

2. Interaction with the Environment:

• Start interacting with the environment by selecting actions based
on an exploration strategy (e.g., epsilon-greedy).

• Execute selected actions in the environment and observe the re-
sulting next state and reward.

• Store the transition (state, action, reward, next state, done flag)
in the replay memory buffer.

3. Q-Network Update:

• Sample a minibatch of experiences from the replay memory buffer.

• Compute the target Q-values for each experience using a variant
of the Bellman equation.

• Update the weights of the Q-network to minimize the temporal
difference (TD) error between predicted and target Q-values.

• This is typically done using gradient descent optimization algo-
rithms like stochastic gradient descent (SGD) or its variants.

• The loss function used for training the Q-network is typically the
mean squared error between predicted and target Q-values.

4. Target Network Update:

• Periodically update a target Q-network with the weights of the
main Q-network.

• This helps stabilize training by reducing the correlation between
target and predicted Q-values.

• The target Q-network is used exclusively for computing target
Q-values and is not updated during the training process.
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5. Repeat:

• Continue interacting with the environment, updating the Q-network,
and periodically updating the target network until convergence
criteria are met.

Key Components of DQN:

• Replay Memory: Stores past experiences to break correlations be-
tween consecutive updates and improve sample efficiency.

• Target Network: A separate network used for computing target Q-
values, updated periodically to stabilize training.

• Exploration Strategy: Determines how actions are selected dur-
ing training, balancing exploration of new actions with exploitation
of learned knowledge.

• Q-Network Architecture: Typically consists of deep neural network
layers, such as convolutional and fully connected layers, to approximate
the Q-function.

One of the key advantages of Deep Q-Learning is its ability to generalize
across similar states, thereby improving sample efficiency and enabling effec-
tive learning from limited data. This is achieved through the use of function
approximation techniques provided by deep neural networks, which capture
underlying patterns and relationships in the data.

However, Deep Q-Learning also faces several challenges and considera-
tions. Training deep neural networks can be computationally intensive and
may require substantial computational resources, especially for complex en-
vironments with high-dimensional state spaces. Moreover, the stability and
convergence of Deep Q-Learning algorithms can be affected by issues such as
overestimation bias, non-stationarity of the target network, and exploration-
exploitation trade-offs.

Despite these challenges, Deep Q-Learning has demonstrated remark-
able success in various domains, including playing Atari games, controlling
robotic systems, and optimizing complex decision-making processes. On-
going research continues to explore enhancements and extensions to Deep
Q-Learning, such as Double Deep Q-Learning, Dueling Q-Networks, and
Prioritized Experience Replay, aiming to address its limitations and further
improve its performance and applicability.
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3.5 Proximal Policy Optimization
Proximal Policy Optimization (PPO) is a state-of-the-art RL algorithm that
aims to efficiently optimize policy functions in tasks (30). Developed by
OpenAI, PPO builds upon the advantages of policy gradient methods while
addressing their limitations, such as high variance and sensitivity to hyper-
parameters. PPO achieves a balance between stability, sample efficiency, and
scalability, making it widely adopted in various domains.

Traditional policy gradient methods, such as REINFORCE and Trust Re-
gion Policy Optimization (TRPO) (31), suffer from high variance and sen-
sitivity to hyperparameters. These methods often require careful tuning of
learning rates and clipping parameters to achieve stable training. Addition-
ally, TRPO’s computational complexity and memory requirements can be
prohibitive for large-scale applications. PPO addresses these challenges by
introducing a simple yet effective optimization objective that ensures stable
and efficient learning.

PPO is based on the principle of trust region optimization, where policy
updates are constrained to a region around the current policy to prevent
large policy changes that may lead to instability. The key concepts of PPO
include:

• Clipped Surrogate Objective: PPO introduces a clipped surrogate
objective that constrains policy updates to a small region around the
current policy. By limiting the magnitude of policy changes, PPO
ensures stable and incremental updates.

• Proximal Policy Optimization: The clipped surrogate objective is
optimized using proximal optimization techniques, such as the trust
region constraint or penalty terms. This ensures that policy updates
are conservative and do not deviate too far from the current policy.

• Adaptive Learning Rates: Adaptive learning rates are used to dy-
namically adjust the step sizes during optimization. This allows PPO
to effectively navigate the optimization landscape and converge to a
stable policy faster.

The training procedure of PPO involves the following steps:

1. Collect Data: Collect trajectories by interacting with the environ-
ment using the current policy.

2. Compute Surrogate Objective: Compute the clipped surrogate ob-
jective using the collected data and the current policy. Typically a
parameter describes the extent of clipping.
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3. Optimize Objective: Optimize the clipped surrogate objective us-
ing gradient-based optimization methods, such as stochastic gradient
descent (SGD) or Adam.

4. Update Policy: Update the policy parameters using the optimized
objective, ensuring that policy updates are within a trust region around
the current policy.

5. Repeat: Repeat the process iteratively until the policy converges to
an optimal solution or a stopping criterion is met.

PPO offers several advantages over traditional policy gradient methods:

• Stability: Stable training is provided by constraining policy updates
to a small region around the current policy.

• Sample Efficiency: Efficient learning is achieved by leveraging adap-
tive learning rates and clipping objectives.

• Scalability: PPO is scalable to large-scale RL tasks, because of its
low memory requirements and efficient optimization procedure.

PPO has been successfully applied to diverse RL tasks and its stability,
sample efficiency and scalability make it a versatile tool.

3.6 Cartpole Environment

The CartPole environment has a 4 dimensional input space and represents
a fundamental RL setting where the objective is to balance a pole atop a
moving cart. With a 4-dimensional state space providing observations of the
cart’s position and velocity along with the pole’s angle and angular velocity,
agents make discrete movements, either left or right, to stabilize the pole (9).

Episodes terminate when the pole exceeds a critical angle or the cart
reaches an edge or if the agent has completed a certain number of steps set
by the user. Agents receive a reward for each time step the pole remains
balanced, encouraging them to maximize cumulative rewards. This environ-
ment serves as a foundational and widely-used benchmark in reinforcement
learning, offering a simple yet challenging setup for testing and developing
various learning algorithms and control strategies.
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Environment Description

• Physical Setup: The CartPole environment consists of a cart that
moves along a frictionless track and a pole attached to the cart by a
joint.

• Observation Space: The state of the environment is represented by
a vector of four real numbers: cart position, cart velocity, pole angle,
and pole angular velocity.

• Action Space: The agent can take two discrete actions: push the cart
to the left or push the cart to the right.

• Reward Structure: The agent receives a reward of +1 for each time
step that the pole remains upright. The episode terminates if the pole
falls beyond a certain angle threshold or if the cart moves outside a
predefined boundary.

Reinforcement Learning Setup

• Episode Termination: Episodes terminate when the pole falls be-
yond a certain angle threshold or when the cart moves outside a pre-
defined boundary. Upon termination, the episode resets to its initial
state.

• Training Objective: The agent aims to learn a policy that maxi-
mizes the cumulative reward obtained over a sequence of actions. Re-
inforcement learning algorithms, such as Q-learning or policy gradient
methods, are used for training.

• Evaluation Metrics: Performance is evaluated based on metrics such
as the average duration of time steps that the pole remains upright,
average reward per episode, or convergence speed of the learning algo-
rithm.

3.6.1 Noise

Three types of noises are simulated in the CartPole game.

• Gaussian Noise: Common in sensory data, it adds zero-mean Gaus-
sian noise to observed states, with variance aligning to the variance
across all recorded states.
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• Observation Blackout: Results in the complete loss of observational
information by setting interfered states to zero.

• Frozen Observation: Indicates delays and frozen observations due
to limited data communication, resulting in lagged observations. The
state becomes the previous state if the perturbation remains constant.

The noise is added randomly to the input state with a set probability
when the agent is playing the game during testing and training.
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Chapter 4

Experiments

4.1 Networks

All the classical layers are created using PyTorch (32) and the quantum
circuits are created using pytorch-quantum (33). Classical neural networks
within the model consist of three fully connected layers with ReLU acti-
vation after every layer, except for the final output layers (Q-Values and
interference probability). The quantum and hybrid networks make use of
VQCs and hybrid VQCs in place of purely classical networks. The network
ansatz used across all the VQCs are the same as in and are shown in Fig.
3.2. The hybrid networks make use of classical preprocessing layers before
encoding to the VQC as shown in Fig. 4.1 Data is encoded to the qubits
by applying an RX gate with the input values as the parameter. A single
layer consists of consecutive trainable variational gates on all the wires - RY,
then RX, and finally CZ gate is applied across adjacent qubits to entangle
them. Measurements of the circuit are of two types - single qubit and multi-
qubit correlation. Single qubit measurements return the expected value of
the Pauli Z operation on each qubit. Multi-qubit measurements return the
correlation between the expected value of the Pauli Z operation on multiple
qubits. These can be used to change the size of the output vector. The
circuits make use of data re-uploading - before each layer, the original input
is encoded using the RX operation on the qubits.

4.2 DQN Algorithm

In one single step of the algorithm, the Cartpole environment is first re-
freshed to provide the current state. We then choose to attack the state
with a noise with a certain attacking probability. Then the state is used as
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Figure 4.1: Sample hybrid classical and quantum layer. Using hybrid models
in this way can be useful to reduce the number of qubits used in the quantum
circuit. A large input can first be processed by the classical network to process
it into a smaller sized input for the quantum circuit.

input for the agent which employs the local network to produce action val-
ues and interference probabilities as outputs. The agent may choose to use
these action values to play the game, or choose a random action to explore
the environment according to an exploration-exploitation policy. Here, we
use an exponentially decaying threshold to choose between exploration and
exploitation.

The chosen action from the agent is sent to the environment, which re-
turns a reward, the next state and information about the state. We store the
current state, action, reward, next state, whether the episode ended or not,
and if the state was interfered or not to the replay buffer. These will be used
for training the network later.

Once the step is over, the environment is refreshed again and this is
repeated until a certain termination step is reached, or the agent loses. Then
the next episode is played. This process is repeated for 50,000 steps. The
agent has a training step between every 20 steps played. The target network
is updated with the parameters of the local network after the training step.
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Figure 4.2: Simple Architecture. θ and ϕ are the trainable parameters of each
network. Note that in this architecture, the Interference Probability is not
used for treatment selection, and is just trained separately to test whether
the network is able to predict interference from the input.

4.2.1 Model architectures

The simple DQN and CIA DQN are implemented using classical, quantum
and hybrid networks.

The simple DQN architecture consists of two networks. Network 1 takes
the current state of the environment as input and processes it to produce
actions. Network 2 also takes the state as input and produces logits to
predict interference.

The CIA DQN, on the other hand, employs a causal inference models,
utilizing binary treatment information and hidden confounders. This model
maps interfered observations to a latent state, predicts the interference label,
and adapts its policy based on this estimate.

The CIA DQN architecture as shown in Fig. 4.3 uses Network 1 to ap-
proximate a latent state from input. Then, Network 2 predicts the probability
of interference of the latent state. Then, we choose between either Network
3 or Network 4 to produce Q-values depending on indication of Network 2 on
interference. We use variable treatment for processing the latent state and
playing the game, based on the interference.

The overall CIA model involves training the Q-network end-to-end using
the DQN algorithm, including an additional loss for predicting the inter-
ference label. The CIA’s objective function combines losses related to DQN
training and interference label prediction. The approach aims to demonstrate
the resilience of the CIA against observational interference, showcasing how
the model can handle noisy observations.
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Figure 4.3: CIA Architecture. In this architecture, the Interference proba-
bilities are used to weight the Q-Values from Network 3 and Network 4.

4.2.2 Agent

An agent class is created which makes use of the models for decision-making.
The AdamW optimizer (34) is used to update the parameters of the networks
while training. The learning rate used for all classical trainable parameters
is 0.001 and for all quantum parameters is 0.01.

The agent has a replay buffer of size 105 which stores the experiences
collected by the agent while playing instances of the game. The buffer stores
state, next state, action, reward and interference label. Random batches of
size 64 are sampled from the buffer for training the network.

During training, the local network is given the current state and the in-
terference label and it outputs the Q-Values. Note that since the interference
label is provided during training, this is used as a probability of 0 or 1 for
interference. The 3rd and 4th network in the CIA will switch based on the
provided label itself.

The target network similarly predicts the Q-Values for the next state.
The loss is calculated between the two Q-Values of the networks. Since
the networks have 2 outputs - Q-Values and interference probabilities, loss
functions for the CIA and simple models are used as in (6):

LCIADQN(θ1, θ2,θ3, ϕ) = itraint ·MSE(θ1, θ2, ϕ)

+ (1− itraint ) ·MSE(θ1, θ3, ϕ)

+ λ ·
[
itraint log p(ĩt|z̃t; θ1, ϕ)

+ (1− itraint ) log (1− p(ĩt|z̃t; θ1, ϕ))
] (4.1)
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LsimpleDQN(θ1,θ2, ϕ) =MSE(θ1, θ2)

+ λ ·
[
itraint log p(ĩt|z̃t; θ1, ϕ)

+ (1− itraint ) log (1− p(ĩt|z̃t; θ1, ϕ))
] (4.2)

where θ1, θ2, θ3 and ϕ are the trainable parameters of each network as
shown in Fig. 4.2 and Fig. 4.3. This calculates the loss between the output
Q-Values. itraint is the interference label that is provided to the network
while training. λ is a scaling constant and is set to 1 for simplicity. p is
the interference probability that is outputted from the network. ĩt is the
interference probability predicted by the network and z̃t is the latent state
at time t approximated by the network.

4.2.3 Training

All the models are trained using the same procedure. RL agents are suscep-
tible to instabilities while training and converging. So for each model, the
training procedure is repeated 10 times to obtain 10 trained networks. The
learning curves of these models indicate the average training time and data
sample efficiency of these algorithms.

The agent plays the CartPole game and collects experiences from the
environment (tuple of state, action, reward, next state, done flags and inter-
ference label) in the replay buffer after every step. After every 20 steps, the
agent trains its model to improve its strategies based on the data collected.
We train the local network in 10 epochs. The agent samples 64 instances
from the replay buffer. The target Q-values are calculated for the states and
a loss is calculated with the predicted Q-values from the local network. The
local network is then optimized using the AdamW optimizer. Once this pro-
cess occurs for 10 epochs, the target network is updated with the weights of
the local network.

After every 500 steps of training, the models are validated. This style of
implementation allows us to test the learning of the models at standardized
intervals, allowing us to accurately compare the training speeds and sample
efficiency of different models. The validation step simple resets the envi-
ronments, and allows to agent to play 10 episodes of the game with only
exploitation. We take the average score to be the test or validation score at
a particular time in the training procedure.

We define the stopping criteria for the training procedure to be when the
average score of the past 10 validation scores reaches 195 or above. Once the
training is complete, the models are ready to be tested for their performance.
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The metric used to quantify the performance of models is explained in the
next subsection.

4.2.4 Testing

Two performance metrics are employed to benchmark and compare the trained
models. The first one compares how well the models fare in in different levels
of noise called the performance score. It directly measures the ability of the
models to play the game. The second metric tries to quantify how robust
the models are, called the robust score.

For the performance score, the trained agents are made to play the Cart-
Pole game, but with a cap of 500 steps per episode instead of 200. The agents
do not explore or optimize anymore. The performance scores are tested for
no noise, and varying ratio of attacks from frozen observation, Gaussian and
blackout noise.

The performance of the agents are tested using the fully trained models.
Every agent plays 50 games with a given interference type and ratio. The
average score of these 50 games is taken as the performance score for each
of the agents. The performance score assigned to the model architecture
is taken as the best score from the 10 trained agents for each architecture.
This quantity can be interpreted as how consistently a well-trained model
can perform in the described scenarios.

For the robust score, we try to find how similar the agents react to original
and noise-added inputs. We give the agents a batch of 100 original inputs,
and then we add noise to the inputs and calculate the ratio for which the
agents produced the same final actions. This metric quantifies the resilience
of the models to various noises.

4.3 PPO Algorithm

This PPO implementation runs 16 parallel environments. These environ-
ments produce batches of 16 states as outputs and take batches of 16 actions
as input for updating the states of the environments. Then the environment
outputs 16 next states and 16 done flags - which is a binary variable in-
dication whether an episode of the game has been completed or not. The
environments may be implemented sequentially, or in parallel.

The steps in the algorithm consists of two phases - The rollout phase,
and the learning phase.

Rollout phase: The agent takes the 16 states as input and gives 16
actions as outputs. The agent also stores the data of current state, action,
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reward, next state, done flags, and if the state was interfered or not to empty
lists. This is however, different from the replay buffer used in the DQN
algorithm, as we only store a current batch of data and discard it after the
learning phase. This process is looped in all 16 environments for 128 steps.

Learning phase: During the learning phase, the agent utilizes the col-
lected data from the rollout phase consisting of states, actions, rewards, next
states, and done flags. This data is organized into batches of length 16 ×
128 (number of environments × number of steps per environment).

The agent estimates values for the next observations which have been
stored from the rollout, conditioned on whether the episode terminated (done
flags). Then we calculate the advantage and return vectors for the optimizer
step.

4.3.1 Model architectures

The simple PPO and CIA PPO are also implemented using classical, quan-
tum and hybrid networks similar to the DQN. The major difference here
is presented in method of implementing these networks. For the DQN algo-
rithm, it is sufficient to obtain 2 action values as output. The PPO algorithm
employs an actor model and a critic model. The actor produces action prob-
abilities, and the critic is used to estimate the advantages. In this thesis, we
replace the actor with the simple and CIA models to estimate values. For the
critic, we simply employ a neural network with 3 layers and ReLU activation
after the first two layers, similar to the other networks in the models and in
Fig. 4.2 and Fig. 4.3

The simple PPO actor uses the same architecture as the simple DQN as
in Fig. 4.2. The actor model produces two action values from Network 1
and two interference probabilities as logits from Network 2. The critic model
uses only a single network which takes a state as input and produces a single
value as output for every input state.

The CIA PPO actor uses the same architecture as the CIA DQN as in
Fig. 4.3. Since the model’s hypothesis is that a latent state has a strong
causal relationship with the Q-values, the PPO model implemented also as-
sumes that the critic advantage value depends on this latent state and not
the original input state. Hence, The critic network takes the latent state
produced by the actor as the input instead of the original state provided and
produces a single critic value.
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4.3.2 Agent

The optimizer settings used are the similar to the DQN. The AdamW opti-
mizer (34) is used to update the parameters of the networks while training.
The learning rate used for all classical trainable parameters is 0.001 and for all
quantum parameters is 0.01. The rollout phase consists of 16 environments
and 128 steps per environment. The clipping coefficient used is 0.2.

The overall loss function used is:
loss = policy loss − entropy × (entropy coefficient) + value loss × (value

coefficient) + interference loss

LCLIP+VF+S+I(θ) = Êt

[
LCLIP(θ)− c1LVF(θ) + c2S[πθ](st)

]
+ λ ·

[
itraint log p(ĩt|z̃t; θ1, ϕ)

+ (1− itraint ) log (1− p(ĩt|z̃t; θ1, ϕ))
] (4.3)

where θ is the set of all parameters of the model. itraint is the interference
label that is provided to the network while training. λ is a scaling constant
and is set to 1 for simplicity. p is the interference probability that is outputted
from the network. ĩt is the interference probability predicted by the network
and z̃t is the latent state at time t approximated by the network.

4.3.3 Training

The training occurs in 8 epochs and 8 minibatches during the learning phase.
The optimizer updates the weights of the networks based on the PPO loss. In
the PPO as well, for each model, the training procedure is repeated 10 times
to obtain 10 trained networks. The learning curves of these networks indicate
the average training time and data sample efficiency of these algorithms.

When the 100-episode average score reaches 195 or above, the agent is
considered to be trained. Once the training is complete, the models are ready
to be tested for their performance.

4.3.4 Testing

The PPO employs the same metrics to test performance and robustness and
the DQN model. The trained actor of the PPO functions exactly like the
trained local network of the DQN. These networks are ready to be employed
in a testing scenario to play in the environment.
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Chapter 5

Results

5.1 DQN

5.1.1 Sample Efficiency and Learning Speed

To get an accurate idea of sample efficiency of the models, we need a uni-
form method to compare across different training runs. So we validate the
model at specific steps (after every 500 steps) to check the progress of agent’s
learning. Here, the model does not learn, but simply plays the game 10 times
until termination and takes the average score. We plot these validation scores
alongside the number of steps of the algorithm, which now provides a stan-
dard x-axis that is comparable across runs.

The termination for DQN is set at 200 as the models were unable to
complete training till 500 steps in the given set up. We notice from Fig. 5.1
that both the classical simple and CIA models with low parameters is under-
performing compared to the rest. The quantum and hybrid models with
much lower number of parameters are able to training with much higher
sample efficiency. However, classical networks have the advantage of being
able to scale up the number of parameters easily. The classical models with
high parameters are able to learn and complete the entire training within
30000 steps of the algorithm.
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Figure 5.1: Average validation scores of models in DQN - No Noise Only the Quantum simple model and
the two classical models with low parameters are not able to learn and converge.
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Figure 5.2: Average validation scores of models in DQN - Frozen Observation Noise The CIAs perform
almost as well as the case with no noise. The simple models are learning much slower than before, or stagnate
around a score.
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Figure 5.3: Average validation scores of models in DQN - Blackout Noise There seems to be a very noticeable
difference between the resilient and the under-performing models under Blackout noise.
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Figure 5.4: Average validation scores of models in DQN - Gaussian Noise The variance of the simple models
seem to be highest under Gaussian noise.
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Table 5.1: Performance Test Scores of the DQN models tested with no noise

Network
Type

Number of
Parameters

Avg. Score
(Out of 500)

Classical Simple 98 189.56
Classical Simple 183 263.08
Classical Simple 486 467.03

Classical CIA 132 289.18
Classical CIA 235 407.27
Classical CIA 643 465.31

Hybrid Simple 92 342.16
Hybrid CIA 113 457.2

Quantum Simple 78 374.06
Quantum CIA 96 472.14

We notice similar patterns in Fig. 5.2, 5.3 and 5.4 with noise as well.
We see that the quantum and hybrid models are competitive with classical
models with about three times the number of parameters. When noise is
introduced, we see a clear difference between the CIA models and the simple
models. We see that the CIA models are able to efficiently learn while using
lesser data.

Blackout noise seems to have the highest effect in regards to separating
the learning speeds of the simple and CIA models. The frozen observation
noise seems to affect this trend the least. This could be because the Cartpole
game is simple enough that the models are able to learn to navigate the
environment well even using just the previous frame.

5.1.2 Performance Scores

Each model is trained on frozen observation, Gaussian noise and blackout
interference. Every model is then tested on the same interference type as they
were trained on, varying the ratio of interference from 0%, 10%, 20%, 30%.
It is to be noted that performance scores have significant variance. However,
they qualitatively indicate the trends in performance of the networks.

From Table 5.1, we can infer that using quantum layers in hybrid models
and fully quantum models can help in reducing the total number of param-
eters used in the model without degrading performance. We notice that the
Quantum CIA model has the highest score with only 96 parameters. It per-
forms at par with the largest network trained - the Classical CIA model that
uses 643 parameters.

In all 4 cases, the simple models seem to follow a trend of lowering perfor-
mance as the interference ratio increases. Such a stark trend is not noticeable
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Table 5.2: Performance test scores of the DQN models tested with Frozen
Observation noise

Network
Type

Number of
Parameters

Avg. Score (Out of 500)
for Interference Ratio
10% 20% 30%

Classical Simple 98 132.8 111.24 70.22
Classical Simple 183 225.8 198.72 76.3
Classical Simple 486 470.88 214.0 76.34

Classical CIA 132 264.52 302.74 276.34
Classical CIA 235 326.16 294.2 344.6
Classical CIA 643 412.6 458.83 397.93

Hybrid Simple 92 128.4 142.45 71.8
Hybrid CIA 113 256.8 387.8 424.64

Quantum Simple 78 193.1 137.6 93.6
Quantum CIA 96 436.7 342.53 328.9

in the CIAs which shows the potential improvement in resilience of this model
compared to the simple models. We also note that the simple models are able
to perform competitively when the interference ratio is low from Table 5.2,
5.3 and 5.4. In Table 5.3, the Classical simple model achieved a perfect 500
score with 486 parameters and 10% Gaussian noise. However, their perfor-
mance degrades quickly as the interference ratio increases. In Table 5.2, we
see that at 30% interference, all the simple models score less than 100, while
the CIAs are able to still play competitively.

These trends show promise for the CIA in DRL applications. We also see
the advantage of using quantum networks, either standalone or as hybrid, as
they are able to model the same function to play the game with with much
lesser parameters. This could mean that if the quantum networks are scaled
up, they could perform better than the classical networks in DRL situations.

5.1.3 Robust Scores

The robust scores is a measure of how resilient the models are to noise.
We provide the trained models with 1000 inputs of noisy observations and
their corresponding observation without noise. We compare the number of
predictions where the model outputs the same action for both of these cases.

We notice a similar trend from Table 5.5 that classical models with higher
parameters have higher resilience. It can also be noted that the CIA helps im-
prove the resilience of these networks. This is true across all implementations
- classical, quantum and hybrid. However, this does not directly indicate that
these models will perform better in the game scenario, but simply indicates
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Table 5.3: Performance test scores of the DQN models tested with Gaussian
noise

Network
Type

Number of
Parameters

Avg. Score (Out of 500)
for Interference Ratio of
10% 20% 30%

Classical Simple 98 179.9 177.28 176.28
Classical Simple 183 243.4 240.9 248.12
Classical Simple 486 500 486.08 427.86

Classical CIA 132 318.9 242.14 164.93
Classical CIA 235 374.14 294.2 336.0
Classical CIA 643 464.12 438.6 375.6

Hybrid Simple 92 241.5 274.74 227.56
Hybrid CIA 113 321.8 306.5 294.32

Quantum Simple 78 279.8 147.8 96.8
Quantum CIA 96 465.7 392.52 374.9

the robustness.

5.2 PPO

5.2.1 Sample Efficiency and Learning Speed

In the case of PPO, its more intricate to create a standard validation score.
The training scores are measured from the parallel environments in which
the PPO is playing, and it measures the average scores after each episode in
the training phase from all the parallel environments and assigns a score at
a standard time step.

The termination for PPO is set at 500 as the models were able to complete
training till 500 steps quickly in the given set up. We notice from Fig. 5.5
that both the classical simple and CIA models with low parameters is under-
performing compared to the rest, similarly to the DQN. The quantum and
hybrid models with much lower number of parameters are able to training
with much higher sample efficiency.

We notice similar patterns in Fig. 5.6, 5.7 and 5.8 with noise as well.
We see that the quantum and hybrid models are competitive with classical
models with about three times the number of parameters. When noise is
introduced, we see a clear difference between the CIA models and the simple
models. We see that the CIA models are able to efficiently learn while using
lesser data.

Blackout noise and gaussian noise both seem to have high effects in re-
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Table 5.4: Performance test scores of the DQN models tested with Blackout
noise

Network
Type

Number of
Parameters

Avg. Score (Out of 500)
for Interference Ratio of
10% 20% 30%

Classical Simple 98 153.66 140.72 77.06
Classical Simple 183 217.88 194.0 173.36
Classical Simple 486 468.12 309.3 165.52

Classical CIA 132 362.5 277.83 325.75
Classical CIA 235 385.6 319.4 357.76
Classical CIA 643 485.6 454.66 330.4

Hybrid Simple 92 203.22 197.52 132.58
Hybrid CIA 113 316.6 348.0 297.38

Quantum Simple 78 186.47 212.9 81.47
Quantum CIA 96 364.5 338.7 358.85

Table 5.5: Robust scores of the DQN models

Network
Type

Number of
Parameters

Robust Score
for Noise Type of

Frozen Observation Gaussian Blackout

Classical Simple 98 65.4% 54.7% 71.2%
Classical Simple 183 77.8% 84.4% 68.9%
Classical Simple 486 88% 79.3% 72.3%

Classical CIA 132 78.8% 82.9% 91.3%
Classical CIA 235 92.3% 88.4% 84.5%
Classical CIA 643 98.7% 96% 92.5%

Hybrid Simple 92 85.7% 77.3% 75.8%
Hybrid CIA 113 95.6% 87.8% 91.1%

Quantum Simple 78 73.2% 66.7% 78.4%
Quantum CIA 96 92.2% 83.4% 89.2%

gards to separating the learning speeds of the simple and CIA models. The
frozen observation noise seems to affect this trend the least.
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Figure 5.5: Training steps vs. episode scores of PPO - No Noise The training scores of the PPO have been
interpolated such that the number of episodes can be mapped to the number of steps to ensure standardization of
sample efficiency. This graph shows the mean of the moving average training scores from the 10 networks.
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Figure 5.6: Training steps vs. episode scores of PPO - Frozen Observation noise We are able to notice
clear striations in the learning speeds of the different networks.
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Figure 5.7: Training steps vs. episode scores of PPO - Blackout Noise Blackout noise seems to differentiate
the sample efficiency of the models to the highest extent.
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Figure 5.8: Training steps vs. episode scores of PPO - Gaussian Noise Peculiarly, the hybrid CIA seems to
be outperforming all the other models, however, it also has a very large variance.

49



Table 5.6: Performance Test Scores of the PPO models tested with no noise

Network
Type

Number of
Parameters

Avg. Score
(Out of 500)

Classical Simple 98 287.34
Classical Simple 183 458.55
Classical Simple 486 500

Classical CIA 132 278.68
Classical CIA 235 482.89
Classical CIA 643 500

Hybrid Simple 92 487.5
Hybrid CIA 113 443.44

Quantum Simple 78 495.4
Quantum CIA 96 466.16

5.2.2 Performance Scores

Each model is trained on frozen observation, Gaussian noise and blackout
interference. Every model is then tested on the same interference type as
they were trained on, varying the ratio of interference from 0%, 10%, 20%,
30%. The performance scored are measured in the same way as with the
DQN, as the trainied models function the same way.

From Table 5.6, we can infer that using quantum layers in hybrid models
and fully quantum models can help in reducing the total number of param-
eters used in the model without degrading performance.

In all 4 cases as referenced from Tables 5.7, 5.8 and 5.9, the simple mod-
els seem to follow a trend of lowering performance as the interference ratio
increases. Such a stark trend is not noticeable in the CIAs which shows the
potential improvement in resilience of this model compared to the simple
models. We notice that the classical CIA and simple models with large pa-
rameters have scores of 500. We also notice that all the models have training
scores above 400 except for the classical models with low number of parame-
ters. We also note that the simple models are able to perform competitively
when the interference ratio is low.

5.2.3 Robust Scores

The robust scores of the PPO models show similar trends to DQN as well and
have similar scores as shown in Table 5.10. We notice that classical models
with higher parameters have higher resilience. It can also be noted that the
CIA helps improve the resilience of these networks. This is true across all
implementations - classical, quantum and hybrid.
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Table 5.7: Performance test scores of the PPO models tested with Frozen
Observation noise

Network
Type

Number of
Parameters

Avg. Score (Out of 500)
for Interference Ratio
10% 20% 30%

Classical Simple 98 212.4 265.56 311.54
Classical Simple 183 300.16 344.58 245.67
Classical Simple 486 450.74 389.75 315.3

Classical CIA 132 269.38 294.56 369.49
Classical CIA 235 339.59 286.75 416.83
Classical CIA 643 489.50 454.47 428.94

Hybrid Simple 92 229.89 316.83 297.78
Hybrid CIA 113 399.76 369.68 276.84

Quantum Simple 78 195.78 178.94 243.65
Quantum CIA 96 398.7 345.93 389.74

Table 5.8: Performance test scores of the PPO models tested with Gaussian
noise

Network
Type

Number of
Parameters

Avg. Score (Out of 500)
for Interference Ratio of
10% 20% 30%

Classical Simple 98 284.59 275.39 199.84
Classical Simple 183 309.40 337.93 356.73
Classical Simple 486 475.92 483.39 462.54

Classical CIA 132 320.50 372.14 285.69
Classical CIA 235 395.02 420.59 448.3
Classical CIA 643 494.20 478.43 369.35

Hybrid Simple 92 217.35 246.74 273.35
Hybrid CIA 113 453.63 395.64 429.35

Quantum Simple 78 262.3 194.52 187.82
Quantum CIA 96 373.24 326.25 416.21
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Table 5.9: Performance test scores of the PPO models tested with Blackout
noise

Network
Type

Number of
Parameters

Avg. Score (Out of 500)
for Interference Ratio of
10% 20% 30%

Classical Simple 98 247.76 212.84 178.02
Classical Simple 183 297.84 385.84 274.64
Classical Simple 486 344.94 312.85 262.98

Classical CIA 132 274.59 354.24 249.24
Classical CIA 235 328.49 346.42 236.9
Classical CIA 643 445.29 430.4 386.45

Hybrid Simple 92 296.34 193.53 144.63
Hybrid CIA 113 384.39 416.6 377.21

Quantum Simple 78 182.24 165.55 115.63
Quantum CIA 96 344.56 316.74 324.22

Table 5.10: Robust scores of the PPO models

Network
Type

Number of
Parameters

Robust Score
for Noise Type of

Frozen Observation Gaussian Blackout

Classical Simple 98 63.2% 67.4% 65.2%
Classical Simple 183 74.3% 74.2% 81.7%
Classical Simple 486 84.5% 77.3% 76.4%

Classical CIA 132 81.2% 79.1% 68.5%
Classical CIA 235 93.4% 94.1% 88.2%
Classical CIA 643 97.7% 84.2% 93.8%

Hybrid Simple 92 63.7% 72.2% 69.9%
Hybrid CIA 113 87.4% 94.3% 95.5%

Quantum Simple 78 72.1% 78.7% 68.4%
Quantum CIA 96 92.7% 87.7% 91.2%
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Chapter 6

Conclusion

6.1 Discussion
The results demonstrate the feasibility of quantum-enhanced versions neural
network models for DRL applications. We see that both the hybrid and
the quantum models perform competitively with the classical model while
utilizing far less parameters, which may even run on NISQ devices. This is
true for both DQN and PPO implementations.

The results suggest that quantum networks could bring benefits over
classical ones in DRL. However, this needs to be scrutinized more rigor-
ously. More data on the training efficiencies of these models can be collected
by training a more number of models. This can help quantify the sample
efficiency accurately and identify which networks are the fastest to learn.
However, a major problem faced while trying to scale up, is that simulating
quantum networks is computationally very intensive and takes a long time.

We notice that the performance scores of the PPO tend to be higher
than their corresponding performance scores from the DQN algorithm. This
may be because the DQN is more intensive to train and takes longer. It
was also noticed from the training scores that the DQN was not able to
successfully complete training to scores of 500 and was only able to explore
and stabilize around 200. This could be further improved by modifying the
hyper-parameters, as DRL training is very sensitive to it.

Most importantly, we notice the two main trends from the results.

• The CIA performs better than the simple models for any implementa-
tion, with regards to sample efficiency, performance and robustness.

• Using quantum networks to process, either standalone or in hybrid
networks, reduces the number of parameters required to perform as
well as their classical counterparts.
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6.2 Future Work
The hyper parameters used for training, such as learning rate, epsilon decay,
optimize frequency and gradient clipping have a significant impact on the
network’s training and performance. These parameters can be optimized to
provide networks which learn even quicker and play more efficiently.

The quantum networks used here all consist of 4 qubits. This could be
scaled up for a bigger simulation. This may stabilize and allow the models to
learn more efficiently. In this work, for the CIA models, the classical networks
were directly replaced with VQCs. However, this involves measuring the
outputs at every network, and losing the superposition state. Alternative
methods of implementing the function of the CIA using different VQC ansatz
could be explored which may maintain the superposition.

The original CIQ model from (6) makes use of previous observations along
with the current state of the environment as input. This may improve the
performances of the networks as they have more accurate information to
process even in noisy scenarios.

The CIA can be tested under different training algorithms as well. It
seems promising in the DQN and PPO implementation, and could prove to
be efficient in other training algorithms as well. In this work, the agents only
learned to play the Cartpole game. These models can be extended to play
in other environments as well.

Similarly, improvements to the CIA can be explore. A simple extension
could involve training with multiple noises at the same time. One could test
whether using more Q-Value networks for every type of noise improves or
depreciates performance.

Overall, the CIA model seems promising. We also note that using quan-
tum networks in the CIA can help reduce the number of parameters required
in the model. These trends show promise for new kinds of quantum model
architectures to solve various problems faced in DRL.

54



References

[1] S. Oke, “A literature review on artificial intelligence,” International Jour-
nal of Information and Management Sciences, vol. 19, pp. 535–570, 12
2008.

[2] T. Hwang, “Computational power and the social impact of artificial in-
telligence,” SSRN Electronic Journal, 03 2018.

[3] V. Chauhan, S. Negi, D. Jain, P. Singh, A. K. Sagar, and A. K. Sharma,
“Quantum computers: A review on how quantum computing can boom
ai,” in 2022 2nd International Conference on Advance Computing and
Innovative Technologies in Engineering (ICACITE), pp. 559–563, 2022.

[4] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press,
2010.

[5] J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum,
vol. 2, 01 2018.

[6] C.-H. H. Yang, I.-T. D. Hung, Y. Ouyang, and P.-Y. Chen, “Training
a resilient q-network against observational interference,” Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 36, pp. 8814–8822,
Jun. 2022.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” 12 2013.

[8] S. Y.-C. Chen, C.-H. H. Yang, J. Qi, P.-Y. Chen, X. Ma, and H.-S.
Goan, “Variational quantum circuits for deep reinforcement learning,”
IEEE Access, vol. 8, pp. 141007–141024, 2020.

[9] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Gymnasium.” https://github.com/
openai/gym, 2016. Accessed: 2023-11-06.

55



[10] N. G. Sankar, A. Khandelwal, and M. G. Chandra, “Quantum-enhanced
resilient reinforcement learning using causal inference,” in 2024 16th In-
ternational Conference on COMmunication Systems NETworkS (COM-
SNETS), pp. 1058–1063, 2024.

[11] A. A. PIOVESANA, “An introduction to quantum reinforcement learn-
ing,” 2022.

[12] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and
J. Pineau, “An introduction to deep reinforcement learning,” Founda-
tions and Trends® in Machine Learning, vol. 11, no. 3–4, p. 219–354,
2018.

[13] R. S. Sutton and A. G. Barto, “Reinforcement learning: An introduc-
tion,” Cambridge, MA, USA: A Bradford Book, 2014, 2015.

[14] F. Montagna, “Quantum circuit design with reinforcement learning,”
2021.

[15] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap,
F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis,
“Mastering the game of go without human knowledge,” Nature, vol. 550,
pp. 354–359, Oct. 2017.

[16] J. Perolat, B. De Vylder, D. Hennes, E. Tarassov, F. Strub, V. de Boer,
P. Muller, J. T. Connor, N. Burch, T. Anthony, S. McAleer, R. Elie,
S. H. Cen, Z. Wang, A. Gruslys, A. Malysheva, M. Khan, S. Ozair,
F. Timbers, T. Pohlen, T. Eccles, M. Rowland, M. Lanctot, J.-B.
Lespiau, B. Piot, S. Omidshafiei, E. Lockhart, L. Sifre, N. Beauguer-
lange, R. Munos, D. Silver, S. Singh, D. Hassabis, and K. Tuyls, “Mas-
tering the game of stratego with model-free multiagent reinforcement
learning,” Science, vol. 378, pp. 990–996, Dec. 2022.

[17] Meta Fundamental AI Research Diplomacy Team (FAIR)†, A. Bakhtin,
N. Brown, E. Dinan, G. Farina, C. Flaherty, D. Fried, A. Goff, J. Gray,
H. Hu, A. P. Jacob, M. Komeili, K. Konath, M. Kwon, A. Lerer,
M. Lewis, A. H. Miller, S. Mitts, A. Renduchintala, S. Roller, D. Rowe,
W. Shi, J. Spisak, A. Wei, D. Wu, H. Zhang, and M. Zijlstra, “Human-
level play in the game of diplomacy by combining language models with
strategic reasoning,” Science, vol. 378, pp. 1067–1074, Dec. 2022.

[18] X.-Y. Liu, Z. Xiong, S. Zhong, H. Yang, and A. Walid, “Practical deep
reinforcement learning approach for stock trading,” 2018.

56



[19] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. A. Sallab, S. Yo-
gamani, and P. Pérez, “Deep reinforcement learning for autonomous
driving: A survey,” 2020.

[20] A. Mirhoseini, A. Goldie, M. Yazgan, J. Jiang, E. Songhori, S. Wang,
Y.-J. Lee, E. Johnson, O. Pathak, S. Bae, A. Nazi, J. Pak, A. Tong,
K. Srinivasa, W. Hang, E. Tuncer, A. Babu, Q. V. Le, J. Laudon, R. Ho,
R. Carpenter, and J. Dean, “Chip placement with deep reinforcement
learning,” 2020.

[21] S. Mohamadi, G. Mujtaba, N. Le, G. Doretto, and D. A. Adjeroh, “Chat-
gpt in the age of generative ai and large language models: A concise
survey,” 2023.

[22] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement learn-
ing: Tutorial, review, and perspectives on open problems,” 2020.

[23] A. Galindo and P. Pascual, “The postulates of quantum mechanics,” in
Quantum Mechanics I, pp. 33–87, Berlin, Heidelberg: Springer Berlin
Heidelberg, 1990.

[24] D. P. DiVincenzo, “Quantum gates and circuits,” Proceedings of the
Royal Society of London. Series A: Mathematical, Physical and Engi-
neering Sciences, vol. 454, p. 261–276, Jan. 1998.

[25] P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum support vector
machine for big data classification,” Physical Review Letters, vol. 113,
Sept. 2014.

[26] A. Rajak, S. Suzuki, A. Dutta, and B. K. Chakrabarti, “Quantum an-
nealing: an overview,” Philosophical Transactions of the Royal Soci-
ety A: Mathematical, Physical and Engineering Sciences, vol. 381, Dec.
2022.

[27] J. Lederer, “Activation functions in artificial neural networks: A system-
atic overview,” 2021.

[28] S. Schmidgall, J. Achterberg, T. Miconi, L. Kirsch, R. Ziaei, S. P. Ha-
jiseyedrazi, and J. Eshraghian, “Brain-inspired learning in artificial neu-
ral networks: a review,” 2023.

[29] C. Watkins and P. Dayan, “Technical note: Q-learning,” Machine Learn-
ing, vol. 8, pp. 279–292, 05 1992.

57



[30] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” 2017.

[31] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust
region policy optimization,” 2017.

[32] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, pp. 8024–8035, 2019.

[33] H. Wang, Y. Ding, J. Gu, Z. Li, Y. Lin, D. Z. Pan, F. T. Chong,
and S. Han, “Quantumnas: Noise-adaptive search for robust quan-
tum circuits,” in The 28th IEEE International Symposium on High-
Performance Computer Architecture (HPCA-28), 2022.

[34] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
2019.

58


	Introduction
	Background
	Machine Learning
	Supervised vs. Unsupervised Learning

	Reinforcement Learning
	Postulates of Quantum Mechanics
	Postulate 1: State of a Quantum System
	Postulate 2: Observables and Operators
	Postulate 3: Measurement and Probability
	Postulate 4: Expected Values
	Postulate 5: Evolution of Quantum Systems
	Postulate 6: Antisymmetry principle

	Quantum Computing
	The Qubit
	Quantum Gates
	Quantum Circuits

	Causal Modelling

	Methods
	Neural Networks
	Variational Quantum Circuits
	Q-Learning
	Deep Q-Network
	Proximal Policy Optimization
	Cartpole Environment
	Noise


	Experiments
	Networks
	DQN Algorithm
	Model architectures
	Agent
	Training
	Testing

	PPO Algorithm
	Model architectures
	Agent
	Training
	Testing


	Results
	DQN
	Sample Efficiency and Learning Speed
	Performance Scores
	Robust Scores

	PPO
	Sample Efficiency and Learning Speed
	Performance Scores
	Robust Scores


	Conclusion
	Discussion
	Future Work

	References

