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Abstract

Outer approximations present a way to conclude rigorous results about the dynamics of a

continuous function f : X ! X using combinatorial algorithms. In particular, information

about the dynamics is captured by a lattice epimorphism ! from the lattice of forward

invariant sets to the lattice of attractors associated with an outer approximation. Given a

minimal outer approximation of a continuous function f , we explore the existence of a lift

⌧ of !. We show that this does not exist in general and introduce an algorithm Resolve-OA

that aims to refine the minimal outer approximation to produce an outer approximation

that preserves the information about the dynamics and for which a lift ⌧ of ! exists. For

simplicity, we focus on continuous functions from the unit cube [0, 1]d to itself. We introduce

the notion of cubed complexes on the unit cube [0, 1]d and an operation of binary sub-division

that allows us to refine the cubed complex. We present Resolve-OA in this context.
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Chapter 1

Introduction

Let X be a compact topological space. A continuous function f : X ! X defines a discrete

dynamical system on X, in which paths are given by repeatedly applying f , i.e., an initial

point x0 would in forward time follow the path {x0, f(x0), f 2(x0), ...}. The broad goal is to

understand and describe the dynamics of this system.

We are motivated by Conley’s theory. Often in applications - for example, in population

models used in ecology - the function f is not derived from first principles and may not

completely capture the nonlinearities of the dynamics being modeled. In some cases, f

could even be coming from black-box computation code [9]. The system could also be

dependent on a parameter whose value is not known exactly. Conley called such systems

’rough equations’ and noted that if such models were to be of use, they should be studied

in ’rough terms’ [2]. Studying solutions in terms of exact paths or even in terms of chain

recurrence is not robust to small changes in the function or parameter and may not give an

accurate description of the true dynamics. We instead look to make conclusions about the

dynamics that are robust to perturbations.

A set N ✓ X is an attracting neighborhood for f if

!(N) =
\

n2Z+

cl

 
[

k�n

fk(N)

!
✓ int(N)
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and a set A ✓ X is an attractor if there is an attracting neighbourhood N such that

A = !(N). A special subset of attracting neighborhoods are attracting blocks. B ✓ X is

an attracting block if f(cl(B)) ✓ int(B). The set of attractors Att(f), attracting neighbor-

hoods ANbhd(f), and attracting blocks ABlock(f) each have a bounded distributive lattice

structure [8, 7]. !, in fact, defines a bounded lattice epimorphism from both ANbhd(f) and

ABlock(f) to Att(f).

We view attractors as the basis for a description of the dynamics that is robust [2]. Conley’s

fundamental theorem of dynamical systems tells us that the dynamics of a continuous func-

tion can always be decomposed into a chain recurrent part and a gradient-like part [11]. The

attractors, or equivalently Morse sets, capture the chain-recurrent dynamics. Conley intro-

duced Morse decompositions [2], a poset of invariant sets that captures the chain-recurrent

dynamics, as well as some information about the gradient-like dynamics between the in-

variant sets in its partial order. Morse decompositions can be computed from the lattice of

attractors. Attractors also capture the asymptotically observable dynamics of the system.

Furthermore, there are at most only countably infinite attractors [8].

Attractors, however, are, in general, not directly computable. Attracting blocks are often

readily computable, but can be uncountable in number [7]. Furthermore, attractors them-

selves are not robust to perturbations in f - simple bifurcation theory gives us numerous

examples. Attracting blocks, however, are robust to small perturbations in f [4]. This makes

the following theorem important.

Theorem 1.0.1. [7](Theorem 1.2) For every finite sub-lattice A ✓ Att(f), there exists a

bounded lattice monomorphism ⌧ such that following diagram commutes:

ABlockR(f)

A Att(f)

⌧ !

✓

where ABlockR(f) is the lattice of attracting blocks that are closed, regular sets.

This theorem guarantees that we can always view a finite resolution of the lattice of attractors

through an index lattice of closed, regular attracting blocks.
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In applications, when working with finite data or using numerical computation, one works

not with the continuous function f : X ! X but with a discretization of f [1]. Combinatorial

dynamics presents a way to formalize this and derive rigorous results about the true dynamics

of f [8]. X is discretized in general via a cell (usually CW) complex X such that |X | = X,

and f is approximated by a multi-valued map on the top-dimensional cells of X - notated

by F : X top ◆ X top. In particular, F is called an outer approximation of f if f(|U|) ⇢
int(|F(U)|) for all U 2 X top.

We define an attractor to be a subset of top-dimensional cells A ✓ X top such that F(A) = A
and forward invariant sets to be N ✓ X top such that F(N ) ✓ N . The set of attractors

Att(F) and forward-invariant sets Invset+(F) form bounded distributive lattices and ! :

Invset+(F)! Att(F) given by

!(N ) =
\

n2N

 
[

k�n

Fk(N )

!

is a bounded lattice epimorphism - giving us a situation analogous to dynamics of a contin-

uous f . In fact |N | for any forward invariant set N 2 Invset+(F) is an attracting block of

f and we have the following commutative diagram [7]:

Invset+(F) ABlockR(f)

Att(F) Att(f)

!

| · |

!

!(| · |)

In [8], the authors also define the notion of a convergent co-filtration of outer approximations

{Fn}n2N on a contracting co-filtration of discretizations {Xn}n2N and show that every finite

sub-lattice A ✓ Att(f) can be realized in Invset+(Fn) for some nA 2 N i.e. for all n � nA,

the following diagram of bounded lattice homomorphism commutes (where ln is called a lift

of A):

3



Invset+(Fn)

A Att(f)

ln !(| · |)

✓

Att(F) also allows us to compute the Conley Index of invariant sets of the continuous function

f being approximated [1]. The Conley Index is a topological index that provides us with

information about the recurrent dynamics of the invariant set [10].

Since every attractor of F is a forward invariant set, Att(F) ✓ Invset+(F) as sets but Att(F)

is not a sub-lattice of Invset+(F) (see Figure 2.5). We are interested in a theorem analogous

to Theorem 1.0.1 in the context of combinatorial dynamics. The lattice of attractors contains

the required information to describe the global dynamics in terms of the recurrent and non-

recurrent dynamics and, in general, can be much smaller than the lattice of forward invariant

sets. However, unlike the lattice of forward invariant sets, it is not compatible with the

topology of the cell complex X , not allowing one to compute global information about the

dynamics directly from it [6].

We want to find a lattice monomorphism ⌧ : Att(F) ! Invset+(F) that acts as a lift of

! : Invset+(F) ! Att(F), i.e., ! � ⌧ is the identity of Att(F). This allows us to embed

Att(F) into Invset+(F) while preserving the topological information.

The definition of an outer approximation is quite general; hence, it is easy to come up with

examples of outer approximations F such that there is no lift of !. Instead, we focus on

the best outer approximation given a discretization X , which we call the minimal outer

approximation. We can ask the question if given a minimal outer approximation F : X top ◆
X top of a continuous f : X ! X, there always exists a lift of !. However, it turns out this

is not true (see Section 3.2).

A multi-valued map F : X top ◆ X top can also be viewed as a directed graph with vertex

set X top and edge set {(u, v) | v 2 F(u)}. We denote the condensation graph (graph of

strongly connected components) of F by SC(F). Being a directed acyclic graph, SC(F)

can be viewed as a poset. We call a strongly connected component U 2 SC(F) a recurrent

component or a Morse set if it has at least one edge. The Morse graph M(F) is the sub-poset

4



of recurrent components of SC(F). Let i : M(F)! SC(F) be the inclusion map.

Via Birkho↵’s representation theorem, in [7], the authors show that the existence of a lift

of ! is equivalent to the existence of a surjective poset morphism � : SC(F)!M(F) such

that �� i is the identity on M(F). Such a � is called an order retraction of i. They introduce

an algorithm that determines if an order retraction to i exists.

In this thesis, we introduce cubed complexes and show that they give a CW decomposition

of the unit cube [0, 1]d in Rd. We also introduce a binary subdivision operation that allows

us to refine a cubed complex. We present outer approximations in the context of cubed

complexes and continuous functions f : [0, 1]d ! [0, 1]d and define in this context, the notion

of a refinement of an outer approximation. We provide a counter-example to the claim

that there always exists a lift of ! : Invset+(F) ! Att(F) when F is a minimal outer

approximation of some continuous f . We then present an algorithm Resolve-OA that takes

as input a minimal outer approximation F of a continuous f on a cubed complex C and

outputs a refinement F 0 of F which is an outer approximation of f on a refinement C 0 of

C. We conjecture that the output F 0 is such that M(F 0) ⇠= M(F) and F 0 has the property

that an order retraction � of i : M(F 0) ! SC(F 0) exists. Hence equivalently, a lift ⌧ of

! : Invset+(F 0) ! Att(F 0) exists. If the conjecture is true, the output of Resolve-OA also

allows the easy construction of � and, hence, ⌧ . It is important to note that the algorithm

Resolve-OA assumes that for any cube c of a refinement of the input cubed complex C, we
can compute the value of the minimal outer approximation of f on c.

5
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Chapter 2

Preliminaries

Notation

• N = {0, 1, 2, 3...}.

• Z+ = {1, 2, 3...}.

• [2d] = {a1a2...ad | ai 2 {0, 1}} - the set of binary strings of length d.

• D = {p
q 2 Q | q = 2n for an n 2 N} - the set of Dyadic rationals, i.e., numbers that

have a terminating binary representation.

2.1 Posets and Lattices

2.1.1 Posets

Definition 2.1.1. A partially ordered set or a poset (P,P ) is a set P with a relation P

such that:

(i) (reflexivity) for all p 2 P , p P p,

(ii) (anti-symmetry) for all p, q 2 P , p P q and q P p =) p = q,

(iii) (transitivity) for all p, q, r 2 P , p P q and q P r =) p P r.

7



Figure 2.1: Example of a Hasse diagram. A diagram of a poset P with

partial order p1 P p2, p1 P p3, p1 P p4, p1 P p5, p2 P p4, p3 P p4,
p3 P p5.

We also use the notation:

(i) p �P q for: q P p.

(ii) p <P q or q >P p for: p P q but p 6= q.

We represent posets using Hasse diagrams [3]. Figure 2.1 shows an example.

Definition 2.1.2. Given two posets (P,P ) and (Q,Q) an order-preserving map is a

function h : P ! Q such that for all p1, p2 2 P , p1 P p2 =) h(p1) Q h(p2).

Definition 2.1.3. An order-preserving map h : P ! Q is:

(i) an order injection if h is injective,

(ii) an order surjection if h is surjective,

(iii) an order embedding if for all p1, p2 2 P , p1 P p2 () h(p1) Q h(p2),

(iv) an isomorphism if it is a surjective order embedding. In that case, we say P ⇠= Q.

Remark 2.1.4. Every order embedding is an order injection.

Definition 2.1.5. A sub-poset of (P,P ) is given by a subset I ⇢ P and the relation I

being just P restricted to I.

Remark 2.1.6. For an order embedding h : Q ! P , Q ⇠= h(Q), where h(Q) is viewed as a

sub-poset of P . Thus, for simplicity, we may denote the element h(q) 2 P by p 2 Q itself.

8



Definition 2.1.7. Consider a poset (P,P ):

(i) A chain of P is an I ✓ P that is totally ordered i.e., for any two p, q 2 I, either p P q

or q P p.

(ii) An anti-chain of P is an I ✓ P such that for any two p, q 2 I, p ⇥P q and q ⇥P p.

(iii) A down set of P is an I ✓ P such that p 2 I and q P p =) q 2 I.

(iv) An up set of P is an I ✓ P such that p 2 I and q �P p =) q 2 I.

Remark 2.1.8. I is a down set () IC = P \ I is an up set.

Let O(P ) = {I ✓ P | I is a down set} be the set of down sets of P .

Given a p 2 P we denote the down set of p by # p = {q 2 P | q  p} and the up set of p by

" p = {q 2 P | q � p}.

Given a I ✓ P , a maximal element of I is a p 2 I such that q � p and q 2 I implies p = q.

Similarly, a minimal element of I is a p 2 I such that q  p and q 2 I implies p = q.

For p, q 2 P , we say p and q are incomparable if p ⇥ q and q ⇥ p.

Remark 2.1.9. For a directed acyclic graph G = (V,E), the relation a G b if there exists a

path from b to a in G, defines a poset structure on V .

2.1.2 Lattices

We introduce lattices as algebraic structures and show how they can viewed as posets. There

is an equivalent way of introducing lattices as posets. For a more complete treatment, the

interested reader may look at [3].

Definition 2.1.10. A lattice (L, _ , ^ ) is a set L along with two associative, commutative

binary operations such that for all a, b 2 L:

(i) a _ (a ^ b) = a,

(ii) a ^ (a _ b) = a.

_ is called the join operation and ^ is called the meet operation.

Remark 2.1.11. For any lattice (L, _ , ^ ), _ and ^ are idempotent, i.e. for all a 2 L,

a _ a = a and a ^ a = a.

9



Lemma 2.1.12. For all a, b 2 L, a ^ b = a () a _ b = b.

Proof. Assume a ^ b = a, then a _ b = (a ^ b) _ b = b. The other direction follows by

switching the join and meet operations.

Lemma 2.1.12 ensures that we can define a partial order L on L:

a L b () a ^ b = a () a _ b = b.

Definition 2.1.13. A lattice L is distributive if for all a, b, c 2 L:

(i) a _ (b ^ c) = (a _ b) ^ (a _ c),

(ii) a ^ (b _ c) = (a ^ b) _ (a ^ c).

Definition 2.1.14. A lattice L is bounded if there exists 0, 1 2 L such that for all a 2 L:

1. a _ 0 = a,

2. b ^ 1 = a.

Definition 2.1.15. Given two lattices (L, _ , ^ ) and (K, _ , ^ ), a lattice homomorphism

is a function h : L! K such that for all a, b 2 L:

(i) h(a _ b) = h(a) _ h(a),

(ii) h(a ^ b) = h(a) ^ h(a).

Definition 2.1.16. A lattice homomorphism h : L! K between two bounded lattices L,K

is bounded if h(0L) = 0K and h(1L) = 1K .

Definition 2.1.17. A lattice homomorphism h : L! K is:

(i) a lattice monomorphism if h is injective,

(ii) a lattice epimorphism if h is surjective,

(iii) a lattice isomorphism if h is injective and surjective.

Definition 2.1.18. K ⇢ L is a sub-lattice of L if a 2 K and b 2 K implies a _ b, a ^ b 2 K.

If L is bounded, we also require that 0, 1 2 K for K to be a sub-lattice.

Definition 2.1.19. An a 2 L is a join-irreducible element if a = b _ c implies either b = a

or c = a.

10



We call b 2 L an immediate predecessor of a 2 L if b <L a and b L b0 <L a =) b = b0.

Remark 2.1.20. a 2 L is a join-irreducible element if and only if a has a unique immediate

predecessor.

Given a lattice L, we set J(L) = {a 2 L | a is join-irreducible}. J(L) has a poset structure

as a sub-poset of L.

We make some comments about finite lattices.

• For a finite lattice L, given a I = {a1, ..., an} ✓ L we can define:

_
I = a1 _ a2 _ ... _ an,

^
I = a1 ^ a2 ^ ... ^ an.

• We say I has a maximum element max(I) = a if a =
W
I and a 2 I. Similarly, we say

I has a minimum element min(I) = a if a =
V
I and a 2 I.

• Every finite lattice L is bounded with:

(i) 0 =
V
L = min(L),

(ii) 1 =
W
L = max(L).

2.2 CW Complexes

Given two topological spaces X and Y and a continuous map f : Y � A! X, by X [f Y ,

we mean the space X t Y/(x ⇠ y) if f(y) = x. We call this attaching Y to X via the gluing

map f .

We call a topological space a k-dimensional cell or a k-cell if it is homeomorphic to Dk - the

k-dimensional closed ball in Rk.

We are only interested in CW complexes that are finite-dimensional and have a finite number

of cells.

11



Definition 2.2.1. A topological space X is a CW complex if for a n 2 N we have the

following:

; = X�1 ✓ X0 ✓ X1 ✓ ... ✓ Xn = X

where each Xk for 0  k  n is obtained by attaching a finite number of k-cells to Xk�1 via

gluing maps in the sense: Xk = Xk�1 [�k1 ek1 [�k2 ek2... [�kl ekl for k cells eki and gluing maps

�ki : �eki ! Xk.

The dimension of X as a CW complex is given by n.

2.3 Cubed Complexes

For our purpose, given a d 2 Z+, a (binary) cube is a c = (p,b, n) with p = (p1, p2, ..., pd) 2
Dd, b = (b1, b2, ...bd) 2 {0, 1}d and n 2 N such that b = {0, 0, ..., 0} implies n = 0. Its

geometric realization is given by the product of intervals |c| =
Qd

j=1[pj, pj +
bj
2k ] ⇢ Rd - we

also call this the product form of c.

• p identifies the position of the geometric realization of the cube in Rd.

• The dimension of a cube is given by dim(c) =
Pd

i=1 bi = ||b||L1, and we call cubes

with dimension k k-cubes.

• n gives the size of the cube. We call 1
2n the side length of the cube.

• We call d the realization dimension of c.

If bj = 1, we call the interval [pj, pj +
bj
2k ] = [pj, pj +

1
2k ] non-degenerate and if bj = 0, we call

the interval [pj, pj +
bj
2k ] = [pj, pj] degenerate. Given a non-degenerate interval [pj, pj +

1
2k ] we

call the degenerate interval [pj, pj] its left-endpoint and the degenerate interval [pj+
1
2k , pj+

1
2k ]

its right-endpoint. Note that dim(c) can also be interpreted as the number of non-degenerate

intervals in its product form.

A cube c0 is called a face of the cube c if the product form of c0 can be obtained by replacing

one or more non-degenerate intervals in the product form of c by one of their endpoints.

Note that here the realization dimension of c and c0 must be the same. If c0 is a face of c

12



and c00 is a face of c0, then c00 is also a face of c. Thus, the relation c0 C c if c0 = c or c0 is a

face of c is a partial order on the set of binary cubes. The co-dimension of a face c0 of c is

given by codim(c0, c) = dim(c) � dim(c0) i.e., how many of the non-degenerate intervals in

the product form of c must be replaced by an endpoint to obtain the product form of c0.

For example, for the cube |c| = [0, 12 ] ⇥ [0, 12 ], the one dimensional faces are [0, 12 ] ⇥ [0, 0],

[0, 0] ⇥ [0, 12 ], [0,
1
2 ] ⇥ [12 ,

1
2 ] and [12 ,

1
2 ] ⇥ [0, 12 ]; the zero dimensional faces are [0, 0] ⇥ [0, 0],

[0, 0]⇥ [12 ,
1
2 ], [

1
2 ,

1
2 ]⇥ [0, 0], [12 ,

1
2 ]⇥ [12 ,

1
2 ].

Remark 2.3.1. For any cube c, the boundary of its geometric realization @|c| is equal to the

union of the geometric realization of all its faces.

For a = (a1, a2, ..., ad),b = (b1, b2, ..., bd) 2 {0, 1}d, the relation a {0,1}d b if ai  bi for all

1  i  d defines a partial order in {0, 1}d.

Remark 2.3.2. c0 = (p0,b0, n0) C c = (p,b, n) if and only if there exist x {0,1}d y {0,1}d b

such that:

(i) n0 = n,

(ii) p
0 = p+ x

2n ,

(iii) b
0 = b� y.

From this characterization we can also notice that the realization dimension of c and c0 must

be the same. The co-dimension is given by codim(c0, c) = ||y||L1.

A tree T = (V,E) is a connected, acyclic, undirected graph. A rooted tree (T, r) is a tree

T with one of its nodes r 2 V designated as the root node. In a tree, there is a unique

path from any node to any other. In particular, in a rooted tree, there is a unique path

{r = v0, v1, ..., vk = v} from the root node r to any node v 2 V . Here, vk�1 is a neighbor of

v, and we call vk�1 the parent node of v. All other neighbors of v are called children of v.

Note that u is a parent of v if and only if v is a child of u. For every edge (u, v) 2 E of a

rooted tree - u is either the parent or a child of v. We set the following convention regarding

edges (u, v) in rooted trees - u is the parent node of v. This also allows us to interpret a

rooted tree as a directed acyclic graph and, hence, a poset.

Definition 2.3.3. Given a n 2 N, an n-ary tree is a rooted tree (T, r) such that every node

has either n or 0 children.

13



Nodes with 0 children are called leaves, while the rest we call branch nodes. We denote the

set of leaves by Tl and the set of branch nodes by Tb. Given a branch node v, we denote

the set of its children by ch(v). Given a non-root node v with parent u, we denote by

sib(v) = ch(u) the siblings of v.

Definition 2.3.4. Let (T d, v0) denote the complete, infinite 2d-ary rooted tree which has a

vertex set V = {vi}i2N = {v0, v1, v2, ...} and edge set Ed = {(vi, vi2d+j) | i 2 N, 1  j  2d}.

Each node vi of T d has 2d children ch(vi) = {vi2d+1, vi2d+2, ..., vi2d+2d = v(i+1)2d}. Also, note
that each node of T d is a branch node - T d

b = V . In other words T d has no leaf nodes -

T d
l = ;.

To each edge (vi, vi2d+j) of T d we can associate a binary string of length d - a1a2..ad 2 [2d]

which is nothing but j written in binary. Figure 2.2 depicts T 2 with the edges labeled by

the associated binary strings.

Figure 2.2: T 2
- the complete, infinite 4-ary tree.

Note that for every vi 2 V , the labeling of the edges gives a bijection between the set of

edges {(vi, v) | v 2 ch(vi)} = {(vi, vi2d+j) | 1  j  2d} and [2d]. We can equivalently think

of this as giving a bijection from ch(vi) to [2d] for each i.
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We associate a cube to each node vi of T d. To the root node v0 we associate the d-dimensional

unit cube (0,1, 0) and say the geometric realization is |v0| = [0, 1]d. For every other node

vi, there is a unique path from v0 to vi - say {v0, vj1 , vj2 , ..., vjk = vi}. This path is uniquely

determined by the sequence of binary d-strings {a11a12...a1d, a21a22...a2d, ..., ak1ak2...akd}
where al1al2...ald is the binary string associated to the edge (vjl�1

, vjl). Define constants

zj =
Pk

l=1
1
2lalj and let z = (z1, z2, ...zd). We then label/associate each node vi with a cube

vi = (z,1, k)

with a geometric realization

|vi| =
dY

j=1

[zj, zj +
1

2k
].

Proposition 2.3.5. For any node vi of T d, |vi| = |ch(vi)|.

Proof. Let x = (x1, x2, ..., xd) 2 |vi| =
Qd

j=1[zj, zj +
1
2k ]. For 1  j  d, if xj  zj +

1
2k+1 ,

set aj = 0. Else, set aj = 1. Then xj 2 [zj +
aj

2k+1 , cj +
aj

2k+1 + 1
2k+1 ]. But note that

if vl 2 ch(vi) is such that the edge (vi, vl) is labeled by the binary string a1...ad, then

|vl| =
Qd

j=1[zj +
aj

2k+1 , cj +
aj

2k+1 +
1

2k+1 ] and x 2 |vl|. Hence |vi| ✓ |ch(vi)|.

However for any vl 2 ch(vi), |vl| ⇢ |vi| and hence |vi| ◆ |ch(vi)|.

Definition 2.3.6. A cubed complex on [0, 1]d is given by a finite 2d-ary rooted sub-tree

(T C, v0) of (T d, v0), i.e, a sub-tree such that if vi is a node of T C, then:

(i) the parent of vi is node of T C,

(ii) for every vl 2 sib(vi), vl is a node of T C.

Remark 2.3.7. Viewing T d as a poset, condition (ii) of Definition 2.3.6 ensures that the

vertices of any cubed complex are an up set of T d.

Remark 2.3.8. Condition (i) of Definition 2.3.6 ensures that for any branch node of a cubed

complex T C, all its children are nodes of T C. Further, by Proposition 2.3.5, for any node vi

of T C, |vi| = |ch(vi)|. From these it follows that |T C
l | = |v0| = [0, 1]d.

Thus, the geometric realizations of the leaves of T C give a tiling of the unit cube [0, 1]d.

We show in Proposition 2.3.9 that they give a CW complex structure to [0, 1]d. Figure
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(a) A cubed complex T C
of [0, 1]2. (b) The geometric realization of T C

.

Figure 2.3: An example of a cubed complex T C
of the unit square

[0, 1]2. (a) depicts the rooted tree data structure with the product form of the

leaves given. (b) shows the geometric realization of the leaves i.e., the

top-dimensional cells.

2.3a depicts an example of a cubed complex T C with Figure 2.3b showing the geometric

realization of the leaf nodes that give a tiling of [0, 1]d.

We call a leaf c 2 T C
l a top-dimensional cube of T C and use the notation Ctop = T C

l to denote

the set of top-dimensional cubes.

Let C̃ = {c | c C c0, c0 2 Ctop} be the set of top-dimensional cubes of T C and all their faces.

However, certain faces are repeated in this collection. For example, in Figure 2.3b, the face

of the top-dimensional cube v1 given by the cube |c| = [12 ,
1
2 ]⇥ [0, 12 ] overlaps with the faces

of v13 and v14 given by |c0| = [12 ,
1
2 ] ⇥ [0, 14 ] and |c00| = [12 ,

1
2 ] ⇥ [14 ,

1
2 ] respectively. In fact

|c| = |c0|[ |c00|. In such a case, we would like to consider c0 and c00 as cubes of T C, but not c.

We set C = {c 2 C̃ | @ c0 2 C̃ s.t dim(c0) = dim(c) and |c0| ✓ |c|} - and call it the set of cubes

of T C.

And Ck = {c 2 C | dim(c)  k} - the set of cubes of k-dimensional cubes of T C.

Given C, one can construct T C as the up set
S

c2Ctop

" c of T d. Hence, C is an equivalent

description of the cubed complex T C.

Proposition 2.3.9. Let T C be a cubed complex and let Ck denote the k-dimensional cubes
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of T C. Then,

; = |C�1| ✓ |C0| ✓ |C1| ✓ ... ✓ |Cn| = |C|

gives [0, 1]d a CW complex structure.

Proof. First we note that from Remark 2.3.8 |Cn| = |Ctop| = |r| = [0, 1]d.

We also note that any k-cube is homeomorphic to Dk and hence is a k-cell.

|C0| is nothing but the union of all 0-dimensional faces (vertex points) of Ctop.

For k � 1, if c 2 Ck, then by Remark 2.3.1 @|c| = [
c0<Cc

|c0| ✓ |Ck�1|.

We define a partial order on C, which is nothing but the face partial order coming from the

CW complex structure on C:

c0 C c if 9 c00 C c in C̃ s.t dim(c00) = dim(c0) and |c0| ✓ |c00|.

We also set the following notation.

1. Given a v 2 C \ Ctop, top(v) = {c 2 Ctop | v <C c}.

2. Given a v 2 T C, z(v) = {v0 2 T C
l = Ctop | v0 TC v}. We call a v0 2 z(v) a descendent

of v and v an ancestor of such a v0.

2.4 Binary Sub-division

Definition 2.4.1. A cubed complex T C0
is a refinement of a cubed complex T C if the set of

nodes of T C is a subset of the set of nodes of T C0
.

Equivalently, a cubed complex C 0 is a refinement of C if the geometric realization of every

c0 2 C 0 is contained in the geometric realization of a c 2 C.
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We call c0 2 C 0 a sub-cube of a c 2 C if c0  c in T C0
, i.e, |c0| ✓ |c|.

Let c0 be a fixed top-dimensional cube of a cubed complex T C = (V,E) i.e. c0 2 T C
l = Ctop.

We describe a sub-division operation we call binary sub-division

T C0
= BSDc0(T

C)

that outputs the refinement T C0
= (V 0, E 0) of T C with V 0 = V [ ch(c0).

Figure 2.4 shows an example of a binary sub-division applied on the cubed complex from

Figure 2.3.

Proposition 2.4.2. Any finite refinement of T C can be obtained by a finite series of repeated

binary subdivisions.

Let T C0
= (V 0, E 0) be a refinement of T C = (V,E). Consider the finite set of vertices

U = T 0
l \ Tl. These define a sub-poset of Td such that the maximal elements are Tl ⇢ V . If

we replace T C by BSDc(T C) for a c 2 Tl and U by U \{c}, U continues to define a sub-poset

of Td such that the maximal elements are Tl ⇢ V . By continuing this process, picking a

maximal element of U at each step, we will obtain T C0
.

Let X ✓ [0, 1]d. The diameter of X is given by:

diam(A) = max({||x� y|| | x, y 2 X}).

Note that diameter of the geometric realization of a cube c = (p,b, n) is
p
d

2n . Hence as

n! inf, diam(|c|)! 0.

Let X, Y ✓ [0, 1]d. The distance between X and Y is given by:

D(X, Y ) = min({||x� y|| | x 2 X, y 2 Y }).

Remark 2.4.3. Let T C be a cubical complex such that max({n | c = (p,b, n) 2 C}) = N .

Thus, the side length of the smallest cube in C is ✏ = 1
2N . Then if c1, c2 2 Ctop such that

d(|c1|, |c2|) < ✏, then |c1| \ |c2| 6= ;.
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Figure 2.4: An example of Binary Sub-division applied to the cubed

complex from Figure 2.3. Above is the e↵ect on T C
and below on the geometric

realization C.
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Let T C0
be the refinement of T C in which every top-dimensional cube has side length ✏. i.e.,

T C0
contains all vertices of the complete 2d-ary tree up to level N . It is basically a grid of

the unit cube.

For T C0
it is easy to see that |c1|\ |c2| = ; implies that c1 and c2 are not neighbors and hence

there must be another cube c ’in between’ them. Hence, d(|c1|, |c2|) > ✏ Since every c 2 Ctop

is a union of its descendants in T C0
, d(|c1|, |c2|) < ✏ would imply there are descendants c01 of

c1 and c02 of c2 such that d(|c01|, |c02|) < ✏ and hence |c01| \ |c02| 6= ; =) |c1| \ |c2| 6= ;.

We also set some more notation. Let c be a node of T C. Then c is a top-dimensional cube

for some T C0
such that T C is a refinement of T C0

. Let v be a face of c. Then, by top⇤(v), we

denote the set of top-dimensional cubes in T C, which have a face of the same dimension as

v contained in v. Or equivalently,

top⇤(v) = {c0 2 Ctop | c0 2 z(c00) for some c00 2 top(v) and |c0| \ |v| 6= ;}.

2.5 Combinatorial Dynamics

Given a finite set A, a combinatorial multi-valued map on A is a function F : A ! 2A,

which we denote by F : A ◆ A. We extend this notation to subsets U ✓ A by defining

F(U) =
S
u2U

F(u). This allows us to consider the dynamics of F on A via iteration.

We note F : A ◆ A can also be viewed as a directed graph F = (A,E) with vertex set A

and edge set E = {(a, a0) | a0 2 F(a)}.

We call F : A◆ A right-total if F(u) 6= ; for all u 2 A.

Definition 2.5.1. A set U ✓ A is an attractor if F(U) = U .

Definition 2.5.2. A set U ✓ A is forward invariant set if F(U) ✓ U .

We denote the set of attractors byAtt(F) and the set of forward invariant sets by Invset+(F).

By definition, every attractor is a forward invariant set, and hence Att(F) is a subset of

Invset+(F).
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Definition 2.5.3. Given any U ✓ A, the !-limit set of U is given by

!(U) = \
n2N
[

k�n
Fk(U).

Proposition 2.5.4. We make some remarks about the !-limit set. For every U, V ✓ A:

(i) There exists a n⇤ such that !(U) = [
k�n

Fk(U) for all n � n⇤.

(ii) For a right-total F , U 6= ; =) !(U) 6= ;.

(iii) !(U) is an attractor for all U ✓ A

(iv) For an attractor U , !(U) = U .

(v) For a forward invariant set U , !(U) is the largest attractor contained in U .

(vi) V ✓ U =) !(V ) ✓ !(U) and thus, !(V \ U) ✓ !(V ) \ !(U).

(vii) !(V [ U) = !(U) [ !(V ) and thus, !(U) = [
u2U

!(u).

Proof. (i). Let An = [
k�n

Fk(U). Then A0 ◆ A1 ◆ A2.... This is a nested sequence of

finite sets, so it follows that there exists an n⇤ such that An⇤ = An for all n � n⇤. Thus

!(U) = \
m2N

Am = \
m�n⇤

Am = An for any n � n⇤.

The rest follow from (i). We refer the reader to [8] for more details.

It is easy to see from the above proposition that:

1. Invset+(F) has a bounded distributive lattice structure with _ = [, ^ = \, 0 = ;
and 1 = A.

2. Att(F) has a bounded distributive lattice structure with _ = [, A ^ A0 = !(A\A0),

0 = ; and 1 = !(A).

Remark 2.5.5. For both Att(F) and Invset+(F), the partial order is given by inclusion. This

is as A L B () A _ B = A [B = B () A ✓ B for both L = Invset+(F), Att(F).
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Though Att(F) is a subset of Invset+(F), it is not a sub-lattice of Invset+(F) as the meet

operations di↵er. Figure 2.5 shows an example of an F : A ◆ A for A = {a1, a2, a3, a4}.
2.5a shows F viewed as a directed graph, 2.5b shows Invset+(F) and 2.5c shows Att(F).

In Invset+(F), {a1, a2, a3} ^ {a1, a2, a4} = {a1, a2, a3} \ {a1, a2, a4} = {a1, a2}, however
{a1, a2} /2 Att(F).

Proposition 2.5.6. ! : Invset+(F)◆ Att(F) is a bounded lattice epimorphsim.

Proof. By Proposition 2.5.4(vii), for all N1,N2 2 Invset+(F):

!(N1 _ N2) = !(N1 [N2) = !(N1) [ !(N2) = !(N1) _ !(N2)

.

In Att(F):

!(N1) ^ !(N2) = !(!(N1) \ !(N2)) ✓ !(N1 \N2)

= !(!(N1 \N2)) ✓ !(!(N1) \ !(N2)) = !(N1) ^ !(N2)

=) !(N1) ^ !(N2) = !(N1 \N2) = !(N1 ^ N2).

Thus, ! is lattice homomorphism. It is surjective as !(A) = A for every attractor A.

Further, !(;) = ; and !(A) = 1Att(F).

We are interested in studying dynamics on the unit cube [0, 1]d and hence given a cubed

complex C consider multi-valued maps on the set of top-dimensional cells F : Ctop ◆ Ctop.

We say C and F together define a combinatorial dynamical system on [0, 1]d.

Definition 2.5.7. Let C be a cubed complex of [0, 1]d and f : [0, 1]d ! [0, 1]d be a continuous

function. Then a multi-valued map F : Ctop ◆ Ctop is an outer approximation of f if:

f(|c|) ⇢ Int(|F(c)|) 8c 2 Ctop.

We note that if F : Ctop ◆ Ctop is an outer approximation, it must be right right-total as

f(|c|) must be non-empty for every c 2 Ctop.
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(a) F as a directed graph.

(b) Invset+(F) (c) Att(F)

Figure 2.5: An example of a combinatorial multi-valued map

F : A! A.
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Figure 2.6: A cubed complex T C
of the unit interval [0, 1].

The definition of an outer approximation is quite general; for example, consider the function

f : [0, 1] ! [0, 1] given by f(x) = 0.2 for all x 2 [0, 1]. Consider the cubed complex T C on

[0, 1] shown in Figure 2.6. Let Ctop = {a1, a2, a3, a4} = A and then, F from Figure 2.5a is

an outer approximation to f as f(|a|) = {0.2} ⇢ int(|a1|) and a1 2 F(a) for all a 2 Ctop.

However, the dynamics of F seem to be more complicated than that of the constant function

f .

This is why we focus on minimal outer approximations.

Definition 2.5.8. The minimal outer approximation of a continuous f : [0, 1]d ! [0, 1]d on

a cubed complex C is given by F(c) = {c0 2 C | |c0| \ f(|c|) 6= ;} for all c 2 C.

Given the cubed complex from Figure 2.6, we consider once again f : [0, 1] ! [0, 1] given

by f(x) = 0.2. f(|a|) = {0.2} ⇢ int(|a1|) for all a 2 Ctop and hence F 0(a) = {a1} for all

a 2 Ctop is the minimal outer approximation of f , and is shown as a directed graph in Figure

2.7a. The lattice of attractors of F 0 - Figure 2.7b -is a lot simpler than that for F from

Figure 2.5 and more accurately represents the true dynamics of f - which itself has only one

attractor, a fixed point at 0.2. We see, though, that Invset+(F 0) is a lot more complicated

than Invset+(F).

However, we can embed Att(F 0) in Invset+(F 0) through the bounded lattice monomorphism

⌧ : Att(F 0) ! Invset+(F 0) that takes ; to ; and {a1} to Ctop = {a1, a2, a3, a4}. Further,

since !(;) = ; and !(Ctop) = {a1}, ! � ⌧ = IdAtt(F) i.e., we say ⌧ acts as a lift of !.

In general, we are interested in the question - given a minimal outer approximation F :

Ctop ◆ Ctop of some continuous f : [0, 1] ! [0, 1], does there exists a lift ⌧ of !? In other
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(a) F 0
as a directed graph. (b) Att(F 0)

(c) Invset+(F 0)

Figure 2.7: An example of a minimal outer approximation F 0
.
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words, does a bounded lattice monomorphism ⌧ exist such that ! � ⌧ = IdAtt(F)?

Given a directed graph G = (V,E) a S ✓ V is strongly connected if for all v, v0 2 S such

that v 6= v0 there are paths from v  v0 and from v0  v. A strongly connected component

of G is a strongly connected S ✓ V that is maximal, i.e., if S ⇢ S 0 ✓ V , then S 0 is not

strongly connected. The condensation graph of G, also called the graph of strongly connected

components of G, is the graph SC(G) with the vertex set being the set of strongly connected

components of G and edge set {(S, S 0) | 9 (v, v0) 2 E with v 2 S, v0 2 S 0}. SC(G) is always

a directed acyclic graph and hence can be viewed as a poset. For any v 2 V , we denote by

SCC(v) the strongly connected component it belongs to in SC(G).

Viewing F as a directed graph, we denote the associated condensation graph by SC(F).

We call a strongly connected component a recurrent component or a Morse set if it contains

at least one edge. We denote by M(F) the Morse graph - the sub-poset of Morse sets of

SC(F).

The recurrent dynamics of f is contained in the Morse sets for any outer approximation F .

Note that a non-recurrent component must be a singular top-dimensional cube c such that

c /2 F(c). Further for any c 2M 2 M(F), there exists a c0 2 M(F) such that c0 2 F(c).

This implies M \ Fk(c) 6= ; for any c 2M and k 2 N.

Definition 2.5.9. Let T C0
be a refinement of T C. Then a F 0 : C 0top ◆ C 0top is a refinement

of F : Ctop ◆ Ctop if for every c0 2 C 0, c0 2 z(c) for c 2 C =) F 0(c0) ✓ z(F(c)) i.e.,

|F 0(c0)| ✓ |F(c)|.

2.6 Birkho↵s Representation Theorem

Birkho↵’s representation Theorem allows us to translate between the category of finite dis-

tributive lattices and finite posets. In fact, it establishes a dual equivalence between the two

categories. We present it here in a manner understandable to readers without a background

in category theory.

We first note that for any poset P , the set of its down sets O(P ) has a bounded, distributive

lattice structure with _ = [, ^ = \ , 1 = P and 0 = ;.

Theorem 2.6.1. [3] For any finite poset P , P ⇠= J(O(P )) and for any finite distributive
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lattice L, L ⇠= O(J(L)).

Remark 2.6.2. Every joint irreducible element of O(P ) if given by # p for some p 2 P and

the isomorphism P ⇠= J(O(P )) is simply given by taking every p 2 P to # p.

Remark 2.6.3. For every a 2 L, let Ja(L) = {b 2 J(L) | b L a}. Ja(L) is a down set of

J(L). The isomorphism L ⇠= O(J(L)) is given by taking every a 2 L to Ja(L).

In fact every a 2 L can be written as a =
W
Ja(L).

Theorem 2.6.4. ([7], Theorem 4.2),([3], Theorem 5.19), ([12], Theorem 10.4)(i) Let L,K

be finite distributive lattices and h : K ! L be a bounded lattice homomorphism. Then

J(h) : J(L)! J(K) given by

J(h)(a) =
^

h�1(" a) = min(h�1(" a)) for all a 2 J(L)

is an order-preserving map such that h is a bounded lattice monomorphism if and only if

J(h) is an order surjection and h is a bounded lattice epimorphism if and only if J(h) is an

order embedding. Further, for h : K ! L and g : L!M :

J(g � h) = J(h) � J(g).

(ii) Let P,Q be finite posets and h : Q! P be a order-preserving map. Then O(h) : O(P )!
O(Q) given by

O(h)(I) = h�1(I) for all I 2 O(P )

is a bounded lattice homomorphism such that h is an order surjection if and only if O(h) is a

bounded lattice monomorphism and h is an order embedding if and only if O(h) is a bounded

lattice epimorphism. Further, for h : Q! P and g : P ! R:

O(g � h) = O(h) �O(g).

Proposition 2.6.5. For any multi-valued map F : A◆ A:

(i) SC(F) ⇠= J(Invset+(F)),

(ii) M(F) ⇠= J(Att(F)).

Proof. We prove (i) and refer the reader to [7] for a complete proof of (ii).
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We first show that Invset+(F) ⇠= O(SC(F)); in fact, we show that they are the same lattice.

Then, by Birkho↵’s representation theorem, we can conclude that SC(F) ⇠= J(O(SC(F) ⇠=
J(Invset+(F).

For any a 2 A, F(a) ✓ #SC(F) SCC(a). Hence for any strongly connected component

S 2 SC(F), F(S) ✓ #SC(F) S. Thus if I is a down set of SC(F) i.e. if I 2 O(SC(F)),

F(I) ✓ [
S2I
#SC(F) S = I and hence a forward invariant set.

Let N 2 Invset+(F) and let a 2 N . Let a0 2 N such that SCC(a0)  SCC(a) i.e., there

exists a path {a = a0, a1, ..., ak�1, ak = a0} in F . Then a1 2 N as a1 2 F(a). Similarly if we

assume ai�1 2 N , ai must also be in N . By induction ak = a0 2 N . Thus if a 2 N , then

#SC(F) SCC(a) ✓ N i.e., N 2 O(SC(F)).

We have shown O(SC(F)) and Invset+(F) are equivalent as sets. However, for both _ = [
and ^ = \, so they are equivalent as lattices.

By remark, the isomorphism SC(F) ⇠= J(Invset+(F)) is in fact given by taking every

S 2 SC(F) to #SC(F) S.

For (ii) of the proposition, we do not provide a full proof but make the remark that every

join irreducible attractor is given by #SC(F) M for a M 2 M(F) and the isomorphism

M(F) ⇠= J(Att(F)) is given by taking every M 2 M(F) to #SC(F)M. In other words, it is

the isomorphism SC(F) ⇠= J(Invset+(F)) restricted to M(F).

Hence, corresponding to ! : Invset+(F) ! Att(F), we would have an order embedding

J(!) : J(Att(F))! J(Invset+(F)) given by:

J(!)(A) = min(!�1(" A)).

However, for any forward invariant set N , !(N ) ✓ N i.e., !(N ) Invset+(F) N . Further,

!(A) = A for any attractor A. Implying min(!�1(" A)) = A. i.e., J(!) is nothing but the

inclusion order embedding of J(Att(F)) in J(Invset+(F)).

Similarly, corresponding to IdAtt(F), J(IdAtt(F)) = IdM(F). Hence, by theorem , there exists

a bounded lattice monomorphism ⌧ : Att(F) ! Invset+(F) such that ! � ⌧ = IdAtt(F) if
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and only if there exists an order surjection J(⌧) : J(Invset+(F) ! J(Att(F)) such that

J(⌧) � J(!) = J(! � ⌧) = J(IdAtt(F)) = IdM(F).

Further, since SC(F) ⇠= J(Invset+(F)) and M(F) ⇠= J(Att(F)), the existence of such a

lift ⌧ is equivalent to the existence of an order surjection � : SC(F) ! M(F) such that

� � i = IdM(F), where i : M(F)! SC(F) is the inclusion map.
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Chapter 3

Giving Some Context

3.1 The Conley Index

A pair of forward invariant sets (N1,N0) is called a index pair if N0 ⇢ N1. For a field F,
under some weak conditions [1] F induces a map on relative homology:

F⇤ : H⇤(#C N1, #C N0;F)! H⇤(#C N1, #C N0;F).

The Conley index of the pair (N1,N0) - notated by Con⇤(N1,N2;F) is given by the shift

equivalence class of F⇤ (since F is a field, F⇤ is a linear transformation and the shift equiva-

lence class is nothing but the rational canonical form of F⇤).

Let ⇢ : M(F)! J(Att(F)) be the isomorphism discussed in Proposition 2.6.5. The Conley

index of a Morse set M 2M(F) is given by:

Con⇤(M,F) = Con⇤(⇢(M),
 ���
⇢(M);F)

where
 ���
⇢(M) is the unique immediate predecessor of ⇢(M).

Proposition 3.1.1. For any index pair (N1,N0):

Con⇤(N1,N2;F) = Con⇤(!(N1),!(N2);F).
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Thus, if ⌧ is a lift of !, the for any M 2M(F), the Conley index can be computed by:

Con⇤(M,F) = Con⇤(⌧(⇢(M)), ⌧(
 ���
⇢(M));F).

The Conley Index is also defined for certain regions of phase space in the context of continuous

maps (See [10] [5] for details), and we have that when F is an outer approximation of f ,

under some weak conditions:

Con⇤(M;F) ⇠ Con⇤(|⇢(M) \
 ���
⇢(M)|) ⇠ Con⇤(|⌧(⇢(M)) \ ⌧(

 ���
⇢(M))|).

Con⇤(M;F) provides information about the invariant dynamics of f in the region |⇢(M) \
 ���
⇢(M)| - which is in fact contained in |M|.

There are theorems that say given the Conley index of a region and maybe some extra

information, one can conclude the kind of invariant set contained in it [10]. For example

they can guarantee the existence of a fixed point, a particular kind of fixed point, periodic

orbits and even chaos. One fundamental but powerful result says that if the Conley Index of

a region is non-trivial, then there must be a non-empty invariant set contained in it (however,

the converse is not true, as we see in the next section).

Figure 3.1: A cubed complex T C
of the unit interval [0, 1].
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3.2 A Counter-example

Consider the cubed complex T C of the unit interval [0, 1] given by the rooted tree in Figure

3.1 and consider the continuous, in fact, piece-wise linear function f : [0, 1]! [0, 1] given as

follows:

f(x) =

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

12
5 x if 0  x  1

3

�17
11x+ 217

165 if 1
3  x  31

60

18
13x�

31
156 if 31

60  x  5
8

8
17x+ 19

51 if 5
8  x  23

30

3
2x�

5
12 if 23

30  x  5
6

1
4x+ 5

8 if 5
6  x  9

10

5
2x�

7
5 if 9

10  x  14
15

�9x+ 28
3 if 14

15  x  1

(3.1)

A graph of y = f(x) is given in Figure 3.2 with the geometric realization of the cells of Ctop

shown on the x-axis.

Given C and f , we can compute the minimal outer approximation F , which is shown in

Figure 3.3, represented as a directed graph. Corresponding SC(F), M(F) are shown in

Figure 3.5 and Invset+(F) and Att(F) are shown in Figure 3.4.

We can see from Figure 3.4 that there is no bounded lattice monomorphism possible from

Att(F)! Invset(F). In particular in Att(F), {c3, c5, c4} is {c1, c2, c3, c5, c4} ^ {c6, v4, c3, c5, c4}
as well as {c3, c4} _ {c5, c4}; however, in Invset+(F) there is no element which acts as both.

Equivalently from Figure 3.5, we can see that there is no order surjection from SC(F) to

M(F). In particular, consider {c2} - the only element of SC(F) \ M(F). {c2} cannot be

mapped to {c1} as {c2} SC(F) {c6} but {c1} ⇥SC(F) {c6}. Similarly it cannot be mapped

to {c6} as {c6} ⇥SC(F {c1}. {c2} cannot be mapped to {c3} either as {c2} �SC(F) {c5} but

{c3} ⇥SC(F) {c5}. Similarly it cannot be mapped to {c5} as {c5} ⇥SC(F {c3}.

In [7], the authors discuss a method to coarsen the lattice of attractors by excluding Morse

sets with trivial Conley Index. In our counter-example, both the Morse sets {c3} and {c5}
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Figure 3.2: A graph of y � f(x) with the geometric realization of the

top-dimensional cells Ctop
shown on the x-axis.

Figure 3.3: F as a directed graph.
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(a) Invset+(F) (b) Att(F)

Figure 3.4: Invset+(F) and Att(F)
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(a) SC(F) (b) M(F)

Figure 3.5: SC(F) and M(F)

have trivial Conley Index. However, we argue that both these regions contain interesting dy-

namics of the function f . In particular, both contain fixed points that seem to be bifurcation

points.

For example, let us consider the fixed point in |c3|. By perturbing f a small amount, as

shown in Figure 3.6a, the fixed point disappears. However, if we perturb f a small amount,

as shown in Figure 3.6b, we see interesting dynamics of an invariant set more complicated

than a fixed point - which we may not want to discard in our description of the dynamics.

(a) (b)

Figure 3.6: f perturbed in two ways.
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3.3 Some Useful Results

Let i : Q ! P be an order embedding of posets. For simplicity, we denote an element

i(q) 2 P for q 2 Q by q itself.

Definition 3.3.1. A q 2 Q is an immediate predecessor in Q or aQ-predecessor of a p 2 P \Q
if q < p, and q  q0 < p for a q0 2 Q implies q = q0.

Definition 3.3.2. A q 2 Q is an immediate successor in Q or a Q-successor of a p 2 P \Q
if q > p, and q � q0 > p for a q0 2 Q implies q = q0.

Given a p 2 P \Q, we denote by predQ(p) the set of its Q-predecessors and by succQ(p) the

set of its Q-successors.

We note that for any p 2 P \Q, predQ(p) and succQ(p) are anti-chains of P .

Lemma 3.3.3. ([7], Lemma 2.3) Let � be a retraction of the order embedding i : Q ! P

i.e. � is a set map from P to Q such that �(q) = q for all q 2 i(Q). Then � is an order

retraction of i if and only if � is order preserving on every chain contained in P \Q and for

ever p 2 P \Q:

�(p) 2 {q 2 Q | predQ(p) ✓ # q and succQ(p) ✓ " q}.

Corollary 3.3.4. If every p 2 P \Q has a unique Q-predecessor, then the retraction � of i

that takes every p 2 P \Q to its unique Q-predecessor is an order retraction.

Similarly, if every p 2 P \Q has a unique Q-successor, then the retraction � of i that takes

every p 2 P \Q to its unique Q-successor is an order retraction.

However, it is not true that if every p 2 P \Q has either a unique Q-predecessor or a unique

Q-successor, an order retraction � of i exists. An example of this is shown in Figure 3.7.

Elements of i(P ) are in red and Q \ i(p) are in blue. q1 has a unique P -predecessor p4 and

q2 has a unique P -successor p3. However there is no order retraction of i. In particular, this

is as q2 Q q1 but p4 ⇥Q p3.

Lemma 3.3.5. Let i : Q ! P be an order embedding. If there exists an up set Y of P

such that every p 2 Y \ Q has a unique Q-successor and every p 2 Y C \ Q has a unique

Q-predecessor, then � given by
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(a) Hasse diagram of Q. (b) textbfHasse diagram of P ,

Figure 3.7: An example of an order embedding i : P ! Q.

�(p) =

8
>>><

>>>:

p if p 2 Q

The unique Q-predecessor of p if p 2 Y C \Q

The unique Q-successor of p if p 2 Y \Q

(3.2)

is an order retraction of i.

Proof. � restricted to Y is an order retraction as every p 2 Y \Q has a unique Q-successor.

Similarly, � restricted to Y C is an order retraction as every p 2 Y C \ Q has a unique

Q-predecessor. Further if p 2 Y and p0 2 Y C then �(p) �P p >P p0 �P �(p0).

Proposition 3.3.6. If U is a minimal element of SC(F), then U 2M(F).

Proof: Let U be a minimal element of SC(F) and assume U /2M(F). Then U = {c} such

that c /2 F(c). However, since F is an outer approximation, it is right total, i.e., F(c) 6= ;.
This implies there must be another top-dimensional cube c0 6= c such that c0 2 F(c). However,
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that implies SCC(c0) <SC(F) U which is a contradiction as U is minimal. Thus U must be

in M(F).

Lemma 3.3.7. Let U1,U2 2 SC(F) such that they are incomparable and |U1| \ |U2| 6= ;.
Then there exists at least one U 2 SC(F) such that U <SC(F) U1 and U <SC(F) U2.

Proof: Consider

V = f(|U1| \ |U2|) ✓ f(|U1|) \ f(|U2|) ✓ int(|F(U1)|) \ int(|F(U2)|).

V \ |U1| = ; as U1 ⇥ U2 and hence U1 /2 F(U2). Similarly, V \ |U2| = ; as U2 ⇥ U1. However,

V must intersect with at least one top-cell c and hence SCC(c) = U will be <SC(F) U1 and

<SC(F) U2.

Proposition 3.3.8. Let U1,U2, ...,Un 2 SC(F) with U =
S

1in
Ui such that |U| is connected

and each Ui is either a minimal element of M(F) or has only minimal elements of M(F)

as M(F)-predecessors. Then there exists a M that is a minimal element of M(F) such that

for every 1  i  n, Ui = M or M is the unique M(F)-predecessor of Ui.

Proof: Let M be a minimal element of M(F) and c be a neighboring cube of M (i.e c /2M
and |M| \ |c| 6= ;). Then SCC(c) >SC(F) M as M is minimal in SC(F) and by Lemma

3.3.7 M and SCC(c) cannot be incomparable.

Let M and M0 be two minimal elements of M(F) such that M is an M(F)-Predecessor of

some Ui and M0 is an M(F)-Predecessor of some Uj. From Proposition 2.5.4, there exist k

and k0 such that M \ F l(U) 6= ; for all l � k and M0 \ F l(U) 6= ; for all l � k0. Thus, if

K = max(k, k0) both M \FK(U) and M0 \FK(U) are non-empty. Also, since M and M0

are M(F)-Predecessors of Ui and Uj, any U 0 such that Ui � U 0 > M or Uj � U 0 > M0 is a

non-recurrent component. For such a U 0, if U 0 2 F l(U), then U 0 /2 Fk(U) for all k > l. This

implies none of the neighboring cubes of M or M0 are in FK(U). Which means M and M0

must be in di↵erent connected components of FK(U).

However, since |U| is connected, it implies that fn(|U|) and hence |Fn(U)| is connected for

every n 2 N. Which is a contradiction.
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Chapter 4

Resolve-OA

We make use of the binary sub-division operation to refine a cubical complex C. However,

when a c 2 Ctop is sub-divided, we also must worry about how to alter F : Ctop ◆ Ctop to

define a multi-valued map on C 0top corresponding to T C0
= SubDc(T C). For this, we first

define a Subdivide operation.

Definition 4.0.1. Let c0 be a top-dimensional cube of T C, i.e., c 2 T C
l = Ctop. We define a

sub-division operation Subdividec0 that takes as input the pair (T
C,F) where F : Ctop ◆ Ctop

is any multi-valued map on T C.

(T C0
,F 0) = Subdividec0(T

C,F)

.

It outputs the pair (T C0
,F 0) where T C0

= BSDc0(T
C) and F 0 : C 0top ◆ C 0top is given by:

F 0(c0) =

8
>>>>><

>>>>>:

F(c0) if c0 /2 ch(c0) and c0 /2 F(c0)

(F(c0) \ {c0}) [ ch(c0) if c0 /2 ch(c0) and c0 2 F(c0)

F(c0) if c0 2 ch(c0) and c0 /2 F(c0)

(F(c0) \ {c0}) [ ch(c0) if c0 2 ch(c0) and c0 2 F(c0)

(4.1)

Note that C 0top = (Ctop \ {c}) [ ch(c). Hence, F 0 is a well defined multi-valued map on C 0top.
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If c0 /2 ch(c0), then F 0(c0) = z(F(c0)) and if c0 2 ch(c0), F 0(c0) = z(F(c0)).

F 0 is a refinement of F , however its dynamics are not very di↵erent. If {c0} is a non-recurrent
component in SC(F), then for each c0 2 ch(c0), {c0} would be a non-recurrent component

in SC(F 0). Further SC(F) \ {c0} = SC(F 0) \ ch(c0) and for any S 2 SC(F) \ {c0},
S SC(F 0) (�SC(F 0)){c0} () S SC(F) (�SC(F)){c0} for all c0 2 ch(c0). On the other hand,

if c0 2 M for some Morse set M 2 M(F), then M0 = (M\ {c}) [ ch(c) is a Morse set

M0 2M(F 0) such that |M| = |M0|.

Hence, the Subdivide operation is not enough to refine a minimal outer approximation F in

a way to resolve the dynamics. To do so, we make the assumption that given our continuous

function f of interest, for any cubed complex T C, and for any c 2 Ctop, we can compute

{c0 2 Ctop | |c0| \ f(|c|) 6= ;} - the value of the minimal outer approximation of f on c. We

define another operation ComputeMOA that given a cubed complex T C, a c0 2 Ctop and our

continuous function f of interest, takes as input an outer approximation F : Ctop ◆ Ctop.

G = ComputeMOAc0(F ; f)

.

Outputs a G : Ctop ◆ Ctop given by

G(c) =

8
<

:
F(c) if c 6= c0

{c0 2 Ctop | |c0| \ f(|c|) 6= ;} if c = c0
(4.2)

For a p 2 P , we introduce the notation #1 p = # p \ {p} = {q 2 p | q <P p}.

Definition 4.0.2. A U 2 SC(F) \M(F) is bottom-resolved if every U 0 2#1 U \M(F) (i.e.,

U 0 < U and U 0 /2M(F)) has a unique M(F)-Predecessor.

Let BR(F) denote the set of bottom-resolved elements of SC(F) \M(F).

Given a U 2 BR(F)) we can consider the poset morphism � :#1 U !M(F) given by:
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�(U 0) =

8
<

:
U 0 if U 0 2M(F)

the unique M(F)-Predecessor of U 0 otherwise
(4.3)

Definition 4.0.3. Let U 2 BR(F) be bottom-resolved. A v 2 C \ Ctop such that top(v) ✓
F(U) is a problematic intersection for U if there does not exist a M 2 M(F)\ # U such

that M �M(F) �(SCC(u)) for all u 2 top(v).

Let BR0(F) = {U 2 BR(F) | U has no problematic intersections}.

We first introduce the algorithm Sort-Intersections(U , Q), which takes as input a U 2 BR(F)

and a Q ✓ F(U) and simply outputs the set of problematic intersections of U which lie in

the interior of |Q| i.e. satisfy top(v) ✓ Q. The pseudo-code is described in Algorithm 1.

Algorithm 1 Sort-Intersections

Input: A cubed complex T C of [0, 1]d; a multi-valued map F : Ctop ◆ Ctop; a U 2 BR(F);
and a subset Q ✓ F(U)
set A = ;
for c 2 C \ Ctop such that top(c) ✓ Q do

if c is a problematic intersection then

Add c to A
end if

end for

Output: A

We also introduce two division algorithms:

1. Divide-1 takes as input a U 2 BR0(F). It involves sub-dividing U until each of its

sub-cubes U 0 satisfies the condition that there exists a M 2 M(F)\ # U such that M �
�(SCC(v)) for all v 2 F(U 0). i.e, it subdivides U , computes the minimal outer approximation

for all the children of U , and checks which ones satisfy the above condition. Those that do

not are further subdivided and this process is repeated until all the sub-cubes satisfy the

condition. For each sub-cubes U 0, the M that ensures the above condition is satisfied if

added to F 0(U 0) so that M is the unique M(F 0)-predecessor of U 0. It outputs the sub-cubes

of U . The pseudo-code is described in Algorithm 2. In Proposition 4.0.5, we show it ends

in finite steps.

2. Divide-2 takes as input a set of non top-dimensional cells V ✓ (C \ Ctop). For each v 2 V ,

it sub-divides the top cells that surround v, i.e., in top⇤(v), and computes the minimal outer
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Algorithm 2 Divide-1

Input: A cubed complex T C of [0, 1]d; a continuous function f : [0, 1]d ! [0, 1]d; an outer
approximation F : Ctop ◆ Ctop of f ; and a U 2 BR0(F)
Set R = U = {c}, S = ;, TX = T C and G = F
while R is non-empty do

Pick a c0 in R
TX ,G = Subdividec0(TX ,G)
for v in ch(c0) do

G = ComputeMOAv(G; f)
if 9M 2M(G)\ # U such that M �M(G)\ # {v} then

Set G(v) = G(v) [M
Add v to S

else

Add v to R
end if

end for

Remove c0 from R
end while

set T C0
= TX and F 0 = G

Output: T C0
,F 0, S

approximation of f for those sub-cells surrounding v. It checks which of these maps to

Yv = \
w2top(v)

# w under F . For those that do not, it sub-divides them further and repeats

the process until all the top cells surrounding v map to Y under F . It outputs B - the set

of non-recurrent cubes that map to z(Yv) for each v 2 V . For the rest of the sub-cubes, it

sets F 0 to be F of its parent cell in C. The pseudo-code is described in Algorithm 3. In

Proposition 4.0.6 we show it ends in finite steps.

We then finally describe the algorithm Divide �Meta which takes as input a U 2 BR(F)

along with T C and F , and outputs a refinement T C0
of T C and F 0 of F such that all sub-cubes

of U and all non-recurrent components in [
V2z(U)

# V have a unique M(F)-Predecessor. It is

shown visually in Figure 4.1, and the pseudo-code is described in Algorithm 4.

We are finally able to describe the algorithm Resovle-OA, described in Algorithm 5.

Conjecture 4.0.4. Let T C be a cubed complex of the unit cube [0, 1]d and F : Ctop ◆ Ctop be

the minimal outer approximation of a continuous function f : [0, 1]d ! [0, 1]d on T C. Resolve-

OA(T C, f,F) returns a refinement T C0
of T C and an outer approximation F 0 : C 0top ◆ C 0top

of f that is a refinement of F such that there exists an order retraction � : SC(F 0)!M(F 0)
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Algorithm 3 Divide-2

Input: A cubed complex T C of [0, 1]d; a continuous f : [0, 1]d ! [0, 1]d; an outer approxi-
mation F : Ctop ◆ Ctop of f ; and a V ✓ (C \ Ctop)
set TX = T C and G = F
for v 2 V do

set Y = \
V2top(v)

# SCC(V) ✓ SC(F)

set X = top⇤(v) ✓ X top

B = ;
while X is non-empty do

Pick an element x of X
if G(x) ✓ z(Y ) then

remove x from X
if {x} 2 SC(G) \M(G) then

add x to B
end if

else

TX ,G = Subdividex(TX ,G)
for c 2 ch(x) do

if c 2 top⇤(v) then
G 0 = ComputeMOAc(G; f)
if G 0(c) * z(Y ) then

add c to X
else

set G = G 0

add c to B
end if

end if

end for

remove x from X
end if

end while

end for

set Z to be the union of the descendants of the cubes in B in TX

set B0 = c 2 Z such that c 2 top⇤(v) for some v 2 V
for all c 2 Z \B0, set G(c) to be z(F(x)) for the ancestor x of c in T C

set T C0
= TX and F 0 = G

Output: T C0
,F 0, B0
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Let A be the output of
Sort-Intersections run on F(U)

Let S be the output
of Divide-1 run on U

Output S

Let B be the output
of Divide-2 run on A

Let A be replaced by the output
of Sort-Intersections run on D

Run Divide-Meta on the cubes
in B that do not have a unique
Morse predecessor. Let D be the
union of B with all the outputs.

If A = ;

If A 6= ; If A = ;

If A 6= ;

Figure 4.1: A diagram depicting Divide-Meta.

Algorithm 4 Divide-Meta

Input: A cubed complex T C of [0, 1]d; a continuous f : [0, 1]d ! [0, 1]d; an outer approxi-
mation F : Ctop ◆ Ctop of f ; and a U 2 BR(F);
set k = 0
set T C0 = T C and F0 = F
set A = A0 = Sort-Intersections(T C0 ,F0,U ,F0(U))
while A is non-empty do

set k = k + 1
set (TX = TXk ,G = Gk, B = Bk) = Divide-2(T Ck�1 , f,Fk�1, Ak�1);
set C = Ck ✓ B to be those elements of B that do not have a uniqueM(F)-predecessor
set B = B \ C
while C is non-empty do

pick a minimal element c of C ⇢ SC(G)
TX ,G, R = Divide-Meta(TX , f,G, {c})
B = B [R
remove c from C

end while

T Ck = TX , Fk = G and Dk = B
A = Ak = Sort-Intersections(T Ck ,Fk,U , Dk)

end while

T C0
,F 0, S = Divide-1(T Ck ,Fk, f,U)

Output: T C0
,F 0, S
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Algorithm 5 Resolve-OA

Input: A cubed complex C of [0, 1]d; a continuous f : [0, 1]d ! [0, 1]d; and a minimal
outer approximation F : Ctop ◆ Ctop of f
Initialize T = SC(F) \M(F), Y = ;
set TX = T C and G = F
while T is non-empty do

Pick a minimal element U of T
if U has a unique M(F)-predecessor then

remove U from T
else if if every U 0 2"T U has a unique M(F)-successor then

set Y = Y [ "T U
set T = T \ "T U

else

TX ,G, S = Divide-meta(TX , f,G,U)
remove U from T

end if

end while

set T C = TX , F 0 = G and Y = z(Y )
Output: T C0

,F 0, Y

of the inclusion map i.

Furthermore, there exists a poset isomorphism ⇢ : M(F 0) ! M(F) such that ⇢(M) is the

unique element of M(F) such that |M| ✓ |⇢(M)|.

We begin working towards a partial proof with the following proposition.

Proposition 4.0.5. The algorithm Divide� 1 ends in finite steps.

Proof. Let N = max({n | c = (p,b, k) 2 Ctop}). Then, the side length of the smallest top-

dimensional cube in C is 2�N . By Remark 2.4.3, if c1, c2 2 Ctop such that |c1|\ |c2| = ;, then
D(|c1|, |c2|) � 2�N . Thus, if U is a set in [0, 1]d with diam(U)  2�N such that U \ |c1| 6= ;
and U \ |c2| 6= ; for two cubes c1, c2 2 Ctop, then |c1| \ |c2| 6= ;.

Since f is continuous on a compact space [0, 1]d, it is uniformly continuous. i.e there exists ✏

such that diam(V ) < ✏ implies that diam(f(U)) < 2�N . Thus, if U 0 2 z(U) is a descendent

of U in TX with diam(U 0) < ✏, then diam(f(|U 0|)) < 2�N . Thus,
T

V2G(U 0)

V 6= ; and since

this cannot be a problematic intersection for U , there exists M 2 M(G) \ # U such that

M �M(G) \ # U 0.
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Proposition 4.0.6. The algorithm Divide� 2 ends in finite steps.

Proof. Let U = int(|
T

c2top(v)
# SCC(c)|). f(|v|) ✓ U as F is an outer-approximation. Let

O = f�1(U). O is an open set such that |v| ⇢ O.

Since |v| and OC are disjoint closed sets, there exists a finite distance ✏ between them. Thus,

for any cube c 2 C 0top with diam(c) < ✏ and c 2 top⇤(v), we have that f(|c|) ✓ |U | and
hence, F 0(c) ✓ z( \

V2top(v)
# SCC(V)).

Conjecture 4.0.7. Divide-Meta(T C, f,F ,U) outputs a refinement T C0
of T C and an outer

approximation F 0 of f which is a refinement of F such that every non-recurrent component

in [
V2z(U)

# V has a unique M(F)-Predecessor.

Furthermore, there exists a poset isomorphism ⇢ : M(F 0) ! M(F) such that ⇢(M) is the

unique element of M(F) such that |M| ✓ |⇢(M)|.

Notice that the algorithmDivide-Meta is recursive. WithinDivide-Meta(T C, f,F ,U), Divide-
Meta(TX , f,G, {c}) is called for a refinement TX of T C, a refinement G of F that is an

outer-approximation of f and a {c} 2 #1 U under G. We make the following assump-

tion which we call assumption 1: every time Divide-Meta(TX , f,G, {c}) is called within

Divide-Meta(T C, f,F ,U), Conjecture 4.0.7 holds for Divide-Meta(TX , f,G, {c}). Under this
assumption, we can prove the conjecture holds true for Divide-Meta(T C, f,F ,U). For the

rest of the chapter, we work with this assumption.

Proposition 4.0.8. Under assumption 1, for each k, there exists a poset isomorphism ⇢k :

M(Gk) ! M(Fk�1) such that ⇢(M) is the unique element of M(Fk�1) such that |M| ✓
|⇢(M)|.

Proof. First note that if {c} 2 SC(Fk�1) \M(Fk�1) then for each c0 2 z(c), {c0} 2 SC(Gk) \
M(Gk) as Gk is a refinement of Fk�1. Hence |M(Gk)| ✓ |M(Fk�1)|.

We also note that for every c 2 Gk(U) \Bk, Gk(c) = z(Fk�1(c0)) where c0 is the ancestor of c

in T Ck�1 and for any c 2 Bk, {c} 2 SC(Gk) \M(Gk).
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Next we note that for each c 2 Ck�1, there exists a c0 2 z(c) such that Gk(c0) = z(Fk�1(c)).

Assume there is a c such that this is not the case. This means that there exists a v 2 Ak�1

such that c 2 top(v) else c would never be subdivided and hence z(c) = {c} with Gk(c) =

z(Fk�1(c)). Then, when c is sub-divided, for those cubes c0 2 ch(c) such that c0 2 top⇤(v),

the minimal outer approximation would be computed. However, there exists at least one

cube c0 2 ch(c) which is not in top⇤(v). This would be subdivided if there existed another

v0 2 Ak�1 such that c0 2 top⇤(v0). However, when c0 is subdivided, there would exist a

c00 2 ch(c0) such that |c00| ⇢ int(|c|). This would retain Gk(c00) = z(Fk�1(c)) and not be

subdivided after as it is not in top⇤(v) for any v 2 Ak�1. This is a contradiction.

Thus for every M 2 M(Fk�1), z(M) \ Bk is a non-empty Morse set in M(Gk). Define

⇢0k : M(Fk�1)!M(Gk) by ⇢(M) = z(M) \Bk.

⇢ is an isomorphism. For any path {c0, c1, ..., cl} in Fk�1, for each 0  i  l�1, there exists a

c0i 2 z(ci) such that Gk(c0i) = z(Fk�1(ci)) ◆ ch(ci+1). Hence there exists a path {c00, c01, ..., c0l}
in Gk. This means if M1  M2 in M(Fk�1), then ⇢0(M1)  ⇢0(M2) in M(Gk). Further

since Gk is a refinement of Fk�1, ⇢0(M1)  ⇢0(M2) in M(Gk) only if M1 M2 in M(Fk�1).

So ⇢k = (⇢0k)
�1 is the isomorphism we desire.

Proposition 4.0.9. Under assumption 1, for each k, U is bottom-resolved under Fk.

Proof. We show this via induction. This is true for F0. Assume it is true for Fk�1. By

assumption 1, every cube in Dk has a unique M(F)-predecessor. It is left to show that for

every c 2 Fk(U) \Dk, SCC(c) is either a Morse set or has a unique M(Fk)-predecessor.

We first show that for every c 2 Gk(U) \ Bk, SCC(c) is either a Morse set or has a unique

M(Gk)-predecessor. Then we note that again by the assumption, if SCC(c)  {c0} for some

c0 2 Ck, every cube in z(c) is either part of a Morse set or has a unique M(Fk)-predecessor.

Otherwise, c is not sub-divided and thus is either part of a Morse set or has a unique

M(Fk)-predecessor.

However, for every c 2 Gk(U) \ Bk, Gk(c) = z(Fk�1(c0)) where c0 is the ancestor of c in

T Ck�1 . This means c 2 M 2 M(Gk) if c0 2 ⇢(M) 2 M(Fk�1), Also M is the unique

M(Gk)-predecessor of c if ⇢k(M) is the unique M(Fk�1)-predecessor of c0.

Proposition 4.0.10. Under assumption 1, For all k, if v is a problematic intersection of U
under Fk, then top(v) ✓ Dk.
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Proof. Let v be a problematic intersection of U under Fk. Assume top(v) ✓ ch(c) for some

c 2 Ctop
k�1. SCC(c) is either a Morse set itself or has a unique M(Fk�1) predecessor - say

M. Then M � �(SCC(c0)) for all c0 2 ch(c). Thus, such a v cannot be a problematic

intersection. Thus, it must be that if v is a problematic intersection of U under Fk, then v is

contained in a problematic intersection v0 of U under Fk�1. In such a case, top(v) ✓ Dk.

Corollary 4.0.11. Ak contains all the problematic intersections of U under Fk.

Proposition 4.0.12. Under assumption 1, there exists a K such that AK = ;, i.e., the

while loop ends after finite iterations.

Proof. Given a Morse set M 2 M(F), let p(M) denote the length of the longest path in

M(F) from M to a minimal element of M(F). If M0 <M(F) M, then p(M0) < p(M).

For every k, letMk denote the set {M 2M(Fk) | 9 c 2 Ctop
k such that c 2 top(v) for some v 2

Ak and M = �(SCC(c))}. Then let p(Ak) = max
M2Mk

p(M).

We show that p(Ak+1) < p(Ak). Let c 2 Ctop
k such that c 2 top(v) for some v 2 Ak

and p(�(SCC(c))) = p(Ak) = x. Then, c will be sub-divided and let c0 2 z(c) such that

c0 2 top(v0) for some v0 2 Ak+1 such that |v0| ✓ |v|. Assume p(�(SCC(c0))) = x as well. We

know M(Fk+1) ⇠= M(Fk) with isomorphism ⇢k. Since Fk+1(c0) ✓ z(Fk(c)), this must mean

⇢k(�(SCC(c0))) = �(SCC(c)). But that implies that �(SCC(c)) (say M) is in
T

a2top(v)
#

SCC(a). Which in turn implies that M  �(SCC(a)) for all a 2 top(v). However, since

p(M) = p(Ak), it cannot be that M < �(SCC(a)) for any a 2 top(v). Hence, v cannot be

a problematic intersection. This is a contradiction.

Thus if p(A0) = K, then p(AK) = 0. Proposition 3.3.8 then implies that for each v 2
AK , there exists an M 2 M(FK) such that M is the unique M(FK)-Predecessor for each

c 2 top(v) and hence v is not a problematic intersection. Which is a contradiction. Hence

AK = ;.

Proposition 4.0.13. If (T C,F 0, S) = Divide-1(T C, f,F ,U) such that F(U) = {c 2 Ctop | |c|\
f(|U| 6= ;)} Then M(F) = M(F 0).

Proof. Since only U = {c} 2 SC(F) \ M(F) and its sub-cells are sub-divided, the Morse

sets themselves are unchanged. Assume M1 >M(F) M2. If there exists a path from M1
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to M2 in SC(F) that doesn’t contain U - that path remains in F 0 and M1 >M(F 0) M2.

Further, for any path {M1, ...,V ,U ,V 0, ...,M2} in SC(F), since F(U) is the minimal outer

approximation, there will exist a descendent c0 of the cube in U such that F 0(c)\V 6= ; and
hence {M1, ...,V , {c0},V 0, ...,M2} will be a path in SC(F 0).

Every time Divide-1 is run within Divide-Meta, the input U and F is such that the value of

F on U is the minimal outer approximation of f .

Now we present a proof of Conjecture 4.0.4 under Assumption 1:

Proof. The output Y of Resolve-OA is a union of up sets and hence is itself an up set. Every

non-recurrent element of Y has a unique M(F 0)-successor. Y C is a down set and every

non-recurrent element of Y C has a unique M(F 0)-predecessor. Hence, by Lemma 3.3.5, we

can define � an order retraction of i : M(F)! SC(F):

�(U) =

8
>>><

>>>:

U if U 2M(F 0)

The unique M(F 0)-predecessor of U if U 2 Y C \M(F 0)

The unique M(F 0)-successor of U if U 2 Y \M(F)

(4.4)

Remark 4.0.14. The output F 0 is not always a minimal outer approximation. Within Divide-

2, the value of the multi-valued map for some of the sub-cubes is set to the value of the

multi-valued map for its parent cube. This is what allows Resolve-OA to preserve the Morse

graph.
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