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Abstract

In visual neuroscience, the traditional system of recording neural activity (a highly con-

strained and artificial environment) often falls short due to its limited capacity to capture

natural behaviours. One of these natural behaviours (and an extremely prominent one) is

sleep. Sleep is an essential behavioural state that is known to be crucial for the proper

functioning of the brain and the body. Despite its importance, the neural correlates of sleep

are not well understood, especially in nonhuman primates. In this thesis, we investigate

the neural correlates of sleep in bonnet macaques, a species of nonhuman primates. We

recorded neural activity from the inferotemporal (IT) region, the ventro-lateral prefrontal

cortex (vlPFC), and the ventral premotor area (PMv) of the brain, while the monkeys slept

naturally. We find that the firing rates of the neurons in the PMv region are significantly

lower during sleep compared to wakefulness, while the firing rates in the IT region have a

marked increase in their variance. We also find that the power in the delta band of the local

field potentials (LFPs) is significantly higher during sleep compared to wakefulness, in all

the regions. These results suggest that there are clear neural correlates of sleep that can

be distinguished from those during wakefulness, and that these have similarities to those

observed in humans and rhesus macaques. In the second part of the thesis, we present our

training of the macaques towards a new task paradigm - that of using four direction buttons

on the touchscreen to move a character around the screen, with the goal of obtaining “re-

ward” objects. Overall, this thesis provides new insights into the neural correlates of sleep

in bonnet macaques as well as showcases a paradigm for the training for playing games, and

highlights the importance of studying natural behaviours in nonhuman primates.
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Chapter 1

Neural correlates of sleep

1.1 Introduction

It has become increasingly understood, that adequate sleep is essential to a healthy physi-

ology and proper bodily function. This behavioural state appears to be essential to animal

life across a variety of animal taxa, wherein inadequate sleep has been shown to negatively

impact development, cognitive function, and life span [1]. Despite this consistency in the

absolute requirement of a sleep behavioural state across taxa, when it comes to duration

of sleep as well as the timing, a large variation is found within the species among different

animal phyla. Even amongst humans, sleep durations are known to vary widely, ranging

from less than 5 hours to greater than 10 hours [2]. This variation in sleep duration and

timing is also seen in other animals, and is known to be influenced by a variety of factors: in

mammals, parameters such as brain size, diet, social hierarchy and BMI have been identified

to affect total sleep times [3]. Sleep disorders affect a significant portion of the human popu-

lation, and are known to be associated with a variety of health problems, including obesity,

diabetes, cardiovascular disease, and even mortality [1]. More than 80 sleep disorders have

been currently identified by the American Academy of Sleep Medicine - the most common

of which are insomnia, narcolepsy, sleep apnea and restless leg syndrome. Studies in India

for different sleep disorders have shown a high prevalence of insomnia (25%) and sleep ap-

nea (37%), among others. College students were found to have an increased prevalence of

insomnia compared to the general population: 35% [4]. Deprivation of sleep is also known
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to be a significant factor in motor vehicular accidents and disasters [1].

Although human subjects are used widely in the study of sleep and sleep disorders,

a deep study of brain function during any behavioural state requires invasive methods of

investigation. However, this is particularly true for sleep, with its lack of overt behavioural

activity (almost, by definition). The use of animal models is thus essential to understanding

the neural mechanisms underlying sleep.

Animal models commonly used for sleep research include rodents and felines (carnivores).

However, these have many drawbacks due to their fragmented sleep patterns, and the dif-

ferences in their sleep architecture compared to humans: of the light-dark cycle, rodents

sleep during the light phase, and carnivores are awake mainly at the transitions between the

cycle’s phases. Nonhuman primates, on the other hand, have sleep patterns that are more

similar to humans and thus are better suited for sleep research, and several studies over the

years have reported successful sleep recordings in large nonhuman primates [5]. The close

phylogenetic relationship with humans also makes them almost a perfect model for filling the

gap between rodent/feline and human sleep research. The macaques, and the rhesus monkey,

in particular, have been used as a model for human sleep research, due to their similarities

in sleep architecture, sleep stages, and sleep patterns. Importantly, the rhesus macaque has

been the most used NHP model for the study of other diseases and disorders, including those

of the nervous system, and thus has a wealth of information and characterization available.

However, for a long time, the use of nonhuman primates in sleep research was limited

by the lack of suitable recording techniques, and the need for the animals to be restrained

physically during the recordings or shifted to completely new and artificial environments.

This has been a significant limitation, as it is known that the sleep architecture of nonhuman

primates is affected heavily by the restraint [6], and thus the sleep patterns are markedly

different from those during their natural state - the sleep patterns are fragmented and have

prolonged bouts of wakefulness. Other than the physical recording setting, the record-

ing techniques themselves have also evolved over the years. The use of fully implantable

biotelemetry transmitters has allowed for continuous recordings over multiple days and has

been a significant advancement in the field. EEG (electroencephalography) recordings have

been the most common method of studying sleep [7], across all models, including nonhuman

primates. However, recent advances in wireless biotelemetry devices, especially for electro-

corticography (ECoG) and local field potential (LFP) recordings, have allowed for the study
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of natural sleep at a much higher spatial resolution than what is possible with EEG.

1.2 Methodology

1.2.1 Neural recording setup

The experiments were performed on two male bonnet macaques (Macaca radiata), who

were housed in a naturalistic environment[8]. Broadband neural signals were recorded at a

25kHz sampling rate by means of a wireless logger, which records from a total of 256 Pt/Id

electrodes (Floating Microelectrode Arrays). In Monkey 1 (M1), 128 electrodes were placed

in the inferotemporal (IT) region, 64 electrodes were placed in the ventro-lateral prefrontal

cortex (vlPFC) and 64 in the ventral premotor area (PMv). In Monkey 2 (M2), 128 electrodes

were placed in the IT region and 128 electrodes were placed in the PMv region.

1.2.2 Sleep recordings

The monkey was housed in an area of the naturalistic housing environment which has good

visibility through the CCTV camera system. Neural data collection was wirelessly triggered

and continued for a duration of approximately 2 hours, starting at approximately the time

when the monkey naturally starts falling asleep (as noted via the CCTV). The start of

the recording was accompanied by a series of flashes in a separate room (not visible to the

monkey), which were used to synchronize the neural data with the CCTV video recording,

post-hoc.

1.2.3 Data analysis

Data preprocessing

Neural data: The wideband data (recorded at a sampling rate of 25kHz) was low-passed

to 500Hz and then downsampled to 1kHz, to generate LFP (Local field potential) data.

Multi-unit activity (MUA) data was generated offline using the Plexon Offline Sorter�, by
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first filtering with a low-cut Butterworth filter (4-pole) with a 250Hz cutoff. Waveform/spike

sorting was then done following a (negative) amplitude threshold of 3.75 sigmas from the

signal mean for each channel.

Video data: The video data was manually annotated from CCTV recordings of the monkey

during a sleep recording session: “bouts” of sleep and wakefulness were marked based on

visible behavioural markers such as a huddled position while sitting on the floor/log, with

the head bent down. Wakefulness was marked by open eyes, raised head, movements around

the room, scratching the self etc. There were no visible artificial or natural lights during

this period, but the CCTV system was equipped with an infrared light source for night-time

recordings (imperceivable by monkeys or human eyes). From these behavioural markers,

we generate proxies of the sleep and wakefulness states, which we term as HeadDown and

HeadUp bouts, respectively. It is to be noted that, although a HeadUp bout is necessarily a

wakeful state, a HeadDown bout is not necessarily a sleep state, and could also be a relaxed

wakeful state. It was ensured during annotation that at any point in time, the monkey was

either in a HeadDown or HeadUp state, based on the behavioural markers.

Alignment: The neural data was aligned with the video data by using repeated flashes on

a screen in a separate room. The flashes were visible in both the CCTV camera system, as

well as on a separate camera system (WhiteMatter� e3Vision) which is time-aligned with the

neural data acquisition system (WhiteMatter� eCube Server). By manual selection of the

pixel area of the screen in both video systems, an intensity over time signal was generated

for both, which was then aligned by thresholding for the intensity jump at the time of the

first flash. This alignment (time difference) was then used to align the neural data with the

video data.

Artifacts: The neural data was checked for artifacts, and the data was cleaned manually by

assigning the time points of the “blips” as artifact time points. Later, based on the needs

of the particular analysis, the data at those time points may be assigned NaN values. The

characteristic of the artifacts/blips was that they were high amplitude square waves, which

occur across all channels simultaneously every 2686 seconds, or 44.7mins, and last for exactly

1310ms, which makes for easy manual demarcation.
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Bout lengths and counts

The lengths of the HeadUp bouts were calculated from the video data by finding the time

difference between a MoveHeadUp event to the next MoveHeadDown event and vice versa

for a HeadDown bout. Subsequently, a histogram of these bout lengths was made using a

20-second bin width, and both monkeys’ histograms were plotted together. This was done

separately, for both HeadUp and HeadDown bouts. (1.2.3 Data preprocessing – Video data).

The fraction of total time spent in all the bouts less than 20 seconds was calculated as the

sum of the durations of all the bouts less than 20 seconds, divided by the total duration of

all the bouts.

1.2.4 Firing rates analysis

The firing rate was calculated from the MUA data per channel by binning the spike times into

1s bins (unless mentioned otherwise). The firing rate was then calculated as the number of

spikes in a bin, divided by the bin width (1s). If any timebin contains an artifact timepoint,

as defined in (1.2.3 Data preprocessing – Artifacts), the firing rate for that timebin was

assigned NaN. Unless mentioned otherwise, the firing rates were z-scored (mean-subtracted

and divided by the standard deviation) across all timebins for each channel, to make the

firing rates comparable across channels.

Event-aligned firing rates

To visualize the firing rates of the channels around the time of the transition from HeadDown

to HeadUp and vice versa, we align the firing rates of the channels to the time of the

transition. Hence, time 0 in the plots was the time of the respective transition event. These

transition events were labelled MoveHeadUp and MoveHeadDown events, and were defined

as the time of the first frame of the video in which the monkey was seen to be transitioning

from HeadDown to HeadUp and vice versa, based on the behavioural markers in (1.2.3 Data

preprocessing – Video data).

To visualize the raw firing rates data, for each bout, we place colourmaps wherein each

pixel’s colour value represents the firing rate of a particular channel (along the rows), at
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a particular timebin with respect to the transition event (along the columns). The bouts

preceding and succeeding a particular transition event were plotted together with the same

(artificial) y-displacement to aid visualization. For this particular analysis, a bin size of

0.5sec was used while computing firing rates, for a cleaner visualization. The events were

sorted on the y-axis based on the duration of the bout just before the transition event.

We then calculate the average firing rates across the channels per region, average them

across all these transition events and plot them to visualize the change in firing rates per

region, around the time of the transition. Since while averaging across the bouts, the time

duration of each of the bouts was not the same, the standard error of the mean (SEM) for

each timebin was also calculated and plotted as a background shadow with lower opacity

(each timebin’s average across bouts may have a different number of contributing bouts - for

example, as M1 only has 3 HeadUp bouts with a duration >60seconds, any timebin in the

MoveHeadDown-aligned plots aligned at less than -60sec would not have more than 3 bouts

contributing to the calculated average).

Firing rates comparison

To compare the average firing rates across the HeadDown and HeadUp states, there are two

methods: average the firing rates over all the timebins which occur during all HeadDown

or HeadUp bouts, or, average the firing rates over all the timebins which occur during

each HeadDown or HeadUp bout, and then average these averages across all the bouts.

The second method, however, assigns an equal weightage to all the bouts, which may be

problematic as the bouts can be of very different lengths. The first method was visualized

in the results section, via the plotting of the distributions of the average firing rates of

the regions during the HeadDown and HeadUp states. Bin sizes for the distributions were

0.05. Dashed vertical lines present the averages from HeadUp and HeadDown. To perform

statistical significance tests, a custom MATLAB function written at the VisionLab was used

(statcomparemean), which performs the following process. An Anderson-Darling Normality

Test was performed using MATLAB’s adtest function to check whether the underlying

distributions were normally distributed. If yes, a Two Sample t-Test (ttest2) was performed

to check whether the means were significantly different. Otherwise, a Wilcoxon rank-sum

test (ranksum) was performed, which tests the hypothesis that the ”medians are equal”.

The p-value from the resulting test was compared to a critical value of 0.05 to compute

8



significance. (1.2.3 Data preprocessing – Neural data)

Correlation of firing rates with states

To check how the firing rates of the channels correlate with the HeadDown and HeadUp

states, we construct a vector of 1s and 0s, wherein those timebins which were during HeadUp

bouts are 1s and the 0s correspond to the timebins during HeadDown bouts. We then

calculate the Pearson’s linear correlation coefficient of the vector of firing rates of each

channel with this vector.

Linear discriminant analysis-based classifier

We employed a linear discriminant analysis-based classifier (MATLAB’s classify) to dis-

tinguish between HeadUp and HeadDown bouts based on the firing rates of all the channels

during a given timebin. The classifier was trained using labelled firing rates data, where

timebins during HeadUp bouts were assigned a label of 1 and HeadDown bouts a label of 0.

We randomly selected an equal number of points from both HeadUp and HeadDown bouts

for training. The number of points was calculated as the 1/3rd of the smaller set out of

HeadUp and HeadDown, which in the case of both monkeys was the HeadUp set. We then

evaluated the accuracy of the classifier on the held-out data to gauge its effectiveness in

correctly classifying HeadUp and HeadDown timebins. To mitigate potential sampling bias,

we performed 5-fold cross-validation, wherein we were able to verify that the accuracy of the

classifier remained within a 3% range across the folds.

Cross-channel correlations and Principal component analysis

We calculated the cross-channel correlation matrix for the firing rates data during the Head-

Down and HeadUp bouts. This revealed a high correlation between the channels of each

region, which could lead to multicollinearity in the training data, and thus affect the perfor-

mance of the classifier. To mitigate this, we performed a principal component analysis (PCA)

on the MUA data, to reduce the dimensionality of the data and remove multicollinearity.

We retained the principal components that explained 90% of the variance and used these

9



components for the classifier instead. All the remaining steps remain the same as that in

(1.2.4). All subsequent analysis of the classifier was done using the model trained with the

PCA-reduced data.

Classifier performance evaluation

To visualize the classifier’s predictions, we plot the classifier’s predicted probability values

(for one class) for every timebin in the recording, and compare it with the actual labels,

by underlaying a colour-coded background. We then create a confusion matrix, with the

actual labels on one axis and the predicted labels on the other, to visualize the classifier’s

performance across the two classes - the percentages calculated were based on the total actual

labels of each class. We then also average the classifier’s probability values across all bouts,

aligned to the transition events, to visualize the classifier’s performance across changes in

the state.

1.2.5 Local field potential analysis

Local field potential data was generated as specified in (1.2.3 Data preprocessing – Neural

data). All analysis of the LFP presented in this study involved spectral analysis. This

was done by using either MATLAB’s pwelch function, or the Chronux [9, 10] package’s

mtspecgramc function: this will be explicitly mentioned in the individual sections.

Event-aligned spectrograms

The LFP data was first z-scored using MATLAB’s zscore function, and to obtain clearer

colourmaps, outliers (defined as >3 after z-scoring - meaning greater than 3 σ from the

global mean in the original data) and artifacts (manually defined timepoints, (1.2.3 Data

preprocessing – Artifacts)) were set to NaNs, before the spectral analysis. The overall layout

follows the same philosophy as 1.2.4, wherein bouts surrounding a transition event were

plotted together, with the same y-displacement. The spectrogram of the LFP’s average

across each region was then shown as a colourmap, with different pixel values showing the

different powers of the frequencies. The spectrogram was made using the mtspecgramc
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function, which uses a multi-taper spectrogram method, with a time-bandwidth product

of 3, and 6 tapers. The frequency range for the spectrogram was 0-50Hz, and the time

window used was 1s, with a 50% overlap in successive windows. Once the power values

and the frequencies were obtained, the log of the power was plotted, against the log of the

frequencies, as the final colourmap.

Power spectral densities

The power spectral densities (PSDs) of the LFP data (mean-subtracted) were calculated

using the mtspecgramc function, by first computing the spectrogram over the entire duration

of the recording, following which the log of the powers for the timebins which were during

HeadUp and HeadDown bouts were averaged separately. The PSDs were then plotted for

the HeadUp and HeadDown states, for each region. The frequency range for the PSDs was

0-50Hz, and the other parameters were also the same as that in (1.2.5).

Powers in canonical bands

Although there’s plenty of variation across literature in the exact frequency ranges which

define each canonical frequency band, for this study, they were defined corresponding to

delta (1–4 Hz), theta (4–7 Hz), alpha (7–15 Hz), beta (15–31 Hz), and gamma (>31 Hz)

bands, following suit from Xu et al., 2019 [11]. From the spectrogram, the average of the log

of the powers of the frequencies within each of these bands was calculated, and then plotted

against time, for each region. The backgrounds were coloured appropriately to visualize the

change in the bands’ powers with the change in state. Following this, the average powers

across all HeadDown time points versus all HeadUp time points was computed, for each band

separately.
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1.3 Results

What is the behavioural pattern of sleep and wakefulness, around the time of

onset of sleep?

As our sleep recordings were performed around the time of day when the monkeys start to go

to sleep, this onset-of-sleep period is expectedly marked with multiple bouts of wakefulness

and sleep interspersed with each other. This is visualized in Figure 1.1, which shows an

overview of both monkeys’ recordings from a behavioural standpoint. A majority of the

time in both recordings is spent in the HeadDown state, but interspersed (but shorter)

bouts of wakefulness/ HeadUp were observed. These HeadUp bouts occur throughout the

recording and also imply that the maximum duration of a HeadDown bout that we can

capture during a single recording is not very long.

The distribution of the durations of the HeadDown and HeadUp bouts, for both monkeys,

are shown in Figure 1.2 A and Figure 1.2 B, respectively. A significant fraction of these bouts

are of very short duration, in both monkeys and especially for HeadUp: 71% and 67% of the

HeadUp bouts have a duration below 20 seconds, in M1 and M2 respectively. In HeadDown

bouts, 28% and 32% are less than 20 seconds, for M1 and M2 respectively. The fraction of

total time spent in all these bouts less than 20 seconds is only 2% in both M1 and M2.
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Figure 1.1: Panel A Left - Example CCTV video frame (cropped) of M2 during a HeadUp
bout (active and moving around), Right - during a HeadDown bout (in a huddled up

position with the head bent down). Panel B - Sleep recordings overview for M1 and M2.
The x-axis is the time in seconds, while the coloured rectangles represent the HeadDown

bouts (blue) and HeadUp bouts (pink), placed according to when these bouts occur during
the recording.
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Figure 1.2: Panel A - Histogram of HeadDown bout durations for M1 and M2. Panel B -
Histogram of HeadUp bout durations for M1 and M2. The x-axis is the duration of the

bout in seconds, and the y-axis is the number of bouts of that duration. Bin sizes are of 20
seconds. Overlapping histogram areas are coloured in purple.
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How do the firing rates change as the monkey changes between HeadUp and

HeadDown states?

Every switch from a HeadUp bout to a HeadDown bout is marked as aMoveHeadDown event,

and vice-versa for MoveHeadUp events. These events are the crucial (and only) behavioural

markers of a possible state change. Event-aligned firing rate plots are used as a tool to

visualize exactly how the different regions are with respect to their firing rates, before and

after these two types of transitions: from HeadUp to HeadDown and from HeadDown to

HeadUp. Figure 1.3 shows the event-aligned firing rates of the channels in the IT region

around the time of the transition from HeadUp to HeadDown, which are MoveHeadDown

events. The same plot is made for the PMv and vlPFC regions, and also for MoveHeadUp

events instead. All other plots are available in the supplementary figures section.

Visually, it is easy to observe that in the IT region, the firing rates are more variable

after a MoveHeadDown event, that is, during HeadDown bouts. For the other regions, it is

not easy to visually discern a pattern, and thus we move on to the next section to quantify

the differences in the firing rates during the two states.
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Figure 1.3: Event-aligned firing rates of the channels in IT region around the time of the
transition from HeadUp (red) to HeadDown (blue), which are MoveHeadDown events. The
x-axis is the time in seconds relative to the transition event, and the y-axis is the z-scored
firing rate of the region-average, but subsequent events are displaced on the y-axis such

that the earliest event is at the bottom. The dashed vertical line is the time of the
transition event. Top is M1, bottom is M2.
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Figure 1.4: Event-aligned firing rates of the channels in IT region around the time of the
transition from HeadDown (blue) to HeadUp (red), which are MoveHeadUp events. The
x-axis is the time in seconds relative to the transition event, and the y-axis is the z-scored
firing rate of the region-average, but subsequent events are displaced on the y-axis such

that the earliest event is at the bottom. The dashed vertical line is the time of the
transition event. Top is M1, bottom is M2.
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Figure 1.5: Event-aligned firing rates of the channels in PMv region around the time of the
transition from HeadUp (red) to HeadDown (blue), which are MoveHeadDown events. The
x-axis is the time in seconds relative to the transition event, and the y-axis is the z-scored
firing rate of the region-average, but subsequent events are displaced on the y-axis such

that the earliest event is at the bottom. The dashed vertical line is the time of the
transition event. Top is M1, bottom is M2.
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Figure 1.6: Event-aligned firing rates of the channels in PMv region around the time of the
transition from HeadDown (blue) to HeadUp (red), which are MoveHeadUp events. The
x-axis is the time in seconds relative to the transition event, and the y-axis is the z-scored
firing rate of the region-average, but subsequent events are displaced on the y-axis such

that the earliest event is at the bottom. The dashed vertical line is the time of the
transition event. Top is M1, bottom is M2.
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Figure 1.7: Event-aligned firing rates of the channels in vlPFC region for both
MoveHeadUp (top) and MoveHeadDown (bottom) events. vlPFC region recordings are

only available from M1. The x-axis is the time in seconds relative to the transition event,
and the y-axis is the z-scored firing rate of the region-average, but subsequent events are
displaced on the y-axis such that the earliest event is at the bottom. The dashed vertical

line is the time of the transition event.
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How do the firing rates during the two states compare, globally?

In the previous subsection, we see the firing rates of the regions, just around the time of

the different transitions. In this section, we compare the average firing rates of the channels

during the HeadDown and HeadUp states, across the whole recording. The distributions of

(z-scored) firing rates of the channels during the HeadDown and HeadUp states are shown in

Figure 1.8. The average firing rates (dashed lines in corresponding colours) of the channels

during the HeadDown and HeadUp states are significantly different in all regions, as calcu-

lated using the Wilcoxon rank-sum test (1.2.4 Firing rates comparison – paragraph 2), but

the difference in the averages themselves is more pronounced in the PMv region than in the

IT and vlPFC regions. There’s an overlap in the distributions of the firing rates during the

two states across all the regions, but the way the shape of the distributions changes across

the different states is consistent across both M1 and M2.

For the PMv regions, the HeadDown state has a lower average firing rate than the HeadUp

state for both monkeys.

Means: M1 : -0.08 and 0.35, M2 : -0.06 and 0.38 for HeadDown and HeadUp respectively.

For the IT regions, the distribution of the firing rates during the HeadDown state is more

spread out than that during the HeadUp state (has a larger variance during HeadDown).

Variances: M1 : 0.18 and 0.03, M2 : 0.19 and 0.08 for HeadDown and HeadUp respectively.

The mean of the distribution is shifted negatively for HeadDown, for M1, but positively for

M2.

For the vlPFC region, the distribution of the firing rates is right-skewed during the

HeadDown state compared to during the HeadUp state (and a positively shifted mean).

Means: M1 : 0.02 and -0.07, for HeadDown and HeadUp respectively.

This section helps us concretely summarize the differences between the firing rates during

the two states, which may have been difficult to make out visually from the analysis done in

the last section.
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Figure 1.8: Firing rate distributions (normalized to probability/proportion) of the regions’
average firing rates (z-scored) during the HeadDown and HeadUp states. The y-axis hence
represents the number of timebins (1 second) that have that particular binned firing rate.
The dashed vertical lines are the means of the corresponding distributions. The p-values
obtained from the Wilcoxon rank-sum test of the HeadUp and HeadDown rates are shown

as significance values:
*** corresponds to p ⩽ 0.001.22



Are the firing rates of different channels modulated differently by the two states?

The last section provides an analysis that averages over all the channels in a region. This

section provides a channel-wise look at the correlations between how the firing rates of each

channel change as the states themselves change. A positive correlation here implies that as

the state changes from 0 to 1 (HeadDown to HeadUp), the firing rates also increase. On the

other hand, a negative correlation implies a reduction in firing rates as the state changes

from HeadDown to HeadUp.

The correlation coefficients for each channel are shown in Figure 1.9, colour-coded for

positive and negative values of the correlation. In the subsequent lines, we report the per-

centage of channels in each region that have positive correlations For both monkeys, the

PMv region has a strong bias towards positive correlations (M1: 87.5%, M2: 93.7% posi-

tives). The IT region has a mix of positive and negative correlations (M1: 48.4%, M2: 35.9%

positives). The vlPFC region has a strong bias towards negative correlations in M1 (23.4%

positives).

Can we train a classifier to predict the state of the monkey, based on the firing

rates?

To test whether the firing rates of the channels can be used to predict the state of the monkey,

we trained a linear discriminant analysis-based classifier to distinguish between HeadDown

and HeadUp bouts, based on PCA-reduced forms of the firing rates per channel. The PCA

was done for dimension reduction, and the number of principal components retained was

such that 90% of the variance was explained.

From this model, a probability for each of the classes is predicted for every timebin in

the whole recording, and the probability for the HeadUp class (score) is plotted against time

in Figure 1.10 (the probability of the other class, HeadDown, is always equal to one minus

the probability of the HeadUp class). The background of the plot is coloured such that the

time in which the monkey is in a HeadUp bout or a HeadDown bout is coloured differently

from each other. We see a high matching of the predicted score, with the states. This

visualization, actually allows us to see the evolution of the prediction within the bouts - for

example, in M1, there are certain HeadDown bouts that seem to have a slowly increasing
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Figure 1.9: Correlation of the firing rates of the channels (over the entire recording) with
the HeadDown and HeadUp states. The colour of the bar represents the sign of the

correlation - red for positive correlation and blue for negative.
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probability from near 0 towards 1, which is then followed by a waking up event and a HeadUp

bout. On the other hand, for M2, although the classifier’s scores match up well with the

actual labels, no particular within-bout evolution can be observed, visually.

We calculate the confusion matrix based on the predicted classes for each timepoint

(defined as the class with the higher probability score, in the classifier) (Figure 1.11 B), and

also the accuracy by finding predicted labels, and comparing them with the actual labels.

The accuracy of the classifier is 92.7% for M1 and 87.1% for M2. This tells us that that we

are indeed able to predict the state of the monkey using a linear model on the firing rates of

the channels.
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Figure 1.10: Predicted probability of the classifier for the HeadUp state, in every timebin
in the recording, plotted against time. The background is coloured based on the actual

state of the monkey at that time, with HeadUp in red and HeadDown in blue.
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Figure 1.11: Confusion matrix of the classifiers for each of the monkeys. The percentages
are calculated based on the total actual labels of each class (normalized by total of each

row).

How do the spectral powers change between HeadUp and HeadDown states?

We begin our LFP analysis by computing spectrograms, and then aligning the different bouts

with corresponding time points when our behavioural state changes are marked. The event-

aligned spectrograms of the LFP data are shown in Figures 1.14 to 1.18. They are a tool, in

a similar fashion as for the event-aligned firing rates, to be used to visualize the underlying

data, and how it changes, before we move on to any further analysis. It gets harder to

visually discriminate many features using the spectrogram plots given their high-resolution

requirements, but are an important starting step in the analysis pipeline.
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Figure 1.12: Classifier predicted scores surrounding the MoveHeadDown events, for M1 and
M2. The x-axis is the time in seconds relative to the transition event, and the y-axis is the
predicted probability of the classifier, for the class HeadUp. The dashed vertical line is the

time of the transition event.
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Figure 1.13: Classifier predicted scores surrounding the MoveHeadUp events, for M1 and
M2. The x-axis is the time in seconds relative to the transition event, and the y-axis is the
predicted probability of the classifier, for the class HeadUp. The dashed vertical line is the

time of the transition event.
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Figure 1.14: Spectrograms (IT region) of pairs of bouts aligned to the MoveHeadDown
events. The colourmap represents the log of power over the log of frequencies (0-50Hz)
across time in seconds, in this region. Time 0 is the time of the transition event. Top is

M1, bottom is M2.
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Figure 1.15: Spectrograms (IT region) of pairs of bouts aligned to the MoveHeadUp events.
The colourmap represents the log of power over the log of frequencies (0-50Hz) across time
in seconds, in this region. Time 0 is the time of the transition event. Top is M1, bottom is

M2.
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Figure 1.16: Spectrograms (PMv region) of pairs of bouts aligned to the MoveHeadDown
events. The colourmap represents the log of power over the log of frequencies (0-50Hz)
across time in seconds, in this region. Time 0 is the time of the transition event. Top is

M1, bottom is M2.
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Figure 1.17: Spectrograms (PMv region) of pairs of bouts aligned to the MoveHeadUp
events. The colourmap represents the log of power over the log of frequencies (0-50Hz)
across time in seconds, in this region. Time 0 is the time of the transition event. Top is

M1, bottom is M2.
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Figure 1.18: Spectrograms (vlPFC region) of pairs of bouts aligned to the MoveHeadDown
events (top) and MoveHeadUp events (bottom). vlPFC region recordings are only available
from M1. The colourmap represents the log of power over the log of frequencies (0-50Hz)

across time in seconds, in this region. Time 0 is the time of the transition event.
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How do the spectral powers during the two states compare, globally?

Following the last section, we move on to computing the power spectral density, which shows

a global picture of the powers of all the different frequencies and allows us to compare them

across the two states. The PSDs of the LFP data are shown in Figure 1.19. The plots

across the regions and the monkeys show a bump in the power in the lowest frequencies

(0-1Hz) during the HeadDown state. In 3/5 regions across the monkeys, there is an increase

in the power in the lower frequencies during the HeadDown state, and either a flipped higher

power for the HeadUp state in the higher frequencies, or the difference becomes negligible.

However, other differences are not consistent across the monkeys or are not prominent.

It is to be noted that these graphs show/compare time-averages over the duration of HeadUp

and HeadDown bouts, and thus do not capture the dynamics of the changes in the powers

within the bouts.
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Figure 1.19: Power Spectral Density graphs across the HeadDown and HeadUp bouts, for
each region. The x-axis is the frequency in Hz (0-50Hz), and the y-axis is the log of the

power.
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How do the average powers in the canonical bands change with the state of the

monkey?

The average powers across all HeadDown time points versus all HeadUp time points is

computed, and then, the difference between the HeadDown average and the HeadUp average

(HeadDown- HeadUp) is found. This is done separately for each band, and the differences are

plotted for each region in Figure 1.20. For all the regions, the delta band has a significantly

higher power during the HeadDown state (with the exception of M1’s vlPFC being higher,

but not significantly). For both PMv and IT and across both monkeys, the theta band has

a significantly higher power during the HeadDown state. On the other hand, the beta and

gamma bands show a significantly higher power during the HeadUp state, in most cases. The

alpha band does increase during HeadDown for both M1 and M2’s PMv but is inconsistent

across monkeys for IT.

37



Figure 1.20: Difference in power of different bands during HeadDown minus during
HeadUp, for each region. The x-axis is the frequency band, and the y-axis is the difference
in the log of power (HeadDown minus HeadUp) across the entire duration of the two states.
The * represents a significant difference in the power between the two states (p-value <
0.05). The bars are coloured for different frequency bands - gray for delta (1–4 Hz), blue
for theta (4–7 Hz), green for alpha (7–15 Hz), yellow for beta (15–31 Hz), and red for

gamma (>31 Hz) band.
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1.4 Discussion

We performed wireless intracortical recordings of 2 bonnet macaques, from the inferotem-

poral, ventro-lateral prefrontal cortex and the ventral premotor areas at the onset of sleep.

Both monkeys had several bouts of wakefulness and sleep, which also gives us several transi-

tion events. This behaviour is in line with previous studies on the sleep cycles of (naturally

sleeping) rhesus macaques, a very close relative of the bonnet macaque. The naturalistic

housing environment and the wireless nature of the recordings allowed us to capture the

neural data while the monkeys slept in their natural position and time of day, which sets

it apart from a majority of sleep studies, which are performed in restrained lab settings.

Behavioural analysis of sleep using video data, however, has been a well-established method

[12].

The changes in neural activity were analyzed, both across the two types of bouts as well

as surrounding the time of the transitions from one state to the other. The average firing

rates in the different regions were found to be significantly different during the two states,

with the PMv region showing the most pronounced difference. The IT region had a more

variable firing rate during the HeadDown state, and the vlPFC region had a right-skewed

distribution of the firing rates during the HeadDown state. Similar observations could be

made visually, at the times of the transitions: increased firing rate in the PMv regions after

a transition to the HeadUp state, and a more varied firing rate curve in the IT regions during

the HeadDown state.

An analysis of the correlation of the firing rates of the channels with the HeadDown and

HeadUp states found a large number of channels that had a positive correlation in the PMv

region (implying a higher firing rate during the HeadUp state), and a mix of positive and

negative correlations in the IT region. The vlPFC region had a strong bias towards negative

correlations in M1, implying a lower firing rate during the HeadUp state in those channels.

A large majority of sleep studies, across animal models utilize EEG as the neural signal,

which lacks the spatial resolution of methods such as ECoG or intracortical recordings [5].

Hence, this study provides a unique look at the neural data during sleep from the regions

of IT, PMv and vlPFC, as no previous intracortical studies have been performed in these

regions for macaques (the closest would be the study by Yin et al., 2014 [13], which was

performed in the motor cortex (M1, leg region)).
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A linear discriminant analysis-based classifier based on the firing rates was able to dis-

tinguish between the two states with high (92% - M1 and 87% - M2) accuracy. This is a

significant result, as it shows that the neural activity (firing rates of the channels) can be

used to predict the state of the monkey. There are several studies that have trained deep

networks using EEG signals to predict the state of the animal, including the stage within

sleep too [14, 15] - however, here we predict amongst the two states using MUA/spike data,

and show that a simple linear model works well for this case.

The LFP data was analyzed using spectrograms and power spectral densities, and the

powers in the canonical bands were found to be significantly different during the two states.

The delta and theta bands had a higher power during the HeadDown state, and the beta

and gamma bands had a higher power during the HeadUp state. This is in line with previous

studies on the sleep cycles of rhesus macaques [11], which show a higher power in the lower

frequencies during consolidated sleep, and a higher power in the higher frequencies during

wakefulness.

However, within this study, there is much left to be explored in the spectral analysis.

Some particular future work includes the use of the different spectral bands to classify the

stages of sleep, such as REM and NREM sleep, and even the stages within NREM sleep,

through the identification of spindles, K-complexes, etc. - this is how the majority of sleep

studies are performed on EEG data, and this study provides a rare opportunity to do so

with intracortical data. Further, the sleep recordings were performed on days on which the

monkeys had performed a task through which they learnt the spatial location of some reward;

a future study could involve the analysis of the neural data during sleep, to see if there is

any replay of the task-related neural activity during sleep. This analysis typically involves

the identification of specific neural activity ”sequences” during the learning task, and then

looking for those sequences in the sleep recording. Several previous studies have been done

in other model organisms such as rats, but not as much in macaques [11].
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Chapter 2

Button-controlled player movement in

a maze-solving task

2.1 Introduction

Scientists have in the past trained monkeys to various extents, including having them play

games [27, 26]. However, having access to brain data while they’re doing so is much more

rare, and such an opportunity is presented to us at our lab. The bonnet macaques at our

lab have been well-trained to do certain touchscreen experiments, and have been religiously

doing them for years, as part of various scientific studies. These experiments may vary in

the underlying complexity of the task paradigm itself, but the macaques have shown that

they can become extremely proficient at doing the tasks, with enough practice. With this

in mind, we attempted to train the monkeys how to control the movement of a character on

the screen by the use of 4 on-screen buttons, to move the character to certain reward objects

as a part of a “maze” layout. A wide range of possible studies are opened up following such

a training. In this chapter, I aim to outline the methods we used to train the monkeys to do

such a task.
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2.2 Methods

The (freely-moving) monkeys have been previously trained to interact with, and use, a

touchscreen, to perform several tasks on them. The typical tasks are divided into a number of

trials, and for performing a trial correctly, the monkey receives an amount of juice, delivered

through a juice spout, as well as a ”correct sound”, which is played at the end of a trial.

For an incorrect trial, no juice is delivered, and an ”incorrect sound” is played. Some tasks

are designed with the aim of collecting neural data during active fixation on a target area

on the touchscreen, during which various stimuli are presented. Other tasks involve the

use of memory and decision-making, such as a temporal same-different task, in which the

monkey is shown two images in succession, has to decide if they were the same or different,

and choose one out of two buttons on the screen based on this decision. The tasks are

designed in MonkeyLogic [19], NIMH’s open-source software for behavioural control and

data acquisition, which is used to present stimuli on the screen, and record the monkey’s

responses.

2.2.1 Task design

The subtasks used during training may have several modifications, but the general task

paradigm goes as follows: (Figure 2.1)

� A red “hold” button is presented, which must be touched for the trial to begin.

� The trial begins with a character (an image of a monkey, or human) being presented

on the screen, in a “maze” layout. The maze also has reward objects (an image of

a banana, or strawberry) placed at certain locations. The number and locations of

rewards depend upon the particular level or subtask. A short delay period within

which only the maze layout is present, follows this, before the next step.

� Four buttons, each with an arrow pointing in a different direction, are presented on the

screen, beside the maze layout. The monkey must touch one of these buttons to move

the character in the correct direction (the direction in which the reward is, relative to

the character). Only one button can be touched at a time.
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Figure 2.1: Overview of the task design. The red button is the hold button, which must be
touched to start the trial. A maze layout is shown, with the character (here, a cartoon
human) and reward objects (here, a banana). The four buttons are shown, which the

monkey must touch to move the character. The arrows represent the flow of time in the
task. In the last panel, the lower opacity character at the center is only representative, and

not actually shown on the screen.

� The character moves in the direction of the button touched, and stops when it reaches

a reward object. The trial ends, and the monkey receives juice and a correct sound.

� If the character reaches an end of the maze which doesn’t have a reward object, the

trial ends, and the monkey receives no juice and an incorrect sound. In another version

of the task, the character is simply stopped, and the monkey can continue to control

it, but is instead given a timeout period, after which the trial ends.

2.2.2 Task training

To train the monkeys to be able to do the task, we followed a step-by-step training procedure,

which involved two ”levels”, and multiple sublevels/subtasks for each level. The first level
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involves a plus or X maze, in which the character starts at the center, and then has to move

to the end of one of the four arms of the maze. In each trial, the reward is placed in one of

these 4 ends of the maze.

In level 2, the maze layout is made more complicated, with more arms (an H-like shape -

Figure 2.6), and more reward objects per trial. The juice reward and corresponding correct

sound are given for every reward object reached, at the time it is reached. Once a reward

is ”consumed”, it disappears from the screen, and reaching the same location again will not

be rewarded.

Level 1

The first level of training involved training the monkeys to move the character to the end of

one of the four arms of the maze, based on the location of the reward object.

In general, a sublevel can be thought of as a single day of training, although it may

exceed a day per level, depending on the performance of the monkey. The sublevels in this

level were as follows:

� Level 1, Sublevel 1 (Figure 2.2): The character starts at the center of the maze, and

the reward is placed at the end of one of the arms. However, in one trial, a maximum

of two buttons appear. The correct button, and the button opposite to the correct

button (an incorrect button). As detailed in the figure, we progress through this level

with a changing opacity of the incorrect button.

� Level 1, Sublevel 2 (Figure 2.3): The character starts at the center of the maze,

but the maze is now an X shape. Also, the causality of the task is now flipped: the

character moves by itself, in the direction of the reward, and ”consumes” the reward,

but the monkey must touch the corresponding button (which is located right below, or

next to, the reward’s location), in order to get the juice reward and the correct sound.

In this stage, the movement and reward location of the ”right” and ”down” trials are

actually the same - however, the buttons are different.

� Level 1, Sublevel 3 (Figure 2.4): This sublevel is intended to gradually bring the

monkey to the plus maze layout. We slowly (across trials) move the reward objects
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toward where they would have been, in the plus maze layout - correspondingly, the

character also moves in a vector that reaches the shifted reward location. The button

locations are kept the same as in the previous sublevel. By the end of this sublevel, the

reward objects are at the correct locations for the plus maze layout, but the buttons

are still at the edges of the maze, as in sublevel 2.

� Level 1, Sublevel 4 (Figure 2.5): In this level, we move the buttons gradually (across

trials) to the intended locations (grouped together, to the side of the maze, as can be

seen in Figure 2.1, or Figure 2.5, bottom panel). Also, by the end of this level, all 4

buttons are shown at the same time, as in the previous levels the maximum number of

buttons shown per trial was 2. At the end of this level, the monkey is trained to move

the character to the end of one of the arms of the maze, based on the location of the

reward object, using the buttons at the side of the maze.

Level 2

The level 2 training involves the larger, much more complex maze layout. The sublevels in

this level are simply described as every possible starting position, which are the nodes at

every end of the maze, and every joint of the arms of the maze, and for each start position,

rewards are randomly placed at different nodes of this maze. The number of rewards varied

from a minimum of 1 to a maximum of 3. The buttons were placed at the side of the maze,

as in the previous level. The training ensures that the monkey completely understands the

maze’s layout and the restrictions in place for the movement of the character.

Figure 2.6 Shows one example start point and a possible reward layout, and a possible

path that the monkey might take to reach all the rewards.

There are two major changes in the game’s design in this level:

� At every node, the player artificially stops for a short duration (usually 300ms, but

this was changed over the days of training)

� At every node, only the buttons which are valid moves, are shown at full opacity, while

the other button(s) is(are) shown at 10% opacity. Two examples of such nodes and

corresponding valid buttons are shown in Figure 2.6 B and Figure 2.6 C. Touching an
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Figure 2.2: Level 1, Sublevel 1: Character at center, reward at end of arm. Two buttons:
correct and incorrect, but the opacity of the incorrect button is slowly increased.
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Figure 2.3: Level 1, Sublevel 2: Character at center, but maze in X shape. Character
moves to the reward always, but monkey needs to touch the correct button after the

movement to get a reward.

Figure 2.4: Level 1, Sublevel 3: Gradual transition back to plus maze layout. Reward
objects and character move accordingly. Same button locations as previous sublevel.
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Figure 2.5: Level 1, Sublevel 4: Buttons are gradually moved to intended locations, partial
hints can be given by lowering the opacity of 2 incorrect buttons. All 4 buttons are shown.
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invalid button does not move the character, and the monkey must touch any of the

other available buttons to move the character to the next node.

2.3 Results

We were able to successfully train M2 to navigate the Level2 task/maze completely. M1 has

completed the Level1 task but is yet to complete the training for Level2. This measure of

success is currently defined as the monkey being able to reach all the rewards in a single trial,

without timing out the trial (which was set at 30 seconds). This timing of each trial requires

the monkey to make the optimal choices at almost all the nodes. The monkey was able to do

this consistently, across multiple days. However, a robust analysis of the performance of the

monkeys, and the learning curve, is yet to be done, based on the behavioural data collected

during the training.

2.4 Discussion

The training of the monkeys on this new task paradigm opens up the possibility of a wide

range of studies, which can be performed on the monkeys. The task is designed to be complex

enough to require the monkey to make decisions at every node, and yet simple enough to be

able to be completed in a reasonable amount of time, along with more intermittent receipt

of reward, as an incentive for good performance. An important distinction of this paradigm

compared to others is that the monkey’s actions/behaviour dynamically and continually

affects the stimuli presented to it. In trials that require multiple movements, the monkey’s

previous actions in the trial can affect its performance through the rest of the trial - a mistake

is required to be first corrected, as otherwise, it’s more than likely that this mistake will get

compounded over the trial. This is in contrast to many other tasks, in which the stimuli

are pre-determined, and the monkey’s actions are simply responses to these stimuli - one

response determines the fate of that trial. A study currently being planned is to investigate

the sense of ”agency”, which we humans clearly feel while controlling a character in a video

game. Some other studies that are possible with this task are related to the neural correlates

of path-planning, decision making etc.
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Figure 2.6: Panel A shows an example trial, with the H-like maze layout, the character at
one of the possible nodes, and 3 rewards placed at different nodes. The black arrows show
a possible path that can be taken to obtain all 3 rewards. Panels B and C show nodes at
which the character might be during a trial, where its constrained such that it can only
move in 3 directions, and the corresponding buttons show which moves are valid (fully

opaque) and invalid (10% opacity).

50



Bibliography

[1] F. P. Cappuccio, L. D’Elia, P. Strazzullo, and M. A. Miller, “Sleep Duration and All-
Cause Mortality: A Systematic Review and Meta-Analysis of Prospective Studies,”
Sleep, vol. 33, pp. 585–592, May 2010.
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[12] J. Muñoz-Delgado, G. Luna-Villegas, R. Mondragón-CeballoS, and A. Fernández-
Guardiola, “Behavioral characterization of sleep in stumptail macaques (Macaca arc-
toides) in exterior captivity by means of high-sensitivity videorecording,” American
Journal of Primatology, vol. 36, no. 3, pp. 245–249, 1995.

[13] M. Yin, D. A. Borton, J. Komar, N. Agha, Y. Lu, H. Li, J. Laurens, Y. Lang, Q. Li,
C. Bull, L. Larson, D. Rosler, E. Bezard, G. Courtine, and A. V. Nurmikko, “Wireless
Neurosensor for Full-Spectrum Electrophysiology Recordings during Free Behavior,”
Neuron, vol. 84, pp. 1170–1182, Dec. 2014.

[14] V. Svetnik, T.-C. Wang, Y. Xu, B. J. Hansen, and S. V Fox, “A Deep Learning Ap-
proach for Automated Sleep-Wake Scoring in Pre-Clinical Animal Models,” Journal of
Neuroscience Methods, vol. 337, p. 108668, May 2020.

[15] J. G. Ellen and M. B. Dash, “An artificial neural network for automated behavioral
state classification in rats,” PeerJ, vol. 9, p. e12127, Sept. 2021.

[16] L. K. Barger, T. M. Hoban-Higgins, and C. A. Fuller, “Gender differences in the circa-
dian rhythms of rhesus monkeys,” Physiology & Behavior, vol. 101, pp. 595–600, Dec.
2010.

[17] M. A. Cruz-Aguilar, E. Hernández-Arteaga, M. Hernández-González, I. Ramı́rez-Salado,
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