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Abstract

This thesis aims to provide a detailed understanding of quantum invariants of knots and

links. We present them as the link invariants derived from a representation of some quan-

tum group. The most celebrated invariant, the Jones polynomial, is shown to be obtained

from the fundamental representation of the quantum group Uh(sl2(C)), making it an example

of a quantum invariant. In this thesis, we focus on the computation of the Jones polyno-

mial. We provide a closed-form expression for the Jones polynomial of the weaving links

W (3,m) and observe some patterns in the coefficients of the Jones polynomial of weaving

links W (4,m). We emphasise the role of quantum groups as a general machinery for gen-

erating link invariants. It is known that for every semi-simple lie algebra g, one can obtain

a quantum group Uh(g) and define a new link invariant for each of its representations. We

also discuss a general approach for constructing link invariants called ‘Topological Quantum

Field Theories (TQFTs)’. Quantum invariants are examples of 1-dimensional TQFTs. This

thesis discusses the converse: every 1-dimensional TQFT arises from a representation of

some quantum group. Looking at quantum invariants as 1-dimensional TQFTs allows us to

generalise further and study invariants arising from n-dimensional TQFTs. Thus, one has a

much broader definition of a quantum invariant, namely those arising from an n-dimensional

TQFT.
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Introduction

Knot theory is the study of knots, which are smooth embeddings of S1 in R3. More generally,

links are smooth embeddings of finitely many copies of S1 in R3. Thus, links are nothing

but many knots that are linked together. The central problem in knot theory is classifying

links up to ambient isotopy (Definition 1.0.2). Link invariants are important tools for distin-

guishing links. A link invariant is a map from the collection of all links to some co-domain,

such that any two equivalent links have the same image. However, two non-equivalent links

may also have the same image under a given invariant. So far, no complete invariant of links

is known, which is useful. Thus, a need to create more and more invariants still exists.

One well-known polynomial invariant of links is the Jones polynomial. The Jones poly-

nomial was originally defined by V. Jones (1984) [Jon85] via a representation of the braid

groups in von Neumann algebras. Later, he showed that a polynomial invariant in two vari-

ables can be defined via Hecke algebra representations [Jon87]. The von Neumann algebras

and Hecke algebras both provide solutions to the Yang-Baxter equation (which is the key

for defining representations of braid groups). However, these algebras can not be extended

further to define new link invariants. This is where quantum groups become quite useful.

Quantum groups were introduced by V. Drinfel’d [Dri88] and M. Jimbo (1985) [Jim85].

Quantum groups refer to 1 parameter deformations of the universal enveloping algebra (refer

to the first chapter of [KS81]) of some complex lie algebra. They provide solutions to

the Yang-Baxter equation. Thus, given a quantum group and its representation, we can

define a link invariant. For instance, the Jones polynomial is obtained by the fundamental

representation of the quantum group Uh(sl2(C)). For any integer N ≥ 2, the quantum

group Uh(slN(C)) and its fundamental representation define a link invariant, which results

in a countably infinite family of link invariants. Moreover, instead of slN(C), we can take

any semi-simple (See [Kyt11] for a definition) complex Lie algebra. Thus, quantum groups
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provide a machinery to generate link invariants. Link invariants arising in this fashion were

termed as ‘Quantum Invariants’.

The theory of quantum groups can be generalised further by regarding them as 1-

dimensional Topological Quantum Field Theory (TQFT). TQFTs were defined by E. Witten

in 1988 [Wit88]. It is known that 1-dimensional TQFTs give rise to link invariants. Later,

it was found that even higher dimensional TQFTs can be used to define link invariants,

providing a bigger domain for quantum invariants. Thus, a more general definition of a

quantum invariant is the one arising from a TQFT.

Most of this thesis is expository in nature. We have provided a complete account for

defining a quantum invariant. Using the definition of quantum trace, we computed the

Jones polynomial of a doubly infinite family of links W (n,m) known as weaving links. We

have obtained some new results related to the coefficients of the Jones polynomial ofW (3,m)

andW (4,m) family. We have also given a perspective for Topological Quantum Field Theory

and explained why they can be used to generalise quantum invariants.

Structure of the thesis

This thesis comprises of four chapters. In the first chapter, we cover the fundamentals of link

theory. We introduce the theory of braid groups and link invariants. In the second chapter,

we delve into the theory of Hopf algebra and quantum groups. We study the quantum

group Uh(sl2(C)) and its representations. In the third chapter, we discuss the method of

obtaining link invariants through quantum groups. Utilising this method, we compute the

Jones polynomial of weaving linksW (3,m) andW (4,m). We obtain a closed-form expression

for the Jones polynomial of W (3,m); for W (4,m), we make some observations without

proving them. Finally, in the fourth chapter, we discuss the theory of TQFTs. We investigate

the relationship of 1-dimensional TQFTs with the representations of ribbon Hopf algebra,

which are a specific kind of quantum groups.

Original Contribution

The computations presented in Section 3.4 (excluding the Subsection 3.4.1) and Section 3.5

are original. In particular
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1. We proved that the Jones polynomial of weaving links W (3,m) denoted by VW (3,m)(t)

is given by the following:

VW (3,m)(t) =
(−1)m

tm
Cm(−t) + t+ t−1.

where Cn(x) denotes the rank polynomial of the Lucas lattice of order n (Subsection

3.4.2).

2. We observed that the Jones polynomial of the weaving links W (4,m) admits a normal

distribution of coefficients (Subsection 3.5.1).

3. We computed and plotted the zeros of VW (3,m)(t) and VW (4,m)(t) for some values of m

(Subsection 3.4.3 and 3.5.2).

4. We wrote SageMath and Mathematica codes (Appendix B) for the above calculations

and observations. The SageMath code computes the matrices for generators of B3.

The Mathematica code computes the N -coloured Jones polynomial for weaving links

W (n,m) for n,m ≥ 1.

7
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Chapter 1

Links and their Invariants

In this chapter, we delve into the basics of knot theory. The results presented herein are

drawn from The Knot Book by C. C. Adams [Ada94]. Intuitively speaking, a classical knot

is a simple closed curve in R3 (or S3). Formally,

Definition 1.0.1. A classical knot is a smooth embedding of S1 into R3 or S3.

A link is a smooth embedding of finitely many disjoint copies of S1 in S3.

Definition 1.0.2. We say two links are ambient isotopic if an orientation-preserving home-

omorphism of S3 exists, which takes one link to another.

The central problem in link theory is to classify all the links, i.e. given any two links

determine whether they are isotopic or not. To do so, we define maps from the collection of

all links to some co-domain (e.g. N, Collection of groups, Polynomial rings, etc.). We call

such a map a link invariant if given two isotopic links, their images under the map are equal.

There are two main approaches for defining invariants of links. The first approach is the

‘diagrammatic approach’. In this approach, we obtain a planar diagram corresponding to

the link under consideration. Since a link is a subspace of R3, we can project it to a plane

of R3.

Definition 1.0.3. A projection of a link to a plane is said to be regular if the only singular-

ities are transversal double points.

Definition 1.0.4. A regular projection together with the information of over/underpasses

at every double point is called a link (or knot) diagram.
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Crossings are double points with information about the over/under pass in a link diagram.

By only considering smooth embeddings, we eliminate the possibility of wild links. Hence,

the minimal (taking minimum over all link diagrams) number of crossings for a link is always

finite.

The following theorem by Reidemeister [Rei27] gives the relationship between isotopic links

and their respective diagrams.

Theorem 1.0.1. Two links L1 and L2 are ambient isotopic if and only if there exists a link

diagram of L1 that can be transformed into a link diagram of L2 via a finite sequence of the

following moves� (called the Reidemeister moves).

Figure 1.1: Type I Reidemeister move (Twist)

Figure 1.2: Type II Reidemeister move (Pinch)

Figure 1.3: Type III Reidemeister move (Slide)

Given the above relationship, we can define link invariants by associating a quantity to

each link diagram, such that the assignment is invariant under Reidemeister moves.

�Image Source: The Knot Book by C. C. Adams [Ada94]
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1.1 Braids and Braid Groups

The second approach for defining link invariants is through braids and braid groups.

A braid is a set of n strands in R3, all of which are attached to a horizontal bar at the top

and the bottom. Each strand intersects any horizontal plane between the two bars exactly

once. Now, if we join the top bar with the bottom bar, we get what is called the closure of

the braid (as shown in Figure 1.4), denoted by p̂ for a braid p. Closure of a braid is either

a knot or a link. So, given a braid, we can obtain a link by taking its closure. The reverse

direction is also true; given a link, we can always get a braid such that its closure is isotopic

to the link we started with. This is known as the Alexander Theorem in link theory [Ale23].

A polynomial time algorithm exists to obtain a braid word for a given link. As we will see

next, the set of braids on n strands forms a group, making braids valuable tools for studying

links.

Figure 1.4: Closure of a Braid is a Link

Figure 1.5: A braid for the trefoil knot

Definition 1.1.1. The Artin braid group on n strands denoted by Bn is generated by the set

{σ1, . . . , σn−1}, modulo the following relations:

i. Far commutativity, σiσj = σjσi for all |i− j| > 1.

ii. Yang Baxter Relation,

σiσi+1σi = σi+1σiσi+1. (1.1)

We can study braids using diagrams, as shown in Figure 1.6 and 1.7. The diagram for

σi is denoted by the ith strand passing under the i+ 1th strand. And σ−1
i is denoted by the

ith strand passing over the i+ 1th strand.
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Figure 1.6: Diagram for the generator σi Figure 1.7: Diagram for the generator σ−1
i

Figure 1.8: �(a) Far Commutativity for |i− j| > 1 (b) No such relation for |i− j| = 1

Figure 1.9: Yang Baxter Relation

Note that given a link L, there can be more than one braid whose closure is the link L,

�Image Source: The Knot Book by C. C. Adams [Ada94]
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i.e. the correspondence between the collection of braids and the collection of links is many

to one. We have,

Definition 1.1.2. Two braids are said to be Markov equivalent if their closures are isotopic

links.

The following theorem captures the Markov equivalence.

Theorem 1.1.1. (Markov) Let α ∈ Bn and β ∈ Bm, n ≤ m be braids such that α̂ = β̂. Then

α and β are related by a finite sequence of the following moves and their inverse operations:

i. Right stabilization, α 7→ ασn ∈ Bn+1, and

ii. Conjugation, β 7→ γβγ−1 for some γ ∈ Bm.

Figure 1.10: Right Stabilization

Figure 1.11: Conjugation

13



1.2 The Jones Polynomial

Our primary focus in this thesis will be on an invariant known as the ‘Jones polynomial’.

The Jones polynomial is an invariant of oriented links, discovered by Vaughan Jones [Jon85]

in the year 1984 while he was working on von Neumann algebras. The Jones polynomial of

an oriented link L, denoted by VL(t), is a Laurent polynomial in t if L has an odd number

of components, and t
1
2 times a Laurent polynomial if L has even number of components.

Definition 1.2.1. A finite dimensional von Neumann algebra is an algebra An, generated

by an identity 1 and n− 1 projections e1, . . . , en−1, modulo the following relations:

1. e2i = ei, e
∗
i = ei,

2. eiei±1ei =
t

(1+t)2
ei where t is a complex number,

3. eiej = ejei if |i− j| ≥ 2.

We can define a representation of Bn on An by sending the generating elements σi of Bn

to
√
t(tei− (1− ei)). VL(t) is defined as a modification of some quantum trace function from

An to C. Precisely, the Jones polynomial is an assignment of a Laurent polynomial in
√
t to

oriented links such that the following is true:

1. The assignment is invariant under ambient isotopy,

2. V⃝(t) = 1,

3. For every triple of skein related link diagrams L+, L−, L0 we have

1

t
VL+ − tVL− = (

√
t− 1√

t
)VL0 (1.2)

where three diagrams L+, L−, L0 are said to be a skein triple if they are identical except for a

region where they look like the three diagrams in Figure 1.12. The relation (1.2) is example

of a skein relation, making the Jones polynomial a special case of a ‘skein invariant’.

Let L denote the set of all ambient isotopy classes of oriented links and let F be a ring.

§Image Source: The Knot Book by C. C. Adams [Ada94]
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Figure 1.12: Skein Related Diagrams§

Definition 1.2.2. A link invariant P : L → F is a linear skein invariant if

1. P (⃝) = 1, where ⃝ denotes the 1-component unknot,

2. There are 3 invertible elements a+, a−, a0 ∈ F such that for every skein triple L+, L−, L0

we have

a+P (L+) + a−P (L−) + a0P (L0) = 0.

By taking F to be the ring Z[l, l−1,m,m−1] and a+ = l, a− = l−1, a0 = m, we obtain

the universal skein invariant. We have the following theorem as stated in Harpe et al.

[dlHKW86]:

Theorem 1.2.1. If P : L → F is a skein invariant, then it is uniquely determined by the

coefficients a+, a−, a0 of the skein invariance relation.

Kauffman defined a link invariant diagrammatically and proved that it satisfies the skein

relation (1.2) and, hence, by the above theorem, must be the Jones polynomial. Kauffman’s

diagrammatic approach to the Jones polynomial uses the Kauffman bracket polynomial

denoted by <>, whose domain is the collection of unoriented link diagrams.

The Kauffman bracket for any link L denoted by < L >, is a Laurent polynomial in the

variable A with coefficients in Z, which is defined by the following rules:

1. <⃝ > = 1,

2. < > = A < > +B < >

< > = A < > +B < >,

3. < L ∪⃝ >= C < L >.

15



where B = A−1 and C = −A2 − A−2.

The Jones polynomial is obtained by substituting A = t−
1
4 in the polynomial

X(L) = (−A3)−ω(L) < L >

where ω(L) is the writhe of the corresponding link diagram L. Note that to define the writhe,

the link has to be oriented. Thus, the domain of the polynomial X is the collection of all

oriented links.

The Alexander polynomial, which is a well-known link invariant, was the only knot

polynomial until the Jones polynomial was discovered. Unlike the Alexander polynomial,

the Jones polynomial successfully distinguishes a lot of knots from their mirror images, for

example, right-handed and left-handed trefoil. However, there are many non-isotopic links

with the same Jones Polynomial, for example, the Conway knot and the Kinoshita-Terasaka

knot, implying that the Jones polynomial is not a complete invariant. So, we need additional

invariants that can distinguish links that previously known invariants cannot. One way to

construct link invariants is by defining representations of braid groups on some algebra.

Since the generating elements satisfy the Yang-Baxter equation (YBE), their images in the

corresponding algebra must also satisfy the YBE. Therefore, finding link invariants comes

down to finding algebras with elements that satisfy the YBE. One example of such an

algebra is the von Neumann algebra, but it does not provide the machinery to generate

more algebras. It was observed that representations of a (quasitriangular) quantum group

naturally give rise to R-matrices, which are solutions to the quantum Yang-Baxter equation.

The R matrix composed with the tensor flip map provides a solution to the YBE. Hence, the

family of quantum groups is an excellent tool for defining link invariants. The construction

of quantum groups depends on specific parameters, so changing the parameters can generate

a new quantum group and, eventually, a new invariant. In the next chapter, we will discuss

the theory of quantum groups.
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Chapter 2

Quantum Groups

Quantum groups are defined as a one-parameter deformation of the universal enveloping

algebra U(g) along with the Hopf algebra structure, where g is a semisimple (See [Kyt11]

for a definition) complex Lie algebra. Our focus will be on h-adic algebra Uh(sl2(C)), which
is adequate to generate link invariants. In this chapter, we first develop the theory of Hopf

algebra, then define quantum groups and study Uh(sl2(C)) in detail. The results in this

chapter are well known. We will state only the results that are relevant to us and include

the proof wherever required. The theory discussed in this chapter is taken from the book by

Klimyk & Schmüdgen [KS81] and the lecture notes by Kalle Kytölä [Kyt11].

2.1 Hopf Algebra

2.1.1 Algebra

Definition 2.1.1. An associative unital algebra is defined as a triple (A, µ, η) where

1. A is a vector space (or module) over K (For the rest of the thesis, we would assume

K = C, unless stated otherwise).

2. µ : A ⊗ A → A is a bilinear map on A called the product or multiplication map such

17



that it is associative, i.e.

µ ◦ (µ⊗ idA) = µ ◦ (idA ⊗ µ).

3. η : C → A is a linear map called the unit map such that 1 ∈ C is sent to the identity

element of A i.e.

µ ◦ (η ⊗ idA) = idA = µ ◦ (idA ⊗ η).

The axioms of associativity and unitality can be depicted in the commutative diagrams

shown below:

A⊗ A

A⊗ A⊗ A A

A⊗ A

µµ⊗idA

idA⊗µ µ

C⊗ A A A⊗ C

A⊗ A

η⊗idA

idA⊗η
µ

Opposite Algebra:

Let (A, µ, η) be an algebra. Define the tensor flip map as follows,

τA,A : A→ A

τA,A(a⊗ b) = b⊗ a.

Define the opposite product map by µop = µ ◦ τA,A.

Definition 2.1.2. The opposite algebra of A, denoted by Aop is defined as the vector space

A along with the algebra structure given by the maps µop and η.

An algebra is called commutative if µop = µ. Defining the commutativity in terms of the

opposite product map allows us to define co-commutativity similarly for co-algebras, as we

will see in the Subsection 2.1.2.

18



Subalgebra and Ideal:

Let (A, µ, η) be an algebra. Subalgebras and ideals of A are defined in following ways:

Definition 2.1.3. Let A′ be a vector subspace of A. The subspace A′ is said to be a subalgebra

if the following is true:

1A ∈ A′,

µ(A′ ⊗ A′) ⊂ A′.

Definition 2.1.4. Let J be a vector subspace of A. The subspace J is called a left ideal of

A if for every a ∈ A and for every k ∈ J the following holds:

µ(a, k) = ak ∈ J.

Additionally, the subspace J is called a right ideal of A if for every a ∈ A and for every

k ∈ J the following holds:

µ(k, a) = ka ∈ J.

Finally, J is called a two-sided ideal if it is both a left ideal and a right ideal.

For an ideal J ⊂ A, the quotient vector space A/J becomes an algebra by setting

µ(a+ J, b+ J) = µ(a, b) + J .

Homomorphism of Algebras:

Definition 2.1.5. A homomorphism between algebras (also known as an algebra map)

(A1, µ1, η1) and (A2, µ2, η2) is a linear map f : (A1, µ1, η1) → (A2, µ2, η2) such that

f(1A1) = 1A2 ,

i.e. f ◦ η1 = η2,

f(µ1(a, b)) = µ2(f(a), f(b)),

i.e. f ◦ µ1 = µ2 ◦ (f ⊗ f).

Two algebras A1 = (A1, µ1, η1) and A2 = (A2, µ2, η2) are said to be isomorphic (denoted

by A1 ≃ A2) if there exist algebra homomorphisms f : A1 → A2 and f
′ : A2 → A1 such that

19



f ′ ◦ f = idA1 and f ◦ f ′ = idA2 .

From now on, if the choice is obvious, we will not state the product and unit map. So, by

A, we would mean a vector space along with some algebra structure.

Theorem 2.1.1. (Isomorphism Theorem for Algebra) Let A1, A2 be two algebras. Let f :

A1 → A2 be an algebra homomorphism. Then

1. Im(f) := f(A1) ⊂ A2 is a subalgebra,

2. ker(f) := f−1({0}) ⊂ A1 is an ideal,

3. A1⧸ker(f) ≃ Im(f).

More precisely, there exists an injective algebra homomorphism f̃ : A1⧸ker(f) → A2 such

that the following diagram commutes

A1 A2

A1⧸ker(f)

f

π f̃

where π(a) = a+ ker(f).

Example 2.1.1. The algebra of polynomials (with coefficients in K) in indeterminate x is

given by

K[x] := {c0 + c1x+ ...+ cnx
n |n ∈ N, ci ∈ K}

µ(f(x), g(x)) = fg(x) = f(x)g(x)

η(1) = 1

Example 2.1.2. Let G be a group. The group algebra of G is defined by

K[G] :=

{∑
g∈G

cgeg : cg ∈ K such that only finitely many cg ̸= 0

}
µ(eg, eh) = eg∗h

η(1) = eid

where * is the group operation and id is the group’s identity element.
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2.1.2 Coalgebra

Broadly speaking, a coalgebra is defined by reversing the arrows’ directions in the defining

commutative diagrams of an algebra. Formally,

Definition 2.1.6. A coassociative counital coalgebra is defined as a triple (C,∆, ϵ) where

1. C is a vector space over C.

2. ∆ : C → C ⊗C is a linear map called the coproduct or comultiplication map such that

(∆⊗ idC) ◦∆ = (idC ⊗∆) ◦∆.

The above property is called co-associativity.

3. ϵ : C → C is a linear map called the counit map such that

(ϵ⊗ idC) ◦∆ = idC = (idC ⊗ ϵ) ◦∆.

The above property is called co-unitality.

The axioms of co-associativity and co-unitality can be depicted in the commutative dia-

grams shown below:

C ⊗ C

C ⊗ C ⊗ C C

C ⊗ C

∆⊗idC ∆

∆idC⊗∆

C⊗ C C C ⊗ C

C ⊗ C

∆
idC⊗ϵ

ϵ⊗idC

Co-opposite Co-Algebra:

Let (C,∆, ϵ) be a coalgebra. Let τC,C be the tensor flip map defined earlier. Define the

co-opposite product map by ∆cop = τC,C ◦∆.
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Definition 2.1.7. The (co-)opposite coalgebra of C is defined as the vector space C along

with the coalgebra structure given by the maps ∆cop and ϵ.

A coalgebra is called co-commutative if ∆cop = ∆.

Subcoalgebra and Coideal:

Let C = (C,∆, ϵ) be a coalgebra. Subcoalgebras and coideals of C are defined in following

ways:

Definition 2.1.8. Let C ′ be a vector subspace of C. The subspace C ′ is said to be a sub-

coalgebra if the following is true:

∆(C ′) ⊂ C ′ ⊗ C ′.

Definition 2.1.9. Let J be a vector subspace of C. The subspace J is said to be a coideal if

the following holds:

∆(J) ⊂ J ⊗ C + C ⊗ J

ϵ|J = 0.

For J ⊂ C a coideal, the quotient vector space C/J becomes a coalgebra by setting

∆C/J(a+ J) =
∑
(a)

(a(1) + J)⊗ (a(2) + J)

ϵC/J(a+ J) = ϵ(a)

where ∆(a) =
∑

(a) a(1) ⊗ a(2) (this notation is called the ‘Sweedler Notation’ and will be

used throughout the thesis).
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Homomorphism of Coalgebras:

Definition 2.1.10. A homomorphism between coalgebras (also known as a coalgebra map)

(C1,∆1, ϵ1) and (C2,∆2, ϵ2) is a linear map f : (C1,∆1, ϵ1) → (C2,∆2, ϵ2) such that

∆2 ◦ f = (f ⊗ f) ◦∆1,

ϵ2 ◦ f = ϵ1.

Two coalgebras C1, C2 are said to be isomorphic (denoted by C1 ≃ C2) if there exist

coalgebra homomorphisms f : C1 → C2 and f ′ : C2 → C1 such that f ′ ◦ f = idC1 and

f ◦ f ′ = idC2 .

Theorem 2.1.2. (Isomorphism Theorem for coalgebra) Let C1, C2 be two coalgebras. Let

f : C1 → C2 be a coalgebra homomorphism. Then

1. Im(f) := f(C1) ⊂ C2 is a sub coalgebra,

2. ker(f) := f−1({0}) ⊂ C1 is a coideal,

3. C1⧸ker(f) ≃ Im(f)

More precisely, there exists an injective coalgebra homomorphism f̃ : C1⧸ker(f) → C2 such

that the following diagram commutes

C1 C2

C1⧸ker(f)

f

π f̃

where π(a) = a+ ker(f).

2.1.3 Bialgebra

A bialgebra is an algebra which has a compatible coalgebra structure. Formally,
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Definition 2.1.11. A bialgebra is a quintuple (B, µ,∆, η, ϵ) where B is a vector space and

µ : B ⊗B → B,

∆ : B → B ⊗B,

η : C → B,

ϵ : B → C,

are linear maps such that (B, µ, η) is an algebra and (B,∆, ϵ) is a coalgebra. Furthermore,

the following holds:

∆ ◦ µ = (µ⊗ µ) ◦ (idB ⊗ τB,B ⊗ idB) ◦ (∆⊗∆),

∆ ◦ η = η ⊗ η,

ϵ⊗ µ = ϵ⊗ ϵ,

ϵ⊗ η = idC.

We can depict the above axioms as the following commutative diagrams

B

B ⊗B B ⊗B

B ⊗B ⊗B B ⊗B ⊗B

∆

∆⊗∆

µ

idB⊗SB,B⊗idB

µ⊗µ

B B ⊗B

C C⊗ C

∆

η η⊗η

B ⊗B B

C⊗ C C

µ

ϵ⊗ϵ ϵ

B

C C

ϵη

A linear map is said to be a homomorphism of bialgebras if it is both a homomorphism of

algebras and a homomorphism of coalgebras.
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2.1.4 Hopf Algebra

A Hopf algebra is a bialgebra with an additional antipode map. Formally,

Definition 2.1.12. A Hopf algebra is a sextuple (H,µ,∆, η, ϵ, S) where H is a vector space

and

µ : H ⊗H → H,

∆ : H → H ⊗H,

η : C → H,

ϵ : H → C,

S : H → H,

are linear maps such that (H,µ,∆, η, ϵ) is a bialgebra and the following holds:

µ ◦ (S ⊗ idH) ◦∆ = η ◦ ϵ = µ ◦ (idH ⊗ S) ◦∆.

The map S : H → H is called the antipode map. The corresponding commutative

diagram is given by:

H ⊗H H ⊗H

H H H

H ⊗H H ⊗H

idH⊗S

µ∆

ϵ

∆

η

S⊗idH

µ

Definition 2.1.13. A linear map f : (H1, µ1,∆1, η1, ϵ1, S1) → (H2, µ2,∆2, η2, ϵ2, S2) is said

to be a homomorphism of Hopf algebras if it is a homomorphism of bialgebras and f ◦ S1 =

S2 ◦ f .

Example 2.1.3. The algebra of polynomials H = C[x] is endowed with a Hopf algebra
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structure with the following maps:

µ(f(x), g(x)) = f(x)g(x),

η(1) = 1,

∆(xn) =
n∑

k=0

(
n

k

)
xk ⊗ xn−k,

ϵ(xn) = δn,0,

S(xn) = (−1)nxn.

Example 2.1.4. Let G be a finite group, define the Hopf algebra of complex-valued functions

on G as follows:

F (G) := {f : G→ C} (2.1)

with the following Hopf algebra structure:

µ(f ⊗ g)(x) = f(x)g(x),

η(1)(x) = 1,

∆(f)(x⊗ y) = f(x ∗ y),
ϵ(f) = f(e),

S(f)(x) = f(x−1),

where * is the group operation of G and e denotes the identity element of G. Note that since

the product is defined as the point-wise multiplication in C, it is commutative. So, given any

group, we can associate a commutative Hopf algebra.
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Hopf Algebra structure on Dual Vector Space:

Given a Hopf algebra H, we can define a Hopf algebra structure on the dual vector space

H∗ by the following maps:

⟨µ∗(a∗ ⊗ b∗), v⟩ = ⟨a∗ ⊗ b∗,∆(v)⟩,
⟨η∗(1), v⟩ = ϵ(v),

⟨∆∗(a∗), v ⊗ w⟩ = ⟨a∗, µ(v ⊗ w)⟩,
ϵ∗(a∗) = ⟨a∗, 1⟩,

⟨S∗(a∗), v⟩ = ⟨a∗, S(v)⟩,

where a∗, b∗ ∈ H∗ and v, w ∈ H.

Grouplike Elements and Primitive elements:

Definition 2.1.14. Let (C,∆, ϵ) be a coalgebra. An element a ∈ C, a ̸= 0 is said to be a

grouplike element if ∆(a) = a⊗ a.

Definition 2.1.15. Let (B, µ,∆, η, ϵ) be a bialgebra. An element x ∈ B, x ̸= 0 is said to be

primitive if ∆(x) = x⊗ 1B + 1B ⊗ x.

In the Example 2.1.3 if

∆(xn) =
n∑

k=0

(
n

k

)
xk ⊗ xn−k = xn ⊗ xn

then n = 0, so 1⊗ 1 is the only grouplike element.

Remark 2.1.1. If x ∈ B is a primitive element, then its exponential, i.e. ex = 1+x+ x2

2!
+· · ·

(if the limit exists) is a grouplike element.

Lemma 2.1.3. The set of grouplike elements of a Hopf algebra forms a group with µ as the

group operation.

Proof. Let (H,µ,∆, η, ϵ, S) be a Hopf algebra. Let G denote the set of grouplike elements

of H. Since µ is associative by definition, it is enough to check the closure of G under µ, the
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closure of G under taking inverses and the existence of the identity element in G.

i. Identity element belongs to G:

∆ ◦ η = η ⊗ η

∆ ◦ η(1) = η(1)⊗ η(1)

=⇒ ∆(1H) = 1H ⊗ 1H =⇒ 1H ∈ G

ii. Closure: Let a, b ∈ G then we have ∆(a) = a⊗ a and ∆(b) = b⊗ b

∆ ◦ µ = (µ⊗ µ) ◦ (idH ⊗ SH,H ⊗ idH) ◦ (∆⊗∆)

∆ ◦ µ(a⊗ b) = (µ⊗ µ) ◦ (idH ⊗ SH,H ⊗ idH) ◦ (∆⊗∆)(a⊗ b)

∆ ◦ µ(a⊗ b) = (µ⊗ µ) ◦ (idH ⊗ SH,H ⊗ idH)(a⊗ a⊗ b⊗ b)

∆ ◦ µ(a⊗ b) = (µ⊗ µ)(a⊗ b⊗ a⊗ b)

∆ ◦ µ(a⊗ b) = (ab⊗ ab)

Thus, ab ∈ G.

iii. Inverse: Let a ∈ G. We have by axioms of Hopf algebra

µ ◦ (S ⊗ idH) ◦∆ = η ◦ ϵ = µ ◦ (idH ⊗ S) ◦∆
µ ◦ (S ⊗ idH) ◦∆(a) = µ ◦ (S ⊗ idH)(a⊗ a) = µ(S(a)⊗ a)

Similarly we have µ ◦ (idH ⊗ S) ◦∆(a) = µ(a ⊗ S(a)). Also we have η ◦ ϵ(a) = η(1) = 1H .

Combining we get

µ(S(a)⊗ a) = 1H = µ(a⊗ S(a))

Thus, S(a) is the inverse of a. The only thing left to show is that S(a) ∈ G. Let ∆(S(a)) =∑
(S(a)) S(a)1 ⊗ S(a)2. Then,

∆ ◦ µ(1H) = ∆ ◦ µ(S(a)⊗ a)

= (µ⊗ µ) ◦ (idH ⊗ SH,H ⊗ idH) ◦ (∆⊗∆)(S(a)⊗ a)

= (µ⊗ µ) ◦ (idH ⊗ SH,H ⊗ idH)(
∑
(S(a))

S(a)1 ⊗ S(a)2 ⊗ a⊗ a)

1⊗ 1 = µ⊗ µ(
∑
(S(a))

S(a)1 ⊗ a⊗
∑
(S(a))

S(a)2 ⊗ a)

1⊗ 1 = µ(
∑
(S(a))

S(a)1 ⊗ a)⊗ µ(
∑
(S(a))

S(a)2 ⊗ a)
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This implies,

µ(
∑
(S(a))

S(a)1 ⊗ a) = 1,

µ(
∑
(S(a))

S(a)2 ⊗ a) = 1

=⇒
∑
(S(a))

S(a)1 =
∑
(S(a))

S(a)2 = S(a)

∆(S(a)) = S(a)⊗ S(a) =⇒ S(a) ∈ G

G satisfies all the axioms of a group and thus is a group.

Lemma 2.1.4. The set of grouplike elements of the group algebra is the original group itself.

Proof. Recall that the group algebra is given by

C[G] =

{∑
g∈G

cgeg : cg ∈ C such that only finitely many cg ̸= 0

}

Let us denote the set of grouplike elements of C[G] by G′. The coproduct map on the group

elements is given by ∆(eg) = eg⊗ eg; this implies G ⊂ G′. Let a =
∑
cgeg ∈ G′, then we will

show that a ∈ G. On the LHS, we will use ∆(a) = a ⊗ a, and on the RHS, we will extend

∆ linearly.

∆(a) = ∆(
∑

cgeg) =
∑

cg∆(eg)

a⊗ a =
∑

cg(eg ⊗ eg)∑
(cgeg)⊗

∑
(cgeg) =

∑
cg(eg ⊗ eg)∑

cgch(eg ⊗ eh) =
∑

cg(eg ⊗ eg)∑
g ̸=h

cgch(eg ⊗ eh) +
∑

c2g(eg ⊗ eg) =
∑

cg(eg ⊗ eg)

Comparing coefficients on both the sides we get, cgch = 0 for g ̸= h and c2g = 1.

Claim: cg = 1 for exactly one g ∈ G

Proof of the claim: Since a ̸= 0 (by the definition of a grouplike element), we have cg = 1

for some g ∈ G. Suppose there exists h ∈ G, h ̸= g such that ch = 1 then cgch = 1 but

cgch = 0 this leads to a contradiction. Thus, cg = 1 for exactly one g ∈ G.
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The above claim implies a = eg for some g ∈ G, thus G′ ⊂ G and G = G′.

2.2 Representations of Associative Algebras

For this section, we refer to Chapter 4 of the book [GW09].

Definition 2.2.1. Let A be an associative unital algebra over C. A representation of A is a

pair (ρ, V ) where V is a vector space over C and ρ : A → End(V ) is an associative algebra

homomorphism.

Here End(V ) is endowed with an associative unital algebra structure with matrix multi-

plication (i.e. composition of linear transformations) as the product map.

By the unitality axiom, we have ρ(1A) = IV , where IV : V → V is the identity transforma-

tion.

Let a ∈ A then ρ(a) : V → V and ρ(a)(v) ∈ V . Hence, the following map makes V an

A-module.

A× V → V

(a, v) 7→ ρ(a)(v)

Example 2.2.1. The Trivial Representation of A over V is given by ρ(a) = IV , ∀a ∈ A.

Example 2.2.2. Let A = C[x]. Let V be a finite-dimensional vector space and let T ∈
End(V ). Define a representation (ρ, V ) of A by ρ(f) = f(T ) for f ∈ C[x].

Definition 2.2.2. (Invariant Subspace) Let U ⊂ V be a linear subspace of a finite-dimensional

vector space V . Let ρ : A → End(V ) be a representation. If ρ(a)U ⊂ U for all a ∈ A, then

we say U is an invariant subspace of (ρ, V ).

We can define a representation (ρU , U) by the restriction of ρ(A) to U and a representation

(ρV/U , V/U) by quotient action of ρ(A) to V/U .

Definition 2.2.3. (Irreducible Representation) A representation is said to be irreducible if

the only invariant subspaces of V are {0} and V.

Claim: Let ker(ρ) := {x ∈ A : ρ(x) = 0}. Then, ker(ρ) is a two-sided ideal of A.
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Proof. Let a ∈ A, k ∈ ker(ρ). Then ρ(k) = 0.

ρ(ak) = ρ(a)ρ(k) = ρ(a)0 = 0 =⇒ ak ∈ ker(ρ)

ρ(ka) = ρ(k)ρ(a) = 0ρ(a) = 0 =⇒ ka ∈ ker(ρ)

Thus, by the definition of a two-sided ideal, ker(ρ) is a two-sided ideal.

Definition 2.2.4. (Faithful Representation) A representation (ρ, V ) is said to be faithful if

ker(ρ) = {0}.

2.2.1 Direct Sum and Tensor of Representations

Let (ρ1, V1) and (ρ2, V2) be representations of A.

ρ1 : A→ End(V1)

ρ2 : A→ End(V2)

The two representations give a representation of A⊕A over the direct sum of vector spaces,

i.e. the following:

(ρ1 ⊕ ρ2)(g)(v1 ⊕ v2) := ρ1(g)(v1)⊕ ρ2(g)(v2)

is a representation of A⊕ A over V1 ⊕ V2.

Similarly, we can define a representation of A ⊗ A over the tensor product of vector

spaces, i.e. the following:

(ρ1 ⊗ ρ2)(g)(v1 ⊗ v2) := ρ1(g)(v1)⊗ ρ2(g)(v2)

is a representation of A⊗ A over V1 ⊗ V2.

2.2.2 Intertwining Operator or Module Homomorphism

Definition 2.2.5. Let (ρ, V ) and (τ,W ) be two representations of A. Let T ∈ Hom(V,W ).

T is called an intertwining operator or a module homomorphism if T ◦ ρ(a) = τ(a) ◦ T , i.e.
the following diagram commutes:
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V V

W W

ρ(a)

T T

τ(a)

Denote

HomA(V,W ) := {T ∈ Hom(V,W ) : T ◦ ρ(a) = τ(a) ◦ T ∀ a ∈ A}

Lemma 2.2.1. Let T1 ∈ HomA(V,W ) and T2 ∈ HomA(W,X). Then T2 ◦T1 ∈ HomA(V,X).

Proof. We need to prove that (T2 ◦ T1) ◦ ρ(a) = τ ′(a) ◦ (T2 ◦ T1) where

ρ(a) : V → V

τ(a) : W → W

τ ′(a) : X → X

We are given that T1 ◦ ρ(a) = τ(a) ◦ T1 and T2 ◦ τ(a) = τ ′(a) ◦ T2. Then

(T2 ◦ T1) ◦ ρ(a) = T2 ◦ (T1 ◦ ρ(a))
= T2 ◦ τ(a) ◦ T1 = τ ′(a) ◦ (T2 ◦ T1)

This proves the result.

Definition 2.2.6. An intertwining operator T ∈ HomA(V,W ) is called invertible if there

exists T−1 ∈ HomA(W,V ) such that

T ◦ T−1 = IW ∈ HomA(W,W )

T−1 ◦ T = IV ∈ HomA(V, V )

Definition 2.2.7. (Equivalence of Representations) Two representations (ρ, V ) and (τ,W )

are said to be equivalent if there exists an invertible operator in HomA(V,W ) and we write

(ρ, V ) ≃ (τ,W ). One can check that this is an equivalence relation.

Define EndA(V ) := HomA(V, V ). Note that if f, g ∈ EndA(V ) then f ◦ g ∈ EndA(V ) and

32



IV ∈ EndA(V ). Hence, EndA(V ) is an associative unital algebra with composition as the

product map.

Example 2.2.3. Let G be a group and A = C[G] be the group algebra. Let (ρ, V ) be a

representation of A, then the map g 7→ ρ(eg) is a group homomorphism from G to End(V )

i.e. we have,

ρ : G→ End(V )

g 7→ ρ(eg)

Conversely, given a group homomorphism ρ : G → End(V ) we can define a representation

of A as follows:

ρ̃ : A→ End(V )

ρ̃(f) =
∑
g∈G

f(g)ρ(g)

where f ∈ A = C[G]. Thus, we have a one-to-one correspondence between the group homo-

morphism from G to End(V ) and representations of A over V .

2.2.3 Schur’s Lemma

Lemma 2.2.2. Let (ρ, V ) and (τ,W ) be irreducible representations of an associative algebra

A. Let V, W have countable dimension over C. Then

dim(HomA(V,W )) =

1 if (ρ, V ) ≃ (τ,W )

0 otherwise.

Proof. We first show that HomA(V,W ) is not equal to {0} if and only if (ρ, V ) is isomorphic

to (τ,W ).

� Suppose HomA(V,W ) = {0} then clearly (ρ, V ) is not isomorphic to (τ,W ).

� Conversely, suppose HomA(V,W ) ̸= {0} then there exists a non zero element T in

HomA(V,W ) non zero. Now, ker(T ) ⊂ V and Range(T ) ⊂ W are invariant subspaces

of V and W respectively. Since (ρ, V ) and (τ,W ) are irreducible representations, we
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have ker(T ) = {0} or V and Range(T ) = {0} or W . ker(T ) can not be equal to V , as

that would imply T = 0, a contradiction.

Hence, ker(T ) = {0}, which implies Range(T ) = W . So T is a bijection, hence an

isomorphism from (ρ, V ) to (τ,W ). Therefore,

(ρ, V ) ≃ (τ,W ).

Only thing left to show is that dim(HomA(V,W )) = 1 when (ρ, V ) ≃ (τ,W ).

Let (ρ, V ) ≃ (τ,W ). If S, T ∈ HomA(V,W ) then R = T−1S ∈ EndA(V ).

Assume for contradiction that R is not a multiple of the identity operator. Then for all

λ ∈ C we have, R− λI ̸= 0, which implies R− λI is invertible.

� Claim: For any 0 ̸= v ∈ V and distinct scalars λ1, λ2, . . . , λm, the vectors

(R− λ1I)
−1v, . . . , (R− λmI)

−1v

are linearly independent.

� Proof: Suppose
∑

i ai(R− λiI)
−1v = 0. Multiplying by

∏
j(R− λjI) we get∑

i

ai
∏
i ̸=j

(R− λj)v = 0

Denote
∑

i ai
∏

i ̸=j(x− λj) by f(x). Then f(R)v = 0.

If ai ̸= 0 for some i then f(x) ̸= 0 and it has a factorisation as follows:

f(x) = c(x− µ1)...(x− µm)

with c ̸= 0 and µi ∈ C.
We have,

f(R) = c(R− µ1I)...(R− µmI)

By assumption R−λiI are invertible, which implies f(R) is invertible. This contradicts

the fact that f(R)v = 0. Thus, the vectors

(R− λ1I)
−1v, . . . , (R− λmI)

−1v

are linearly independent.
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We know that C does not have a countable dimension. The above result implies for every

λi ∈ C, we have a vector (R − λiI)
−1v ∈ V . So {(R − λiI)

−1v is an uncountably infinte

collection of linearly independent vectors. This implies that V doesn’t have a countable

dimension. This leads to a contradiction to our assumption that V has a countable dimension.

Thus, R−λI = 0 for some λ this implies, HomA(V,W ) = ⟨I⟩ (Generated as a complex vector

space) and hence dim(HomA(V,W )) = 1.

2.2.4 Representations of a Hopf Algebra

Let H be a Hopf algebra. And ρ and ψ be two representations of H on a vector space V

and W , respectively. Then, the coproduct map ∆ allows us to define a representation of H

on the vector space V ⊗W as follows:

(ρ⊗ ψ)(a) := ρ⊗ ψ(∆(a))

Note that this representation is different from the one discussed in 2.2.1, as the former

is a representation of H and the latter is a representation of H ⊗H.

Furthermore, the antipode map S allows us to define a representation of H on the dual

vector space V ∗ by the following pairing:

⟨ρ∗(a)(v∗), v⟩ = ⟨v∗, ρ(S(a))v⟩

where v∗ ∈ H∗ and v ∈ H.

2.3 Quasitriangular and Ribbon Hopf Algebra

The theory of quantum groups deals with non-commutative (and non co-commutative) Hopf

algebra. While studying non-co-commutative Hopf algebras, we might demand that the

non-co-commutativity is ‘controlled’ to some extent. Examples of such Hopf algebras are

quasitriangular Hopf algebra. Many interesting properties arise when the quasitriangularity

condition is added. More precisely, we have,

Definition 2.3.1. (Quasitriangular Hopf Algebra) A quasitriangular Hopf algebra A is a
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pair (A, R) where A is a Hopf algebra and R in the completion A⊗̂A satisfies

(∆⊗ id)R = R13R23

(id⊗∆)R = R13R12

τ ◦∆(h) = R(∆(h))R−1 ∀h ∈ A

(2.2)

where

R =
∑
i

xi ⊗ yi,

R12 =
∑
i

xi ⊗ yi ⊗ 1,

R13 =
∑
i

xi ⊗ 1⊗ yi,

R23 =
∑
i

1⊗ xi ⊗ yi.

The element R is called a universal R-matrix.

Note that the third equation of (2.2) says that even though A is not co-commutative, its

opposite coproduct can be obtained by the coproduct map. The first and second equation

of (2.2) implies

R12R13R23 = R23R13R12 (2.3)

This equation is called the quantum Yang-Baxter Equation.

Proposition 2.3.1. Let H be a finite-dimensional Hopf algebra and let R′ be the following

map,

R′ : H∗ → H

ϕ 7→
∑

R(1)ϕ(R(2))

where R =
∑
R(1) ⊗R(2). Then, R satisfies the first equation of (2.2) if and only if R′ is a

coalgebra map. And R satisfies the second equation of (2.2) if and only if R′ is an antialgebra

map.

Proof. Note that R′(ϕ) = µ ◦ (id⊗ ϕ)(R).

36



i. Let R satisfy the 1st equation of (2.2). Then,

∆ ◦R′(ϕ) = (id⊗ µ) ◦ (id⊗ id⊗ ϕ) ◦ (∆⊗ id)(R)

= (id⊗ µ) ◦ (id⊗ id⊗ ϕ) ◦R13R23 By 1st equation of (2.2)

= (id⊗ µ) ◦
∑

R(1) ⊗R(1)′ ⊗ ϕ(R(2)R(2)′)

= (id⊗ µ) ◦
∑

R(1) ⊗R(1)′ ⊗∆∗ ◦ ϕ(R(2) ⊗R(2)′)

= (R′ ⊗R′)(∆∗ ◦ ϕ)

This implies R′ is a coalgebra map.

Conversely, if R′ is a coalgebra map i.e. ∆ ◦R′(ϕ) = (R′ ⊗R′)(∆∗ ◦ ϕ). Then we have

(id⊗ id⊗ ϕ) ◦ (∆⊗ id)(R) =
∑

R(1) ⊗R(1)′ ⊗ ϕ(R(2)R(2)′)

= (id⊗ id⊗ ϕ) ◦R13R23

=⇒ ∆⊗ id(R) = R13R23

ii. Let R satisfy the 2nd equation of (2.2), then

R′(ϕψ) =
∑

R(1)(ϕψ)(R(2))

= µ ◦ (µ⊗ id) ◦ (id⊗ ϕ⊗ ψ) ◦ (id⊗∆)(R)

= µ ◦ (µ⊗ id) ◦ (id⊗ ϕ⊗ ψ)(R13R12) By 2nd equation of (2.2)

=
∑

R(1)R(1)′ϕ(R(2)′)ψ(R(2))

=
∑

R(1)R(1)′⟨ϕ⊗ ψ,R(2)′ ⊗R(2)⟩

=
∑

R(1)ψ(R(2))
∑

R(1)′ϕ(R(2)′)

= R′(ψ)R′(ϕ)

This implies R′ is an antialgebra map.

Conversely, let R′ be an antialgebra map i.e. R′(ϕψ) = R′(ψ)R′(ϕ). So we have

R′(ϕ⊗ ψ) = µ ◦ (µ⊗ id) ◦ (id⊗ ϕ⊗ ψ) ◦ (id⊗∆)(R)
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Since R′(ϕψ) = R′(ψ)R′(ϕ), we have

µ ◦ (µ⊗ id) ◦ (id⊗ ϕ⊗ ψ) ◦ (id⊗∆)(R) =
∑

R(1)ψ(R(2))
∑

R(1)′ϕ(R(2)′)

= µ ◦ (µ⊗ id) ◦ (id⊗ ϕ⊗ ψ) ◦R13R12

=⇒ id⊗∆(R) = R13R12

The image of a universal R-matrix under any representation composed with the tensor

flip map, i.e. τ◦R, satisfies the Yang-Baxter equation. Recall that the braid group generators

also satisfy the YBE. Thus, given a representation of a quasitriangular Hopf algebra, we can

always define a representation of braid groups. The method of generating link invariants

through quantum groups is based on this relation.

A more useful class of Hopf algebra are ribbon Hopf algebras.

Definition 2.3.2. [Saw95] A ribbon Hopf algebra is a tuple (H,R,G) where (H,R) is a

quasitriangular Hopf algebra and G is a grouplike element satisfying

G−1uG−1 = S(u)

GaG−1 = S2(a) ∀a ∈ H

where u =
∑
S(R(2))R(1) and R =

∑
R(1) ⊗R(2).

Given a representation of a ribbon Hopf algebra on a vector space V , we define a function

from End(V ) to the base field of the given Hopf algebra. We will see in the next chapter

that this function is crucial for defining a link invariant.

Definition 2.3.3. [Saw95] Let (H,R,G) be a ribbon Hopf algebra over C and let ρ : H →
End(V ) be a representation of H. The quantum trace concerning V is the following function

qTrV : End(V ) → C

qTrV (x) = Tr(ρ(G)x)

The quantity qTrV (1) is called the quantum dimension of V . For convenience, we will

call the element G the ribbon element.
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2.4 The h-Adic Hopf Algebra Uh(sl2(C))

Recall the Example 2.1.4, given any group, the Hopf algebra of its complex-valued functions

is commutative. Conversely, we have a non-trivial result that any commutative Hopf algebra

arises as a function Hopf algebra of some group. What if we started with a non-commutative

Hopf algebra? Then, we can say that it arises as a function Hopf algebra of some quantum

group. The notion of quantum groups varies with usage; for us, the theory of quantum

groups deals with non-commutative (and non-cocommutative) Hopf algebra. We focus on a

class of quantum groups, namely deformations of the universal enveloping algebra of a Lie

algebra. Here, we discuss the quantum group Uh(sl2(C)). Before defining Uh(sl2(C)), we
need to define q-numbers and q-factorials.

2.4.1 q-Calculus

Let q ∈ C be a non-zero number.

Definition 2.4.1. (q- Number) Let a ∈ C. Define

[a]q ≡ [a] : =
qa − q−a

q − q−1
=
eah − e−ah

eh − e−h

=
sinh ah

sinhh

where q = eh. Clearly, limq→1[a]q = a.

Another useful expression is

[[a]]q ≡ [[a]] :=
1− qa

1− q
.

The following relations can be directly derived from the properties of exponential:
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For m,n ∈ C and a, b, c ∈ C

[m] = qm−1 + qm−3 + . . .+ q−(m−1)

[m+ n] = qn[m] + q−m[n] = q−n[m] + qm[n]

[m− n] = qn[m]− qm[n] = q−n[m]− q−m[n]

0 = [a][b− c] + [b][c− a] + [c][a− b]

[n] = [2][n− 1]− [n− 2]

Definition 2.4.2. (q- Factorial) q-factorials are defined in the following way:

[m]! := [1][2] · · · [m],

[0]! := 1.

2.4.2 Definition and Properties of Uh(sl2(C))

Let h be an indeterminate. And let C[[h]] denote the ring of formal power series in h with

complex coefficients. Then,

Definition 2.4.3. Uh(sl2(C)) denotes the h-Adic algebra (i.e. an algebra over the ring C[[h]])
with three generators E,F and H satisfying the following relations:

[H,E] = 2E

[H,F ] = −2F

[E,F ] =
ehH − e−hH

eh − e−h
=

sinhhH

sinhh

where ehH = 1 + hH +
(hH)2

2!
+ ... ∈ Uh(sl2(C)).
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And whose Hopf algebra structure is given by the following maps:

∆(E) = E ⊗ ehH + 1⊗ E,

∆(F ) = F ⊗ 1 + e−hH ⊗ F,

∆(H) = H ⊗ 1 + 1⊗H,

ϵ(H) = ϵ(E) = ϵ(F ) = 0,

S(H) = −H,
S(E) = −Ee−hH ,

S(F ) = −ehHF.

The h-adic Hopf algebra obtained in this way is called the h-adic quantum algebra

Uh(sl2(C)). The set {ElHmF n | l,m, n ∈ N0} is a linear basis of Uh(sl2(C)). The quan-

tum Casimir element of Uh(sl2(C)) is given by

Ch := EF +
eh(H−1) + e−h(H−1)

(eh − e−h)2
= FE +

eh(H+1) + e−h(H+1)

(eh − e−h)2

It can be shown that Uh(sl2(C)) is quasitriangular, and its universal R-matrix is given

by

R = eh(H⊗H)/2

∞∑
n=0

qn(n+1)/2(1− q−2)n

[n]q!
En ⊗ F n

where q = eh.

Let K := ehH be an element of H. Then we have,

∆(K) = ∆(ehH) = eh∆(H)

= eh(H⊗I+I⊗H) = (ehH ⊗ I)(I ⊗ ehH)

= ehH ⊗ ehH = K ⊗K

ϵ(K) = ehϵ(H) = eh∗0 = e0 = 1

(2.4)

This implies K is a grouplike element. One can check that K satisfies the axioms of a ribbon

element, making (Uh(sl2(C)), R,K) a ribbon Hopf algebra.
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2.4.3 Finite-dimensional representation of Uh(sl2(C))

Since Uh(sl2(C)) is an algebra over the ring C[[h]], we consider representations of Uh(sl2(C))
on finite-dimensional linear spaces over the ring C[[h]]. Given a finite-dimensional complex

vector space V , the space V [[h]] of formal power series in h with coefficients in V forms a

linear space over C[[h]]. So, a representation of Uh(sl2(C)) will be an algebra homomorphism

as follows:

ρ : Uh(sl2(C)) → End(V [[h]]) = End(V ⊗ C[[h]]) = End(V )⊗ End(C[h]]).

Here End(V ⊗ C[[h]]) ∼= End(V )⊗ End(C[h]]) because V is finite dimensional.

Let V be a finite-dimensional vector space over C. Then by a finite-dimensional repre-

sentation of Uh(sl2(C)) we mean a finite-dimensional representation ρ on V ⊗ C[[h]] such
that ρ(a)(v ⊗ c) = ρ̃(v)⊗ c i.e. the representation doesn’t transform elements of C[[h]] and
hence can be defined entirely by its action on a basis of V . We will denote ρ̃ by ρ itself.

Here we discuss a class of finite-dimensional representations of Uh(sl2(C)) denoted by Tl

where l ∈ 1
2
N0, as described in [KS81].

Let l ∈ 1
2
N0 and let Vl denote the (2l + 1) dimensional complex vector space with a basis

{ei | i = −l,−l + 1, ..., l − 1, l}.

Define Tl by its action on the generating elements E,F,H as follows:

Tl(E)em = ([l −m][l +m+ 1])
1
2 em+1

Tl(F )em = ([l +m][l −m+ 1])
1
2 em−1

Tl(H)em = 2mem

Note that Tl is not irreducible, as subspaces h
kVl[[h]] are invariant subspaces. The rep-

resentation is indecomposable, i.e. the underlying space Vl[[h]] can not be decomposed as a

direct sum of non-trivial invariant subspaces.

As discussed earlier, by representations of a quasitriangular Hopf algebra, we obtain a

matrix solution to the YBE. The existence of such a matrix is the key to defining representa-
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tions of braid groups. Furthermore, the ribbon Hopf algebra structure allows us to define the

quantum trace function, which gives rise to a link invariant. The next chapter discusses this

construction in detail, focusing on the Jones polynomial. By a quantum group, we would

mean an h-adic Hopf algebra with a ribbon Hopf algebra structure.
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Chapter 3

Quantum Groups and Quantum

Invariants

Quantum groups, described in the previous chapter, are efficient tools for generating link

invariants. Given a representation of a quantum group, we can define representations of

braid groups. Modifying the quantum trace, we get a quantity which is invariant under

Markov moves, thus defining a link invariant. We can keep the quantum group fixed and

change its representation or change the quantum group itself. For every distinct pair of

a quantum group and its representation, we get an invariant. The Jones polynomial is

obtained by the fundamental representation of the quantum group Uh(sl2(C)). The N -

coloured Jones polynomial is obtained by N -dimensional representation of the quantum

group Uh(sl2(C)). By the fundamental representation of the quantum group Uh(sln(C)), we
obtain the HOMFLY-PT polynomial.

3.1 Quantum Invariants of Links

Quantum invariants of links broadly refer to a class of link invariants that arise by a rep-

resentation of some quantum group. Let (Uh(g), R,K) be a quantum group, where g is a

semisimple complex Lie algebra. And let (ρ, V ) be a representation of Uh(g). Then for

every n ≥ 1, we obtain a representation of Bn over V ⊗n by sending the generators σi to

IdV ⊗i−1 ⊗ τ ◦ (ρ ⊗ ρ)(R) ⊗ IdV ⊗n−i−1 . We can then normalise the quantum trace function
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qTrV ⊗n to make it invariant under Markov moves. Thus, we can obtain a link invariant from

a representation of a quantum group.

Remark 3.1.1. 1. When g = sl2(C) and the dimension of V = 2, we obtain the Jones

polynomial.

2. When g = sl2(C) and the dimension of V = N , we obtain the N-colored Jones polyno-

mial.

3. Finally, when g = sln(C) and the dimension of V = n, we obtain the HOMFLY-PT

polynomial.

In the upcoming sections, we will focus on the computation of the Jones polynomial

through the fundamental representation of Uh(sl2(C)).

3.2 Finite dimensional representations of braid groups

We earlier defined a class of representations of Uh(sl2(C)) denoted by Tl. Now, we can define

representations of Bn as follows:

T̃l
⊗n

: Bn → GL(V [[h]]⊗n)

T̃l
⊗n

: σi 7→ IdV [[h]]⊗i−1 ⊗ τ ◦ (Tl ⊗ Tl)(R)⊗ IdV [[h]]⊗n−i−1

where τ is the tensor flip map.

Since the image of σi is invertible and satisfies the Yang-Baxter equation, T̃l
⊗n

is a group

homomorphism. This directly follows from the defining properties of a universal R-matrix.

From this point, we will denote (Tl ⊗ Tl)(R) by R. Given a braidword, its image will be

a square matrix of order (2l + 1)n. Taking the quantum trace of this matrix gives a link

invariant. The Jones polynomial is defined by fixing l = 1
2
.
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3.3 The Jones Polynomial

Let l = 1
2
then the dimension of V is 2× 1

2
+ 1 = 2 and the basis is {e− 1

2
, e 1

2
}. T 1

2
is defined

as follows:

T 1
2
(E)e− 1

2
= e 1

2
T 1

2
(E)e 1

2
= 0

T 1
2
(F )e− 1

2
= 0 T 1

2
(F )e 1

2
= e− 1

2

T 1
2
(H)e− 1

2
= −e− 1

2
T 1

2
(H)e 1

2
= e 1

2

Denote the images of E,F and H under T⊗n
1
2

by En, Fn and Hn respectively. Then,

E1 =

[
0 0

1 0

]
F1 =

[
0 1

0 0

]
H1 =

[
−1 0

0 1

]

The R matrix is given by:

R = eh(H⊗H)/2

∞∑
n=0

qn(n+1)/2(1− q−2)n

[n]q!
En ⊗ F n

Note that E2
1 = F 2

1 = 0. Thus, the image of R under the representation T 1
2
⊗ T 1

2
is given by

R = eh(H⊗H)/2(1 + (q − q−1)(E ⊗ F )).

47



We have,

E ⊗ F =

[
0 0

1 0

]
⊗

[
0 1

0 0

]

=


0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0


H ⊗H =

[
−1 0

0 1

]
⊗

[
−1 0

0 1

]

=


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1



I + (q − q−1)(E ⊗ F ) =


1 0 0 0

0 1 0 0

0 q − q−1 1 0

0 0 0 1


Thus, we get the matrix for R as below:

R =


q

1
2 0 0 0

0 q
−1
2 0 0

0 q
−1
2 (q − q−1) q

−1
2 0

0 0 0 q
1
2



q
1
2R =


q 0 0 0

0 1 0 0

0 q − q−1 1 0

0 0 0 1
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The matrix R doesn’t satisfy the YBE; we must compose it with the tensor flip map to get

the image of σ1:

τ =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1



τ ◦ q
1
2R = q

1
2 R̂ =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

×


q 0 0 0

0 1 0 0

0 q − q−1 1 0

0 0 0 q



=


q 0 0 0

0 q − q−1 1 0

0 1 0 0

0 0 0 q


For n = 2, we need to compute the images of E, F and H. Recall that the tensor product

of representations ρ and γ is given by

(ρ⊗ γ)(a) = ρ⊗ γ(∆(a))

where a ∈ Uh(sl2(C)) and ∆ is the coproduct map.

Using the definition, we get the following:

E2 = T 1
2
⊗ T 1

2
(∆(E)) = E1 ⊗ ehH1 + I2 ⊗ E1

=

[
0 0

1 0

]
⊗

[
q−1 0

0 q

]
+

[
1 0

0 1

]
⊗

[
0 0

1 0

]

=


0 0 0 0

0 0 0 0

q−1 0 0 0

0 q 0 0

+


0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0



=


0 0 0 0

1 0 0 0

q−1 0 0 0

0 q 1 0
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F2 = T 1
2
⊗ T 1

2
(∆(F )) = F1 ⊗ I2 + e−hH1 ⊗ F1

=

[
0 1

0 0

]
⊗

[
1 0

0 1

]
+

[
q 0

0 q−1

]
⊗

[
0 1

0 0

]

=


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

+


0 q 0 0

0 0 0 0

0 0 0 q−1

0 0 0 0



=


0 q 1 0

0 0 0 1

0 0 0 q−1

0 0 0 0


H2 = T 1

2
⊗ T 1

2
(∆(H)) = H1 ⊗ I2 + I2 ⊗H1

=

[
−1 0

0 1

]
⊗

[
1 0

0 1

]
+

[
1 0

0 1

]
⊗

[
−1 0

0 1

]

=


−1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1

+


−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1



=


−2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 2


The image of the ribbon element K is given by the linear operator which sends em to

q2mem. For a braid on n strands, its image under the representation will be a square matrix

of order 2n. Denote this matrix by M . Then, the image of M under the quantum trace

function is given by

qTr[ 1
2
]⊗n(M) = Tr(M ×K⊗n) (3.1)

We can normalise the quantum trace to make it invariant under the Markov moves, which

will be done in the upcoming sections.

It is difficult to compute quantum trace directly. The computation is made easier by
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decomposing the given matrix into block matrices, where the blocks are a scalar multiple of

the identity matrix. To find the decomposition, we need to compute the span of the highest-

weight vectors. The Highest weight vectors are eigenvectors of Hn, which also belong to the

kernel of En. Here, we follow the computation method described in [MSS]. For n = 2 we have,

ker(E2) =

{
0

0

0

1

 ,


0

−1

q

0


}

Denote the first vector by w0 and the second by w1. Since E2wi = 0 and H2wi = ciwi, the

span of wi is defined by action of F2 on wi. We have,

F2w0 =


0

1

q−1

0

 , F 2
2w0 =


q + q−1

0

0

0

 , F 3
2w0 = 0

F2w1 = 0

We get the ordered basis {w0, F2w0, F
2
2w0, w1} and the base change matrix is given by:

Q =


0 0 q + q−1 0

0 1 0 −1

0 q−1 0 q

1 0 0 0


We get the decomposition of q

1
2 R̂ as follows:

Q−1(q
1
2 R̂)Q =


q 0 0 0

0 q 0 0

0 0 q 0

0 0 0 −q−1

 =

[
qId[1] 0

0 −q−1Id[0]

]

Next, we have to normalise the quantum trace. The next two subsections justify the nor-

malisation that we obtain in the end.
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3.3.1 n = 1

For the trivial knot, the number of strands is equal to 1. Thus, its quantum trace is equal to

qTr[ 1
2
](Id2) = Tr(K) = q−2 1

2 + q2
1
2 = q−1 + q

Since V⃝(t) = 1, we must normalise the quantum trace by the factor q−1 + q.

3.3.2 n = 2

The braid group B2 is generated by σ1. σ̂1 is the unknot.

σ1 7→ R̂

σ1 = q
−1
2

[
qId[1] 0

0 −q−1Id[0]

]
qTr(σ1) = q

−1
2 (qqTr(Id[1])− q−1

qTr(Id[0]))

= q
−1
2 (q(q−2 + 1 + q2)− q−1)

= q
−1
2 (q + q3) = q

3
2 (q−1 + q)

Normalising we get q
3
2 , which is not equal to 1. Note that the writhe of this diagram (the

diagram obtained by taking the closure of the braid σ1) is 1. So the normalisation factor

should be q
3
2
ω(L)(q + q−1).

Let us verify if this normalisation factor works for σ−1
1 .

σ−1
1 = q

1
2

[
q−1Id[1] 0

0 −qId[0]

]
qTr(σ

−1
1 ) = q

1
2 (q−1

qTr(Id[1])− qqTr(Id[0]))

= q
1
2 (q−1(q−2 + 1 + q2)− q)

= q
1
2 (q−3 + q−1) = q

−3
2 (q−1 + q)

The writhe for this diagram is -1. So, the normalising factor is q
−3
2 (q + q−1). Normalising

the quantum trace, we get 1, the Jones polynomial for the unknot.

52



Now σ̂1
2 is the Hopf link. We have,

σ2
1 = q−1

[
q2Id[1] 0

0 q−2Id[0]

]
qTr(σ

2
1) = q−1(q2qTr(Id[1]) + q−2

qTr(Id[0]))

= q−1(q2(q−2 + 1 + q2) + q−2)

= q−3 + q−1 + q + q3

Normalising by q3(q + q−1) we get q−5 + q−1. We know that the Jones polynomial of the

oriented hopf link with linking number +1 is −t 12 −t 52 . So we need to multiply the normalised

quantum trace with (−1)1+Λ(L), where Λ(L) denote the number of components in the link

L. Further, we need to substitute the modified quantum trace by q = 1√
t
. Note that this

modification and substitution are consistent with the calculations of the base cases.

Our discussions so far have led us to the following result.

Let L be a link and let β ∈ Bn be a braid such that β̂ = L. Denote the image of β under

the representation T̃⊗n
[ 1
2
]
by β itself. Then,

VL(t = q2) = (−1)1+Λ(L)
qTr[ 1

2
]⊗n(β)

q
3
2
ω(L)(q + q−1)

(3.2)

Remark 3.3.1. The expression on the right satisfies the skein relation (1.2); hence, by

Theorem 1.2.1, it must be equal to the Jones polynomial.

3.4 Computation of Jones polynomial for W (3,m)

The weaving links W (n,m) are a doubly infinite family of alternating links with the same

planar projection as the Torus links T (n,m). When n and m are co-prime, W (n,m) com-

prises of weaving knots. These knots are examples of hyperbolic knots. X-S Lin conjectured

that weaving knots have the maximum volume for a fixed crossing number. The volume-

ish theorem [DL07] for alternating knots provides bounds on the volume in terms of the

Jones polynomial. The Volume conjecture [Mur10] says that the volume of a knot’s comple-

ment can be determined by its coloured Jones polynomial. Therefore, computing the Jones

polynomial for Weaving knots (or links) can provide valuable results.
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To begin computing, we can initiate by looking at the number of strands. When n = 1, we

get the unknot, and for n = 2, W (2,m) corresponds to the torus links, for which the closed

form expression of the Jones polynomial is established. Consequently, we shall proceed with

computing the Jones polynomial for n = 3, namely W (3,m), utilising the formula (3.2).

W (3,m) is the closure of the braid (σ1σ
−1
2 )m ∈ B3.

For W (3,m) the number of strands is equal to 3. We obtain the following decomposed

matrices for the generators σ1 and σ2 of B3 with the help of SageMath (See the appendix

for the code).

σ1 = q
−1
2

(q − q−1)Id[ 1
2
] Id[ 1

2
] 0

Id[ 1
2
] 0 0

0 0 qId[ 3
2
]

 = q
−1
2

(q − q−1) 1 0

1 0 0

0 0 q



σ2 = q
−1
2

 q 0 0

−q2 −q−1 0

0 0 q


σ−1
2 = q

1
2

q−1 0 0

−q2 −q 0

0 0 q−1


For m = 1:

σ1σ
−1
2 =

1− q−2 − q2 −q 0

q−1 0 0

0 0 1


qTr(σ1σ

−1
2 ) = (1− q−2 − q2)qTr(Id[ 1

2
]) +q Tr(Id[ 3

2
])

= (1− q−2 − q2)(q−1 + q) + (q−3 + q−1 + q + q3)

= q−1 + q

Normalising we get q−1+q
q−1+q

= 1. This is the correct answer since closure of σ1σ
−1
2 is the unknot.

Note that the writhe forW (3,m) for this projection is 0, and the number of link components

is odd, so the normalisation factor is (q + q−1).
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For m = 2, we get:

(σ1σ
−1
2 )2 =

q−4 + 2(1− q−2 − q2) + q4 q−1 − q + q3 0

q−1 − q − q−3 −1 0

0 0 1


qTr((σ1σ

−1
2 )2) = (q−4 + 2(1− q−2 − q2) + q4)qTr(Id[ 1

2
])−q Tr(Id[ 1

2
]) +q Tr(Id[ 3

2
])

= (q−4 + 2(1− q−2 − q2) + q4 − 1)(q−1 + q) + (q−3 + q−1 + q + q3)

= q−5 + q5

Normalising, we get q−5+q5

q−1+q
= q−4 − q−2 + 1− q2 + q4. Substituting q2 = 1

t
, we get:

VFigureEight(t) = t−2 − t−1 + 1− t+ t2

Let us compute for an arbitrary m, let

(σ1σ
−1
2 )m := A(m) =

M11(m)Id[ 1
2
] M12(m)Id[ 1

2
] 0

M21(m)Id[ 1
2
] M22(m)Id[ 1

2
] 0

0 0 Id[ 3
2
]

 =

[
M 0

0 1

]

We have,

A(m+ 1) =

M11(m) M12(m) 0

M21(m) M22(m) 0

0 0 1


1− q−2 − q2 −q 0

q−1 0 0

0 0 1


The above matrix multiplication gives the following recursions:

M11(m+ 1) = (1− q−2 − q2)M11(m) + q−1M12(m)

M12(m+ 1) = −qM11(m)

M21(m+ 1) = (1− q−2 − q2)M21(m) + q−1M22(m)

M22(m+ 1) = −qM21(m).

Similarly, we have,

A(m+ 1) =

1− q−2 − q2 −q 0

q−1 0 0

0 0 1


M11(m) M12(m) 0

M21(m) M22(m) 0

0 0 1
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and the following recursions:

M11(m+ 1) = (1− q−2 − q2)M11(m)− qM21(m)

M12(m+ 1) = (1− q−2 − q2)M12(m)− qM22(m)

M21(m+ 1) = q−1M11(m)

M22(m+ 1) = q−1M12(m).

Combining the two sets of recursions, we get m ≥ 1

M11(m+ 1) = q(1− q−2 − q2)M21(m+ 1)− qM21(m)

M12(m+ 1) = −q2M21(m+ 1)

M22(m+ 1) = −qM21(m)

and for m ≥ 2

M21(m+ 1) = (1− q−2 − q2)M21(m)−M21(m− 1)

with initial conditions: M21(1) = q−1 and M21(2) = −q−3 + q−1 − q.

3.4.1 Digression: Posets and Rank polynomials

Definition 3.4.1. [Sta97]Let P be a poset and let I ⊂ P . I is called an order ideal of P if

it satisfies the following

y ∈ I, z ≤ y =⇒ z ∈ I.

Definition 3.4.2. The lattice of order ideals of the poset P is defined as

J(P ) := {I ⊂ P : I is an order ideal of P}.

We will refer to the lattice of order ideals as simply ‘lattice’. Corresponding to a poset

P , we can associate a polynomial called the rank polynomial, which we define as follows:
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Definition 3.4.3. The rank polynomial of the lattice of the poset P is defined as

RP (x) =
∑

I∈J(P )

x|I|

=
∑
j≥0

WP (j)x
j

where WP (j) = |{I ∈ J(P ) : |I| = j}| are called the jth Whitney number of the lattice of

the poset P .

Fibonacci Lattice:

Definition 3.4.4. The fence poset of order n, denoted by Zn is the poset {x1, x2, ..., xn} with

the cover relations: x2k−1 � x2k � x2k+1, where k ≥ 1.

Since |J(Zn)| = fn (nth Fibonacci number), the lattice of the fence poset is called the

Fibonacci lattice. Denote the rank polynomial of the Fibonacci lattice by Fn(x) and denote

the kth Whitney number of the lattice of Zn by fn,k then we have,

Fn(x) =
∑
k≥0

fn,kx
k.

Note that fn,0 = 1 since the empty set is the only order ideal with 0 elements. Moreover,

fn,n = 1, since the only order ideal with n elements is the poset itself.

Proposition 3.4.1. [MZ02] The Whitney numbers fn,k satisfy the recurrence

fn+4,k+2 = fn+2,k+2 + fn+2,k+1 + fn+2,k − fn,k

and the rank polynomial satisfies the recurrence

Fn+4(x) = (1 + x+ x2)Fn+2(x)− x2Fn(x).

Proof. Consider the fence poset Zn+4.

Let I ∈ J(Zn+4) be such that |I| = k+2. The number of such I is fn+4,k+2. The recurrence

holds if k + 2 ∈ {0, 1}. Let k + 2 ≥ 2. Let x1 ∈ Zn+4, then there are three possibilities:
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1. x1, x2 ∈ I

2. x1 ∈ I x2 /∈ I

3. x1, x2 /∈ I

� Case I: If x1, x2 ∈ I then since x3 ≤ x2, x3 must belong to I. I \ {x1, x2} is an order

ideal of Zn+2 because x1 and x2 are not covered by elements of Zn+4 \ x1, x2 ∼= Zn+2.

Moreover, I \ {x1, x2} ⊂ Zn+2 is an order ideal of order k that contains x3.

Order ideals that don’t contain x3 can not contain x4. So the number of order ideals

of Zn+2 of order k, that don’t contain x3 = fn,k. Thus,

|I ∈ J(Zn+4) s.t |I| = k + 2, x1, x2 ∈ I| = fn+2,k − fn,k.

� Case II: If x1,∈ I and x2 /∈ I then I \ {x1} is an order ideal of Zn+4 \ {x1, x2} of order

k + 1. Thus,

|I ∈ J(Zn+4) s.t |I| = k + 2, x1 ∈ I, x2 /∈ I| = fn+2,k+1.

� Case III: If x1, x2 /∈ I then I is an order ideal of Zn+4 \ {x1, x2} of order k + 2. Thus,

|I ∈ J(Zn+4) s.t |I| = k + 2, x1, x2 /∈ I| = fn+2,k+2.

Summing over all the cases we get,

fn+4,k+2 = fn+2,k+2 + fn+2,k+1 + fn+2,k − fn,k.

Multiplying by xk+2 and summing over k + 2 ≥ 0 we get∑
k+2≥0

fn+4,k+2x
k+2 =

∑
k+2≥0

fn+2,k+2x
k+2 +

∑
k+2≥0

fn+2,k+1x
k+2 +

∑
k+2≥0

fn+2,kx
k+2 −

∑
k+2≥0

fn,kx
k+2

Fn+4(x) = Fn+2(x) + xFn+2(x) + x2Fn+2(x)− x2Fn(x)

=⇒ Fn+4(x) = (1 + x+ x2)Fn+2(x)− x2Fn(x)
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Lucas Lattice:

Definition 3.4.5. The crown poset of order n, denoted by Cn is the poset {x1, x2, ..., x2n}
with the cover relations: x2k−1 � x2k � x2k+1, x2n � x1, where k ≥ 1.

Since |J(Cn)| = L2n (2nth Lucas number), the lattice of crown poset is called the Lucas

lattice. Denote the rank polynomial of the Lucas lattice by Cn(x) and denote the kth Whitney

number of Cn by cn,k then we have,

Cn(x) =
∑
k≥0

cn,kx
k.

Note that cn,0 = 1 since the empty set is the only order ideal with 0 elements. Furthermore,

cn,2n = 1, since the poset is the only order ideal with 2n elements.

Proposition 3.4.2. [MZ02] The Whitney numbers cn,k satisfy the recurrence

cn+2,k+2 = f2n+4,k+2 − f2n,k

and the rank polynomial satisfies the recurrence

Cn+2(x) = F2n+4(x)− x2F2n(x).

Refer to Murani & Salvi [MZ02] for the proof.

3.4.2 Closed form of Jones polynomial

We observed that the constant terms of the Jones polynomial of W (3,m) were given by the

mth Whitney number of the Lucas lattice Cm [Inc]. More generally, we observed that the

coefficients of VW (3,m)(t) were related to the Whitney numbers cm,k. In this section, we state

and prove the relation of the Jones polynomial with the rank polynomial of the Lucas lattice.

Recall that

(σ1σ
−1
2 )m =

M11(m)Id[ 1
2
] M12(m)Id[ 1

2
] 0

M21(m)Id[ 1
2
] M22(m)Id[ 1

2
] 0

0 0 Id[ 3
2
]

 =

[
M 0

0 1

]
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Proposition 3.4.3. The entry M21(m) is given by,

M21(m) =
(−1)m+1

q2m−1
F2(m−1)(−q2)

where Fn(x) is the rank polynomial of the Fibonacci lattice of order n.

Proof. Let m = 1, then the LHS = q−1 and the RHS is

(−1)2

q1
F0(−q2) =

1

q
.

Similarly, if m = 2 then the LHS = −q−3 + q−1 − q and the RHS is

(−1)3

q3
F2(−q2) =

−1

q3
(−q2 + q4 − q6)

= −(−q−1 + q − q3)

= q−1 − q + q3.

So, the claim is true for m = 1, 2. Assume that the claim is true for m < p where p ≥ 2. We

have

M21(p) = (1− q−2 − q2)M21(p− 1)−M21(p− 2)

= (1− q−2 − q2)
(−1)p

q2p−3
F2(p−2)(−q2)−

(−1)p−1

q2p−5
F2(p−3)(−q2)

=
(−1)p+1

q2p−1
(−q2(1− q−2 − q2)F2p−4(−q2)− q4F2p−6(−q2))

=
(−1)p+1

q2p−1
((−q2 + 1 + q4)F2p−4(−q2)− q4F2p−6(−q2)).

From the Proposition 3.4.1 we have

F2p−2(−q2) = (1− q2 + q4)F2p−4(−q2)− q4F2p−6(−q2),

which gives

M21(p) =
(−1)p+1

q2p−1
((−q2 + 1 + q4)F2p−4(−q2)− q4F2p−6(−q2)) =

(−1)p+1

q2p−1
F2p−2(−q2).
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Thus, by the principle of mathematical induction, we have

M21(m) =
(−1)m+1

q2m−1
F2(m−1)(−q2)

for m ≥ 1.

Proposition 3.4.4. The trace of the sub-matrix Mm is given by,

Tr(Mm) =
(−1)m

q2m
Cm(−q2)

where Cn(x) denotes the rank polynomial of the Lucas lattice of order n.

Proof. Consider the trace of the matrix Mm,

Tr(Mm) =M11(m) +M22(m)

Let us verify the base case m = 1. The trace of M is 1− q−2 − q2 and the RHS is:

(−1)

q2
C1(−q2) = −q−2(1 + (−q2) + (−q2)2)

= −q−2(1− q2 + q4) = −q−2 + 1− q2

which is equal to the LHS. For m > 1 we substitute the expression of M11(m) and M22(m)

in terms of M21(m). We get,

Tr(Mm) = q(1− q2 − q−2)M21(m)− qM21(m− 1)− qM21(m− 1)

= q(1− q2 − q−2)
(−1)m+1

q2m−1
F2(m−1)(−q2)− 2q

(−1)m

q2m−3
F2(m−2)(−q2)

=
(−1)m

q2m
(−q2(1− q2 − q−2)F2(m−1)(−q2)− 2q4F2(m−2)(−q2))

=
(−1)m

q2m
((1− q2 + q4)F2(m−1)(−q2)− q4F2(m−2)(−q2)− q4F2(m−2)(−q2))

=
(−1)m

q2m
(F2m(−q2)− q4F2(m−2)(−q2)) By Prop. 3.4.1

=
(−1)m

q2m
Cm(−q2) By Prop. 3.4.2

∴ Tr(Mm) = (−1)m

q2m
Cm(−q2) for all m ≥ 1.
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We have

qTr((σ1σ
−1
2 )m) = (q + q−1)× Tr(Mm) + (q−3 + q−1 + q + q3).

Substituting the value of trace of Mm, we get,

qTr((σ1σ
−1
2 )m) = (q + q−1)× (−1)m

q2m
Cm(−q2) + (q−3 + q−1 + q + q3).

Normalising and substituting q2 = 1
t
we obtain the Jones polynomial of W (3,m)

VW (3,m)(t) = (−1)mtmCm(
−1

t
) + t+ t−1.

We have, tmCm(
−1
t
) = 1

tm
Cm(−t), thus we get the following formula:

VW (3,m)(t) =
(−1)m

tm
Cm(−t) + t+ t−1 (3.3)

The formula (3.3) is also obtained in [AC23] through a different method.

3.4.3 Zeros of VW (3,m)(t)

For each 2 ≤ m ≤ 50 we plotted the zeros of VW (3,m)(t). Here, we include some of the plots.

We observed that the locus of zeros approaches a curve on the unit circle union, some part

of the real line.
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Figure 3.1: Distribution of zeros of VW (3,m)(t)

63



3.5 Computation of Jones polynomial for W (4,m)

This section focuses on weaving links W (4,m). Although we couldn’t get a closed-form

expression, we did observe some patterns in the coefficients of its Jones polynomial.

W (4,m) is the closure of the braid σ1σ
−1
2 σ3 ∈ B4. The writhe of W (4,m) with this

projection is m. The matrices of the generating elements will be 16 by 16. The highest

weight decomposition gives us six by six matrices. We obtain the following matrices with

the help of a Mathematica code (included in the appendix).

σ1 =



√
qId[2] 0 0 0 0 0

0
√
qId[1] 0 0 0 0

0 0
√
qId[1] 0 0 0

0 0 0
√
qId[0] 0 0

0 − 1
q7/2

− 1
q5/2

0 − 1
q3/2

Id[1] 0

0 0 0 − 1
q5/2

0 − 1
q3/2

Id[0]



σ−1
2 =



1√
q

0 0 0 0 0

0 1√
q

0 0 0 0

0 0 1√
q
− q3/2 0

√
q 0

0 0 0 1√
q
− q3/2 0

√
q

0 0
√
q 0 0 0

0 0 0
√
q 0 0



σ3 =



√
q 0 0 0 0 0

0 0 1√
q

0 0 0

0 1√
q

q2−1
q3/2

0 0 0

0 0 0
√
q 0 0

0 0 0 0
√
q 0

0 0 0 − 1
q5/2

0 − 1
q3/2
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σ1σ
−1
2 σ3 =



√
qId[2] 0 0 0 0 0

0 0Id[1]
1√
q

0 0 0

0 1−q2√
q

−(q2−1)
2

q3/2
Id[1] 0 q3/2 0

0 0 0 −q4+q2−1
q3/2

Id[0] 0 − 1√
q

0 − 1
q7/2

− 1
q5/2

0 − 1
q3/2

Id[1] 0

0 0 0 1−q2

q9/2
0 1

q7/2
Id[0]


In the Table A.2 we have included our computations of VW (4,m)(t) for m ≤ 10. Note that

[MR21] presents an algorithm for computing the Jones polynomial via Hecke Algebra. The

authors also provide computations for some weaving knots; our calculations agree with theirs.

3.5.1 Some Observations on VW (4,m)(t)

Denote the Jones polynomial of W (4,m) by:

VW (4,m)(t) =

max(m)∑
−min(m)

am,it
i

Let Sum(m) =
∑max(m)

−min(m) |am,i|. Then we obtain ṼW (4,m)(t) by modifying VW (4,m)(t) as

follows:

ṼW (4,m)(t) =

max(m)∑
−min(m)

|am,i|
Sum(m)

ti =

max(m)∑
−min(m)

ãm,it
i

For a given m, we plotted i on the x axis and ãm,i on the y axis. Note that due to the

above modification, the sum of all the coefficients of ṼW (4,m) is equal to 1, so the mentioned

graph can be thought of as a probability distribution and we can study its convergence as

m increases.

Below are the graphs for some values of m. We observed that as m increases, the graph

approaches a normal distribution.
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Figure 3.2: Distribution of coefficients of VW (4,m)(t)

We also observed that the power of t, where the absolute value of the coefficient is highest,

appears to increase linearly.
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Figure 3.3: Graph of m vs power of peak

Remark 3.5.1. The normal distribution property observed in weaving knots (and links) is

not universal to all alternating knots. A specific class of alternating knots, known as Twist

Knots, do not display a normal distribution of coefficients. Therefore, the normal distribution

of coefficients seems to be a property unique to weaving knots (and links).

3.5.2 Zeros of VW (4,m)(t)

For each 2 ≤ m ≤ 50 we plotted the zeros of VW (4,m)(t). Here, we include some of the plots.
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Figure 3.4: Distribution of zeros of VW (4,m)(t)
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3.6 The N-colored Jones Polynomial

To demonstrate the usefulness of the quantum groups, we compute the N -coloured Jones

polynomial for the unknot.

The N -colored Jones polynomial is obtained by by N -dimensional representation of

Uh(sl2(C)). Recall the representation Tl of Uh(sl2(C)) on 2l+1 dimensional vector space, as

defined earlier:

Tl(E)em = ([l −m][l +m+ 1])
1
2 em+1,

Tl(F )em = ([l +m][l −m+ 1])
1
2 em−1,

Tl(H)em = 2mem.

For N -dimensional representation, l = N−1
2

. The image of the ribbon element denoted by K

is defined as

Kem = q2mem

where −l ≤ m ≤ l.

Now, the image of the identity braid will be the identity matrix. Its quantum trace (before

normalisation) will be the trace of the operator K.

Tr(K) =
m=l∑
m=−l

q2m =
i=N−1∑

i=−N+1;step=2

qi

Recall that mth q-number is given by

[m] = qm−1 + qm−3 + . . .+ q−(m−1).

So Tr(K) = [N ], i.e. N -coloured Jones polynomial (unnormalised) of the unknot is [N ].

Putting N = 2, [2] = q + q−1 we retrieve the Jones polynomial.

Using quantum groups to compute the Jones polynomial involves only matrix multipli-

cation, making it easier to code into a computer program and proving observed patterns.
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The study of weaving links is fascinating, as they exhibit numerous intriguing properties.

For a fixed value of n, we can explore the distribution of zeroes of VW (n,m)(t) and observe

their convergence as m increases. Since for n odd, VW (n,m)(t) is symmetric, one can re-

strict their study to n odd. Moreover, one can work with different quantum invariants by

taking a different quantum group and its representation, as mentioned for the N -coloured

Jones polynomial. In the next chapter, we will see that the invariants from quantum groups

are examples of 1-dimensional TQFTs. This perspective provides us with another way of

generalising and obtaining new invariants.
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Chapter 4

TQFTs and Quantum Invariants

An n dimensional TQFT is a functor from the n dimensional cobordism category to the cate-

gory of finite dimensional vector spaces. In this chapter, we discuss a significant result which

says that 1-dimensional TQFTs are in one-to-one correspondence with finite-dimensional

representations of quasitriangular quantum groups. Hence, the invariants discussed in the

previous chapter are examples of 1-dimensional TQFTs. Bringing TQFT into the picture

enables us to generalise quantum invariants further. One can expect to obtain link invariants

for any arbitrary n dimensional TQFT. For example, Khovanov homology is a 2-dimensional

TQFT. Hence, TQFTs are quite useful for defining link invariants.

4.1 Axiomatic definition of TQFT

In [Ati88] M. Atiyah gave the following axiomatic definition of TQFTs:

A topological quantum field theory (TQFT) Z in dimension d + 1 over a ground ring F is

the following data:

� To each oriented closed smooth d dimensional manifold Σ, an associated finitely gen-

erated F -module Z(Σ).

� To each oriented smooth d + 1 dimensional manifold M (with boundary ∂M), an
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associated element Z(M) ∈ Z(∂M).

From now onwards, by a d dimensional manifold, we would mean an oriented closed smooth

d dimensional manifold, and by a (d+ 1) dimensional manifold, we would mean an oriented

smooth (d+ 1) dimensional manifold. The above data must satisfy the following axioms:

1. Z is functorial: By functoriality of Z we mean that if

f : Σ → Σ′

is an orientation-preserving diffeomorphism, then Z induces an isomorphism of vector

spaces

Z(f) : Z(Σ) → Z(Σ′).

And Z(gf) = Z(g)Z(f) for any morphism

g : Σ′ → Σ”.

Lastly, if f extends to an orientation preserving diffeomorphism from M to M ′, where

∂(M) = Σ , ∂(M ′) = Σ′, then Z(f) maps Z(M) to Z(M ′).

2. Z is involutory:

Z(Σ∗) = Z(Σ)∗

where Σ∗ is Σ with opposite orientation and Z(Σ)∗ is the dual of Z(Σ∗).

3. Z is multiplicative:

a. For any disjoint union of d dimensional manifold Σ ∪ Σ′ we have,

Z(Σ ∪ Σ′) = Z(Σ)⊗ Z(Σ′)

b. Let ∂(M1) = Σ1 ∪ Σ3 and ∂(M2) = Σ∗
3 ∪ Σ2. And let M denote the manifold

obtained by glueing M1 and M2 along Σ3.
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Figure 4.1: Two manifolds glued along their common boundary

Then,

Z(M) = ⟨Z(M1), Z(M2)⟩

where ⟨⟩ denote the natural pairing

Z(Σ1)⊗ Z(Σ3)⊗ Z(Σ3)
∗ ⊗ Z(Σ2) → Z(Σ1)⊗ Z(Σ2).

To understand this, note that Z(M1) ∈ Z(Σ1)⊗Z(Σ3) and Z(M2) ∈ Z(Σ3)
∗⊗Z(Σ2). Since

∂(M) = Σ1 ∪ Σ2, Z(M) ∈ Z(Σ1) ⊗ Z(Σ2). Thus, Z(M) is the image of Z(M1) ⊗ Z(M2)

under the natural pairing map.

Let M be a (d+ 1) dimensional manifold with ∂(M) = Σ1 ∪ Σ∗
0. Then

Z(M) ∈ Z(∂(M)) = Z(Σ∗
0)⊗ Z(Σ1)

= Hom(Z(Σ0), Z(Σ1)).

This implies that any cobordism M between Σ0 and Σ1 can be seen as inducing a linear

transformation as follows:

Z(M) : Z(Σ0) → Z(Σ1).
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4.2 Non triviality axioms

In addition to the axioms and properties defined above, we impose some non-triviality ax-

ioms. Note that 3a implies that for the empty d dimensional manifold ϕ, Z(ϕ) is idempotent.

This implies Z(ϕ) = F or ϕ. We rule out the possibility that Z(ϕ) = ϕ and impose:

Z(ϕ) = F

for the empty d dimensional manifold, where F is the base field.

Observe that, 3b implies that for the empty d + 1 dimensional manifold Z(ϕ) ∈ F and

Z(ϕ) is idempotent. Thus, it can take values 0 or 1. We impose the following:

Z(ϕ) = 1

for the empty (d+ 1) dimensional manifold.

4.3 TQFT as a functor

Definition 4.3.1. The d+1 dimensional cobordism category denoted by Bordd+1 is the cat-

egory whose objects are d-dimensional closed, oriented smooth manifolds and whose mor-

phisms are d+1 dimensional cobordisms.

By d+1 dimensional cobordism, we mean a d+1 dimensional compact, oriented smooth

manifold M whose boundary ∂(M) is a disjoint union of d dimensional closed, oriented

smooth manifolds.

Notice that the domain of Z is exactly Bordd+1, and the codomain is the category of

finite dimensional vector spaces. So, a d+1 dimensional TQFT can be defined as a monoidal,

dual functor from the d+1 dimensional Cobordism category to the finite-dimensional vector

spaces category. We have the following:

� Z being functorial is equivalent to Z being a functor,
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� Z being involutory is equivalent to Z being a dual functor,

� Z being multiplicative is equivalent to Z being a monoidal functor.

4.4 Category of Oriented Tangles

This section discusses the category of Oriented Tangles as described in [Tur89].

Definition 4.4.1. A tangle is a finite family of disjoint, oriented circles and segments which

are properly embedded in R2 × [0, 1]. Precisely, a (k,l) tangle is defined as an oriented one-

dimensional smooth, compact submanifold L of R2 × [0, 1] such that

∂(L) := L ∩ (R2 × {0, 1}) = {(i, 0, 0)|i = 1, 2, ..., k} ∪ {(j, 0, 1)|j = 1, 2, ..., l}

For instance, a (0,0) tangle is an oriented link of circles.

Define:

s(L) = (ϵ1, ...ϵk)

t(L) = (µ1, ...µl)

where ϵi(respectively µj) is 1 or -1 depending on whether the tangent vector to L at the

point (i, 0, 0) (respectively (j, 0, 1)) is directed upwards or downwards (we need to fix one

convention and work with it).

Definition 4.4.2. Two tangles L and L′ are said to be isotopic if there exists an isotopy of

R2 × [0, 1] which takes L to L’ and which is identity on R2 × {0, 1}.

Definition 4.4.3. The category Tang of oriented tangles is defined as the category where

the objects are finite sequences of ±1. And the morphisms from ϵ to µ are oriented tangles

L such that s(L) = ϵ and t(L) = µ.

Given two tangles L and L′ such that t(L) = s(L′), we define the composition L′ ◦ L
as the tangle obtained by translating L′ by the vector (0, 0, 1), glueing it to L along their

common ends and contracting it twice along the vertical axis.
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The juxtaposition of tangles next to each other makes the category Tang a monoidal

category. Moreover, it is a strictly monoidal category since, (L⊗ L′)⊗ L” = L⊗ (L′ ⊗ L”)

for all L,L′, L” ∈ Morph(Tang). The generating objects (generated by a sequence of ◦ and

⊗) are (1) and (-1). And Morph(Tang) is generated by the following eight tangles.

Figure 4.2: Generating tangles for the category of oriented tangles

The category Tang is equipped with a dual structure given by (1)∗ = (−1) and L∗ = L

with opposite orientation.

4.5 1-dimensional TQFT from quantum groups

Notice that the 1-dimensional cobordism category is exactly the category of oriented tangles.

So, to define a 1-dimensional TQFT, we only need to define the images for the generating

objects and morphisms. We will see that given a representation of a ribbon hopf algebra, we

can naturally define a 1-dimensional TQFT.

Let (H,R,G) be a ribbon hopf algebra. Let ρ : H → End(V ) be a representation of H.

Recall that ρ∗ : H → End(V ∗) given by the following

⟨ρ∗(a)v∗, v⟩ = ⟨v∗, ρ(S(a))v⟩,

defines a representation of H on V ∗. Denote,

ρ+ := ρ,

ρ− := ρ∗,

Rij := ρi ⊗ ρj(R),

Gi := ρi(G).
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We define a 1-dimensional TQFT as described by Sawin [Saw95].

F ((1)) =V F ((−1)) = V ∗

F (↑) :V → V = idV

F (↓) :V ∗ → V ∗ = idV ∗

F ( ) :C → V ∗ ⊗ V

c 7→ c
∑
α

v∗α ⊗G−1
1 (vα)

F ( ) :C → V ⊗ V ∗

c 7→ c
∑
α

vα ⊗ v∗α

F ( ) :V ⊗ V ∗ → C

x⊗ y∗ 7→ y∗(G1(x))

F ( ) :V ∗ ⊗ V → C

y∗ ⊗ x 7→ y∗(x)

F ( ) :V ⊗ V → V ⊗ V

x⊗ y 7→ τ ◦R11(x⊗ y)

F ( ) :V ⊗ V → V ⊗ V

x⊗ y 7→ τ ◦R−1
11 (x⊗ y)

We can check that the map described above satisfies the axioms of a 1-dimensional TQFT.

We state an important result, without proving as follows [Saw95]:

Proposition 4.5.1. Let f be a tangle, and F be a 1-dimensional TQFT constructed from a

ribbon hopf algebra. Then, the image of the closure of f , under F , equals the quantum trace

of f .

The above proposition justifies choosing the quantum trace function to define link invari-

ants.
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4.6 Every 1-dimensional TQFT arises from some quan-

tum group

In the previous section, we defined a 1-dimensional TQFT from a representation of a ribbon

hopf algebra. The converse is also true; every 1-dimensional TQFT arises from a representa-

tion of some ribbon Hopf algebra [Saw95]. We will discuss a weaker version of the converse;

specifically, every 1-dimensional TQFT arises from a representation of some quasitriangular

hopf algebra.

Let F be a 1-dimensional TQFT and let B = F ( ). Then B satisfies the YBE, and

R = τ ◦B satisfies the QYBE.

Let n = dim(F (1)), then R ∈ Mn(C) ⊗Mn(C). We can also see R as an element of

Mn(Mn(C)). Thus we will use the notation Rik
jl for R ∈Mn(Mn(C)).

We will build a quasitriangular hopf algebra whose fundamental representation will give rise

to F . We will discuss the construction of two hopf algebras as described in [Maj90].

4.6.1 Bialgebras A(R) and U(R)

Definition 4.6.1. A(R) is defined as a non-commutative bialgebra generated by one and n2

generators uij and modulo some relations.

A(R) :=
1, {uij}ni,j=1

R(u⊗ Idn)(Idn ⊗ u)− (Idn ⊗ u)(u⊗ Idn)R

where u is a n×n matrix with its (i, j)th entry given by uij. The following equations give the

associated coproduct and counit maps on generators.

∆(uij) =
∑
k

uik ⊗ ukj

ϵ(uij) = δij

The image of a non-generating element under these maps is obtained by extending the maps

as algebra homomorphisms.
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One must check if the above maps are well defined and compatible with the algebra

structure (i.e. A(R) is a bialgebra).

Definition 4.6.2. U(R) is defined as a non-cocommutative bialgebra generated by one and

2n2 generators and modulo some relations.

U(R) :=
1, {L±i

j }ni,j=1

(L± ⊗ Idn)(Idn ⊗ L±)R−R(Idn ⊗ L±)(L± ⊗ Idn)

(L− ⊗ Idn)(Idn ⊗ L+)R−R(Idn ⊗ L+)(L− ⊗ Idn)

where L+, L− are n × n matrix with [L+
ij] = L+i

j and [L−
ij] = L−i

j . The following equations

give the associated coproduct and counit maps by extending them as algebra maps.

∆(L±i
j ) =

∑
k

L±i
k ⊗ L±k

j

ϵ(L±i
j ) = δij

One must check if the above maps are well defined and compatible with the algebra

structure (i.e. U(R) is a bialgebra).

4.6.2 Hopf algebras Â(R) and Û(R)

We define a pairing ⟨, ⟩ between A(R) and U(R) i.e. a map from A(R) × U(R) to C, as
follows:

⟨u, L+⟩ = R+ := R,

⟨u, L−⟩ = R− := τ ◦R−1.

In terms of generators, we get:

⟨uij, L+k
l ⟩ = (R+)ikjl .

⟨uij, L−k
l ⟩ = (R−)ikjl .

Note that if R+ = R− then ⟨u, L+ − L−⟩ = R+ − R− = 0 even if L+ ̸= L−. So, this

pairing is not non-degenerate. We want a non-degenerate pairing so that A(R) is dual of
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U(R). Let

K1 = {ϕ ∈ A(R) | ⟨ϕ, h⟩ = 0 ∀h ∈ U(R)}
K2 = {h ∈ A(R) | ⟨ϕ, h⟩ = 0 ∀ϕ ∈ A(R)}

Define

Â(R) := A(R)/K1

Û(R) := U(R)/K2

Then ⟨, ⟩ defines a non-degenerate pairing between Â(R) and Û(R). Since both bialgebras

are finite dimensional we have Â(R)∗ = Û(R).

Now we define a Hopf algebra structure on Â(R) and Û(R) by giving an antipode map as

follows:

S ′ : Â(R) → Â(R)

uij 7→ fij

where we see the elements of codomain as maps from Û(R) to C and fij is defined by its

image on the generators, given by

fij(L
+k
l ) = (R−1)ikjl ,

fij(L
−k
l ) = τ(R)ikjl .

Similarly, we define

S : Û(R) → Û(R),

L+i
j 7→ g+ij ,

L−i
j 7→ g−ij .

where

g+ij(u
k
l ) = (R−1)kilj ,

g−ij(u
k
l ) = τ(R)kilj .

We get antipode maps from S and S ′ by extending them as an antialgebra map.
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4.6.3 Û(R) is quasitriangular

Recall the Proposition 2.3.1, to define a quasitriangular structure on a Hopf algebra H, it

is enough to give a map from H∗ to H, which is both an antialgebra map and a coalgebra

map. We define a quasitriangular structure on Û(R) by giving such a map.

Define,

R′ : Â(R) → Û(R)

uij 7→ L+i
j

and extend as an antialgebra and coalgebra map.

Now, we define a representation of Û(R) on a vector space V of dimension n, called the

fundamental representation.

Definition 4.6.3. The fundamental representation of Û(R) on a vector space V of dimension

n is given by the following map:

ρ : Û(R) → End(V )

L+i
j 7→ [Rki

lj ]
n
k,l=1

L−i
j 7→ [τ(R−1)kilj ]

n
k,l=1

and extending it as an algebra map.

Viewing R′ as an element of Û(R)⊗̂Û(R), we can show that its image under the fun-

damental representation is R. Thus, given a 1-dimensional TQFT F , we constructed a

quasitriangular hopf algebra such that its fundamental representation defines F .

In this chapter, we discussed an important connection of 1-dimensional TQFT with quan-

tum invariants (i.e. the invariants coming from a representation of a quantum group). The

equivalence of 2-dimensional TQFTs with Frobenius Algebra is stated [Abr96]. Algebraic

structures on three and 4-dimensional TQFTs are discussed in [CY94]. Thus, besides pro-

viding a general machinery for defining link invariants, the algebraic structures on TQFTs

might offer a rigorous way to compute the defined invariants, making TQFTs an important

tool.
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Conclusion and Future Directions

This thesis aimed to highlight the importance of quantum groups and TQFTs in generating

link invariants. The following is a summary of the main ideas and results presented in the

thesis:

1. We discussed how link invariants can be constructed using quantum groups.

2. We wrote a SageMath and Mathematica code for computing the N -coloured Jones

polynomial for the weaving links family. These codes encode the method of obtaining

link invariants from quantum groups.

3. We focused on computing the Jones polynomial for weaving linksW (3,m) andW (4,m)

and made some observations. In particular, we obtained a closed-form expression of

the Jones polynomial for W (3,m).

4. We explored the theory of TQFTs and their correspondence with representations of

quantum groups.

In the future, the following areas of study can be pursued:

1. We can study the distribution of zeros of the Jones polynomial for weaving links. Since

the Jones polynomial of the weaving links W (n,m) is symmetric for n odd, we expect

to observe exciting patterns in their Jones polynomial.

2. Along with the Jones polynomial, we can compute other quantum invariants such

as the coloured Jones or the HOMFLY-PT polynomial. These computations can be

efficiently coded into a computer program.
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3. It is known that for alternating links, the Jones polynomial and signature determine

the ranks of Khovanov Homology. Thus, we can also attempt to compute higher

dimensional TQFTs, such as the Khovonov Homology and Heegaard Floer Homology.

4. The existence of algebraic structures on TQFTs up to 4 dimensions has been proven,

and we can try to incorporate these structures to compute link invariants.

5. We can study how quantum invariants relate to geometric invariants. For instance, the

volume conjecture relates the hyperbolic volume with the coloured Jones polynomial.

Being able to compute the Colored Jones polynomial will enable us to check the Volume

conjecture.

Quantum invariants span a vast subject with diverse algebras and superalgebras, yielding

intriguing invariants. Hence, quantum invariants are a promising field of study.
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Appendix A

Jones polynomial for some weaving

links

Here we include the computation of the Jones polynomial for weaving linksW (3,m),W (4,m)

and W (5,m) for 1 ≤ m ≤ 10. These computations were done using the Mathematica code

which is included in Appendix B.

85



W (3, 1) 1
W (3, 2) t2 + 1

t2
− t− 1

t
+ 1

W (3, 3) −t3 − 1
t3
+ 3t2 + 3

t2
− 2t− 2

t
+ 4

W (3, 4) t4 + 1
t4
− 4t3 − 4

t3
+ 6t2 + 6

t2
− 7t− 7

t
+ 9

W (3, 5) −t5 − 1
t5
+ 5t4 + 5

t4
− 10t3 − 10

t3
+ 15t2 + 15

t2
− 19t− 19

t
+ 21

W (3, 6) t6 + 1
t6
− 6t5 − 6

t5
+ 15t4 + 15

t4
− 26t3 − 26

t3
+ 39t2 + 39

t2
− 47t− 47

t
+ 52

W (3, 7) −t7− 1
t7
+7t6+ 7

t6
−21t5− 21

t5
+42t4+ 42

t4
−70t3− 70

t3
+98t2+ 98

t2
−118t− 118

t
+127

W (3, 8) t8 + 1
t8
− 8t7 − 8

t7
+ 28t6 + 28

t6
− 64t5 − 64

t5
+ 118t4 + 118

t4
− 184t3 − 184

t3
+ 248t2 +

248
t2

− 295t− 295
t
+ 313

W (3, 9) −t9 − 1
t9
+9t8 + 9

t8
− 36t7 − 36

t7
+93t6 + 93

t6
− 189t5 − 189

t5
+324t4 + 324

t4
− 480t3 −

480
t3

+ 630t2 + 630
t2

− 737t− 737
t
+ 778

W (3, 10) t10 + 1
t10

− 10t9 − 10
t9

+ 45t8 + 45
t8

− 130t7 − 130
t7

+ 290t6 + 290
t6

− 542t5 − 542
t5

+
875t4 + 875

t4
− 1250t3 − 1250

t3
+ 1600t2 + 1600

t2
− 1849t− 1849

t
+ 1941

Table A.1: Jones polynomial of the weaving knots W (3,m) for m ≤ 10

W (4, 1) 1

W (4, 2) −t9/2 + t7/2 − 3t5/2 + 2t3/2 − 1
t3/2

− 2
√
t+ 2√

t

W (4, 3) t7 − 4t6 + 8t5 − 11t4 + 13t3 − 13t2 − 1
t2
+ 11t+ 5

t
− 8

W (4, 4) −t19/2 + 5t17/2 − 15t15/2 + 29t13/2 − 46t11/2 + 56t9/2 − 63t7/2 + 58t5/2 − 50t3/2 +
7

t3/2
− 1

t5/2
+ 33

√
t− 20√

t

W (4, 5) t12 − 6t11 + 21t10 − 51t9 + 99t8 − 162t7 + 220t6 − 260t5 + 271t4 − 248t3 − 1
t3
+

202t2 + 9
t2
− 139t− 35

t
+ 80

W (4, 6) −t29/2 + 7t27/2 − 28t25/2 + 78t23/2 − 174t21/2 + 328t19/2 − 543t17/2 + 781t15/2 −
990t13/2+1116t11/2−1122t9/2+1009t7/2−807t5/2+562t3/2− 54

t3/2
+ 11

t5/2
− 1

t7/2
−

331
√
t+ 157√

t

W (4, 7) t17−8t16+36t15−113t14+281t13−589t12+1084t11−1787t10+2646t9−3528t8+
4242t7−4606t6+4523t5−4009t4− 1

t4
+3187t3+ 13

t3
−2239t2− 77

t2
+1358t+ 273

t
−686

W (4, 8) −t39/2+9t37/2−45t35/2+157t33/2−431t31/2+991t29/2−1991t27/2+3581t25/2−
5862t23/2 + 8788t21/2 − 12088t19/2 + 15240t17/2 − 17590t15/2 + 18566t13/2 −
17899t11/2 + 15706t9/2 − 12466t7/2 + 8841t5/2 − 5506t3/2 + 436

t3/2
− 104

t5/2
+ 15

t7/2
−

1
t9/2

+ 2930
√
t− 1284√

t

W (4, 9) t22 − 10t21 +55t20 − 211t19 +634t18 − 1588t17 +3457t16 − 6715t15 +11852t14 −
19250t13+28986t12−40590t11+52836t10−63810t9+71322t8−73602t7+69937t6−
60940t5− 1

t5
+48389t4+ 17

t4
−34667t3− 135

t3
+22092t2+ 654

t2
−12273t− 2220

t
+5781

W (4, 10) −t49/2+11t47/2−66t45/2+276t43/2−901t41/2+2443t39/2−5733t37/2+11963t35/2−
22623t33/2 +39301t31/2 − 63366t29/2 +95494t27/2 − 135064t25/2 +179474t23/2 −
223790t21/2+261196t19/2−284492t17/2+288262t15/2−270773t13/2+234758t11/2−
186726t9/2+135101t7/2−87882t5/2+50592t3/2− 3605

t3/2
+ 935

t5/2
− 170

t7/2
+ 19

t9/2
− 1

t11/2
−

25238
√
t+ 10604√

t

Table A.2: Jones polynomial of the weaving knots W (4,m) for m ≤ 10
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W (5, 1) 1
W (5, 2) t4 + 1

t4
− 2t3 − 2

t3
+ 4t2 + 4

t2
− 5t− 5

t
+ 5

W (5, 3) t6 + 1
t6
− 6t5 − 6

t5
+ 16t4 + 16

t4
− 30t3 − 30

t3
+ 44t2 + 44

t2
− 54t− 54

t
+ 59

W (5, 4) t8 + 1
t8
− 8t7 − 8

t7
+ 32t6 + 32

t6
− 86t5 − 86

t5
+ 177t4 + 177

t4
− 292t3 − 292

t3
+ 407t2 +

407
t2

− 491t− 491
t
+ 521

W (5, 5) t10 + 1
t10

− 10t9 − 10
t9

+ 50t8 + 50
t8

− 170t7 − 170
t7

+ 443t6 + 443
t6

− 943t5 − 943
t5

+
1683t4 + 1683

t4
− 2570t3 − 2570

t3
+ 3431t2 + 3431

t2
− 4047t− 4047

t
+ 4280

W (5, 6) t12 + 1
t12

− 12t11 − 12
t11

+72t10 + 72
t10

− 292t9 − 292
t9

+906t8 + 906
t8

− 2296t7 − 2296
t7

+
4935t6 + 4935

t6
− 9175t5 − 9175

t5
+ 14934t4 + 14934

t4
− 21518t3 − 21518

t3
+ 27709t2 +

27709
t2

− 32138t− 32138
t

+ 33749
W (5, 7) t14+ 1

t14
−14t13− 14

t13
+98t12+ 98

t12
−462t11− 462

t11
+1659t10+ 1659

t10
−4851t9− 4851

t9
+

12024t8+ 12024
t8

−25910t7− 25910
t7

+49299t6+ 49299
t6

−83636t5− 83636
t5

+127435t4+
127435

t4
− 175469t3 − 175469

t3
+ 219521t2 + 219521

t2
− 250618t− 250618

t
+ 261847

W (5, 8) t16 + 1
t16

− 16t15 − 16
t15

+128t14 + 128
t14

− 688t13 − 688
t13

+2808t12 + 2808
t12

− 9304t11 −
9304
t11

+26080t10+ 26080
t10

−63534t9− 63534
t9

+136981t8+ 136981
t8

−264626t7− 264626
t7

+
461928t6+ 461928

t6
−732946t5− 732946

t5
+1061982t4+ 1061982

t4
−1410522t3− 1410522

t3
+

1722973t2 + 1722973
t2

− 1940581t− 1940581
t

+ 2018673
W (5, 9) t18+ 1

t18
−18t17− 18

t17
+162t16+ 162

t16
−978t15− 978

t15
+4473t14+ 4473

t14
−16569t13− 16569

t13
+

51822t12 + 51822
t12

− 140706t11 − 140706
t11

+338110t10 + 338110
t10

− 728967t9 − 728967
t9

+
1424185t8 + 1424185

t8
− 2539557t7 − 2539557

t7
+ 4154934t6 + 4154934

t6
− 6261732t5 −

6261732
t5

+ 8719593t4 + 8719593
t4

− 11248065t3 − 11248065
t3

+ 13469497t2 + 13469497
t2

−
14997438t− 14997438

t
+ 15542507

W (5, 10) t20+ 1
t20

−20t19− 20
t19

+200t18+ 200
t18

−1340t17− 1340
t17

+6790t16+ 6790
t16

−27814t15−
27814
t15

+96040t14+ 96040
t14

− 287540t13− 287540
t13

+761465t12+ 761465
t12

− 1809618t11−
1809618

t11
+ 3900924t10 + 3900924

t10
− 7689503t9 − 7689503

t9
+ 13945635t8 + 13945635

t8
−

23378065t7−23378065
t7

+36354014t6+36354014
t6

−52585709t5−52585709
t5

+70910204t4+
70910204

t4
−89299515t3− 89299515

t3
+105174071t2+ 105174071

t2
−115971368t− 115971368

t
+

119802312

Table A.3: Jones polynomial of the weaving knots W (5,m) for m ≤ 10
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Appendix B

SageMath and Mathematica Code

� We provide a SageMath program to compute the matrix for generators of the braid

group on three strands under the fundamental representation of Uh(sl2(C)) (the rep-

resentation involved in computing the Jones polynomial).

1 #Prerequisites

2 q = SR.var(‘q’)

3 h = SR.var(‘h’)

4 E_1=matrix(SR ,[[0 ,0] ,[1 ,0]])

5 F_1=matrix(SR ,[[0 ,1] ,[0 ,0]])

6 H_1=matrix(SR ,[[ -1 ,0] ,[0 ,1]])

7 K_1 = Matrix ([[q^-1, 0],[0,q]])

8 R=matrix(SR ,[[q,0,0,0],[0,q-q^-1,1,0],[0,1,0,0],[0,0,0,q]])

9

10 #Recursions for E, F and H

11 cacheH = {} # Dict to store cached results

12 cacheE = {}

13 cacheF = {}

14

15 def H(n):

16 if n in cacheH:

17 return cacheH[n]

18 elif n==1:

19 result = H_1

20 else:

21 result= H(n-1).tensor_product(identity_matrix (2)) +
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identity_matrix (2**(n-1)).tensor_product(H_1)

22 cacheH[n] = result.subs(h==log(q)).simplify_full ()

23 return result.subs(h==log(q)).simplify_full ()

24

25 def E(n):

26 if n in cacheE:

27 return cacheE[n]

28 elif n==1:

29 result = E_1

30 else:

31 result = E(n-1).tensor_product(exp(h*H_1)) + identity_matrix (2**(n

-1)).tensor_product(E_1)

32 cacheE[n] = result.subs(h==log(q)).simplify_full ()

33 return result.subs(h==log(q)).simplify_full ()

34

35 def F(n):

36 if n in cacheF:

37 return cacheF[n]

38 elif n==1:

39 result = F_1

40 else:

41 result = F(n-1).tensor_product(identity_matrix (2)) + exp(-1*h*H(n

-1)).tensor_product(F_1)

42 cacheF[n] = result.subs(h==log(q)).simplify_full ()

43 return result.subs(h==log(q)).simplify_full ()

44

45 def K(n):

46 if n==1:

47 return K_1

48 else:

49 return K(n-1).tensor_product(K_1)

50

51 #Eigenvectors of E

52 def P(n):

53 return E(n).eigenvectors_right ()

54

55 def w(j,n):

56 return P(n)[0][1][j]

57

58 def Span(i,n): # Span of highest weight vectors

59 Q=[]
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60 f=F(n)

61 for j in range(n+1):

62 if f**j*w(i,n) != zero_vector (2**n):

63 Q.append(F(n)^j*w(i,n))

64 else:

65 break

66 return Q

67

68 def Q(n): # Base Change Matrix

69 Q =[]

70 for i in range(len(P(n)[0][1])):

71 Q +=Span(i,n)

72 return (( matrix(Q).subs(h==log(q))).simplify_full ()).transpose ()

73

74 def Qi(n):

75 return Q(n).inverse ()

76

77 def A(j,n):

78 return identity_matrix(power(2,j-1)).tensor_product(R.tensor_product(

identity_matrix(power(2,n-j-1))))

79

80 def Sig(j,n):

81 B = A(j,n)

82 return (Qi(n)*B*Q(n)).simplify_full ()

83

84 def pos(j,n):

85 if j==0:

86 return 0

87 else:

88 r =0

89 for k in range(j):

90 r+= len(Span(k,n))

91 return r

92

93 def d(j,n): #Columns and Rows to be deleted

94 if j==0:

95 r = [x for x in range(len(Span(j,n)))]

96 r.remove (0)

97 return r

98 else:

99 r = [x for x in range(len(Span(j,n)))]
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100 r.remove (0)

101 return [x + pos(j,n) for x in r]

102

103 def Sigma(i,n):#Decomposed matrices for generators

104 dcol = []

105 for j in range(len(P(n)[0][1])):

106 dcol += d(j,n)

107 C = Sig(i,n).delete_columns(dcol ,check=True)

108 R = C.delete_rows(dcol ,check=True)

109 return R

110

111 print(Sigma (1,3))

112

113 print(Sigma (2,3))

The output of the above code is the following matrices:

1 [(q^2 - 1)/q 1 0]

2 [ 1 0 0]

3 [ 0 0 q]

4 [ q 0 0]

5 [-q^2 -1/q 0]

6 [ 0 0 q]
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� We also provide a Mathematica code to compute N -colored Jones polynomial for weav-

ing knots (and links) W (n,m).

1 qnum[m_] := Sum[q^(-m + 1 + i), {i, 0, 2*m - 1, 2}] (*q-number *)

2

3 qfact[m_] :=

4 Module [{prod}, prod = 1; Do[prod = prod*qnum[i], {i, 1, m}];

5 Expand[prod]](*q-facrtorial *)

6

7 (* Matrix of H under representation of dimension N*)

8 H1[N_] := Module [{l, matrix}, l = (N - 1)/2;

9 matrix =

10 Table[If[j == i, Times[2, (-l + i - 1)], 0], {i, 1, N}, {j, 1,

11 N}];

12 matrix]

13

14 (* Matrix of E under representation of dimension N*)

15 E1[N_] := Module [{l, matrix},

16 l = (N - 1)/2;

17 matrix =

18 Table[If[j == i - 1, Power[Times[qnum [2*l - j + 1], qnum[j]], 0.5],

19 0], {i, 1, N}, {j, 1, N}];

20 matrix]

21

22 (* Matrix of F under representation of dimension N*)

23 F1[N_] := Module [{l, matrix},

24 l = (N - 1)/2;

25 matrix =

26 Table[If[j == i + 1,

27 Power[Times[qnum [2*l - j + 2], qnum[j - 1]], 0.5], 0], {i, 1,

28 N}, {j, 1, N}];

29 matrix]

30

31 coord[i_ , N_] := List[Floor [(i - 1)/N], Mod[(i - 1), N]]

32

33 (*The Tensor Flip Matrix *)

34 Tensorflip[N_] := Module [{flip , ls}, flip = IdentityMatrix[N^2];

35 ls = Range[N^2];

36 Do[If[i != j && coord[i, N][[2]] == coord[j, N][[1]] &&

37 coord[i, N][[1]] == coord[j, N][[2]] ,

38 flip[[All , {i, j}]] = flip[[All , {j, i}]];
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39 ls = DeleteCases[ls , j]; ls = DeleteCases[ls , i];], {i, ls}, {j,

40 ls}];

41 flip]

42

43 (* Matrix of R under representation of dimension N*)

44 R[N_] := Module [{prod , sum , Rwithoutflip},

45 prod = MatrixExp [(h/2)*KroneckerProduct[H1[N], H1[N]]];

46 sum = IdentityMatrix[N^2];

47 Do[sum +=

48 Divide[Times[q^((i^2 + i)/2), Power[1 - q^(-2), i]], qfact[i]]*

49 KroneckerProduct[MatrixPower[E1[N], i],

50 MatrixPower[F1[N], i]], {i, 1, N - 1}];

51 Rwithoutflip = Simplify[prod . sum] /. h -> Log[q];

52 Tensorflip[N] . Rwithoutflip]

53

54 (* Matrix of K under representation of dimension N*)

55 K1[N_] := Module [{l, matrix},

56 l = (N - 1)/2;

57 matrix =

58 Table[If [j == i, Power[q, Times[2, -l + i - 1]], 0], {i, 1,

59 N}, {j, 1, N}];

60 matrix]

61

62 (* Matrix of K under representation of dimension N tensored n times. n \

63 here denote the number of strands *)

64 K[N_, n_] := If[n == 1, K1[N], KroneckerProduct[K[N, n - 1], K1[N]]]

65

66 (* Matrix of generator sigma i as an element of B_n , under N-colored \

67 representation *)

68 A[N_, n_, i_] :=

69 KroneckerProduct[IdentityMatrix[N^(i - 1)],

70 KroneckerProduct[R[N], IdentityMatrix[N^(n - i - 1)]]]

71

72 (* Matrix of weaving knot W(n,m) under N-colored representation *)

73 W[N_, n_, m_] :=

74 Module [{B}, B = IdentityMatrix[N^n];

75 Do[If[Mod[i, 2] == 1, B = B . A[N, n, i],

76 B = B . Inverse[A[N, n, i]]], {i, 1, n - 1}];

77 Simplify[MatrixPower[B, m]]]

78

79 Writhe[n_, m_] := If[Mod[n, 2] == 1, 0, m]
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80

81 (* Normalised quantum trace*)

82 Qtrace[N_, n_, m_] :=

83 Rationalize[

84 Cancel[Rationalize[

85 Simplify[

86 Rationalize[

87 Cancel[Tr[W[N, n, m] . K[N, n]]/(q^(1.5* Writhe[n, m]) qnum[N])],

88 0]], 0]]]

89

90 (*N-colored Jones polynomial of W(n,m)*)

91 J[N_, n_, m_] :=

92 Rationalize[

93 Simplify[Qtrace[N, n, m]*(-1)^(1 + GCD[n, m]) /. q -> t^-0.5], 0]

94

95 J[2, 3, 3]

The output of the above code is the Jones polynomial of W (3, 3), which is presented

below.

1 4 - 1/t^3 + 3/t^2 - 2/t - 2 t + 3 t^2 - t^3
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