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Abstract

In a recent paper Champanerkar, Kofman and Purcell defined right-angled volume for prime

alternating links as a sum of volumes of an associated collection of hyperbolic right-angled

ideal polyhedra which is an invariant of the alternating link. Around the same time Felsner

and Rote gave a graph theoretic algorithm to obtain right-angled circle patterns associated

to planar graphs.

In this thesis, we extend the Felsner-Rote algorithm to alternating knot and link diagrams

by developing graph theoretic analogs of the two moves used to compute right-angled vol-

umes, namely rational reduction and decomposition along prismatic 4-circuits. Using this

technique we compute right-angled volume for knots in the alternating knot census up to 17

crossings, and links in the alternating link census up to 14 crossings. In addition, using our

methods we extend computations of right-angled volume of weaving knots and links, verify

their conjecture on the existence of right-angled knots for alternating knots up to 17 cross-

ings, give a new method to generate volumes of right-angled polyhedra recreating volumes

computed by Vesnin and Egorov, and explore volumes of fully augmented link complements.
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Introduction

Alternating knot complements have decomposition into polyhedra, this decomposition may

be equivalently realised from the combinatorics of the alternating diagram of the knot. Hence,

the hyperbolic geometric structure of the complement is studied using their diagrams. Some

hyperbolic knots have complements that decompose into ideal hyperbolic right-angled poly-

hedra. The right-angled structure may be understood from the alternating diagrams. Cham-

panerkar Kofman Purcell [6] describes a procedure for obtaining right-angled polyhedra de-

composition of a link complement from a reduced, twist-reduced, prime alternating diagram

of the link. These polyhedra can be equivalently obtained using geometry, topology, and

combinatorics, hence their volume is a link-invariant known as the right-angled volume. In

this thesis, we develop the graph theoretic analog of the procedure to apply to Tait graphs

of links to obtain circle packing of the graph, to compute the right-angled volume. This

algorithm for computing circle packings is from the work of Stefan Felsner and Gunter Rote

[9].

Outlines of the Chapters

Chapter 1 discusses the right-angled kite embeddings of simple 3-connected graphs, circle

packings, and the Koebe-Andreev-Thurston theorem. We discuss the Felsner-Rote algorithm

to compute circle packings of a 3-connected simple plane graph G. The contents of this chap-

ter follow [9].

Chapter 2 is an introduction to Hyperbolic geometry, especially in dimensions two and

three. We study the upper half plane model of H2 and H3 and the isometries of hyperbolic

space in dimensions two and three.

1



Chapter 3 serves as an introduction to hyperbolic knot theory. We discuss the examples

of Figure 8-knot and the Borromean rings. The discussions in this chapter follow [16].

Chapter 4 discusses the right-angled polyhedra associated with an alternating hyperbolic

link. The chapter discusses the combinatorial construction of Andreev polyhedra from [6].

Chapter 5 includes the algorithms for rational reduction and prismatic 4-circuit decom-

position, as well as the right-angled volume calculator algorithm.

Chapter 6 discusses the observations and results of the right-angled volumes of the alternat-

ing knot census.

Original Contribution

This thesis is of an expository nature and no claim is made to the originality of any of the

results in Chapters 1-4. Chapters 5 and 6 have original programs and computations.
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Chapter 1

Right-angled Kite Embeddings
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In this chapter, we discuss the circle packings associated with primal-dual circle represen-

tations. We then discuss a constructive proof for a version of the Koebe-Andreev-Thurston

theorem. This work is due to Stefan Felsner and Günter Rote. [9]. The implementation of

the algorithm described in section 1.6 is due to Manfred Scheucher. [17]

1.1 Graphs and their connectedness

A graph G = (V,E) is an ordered pair where the set V is the set of vertices and set E is the

set of edges that captures the pairwise relationship between v, v′ ∈ V using an edge e ∈ E.

The edges of a graph can be either directed or undirected depending on whether a direction

is associated with the edges. An undirected graph G is said to be simple if there are no

multi-edges i.e. more than one edge between two vertices and loops in G. For this chapter,

a graph G will be simple and connected unless mentioned otherwise.

Definition 1.1.1. A graph that can be embedded in a plane is called planar graph. A plane

graph is a planar graph with an embedding in the plane.

Let G be a plane graph. The connected components of R2 −G are called the faces of G

and are denoted by F (G).

Definition 1.1.2. Let G be a plane graph. The dual G′ of G is defined to be the graph such

that V ′(G′) = F (G) and an edge e for each pair of faces in G that are adjacent along an

edge and a self-loop when the same face appears on both sides of an edge.

Let G be a connected planar graph. Then the dual of its dual G′′ is isomorphic to G i.e.,

it has the same vertex and edge set. Moreover, it has the same planar embedding as G.

Definition 1.1.3. Let G be a graph. A vertex v of G is called a cut vertex if G − v is

disconnected. An edge e of G is called a cut edge if G− e is disconnected.

Definition 1.1.4. A graph G is called k-vertex-connected or k-connected if it contains at

least k+1 vertices and does not contain a set of k− 1 vertices whose removal will disconnect

the graph. The vertex connectivity κ(G) of G is defined as the largest k such that the graph

is k-connected.

4



Figure 1.1: Examples of (1) 1-connected graphs, (2) 2-connected graphs, (3) 3-connected
graphs. Note that (2) (a), (b) are 2-connected and 1-connected but not 3-connected graphs.

Examples: See Figure 1.1 1) A 0-connected graph is a disconnected graph.

2) A 1-connected graph is the usual connected graph.

3) K4, the complete graph on 4 vertices is a 3-connected graph.

Note that if a graph G is k-connected, it is also k− i connected, i ≤ k− 1. Hence, in Figure

1.1, (3)(a) and (3)(b) are also 1-connected and 2-connected. On the other hand, (1)(b) is

1-connected but not 2-connected, (2)(c),(2)(b) are 2-connected but not 3-connected.

The components of graph G are its maximal connected sub-graphs. A component (or

graph) is trivial if it has no edges; otherwise, it is nontrivial. An isolated vertex is a vertex

of degree 0.

Theorem 1.1.1. Given a 3-connected simple planar graph, its dual graph is also 3-connected,

simple and planar.

Proof. Let G be a 3-connected simple plane graph. Let G′ denote the dual graph of G.

First, by the definition of dual graphs, we have that G′ is also planar.

Claim: G′ is simple. Let’s assume to the contrary that G′ is not simple, i.e. it has loops and
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multiple edges.

Case 1 Let v be a vertex of G′ at which there is a loop, this means that the corresponding

edge e in G would have been a cut-edge as the faces on both sides of the edge would be the

same. This contradicts the 3-connectedness of G as removal of the edge e or two vertices

bounding e, will disconnect the graph.

Case 2 Now, if distinct faces of G share an edge then we will get multiple edges in the dual.

Again if we remove the endpoints of this edge, the resulting graph is disconnected, thus

contradicting the 3-connectedness of graph G.

Claim: G′ is 3-connected.

Proof of the claim Let’s assume to the contrary thatG∗ is not 3- connected, so the possibilities

for connectivity κ(G∗) are 1, 2.As the dual graph G′ is always connected, it will always have

κ(G′) ≥ 1.

κ(G′) = 1. This would mean that G′ is 1-connected and it has cut vertices. So taking a dual

of G′ would mean that the graph, G′′ will have a bunch of loops. But, we have that G′′ = G

itself, this would contradict the fact that G is 3-connected.

κ(G′) = 2. Again, this would mean that G′ is 2-connected, and it has a pair of two vertices

whose removal will disconnect the graph. So, taking a dual of G′ would result in a loop in

G′′(=G), but this results in contradiction to the 3-connectedness of G.

In conclusion, we have that G′ is 3 vertex-connected.

For example, in Figure 1.1, for k = 1, deletion of vertex v will disconnect the graph into

two subgraphs G1 and G2.

Definition 1.1.5. A cut is a partition of the vertices of a graph into two disjoint subsets.

Any cut determines a cut-set, the set of edges that have one endpoint in each subset of the

partition. These edges are said to cross the cut. A cut C = (S, T ) is a partition of V of

a graph G = (V,E) into two subsets S and T. The cut-set of a cut C = (S, T ) is the set

{(u, v) ∈ E u ∈ S, v ∈ T} of edges that have one endpoint in S and the other endpoint in T.

For example, in Figure 1.1, for k = 2, {u, v} forms a cut-set.

We have a special relation for 3-connected simple planar graphs and three-dimensional con-

vex polyhedra.

Theorem 1.1.2. Steinitz Theorem A simple graph G is the 1-skeleton of a convex three-

dimensional polyhedron if and only if G is planar and 3-connected.
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Figure 1.2: A circle packing.

Figure 1.3: An example of an Apollonian circle packing.

1.2 Circle Packings

Definition 1.2.1. A circle packing is a collection of circles {Ci |1 ≤ i ≤ n} in the plane or

on S2 such that either Ci and Cj are either disjoint or touch tangentially for all i and j.

Examples One classic example of circle packing is the famous Apollonian gasket, see

Figure 1.3, which consists of infinitely many circles, where every 3 circles touch each other

tangentially. Another example is Figure 1.2

7



Figure 1.4: Contact(or tangency) graph of the circle packing in Figure 1.2

Definition 1.2.2. Given a circle packing the contact graph (tangency graph) is a graph

whose vertices are represented by circles and whose edges correspond to two tangent circles.

See Figure 1.4.

Koebe, in 1936, proved that every planar graph can be represented as a contact graph of

a circle packing [10]. Thurston proved that any triangulation of the sphere has an associated

“circle packing,” which is unique up to isometries of hyperbolic space [22]. This work was

included in the previous works of Andreev and this is collectively known as Koebe-Andreev-

Thurston theorem which states:

Theorem 1.2.1 (Koebe-Andreev-Thurston Theorem). For every connected simple planar

graph G there exists a circle packing in the plane whose contact graph is G.

If G is 3-connected simple and planar, we get interesting properties of circle packings

for G and its dual G′. Stefan Felsner and Gunter Rote [9] gave constructive proof for

a generalization of the Koebe-Andreev–Thurston theorem for 3-connected simple planar

graphs. We describe this in the sections below.

1.3 Primal-dual Circle Representations

Let G be a 3-connected simple planar graph embedded on S2 with vertex set V(G), Edge

set E(G) and face set F(G).

Definition 1.3.1. A spherical primal-dual disk representation consists of two families of

disks, (Cx, x ∈ V ) and (Dy, y ∈ F ) on S2 with the following properties:
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Figure 1.5: Spherical primal-dual disk representation of a graph G on the sphere, primal-dual
circle representation on the plane, from [9].

(i) vertex disks Cx have pairwise disjoint interiors.

(ii) face disks Dy have pairwise disjoint interiors. For every edge xx′ ∈ E with dual edge

yy′, the following holds:

(iii) Cx and Cx′ are tangent at a point p with common tangent line txx′.

(iv) Dy and Dy′ are tangent at the same point p with common tangent line tyy′.

(v) The lines txx′ and tyy′ are orthogonal at p.

A primal-dual disk representation of a graph G embedded in the plane is a similar circle

packing {Ci} and a dual packing {Dj} which are orthogonal to each other and whose contact

graphs are G and G′ respectively. See Figure 1.5.

Theorem 1.3.1. Every 3-connected simple planar graph G on S2 admits a primal-dual disk

representation on the sphere. This representation is unique up to Möbius transformations.

We define Möbius transformations later in Chapter 2. As a special case of the theorem

1.3.1 we obtain the classical circle packing theorem:

Theorem 1.3.2. Every simple plane graph on S2 admits a circle packing representation,

i.e., it is the contact graph of a set of non-overlapping disks in the plane.

Proof for Theorem 1.3.1 =⇒ Theorem 1.3.2. First of all, if we have a 3-connected plane

graph G, then by theorem 2, we have a primal-dual disk representation of G on the sphere.

9



Taking stereographic projections of the disks gives a primal-dual circle representation in the

plane, thus giving a circle packing representation in the plane.

If we have a plane graph G with connectivity κ(G) ≥ 4, then by definition, it is also 3-

connected, and we have a primal-dual disk representation and hence circle packing represen-

tations of it.

So, the graphs we have to particularly look at are of two kinds: 2-connected but not 3-

connected and graphs which are 1-connected but not 2 or 3-connected. Case 1 G is 2-

connected but not 3-connected.

First, we need to ensure that |V (G)| ≥ 4, if not we add vertices to make it so. Now, since the

graph has cut-sets of size two, we have to eliminate those by adding more edges in the graph

ensuring there are no multiple edges, the only condition to maintain is planarity, which is

not disturbed in this process. The resulting graph, say H is now 3-connected and we get

a circle packing of the graph H. Removing the added vertices will give the circle packing

representation of the plane graph G.

Case 2 G is connected but not 2-connected.

Again we have to ensure that |V (G)| ≥ 4. Once we have that, since the graph has cut

vertices we have to get rid of them, so again by keeping the simplicity and planarity of graph

G, we add edges to ensure that there are at least two paths between any pair of distinct

vertices in G. The resulting graph G’ is now 2-connected and we can use Case 1 to get the

result.

Definition 1.3.2. Let N be a point on S2. A stereographic projection ρ : S2 − N → R2

maps all but the point N of S2, called the north pole N bijectively and continuously onto the

plane. N serves as the center of the stereographic projection. [19]

Let S2 = {(x, y, z)|x2 + y2 + z2 = 1} and N = (0, 0, 1) be the north pole. The plane z = 0

runs through the center of the sphere, intersecting at the equator. For a point P (x, y, z) on

S2 − N, we get a unique line from N passing through P, which intersects the plane z = 0 at

P’ with coordinates (u,v)

ρ : S2 − N → R2 defined as ρ(x, y, z) = (
x

1− z
),

y

1− z
.

The inverse map is given as ρ−1 : R2 → S2 − N as

ρ−1(u, v) = (
2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1
).

An important property of stereographic projections is that they are conformal i.e. they

10



Figure 1.6: Left: K4 graph; Right: three different primal-dual circle representations of
K4 depending on the center of projection of stereographic projections of primal-dual disk
representations of K4, from [9].

preserve angles [19].

Given a spherical primal-dual circle representation, we can take stereographic projection

to get a primal-dual circle representation on the plane, since each circle uniquely bounds a

disk, this is the circle packing of G. By changing the pole of the stereographic projections,

we get different primal-dual circle representations. See Figure 1.6. Now, we pick a special

point as the pole for the stereographic projection.

Definition 1.3.3. Let G be a 3-connected simple graph on S2. A cross-centered primal-dual

circle representation (CCPDC) of G with central cross ξξ′, ηη′ consists of two vertical lines Cξ

and Cξ′ , two horizontal lines Dη and Dη′ , and two families of circles (Cx : x ∈ V −{ξ, ξ′})
and (Dy : y ∈ F − {ηη′}) with the following five properties:

(i) The vertex-circles Cx have pairwise disjoint interiors and are contained in the vertical

strip between Cξ and Cξ′.

(ii) The face-circles Dy have pairwise disjoint interiors and are contained in the horizontal

strip between Dη and Dη′. Moreover, for every edge xx′ ∈ E − ξξ′ with dual edge yy′, the

following holds:

(iii) Cx and Cx′ are tangent at a point p with common tangent line txx′.

(iv) Dy and Dy′ are tangent at the same point p with common tangent line tyy′.

(v) The lines txx′ and tyy′ are orthogonal.

Note that for a 3-connected simple graph G on S2 with the central cross ξξ′, ηη′, let p

be the point of intersection of the circles associated with edges ξξ′, ηη′ in the primal-dual

representation of G on S2. If we pick the point p as the pole of stereographic projection we

11



Figure 1.7: A graph G and its associated cross-centered primal dual circle representation,
generated using [17].

Figure 1.8: (a) A graph G (red) and its dual (blue),(b) cross-centered primal-dual circle
representation, (c) Overlaid straight-line drawings of the cross-centred primal-dual circle
representation, from [9].

get a cross-centered primal-dual circle representation of G in the plane. See Figure 1.7 The

four circles touching at p map to straight lines that are pairwise orthogonal. This results in

a rectangle R with the four lines and all other circles are either contained in the rectangle

or lying halfway along the sides of R.

We can join the centers of remaining Cx and Dy whenever they are tangent to obtain a

decomposition of R into right-angled kites. See Figure 1.8.

Given a 3-connected simple plane graph G, we have the following theorem:

Theorem 1.3.3. G admits a cross-centered primal-dual circle representation. Moreover,

for a given central cross ξξ′, ηη′, this representation is unique up to scaling, translation, and

horizontal or vertical reflections. [9]

Theorem 1.3.1 is accessible from theorem 1.3.3 via inverse stereographic projections.

A brief outline of proof of Theorem 1.3.3: Given a cross-centred primal-dual circle

12



representation of G. We can use the centres of circle packings of G and G’, i.e Cxs and Dys

to get a straight-line drawing of G and G’. Overlaying the two results in the tessellation of

the plane into right-angled kites. These kites are uniquely determined by their radii. We

start with an initial guess for the radii of the kites obtained and then employ an algorithm to

ensure that the angle sum at each vertex is precisely 2 ∗ π. After getting the radii, a special

gluing lemma is used to ensure the tiling of the plane by the kites.

1.4 Right-angled Kites

Overlaying the straight-line drawings of G and G′ gives the tessellation of the plane into

special right-angled kites. Right-angled kites are quadrilateral with two right angles at

opposite vertices and a line of symmetry.

In the case of cross-centred primal-dual circle representation, we observe three types of kites.

See Figure 1.8.

1. The rectangular strips unbounded in one direction form the degenerate kites. They

have a vertex with a π angle in the midpoint of the only bounded edge.

2. The four quadrants are regarded as exceptional kites.

3. The bounded right-angled kites. These fill the space inside the rectangle.

The collection of kites is in bijection with the collection of pairs (x, x′) where x is a

primal vertex and x’ is the dual vertex. As the corresponding Cx, Cx′ and Dy, Dy′ touch

orthogonally, the radii completely determine the kites and we have:

For bounded kites, see Figure 1.9:

αxy := 2arctan(ry/rx) (1.1)

αyx := 2arctan(rx/ry)

13



Figure 1.9: Tessellation of the plane into kites, the shaded kites include two bounded kites,
one degenerate and one exceptional kite; image from [9].

Figure 1.10: The kite corresponding to the pair (x, y), x ∈ V (G), y ∈ F (G), from [9].

We can extend to the degenerate kites as follows:

αuv =

0 ru = ∞and rw ̸= ∞

π rw = ∞and ru ̸= ∞
(1.2)

Thus, for all (x, y) forming bounded or degenerate kites we have, αxy + αyx = π. We ignore

the exceptional kites in this definition.

The number and combinatorial structure of kites are captured by the angle graph, see

Figure 1.10.
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Figure 1.11: Bijection between G⋄ and right-angled kites, with underlying image from [9].

1.5 Angle Graphs

The angle graph G⋄(U,K) of a graph G = (V,E) is a graph with node set U = V ∪ F and

K = {xy, x ∈ V, y ∈ F, x is a vertex on the boundary of face y }. G⋄ is plane and bipartite.

The edges of G⋄ are in bijection with the kites. G⋄ cannot have a separating 4-cycle. See

Figure 1.11.

We set the face corresponding to the edges of the central cross ξηξ′η′ as the outer face fo.

The vertices of the outer face form Uo and the edges form Ko. So, we have Uin = U/Uo

and Kin = K/Ko. Using Euler’s formula for graphs, we have the following lemma for angles

graphs :

Lemma 1.5.1. A simple bipartite plane graph G with |S| ≥ 4 nodes has at most |E| ≤ |S|−4

edges, with equality if and only if the graph is connected and every face is a quadrilateral

with four distinct vertices.

Proof. We assume G = (S,E) to be connected, if not we may add some edges to make it

connected while ensuring the graph stays bipartite and plane. The resultant graph G′ =

(S,E ′) with the face set F . As the graph is bipartite, every face cycle is of even length and

contains at least 4 edges, with the only possible exception of a diagonal face cycle, arising

from the two sides of a single isolated edge, or two parallel edges. But this is impossible as

|S| ≥ 3 and G is simple connected.

Now, as every edge has 2 sides and every face cycle goes through at least 4 sides of edges,

15



Figure 1.12: (a) A graph G, (b) G⋄, (c) (G⋄)⋄, The primal-dual completion of G; [9].

therefore 4|F | ≤ 2|E ′|. Using Euler’s formula, we get that,

|E ′|+ 2 = |S|+ |F | ≤ |S|+ |E ′|
2

and hence,

|E ′| ≤ 2|S| − 4

If all faces f ∈ F are quadrilateral, the above inequality turns into an equality. And, this

is where the connectedness of G′ is important because if G were disconnected, |E| ≤ |E ′| ≤
2|S| − 4 will not hold.

Now, we consider the face-cycles of length 4 which do not form a quadrilateral, we note

that such a face-cycle could only possibly be the face surrounding a path with two edges,

however, this is not possible as |S| ≥ 4 and G′ is connected.

Now, suppose we have a hypothetical primal-dual circle representation of G that contains

a point for each u ∈ Uin, which is surrounded by incident kites.

∀u ∈ Uin we have
∑

w:uw∈K αuw = 2π.

Now, we assume an arbitrary radius assignment r : Uin → R≥0 and we define ru = ∞ for

each u ∈ Uo. We can then form the corresponding kites(including the degenerate kites) and

get the angles.

Definition 1.5.1. ∀u ∈ Uin angle sum at u is defined as αu = αu(r) =
∑

w:uw∈K αuw.
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We wish to find a collection of r such that angle sum ∀u ∈ Uin hits the target value 2π.

We begin by showing that any choice of radii hit the target angle on average.

Theorem 1.5.2.
∑

u∈Uin
(αu(r)− 2π) = 0

Proof. ∑
u∈Uin

αu(r) =
∑

uw∈K,u,w∈Uin

(αuw + αwu) +
∑

uw∈K,u∈Uin,w∈Uo

αuw

As per the definitions of αuv, we get that,

=
∑

uw∈K,u,w∈Uin

π +
∑

uw∈K,u∈Uin,w∈Uo

π = π|K/Ko|

Now using Lemma 1, as G⋄ is a simple, connected, bipartite plane graph with more than

four vertices and every face is a quadrilateral with four distinct vertices.

= π(|K| − 4) = π(|U | − 8) = 2π|Uin|

This means that whenever αu(r) ̸= 2π, the following both sets are both simultaneously

non-empty:

U− = {u ∈ Uin : αu(r) ≤ 2π} and U+ = {u ∈ Uin : αu(r) ≥ 2π}

If we increase radius ru at one node u ∈ U+ leaving the others fixed, by equation (1.1),

corresponding to each edge uv, αuv decreases strictly to 0 as ru → ∞, with the exception

of the vertex in Uo with fixed angle π. Therefore, we find that it is possible to increase the

value of ru to ensure that αuv hits 2π.

1.6 Proof of Theorem 1.3.3

We give an algorithm to prove Theorem 1.3.3. The workhorse of the proof is the following

iteration:

repeat forever:
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for each u ∈ Uin:

if u ∈ U+

increase ru to reduce αu(r) to 2π

Claim: Given a random radii assignment, the radii converge to a limiting assignment r̂u

such that αuv(r̂u) = 2π for all edges uv ∈ E.

Proof Since radii can never decrease and the sequence of radii is bounded. As every bounded

monotone sequence converges, we need to show that this holds for all nodes u ∈ Uin. So, it is

enough to show that the set of divergent nodes D is precisely Uo. As D = {u ∈ U : ru = ∞},
and the nodes uo ∈ U0 by definition are there in D.

As we increase the radius, the αuv decreases but not below 2π because as we increase the

radii the angles at the adjacent nodes increase and jump from U− to U+. A jump the other

way around is not possible. So, the set U− is always nonempty until the iteration ends,

i.e. U+ = ϕ and U− = ϕ. So, we have that U− is disjoint from D after some time and

D is a proper subset of U. Now, we look at the subgraph G⋄ induced by the nodes in D,

denoted by G⋄[D]. We wish to show that G⋄[D] has at least 2|D| − 4 edges so that we can

invoke Lemma 1.5.1. After some time since the initialization of the algorithm, we get that

D becomes distinct from U−. Now,∑
u∈D/Uo

αu(r) ≥
∑

u∈D/Uo

2π = 2π|D/Uo| = 2π(D − 4) (1.3)

And,

if u ∈ D and w ∈ U/D, αuw → 0. So, in addition to (1.3), the inequality αuw ≤ 1/|U |2 will

eventually hold for each edge. Bounding these edges separately, we get

∑
u∈D/Uo

αu(r) ≤ |U |2.1/|U |2 +
∑

kite withx,y∈D,x̸∈Uoory ̸∈Uo

(αxy + αyx)

= 1 +
∑

xy edge of G⋄[D],xy ̸∈Ko

π = 1 + (|E(G⋄[D])| − 4)π (1.4)

Combining equation 1.3 and 1.4, we get that |E(G⋄[D])| ≥ 2|D| − 4.

Since, |Uo| ⊆ D and |D| ≥ 4, we have the conditions met to invoke Lemma 1.5.1 and we

conclude that G⋄[D] is connected and its faces are simple 4-cycles.

The outer face fo is the cycle formed by nodes of Uo. We wish to show that there is no

face other than fo in G⋄[D]. Let’s assume to the contrary that there is a face f ∈ G⋄[D],

which is not a face of G⋄ which is distinct from fo. The existence of f is confirmed by the
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fact the G⋄[D] is a proper subgraph of G⋄. This face f has to be the inner face of the graph.

Since f is distinct from fo, it would form a separating 4-cycle in G⋄, which contradicts the

3-connectedness of G⋄.

This means that all radii ru for u ∈ Uin converge to limits, r̂u. Hence, all the angles and

angle sums converge as well. By the iteration we have αu(r̂u) ≤ 2π. By theorem 1.5.2, we

get that αu(r̂u) = 2π. %

Theorem 1.6.1. The radii {r̂u} are unique up to scaling.

Proof. Let r and r′ be two vertices of radii such that αr(u) = αr′(u) = 2π, ∀u ∈ Uin.

Scaling allows us to assume that ruo = r′uo
for some u ∈ Uin. Consider the set S = {u ∈ Uin :

ru > r′u} and hence uo ∈ Uin/S.

|S|.2π =
∑
u∈S

αu(r) =
∑

uw∈K.u,w∈S

(αuw(r) + αwu(r)) +
∑

uw∈K,u∈S,w∈Uo

αuw(r) +
∑

uw∈K,u,w∈S

αuw(r)

=
∑

uw∈K.u,w∈S

2π +
∑

uw∈K,u∈S,w∈Uo

π +
∑

uw∈K,u,w∈S

αuw(r)

The last term has a constant value. If we change radius r to r′, the value of αuw(r) in the last

term increases. This implies that the set of edges over which sum is taken must be empty.

By a symmetrical argument, we get that S = {u ∈ Uin : ru < r′u} is empty as well.

Thus the radii are unique up to scaling.

Since the radii uniquely determine the kites the kites can be laid out to form a tessellation

of the plane. Hence, we get that the tessellation is unique up to scaling, translation, and

horizontal or vertical reflection.

1.7 Tiling a convex polygon

Now that we have all the kites, we wish to lay them out to form the tessellation. The

following lemma guarantees the existence of such a tessellation if certain local matching

conditions are met:

Lemma 1.7.1. Let H be a 2-connected plane graph (possibly drawn with curved edges). For

each bounded face f of H, a simple polygon Pf is given whose corners are labeled with the
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vertices from the boundary of f in the same cyclic order. Denote the corner of Pf labeled

with v by pfv and the angle of Pf at this corner by βfv . For each vertex v, let Fv denote the

set of incident bounded faces. We assume the following conditions:

(i)
∑

f∈Fv
βfv = 2π, for every inner vertex v.

(ii)
∑

f∈Fv
βfv ≤ π, for every vertex on outer face.

(iii) ||pfv − pfw || = ||pgv − pgv || for every inner edge vw of H with incident faces f and g.

Then there is a crossing-free straight-line drawing of H in which every bounded face f can be

obtained from Pf by a rigid motion, i.e., translation and rotation.

Proof. This is a geometric proof involving the induction of the number of interior vertices.

We use the fact that a simple polygon can be subdivided into convex pieces by adding di-

agonals. For induction, we will assume that each polygon Pf is convex and we can do so by

dividing the simple polygons into convex pieces, or triangles by inserting diagonals between

the vertices. On the other hand, H does not need to be 2-connected, and there may even be

multiple edges. However, H still has to be connected and the outer face is a simple 4-cycle.

We begin the induction as follows: we pick one vertex u ∈ Uin, we take the faces f1, f2, ....fk

incident on u, and the corresponding polygons Pf1 , Pf2 , ....Pfk successively around the origin.

By condition (i), we have that these polygons completely surround the origin. Since the

polygons are convex, no faces intersect each other and the overall result is a simple poly-

gon P containing u in its interior. Now, we triangulate P. Removing u from H and insert

new edges to H, replacing the faces f1, f2, ....fk by the new triangular pieces. This is where

possibly multiple edges may be created, however, H still remains connected. While doing

this replacement construction, the angle sums
∑

f∈Fv
βfv remaining same at every vertex v

distinct from u, thus conditions (i) and (ii) are met. Also, by construction of the new poly-

gons, shared edge lengths of the adjacent polygons, ensuring condition (iii). The resulting

graph H’ has one vertex less. By induction, all its faces can be laid out in the plane without

overlap with adjacent polygons sharing an edge. The new triangles that were added form

a polygon congruent to P. Dividing it into pieces Pf1 , Pf2 , ....Pfk , we get the vertex u and

hence the original graph H.

The base case involves no interior vertices, we merge adjacent polygons around the shared

interior edge. Using condition (ii) we get that new angles created in the interior are ≤ π.

So, the resulting convex polygon is just a simple convex polygon. We can easily recover the

original graph from it. So, we just get the tessellation by a single convex polygon.
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Figure 1.13: Triangulating the union of faces surrounding the vertex w, from [9]

Now that we have a lemma to ensure the existence of a tessellation, we can go back to

our collection of radii, and hence kites,

We define H to be a subgraph of the primal-dual completion of G, i.e. (G⋄)⋄. We have

that VH = V/{ξ, ξ′}
⋃
F/{η, η′}

⋃
E/{ξξ′} and EH = {(z, e), z ∈ V/{ξ, ξ′}

⋃
F/{η, η′}, e ∈

E/{ξξ′}}, with z incident to the edge e ∈ E in G.

Claim H satisfies all the conditions of lemma 1.7.1.

Proof. Claim (i): H is 2-connected.

This follows from the 3-connectivity of G and G’ that removal of one vertex cannot disconnect

H, but there exists a set of three vertices whose removal would disconnect H.

Claim (ii): We have the edge lengths of the adjacent edges of the polygons associated with

the inner edges.

This follows as a result of our iteration that the kites fit locally as they have the same edge

length, dependent on the particular ru and rv.

Claim (iii) :
∑

f∈Fv
βfv = 2π for all the inner vertices.

As from the iteration, we have ∀u ∈ Uin, αu(r̂u) = 2π. As each edge of H involves 4 kites,

every right angle of kite associated with an interior node is complemented by three other

kites to form the angle sum 2π.

Claim (iv) :
∑

f∈Fv
βfv ≤ π.

The vertices of H which are incident to the outer face are either points where one or two right

angles of kites meet, forming angle π/2 pr π, or they are nodes u in Uin which are adjacent to

a vertex, say, w in Uo, as we defined earlier, the angle, in this case, is αuw = π. As this angle

is not part of H, the incident angles in H around u sum up to αu(r̂u) − αuw = 2π − π = π.

So, the angle sums of the nodes incident to the outer face are either π/2 pr π.
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Figure 1.14: Laying out kites to obtaining the tessellation, from [9].

Since all the local matching conditions are met, now we can invoke Lemma 1.7.1, we get

that all the bounded kites tessellate the plane and they are bounded in the rectangle R. The

unbounded kites can be attached edge by edge onto the boundary of R.

1.8 Constructing the circle representation

Now that we have a layout for the kites, we wish to get the primal-dual circle representation

from this layout. Since the kites naturally induce an overlaid straight line drawing of G and

G’ with only the outer face vertices missing,(they are all at ∞). For every primal-dual pair

of edges, xx′ ∈ G and yy′ ∈ G′, we have that the point of intersection (p) of these edges is

right-angled in each of 4 involved kites so it would mean that the circles associated to these

vertices touch tangentially at p.

For a node u ∈ Uin, consider all the kites containing u, as these kites can be put into cyclic

order by rotation of G⋄ to form a polygon Pu and by the geometry of kites, we can see

that Pu contains the circle Cu centered at u which touches Pu at the common points of the

neighboring kites.

For u ∈ {η, η′}, the polygon Pu obtained by joining the unbounded kites is a half-plane,

and line Cu goes through the right angle corners of the involved kites. Since polygons are

pairwise distinct, we get that the circles corresponding to vertices of G and vertices of G’

are pairwise disjoint.

Thus we have the collection {Cx} and {Dy} with all the proper tangency conditions to give

the primal-dual circle representation. Once we have the primal-dual circle representations,

we can go via inverse stereographic projections to obtain the primal-dual disk representation
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of G on the sphere. This concludes the proof of theorem 1.3.3.
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Chapter 2

Hyperbolic Geometry
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In this chapter, we establish some definitions and results about hyperbolic geometry that

will aid us in the study of hyperbolic knots and their complements. We have used [19], [3],

[4], [12] and [2] as references.

2.1 Two dimensional Geometries

Around 300 BCE in his influential book ”The Elements” Euclid formulated the foundations

of geometry, now known as Euclidean geometry. Euclid gave 5 postulates about points,

lines, circles, and angles. The last postulate known as the parallel postulate was the most

interesting. Playfair in the late 18th century reformulated the parallel postulate as ”given

a line and a point outside the line, there exists a unique line passing through this point

and parallel to the given line”. For about 2000 years, mathematicians tried proving the

fifth postulate using the first four postulates with little success. By the eighteenth century,

mathematicians began studying geometries that satisfied the first four postulates but not the

fifth. These geometries came to be known as non-Euclidean geometries. In two dimensions,

the spherical and hyperbolic geometries are non-Euclidean.

In this chapter, we will discuss the hyperbolic plane H2 and the hyperbolic space H3,

give models, describe geodesics and isometries.

2.2 The Hyperbolic plane

The upper-half plane model of the hyperbolic plane is H2 = {(x, y) ∈ R2|y > 0} with the

metric,

ds2 =
dx2 + dy2

y2

Note that H2 = {z ∈ C| Im(z) > 0}. The space inherits the notion of points and angles

from C.
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Figure 2.1: The geodesics in H2.

1. The hyperbolic length of a curve γ parameterized as t→ (x(t), y(t)) is given by,

lH2(γ) =

∫ b

a

√
x′(t)2 + y′(t)2dt

y(t)

2. The geodesics in H2 are Euclidean line and circles that meet the real axis R at right-

angles. So the geodesics are vertical straight lines and semi-circles with centers on the

real line. See Figure 2.1.

3. The circle at infinity of H2 is R ∪∞. This is also called the boundary ∂H2. Points on

the circle at infinity are called ideal points.

4. A horocycle at an ideal point p ∈ ∂H2 is defined as a curve perpendicular to all the

geodesics through p. If p = ∞, the horocycle is a horizontal line, else it is a circle

tangent to the real axis. See Figure 2.2.

5. The region of H2 interior to a horocycle is known as the horoball.

6. An ideal triangle in H2 is a triangle with all three edges are geodesics and all the

vertices on the boundary ∂H2.

2.2.1 Isometries of H2

We work with the upper half plane model of the hyperbolic 2-space. Since isometry preserves

the metric, it preserves path lengths and areas.
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Figure 2.2: The horocycles centred at the pint x and the horizontal line.

It can be seen from the definition of the hyperbolic metric that the isometries of hyper-

bolic plane include horizontal translations [(x, y) → (x + x0, y), x0 ∈ R], dilations [(x, y) →
(λx, λy), λ > 0] and the reflection (x, y) → (−x, y). The standard inversions across the unit

circle S1, given by (x, y) → (
x

x2 + y2
,

y

x2 + y2
) is also a hyperbolic isometry, which can be

expressed as a complex function z → 1

z̄
= ρ−1eiθ.

The isometries obtained by composing dilations and horizontal translations immediately

state that for every P,Q ∈ H2, there exists an isometry ϕ of (H2, dH⊭), such that ϕ(P ) = Q,

i.e. H2 is homogeneous.

All isometries of H2 are generated by the composition of the above-mentioned isometries.

The group of isometries of H2 is generated by inversions in the upper half plane in hyperbolic

geodesics. We classify all the isometries of hyperbolic 2-space using the following lemmas.

Lemma 2.2.1. All maps of form z → A(z) =
az + b

cz + d
with a, b, c, d ∈ R such that ad−bc = 1

are isometries of (H2, dH⊭).

Proof. We wish to express the above transformation as a composition of the known isome-

tries, namely, translations, reflections and inversions, rotations, and dilations. We look at

two cases when c = 0 and when c ̸= 0.
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Case 1 c = 0;

A(z) =
az + b

cz + d
=
c.(az + b)

c.(cz + d)
=
acz + bc+ ad− ad

c2z + dc
=
a(cz + d) + bc− ad

c(cz + d)
=
a

c
+

bc− ad

c2(z +
d

c
)

.

Case 2 c = 0;

Az =
a

d
(z +

b

a
)

In both cases, we can see that A(z) can be written as a combination of the dilation, trans-

lation, and inversions, and hence is an isometry of (H2, dH⊭).

A similar result holds for the antilinear maps, i.e. z → B(z) =
az̄ + b

cz̄ + d
with a, b, c, d ∈

R such that ad − bc = 1 by an identical argument. Now, conversely, we wish to show that

the given any isometry of H2, it is of the form A(z), for this we first see that,

Lemma 2.2.2. Let ϕ be an isometry of (H2, dH⊭), such that ϕ(iy) = iy ∀y > 0. Then either

ϕ(z) = z ∀z ∈ H2 or ϕ(z) = −z̄ ∀z ∈ H2.

Proof. Let L = {iy : y > 0} denote the upper half of y-axis. Thus, ϕ fixes L.

For every iy ∈ L, we denote by gy a geodesic passing through iy orthogonal to L. Since ϕ is

an isometry, therefore it sends gy to a geodesic g passing through iy. We wish to show that

g = gy.

We use the property of geodesic that for any y1 > y, the point iy is the point of gy that is

closest to iy1. As ϕ is an isometry, ϕ(iy) = iy is the closest point of ϕ(gy) = g that is closest

to ϕ(iy1) = iy1. Therefore, we get that g = gy, and ϕ(gy) = gy.

Now, we pick a point P = a+ib on gy, then its ϕ-image is one of the two points of gy that are

at a distance dH2(P, iy) from iy. One of these points is P itself and the other, by symmetry,

is −a+ ib. so, ϕ(a+ ib) = a+ ib or −a+ ib for every a+ ib ∈ H2. in other words, ϕ(z) = z

or ϕ(z) = −z̄, ∀z ∈ H2.

Theorem 2.2.3. The isometries of (H2, dH⊭) are exactly the maps of the form,

ϕ(z) =
az + b

cz + d
with a, b, c, d ∈ C such that ad− bc = 1

or

ϕ(z) =
az̄ + b

cz̄ + d
with a, b, c, d ∈ C such that ad− bc = 1
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Proof. As we proved in Lemma 2.2.1. we see that map of this form is an isometry of H2.

Conversely, we let ϕ be any arbitrary isometry of H2 and once again let L = {iy : y > 0}
denote the upper half of the y-axis. As, we saw earlier that ϕ-image of L is a complete

geodesic, i.e. a Euclidean semicircle bounded by two distinct points u, v ∈ R ∪ ∞. In

addition to this, if we orient L from 0 to ∞, then without loss of generality we require the

ϕ(L) is oriented from u to v. We consider two cases,

Case 1 when u, v ̸= ∞. The hyperbolic isometry, ψ(z) =
az − au

cz − cv
with a, c ∈ R chosen such

that ac(u− v) = 1.

So, ψoϕ sends u to 0 and v to ∞. As it sends L to a complete geodesic and respects its

orientation, therefore we can argue that there exists some t > 0 such that ψoϕ(t) = it.

Replacing a → a/
√
t and c → a/

√
t, we get that ϕoψ(i) = i. Therefore, ψoϕ sends each

iy ∈ L to a point of L that is at the same hyperbolic distance from i to iy, since orientation

is preserved, we get that ψoϕ(iy) = iy for every y > 0.

By Lemma 2.2.2, we have that this composition is either z or −z̄.
In the first case, ψoϕ(z) = z, implies that ϕ(z) = ψ−1(z) =

−cvz + au

−cz + a
upon solving.

The other case ψoϕ(z) = −z̄ implies that ϕ(z) = ψ−1(−z̄) = cv ¯z + au

cz̄ + a
. Thus giving ϕ(z) of

the desired form.

Case 1 For the case where either u or v is ∞, we can utilise the same argument for the

isometries, ψ(z) =
−a

cz − cv
when ac = 1 and u = ∞ and ψ(z) =

az − au

c
when ac = 1 and

v = ∞.

So, we have established that all the orientation-preserving symmetries are of the fractional

linear form, i.e Möbius transformations in dimension two.

z → A(z) =
az + b

cz + d
with a, b, c, d ∈ R such that ad− bc = 1 (2.1)

They are conformal in nature and we can identify the groups of transformations with quotient

PSL(2,R) := SL(2,R)/ ± I. We define the trace of a Möbius transformation as the trace

of the normalized matrix of A, i.e. τA = trA = ±(a+ d).
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Classification of the Möbius transformations of H2

Using the matrix form A =

[
a b

c d

]
for the isometry ϕA and trace τA we can classify the orien-

tation preserving Möbius transformations, apart from identity by looking at the eigenvalues

of A. The characteristic polynomial of A is given as,

χA(λ) = λ2 − τAλ+ 1

therefore the eigenvalues are
τA ±

√
τ 2A − 4

2
, then we consider the following three cases,

1. τA = 2, then eigenvalue is
τA
2
, and ϕA is translation.

2. τA ∈ (−2, 2), then ϕA has a single fixed point, as τ 2A < 4, the possible values of λ are

conjugates and only one of them lies in H2. Thus, this is a hyperbolic rotation.

3. τA ∈ C/[−2, 2], then A has two distinct eigenvalues since τ 2A > 4, therefore ϕA is a

dilation.

Cross Ratio

Given three distinct ideal points (p2, p3, p4) none of them ∞, there exists a unique Möbius

transformation, T , known that sends p2 to 1, p3 to 0 and p4 to ∞, given by

T (z) =
(z − p3)(p2 − p4)

(z − p4)(p2 − p3)
= [z, p2, p3, p4]

By definition T (p2) = 1, T (p3) = 0 and T (p4) = ∞.

Given an ideal triangle ∆, there exists an isometry described above which takes ∆ to an

ideal triangle with vertices to 0, 1 and ∞. Thus all ideal triangles are isometric and have

the same area.

31



2.3 Hyperbolic 3-space

We again consider the upper half space model,

H3 = {(x1, x2, x3) ∈ R3|x3 > 0}

endowed with the hyperbolic metric ds2 =
dx21 + dx22 + dx23

x23
.

1. The sphere at infinity is ∂H3 = C ∪ {∞}.

2. As before, the geodesics of the hyperbolic 3-space are lines ad planes that are vertical

and semicircles and hemispheres that meet the boundary ∂H3 at right angles.

3. A horosphere about∞ in ∂H3 is a plane parallel to C. A horosphere at a point p ∈ C, is
an Euclidean sphere tangent to C at p. A horoball is the region interior to a horosphere.

4. An ideal tetrahedron is a tetrahedron in H3 with all four vertices on ∂H3, and with

geodesic edges and faces.

2.4 Isometries of H3

The usual isometries ofH3 are extension of the isometries ofH2, namely dilations, (x1, x2, x3) →
(λx1, λx2, λx3) for λ > 0; horizontal translations, (x1, x2, x3) → (x1 + a, x2 + b, x3) for

a, b ∈ R. We also have rotations about the x3-axis, given as (x1, x2, x3) → (x1cosθ −
x2sinθ, x1sinθ + x2cosθ, x3) for θ ∈ R. We also have inversions in the unit sphere S2, given

by (x1, x2, x3) → (
x1

x21 + x22 + x23
,

x2
x21 + x22 + x23

,
x3

x21 + x22 + x23
).

Lemma 2.4.1. Every linear (or antilinear) fractional map of Ĉ = C ∪ ∞ continuously

extends to a map ϕ̂ : H3 ∪ Ĉ → H3 ∪ Ĉ, whose restriction to H3 is an isometry of (H3, dH3).

Proof. We recall Lemma 2.2.1 here, where we saw that a linear (or antilinear) fractional

linear map ϕ : Ĉ → Ĉ is a composition of translations, dilations and inversions. All these

component functions can be extended to continuous transformations of H3 ∪ Ĉ inducing

isometrics of (H3, dH3).
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From the above lemma, it may be the case that the extension ϕ̂ of ϕ depends on the

choice of decomposition of ϕ into translations, dilations or inversions. However, that is not

the case, as we know that the inversion across the unit sphere sends any sphere S centered on

the xy-plane to a sphere centered on the xy-plane, possibly a vertical plane since inversion is

an isometry of H2. Then, given any point p ∈ H3, we can pick three spheres S1, S2, S3 such

that P is the only point of the intersection H3∩S1∩S2∩S3. Using the usual isometries, the

extension ϕ̂ sends Si to S
′
i for all i, and hence p to ϕ(p) as, ϕ(p) is the unique intersection of

H3 ∩ S ′
1 ∩ S ′

2 ∩ S ′
3, and therefore we have that,

Lemma 2.4.2. The extension ϕ̂ : H3 → H3 of a linear(or antilinear) map ϕ : Ĉ → Ĉ is

independent of choices.

Theorem 2.4.3. Every linear (or antilinear) fractional map ϕ : Ĉ → Ĉ has a unique

continuous extension ϕ̂ : H3 ∪ Ĉ → H3 ∪ Ĉ, whose restriction to H3 is an isometry of

(H3, dH3).

Conversely, every isometry of (H3, dH3) is obtained this way.

Proof. We have the existence from Lemma 2.4.1. Let ψ denote an isometry of (H3, dH3).

Now, we wish to find a linear(or antilinear) map ϕ whose isometric extension to H3 agrees

with ψ.

Being an isometry ψ sends the oriented geodesic 0∞ to another complete geodesic of H2

oriented from z1 → z2, as there is a linear fractional transformation taking 0 → z1 and

∞ → z2, therefore, ψoϕ
−1 sends the geodesic to itself. Without loss of generality, we replace

ψoϕ−1 with ψ.

Composing with scaling, we get that ψ fixes some and hence all points of 0∞. Let g be

a complete geodesic in the half plane H2 ⊂ H3 and crosses 0∞ at a point P0. The, ψ(g)

is a complete geodesic passing through P0. As H2 may be realized as a union of complete

geodesics that meet both 0∞ and g − {P0}. Therefore, ψ(H2) is the union of complete

geodesics that meet both 0∞ and ψ(g)−{ψ(P0)}. Composing with an isometry, if necessary,

we get that ψ(H2) = H2.

Thus, ψ restricts to an isometry on H2. Now, by theorem 2.2.3, we find a linear(or antilinear)

fractional map ϕ, with real coefficients such that ϕ̂ coincides with ψ. Then ψoϕ−1 is a

hyperbolic isometry of H3, which fixes every point. We argue as in Lemma 2.2.2 that ψoϕ−1

is either identity or euclidean reflection across H2. Lemma 2.4.2 gives the uniqueness of this

extension ϕ̂.
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Hence, we see that the group of orientation-preserving isometries of H3 is PSL(2,C) =
SL(2,C)/± I. It acts on the boundary ∂H3 via Möbius transformations.

sing the matrix form

[
a b

c d

]
and trace τA we can classify the orientation preserving Möbius

transformations, apart from identity as,

1. Parabolic A is parabolic if the following equivalent criteria is satisfied:

• A is conjugate to z → z + 1.

• A has exactly one fixed point in S2.

• τA = ±2 and A ̸= id.

2. Elliptic A is elliptic if the following equivalent criteria is satisfied:

• A is conjugate to z → e2iθz, with 2θ ̸= 2π.

• A has two fixed points in S2 and the derivative of A has absolute value 1 at both

of them.

• τA ∈ (−2, 2).

3. Loxodromic A is loxodromic if the following equivalent criteria are satisfied:

• A is conjugate to z → λ2z with |λ| > 1.

• A has two fixed points in S2, one with |A′| < 1, attracting and one with |A′| > 1,

repelling.

• τA ∈ C/[−2, 2].

A detailed proof for the above classification can be found in [12].

As discussed in the following section, given four ideal vertices of a given ideal tetrahe-

dron, there exists a Möbius transformation taking them to 0,1,∞ and z. The number z

characterizes the ideal tetrahedron up to isometry and is called the cross ratio parameter of

the ideal tetrahedron.
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2.4.1 Poincaré Disk Model

The underlying space for this model is the Euclidean unit disk in n dimensions Dn,

Dn = {x⃗ ∈ Rn : ||x|| < 1}, with the metric ds2 =
4||dx⃗||2

(1− ||x⃗||2)2
.

This model is conformal in nature. The geodesics are Euclidean circles meeting ∂Dn at right

angles or intersection of Euclidean lines through the origin with Dn.

We have discussed here two planar models for the hyperbolic space, namely the upper half

space model and the Poincaré disk model. There are several non-planar models of hyperbolic

space as well, for example the hyperboloid model and the Klein model. A detailed description

of these can be found in [3]. We have isometries of the hyperbolic space Hn taking one

model to the other. For example, the upper half space model and the Poincaré disk model

are related by the differentiable mapping,

i : Dn → Rn as x 7→ 2
x+ en

||x+ en||2
− en

where en = (0, 0, ....., 1) and ||.|| denotes the Euclidean norm on Rn.

2.5 Isometries of Hn

Let I(M) for a Riemannian manifold M denote the sets of all isometric diffeomorphisms

of M onto itself. If M has an orientation, we denote the set of all orientation-preserving

isometries of M as I+(M). Both the sets form groups under composition.

We denote the set of conformal diffeomorphisms ofM ontoN by Conf(M,N ), so Conf(M)

and Conf+(M) denote the set of all conformal diffeomorphisms of M onto itself and the

orientation preserving self-diffeomorphisms of M respectively. Again, both of these sets

form groups under composition. Having studied the inversions with respect to S1, S2, we

now define inversions in a more general setting, as

Definition 2.5.1. If x0 ∈ Rn and α > 0, the inversion with respect to the sphere M(x0, α)

with centre x0 and radius
√
α, is defined as the following mapping:

ix0,α : x 7→ α.
x− x0

||x− x0||2
+ x0
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We deduce that inversion ix0,α is a conformal mapping.

Lemma 2.5.1. For the manifold Dn, unit ball endowed with the metric described above, we

have that, the isometries of Dn are precisely the conformal mappings of open Euclidean unit

ball Dn of Rn.

Theorem 2.5.2.

I(Hn) = Conf(Hn) and I+(Hn) = Conf+(Hn)

Proof. Consider the diffeomorphism

i : Dn → Rn as x 7→ 2
x+ en

||x+ en||2
− en

where en = (0, 0, ....., 1) and ||.|| denotes the Euclidean norm on Rn. We can see that this

is the inversion with respect to center (0, 0, ....0,−1) and radius
√
2. Hence, this map is

conformal. Using the lemma 2.5.1, we see that the isometries of Hn are the conformal

mappings of Hn.
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Chapter 3

Hyperbolic knots and links
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Figure 3.1: (a) Trefoil Knot; (b) Hopf Link; (C) Borromean Rings

In this chapter, we discuss knots and links whose complements admit hyperbolic struc-

ture. We have based the content of this chapter on material from [16].

3.1 Terminology

Definition 3.1.1. A knot K ⊂ S3 is a subset of points homeomorphic to S1 under a piecewise

linear(PL) homeomorphism. Alternatively, we can think of a knot as a PL embedding K :

S1 → S3.

Examples: See Figure 3.1 (a) the parametrization, x = sint + 2sint2t, y = cost − 2cos2t,

z = −sin3t, gives the trefoil knot.

Definition 3.1.2. A link is a subset of S3 PL-homeomorphic to a disjoint union of copies

of S1, alternatively a PL-embedding of disjoint copies of S1 into S3.

Examples: See Figure 3.1 Borromean rings, the Hopf link.

Definition 3.1.3. We say that two knots K1, K2 are said to be equivalent if they are ambient

isotopic, i.e ∃ a PL-homotopy h : S3 × [0, 1] 7→ S3 such that h(∗, t) = ht : S
3 7→ S3 is a

homeomorphism for each t, and h(K1, 0) = h0(K1) = K1 and h(K1, 1) = h1(K1) = K2.

Remark

1. We generally use the symbol K for both the embedding and image K(S1).

2. We will also use smooth embeddings, diffeomorphisms, and smooth homotopies/iso-

topies instead of PL homeomorphisms. In dimension 3, since the PL and smooth

categories are equivalent [14], we can switch between the two categories.
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Figure 3.2: (a) A Torus knot, trefoil ; (b) a satellite knot, a second whitehead double of the
trefoil ; (c) a hyperbolic knot, the Figure-8 knot, from [1]

3. An embedding of S1 into S3 that can not be made piecewise linear defines a wild knot.

We avoid wild knots in our discussions, as doing so will enable us to assume that a

knot has a regular tubular neighborhood, i.e. there is an embedding of S1 ×D2 in S3

such that S1 × {0} maps to the knot.

Definition 3.1.4. A torus knot is a knot that can be embedded on the surface of an unknotted

torus in S3. See Figure 3.2 (a).

Example: The trefoil knot is the (3,2) torus knot, where 3 denotes the number of times

the knot wraps meridionally around the torus and 2 denotes that the knot wraps twice

longitudinally around the torus.

Definition 3.1.5. A satellite knot is a knot that can be embedded in a regular neighborhood

of another knot in S3. See Figure 3.2 (b).

Definition 3.1.6. (i)For a knot K, let N(K) denote an open regular neighbourhood of K in

S3; (ii) The knot exterior is defined to be the manifold, S3/N(K); (iii) The knot complement

is the open manifold S3/K, homeomorphic to the interior of S3/N(K).

Definition 3.1.7. A knot or link L is said to be hyperbolic if the manifold S3/L can be given

a metric of constant curvature -1. See Figure 3.2 (c).

Thurston showed that a knot complement will either be Seifert-fibered, toroidal or hy-

perbolic.

Theorem 3.1.1. (Thurston [21]) The knots whose complement can be Seifert-fibered consist

of torus knots. Toroidal knot complements are exactly the satellite knots. All other knots are

hyperbolic.
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Figure 3.3: A projection of the link K15a58938, from [7]

Hyperbolic knots form the largest class of knots, we discuss the decomposition of hyper-

bolic knot complements in detail in the sections to follow. By the Mostow-Prasad rigidity

theorem, stated later, we have that if a knot complement admits a hyperbolic structure then

that structure is unique. Since the decomposition of the complements of the alternating

knot follows the combinatorics of the link diagram, and hence the hyperbolic geometry of

the alternating knot complements may be understood via the knot diagrams.

3.2 Link diagrams

Definition 3.2.1. A knot(or link) diagram is a 4-valent graph with over/under crossing

information at each vertex. The diagram is embedded in a plane S2 ⊂ S3, called the projection

plane.

Example: Figure 3.3 depicts a projection of the knot K15a58938.

Definition 3.2.2. A projection graph Γ(L) of link (L) refers to a 4-valent graph of a link

when projected in a plane. The regions of the plane cut by the projection graph are called

faces of Γ(L).

Definition 3.2.3. An alternating diagram of a knot is a diagram with an orientation which

when followed the strand goes through over and under crossings alternatively. An alternating

knot or link is a knot or link that has an alternating diagram.
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Figure 3.4: The three Reidemeister moves

Figure 3.5: (a) A nugatory crossing; (b) A reducible crossing

There are some properties of the knot diagrams which serve as knot invariants. For ex-

ample, there are loops that can be untwisted to simplify the knot diagram, and the three

Reidemeister moves, Figure 3.4 to change the knot diagram equivalently into another dia-

gram.

Definition 3.2.4. A nugatory crossing is a single crossing forming a loop, as shown in

Figure 3.5 (a). A reducible crossing, Figure 3.5 (b) is a crossing through which we may draw

a circle γ on the plane of projection such that γ meets the diagram only at one point. A knot

diagram is said to be reduced if it contains no reducible crossings.

Definition 3.2.5. A twist region is a string of bigon regions in a knot diagram arranged

end-to-end from one end to the other.

Definition 3.2.6. For any twist region of any link diagram, we add an unknotted component

to the diagram which encircles the two strands of the link. The resulting link is said to be

augmented, the added link component, an unknotted component is called a crossing circle and

the original link components are called knot strands.
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Figure 3.6: (a) A fully augmented link with a diagram that is not prime; (b) A fully aug-
mented link that is not reduced; (c) The diagram is twist-reduced if one of the regions A or
B consists of only of bigons in a twist region.

Figure 3.7: Some fully augmented links from [16]

When a crossing circle is added to all twist regions in a knot diagram, the resulting link

is said to be fully augmented.

Example: Figure 3.6 and 3.7 depict some fully augmented links.

Fully augmented links form a special subclass of links with interesting geometric prop-

erties [15]. The hyperbolic volume of fully augmented link complements come up in our

volume computations in Chapter 6.

Definition 3.2.7. A fully augmented link with a link diagram L is called reduced if the

following hold.

1. L is connected.

2. L is prime, i.e. any closed curve meeting the diagram twice bounds a region on one

side with no crossings.

3. None of its crossing circles are parallel. That is, there are no closed curves in the

diagram running over exactly two crossing circles and meeting exactly two white faces
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on either side of the two crossing circles.

Definition 3.2.8. A diagram is twist-reduced if it bounds a string of bigons arranged end-

to-end in a simple closed curve that meets the diagram exactly twice in two crossings.

3.3 Determining the geometry of the knot complement

In this section, we begin by discussing the decomposition of manifolds into topological ideal

polyhedra and then we study the hyperbolic structures on manifolds.

Definition 3.3.1. 1) Let M be a 2-manifold. A topological polygonal decomposition of M is

a combinatorial way of gluing polygons so that the result is homeomorphic to M.

2) A geometric polygonal decomposition of M is a topological polygonal decomposition along

with a metric on each polygon such that gluing is by isometry and the result of the gluing is

a smooth manifold with a complete metric. [16]

Definition 3.3.2. Let X be a manifold, and G a group acting on X. We say that a manifold

M has a (G,X)-structure if for every point x ∈M , there exists a chart (U, ϕ),where U ⊂M

and ϕ(U) ⊂ M open, and if two charts (U, ϕ) and (V, ψ) overlap, then the transition map

γ = ϕoψ−1 : ψ(U ∩ V ) → ϕ(U ∩ V ) is an element of G.

Example (1): Consider the Euclidean torus T 2 = R2/Z2, let X be the two dimensional

euclidean space R2 and G = Isom(R2).Then, T 2 admits a (Isom(R2),R2)-structure as follows,

let p : R2 → T 2 be a covering map. Pick a point p ∈ T 2, let V be the open disc around p, and

U ⊂ R2 be such that p|U : U → V is a homeomorphism. Then, ((D, p|−1
U )) is a chart around

p. If two charts (U, p|−1
U ) and (V, p|−1

V ) overlap, then the transition map γ = (p|−1
U )o(p|−1

V )−1

is a euclidean translation.

Definition 3.3.3. Let X = H2 and G be Isom(H2). We say that a 2-manifold N is hyperbolic

or admits a hyperbolic structure when N has a (Isom(H2),H2)-structure.

We may obtain hyperbolic manifolds of dimension two from geometric polygonal decom-

position. We begin with a collection of hyperbolic polygons in H2,(say triangles) such that

each polygon is convex and edges of the polygons are portions of geodesic curves in H2. To

each edge, we associate one other edge and glue the polygons along the associated edge. This
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gluing admits a hyperbolic structure if every point has a neighborhood that is isometric to

a disc in the hyperbolic plane. Furthermore, we have that gluing hyperbolic polygons gives

a manifold with hyperbolic structure if and only if the angle at each vertex of the polygons

sums up to 2π.

Moving onto the discussion on the completeness of the metric, we define the concept of

developing map and holonomy.

Developing map and holonomy

Consider a manifold M with a (G, X)-structure, where G is the group of real analytic

diffeomorphisms acting transitively on X. Consider the universal cover M̃ ofM , and consider

an element [α] ∈ M̃ , where α : [0, 1] → M is the representative path of the class [α], we fix

a base point α(0) = x0 ∈M contained in the chart (U0, ϕ).

Now we find a partition 0 = t0 < t1 < t2...... < tn = 1 for the charts (Ui, ϕi) such that

α([ti, ti+1]) ⊂ Ui ∀i. Denote the points α(ti) as xi. Therefore, each xi ∈ Ui−1 ∩ Ui for all

i. Then the transition map γi−1,i = ϕi−1oϕi acting on xi is a well defined element in G. We

first extend ϕ0 to Φ1(t) : [0, t2] → X as,

Φ1(t) =

ϕ0(α(t)) if t ∈ [0, t1]

γ0,1(x1).ϕ1(α(t)) if t ∈ [t1, t2]

As, ϕ0(α(t1)) = γ0,1(x1).ϕ1(α(t1)), this map is well defined in [0, t2]. Now we inductively

extend this map to Φi(t) : [0, ti+1] → X as,

Φi(t) =

Φi−1(t) if t ∈ [0, ti]

γ0,1(x1).γ1,2(x2).....γi−1,i(xi).ϕi(α(t)) if t ∈ [ti, ti+1]

Again as Φi−1(α(ti)) = γ0,1(x1).γ1,2(x2).....γi−2,i−1(xi−1).ϕi−1(α(t)) and as ϕi−1(α(ti)) =

γi−1,i.ϕi(α(ti)), this map is well-defined. We repeat the process n − 1 times and end up

with Φn−1 : [0, 1] → X.

Definition 3.3.4. The developing map D : M̃ → X is the map D([α]) = Φn(1) =

γ0,1(x1).γ1,2(x2).....γ(n−2),(n−1)(xn−1).ϕn−1(α(1)).

From this construction, we also get a map Φ[α] : U → X, where U is a neighbourhood of
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Figure 3.8: Developing a Euclidean
torus

Figure 3.9: Extending a horocyle in-
side the manifold

α(1), as,

Φ[α](x) = γ0,1(x1).γ1,2(x2).....γ(n−2),(n−1)(xn−1).ϕn−1(x)

Now, if [α] ∈ M̃ is a homotopy class of loops based at xo in M. Then, (U,Φ[α]) and (U0, ϕ0)

are two charts in the neighbourhood of x0, they differ by an element of G, say g[α], such that

Φ[α] = g[α].ϕ0. Using the covering transformations of M̃ , we can show that,

Lemma 3.3.1. The map ρ : π1(M,x0) → G given as [α] 7→ g[α] is a group homomorphism.

Definition 3.3.5. The element g[α] is called the holonomy of [α]. The group homomorphism

ρ is called the holonomy of M . Its image, ρ(π1(M,x0)) is the holonomy group of M .

Example: We consider the Euclidean torus. Pick a meridional and longitudinal curve on

the torus and let x bet the intersection point of the two. Now, we consider a non-trivial

curve γ based at x. The point x has a chart mapping x onto the Euclidean plane, let it

be a parallelogram (I) with the usual gluing to get a torus. As the curve γ (in red) passes

through the meridian (or longitude), we must glue the next parallelogram (II) opposite to

the side we left. See Figure 3.8. We continue the process resulting in a tiling of the plane by

the parallelograms which is the image of the developing map, or it is the developing image

of the Euclidean torus.
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3.3.1 Completion of polygonal gluings

Let M be an oriented hyperbolic 2-manifold obtained by gluing ideal hyperbolic polygons.

An ideal vertex of M is an equivalence class of the ideal vertices of the polygons, identified

via gluing. Let v be an ideal vertex of M, then v is identified with some vertex v0 of a

polygon P0, let h0 be the horocycle centered at v0 on P0. h0 meets an edge e0 of P0 such that

a polygon P1 is glued through the edge e0, meeting an ideal vertex v1, which is identified to

v. Hence, h0 can be extended to a h1, a horocycle centered at v1. We continue the process

counter-clockwise, and since we have a finite number of polygons, we end up again at vertex

v0 of P0. See Figure 3.9.

Definition 3.3.6. Let d(v) denote the signed distance, marked by a blue arrow in Figure

3.9, between h0 and h1 on P0. The sign is taken such that if hn is closer to v0 than h0, then

it is positive.

Note that d(v) does not depend on the choice of h0 and v0. The computation of d(v)

can be done easily if we look at the polygons in H2 using developing maps and holonomy as

follows:

We begin by fixing a vertex v0 ∈ P0, then we put P0 in H2 with v0 at ∞. We then take

a horocycle h0 centered at ∞ intersected with P0. We follow h0 to the right and where it

meets the edge of P0, P1 is glued, the developing map aids us in embedding P2 in H2. We

continue the horocycle until it meets the vertex v0 at ∞. When this happens we will glue

an isometric copy of polygon P0 to the P0 we started with, with isometry (say, f) being the

holonomy of the closed path encircling ideal vertex v counter-clockwise, taking h0 to f(h0),

which is at a distance d(v) from the extended horocycle h0. See Figure 3.10. Hence we are

in the position to state the following theorem,

Theorem 3.3.2. Let S be a surface with a hyperbolic structure obtained by gluing hyperbolic

polygons. Then, the metric on S is complete if and only if d(v) = 0 for all ideal vertices v.

Using the concept of developing maps and holonomy, Thurston proved the following

criterion for completeness that holds in all dimensions and all geometries:

Theorem 3.3.3. Let M be an n-manifold with a (G,X)-structure, where G acts transitively

on X, and X admits a completely G-invariant metric. Then, the metric on M inherited from

X is complete if and only if the developing map D : M̃ → X is a covering map. [22]
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Figure 3.10: Extending the horocycle in H2

3.3.2 Polyhedral Decomposition of alternating link complement

Here we discuss the polyhedral decomposition of a knot (K) complement. We decompose

S3 − K into two ideal polyhedra. These polyhedra can be realized as two balloons: one

expanding above the diagram and one below the diagram. The balloons meet in the regions

cut out by the diagram of the knot. We label these regions of the diagram, they will corre-

spond to the faces of the polyhedra. The faces meet up at the edges, there is one edge for

each crossing, and the edge runs vertically from the top of the crossing to the bottom. We

give a step-by-step construction for a combinatorial method to describe the polyhedra.

Step 1 We start by labeling the regions of the projection plane cut by the graph of the

knot. We put edges at each crossing to connect the two arcs, these arcs are known as the

crossing arcs. We draw each edge four times, with the edge being ambient isotopic to the

other three.

Step 2 Now we shrink the knot to the ideal vertices on the top polyhedra. While talk-

ing about the top polyhedron, we see that two of the edges of the over-strand are isotopic

and we may identify them. Now we shrink each over-strand to ideal vertices. The resulting

picture consists of a pattern of faces, edges and vertices in a view of the top polyhedron.

Step 3 We do the same construction, but for the bottom polyhedra. We first identify

the two isotopic edges on the under-strand and then collapse each under-strand to the ideal

47



vertices. The resulting pattern depicts the bottom polyhedron viewed from the outside.

Polyhedral Decomposition of Figure-8 complement

We consider the example of the complement of the Figure-8 knot. We follow the steps 1-3

described in Figure 3.11. We label the regions of the projection graph, see Figure 3.11 (a),

and we put four ambient isotopic edges from an over-strand to an under-strand, Figure 3.11

(b). We then construct the top polyhedron viewed from inside by identifying isotopic edges,

Figure 3.11 (c), and shrink knot strands to the ideal vertices, Figure 3.11 (d). We do a

similar process for the bottom polyhedron viewed from outside, see Figure 3.11 (e), (f).

Now that we have both the top and the bottom polyhedra, we glue them face-wise. Note

that we have to glue them via a clockwise rotation to respect the orientations for each

face labeled in the knot diagram in Figure 3.11 (a). Hence, we have obtained a polyhedral

decomposition for the complement of the Figure-8 knot.

The polyhedra obtained above may contain bigons, a face with two edges and two ideal

vertices. Since both edges are isotopic due to each face being simply connected, we may

collapse the bigon to a single edge. In our case, the bigons between (u1, u2), (u3, u4) and

(v1, v2), (v3, v4) may be collapsed and we get the result for top polyhedron, Figure 3.12 (a)

and the bottom polyhedron, Figure 3.12 (b). We get that each polyhedron is in fact a

tetrahedron.

Polyhedral Decomposition of Borromean rings complement

Here we discuss the polyhedral decomposition of the complement of the Borromean rings.

One distinguishing feature here is that the knot diagram has no bigons. Figure 3.13 (a)

through (f) depict the step-by-step application of the algorithm described above to get the

top polyhedron viewed from inside, Figure 3.13 (d) and bottom polyhedron viewed from

outside, Figure 3.13 (f).
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Figure 3.11: Polyhedral decomposition of the knot 41 into top and bottom polyhedra.

Figure 3.12: (a) Top and (b) Bottom, polyhedra with bigons removed.
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Figure 3.13: Polyhedral Decomposition of the link L6a4 into top and bottom polyhedra.
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3.4 Hyperbolic Structures: Triangulations and Gluing

Now we move on to study the polyhedral decomposition in three dimensions and in particular

decomposition into ideal tetrahedra.

Definition 3.4.1. Let M be a 3-manifold. A topological ideal triangulation of M is a com-

binatorial way of gluing truncated tetrahedra (ideal tetrahedra) so that the result is homeo-

morphic to M. Truncated parts will correspond to the boundary of M.

For any given knot complement, we take its polyhedral decomposition, as defined in the

earlier section and for each face, we pick an ideal vertex and subdivide the face into triangles

sharing the chosen ideal vertex. Now, if we glue the polyhedra, keeping in mind the chosen

vertex at each face, it results in a topological ideal triangulation for the complement of the

knot.

Example 2 continued: Triangulation of the polyhedra associated to the Bor-

romean rings

We begin with the polyhedra obtained in Figure 3.13. Earlier, we were viewing the top

polyhedra from the inside, we now reflect it and rotate to get Figure 3.14 (a). To understand

triangulation better, we map out faces and vertices on a regular octahedron, see Figure 3.14

(b). We put an edge between the vertices u3, u4, dashed black line in Figure 3.14 (a), and

we get four tetrahedra as shown in Figure 3.14 (c). We do the same process for the bottom

polyhedron, visualized in Figure 3.13, and we join the vertices v3, v4, see Figure 3.14). The

bottom polyhedra divides into four tetrahedra depicted in Figure 3.14 (f). This gives a

topological ideal triangulation for the complement of Borromean rings. All four tetrahedra

are glued face-wise following the direction of the edges.

Edge parameters for ideal tetrahedra

Let T be an ideal tetrahedron embedded in H3, it has six edges. Suppose we pick and edge

and send its endpoints to 0 and ∞, then via a unique möbius transformation (an isometry)
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(a) (b)

(c) (d)

(e) (f)

Figure 3.14: Triangulation of the top and bottom polyhedra of Borromean rings complement.
Note that the edge (v3, v4) and (u3, u4) are dashed differently in (b) and (e), to signify a
constructed edge and later on we use the regular dashed edge to represent v3, v4 and u3, u4
in (c) and (f).
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Figure 3.15: The edge invariants, image from [16]

ϕ, we can send one other vertex to 1 and the other to a z′ ∈ C. We assume that z′ has a

positive imaginary part, if not we can use an isometry to send it to a point with a positive

imaginary part. We say that z(e) := z′ is the edge-invariant for the edge e. See Figure

3.15.

Lemma 3.4.1. For a tetrahedron T, there are 6 edges. Let e1 denote the edge running from

0 to ∞, the third vertex at 1 and the fourth one at z. Let e2 denote the edge running from 1

to ∞ and e3 be the edge running from z to ∞. Then, the edge invariants, z(e1), z(e2), z(e3)

are related by the following relations:

z(e1)z(e2)z(e3) = −1 and

1− z(e1) + z(e2)z(e3) = 0

Proof. We consider three cases for e1, e2 and e3. Case I For e1, we directly have that

z(e1) = z. Case II For e2, we consider an isometry fixing ∞, 1 7→ 0 and z 7→ 1, i.e

w 7→ w − 1

z − 1
. This isometry sends 0 to

−1

z − 1
. Hence, z(e2) =

−1

z − 1
. Case III For e3,

consider the isometry fixing ∞, z 7→ 0 and 0 7→ 1, so it is given as w 7→ w − z

−z
, hence it

sends 1 to
z − 1

z
. The edge invariants therefore are,

z(e1) = z; z(e2) =
−1

z − 1
; z(e3) =

z − 1

z
. (3.1)
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Now we consider the gluing of ideal tetrahedra. We fix an edge e of the gluing and

let T1 be the tetrahedron with edge e1 glued to e. We put T1 in H3 with edge e1 from

0 to ∞, then the other vertices are 1 and z(e1). This gluing identifies each face of T1

with another face in a different tetrahedron glued to e via edge e2. Let F1 denote the

face with vertices 0,∞, z(e1), we wish to glue F1 to a F ′ in T2, so we use an isometry

of H3 fixing points 0,∞ and sending 1 7→ z(e1) and the other vertex to z(e1)z(e2). We

continue adding tetrahedra T3, T4, .... in a similar fashion counter-clockwise. Eventually, we

will end up with a tetrahedron Tn gluing to T1. the vertices of this tetrahedron will be at

0,∞, z(e1)z(e2)....z(en−1) and z(e1)z(e2)....z(en).

Theorem 3.4.2. Let M3 denote a topological ideal triangulation such that each tetrahedron

has a hyperbolic structure. A hyperbolic structure on the gluing of the tetrahedra, resulting

in M, is induced by the hyperbolic structure on each tetrahedron if and only if for each edge

e, Πz(ei) = 1 and
∑
arg(z(ei)) = 2π, where the sum and the product are over the edges that

glue to e.

Proof. We assume that the M3 obtained from gluing ideal tetrahedra has a (Isom(H3),H3)-

structure. So, every point p ∈ M has a neighborhood isometric to a ball in H3. Consider a

point on an edge. If it has a neighborhood isometric to a ball, then the sum of the dihedral

angle about the edge must be 2π, i.e.
∑
arg(z(ei)) = 2π. Moreover, as the last face of the

last tetrahedron should glue to the face of the first tetrahedra with vertices at 0,∞, z(e1)

and 1, hence, z(e1)z(e2)....z(en) = 1 or Πz(ei) = 1

Conversely, if we have that Πz(ei) = 1 and
∑
arg(z(ei)) = 2π, then any point on the edge

under the gluing has a 3-dimensional open disk isometric to a ball in H3.

The equations in the Theorem 3.3.1 are known as the gluing equations for a particular

edge e. Note that the z′is satisfying the gluing equations give a hyperbolic structure on M

which is in general incomplete.
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Figure 3.16: Ideal polyhedra associated with Figure-8 knot complement

Example 1 continued: Gluing equations for the Figure-8 complement

To calculate the gluing equations for the Figure-8 decomposition, we need to modify it a

little bit. In the earlier construction, we were looking at the top polyhedra from the inside,

now we need to look at it from the outside. See Figure 3.16. We assign complex numbers

to each tetrahedron, z1, z2, z3 and w1, w2, w3, respectively. We divide edges into two classes,

one with a single line through it and the other with two lines through it. We calculate edge

invariants for each class and get the gluing consistency equations.

For the edge with a single line across, we get.

z1z3z1w1w3w1 = 1 or z21z3w
2
1w3 = 1

For the edge with two lines across it, we get,

z2z2z3w2w3w2 = 1 or z22z3w
2
2w3 = 1

Substituting z1 = z, w1 = w and using equation 3.1, we get that

z2.
z − 1

z
.w2.

w − 1

w
= 1

this simplifies to,

z.(z − 1).w.(w − 1) = 1
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Figure 3.17: Solutions for gluing equations for Figure-8 complement.

Solving for z in terms of w,

z =

1±
√

1 +
4

w(w + 1)

2

For the triangulation to have a hyperbolic structure, we need to ensure that Im(z), Im(w) >

0 we see that solutions exist if

√
1 +

4

w(w + 1)
is not positive and real. Thus, the solutions

for w can be parameterized as the space in Figure 3.17. One particular solution is z = w =
1

2
+
i
√
3

2
. We will see that this solution gives a complete hyperbolic structure to the Figure-8

knot complement.

Example 2 continued: Gluing equations for the Borromean rings complement

We now calculate the gluing equations for the Borromean rings’ complement. We recall the

triangulations of the top and bottom polyhedra from Figure 3.14. To each polyhedra, we

assign complex numbers, {zj, z′j, z′′j } and {wj, w
′
j, w

′′
j } for j = 1, 2, 3, see Figure 3.18. We

note that each collection, for a particular value of j, follows the equation 3.1. We read off

the gluing equations for the edges of each color as:

z1z2z3z4w1w2w3w4 = 1, Black edge

z′3z
′′
3z

′
4z

′′
4w

′
3w

′′
3w

′
4w

′′
4 = 1, Blue edge

z2z3w2w3 = 1, Red edge

z′1z
′′
2z

′
3z

′′
4w

′
1w

′′
2w

′
3w

′′
4 = 1, Dark green edge

z′′1z
′
2z

′′
3z

′
4w

′′
1w

′
2w

′′
3w

′
4 = 1, Light blue edge
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Figure 3.18: Triangulations of the top and bottom polyhedra.

z′1z
′′
1z

′
2z

′′
2w

′
1w

′′
1w

′
2w

′′
2 = 1, Light green edge

z1z4w1w4 = 1, Orange edge

We notice that one solution to the above equation is zj = wj = i, z′j = w′
j =

i+ 1

2
and

z′′j = w′′
j = i + 1 , for j = 1, 2, 3. We will see that this solution corresponds to a complete

hyperbolic structure on the link complement.

3.4.1 Completeness

Definition 3.4.2. Let M be a 3-dimensional manifold with a torus boundary. We define a

cusp or a cusp neighborhood of M to be the neighborhood of ∂M homeomorphic to the product

T 2 × I. A cusp torus is the torus component, i.e. the boundary component, of ∂M .

Definition 3.4.3. Let M have an ideal topological triangulation. We truncate the vertices

of each ideal tetrahedron, we obtain a collection of triangles lying on the boundary of a cusp.

The edges of the triangles inherit a gluing from the gluing of the faces of the tetrahedra,

this results in a triangulation of each boundary torus. We call this triangulation a cusp

triangulation.
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Figure 3.19: Cusp triangulation of the Figure-8 knot

Example 1 continued: the cusp triangulation of Figure-8 knot can be seen in Figure

3.19.

Theorem 3.4.3. A 3-manifold M with a torus boundary with hyperbolic structure (Isom(H3),H3)

has a complete hyperbolic structure if and only if for each cusp of M, the induced structure

on the boundary of a cusp is a Euclidean structure on the torus.

Let M be a manifold with a topological ideal triangulation, and a hyperbolic structure

such that gluing of the tetrahedra follows the Theorem 3.4.2. For the boundary T of a cusp

of M and [α] ∈ π1(M), we associate a complex number H(α) as follows:

The loop α is homotopically equivalent to a curve running monotonically through any tri-

angle of the cusp triangulation. Denote the edge invariants of the corners cut off by α by

z1, z2, ..., zn. We also associate a value ϵi = ±1 in the following way: ϵi = 1 if the i − th

corner cut off by α lies to the left of α and ϵi = −1 if the corner lies to the right of α. Now

we define,

H(α) =
n∏

i=1

zϵi

Proposition 3.4.4. Completeness Equations Let T denote the torus boundary of a cusp

neighborhood of M, where M admits a topological ideal triangulation, and the ideal tetrahedra
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components of M admit hyperbolic structure and satisfy the edge gluing equations. Then

let α, β be generators of π1(M). If H(α) = 1 and H(β) = 1 are satisfied, then the ideal

triangulation is a geometric ideal triangulation and hence the induced hyperbolic structure is

complete.

Example 1 continued: For the cusp triangulation of the complement of the Figure-8

knot, Figure 3.19, consider the curve α, marked in red, we can write H(α) as,

H(α) = z3w
−1
2 z2w

−1
3 z3w

−1
2 z2w

−1
3 = (

z2z3
w2w3

)2

There is another curve β in green running horizontally, for β,

H(β) = z−1
2 w1 =

w1

z2

Solving the equations H(α) = 1 and H(β) = 1 . Using the equation 3.1,

z(e1) = z; z(e2) =
−1

z − 1
; z(e3) =

z − 1

z
.

H(α) simplifies as,

H(α) = (
−1

(z − 1)

(z − 1)

z

(w − 1)

−1

w

(w − 1)
)2 = (

w

z
)2

Simplifying H(β), we get,

H(β) =
w
−1

z − 1

= w(1− z)

Solving we get that z = w and hence z(1 − z) = 1 has a solution in the upper half plane,

z = w =
1

2
+
i
√
3

2
.

Example 2 continued: Completeness equations for Borromean rings comple-

ment The structure obtained by joining the two polyhedra has three cusps. We take cusp

triangulation of one cusp, the pink cusp in Figure 3.20 and calculate H(α) for α ∈ π1(M),

where M is a manifold with torus boundary and admits a topological ideal triangulation.

The triangulation is given in Figure 3.21.

We consider three generators of the fundamental group, α, β, γ, and completeness equations
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Figure 3.20: We write cusp triangulation of the cusp marked in pink.
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Figure 3.21: Cusp triangulation of the pink cusp marked in Figure 3.20; the fundamental
domain is highlighted in yellow with the opposite sides identified.

for each curve are:

H(α) = (w′
3)

−1z′3z
′′
2 (w

′′
2)

−1(w′′
4)

−1z′′4z
′
1(w

′
1)

−1 = 1,

H(β) = w′′
4(z

′′
4 )

−1(z′1)
−1w′

1w
′
3(z

′
3)

−1(z′′2 )
−1w′′

2 = 1,

and,

H(γ) = (w′
4)

−1z′4z
′′
3 (w

′′
3)

−1 = 1

Solving the equations simultaneously with gluing equations gives the edge parameters and

hence the complete hyperbolic structure. We observe that zj = wj = i, z′j = w′
j =

i+ 1

2
and

z′′j = w′′
j = i+1 , for j = 1, 2, 3 satisfies both the gluing and completeness equations. Hence,

it gives a complete hyperbolic structure on the complement of the Borromean rings.

Now, that we have a complete hyperbolic structure on the knot complements, we state

some important results for the complete hyperbolic structures.

Theorem 3.4.5 (Mostow-Prasad rigidity). IfMn
1 andMn

2 are complete hyperbolic n-manifolds
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with finite volume and n ≥ 3, then any isomorphism of the fundamental groups ϕ : π1(M1) →
π1(M2) is realized by a unique isometry.

Theorem 3.4.6 (Gordon-Leucke Theorem). If two knots have complements that are home-

omorphic by an orientation-preserving homeomorphism, then the knots are equivalent.

Thus, a hyperbolic structure on a knot complement is a complete invariant of the knot.
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Chapter 4

Right-angled volume
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In this chapter, we discuss the right-angled volume of alternating link complements de-

fined by Champanerkar, Kofman and Purcell in [6]. The exposition in this Chapter is based

on their paper.

4.1 Background

Given an alternating link diagram, the link complement has a combinatorial polyhedral

decomposition into polyhedra whose 1-skeleton is isomorphic to the projection of the link

diagram [13]. Champanerkar, Kofman and Purcell [6] investigated when these combinatorial

polyhedra can be given a hyperbolic structure and under what circumstances are the result-

ing hyperbolic polyhedra invariants of the alternating link. For a reduced, twist-reduced,

prime alternating link diagram of a hyperbolic link they constructed right-angled ideal hy-

perbolic polyhedra using 3 different approaches - geometry, topology and combinatorics, and

proved various properties of these hyperbolic polyhedra. In particular, they proved that the

collection of these hyperbolic polyhedra is an invariant of the alternating link diagram, and

is intrinsically related to the hyperbolic geometry of the link complement. The sum of the

volumes of these right-angled ideal hyperbolic polyhedra is called the right-angled volume of

the alternating link.

Below we define and explain the combinatorial construction of these right-angled ideal

hyperbolic polyhedra. We also recall definitions and properties of link diagrams from Chapter

3, section 3.2.

4.2 Polyhedral decomposition of alternating link com-

plements

We recall the decomposition of a knot complement into polyhedra from Chapter-3.

Theorem 4.2.1. [16] The complement of an alternating link L can be obtained by gluing

two ideal polyhedra P1 and P2 that satisfy the following:

1. P1 and P2 are obtained by labeling the boundary of 3-balls with the projection graph of
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L. One of the polyhedron is labeled from the inside and the other from the outside.

2. All ideal vertices have degree 4. They correspond to the over-crossings in the top

polyhedron and under-crossings in the bottom one.

3. Ideal edges correspond to crossing arcs in the diagram, and each edge class contains

four edges, two each on each polyhedron.

4. Faces correspond to regions of the diagram, and are checkerboard colored.

5. Each face of the top polyhedron is glued to the identical face in the bottom polyhedron.

The gluing rotates a face by one edge in a clockwise direction for white faces and rotates

by one edge in an anticlockwise direction for the shaded faces.

Let L be a link with reduced, prime, alternating diagram, and consider its associated

checkerboard surfaces, white (W ) and shaded (S). Then cutting S3 −K along both W and

S simultaneously decomposes into two identical (topological) ideal polyhedra. We call either

of these polyhedra the checkerboard polyhedron associated with the link diagram L. The

checkerboard polyhedra satisfies the properties of the above theorem.

4.3 Combinatorics of link diagrams

Let L be a reduced, twist-reduced, prime alternating diagram of a link, let Γ(L) denote its

4-valent projection graph and let Γ∗(L) denote its planar dual.

Definition 4.3.1. A k-circuit is a simple closed curve composed of k-edges of a graph G.

We are interested in 4-circuits in Γ∗(L) of a reduced, twist-reduced, prime alternating

link diagram. We call a 4-circuit trivial if it bounds a single crossing on either side. See

Figure 4.1.

Definition 4.3.2. Two 4-circuits are crossing parallel if they differ only by passing on oppo-

site sides of a single crossing. See Figure 4.1. Two circuits A and B are said to be parallel if

there exists a sequence of 4-circuits A1 = A,A2, A3, ....An = B such that each Aj is crossing

parallel to Aj+1 for all j = 1, . . . n− 1. See Figure 4.2.
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Figure 4.1: In blue: Two crossing-
parallel 4 circuits; In green: A trivial
4-circuit, from [6].

Figure 4.2: The gray(say A) and
the light blue(say B) circuits are
parallel with the sequence A1 =
A, blue, green, An = B, in a knot pro-
jection drawn in [7].

We can associate a punctured sphere to each 4-circuit by capping off the disks on either

side of the projection plane, this results in a Conway sphere i.e. a sphere in S3 which

intersects the link in 4 points.

Lemma 4.3.1. [6] Let A,B be 4-circuits in Γ∗(L) with corresponding 4-punctured spheres

Ā, B̄. Then the following are equivalent:

(i) A and B are parallel.

(ii) Ā and B̄ are ambient isotopic in S3 − L.

(ii) A and B cobound a rational tangle diagram.

Definition 4.3.3. 1. A pair of parallel 4-circuits A and B is called a maximal bounding

pair if A and B cobound a rational tangle diagram τ and there does not exist parallel

circuits A′, B′ that cobound a rational tangle τ ′ such that τ is a subtangle of τ ′.

2. Two maximal bounding pairs {A,B} and {A′, B′} are said to be disjoint if they cobound

disjoint rational tangle diagrams.

See Figure 4.3, for an example of maximal bounding pairs of 4-circuits. The Figure also

shows some 4-circuits, in red, that are not part of a maximal bounding pair.
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Figure 4.3: Left Two disjoint maximal bounding pairs of 4-circuits, shown in long dashed
line in blue; Right Elimination of all crossings between both maximal bounding pairs via
rational reduction; from [6]

Figure 4.4: Rational reduction of the knot 816 with the knot diagram from [7]

Rational Reduction of a link diagram

Definition 4.3.4. Let L be as above. We look for all pairwise disjoint maximal bounding

pairs of 4-circuits, and remove all crossings bound among each pair. In this step, each

rational tangle with one boundary component gets replaced with a crossing and all crossings

are removed from a rational tangle with two boundary components. We iterate this process,

as some 4-circuits may become parallel after the first step. Since we remove some crossings

at each step, the process ends with a diagram with no maximal bounding disjoint pairs. We

call this resultant diagram as the rationally reduced diagram, and the process is called rational

reduction of the diagram L.

See Figure 4.4 for the rational reduction of the knot 816. In Chapter 5 we discuss the

algorithm for rational reductions on Tait graphs of knot and link diagrams.

Definition 4.3.5. A prismatic 4-circuit is a circuit γ such that no two edges of Γ(K) that
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meet γ share a vertex in Γ(K).

Lemma 4.3.2. [6] Each non-trivial 4-circuit of a rationally reduced diagram of a link L is

a prismatic 4-circuit.

Proof. Let’s assume to the contrary that there exists a 4-circuit such that its edges meet at

a vertex, then the 4-circuit is adjacent to a crossing and we have a pair of crossing parallel

4-circuits, this contradicts the fact that the diagram is rationally reduced.

Andreev’s theorem

A combinatorial polyhedron P is a cell complex on S2 that may be realized as a three-

dimensional convex polyhedron. Steinitz’s theorem characterizes undirected graphs (known

as a polyhedral graph) formed by the 1-skeleton of a convex polyhedra as 3-connected simple

planar graphs. Andreev’s theorem characterizes a combinatorial polyhedron which can be

realized as a right-angled ideal hyperbolic polyhedron with the same combinatorial structure

as P with all the dihedral angles π/2.

Theorem 4.3.3. [Andreev’s theorem for 4-valent right-angled ideal polyhedra] A 4-valent

combinatorial polyhedron admits a realization as a right-angled ideal hyperbolic polyhedron if

and only if it has no nontrivial 4-circuits. The realization is unique up to isometry of H3.

Hence, we can deduce the following for the projection graph Γ of a reduced, twist-reduced,

prime, alternating link diagram K,

Lemma 4.3.4. Γ admits a realization as a right-angled ideal hyperbolic polyhedron if and

only if it has no non-trivial 4 circuits. This realization is unique up to the isometry of H3.

Proof. From the Steinitz theorem, we have that Γ is a polyhedral graph if and only if Γ is 3-

connected, simple and planar. Γ is simple if and only if it has no bigons and is 3-connected if

it has no prismatic 4-circuits. Also, if Γ has no non-trivial 4-circuits then it has no bigons(as

a result of the 3-connectivity). We therefore get the result from theorem 4.3.3.
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Figure 4.5: Left : A prismatic 4-circuit γ in red; Right Splitting the polyhedron along γ,
P//γ, from [6].

Prismatic 4-circuit decomposition

Definition 4.3.6. Let P be a 4-valent graph with no bigons, if γ is a prismatic 4-circuit for

the dual graph P ∗, then we define P split along γ or decomposition of P along γ, denoted by

P//γ as:

We fix a planar embedding for P, and then from this plane graph, we construct two new

graphs Pint and Pext, where Pint (or Pext respectively) consists of all edges and vertices of

P in the bounded (or unbounded respectively) component of R2 − γ, such that Pint and Pext

each have four 1-valent vertices which were incident to γ. Let Pint (or Pext) be the 4-valent

graph obtained by capping off the four 1-valent vertices by a vertex lying in the bounded (or

unbounded) region of R2 − γ. Then P//γ is the disjoint union of Pint and Pext. See Figure

4.5.

Definition 4.3.7. (Andreev Polyhedra) Let L be a reduced, twist-reduced, prime, alter-

nating link diagram. Let Γr(L) denote the projection graph of its rationally reduced diagram.

Then we split Γr(L) iteratively along the non-trivial 4-circuits such that the resultant graphs

are either,

(i) have a single vertex, or

(ii) have non-trivial 4-circuits, or

(iii) have no non-trivial 4-circuits
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We can apply Lemma 4.3.4 on graphs of case (iii). We discard all graphs of the case (i).

Now, for the graphs of the case (ii), we pick a prismatic 4-circuit, decompose the graph along

it, rationally reduce the components, and again look for 4-circuits and repeat the process, until

we eventually end up with graphs with no non-trivial 4-circuits and we can apply Lemma 4.3.4

on it. The resulting set of the right-angled ideal hyperbolic polyhedra is called the Andreev

polyhedra associated to L.

It is proved in [6] that the Andreev polyhedra are isomorphic to polyhedra constructed

with a geometric approach called guts polyhedra, and are also isomorphic to polyhedra con-

structed using a topological approach called tangle polyhedra. The invariance under change

in the link diagram follows from this equivalence. The other approaches are beyond the

scope of this thesis.

Now we can talk about the hyperbolic volume of the Andreev polyhedra, known as the

right-angled volume.

4.4 Right-angled volume

Now, with the Andreev polyhedra associated with a link, we define a geometric invariant for

links, called the right-angled volume.

Definition 4.4.1. Let L be a link with a reduced, twist-reduced, prime alternating diagram.

The right-angled volume vol⊥(L) is defined to be twice the sum of the volumes of the Andreev

polyhedra.

Note that the factor of 2 in vol⊥(L) arises because in many cases the checkerboard

polyhedra are twice the Andreev polyhedra.

The following is proved in [6] using the guts polyhedra:

Theorem 4.4.1. [6] For any hyperbolic alternating link (L) with hyperbolic volume vol(L),

vol⊥(L) ≤ vol(L).

The vol⊥ is computationally accessible via orthogonal circle packings, right-angled kites

and Milnor’s formula. Let L be a prime alternating link with a link diagram that is rationally
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reduced and has no nontrivial 4-circuits. Let Γ(L) be the projection graph of the link

diagram. Fix any crossing c of L, and let F(c) be the closure of the four faces of Γ(L) which

meet c.

Theorem 4.4.2. [6] Let G be the graph obtained by taking the central triangulation of each

face of Γ(L) that does not meet c, excluding the edges in Γ(L). Then G can be realized as an

Euclidean rectangle tiled by right kites, with one kite ke for each edge e of Γ(L) not in F(c).

Let θe and π - θe denote the other kite angles of ke. Then,

vol⊥(L) = 2
∑

(e∈Γ(L)/F(c)) Λ(θe/2) + Λ((π − θe)/2).

Note: Here

Λ(θ) = −
∫ θ

0

log |2 sin t|dt

is the Lobachevsky function.

Example: Here is an illustration of the above Theorem. We compute vol⊥(L) for L =

W (4, 3) = 940, as shown in Figure 4.6 (a). Note that the knot does not have any bigons or

prismatic 4-circuits so the projection graph Γ(L) is already rationally reduced.

1. We pick a crossing c, as labeled in Figure 4.6 (a), and make it an ideal vertex. The

resulting knot projection is depicted in Figure 4.6 (b).

2. As the projection is rationally reduced, we get right-angled hyperbolic structure of the

complement, viewed from ∞ as Figure 4.6 (c), with the circles on ∂H3 corresponding

to the geodesic faces.

3. We now subdivide the picture into a collection of 3/4 ideal tetrahedra by adding a

vertical edge running from the center of each circle to infinity, and adding faces from

this edge to the ideal vertices, as shown in Figure 4.6 (d). We see that there are

right-angled kites in the rectangle.

4. Using trigonometry, we mark the sides and angles, as in Figure 4.6 (e).

5. Considering the 2 × 2 square, we see that tan(
θ

2
) =

1

z
and z =

1

2
, we get that

θ

2
=

tan−1(2), thus θ ≈ 126.86989764◦.
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Substituting the values of angles and using Theorem 4.4.2, we find that vol⊥(940) ≈
14.65544925, and hence volume of each associated Andreev polyhedra is 7.327724625.
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(a) (b)

(c) (d)

(e)

Figure 4.6: Decomposition of the right-angled polyhedron associated to 940: (a) on the knot
projection of 940 from [7] pick a crossing c to be an ideal vertex;(b) knot diagram with c at
∞; (c) associated right-angled polyhedra with faces in H3 and c at ∞, viewed from ∞; (d)
joining center of circles of each color to divide the rectangle into right-angled kites;(e) the
labeled angles.
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Chapter 5

Algorithms and Computations
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In this chapter, we generalize the procedure of rational reduction and prismatic 4-circuit

decomposition to planar graphs and develop algorithms to check if planar graphs are ratio-

nally reduced and without prismatic 4-circuits. We extend the Felsner-Rote algorithm [9],

implemented by Manfred Scheucher [17] to alternating knots and links.

5.1 Tait graphs

Let L be a link diagram which is a 4-valent plane graph with crossing information at every

crossing. Let Γ(L) denote a projection graph of L i.e. the 4-valent graph L without the

crossing information. Since Γ(L) is a 4-valent graph, the dual graph is a square graph (every

face is a square) and hence bipartite. Every planar graph with all the faces of even length is

bipartite [18]. Hence, we have a checkerboard coloring of the knot projection graph Γ(L).

Definition 5.1.1. The Tait graph GL of a link diagram L is the signed plane graph whose

vertices are the shaded faces of L, the edges correspond to crossings of L and the sign for

every edge is assigned by the following rule:

Figures 5.1 and 5.2 show the Tait graph of an alternating knot K13a3 and a non-

alternating knot respectively. The Tait graph construction has the following properties:

1) There are two choices for checkerboard coloring. If we choose the other coloring we

obtain the planar dual G′
L with the edge signs reversed.

2) Reflecting all the crossings of the link results in the same Tait graph but with opposite

signs for the edges. For alternating link diagrams we get the same sign on all edges, so we

drop the signs.
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3) Assuming the checkerboard coloring is chosen so that all edges are always positive, the

Tait graph construction gives a bijection between planar graphs up to duality and alternating

links up to reflection.

4) Tait graphs can have cut vertices, multiple edges, degree two vertices and pendant

vertices depending on the link diagram.

5) Thistlethwaite [20] showed that for alternating link diagrams, the determinant of the

link equals the number of spanning trees of the Tait graph.

5.2 Rational Reduction Algorithm

In Chapter 4, section 3, we described the operation of rational reduction for an alternating

link diagram. In this section, we generalize this operation for Tait graphs of alternating

links. The idea is to get to a 3-connected simple plane graph starting from G. We know that

G is plane, we first need to make sure that all vertices have degrees greater than or equal to

3. Let L be a link with a reduced, twist-reduced, prime, alternating link diagram Γ(L). Let

G denote the Tait graph of L, and let G∗ denote its dual.

Lemma 5.2.1. 1. There are no vertices of degree 1 in G.

2. G has multiple edges or vertices of degree 2 if and only if L has bigons.

3. Rational reduction in L is equivalent to the following procedure in G: Collapse all multiple

edges of G, we make G simple and whenever there is a vertex of degree 2, we contract one

of the edges connecting the two vertices, and repeat the procedure again till we have no more

vertices of degree less than 3 or all vertices of degree 2. The resulting graph is simple and

either has all vertices of degree at least 3 or all vertices are degree 2.

Proof. For 1. we see that a vertex of degree implies a nugatory crossing in the knot projection

graph, which is not possible as L is reduced.

Now, we first remove all multi-edges and loops in the graphs so that the resulting graph is

simple. Now, we take the case of degree 2 vertices, we pick a vertex u of degree 2 and contract

one of the edges containing u as one endpoint, and let its other endpoint be ũ. So, now we

are left with one less vertex and a multi-edge at the vertex ũ. We remove the multi-edge.

This procedure turns a bigon on Γ(L) into a crossing. We repeat the procedure again and
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Figure 5.1: Tait graph of an alternating knot (a)K13a3, the knot projection from [7]

Figure 5.2: Tait graph of a non-alternating knot

we eventually end up with either all vertices of degree 2, in which case L is algebraic, or all

vertices of degree greater than 2. Simultaneously, all bigons are replaced by crossings and

then L gets rationally reduced.

See Listing 5.1 for a schematic of the code to rationally reduce a given Tait graph.

Example: We take the example of the knot K13a3, See Figure 5.1, then the relabelled Tait

graph looks like, G = (V,E), where V = (0, 1, 2, 3, 4, 5, 6) and E = [(0, 1), (0, 1), (0, 2), (0,

6), (0, 6), (1, 2), (2, 3), (2, 5), (2, 6), (3, 4), (3, 5), (4, 6), (4, 6)]. We remove all the multi-

edges in G. We see that vertices 1, 4, 5 have degree 2. We pick the vertex 1, we contract the

edge (1, 2), we relabel and again make sure that the graph is planar. We repeat the process

again till we have no vertices of degree less than 3. This results in a graph G′ = (V ′, E ′),

where V ′ = (0, 1, 2) and E ′ = [(0, 1), (0, 2), (1, 2)]. Since all vertices in V ′ have degree 2, we

realize that the knot projection K13a3 is algebraic or rational and hence vol⊥(K13a3) = 0.
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Listing 5.1: Rational Reduction

input = A graph G
output = rationally reduced graph G’

1 def rational_reduction(G):

2 G.remove_multiple_edges ()

3 degree = G.degree ()

4 if all(x <= 2 for x in degree)== True:

5 return (’The link is algebraic , so rav = 0’)

6 else:

7 deg_min = min(degree)

8 u_min = degree.index(deg_min)

9 if deg_min <= 2:

10 v = max(G.neighbors(u_min))

11 G.contract_edge ((u_min ,v))

12 G.relabel ()

13 return rational_reduction(G)

14 return G

Figure 5.3: A link projection, from [7], and its Tait graph, the dashed circle represents a
prismatic 4-circuit;

5.3 Prismatic 4-circuit decomposition algorithm

Lemma 5.3.1. We begin with the Tait graph G of L. We consider the rationally reduced

graph G′ of G. A prismatic 4-circuit, say γ, of G is a cut-set {u, v} of size two in the

rationally reduced graph G′. Hence, decomposing Γ(L) along γ is equivalent to decomposing

G′ along {u, v} as: We cleave G′ about {u, v}, i.e. we cut u and v from G, it disconnects

the graph into two components H1 and H2, we add the vertex u, v to both components again.

Proof. Let L be a reduced, twist reduced, prime alternating, rationally reduced link with

the projection graph Γ(L) and Tait graph G. See Figure 5.3 for an example. We look
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Figure 5.4: Components following prismatic decomposition.

for a prismatic 4-circuit, say γ in Γ(L). We notice that γ travels alternatively between

shaded and unshaded regions. Therefore, we see that in the Tait graph G, only two vertices

corresponding to γ are there. These vertices form a cut-set. Now, we cut along the cut-set

and add back these vertices to the components, G1 and G2. Then, we draw the medial

graphs of the components to get the corresponding link, say L1 and L2. See Figure 5.4 (a),

(b). Following the discussion from section 4.3, we also see that these are equivalent to the

regions Lext and Lint contained in L//γ.

If the projection graph Γ(L) has multiple prismatic 4-circuits, then we repeat the above

process for each component. This results in a collection of 3-connected simple planar graphs.

See Listing 5.2 for a schematic of the code for finding a prismatic 4-circuit and if present,

decomposing the graph along it to give the components.

Example: Consider the example of the link L14a21316, see Figure 5.3. Note that the

projection graph is rationally reduced, so any non-trivial 4-circuit is a prismatic 4-circuit.

The circuit marked by black in Figure 5.2 is a prismatic 4-circuit. The Tait graph is G =

(V,E), where V = (0, 1, 2, 3, 4, 5, 6, 7) and E =[(0, 1), (0, 2), (0, 5), (0, 6), (0, 7), (1, 3), (1,

4), (2, 3), (2, 4), (3, 4), (4, 6), (4, 7), (5, 6), (5, 7)]. Since the graph already has very vertex

of degree greater than 2. We note that {3, 7} is a cut-set of size 2. We cleave G along this

cut-set into two components, G1, G2; here V (G1) = 0, 1, 2, 3, 4 and E(G1) = [(0, 1), (0, 2),

(0, 3), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] and V (G2) = 0, 1, 2, 3, 4 and E(G2) = [(0, 1), (0,

2), (0, 3), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]. Both these components are 3-connected simple

planar graphs.
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Listing 5.2: Prismatic 4-circuit Decomposition

input = two copies of a graph G
output = A list of components after prismatic 4-circuit decomposition

1 def decomposition(G1 , G2):

2 rational_reduction(G1)

3 rational_reduction(G2)

4 cutsets = cutsets(G1)

5 if all(x ==2 for x in G1.degree ()) == True:

6 b = G2

7 a = {b.copy(immutable = True)}

8 else:

9 if all(len(y) == 2 for y in cutsets) == True:

10 e = random.choice(cutsets)

11 S_0 ,C_0 ,f_0 = G2.cleave(e)

12 complist = []

13 for g1 in S_0:

14 g1.relabel ()

15 rational_reduction(g1)

16 if all(x >=2 for x in g1.degree ()) == True:

17 complist.append(g1)

18 else:

19 g1 = decomposition(g1 ,g1)

20 a = complist

21 else:

22 b = G1

23 a = {b.copy(immutable=True)}

24 return a

25
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5.4 Computing right-angled volume

As earlier, we will consider a link L with a reduced, twist-reduced, prime alternating link

diagram. We consider its Tait graph G. We rationally reduce the graph G to get the graph

G′. Then, we decompose G′ along prismatic4-circuits, if there are any. Consequently, we

end up with a collection of graphs that are 3-connected simple plane graphs. Now, we re-

call the Felsner-Rote algorithm [9] from Chapter 1 section 1.6 for 3-connected simple plane

graphs. We now apply Felsner-Rote algorithm, implemented by Manfred Scheucher [17], on

each graph to get a collection of radii, and hence by equation 1.1, a collection of angles

corresponding to the vertices of the graph. We then use the theorem 4.4.1, [6] to compute

the right angles volume of L. Listing 5.3 gives a schematic of the same.

Listing 5.3: Right angled volume calculator

input = A link L
output = vol⊥(L)

1 G = L.white_graph ()

2 rational_reduction(G)

3 list = decomposition(G,G)

4 rav = 0

5 for graph in list:

6 radii = Felsner -Rote(graph)

7 L = lambda x: -ln(abs(2*sin(x)))

8 for x and y distict vertices in G^{\ diamond }:

9 theta = atan(r_y/r_x)

10 L1 = integrate.quad(L, 0, theta)[0];

11 L2 = integrate.quad(L, 0, (np.pi/2 - theta))[0]

12 rav = rav + 2*(L1 + L2)

13 return rav

14

Example 1: We consider the case of knot 940, Figure 4.3 (a), we saw in Chapter 4 section

4.4. The Tait graph of the knot is G = (V,E), where V = (0, 1, 2, 3, 4) and edges E = [(0,

1), (0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (2, 3), (2, 4), (3, 4)]. We notice that the knot diagram

is already rationally-reduced and has no prismatic 4-circuits. So, we may apply Felsner-Rote

algorithm to G directly. Doing so, we get the radii associated to each vertex of the angle

graph G⋄ and the angles at each kite as depicted in Listing 5.4. Using these to compute the

right-angled volume, we get that vol⊥(940) = 14.655383489158424.
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1 radii = [0.93702257 , 0.97098554 , 1.60301741 , 1.60300865 , 0.40074192 ,

1.07019846 , 0.80148838 , 0.56204041 , 0.8014961 , 1.60303025 , 0.53432392]

2 angles = [1.10715886347028 , 0.785402169210728 , 1.249054316223814 ,

1.107152822635585 , 0.7854049003874463 , 1.249052677551538 ,

1.1071509792202805 , 1.1071548351539349 , 0.9272964363446556]

Listing 5.4: Radii and angles for Example 1

Example 2: We described the rational reduction and prismatic 4-circuit decomposition

of the Tait graph of the link L14a21316 is described in the example discussed in section 5.3.

Since G1 and G2 are the same after relabelling, we calculate the right-angled volume for G1.

Since, it is a 3-connected simple, plane graph, we may directly apply Felsner-Rote algorithm.

We get the radii associated with each vertex of G⋄
1 and G

⋄
2 as shown in Listing 5.5. Now, we

use Milnor’s computation to see that right-angled volume of G1 is 12.046095791145135, and

therefore vol⊥(L14a21316) = 24.092183999045186

1 radii_1 = [0.91366202 0.84824942 0.82902495 0.82903188 1.6580488

0.71219724 1.17241967 1.51918091 1.17242025 0.58621046]

2 angles_1 = [0.9553171590273072 , 0.955315579145558 , 0.9553134481936485 ,

0.9553195203380521 , 0.9553157632794393 , 0.9553155329144003 ,

1.2309585153927813]

3 radii_2 = [0.96358922 0.8671485 0.59121734 1.18244205 1.18243891

0.61983438 0.83610515 0.83610194 1.37389541 1.67222007]

4 angles_2 = [0.9553152469167293 , 0.9553134376645441 , 1.2309603387599217 ,

0.9553227361155744 , 0.9553150627060404 , 0.95531967158612 ,

0.9553163179969819]

Listing 5.5: Radii and angles for Example 2

We computed the right-angled volume for the alternating knot census: knots with crossings

up to 12 from knotinfo [11], 13 to 15 from snappy [7] and 15 to 17 from Regina database [5].

We computed the vol⊥ for about 2,304,756 knots and links.

We observe the first non-zero right-angled volume for knots with 8 crossings. See tables

5.1 through 5.3 for the non-zero vol⊥ values for knots with crossings 8, 9, and 10. The vol⊥

values for the knots with crossings 11 to 17 and for links with crossings 4 to 14 may be found

here.
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Table 5.1: Non-zero vol⊥ of knots
with 8 crossings.

Knot(K) vol⊥(K)

816 7.327724753417755

817 7.327724753417755

818 12.046091831710571

Table 5.2: Non-zero vol⊥ of knots
with 9 crossings.

Knot vol⊥

929 7.327724753417755

932 7.327724753417755

933 7.327724753417755

934 12.046091831710571

938 7.327724753417755

939 7.327724753417755

940 14.65544925012298

941 7.327724753417755

Table 5.3: Non-zero vol⊥ of knots
with 10 crossings.

Knot vol⊥

1082 7.327724753417755

1084 7.327724753417755

1085 7.327724753417755

1086 7.327724753417755

1087 7.327724753417755

1088 7.327724753417755

1090 7.327724753417755

1091 7.327724753417755

1093 7.327724753417755

1094 7.327724753417755

1098 7.327724753417755

10100 7.327724753417755

10101 7.327724753417755

10102 7.327724753417755

10103 7.327724753417755

10104 7.327724753417755

10105 7.327724753417755

vol⊥ of knots with 10 crossings.

Knot vol⊥

10106 7.327724753417755

10107 7.327724753417755

10108 7.327724753417755

10109 7.327724753417755

10110 7.327724753417755

10112 12.04609211314172

10114 12.046091831710571

10115 12.046091831710571

10116 12.04609229334576

10117 12.04609248915662

10118 12.046091970185126

10119 12.04609192683704

10120 12.04609229334576

10121 14.655449478268698

10122 14.655448445153974

10123 16.27577041129425
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Table 5.5: vol⊥ of links upto 8 cross-
ings.

Link vol⊥

L6a4 7.327724753417755

L7a1 7.327724753417755

L8a1 7.327724753417755

L8a7 7.327724753417755

L8a16 7.327724753417755

L8a19 7.327724753417755

Table 5.6: vol⊥ of links with 9 cross-
ings.

Link vol⊥

L9a2 7.327724753417755

L9a10 7.327724753417755

L9a19 7.327724753417755

L9a20 12.046091970185126

L9a21 7.327724753417755

L9a22 7.327724753417755

L9a32 7.327724753417755

L9a42 7.327724753417755

L9a46 7.327724753417755

L9a51 7.327724753417755

L9a53 7.327724753417755
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vol⊥ of links with 10 crossings.

Link vol⊥

L10a4 7.327724753417755

L10a14 7.327724753417755

L10a20 7.327724753417755

L10a22 7.327724753417755

L10a23 7.327724753417755

L10a24 7.327724753417755

L10a42 7.327724753417755

L10a43 7.327724753417755

L10a49 7.327724753417755

L10a50 7.327724753417755

L10a51 7.327724753417755

L10a52 7.327724753417755

L10a53 12.04609211314172

L10a54 7.327724753417755

L10a55 7.327724753417755

L10a56 17.22483096769729

L10a70 14.655448445153974

L10a71 12.046092085254127

L10a76 7.327724753417755

L10a77 7.327724753417755

L10a78 7.327724753417755

L10a79 7.327724753417755

L10a80 7.327724753417755

vol⊥ of links with 10 crossings.

Link vol⊥

L10a86 12.04609192683704

L10a104 7.327724753417755

L10a106 7.327724753417755

L10a107 7.327724753417755

L10a111 14.655448534205256

L10a112 12.04609248915662

L10a113 7.327724753417755

L10a121 7.327724753417755

L10a127 7.327724753417755

L10a135 7.327724753417755

L10a137 7.327724753417755

L10a138 7.327724753417755

L10a140 7.327724753417755

L10a141 7.327724753417755

L10a147 7.327724753417755

L10a149 7.327724753417755

L10a155 7.327724753417755

L10a156 12.046092019218287

L10a157 7.327724753417755

L10a158 7.327724753417755

L10a163 12.046092019218287

L10a164 7.327724753417755

L10a169 14.65544950683551

L10a173 7.327724753417755

5.5 Weaving Knots

A weaving knot W (p, q) is the alternating knot or link with the same projection as the stan-

dard closed p-braid (σ1σ2.....σp−1)
q diagram of the torus knot or link T (p, q). Since weaving

diagrams are reduced, alternating, the crossing number of W (p, q) is (p − 1)q. Weaving
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knots are special in the sense that their projection graph is rationally reduced and has no

non-trivial 4-circuits. Hence, its Tait graph is always simple, planar and 3-connected, and we

may apply Felsner-Rote algorithm on the Tait graphs using Scheucher’s implementation of

the code [17]. The knot 940 in Example 1 of the previous section is the weaving knotW (4, 3).

Although the implementation of Scheucher’s code for weaving knots and links was straight-

forward, we encountered problems in the numerical accuracy part. We briefly describe

how the errors and bugs were detected and fixed. The implementation produced consis-

tent monotonic right-angled volume initially; but as the graph size increased, the value was

irregular, i.e W (3, 23) = 83.83884533, W (3, 24) = 87.52061827, W (3, 25) = 91.20012264,

W (3, 26) = 80.7615542. Upon debugging the code, we see that the radii obtained after

implementing Scheucher’s implementation of the Felsner-Rote algorithm that uses the opti-

mizer scipy.optimize.minimize((func, x0, jac = quality der,method =′ BFGS ′)) with an

appropriate func = quality, we observe that the some the radii are negative, see Listing 5.6

which is contrary to our assumption of the radii being non-negative.

1 radii = [ 1.00000000e+00 1.00000000e+00 1.41514350e+00 -1.65659311e

+00

2 3.65804920e-01 4.25067425e-01 1.53118901e-01 4.72383513e-02

3 4.79891133e-02 2.62849628e-02 1.16907527e-02 1.75632410e-02

4 3.52425078e-02 3.87276516e-02 3.37512485e-02 3.46025616e-02

5 4.00809689e-02 3.72358232e-02 1.65660151e-02 1.06280658e-02

6 2.61526550e-02 4.80127618e-02 4.76264071e-02 1.53087789e-01

7 4.25089131e-01 3.65853807e-01 -1.65659404e+00 1.00000000e+00

8 -3.75375622e-02 1.00000000e+00 -3.75306311e-02 1.19651662e-03

9 4.14365647e-01 3.82111992e-01 2.33319011e-02 5.57714888e-02

10 3.99180794e-02 1.77408702e-02 1.29272723e-02 2.30704008e-02

11 3.12294677e-02 2.67085468e-02 3.05355913e-02 2.53038503e-02

12 2.96724598e-02 2.10522972e-02 1.07325817e-02 1.72269416e-02

13 4.02834631e-02 5.60653963e-02 2.34347139e-02 3.82034541e-01

14 4.14397138e-01 1.22813034e-03]

15 rav = 80.7615542

Listing 5.6: Radii using the method BFGS

Hence, the angle calculations and hence the right-angled volume are not accurate. To re-

solve this, we tried out different methods for scipy.optimize.minimize((func, x0, jac =

quality der,method =′′) from the SciPy package, namely, ”Nelder-Mead, Powell, SLSQP,
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trust-constr, L-BFGS-B”, see listings 5.6 to 5.12. The method ”Nelder-Mead” still produces

some radii with negative values. The method ”TNC” overshoots the right-angled value,

better approximates are from the method, ”L-BFGS-B”, ”Powell”, ”SLSQP” and ”trust-

constr”. We use the method ”SLSQP” for further calculations of the right angled volume.

1 radii = [ 0.94586369 -0.12121557 7.2823447 0.5557858 1.10679958

0.44093994

2 0.40955114 1.47898447 1.50955803 0.48956313 0.46094224 0.27867887

3 1.46216004 1.21967032 0.12460586 0.23127892 1.09287621 0.9622461

4 0.55719187 0.68946394 1.87935192 1.95199163 0.57954473 1.32185782

5 0.54060097 0.11838955 0.14665587 4.80962715 0.33758717 -0.26032173

6 3.08895728 0.65231321 0.68870973 0.35249967 0.74029796 1.28975943

7 0.98561684 0.50875733 0.33743823 0.3421332 1.87941247 0.29089158

8 0.11840429 0.632743 0.89124822 0.87266385 0.48229917 0.91710838

9 3.27463235 0.67934518 0.64723971 1.03159646 0.18156328 0.10867042]

10 rav = 97.11420328511566

Listing 5.7: Radii using the method Nelder-Mead

1 radii = [1. 1. 6.27093022 1.59084598 0.5407582

0.27857183

2 0.17402234 0.12208191 0.09275558 0.07481211 0.06328968 0.05573688

3 0.05084861 0.04790098 0.04650451 0.04648944 0.04785505 0.05076805

4 0.05561568 0.06312054 0.07459335 0.09249087 0.12177363 0.17364305

5 0.27804274 0.53988763 1.58881111 1. 3.156169 1.

6 3.15863505 0.80124521 0.36498968 0.21263188 0.14243037 0.10463945

7 0.08221466 0.06806857 0.05884022 0.05279232 0.04897125 0.04684882

8 0.04615824 0.04681873 0.04890924 0.05269322 0.05869732 0.06787617

9 0.08197607 0.10435722 0.14210059 0.21220537 0.36436995 0.80015186]

10 rav = 94.88485146268373

Listing 5.8: Radii using the method L-BFGS-B

1 radii = [1. 1. 5.89858343 0.47560253 0.59588741

0.54452493

2 0.60797564 0.75036017 0.69844693 0.60152964 0.60263472 0.62805703

3 0.64831109 0.58110818 0.61369396 0.60356544 0.58417504 0.55286337

4 0.6059227 0.57923444 0.58068117 0.6817292 0.603688 0.64209548

5 0.73000903 0.60083963 0.52696185 1. 0.74400164 1.

6 0.68878715 0.4995869 0.52331503 0.50335823 0.6773806 0.65926697

7 0.60442456 0.5556171 0.56477908 0.61969388 0.58743848 0.56289207

8 0.56874277 0.60012 0.50065786 0.55871176 0.56809103 0.54152801
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9 0.59714939 0.59562859 0.57139519 0.66510595 0.62443231 0.50132529]

10 rav = 104.00413394070397

Listing 5.9: Radii using the method TNC

1 radii = [4.29827949e+04 4.29827949e+04 1.57744322e+01 3.56195969e+00

2 1.11978535e+00 5.76275917e-01 3.95780434e-01 3.24904835e-01

3 2.89677368e-01 2.61226556e-01 2.27157629e-01 1.88233965e-01

4 1.52443059e-01 1.26990590e-01 1.12238658e-01 1.07389080e-01

5 1.10646625e-01 1.22062812e-01 1.41133279e-01 1.71108282e-01

6 2.19509900e-01 2.84832669e-01 3.85877682e-01 5.52138396e-01

7 8.24914760e-01 1.48085769e+00 4.12552959e+00 4.29802069e+04

8 8.05662007e+00 4.29802069e+04 7.46073385e+00 1.73353075e+00

9 7.50854159e-01 4.57827949e-01 3.49060829e-01 3.02232917e-01

10 2.73083564e-01 2.43251282e-01 2.06407790e-01 1.68523403e-01

11 1.37755648e-01 1.17866918e-01 1.08338013e-01 1.07687208e-01

12 1.14960283e-01 1.30009088e-01 1.53559400e-01 1.91879115e-01

13 2.47441463e-01 3.25895056e-01 4.52678207e-01 6.53095171e-01

14 1.03403414e+00 2.12160922e+00]

15 rav = 95.07046621400607

Listing 5.10: Radii using the Powell method

1 radii = [1. 1. 7.63608273 1.93730786 0.65910493

0.33968468

2 0.21215391 0.14871566 0.11286536 0.09093996 0.07684138 0.06761028

3 0.06162947 0.058014 0.05629464 0.05626365 0.05791505 0.06146575

4 0.0673905 0.07655754 0.09054721 0.1123846 0.1481322 0.21139995

5 0.33867913 0.65794107 1.93665947 1. 3.84594335 1.

6 3.84569467 0.97614774 0.44497677 0.25926464 0.17358174 0.12740271

7 0.09999397 0.08269186 0.07140431 0.06401326 0.0593327 0.05672425

8 0.05586948 0.05666186 0.05920258 0.06382284 0.07116209 0.08236393

9 0.09955243 0.12687991 0.17293447 0.25842431 0.44395581 0.97505609]

10 rav = 94.88111820102203

Listing 5.11: Radii using the method SLSQP

1 radii = [1. 1. 9.16823458 2.32587111 0.79060764

0.40713379

2 0.25414509 0.17810594 0.13516782 0.10891065 0.09206527 0.08103316

3 0.07389792 0.06960273 0.06757993 0.06757991 0.06960265 0.07389777

4 0.08103291 0.09206487 0.10891006 0.13516694 0.17810463 0.25414314

5 0.40713086 0.79060301 2.32586193 1. 4.61779963 1.
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6 4.61781089 1.1714778 0.53356478 0.31066085 0.20791053 0.15257384

7 0.11974751 0.09905453 0.08556922 0.07673764 0.07116337 0.06807641

8 0.06708717 0.06807636 0.07116326 0.07673744 0.0855689 0.09905405

9 0.1197468 0.15257278 0.20790897 0.31065855 0.53356136 1.17147237]

10 rav = 94.88029975216075

Listing 5.12: Radii using the method trust-constr

We give below a list of some right-angled volumes of weaving links W (p, q) for p = 3 and

3 ≤ q ≤ 100. We have additional datasets for 4 ≤ p ≤ 11, here.

Link vol⊥

3 7.327724753417755

4 12.046146338555006

5 16.27563562165595

6 20.29860934683124

7 24.212035432250957

8 28.061314354713037

9 31.866404095149765

10 35.64373861140518

11 39.39953429637705

12 43.13807403534111

13 46.86569671222266

14 50.58636156551904

15 54.29712228799782

16 58.002534017911785

17 61.70379180142566

18 65.40006370368211

19 69.09164750096309

20 72.78287954871928

21 76.46988405209022

22 80.15535568251505

Link vol⊥

23 83.83891054393813

24 87.52098892581776

25 91.20279974608016

26 94.88042627074088

27 98.55786409482792

28 102.62850138919838

29 105.8224507322706

30 109.59014600795186

31 113.32293655681856

32 117.03665930604926

33 120.75992940715491

34 124.48010207667149

35 128.99267373391731

36 132.10056069679922

37 136.5197768531991

38 139.9710636886504

39 144.7126972137685

40 147.8125463548448

41 151.14096055364047

42 155.13112517819283
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Link vol⊥

43 158.34012777141598

44 161.8123134161163

45 165.94845434566437

46 169.84788807560358

47 173.38441325016635

48 177.6896146421684

49 182.550572036822

50 185.6131226758073

51 189.3775225407

52 192.51161063025395

53 196.355245351833

54 200.00526649193765

55 203.4717259516048

56 207.48224774618305

57 211.4452457842173

58 215.50653836573304

59 219.11684637106583

60 223.0575397971553

61 226.97266412419123

62 230.76756404097964

63 235.1113179525159

64 237.84841286829803

65 241.58032052726372

66 245.3704066074261

67 248.851457850732

68 252.7657599529598

69 256.98261121415203

70 260.127175223649

Link vol⊥

71 263.9808839412878

72 267.77074338214186

73 271.13724817062086

74 274.9785126386003

75 278.7233218271037

76 282.3614892501607

77 286.0970091563437

78 289.68585495863823

79 292.7913173118408

80 297.62617438756143

81 300.3958853763038

82 304.04582169774227

83 307.52601787516016

84 311.5143920690465

85 315.4838118934473

86 319.37237340442243

87 323.80533262692586

88 326.8637538753727

89 330.5382569273061

90 335.21227718003547

91 338.6413391358324

92 342.35117332943776

93 345.3783453788652

94 348.9182540660048

95 352.5945437738851

96 356.6072640697381

97 360.1224499250706

98 364.2218611745339

99 367.69691768202017

100 371.5394634103089

91



92



Chapter 6

Patterns and Results
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The content of this chapter includes the patterns and analysis of the generated data set

of right-angled values of knots, links, and weaving knots using the algorithms described in

Chapter 5.

6.1 Volume of right-angled polyhedra

We recall Definition 4.4.1 that vol⊥(L) is twice the sum of the volumes of the associated

Andreev polyhedra. Egorov and Vesnin, [23] in 2020 computed the volumes of the ideal

right-angled three-dimensional hyperbolic polyhedra with at most 23 faces [23]. With our

calculation of right-angled volume, in the absence of a prismatic 4-circuit, we may com-

pute the volume of ideal right-angled polyhedra to be half of the right-angled volume, see

Definition 4.4.1. Using this approach, we computed the hyperbolic volumes of right-angled

polyhedra with all ideal vertices and compared that to the list by Egorov and Vesnin [23].

Here is the comparison of the first few right-angled volumes by Egorov and Vesnin to the

ones generated from our calculations.

Egorov-Vesnin Volumes Volumes using vol⊥ Representative Knot/Link

3.663863 3.663862377 Borromean Link

6.023046 6.023045915 818

7.327725 7.327724625 940

8.137885 8.137885205 K10123

8.612415 8.6124151 K11a267

9.686908 9.686909425 K11a266

10.149416 10.1494159 K13a4612

10.806002 10.80600241 K12a1188

10.991587 10.99158706 K12a1019

11.136296 11.136298 K12a868

11.447207 11.44720767 K13a3427

11.801747 11.80174705 K14a14867

12.106298 12.10629789 W(3,7)

12.276278 12.27627792 K13a4284
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12.414155 12.41415374 K13a3477

12.046092 12.046093005 K13a4695

12.611908 12.6119078 K13a3477

12.854902 12.85490201 K14a14955

12.883862 12.88386202 K13a3478

13.020639 13.02063952 K15a72645

13.310579 13.31057914 K14a17926

13.350771 13.35077051 K14a14858

13.447108 13.44710774 K14a14872

13.677298 13.67729832 K14a16486

13.714015 13.71401469 K15a59989

13.813278 13.81327784 K14a16452

13.907355 13.90735487 K14a16476

14.030461 14.03046101 K14a18208

14.103121 14.10312169 K14a13618

14.160931 14.16092994 K15a81123

14.171606 14.17160624 K15a61083

14.273414 14.27341354 K14a17895

14.469865 14.46986482 K15a64700

14.494727 14.49472755 K15a81002

14.635461 14.63546076 K15a71167

14.655449 14.65544911 K15a81450

14.766948 14.76694873 K15a65728

14.800159 14.80015812 K15a65194

14.832681 14.83268047 K15a82476

14.898794 14.89879438 K15a79628

15.031667 15.0316675 16ah 376571

15.052463 15.05246341 K15a59600

15.07859 15.07858901 16ah 373890

15.11107 15.11106931 K15a65606

15.126498 15.12649826 K15a79577

15.169623 15.16962225 16ah 378852

15.253393 15.25339328 K15a81471

95



6.2 Maximum vol⊥ in class of links with the same num-

ber of crossings

We recall that the weaving link W (m,n) has (m − 1) ∗ n crossings. We observed the max-

imum value of right-angled volume in a class of knots and links with the same number of

crossings, is almost always achieved by a weaving knot. Note that this applies to crossing

numbers which are composite.

The knots from 16 crossings onwards follow the Regina database [5] convention, that is, a

knot is represented as c[an][tsh] k where c denotes the number of crossings, [an] denotes

whether is alternating or non-alternating, [tsh] whether the knot is torus, satellite or hyper-

bolic and k is a positive integer that sorts the knots within each of these classes.

No of Crossings Knot/Link, vol⊥ Weaving Link, vol⊥]

8 818, 12.046091831710571 W(3,4), 12.046146338555

9 940, 14.655449250122981 W(4,3), 14.6554471764363

10 10123, 16.27577041129425 W(3,5), 16.2756356216559

11 11a266, 19.37381885 NA

12 L12a2008, 24.09218454 W(4,4), 24.0932047926552

13 K13a3478, 25.76772403 NA

14 L14a8699, 29.6653608 No weaving link

15 K15a82477, 32.66314188 W(4,5), 32.5514921226668

16 16ah 379798, 36.13828026 W(5,4), 36.1381695947244

17 17ah 1769978,38.74741933 NA

The absence of a maximum volume weaving knot or link for 14 crossings may be ascribed

to the fact that 14 = 2 × 7, the weaving parameters are ”thin thin” i.e. the ratio p/q is

farther away from 1 making it ”less squarish” in shape. One direction is to explore the idea

that weaving knots or links maximize volumes when p/q is closer to 1.
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Figure 6.1: Plot of weaving links W (3, n) for n ≤ 400.

6.3 vol⊥ of Weaving links

We computed the right-angled volumes of the weaving links W (p, q) for 3 ≤ p ≤ 10 and

3 ≤ q ≤ 100, for p = 3 and p = 4, we have right-angled values for 2 ≤ q ≤ 400 and

3 ≤ q ≤ 200, respectively.

Upon plotting the data, we observe that vol⊥ of W (p, q) is linear in q for a fixed value

of p. See Figure 6.1 for the plot of vol⊥ of W (3, n) for n ≤ 400. The regression may be

characterized by slope =-2.3541214829762427 with a standard error of 0.5424135406837466

and intercept = 450.9741816998427.

Figure 6.2 is the plot of vol⊥ of W (4, n) for n ≤ 200; the slope of the regression

is -1.8505514295689671 with a standard error of 1.1141409345682964 and the intercept is

807.2825230914649.

The plots for 5 ≤ p ≤ 10, along with the linear regression parameters can be found here.
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Figure 6.2: Plot of weaving links W (4, n) for n ≤ 200.

6.4 Right-angled Knots and Links

Definition 6.4.1. We say that a hyperbolic link L is right-angled if S3−L with the complete

hyperbolic structure admits a decomposition into ideal hyperbolic right-angled polyhedra. [6]

Example: Whitehead link and the Borromean link.

Champanerkar Kofman and Purcell in [6] conjectured that there does not exist any right-

angled knot. They verified this in [6] for knots up to 11 crossings. This conjecture along with

theorem 4.4.1 implies that vol⊥(K) < vol(K). With our new data for the existing census of

knots with 17 crossings, we verified that vol⊥(K) < vol(K).

Regarding the existence of right-angled links, we already saw that the whitehead and Bor-

romean links are right-angled. We observed no other links with vol⊥ = vol for the link census

up to 14 crossings.

6.5 Volume of augmented links

We recall the augmented links and fully augmented links from Definitions 3.2.6 and 3.2.7.

We pick an alternating link L with a reduced, twist-reduced, prime alternating diagram. Let
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G denote its Tait graph and G′ denote its dual Tait graph. Then,

Definition 6.5.1. We define an alternating link to be fully augmented link-type or FAL-type

if either G or G′ is a simple, 3-connected and 3-regular graph.

Using this definition we have obtained a list of fully augmented links and their right-

angled volume.

Link vol⊥ 3-regularity of G/ G′

L6a4 7.32772475341776 G

940 14.655449250123 G′

L12a1183 21.9831741056319 G′

K15a65585 29.31083154162286 G′

K15a81477 29.3108757807751 G′

K15a84903 32.5515439799708 G′

Theorem 6.5.1. Weaving links of type W (4,m) are FAL-type.

Proof. Consider the weaving link L = W (4, n). Let G denote its Tait graph and V,E the

set of all vertices and edges of G respectively. Now, if G is 3-regular, that is ∀v ∈ V , degree

of v is 3. As G is 3-connected simple and planar, we have that 3 ∗ |V | = 2|E|, and hence,

|V | is even. Therefore W (4,m) is FAL-type for m ≥ 3.
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Chapter 7

Conclusion

In this thesis, we extended algorithms and techniques from graph theory to compute the

recently defined invariant of alternating knots and links called the right-angled volume [6].

We applied our techniques and algorithms to create the first list of right-angled volumes for

knots and links in the alternating censuses and extended other similar computations. To

summarize:

1. We computed right-angled volumes of knots in the census of alternating knots up to

17 crossings, in total 2,261,298 knots, and of links in the census of alternating links up

to 14 crossings, in total 42,183 links.

2. Based on our right-angled volume calculations, we were able to partially recreate the

list of volumes of right-angled polyhedra computed by Vesnin and Egorov [23].

3. We computed right-angled volumes of weaving links W (m,n) for 3 ≤ m ≤ 10 and

2 ≤ n ≤ 100, in total 1,275 weaving links, thereby extending computations in [6].

4. After observing the similarities between our computations and right-angled polyhedral

decomposition of fully augmented links, we produced the first list of volumes of fully

augmented links.

5. The authors conjecture in [6] that for any alternating hyperbolic knot K, vol⊥(K) <

vol(K). Using our computations we verified this conjecture for knots up to 17 crossings.
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Our techniques and computations raise interesting questions and open new directions of

research. In the future, we would like to explore the following:

1. Extend our tables of right-angled volumes to alternating knots with 18 and 19 crossings.

2. A challenge in computing right-angled volumes of weaving knots and links was the

numerical computation of the integral for the Lobachevsky function. We would like to

explore other numerical methods for numerical integration and optimizer functions to

obtain the calculation of right-angled volume to higher precision, and extend the list

of those volumes further.

3. Let L be an alternating link with a reduced, twist-reduced, prime alternating diagram,

and let P denote the associated collection of Andreev polyhedra. It is proved in [6]

that P is an invariant of the L. By definition, the number of essential 4-circuits in

the diagram of L is given as |P |/2− 1 and hence is a link invariant. We would like to

explore if this invariant can be detected using the polynomial invariant of L e.g. the

Alexander or Jones polynomials.

4. Another link invariant obtained from P is half the total number of ideal vertices of the

polyhedra in P . This number is an extension of the twist number of an alternating

link. We would like to explore if this invariant can be detected using a polynomial

invariant of L e.g. the Alexander or Jones polynomials.

5. In our computations of right-angled volumes of weaving links, we observed that for

a fixed crossing number n, sometimes the weaving knot or links maximizes the right-

angled volume for that crossing number for e.g. n = 9 and sometimes it does not for

e.g. n = 14. This seems to be related to how close to 1 the maximal ratio of factors

of n can be (e.g. if n is a square integer then this ratio is 1). We would like to explore

this phenomenon more and investigate if we can prove a precise statement along these

lines.
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