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Abstract

Dark Matter, the most abundant matter in the universe, has eluded our understanding for
decades. From rotation curves, CMB, and gravitational lensing, we see that structure for-
mation in the universe is driven by dark matter, not baryons. Dark matter halos are some
of the densest structures in the universe, making them the best objects for studying the
microphysics of dark matter, like annihilation and reaction rates, which depend on phase
space number density. Simulations go a long way in helping ascertain the best dark matter
models and their properties. Comparing simulations to real data lets us constrain various
parameters of these models. While halo finders do an amazing job of finding structures like
halos and subhalos in simulations, they fall short when it comes to finding elongated struc-
tures like streams, which occupy a distinct phase space region when compared to halos and
subhalos. To identify such structures, especially the elongated structures, in simulations,
we use data from a LCDM zoom–in simulation and implement a non-linear dimension
reduction algorithm, namely UMAP. We focus on a 1Mpc h

�1 box around the MW. We
use 6D phase space information of all the particles in the box as our input data. We re-
duce the 6D information to a 2D representation using UMAP. UMAP separates the largest
halos in the box, MW and four massive infalling halos in output space. Within the virial
boundary of the MW, particles are segregated based on velocity and dynamics. Infalling
streams are separated from the intact core of infalling subhalos. Infalling subhalo particles
at their pericentre are separated from the rest of the subhalo. We can use these separations
to identify streams and other substructures within the virial boundaries of halos. Which in
turn will help us constrain various microphysical properties. This also shows that topolog-
ical methods like UMAP and GNNs are viable options for data analysis in cosmology and
simulations.
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Chapter 1

Introduction

There is a daunting amount of evidence for the existence of dark matter in the Universe
that comes from galaxy rotation curves, gravitational lensing observations and large-scale
structures. According to current estimates, dark matter constitutes 85% of matter density
and 26% of the energy density of the universe.

1.1 Evidence of Dark Matter

In 1932, when Jan Oort was observing stars in galaxies and their rotation curves, he ob-
served that the stars towards the galaxy’s edge were moving at suspiciously high velocities
for the amount of visible matter. Therefore, there must be invisible matter providing the
gravitational potential required to explain the stellar velocities.

Similarly, in 1933, Fritz Zwicky was observing the Coma Cluster and the velocities of
its galaxies on the edge of the cluster[1]. The coma cluster had roughly a thousand galax-
ies. The cluster was approximately spherical with a radius of ⇡ 106

ly. The average stellar

mass of each galaxy was ⇡ 109
M�, estimated from the mass-luminosity ratio determined

from our local neighbourhood. Using this information and the virial theorem, Zwicky esti-
mated a velocity dispersion of ⇡ 105

m/s, which differed from the observed dispersion of
⇡ 106

m/s by a whole order of magnitude. Upon reverse-engineering from the observation,
Zwicky found the cluster 400 times more massive than what was visible and concluded that

5



6 CHAPTER 1. INTRODUCTION

the bulk of the matter had to be invisible. Thus the label - dunkle materie (dark matter)[1].

In the late 1970s, Vera Rubin and Kent Ford observed spiral galaxies and estimated
rotation curves[2]. A particularly famous one was the rotation curve of Galaxy M31 shown
in Figure 1.1a. The rotation curve of a galaxy (defined for disc galaxies) plots the radial
velocity of visible matter (stars or gas) to the radial position from the galactic centre. The
velocities are calculated using the observed Doppler shifts. These curves are now a major
tool for estimating the mass distribution of the galaxy and understanding its formation and
evolution.
A key result from Vera Rubin’s study is that the rotation velocity of M31 remains high at
very large radii (r > 20 kpc). This was counter-intuitive at that time because the visible
matter was concentrated towards the centre. Therefore, larger radii would not experience
enough gravitational potential to warrant such high orbital velocities. The notion of unseen
matter in and around the galaxies became a necessity. According to Rubin’s calculations,
the unseen matter amounted to roughly ten times the mass of the visible matter[2]. This
was compelling evidence for Zwicky’s Dark Matter. A series of papers in the late 1970s
([3–7]) and early 1980s ([8–10]) confirmed the flat-rotation curves. Works like Carignan et
al.[11], shown in Figure 1.1b, demonstrate the high rotation curves beyond the radii Vera
Rubin worked with, using sensitive H(I) measurements. This suggests that the stellar mass
and gas account for only a small fraction (15%) of the mass in spiral galaxies[12].

More recently, over the past decade, there has been overwhelming evidence for dark
matter from gravitational lensing[13] and, most importantly, from the Cosmic Microwave
Background[14], whose fluctuation spectrum requires a significant fraction of the energy
budget in the universe to be in the form of dark matter.

The path of light bends in the presence of gravity. This underlying physics of gravita-
tional lensing provides an alternate independent estimate of the total mass and its distribu-
tion in the universe. Since the bending of light can be explained and predicted using general
relativity, the distorted images from galaxy surveys allow us to estimate the mass of vari-
ous objects in the sky. In 2006, Clowe et al.[15] studied the Bullet Cluster (1E 0657-558)
at a redshift of z = 0.296, a pair of galaxy clusters that merged ⇡ 150 million years ago.
Due to the merger, the dissipationless stellar component and the X-ray-emitting plasma
component of the galaxies were spatially segregated. Comparison of the distribution of the
visible components like the plasma and the stars to the gravitational potential estimated
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(a) (b)
Figure 1.1: Figure 1.1a is the rotation curve of M31 from [2]. Rotational velocities for
OB associations in M31 with respect to radial distance. For r < 120, the solid curve is a
fifth-order polynomial, and for r > 120, the solid curve is a fourth-order polynomial. The
dashed curve near r = 100 shows a second rotation curve with a higher inner minimum.
Figure 1.1b is the extended rotation curve of M31 from [11]. The rotation velocities for
R > 21kpc come from the Effelsberg and GBT 100-m observations. The velocities for
r  21 kpc are recomputed from the Unwin (1983) HI data. Light grey upward-pointing
triangles show the receding side, while the dark grey downward-pointing triangles show
the approaching side as obtained from a tilted-ring model. The solid line is the best fit for
the data.

from weak lensing shows a mismatch between the profiles of the potential and that of the
visible, baryonic matter. It was concluded that upon collision, the baryonic components
heated up while the invisible component barely interacted with anything. This acts as a
piece of strong evidence for non-baryonic dark matter.

The Cosmic Microwave Background (CMB) is a photon gas permeating the universe.
The CMB decoupled from the baryonic matter ⇡ 380,000 years after The Big Bang [16]
(redshift z = 1100). CMB is also regularly used as a time indicator.
From the time protons and neutrons (baryons) came into existence (refer Table 1.1) to the
CMB, because of strong Compton scattering, the plasma of photons, protons, and electrons
(photon-baryon fluid) shared similar spatial patterns of density. Shortly after recombina-
tion, because of the drastic decrease in the number density of free electrons, the photons
decoupled from the baryonic matter, and we now observe them as the relics that provide
information about the photon-baryon fluid at the surface of last scattering. The CMB,
albeit perfectly matching a black body, has relatively minute fluctuations in temperature
and polarization, which give us information on the spatial distribution of baryons (anything
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Figure 1.2: This image from [15] shows the gravitation potential as calculated from gravita-
tional lensing and the X-ray emission from the baryon distribution. The white bar indicates
200 kpcs at the distance of the cluster. This is a 500 ks Chandra image of the cluster. With
an outer contour of k = 0.16 and steps of 0.07, green shows k reconstruction contours for
weak lensing. 1�,2�,3�s levels in the positional errors of k are depicted by the white
contours.

photons interact with, really) at the CMB.
General relativity predicts spatial fluctuations of matter to grow linearly with the expansion
of the universe. For the above-mentioned baryonic distribution at the time of recombina-
tion to produce the distribution of galaxies we see today, the fluctuations in the CMB have
to be of the order of 10�2, but the CMB is uniform to almost below 10�5[17]. Therefore,
the baryonic distribution from the epoch of recombination could not have led to the galaxy
distribution we see today.
This conundrum can be solved if we postulate the existence of a large amount of matter
that gravitationally interacts with baryons and starts structure formation much before the
CMB. This matter will certainly have to be non-baryonic. That way, the baryons and elec-
trons could pass through “dark matter" almost freely before the CMB, leading to the almost
uniform spatial distribution in CMB observed today.

Today, we estimate visible matter to occupy ⇡ 10�20% of the total mass budget of the
universe and the rest to be constituted by dark matter.
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Universe Timeline
Event Temperature (K) Age of Universe
Inflation 1028 10�34 s
Baryons form ? ?
Dark Matter Decouples ? ?
EW Phase Transition 1015 10�11 s
Hadrons Form 1012 10�5 s
Neutrinos Decouple 1010 1 s
Big Bang Nucleosynthesis 109 200 s
Recombination 3400 260,000 yrs
Photons Decouple (CMB) 2900 380,000 yrs
First stars 50 100 Myr
First Galaxies 20 1 Byr

Table 1.1: The major events and their times in the first 1 billion years of the universe.
This table is taken from Daniel Baumann’s Cosmology[18]. The “?" denotes a lack of
information.

1.2 LCold Dark Matter

The present, most intriguing questions in the fields of cosmology, astrophysics, and even
particle physics surround the nature of dark matter. While we understand today that there
must be some form of matter that is “dark”, the exact microphysical nature of dark matter
is still unknown. For example, questions of the sort: i) What is the mass of the dark
matter particle, ii) what is the nature of its interactions, beyond gravity, with particles of
the standard model? iii) What are the means of its production in the universe iv) Are there
interactions within in the dark sector or between dark matter particles themselves?

As things stand today, on large scales, a simple, non-relativistic, collisionless model of
dark matter called Lambda Cold Dark Matter (LCDM) explains almost all observations.
Going by the explanation in the CMB part of the previous section, we can infer some
constraints that govern our postulated dark matter[19] -

1. DM has to be non-baryonic - Since the decoupling of photons from baryons at the
epoch of recombination, baryons have not had enough time to form the structures we
see today in the universe.

2. No colour or charge - Since we have had no direct electromagnetic observation of
DM, we can safely say that DM is electrically neutral. Otherwise, it would interact
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with photons. The same can be said about having colour and taking part in strong
interactions.

3. Relic abundance should agree with observation, and DM cannot be hot - If DM
were hot (relativistic at decoupling), then all structures below the free streaming
length scale would be washed out by Silk Damping[20]. However, the two-point
correlation functions of galaxies indicate a large power on small scales.

LCDM successfully fits all these conditions and explains our current observations very well
except for small-scale problems. We have modifications of LCDM that can better explain
some of these issues. Some of the most pressing issues with LCDM are [21] -

1. The cusp/core problem (CC) - Flores & Primack[22] and Moore[23] ruled out the
cuspy profile from the rotation curves of David Dunlap Observatory catalogue’s
(DDO) galaxies. They showed the rotation curve is well-explained by a cored-
isothermal density profile. This is in disagreement with the cuspy profiles produced
by dissipationless CDM simulations. Although this problem is evident in low-surface
brightness galaxies and dwarf galaxies, when it comes to high-surface brightness
galaxies, the estimation of density profile nearer the centre of the halo becomes a
non-trivial task.

2. Too Big To Fail (TBTF) - Simulations predict a larger number of dense and massive
subhalos (> 1010

M�) than what is observed. These subhalos are massive enough to
have formed larger satellite galaxies than what is observed today. Boylan-Kolchin et
al. [24] found six MW-analogue dark matter simulations from the Aquarius Project[25]
to predict a population of subhalos that are too massive and dense to host the observed
satellite galaxies[26].

Not mentioning the Missing Satellite Problem (MSP) feels like a crime, but MSP is not a
problem anymore[27]. The MSP states (stated) - N–body simulations predict a much larger
number of satellite galaxies than what is observed. Every CDM simulation of a MW-mass
halo predicts O(100) while we observe a whole order lesser.
Accounting for the detector efficiency of our current devices solves the tension between the
luminous satellite count from LCDM simulations and that from real data. With the deeper
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(long-exposure) images from projects like LSST[28], we have slowly started to observe
smaller and fainter satellites, which again contributes to resolving the MSP.

Astrophysics and Cosmology are particularly poised to answer some of these ques-
tions. In particular, the mass, production mechanism and interactions among dark matter
particles. Interactions of dark matter particles with SM are going to affect the evolution
of structure in the universe. Some of the questions that involve interactions among dark
matter particles themselves, like annihilation and self–interaction cross–sections, can only
be addressed astrophysically.

1.3 Structure Formation in LCDM

The formation of structure is driven by two counteracting phenomena – the gravitational
collapse of high-density regions and the expansion of the Universe. In LCDM, structure
formation takes place in a bottom–up fashion. Where smaller structures merge to form
bigger structures. Dark matter halos are one of the building blocks of structure formation.
Halos are defined as spheres in which the mean matter density is some factor of a reference
density, such as the critical density or the matter density of the Universe (e.g., [29]). The
choice of this factor is motivated by the simple physics of virialization, which states that
if a region encloses ⇠ 200 times the background density, it is likely to be self–bound and
in virial equilibrium, this model is called the spherical collapse model. Other definitions
involve splashback radius, the radius where particles reach the apocentre of their first orbit
or a fraction of it. There is also an increasing recognition when it comes to definitions
based on the dynamic nature of the halos. Garc et al.[30] defines halos as the collection of
orbiting particles. This nature becomes apparent in our work as well.

Dark matter halos are some of the densest regions of dark matter in every DM model.
Due to the high densities, we can use these regions to put constraints on certain properties
of dark matter, like annihilation in the LCDM paradigm. Large halos usually comprise a
smooth background of diffused particles (at least ⇠ 200 times its background density) and
subhalos that are denser than the diffused background of the host halo. Tidally disrupted
subhalos leave behind elongated structures with densities that lie in the range between that
of subhalos and host halo. These structures are called tidal streams or simply streams. Iden-



12 CHAPTER 1. INTRODUCTION

tifying these structures will go a long way in ascertaining the microphysical properties of
dark matter. For example, assuming a gg final state, the photon flux from DM annihilation
is directly proportional to the square of the local DM density. The subhalos and streams,
being the region of the higher densities, will dominate all annihilation signals from large
halos.
CDM follows hierarchical structure formation, which means subhalos are constantly merg-
ing with the MW. This leaves a number of subhalos fully intact/partially disrupted within
the virial radius of the MW at any point in time. A significant fraction of the dark matter
mass of a halo is associated with smaller objects like merger remnants, subhalo and streams.
Since these smaller objects (substructures, from here on out) are distinctly different from
the diffused host halo background particles, they constitute local density fluctuations in
phase space. The current algorithms identify substructures by searching for these phase-
space density fluctuations in simulations.

1.4 Simulations

In this work, we use a Cosmological, N–body simulation of Cold Dark Matter. A typical
N–body method simulates the evolution of N cold dark matter particles in a given vol-
ume of space using cosmological initial conditions. Dark matter particles evolve under
the collective gravitational field in an expanding universe. Modern simulations have been
extremely successful in defining the Universe’s large-scale structure and the small-scale
physics in the interiors of halos. Simulations like The Millenium Simulation[31] (a LCDM
simulation) seem to statistically agree very well with surveys like SDSS[32], CfA2[33] and
2dFGRS[34]. Further solidifying the existence of dark matter. Comparison of cosmolog-
ical simulations to real data helps us analyse and test various predictions from different
models of dark matter like Cold Dark Matter (CDM), Warm Dark Matter (WDM), Self
Interacting Dark Matter (SIDM), etc.
Cosmological parameters -

1. Flat Universe - As the name suggests, a flat universe has no curvature. k is set to 0
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in the first Friedmann Equation.

H
2 =
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ȧ
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◆2
=

8pG

3
r +
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� k
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0a2 (1.1)

Setting k to be 0 and combining the rest of the terms in the RHS gives us an expres-
sion for the critical density

H
2 =

8pG

3
rCR (1.2)

Therefore, critical density is defined as the density required for the Universe to be
flat.

2. WM is the ratio of the matter density to the critical density of the Universe. WM =

0.286 in the simulation used in this study.

3. WL is the ratio of the dark energy density to the critical density of the Universe.
WL = 0.714 in the simulation used in this study.

4. h is defined as the ratio of H0 (in Km�1 Mpc�1) to 100 Km�1 Mpc�1. h = 0.7 in the
simulation used in this study.

5. s8 is defined as the r.m.s. density variation when smoothed with a top hat filter of a
radius of 8Mpc h

�1. s8 = 0.82 in the simulation used in this study

6. ns is the spectral index of the primordial power spectrum. ns = 0.96 in the simulation
used in this study

Dark matter-only cosmological simulations are run in cubical boxes of sizes ranging from
a few 100Mpc h

�1 to a few 1000Mpc h
�1 with the number of particles extending up-

wards of a few billion. If one were to use atomic-scale masses for particles in a box of
1000Mpc h

�1, no computational facility in the world could even run simulations. For this
reason, the mass resolution (mass of the smallest particle) of these huge-volume simula-
tions is typically O(107

M��1010
M�). The MW halo mass is O(1012

M�)[35, 36] and the
subhalo masses range from 106�1010

M�. From a typical cosmological simulation, we can
identify halos with a few 10s to a few 1000s particles and label them as the MW. This is
not enough resolution to study the small-scale structures of the universe, substructure evo-
lution in halos or microphysical properties like annihilation. Therefore, cosmologists find
interesting structures like the MW halo from a typical cosmological simulation, zoom into
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the object, and re-simulate them with higher mass and time resolution. These simulations
are called zoom–in simulations.

Zoom–in simulations simulate the object with a larger number of particles and take
snapshots more frequently than the full cosmological simulation. Snapshots, as the name
suggests, are information about the particle positions and velocities at a given time. Zoom–
In simulations, they need not span the entire time window of the parent cosmological box;
they can span any window of interest. To ensure the physics remains the same, the initial
conditions are taken from the full cosmological box at the start of the zoom–in simulation.
This allows for studies of the small-scale structures of the universe with finer resolutions.

1.5 The Current State-of-the-Art

Simulations provide a means to test the various dark matter models, properties and theories
floating around in the community. However, analysing simulations and extracting usable
and useful information is a non-trivial task. In order to test out various dark matter models,
we need to be able to compare the results from simulations to real data. Therefore, infor-
mation like halo mass profile and halo mass distribution (number of halos in each mass bin)
can be tested using gravitational lensing data, CMB analysis, rotation curve estimates and
large-scale structures of the universe.
All of this can be broken down to the simple task of identifying halos, subhalos and their
properties, like mass, radius, position and velocity of the centre. The rest can be calcu-
lated. This is precisely what halo finders are designed to do. Early on, most halo finders
used only 3D position information to cluster particles, but recently, more algorithms have
started using 6D phase-space information. Presently, the popular halo finders either follow
a grid system to identify density peaks, search for spherical overdensities or follow the
Friends-of-Friends(FoF) algorithm or some modification of FoF.

An example of a halo finder that uses the grid system is AHF[37]. AHF identifies
local overdensities in the density field by recursively refining the grid. These peaks act
as the centres of prospective halos. The hierarchy of grids is then used to ascertain halo-
subhalo relationships. Friends-of-Friends, on the other hand, uses the concept of linking
lengths and neighbourhoods to ascertain particles belonging to a cluster. The initial FoF
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algorithms used 3D information. The latest modification of the FoF algorithm is called
ROCKSTAR, which uses 6D information and implements a hierarchical FoF algorithm
with varying linking lengths.

1.5.1 ROCKSTAR

ROCKSTAR is a halo finder developed by Peter Behroozi et al.[38]. ROCKSTAR is based
on an adaptive hierarchical refinement of friend-of-friend (FoF) groups in six phase-space
dimensions and the time dimension. The design of ROCKSTAR was motivated by the
requirement for consistent accuracy across multiple timesteps.

To understand ROCKSTAR, we first need to understand the friend-of-friend algorithm[39].
The algorithm goes from particle to particle, assigning particles to already existing or new
groups. The assignment is based on a parameter called linking length (l). If a distance  l

separates two particles, then the two particles are said to be part of the same group. All
particles with a distance of l from a given particle are called friends, and all particles that
are indirectly connected to the reference particle are called friend-of-friend. The size of a
group depends on the number of particles that constitute the group. Usually, groups smaller
than a threshold are discarded from the final catalogue.
For a quick overview of the algorithm please refer to Figure 1.3a. ROCKSTAR algorithm
goes as follows -

1. Identify overdense regions using a rapid 3D FoF algorithm - The rapid 3D FoF
algorithm is roughly an order of magnitude faster than the traditional FoF explained
above. Particles separated by a distance of l are assigned to the same group as friends.
For a given particle, if the number of such friends rises above a certain threshold
(16 in ROCKSTAR), the neighbour-finding process for the neighbours is skipped.
Instead, neighbours for the original particle out to twice l are calculated. If there are
particles that belong to two different groups then the groups are combined.

2. Build a hierarchy of FoF subgroups in phase space by progressively and adap-
tively reducing the 6D linking length - Starting with the base 3D FoF groups from
the previous step, a 6D linking length is calculated using the standard deviation of
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particles in position and velocity space. The metric is defined as

d(p1, p2) =

✓
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+
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s2
v

◆1/2

(1.3)

Up to 10,000 particles are chosen randomly from a group (based on the group size),
and the nearest neighbour distances are calculated. The choice of the 6D linking
length is decided such that a tunable fraction f (70% is the ROCKSTAR default
value) of particles form groups of at least two (the particle and one other).
For deeper subgroups, the metric is re-evaluated, and a 6D linking length is chosen
the same way as before, but with respect to the subgroup particles.

3. Converting the Hierarchical FoF groups into particle membership for halos -
A seed halo is generated for each subgroup at the deepest level. ROCKSTAR then
recursively analyses groups in the higher hierarchy levels until all the particles in the
original FoF (the 3D FoF) are assigned to halos.
If there is only a single seed halo for a group at a higher level (parent group), then the
entire group is assigned to the corresponding halo. In a parent group with multiple
seed halos, the particles are assigned to the seed halo that is closest in phase space
(6D). Distance between a particle p and seed halo h is given by -

d(h, p) =

 
|~xh � ~xp|2
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2
dyn,vir
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(1.4)

rdyn,vir = vmaxtdyn,vir =
vmaxq

4
3pGrvir

(1.5)

where sv is the seed halo’s current velocity dispersion, vmax is its current maximum
circular velocity, and “vir” specifies the virial overdensity. The viral overdensity
used in ROCKSTAR is defined using rvir from Bryan & Norman (1998)[40], which
corresponds to 360 times the background density at z = 0.
On a separate note, the reason for using rdyn,vir, as opposed to sx like in the previous
step, is to produce intuitive and stable results. Using sx leads to the mis-assignment
of particles in the outskirts of the halo to subhalos.

4. Calculate host halo/subhalo relationships among halos. ROCKSTAR incorpo-
rates the time dimension to verify these relations - Until the previous step, ROCK-
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STAR calculated everything at the particle level. In order to calculate the relation-
ships at a halo level, ROCKSTAR uses the most basic definition of subhalo, which
is a bound halo contained within another, larger halo. ROCKSTAR assigns satellite
membership based on phase-space distances. Using Eq. 1.4 as a metric to calculate
distances, ROCKSTAR calculates the distance of a halo centre to all other halos with
more assigned particles. The satellite halo of interest is then assigned to the nearest
larger halo within the same 3D FoF group.
If multiple time steps are available, or a halo catalogue from a earlier timestep is
available, then the subhalo-host halo relationships are modified to remain consistent
with the earlier timestep.

5. Calculating halo properties and generating merger trees

(a) Halo positions - ROCKSTAR chooses a set of x particles closest to the density
peak (a proxy for the centre), which best minimises the Poisson error (sx

p
N),

to calculate the position of the centre of the halo. For a halo of 106 particles, the
innermost 103 particles are chosen to calculate the position of the halo centre.

(b) Halo velocities - A fact to note when it comes to the velocity of halo centres is
that the halo centres can have substantial velocity offsets from the bulk. Under
the assumption that the galaxy hosted by the halo will best track the centre of
the halo, particles up to 10% of the viral radius are averaged to estimate the
halo centre velocity.

(c) Halo masses - ROCKSTAR calculates halo densities according to multiple user-
specified density thresholds, for example, the virial threshold, density threshold
relative to the background or one that is relative to the critical density. All the
particles assigned to the halo are used to calculate said overdensity condition.
In this work, we use virial mass.
Halo masses and velocities are calculated after performing an unbinding algo-
rithm. A single pass through the modified Barnes-Hut (original Barned-Hut
algorithm - [41]) method calculates particle potentials.

(d) Vcmax and Rvir - Vcmax is taken as the maximum of
p

GM(r)r�1. Rvir is cal-
culated as the extent to which particles follow the virial threshold overdensity
conditions.

(e) ROCKSTAR also calculates many other halo properties, but the ones mentioned
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above are the ones used in this work. You can find the full list of calculated
properties in [38]

ROCKSTAR generates particle-based merger trees. A descendant halo is one that
has the highest number of common particles to its progenitor in the previous timestep
(excluding particles from subhalos). It is recommended to use an advanced merger
tree algorithm called Consistent Trees to correct for mistakes inherent to particle-
based merger trees.

1.5.2 Consistent Trees

Particle-based halo catalogues and merger trees work well, but they have their own set of
consistency issues and, therefore, cannot be used in places that require high-precision halo
catalogues and merger trees. The following points summarise the consistency issues in
particle-based merger trees -

1. A subhalo passing through its pericentre can easily be confused with the highly dense
host halo core. This leads to the subhalo disappearing in one timestep and then reap-
pearing a few timesteps later when it is sufficiently far from the host halo centre. This
would generate an entry for a subhalo within the host halo without any progenitors.

2. Subhalos identified close to the host halo centre can cause miss-assignment of the
subhalo particles to the host halo particles. This could lead to a record of a merger
event when the merger has not yet taken place. This can also cause inconsistencies
in the halo properties (halo mass, Vcmax, etc.) for both the subhalo and the host halo
for multiple time steps until the subhalo is far enough from the host halo to regain all
of its miss-assigned particles.

3. The opposite might occur - Some of the particles form a larger halo can be acciden-
tally assigned to a smaller subhalo passing very close to the centre of the larger halo.
This can create records of spuriously massive subhalo. This can also lead to duplicate
entries of the host halo.

4. Super low-mass halos that are at the identification threshold may appear and disap-
pear in multiple timesteps without descendants and progenitors. This causes records
of false mergers and/or a bias against the low-mass halos.
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To tackle and overcome the above-stated problems, Consistent Trees[42] makes use of
gravitational evolution. Using the knowledge of positions, velocities and mass profiles of
halos from one timestep, Consistent Trees predicts its properties in adjacent timesteps using
gravity and inertia. Comparing the predictions to actual halo catalogues lets Consistent
Trees fill in missing information and correct the record.

In predicting the halo motion between successive timesteps, Consistent Trees assume
two things - The position and mass profiles of all dark matter halos are the only factors that
control the kinematics of halos in the simulation, and individual halo mass distributions
are approximated by fitting spherical NFW profiles. While these assumptions might seem
drastic and physically wrong, halo motion is tracked accurately between timesteps even
with these assumptions.

Consistent Trees is broken into two broad stages. Figure 1.3b illustrates the steps in the
first stage of Consistent Trees. The first stage of Consistent Trees is very straightforward.
The underlying approach for repairing merger trees is the observation of a bottom-up halo
formation in LCDM. Every halo has at least one progenitor at the previous timestep, even
if the halo mass is below the threshold of the halo finder. If tracing a halo back in time
to its expected location does not yield a progenitor, then the halo catalogue is said to be
incomplete. If going back a few more steps produces a progenitor at the expected location,
then the intrinsic properties of the halo are interpolated between timesteps based on the
best estimates of the gravitational evolution algorithm. If there are no matches even after
going back a few timesteps, the halo is either labelled as spurious and removed from the
catalogue or considered to have just formed. Halo properties like Vcmax, Mvir, Rvir and
angular momentum are expected to change slowly, and properties like position and velocity
are expected to change predictably across timesteps. tx, tv, (tvmax are the characteristic
errors in predicting position, velocity, and Vcmax, respectively. These quantities are used to
construct a distance metric that can be used to rank the candidate progenitors. The expected
progenitor properties are denoted by e, and the candidate properties are denoted by c. The
distance metric is given by -

d(e,c) =

vuut |~xe �~xc|2
2t2

x

+
|~ve �~vc|2

2t2
v

+
log10

⇣
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2t2
vmax

(1.6)
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The second stage deals with full halo tracks, i.e., the lineage of the most massive pro-
genitors for a given halo. Checking for consistencies in these tracks relates the phase-mass
checks from stage one to temporal checks. This allows for removing halos that appear for
a few timesteps in the catalogues. Three types of problematic halo tracks are removed -

1. Halos whose lineage of most-massive progenitors contains more than a fraction fphant

of phantom halos. Phantom halos are placeholders created at time tn�1 for each halo
in time tn with zero progenitors. Halos with a high fraction of phantom progenitors
are usually very close to the detection threshold. More massive halos with a high
fraction of phantom progenitors are, more likely than not, an invalid detection. For
example, subhalos miss-assigned host halo particles when moving close to the centre.

2. Halos, which are tracked for a very short period of time (span of timesteps). For
massive halos, the same reasoning can be applied to say they are invalid detections.
For smaller halos and earlier redshifts, this condition might remove a few legitimate
halos, but the value for ttracked is set after some trial and error, so it doesn’t harm the
catalogue as much.

3. Subhalos whose tracks do not extend outside the virial radius of the host and are
tracked for fewer than ttracked,sub timesteps. These subhalos might seem obviously
spurious, but in cases where the interval between timesteps is large, it could be that a
subhalo formed outside the virial radius of the host but was detected for the first time
within the host.

Here is short summary of all that Consistent Trees accomplishes aside from solving the
problems mentioned at the start of this section -

1. Missing halos are completely reconstructed with all of their properties with quantifi-
able errors.

2. Merger tree links are assigned a natural likelihood estimate. If the particle-based
links are unphysical, then the links are cut and reconnected with more plausible can-
didates.
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3. The resolution limit of the simulation becomes explicitly quantifiable in terms of
errors induced in the position and velocity of the halos.

4. Distinguishes between tidally disrupted subhalos at the next timestep and subhalos
that are lost by halo finders.

Most halo finders, including ROCKSTAR, fail when it comes to picking out particles
that belong to a tidal stream. Tidal streams comprise particles that occupy a unique region
in phase space. These particles are distinct from the subhalo core that is left behind but
they are also different compared to the MW phase-mixed particles. If we were to think
of subhalos as bound structures floating around in the MW with the MW phase-mixed
particles as their background, then we can think of subhalo cores as really dense spheres,
just like a normal halo. Streams can be thought of as dense structures (relative to the MW)
comprising loosely bound particles. Therefore, streams become a valuable substructure to
study microphysical properties that depend on the velocity distribution and spatial density
of particles. Streams might not be as dense as bound subhalos, therefore being a sub-
optimal source for constraining microphysical properties of dark matter, but they can act
as an independent source to verify, and even further constrain the microphysics of dark
matter. In this work, we use Milky Way-size high-resolution halos to identify substructures
and segregate particles based on their dynamic activity.
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(a) (b)
Figure 1.3: Illustration of the ROCKSTAR algorithm and the first stage of the Consistent
Trees algorithm. The illustration of the first stage of Consistent Trees is taken from [42].
Link to go back to ROCKSTAR (1.5.1) and Consistent Trees (1.5.2).



Chapter 2

Data & Methods

2.1 Data

This study uses zoom-in simulations of Milky Way-mass halos from the c125-2048 box[43].
c125-2048 box is a dark matter-only cosmological simulation run with L-Gadget (based
on Gadget-2[44, 45]). The properties are as follows -

1. Initial conditions are generated by 2LTPIC
1[46] at z=199, with the power spectrum

generated by CAMB
2

2. 125Mpc h
�1 box

3. 20483 particles of mass 1.87
M�h

�1.

4. Softening length is 0.5kpc h
�1

5. Wm = 0.286. Wm is the ratio of matter density to the critical density of the Universe.

6. h = 0.7. h is defined as the ratio of H0 (in Km�1Mpc�1) to 100 Km�1Mpc�1.

7. WL = 0.714. WL is the ratio of the dark energy density to the critical density of the
Universe.

1http://cosmo.nyu.edu/roman/2LPT/
2http://camb.info/

23
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8. ns = 0.96. ns is the spectral index of the primordial power spectrum.

9. s8 = 0.82. s8 is defined as the r.m.s. density variation when smoothed with a top hat
filter of a radius of 8Mpc h

�1.

The zoom–in simulations are selected from the c125-1024 box, which is a low-resolution
version of the c125-2048 box. MUSIC code3[47] is used to generate the initial conditions
of the zoom-in simulations, which are matched to the cosmological box to the 10243 scale.
The zoom-in simulation starts from z = 19 and consists of 236 snapshots. The lowest mass
(highest resolution) in the zoom-in simulation is ⇡ 3⇥105

M�h
�1. The softening length in

the highest-resolution region is 170pc h
�1 comoving.

2.2 Selecting Subhalos and Identifying Tidal Disruptions

After running ROCKSTAR and Consistent Trees on the particle data from all timesteps
(referred to as snapshots in this section) of the simulation, we identify the most massive
halo at redshift z = 0, referred to as The Milky Way (MW), from here on. All information
about the MW halo is mentioned in Section 3.1.1. To identify the subhalos and other
substructures, we track particles belonging to halos that fall into the MW through all the
time steps.

2.2.1 Selecting Subhalos

From the halo catalogue at z = 0, we identify all the halos up to 2Rvir,MW. 2Rvir,MW is a
liberal limit to select any and all halos affected by the tidal forces of the MW. From this
list, we follow all the halos back in time to the point where the centres of these halos are
separated from the MW centre by a distance equal to 1.5Rvir,MW+ 2.5Rvir,sub. These values
change from snapshot to snapshot and from halo to halo as halos grow and shrink depend-
ing on their surroundings. The choice of this criterion is motivated by the phase space plot
of all the particles in the box (3.1b) and testing multiple different criteria. A good metric to
test such criteria would be to see what fraction of the peak mass of the subhalo is captured.

3https://bitbucket.org/ohahn/music

https://bitbucket.org/ohahn/music
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This is a good metric because once a subhalo enters the MW, the subhalo stops accreting
mass and starts losing mass because of tidal forces. The proof of the decreasing mass for
various subhalos is shown in Figure 2.1a. The X-axis is redshift, so time increases from
right to left. The vertical lines depict the time at which the selection for the particular sub-
halo was made according to the criterion mentioned above. One can see that the mass of
the halo, as estimated by ROCKSTAR, decreases after the selection. This is because the
tidal forces of the MW strip the subhalo particles slowly. Therefore, the validity of various
selection criteria can be compared using how close to the peak mass we can select subhalos
using them.

Figures 2.1b and 2.1c show the comparison of a few different criteria we studied. As
mentioned above, the logic for finding and selecting these subhalos is to follow all the
subhalos from z = 0 backwards in time till they are separated from the MW centre by some
criteria involving Rvir,MW and Rvir,sub. Any subhalo that does not go beyond the criteria is
removed from the list. This results in lists with varying numbers of subhalos depending on
the criteria we are working with. Some numbers that would help the reader understand this
- There are a total of 3710 subhalos within 2Rvir,MW. Number of subhalos lost because they
do not meet the criteria upon backtracing -

1. 1.5Rvir,MW +2.5Rvir,sub - 204 subhalos

2. 1.5Rvir,MW +1.5Rvir,sub - 200 subhalos

3. 1.5Rvir,MW +Rvir,sub - 200 subhalos

4. 1Rvir,MW +2.5Rvir,sub - 65 subhalos

5. 1Rvir,MW +1.5Rvir,sub - 62 subhalos

Looking at these numbers, one might think, shouldn’t the choice be obviously 1Rvir,MW +

1.5Rvir,sub, as it retains most of the subhalos. But this is where Figure 2.1b comes in. Figure
2.1b shows that all the criteria work relatively well, but the selected criterion has an edge
over the others. The figure shows the fraction of all identified halos (particular to the selec-
tion criteria) which follow Mselection

Mpeak

> threshold. One can see that the criteria with 1Rvir,MW

perform poorly. These criteria capture the subhalos too close to the MW which results in
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the subhalos already being tidally disrupted by the time the selection is performed. So,
out of the three 1.5Rvir,MW criteria, which one is the best choice? This can be explained
using Figure 2.1c, which shows the fractions of subhalos following the Mselection

Mpeak

condition
with respect to the fraction obtained using 1.5Rvir,MW + 2.5Rvir,MW for the same thresh-
old. Therefore, positive values indicate better performance than 1.5Rvir,MW + 2.5Rvir,sub.
1.5Rvir,MW + 1.5Rvir,sub and 1.5Rvir,MW + 1Rvir,sub seem to keep up for low values of the
threshold, but after a threshold of 0.7 1.5Rvir,MW +2.5Rvir,sub performs better than both of
the other criteria.

(a)

(b) (c)
Figure 2.1: Figure 2.1a shows the evolution of the virial mass of two subhalos selected
randomly from the same mass bin. The vertical lines corresponding to each subhalo show
the time when the subhalo and MW were separated by roughly 1.5Rvir,MW + 2.5Rvir,sub.
Figure 2.1b shows the fraction of subhalos that follow Mselection

Mpeak

> threshold. There is a bit
of nuance to this that can be found in Section 2.2.1. Figure 2.1c shows the same values but
with respect to the corresponding value of 1.5Rvir,MW + 2.5Rvir,sub. If one of the criteria
had y = 0.95 for a threshold of 0.8 and 1.5Rvir,MW +2.5Rvir,sub had a value of yre f = 0.97
for the same threshold, then we plot y� yre f as a function of threshold.
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2.2.2 Selecting Subhalo Particles

Once we have the information of when a subhalo is just outside the MW (according to the
abovementioned condition), we mark all the particles up to 1.5Rvir,sub as belonging to that
particular subhalo. This selection is again motivated by the phase space plot of the MW
in ( 3.1b). ROCKSTAR has a very strict boundedness condition in place to mark the Rvir

of halos. we chose a value greater than the Rvir measured by ROCKSTAR because the
loosely bound particles of an infalling subhalo are tidally ripped away first. The underlying
assumption behind selecting all the particles up to a radius of 1.5Rvir,sub is that the halo is
isolated.

Figure 2.2 shows the selected particles of two subhalos at z = 0 in comparison to the
corresponding descendant halo particles as estimated by ROCKSTAR. One can see that
for a particular subhalo, the two plots have the same skeleton, but the ROCKSTAR one
has fewer particles compared to the selection. Since the selection, by construction, only
selects particles that are tidally undisturbed by the MW, the extra particles in the selection
plots have not phase mixed enough to be part of the MW (directly). In short, ROCKSTAR
does an “OK" job of identifying streams as well as subhalos, but our goal is to create an
algorithm that does it better.

Figure 2.2: The mass estimated by ROCKSTAR and Consistent Trees is mentioned in the
title. The ROCKSTAR mass is calculated as the product of the number of particles and the
mass of each particle, while the mass from Consistent Trees is the from the halo catalogues
after running Consistent Trees. The selection mass is calculated the same way ROCKSTAR
mass is calculated. Left - shows a subhalo of mass O(109

M�). The left-hand side shows the
XY plot of particles assigned to the halo by ROCKSTAR, and the right-hand side shows the
particles selected before entering MW (z =?) after following them till z = 0. The orange
circle shows the MW boundary. Right - shows the same thing for another halo of mass
O(109

M�).



28 CHAPTER 2. DATA & METHODS

2.2.3 Tidal Disruption

The focus of the project is to be able to identify streams and other elongated substructures
given a single snapshot. we have focused on the z= 0 snapshot. To identify tidal disruptions
in the subhalos that fall into the MW, we follow the particles of the subhalo through all the
snapshots till z = 0. Since no literature quantifies the properties of streams down to the
particle level, identifying streams is a very subjective and hand-wavey task. To give the
reader an idea of what we consider as streams in this work, we have shown a few tidally
disrupted subhalos with streams in figure 2.3.

Figure 2.3: A few examples of subhalos that have formed streams at z = 0

2.3 Machine Learning Algorithms to Identify Substruc-
ture

2.3.1 DBSCAN

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)[48] is an unsu-
pervised machine-learning technique that uses the notion of clusters and noise. The un-
derlying assumption for DBSCAN to work is that clusters are dense regions separated by
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low-density noise regions. Clustering of such dense regions is dictated by the combination
of two parameters set by the user - eps, epsilon or radius, and min_samples, the minimum
number of points to lie in an "eps" sphere around a single point.
This allows for clustering in arbitrary shapes instead of spheres in centroid-based methods
like K-means. Figure 2.4b illustrates this point quite well. DBSCAN successfully separates
the two clusters, while K-Means fails to separate the points belonging to the two clusters.
Figure 2.4a visualises the algorithm. The DBSCAN algorithm -

1. Find all the points within a eps (all user-defined parameters will be boldface in this
section) radius and identify other points among them that are either core points or
points with min_samples of points in their eps sphere.

2. For each core point, if not assigned to a cluster, assign a new cluster.

3. Recursively find all the density-connected points and assign them to the same cluster.

4. Visit all the points. The points that do not belong to any cluster are labelled as noise.

2.3.2 Iterative Hierarchical DBSCAN

This technique makes use of DBSCAN’s density-based clustering algorithm to find clusters
or varying densities. Since the main objective of this work is to be able to identify subha-
los and streams in simulations, and the densities of subhalo, streams and host halo follow
a particular order, we decided to implement this technique to be able to extract different
types of substructures.

The density of subhalos is greater than those of their corresponding streams, and the
density of the host halo particles is lesser than any streams created from subhalos via tidal
disruptions. Therefore, searching for structures of different densities, starting from the
highest to the lowest density, should separate out different structures. The algorithm is -

1. Select a min_samples value for DBSCAN. In this work, we select the value that
matches the peak of the halo mass distribution at z = 0.

2. Generate the min_samples� th nearest neighbour distribution.
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3. Select your DBSCAN eps value as some multiple ( f > 1) of the minimum of the
nearest neighbour distribution. For this work, we used f = 1.15.

4. Perform DBSCAN with selected eps and min_samples. This will produce a set of
clusters of the densest objects. In the initial few runs of this process, these clusters
will be subhalos or the inner regions of subhalos.

5. Remove the clustered points from the dataset and repeat from the first step. The later
iterations will produce intermediate-density and low-density objects like streams and
host halos. At least, that is the idea. You can choose to leave min_samples fixed and
change eps from iteration to iteration.

2.3.3 HDBSCAN

Hierarchical Density-Based Spatial Clustering of Applications and Noise (HDBSCAN)[49]
is an unsupervised machine-learning algorithm akin to DBSCAN mentioned in the previous
section (2.3.1). Like DBSCAN, HDBSCAN distinguishes between low-density noise re-
gions and high-density clusters and finds clusters of varying shapes. One can think of HDB-
SCAN as performing DBSCAN over a range of values of eps (for a fixed min_samples)
instead of a single eps. The difference is depicted in 2.5 where DBSCAN and HDBSCAN
are run using the same parameters on a dataset with clusters of 2 different densities. DB-
SCAN fails to pick up the low-density cluster, admittedly because of the choice of hyperpa-
rameters. Still, HDBSCAN successfully picks out the low-density cluster despite running
with the same hyperparameters.
The HDBSCAN algorithm is -

1. Transform the space according to the density/sparsity - The kth (min_cluster_size;
analogous to min_samples form DBSCAN) nearest neighbour distances are used to
estimate density. For a pair of points, a and b, the distance to their respective kth
neighbours is called core distance. Let’s denote them as corek(a) and corek(b) re-
spectively. The space is transformed under a new metric called mutual reachability
distance. Mutual reachability distance is defined as -

dmreach�k(a,b) = max{corek(a),corek(b),d(a,b)} (2.1)
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(a)

(b)
Figure 2.4: Figure 2.4a illustrates the DBSCAN algorithm. The dotted circles are made of
the same radius eps. The min_samples value used for this demonstration is 6. All points
in circles of the same colour belong to a single cluster. The green circle is a singular clus-
ter, the yellow circles are a combination of two individual clusters, and the red circles are
a combination of 3 individual clusters. The two cyan-coloured points that do not belong to
any cluster are the noise points.
Figure 2.4b shows the difference between KMeans and DBSCAN when it comes to clus-
tering points in shapes that are not an n-dimensional sphere. The data is generated using
make_moon() from sci-kit. Left shows the clustering produced by Kmeans for 2 clusters.
Right shows the clusters identified by DBSCAN.

where d(a,b) is the distance in the metric set by the user.

2. Construct minimum spanning tree of distance weighted graph - With the data
points as vertices and the mutual reachability distance as the edges of the graph, a
minimum spanning tree is generated. High-value edges are dropped, which leads to
disconnections, which in turn generate a hierarchy of components at different thresh-
olds. This ensures the preservation of the density structure of the data points.
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3. Construct cluster hierarchy and condense based on minimum cluster size - Sort
the edges in ascending order and then iterate through with decreasing density con-
straint (edge distance), creating new merged clusters for each new edge. This con-
structs and merges clusters at different thresholds, i.e., a hierarchy. To condense this
hierarchy into clusters, HDBSCAN uses a user-define parameter, min_cluster_size.
As you go from low density to high density, clusters "lose points" (edges in terms
of the hierarchy) or can split into two or more clusters with multiple points. If, at
a particular branch, a cluster loses a point, then the algorithm checks if the remain-
ing cluster has points greater than min_cluster_size. If no, then the parent retains
the identity of "cluster". If, at a particular branch, a cluster splits into two or more
clusters, then to decide if the parent is "the" cluster or if the progenitors are clus-
ters, min_cluster_size is used. This is iteratively performed until the entire tree is
traversed.

4. Selecting stable clusters - Use persistence and stability to identify clusters. To mea-
sure persistence and stability HDBSCAN uses l , where l = 1

curr_threshold_distance
.

Persistence is defined as lbirth �ldeath, where lbirth is when a cluster splits off and
becomes its own cluster and ldeath (if any) is when the cluster splits off into smaller
clusters. Stability is defined as Sp2cluster(lp � lbirth), where lp is when the point
falls out of the cluster.
Clusters with low persistence are discarded, and high persistence is preserved. lp

gives us a measure of the probability of the point belonging to a cluster.

2.3.4 UMAP

Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP)[50]
is a manifold learning technique based on Riemannian geometry and algebraic topology.
The core theory of UMAP requires the reader to possess a basic understanding of category
theory. Therefore, the description provided here may not bring out the mathematical beauty
of the theory to its fullest. UMAP assumes these three conditions to be axiomatically
true[50]

1. There exists a manifold on which the data would be uniformly distributed
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Figure 2.5: The data is generated using make_moon() from sci-kit for 2 different noise
parameters (determines the density of the moons). Left shows the result of clustering using
DBSCAN with min_samples = 90 and eps = 0.32. Right shows the result of clustering
using HDBSCAN with the same parameters as DBSCAN.

2. The underlying manifold of interest is locally connected

3. Preserving the topological structure of the manifold is the primary goal

UMAP: Theory

To skip the theory start with the computation part in section 2.3.4. Terms required to
understand the theory of UMAP (all of these are abstract terms) -

1. Topological Space - A set X and the collection of its subsets T are said for a topolog-
ical space if

(a) f (empty set) 2 T

(b) X 2 T

(c) \i={1,2...n}ti 2 T

(d) Union of an arbitrary number of ti 2 T
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2. Manifolds - Manifolds are topological spaces that are locally Euclidean.

3. Simplices (k-simplex) - The convex hull of k+1 independent points gives a k-simplex.
Therefore, a 0-simplex is a point, a 1-simplex is a line, a 2-simplex is a triangle (with
three 1-simplex as faces) and so on. Simplices are used to build k�dimensional
objects.

4. Simplicial Complex - is a set of simplicies glued together along their faces. This can
be used to construct topological spaces.

5. Simplicial Set - are higher-dimensional generalisation of multigraphs.

6. Open Cover - is a family of sets whose union gives the entire space. In the case of
finite data points, we can get an approximation of a true open cover.

7. Čech Complex - is a combinatorial way to convert topological spaces into a simpli-
cial complex. Every set in the open cover of a topological space is converted into
a 0-simplex. A 1-simplex is created between pairs of sets that have a non-empty
intersection. A 2-simplex is created between three sets if the triple intersection is
non-empty, and so on.

Assuming the data we provide is uniformly drawn from some topological space, UMAP
tries to construct a representation of the said topological space. The first step is to pro-
duce a reasonable approximation of a true open cover. If provided with a metric, this can
be done by simply making fixed radius balls around each point. This is illustrated in fig-
ure 2.6. Considering the intersections of these balls as intersections of sets from the open
cover, UMAP implements the Čech Complex. This creates a meaningful representation of
the underlying topological space as backed by the Nerve Theorem[51].

In reality, assuming real data is uniformly drawn from some topological space is naive. So,
what changes if the data is not uniformly distributed? A fixed radius ball around each point
fails to cover the entire manifold and capture the properties of the underlying space. This is
depicted in figure 2.7. In regions with very few points, there will be too many disconnected
0-simplex, and in regions with a lot of points, there will be high k valued k-simplex (more
than ideal). So, what does UMAP do? UMAP assumes the data to be uniformly distributed
in some manifold and proceeds to ask what does this tell us about the manifold itself?
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Figure 2.6: Constant radius balls around a uniformly drawn dataset. Image taken from [52].

Figure 2.7: Balls of constant radius do not work on non-uniform datasets. Too many high
k k-simplex and too many lonely 0-simplex(es). Lack of complete coverage of the space.
Images taken from [52].

This is where Riemannian geometry and the user come in. A unit ball about a point
stretches to the p-th nearest neighbour (not using the conventional term k-NN because k

is used to represent the simplices) of the point, where p is the n_neighoburs provided by
the user. A metric is calculated for each point, and unit balls are created in accordance with
the calculated metric. UMAP takes this a step further by redefining the “intersection of
sets" from a binary yes-or-no to a weight depending on the separation between the points
in the local metric. This can be thought of as working in a fuzzy topology. This is illustrated
in figure 2.8.

Local metrics solve the coverage problem caused by using fixed radius balls, but this
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Figure 2.8: Applying Riemannian geometry to estimate unit balls that can cover the entire
manifold. Changing intersection from binary to continuous values. Depiction of fuzzy

topology. Images are taken from [52].

brings up a new problem. The local metrics change from point to point. For a given
pair of points, the edge connecting them can have different distance or weight depend-
ing on the reference point. To overcome this, for an edge with two weights (depending
on the reference points) a and b, UMAP merges the two edges into one with a weight of
a+ b� a · b. The weights are probabilities that an edge (1-simplex) exists, and the com-
bination of weights, in the above fashion, is the probability that at least one of the edges
exists. Applying this to union all the fuzzy simplicial sets gives a single fuzzy simplicial
complex, which is basically just a weighted graph! Phew, that was tedious.

Figure 2.9: Point-wise local metrics cause multiple edges, with different weights, between
a given pair of points. Weighting the edges to obtain a single weight for an edge connecting
two points. Images taken from [52]
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Once the topological representation of the input data is calculated, UMAP assumes a
random low-dimensional representation in Rd (this manifold can be changed). In reality,
for computational purposes, the initial representation is not random. Regardless, without
the need to estimate a manifold, as in the case of the input, UMAP simply jumps to comput-
ing the fuzzy topological representation. Once the representation of both input and target
spaces are calculated, UMAP simply minimises the fuzzy set cross-entropy loss between
the two representations (considering only the 1-skeleton of the fuzzy simplicial sets). This
is better explained from the computational perspective.

In summary, at a high level, UMAP crates a topological representation for the input
data using fuzzy simplicial sets of an approximate manifold. Create a low-dimensional
representation in Rd (known manifold) and find its topological representation. Optimi-
sation of the low-dimensional representation is done by simply minimising the fuzzy set
cross-entropy.

UMAP: Computational Perspective

From a computational point of view, UMAP simply constructs and manipulates weighted
graphs. This puts UMAP in the category of k-neighbour-based graph learning algorithms.
UMAP can be broken down into four broad steps.

1. Generate a weighted graph. This will be the source graph.

2. Initialize a low dimensional (target dimension, provided by the user) graph using
spectral embedding. A random initialization works in theory, but spectral embedding
converges better and faster.

3. Generate a weighted graph for the low-dimensional embedding.

4. Use a force-directed graph layout algorithm to optimize the low-dimensional weighted
graph to resemble the source graph as closely as practically possible. This, in a sense,
preserves the topology.
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Low-Dimensional Graph Construction

Let X = {x1,x2, ...xN} be the input dataset and d be the metric. Given an input parameter k,
for each xi UMAP computes the set {xi1 ,xi2 , ...,xik

} of the k nearest neighbours of xi under
the metric d. Once this is obtained, UMAP calculates ri and si for each xi according to the
following equations [50]

ri = min{d(xi,xi j
)|1  j  k,d(xi,xi j

)> 0}

k

Â
j=1

exp

✓�max(0, d(xi,xi j
) � ri

si

◆
= log2(k)

UMAP then defines the weighted graph using Ḡ = (V,E,w) where V of Ḡ is simply X ,
E = {(xi,xi j

)|1  j  k,1  i  N} and

w((xi,xi j
)) = exp

✓�max(0, d(xi,xi j
) � ri

si

◆

This would imply that the edge between two fixed points xi and x j would have two different
weights for the two directions depending on the distribution of points in the neighbourhood
of each of the points. To combine them to form a unified topological representation, let’s
look at A, the weighted adjacent matrix of Ḡ, and consider the symmetric matrix

B = A+A
T �A�A

T

where � is the Hadamard (or pointwise) product. Then, a graph G is an undirected weighted
graph whose adjacency matrix is given by B.

Graph Optimisation

A force-directed approach uses attractive forces applied along edges and repulsive forces
applied on vertices. The attractive force between two vertices i and j at low-dimensional
coordinates yi and y j, respectively, is determined by

�2ab||yi � y j||2(b�1)
2

1+ ||yi � y j||22
w((xi,x j))(yi � y j)
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where a and b are hyper-parameters. Repulsive forces are computed via sampling due
to computational constraints. Thus, whenever an attractive force is applied between two
vertices i and j, one is repulsed from another vertex k, chosen via sampling. The repulsive
force is given by

2b

(e + ||yi � y j||22)(1+a||yi � y j||2b

2 )
(1�w((xi,x j)))(yi � y j)

e is a small number (0.001) to avoid division by zero.
These forces are derived gradients optimising the edge-wise cross-entropy between the
weighted source graph G and an equivalent weighted graph H generated using {yi}i=1..N .
Therefore, {yi} is transformed such that the cross entropy loss between H and G is mini-
mum, i.e., topology is conserved in the low-dimension representation.

Implementation

If one wants simply to run UMAP as a dimension reduction algorithm, one can forego
understanding the theory behind it and focus on the inputs, outputs and parameters. UMAP
offers a set of four basic parameters - n_neighoburs, min_dist, n_componenets and
metric.

1. n_neighoburs - decides the scale at which structure is extracted from the input
data. Low values of n_neighoburs look at very small scales, usually at the cost of
structure at larger scales, while high values of n_neighoburs look at global structure
at the cost of structure at finer scales.

2. min_dist - controls the compactness of clusters in the low-dimensional representa-
tion (output). While the clusters are ascertained in the high dimensional data (input)
based on n_neighoburs and metric, how packed these clusters are in the low-
dimensional representation is decided by min_dist. min_dist is the minimum dis-
tance apart the points ought to be in the low-dimensional representation.

3. n_componenets - is the output dimensions.

4. metric - is the metric used to calculate distances between points in both high-
dimensional input and low-dimensional output. UMAP offers a variety of pre-defined
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metrics and allows users to define their own metrics.



Chapter 3

Results

This section compiles and lays out the observations from all the algorithms and tests we
performed to ascertain the best possible way to separate out dynamically distinct objects
and particles belonging to said objects.

3.1 Preliminary Results

We will present the preliminary results and argue the choice of input data used for all
subsequent techniques. All the preliminary results are from ROCKSTAR and Consistent
Trees.

3.1.1 MW Halo Properties

At z = 0, the virial radius of the MW halo is 0.22Mpc h
�1, and the mass contained within

the virial radius of the MW halo is 8.741⇥ 1011
M�. Figure 3.1a shows the XY scatter

density plot of all the particles inside our 1Mpc h
�1 box of interest centred at the MW

(referred to as "box" from here on), and Figure 3.1b shows the phase space density plot
(Vr vs r) with the MW centre’s position and velocity as the reference. The phase space plot
shows particles that extend beyond the 1Mpc h

�1 box to emphasize the infall. Particles
with negative Vr are falling towards the centre, while those with positive Vr are moving

41
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away from it. The triangular region (with one side along the y-axis) shows particles that
are in orbits. Far outside, one can see that there are only infalling particles. It is clear from
the phase space plot that particles are in orbit around the MW centre up to ⇡ 1.5 times
the predicted virial radius of the MW, as indicated by the positive values of Vr at values of
r > 1. [30, 53–55] define halo boundaries by the extent of orbits. Figure 3.1c shows the
spatial distribution and mass of halos in the box. There are a total of 3711 halos (including
MW and its subhalos) ranging from a mass of 5.64⇥105

M� to 8.741⇥1011
M� (MW) as

shown in Figure 3.1d. The peak of the distribution corresponds to ⇡ 1⇥ 107
M�, or ⇡ 30

particles.

3.1.2 UMAP

We run UMAP to reduce the 6D data at z = 0 to 2D. The output space will be referred to as
UMAP space from here on out. We use the normalised 6D information from the MW frame
of reference. All the particle positions and velocities are taken relative to the MW centre
position and velocity and normalised by the virial radius and maximum circular velocity of
the MW. We chose an output dimension (n_componenets) of 2 for all our analyses for ease
of visualisation. As you will see in section 3.3.3, higher output dimensions can produce
similar results. Since we want our clusters to be as compact and separated from other
clusters, we decided to use min_dist = 0. Section 3.3.2 elaborates on this choice. For
the n_neighoburs parameter, we chose the value corresponding to the peak of the mass
distribution of halos in our box. The peak in figure 3.1d corresponds to ⇡ 30 particles since
each particle weighs ⇡ 3⇥105. Figure 3.2 shows the scatter plot and the density plot of the
resultant UMAP space. The most eye-catching elements of the plot are the big ellipse-like
structure (referred to as ellipse from here on), the many blobs far away from the ellipse and
a plethora of streaks and various other shapes in between the ellipse and the blobs. A note
to keep in mind: UMAP is a non-linear dimension reduction algorithm. Therefore, the axes
in the UMAP space do not have any physical analogues.
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3.2 Separation of Dynamic Particles

3.2.1 The Major Elements in UMAP Space

As mentioned in the previous section, the most eye-catching elements in UMAP space are
the big ellipse and the many blobs far away from the ellipse. We could select these elements
by hand, but that could introduce some selection bias. The reader and the author may not
agree on what should be the boundary of each selection. So, we perform a DBSCAN in
UMAP space to obtain a more objective, density-based selection. We run DBSCAN with
eps = 23 and min_samples = 0.027. DBSCAN finds 5647 clusters, and ⇡10.5% of the
points are classified as noise. The most massive clusters are shown in Figure 3.3.

From the XY plot, we can see that the ellipse is completely contained in the virial
boundary of the MW, and the blobs are outside the boundary. If we take a look at the Vr � r

space, we see that the blobs are, in fact, infalling halos, and the ellipse is an almost uniform
set of orbiting particles. The proximity of the dark green and the light green blobs in real
space and phase space is also picked up by UMAP, evident from the relative positions of
the blobs.

3.2.2 Deeper Look at the Ellipse

We have seen that the ellipse in UMAP space is completely within the virial boundary of the
MW. The phase space distribution of the particles of the ellipse leads us to believe it is a set
of particles in orbit. ROCKSTAR and [57] use a metric to estimate how relaxed a halo is. n

particles picked randomly from the halo can measure the relaxedness (virialisation) based
on the fraction of particles that follow 2KE

|U | < 1.35. We use this same metric to evaluate the
dynamics of the particles in the ellipse. Particles that follow the above-mentioned condition
are called virialised particles from here on out. In Figure 3.4, we have put in selections
by hand to split the ellipse into three elliptical shells. The innermost shell (practically a
solid ellipse) is 0.35 times the entire ellipse. The second shell extends to 0.7 times the
entire ellipse. The third ellipse extends to 1.05 times the ellipse. All the shells are mutually
exclusive, i.e., they have no common particles.
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From the virialisation plot, we see that the inner regions of the ellipse mainly comprise
virialised particles, ⇡ 98% of the particles follow 2KE

|U | < 1.35. As one goes outward to the
boundary of the ellipse, the shells contain smaller fractions of virialised particles. ⇡ 85%
of the particles in the second shell satisfy the virialisation condition, and only ⇡ 37% of
the third shell satisfy said condition.

Another thing to note is the number of substructures in the different regions. In the XY

plot of region 1 (purple), we observe small substructures in the form of solid dark circles.
The darker diamond-like shapes seen close to the Vr = 0 reference line in the Vr � r plot
correspond to these substructures. Region 1 particles also have lower Vr values compared
to the other two regions, indicated by the clustering of points closer to the Vr = 0 reference
line and the smaller extent of the Vr axis compared to the other regions. Similarly, looking
at regions 2 and 3, we can observe an increase in the fraction of particles with high Vr,
region 3 with a higher fraction than region 2. We also see an increase in the number and
size of substructures going from Region 1 to 2 to 3.

3.2.3 What else does UMAP do?

To understand how UMAP separates particles and if UMAP is capable of separating out
coherent structures like streams, where the current halo finders fail, we decided to look
at the distribution of tidally disrupted subhalo particles in UMAP space. The particles
belonging to a particular subhalo are selected using the algorithm mentioned in section
2.2.2. Keep in mind that the selection of particles belonging to a subhalo has an error of its
own.

Figure 3.5 shows three tidally disrupted subhalos that have not completely phase mixed
with the MW at z = 0. We run DBSCAN on the particles in UMAP space to illustrate and
identify any separation of physically coherent structures. These clusters are identified by
the colours. Let’s look at these images row by row. Figure 3.5a shows a subhalo of mass
6.35⇥ 109

M�. From the clustering in UMAP space, DBSCAN identifies 3 clusters, one
inside the ellipse and two outside. The blue cluster (outside the ellipse) is the infall stream,
evident from the XY plot and the Vr � r plot. The green cluster (inside the ellipse, close
to the boundary) comprises particles that are turning around, again, evident from the XY

and Vr � r plots. Therefore, in this case, UMAP distinguishes between particles that are
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infalling and those turning around (particles at the pericentre).

Figure 3.5b shows a subhalo of mass 5.3⇥ 109
M�. DBSCAN identifies 4 clusters in

UMAP space denoted by the colours of the points. The yellow and light green clusters
within the ellipse are made of particles turning around (at pericentre), as observed from the
XY and Vr � r plots. These particles form what is known as the leading head. The trailing
tail, the turquoise cluster, is behind the intact core (blue cluster). In UMAP space, the
leading head, trailing tail, and core are well separated. Particles are put inside and outside
the ellipse depending on what part of the their trajectories they are in.

Figure 3.5c shows a subhalo of mass 3.5⇥ 109
M�. DBSCAN identifies 2 clusters in

UMAP space, each of which is coloured differently. From the XY plot, we can say that
the subhalo is not disrupted and stretched much, unlike the other two subhalos, and corre-
spondingly, from UMAP space, we recover almost all the particles belonging to the subhalo
as a single cluster. The same is observed in the Vr � r plot. Therefore, UMAP successfully
put a relatively undisturbed subhalo outside the ellipse completely. Is this all? Does UMAP
do anything else?

Figure 3.6 shows two subhalos that have almost fully phase-mixed with the MW. We
can see this from the triangular distribution in Vr�r space and the lack of high-density spots
(relative to the rest of the map) in the XY plot. The UMAP distribution of these particles
is also roughly uniform within the ellipse. So, UMAP uniformly distributes phase-mixed
subhalos (cannot be classified as subhalos anymore) within the ellipse. The opposite is not
true, that the entire ellipse is a set of fully phase-mixed particles. This is shown in Figure
3.4.

3.3 Effects of UMAP Parameters

3.3.1 Nearest Neighbours (n_neighoburs)

n_neighoburs dictates the resolution at which UMAP probes for structures in the input
data. We tested out a range of n_neighoburs values for the particles in the box. For values
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of n_neighoburs above and below, what is shown in this work leads to a memory crash
when using 140GB of memory for ⇡ 5 million particles. Figure 3.7 shows the 2D UMAP
space for fixed min_dist and metric, but varying n_neighoburs values. For small values
of n_neighoburs, like 5 and 10, the maps look very grainy, and there are very few, if not
zero, elongated structures. When going from small values of n_neighoburs to larger
values, we can see the drastic changes in the nature of visible structures. Going from 5 to
10, we can see a higher number of elongated structures. Going from 10 to 30, we see lesser
grains. Going from 30 to 100 reduces the number of low-density regions (the intensity is a
proxy for density), but overall, the graphs look similar. For very high values, like 100, 150
and 200, the maps look almost identical. But regardless of the n_neighoburs values, we
observe UMAP to separate out the MW from the massive infalling halos.

3.3.2 Minimum Distance (min_dist)

min_dist dictates how compact the representation of clusters is in the output. min_dist
does not affect the clustering, but it affects how closely points can be packed in the out-
put. Figure 3.8 shows the variation in the output for three min_dist values for three
different n_neighoburs values. We can observe the same pattern across the different
n_neighoburs values. Going from a min_dist value of 0 to 1 makes the maps more
diffuse. This makes it particularly difficult to separate clusters from each other visually
or using algorithms like DBSCAN or HDBSCAN. For this reason, for the purpose of this
work, min_dist is set to 0 to obtain dense and well-separated clusters.

3.3.3 Dimensions (n_componenets)

n_componenets is the dimension of the output. we have tried running UMAP for 3 dif-
ferent n_componenets settings. However, the effects of this parameter in the context
of physically coherent structures and substructures are not completely understood. Fig-
ure 3.9 shows the output for n_componenets = 3,n_neighoburs = 30,min_dist = 0.
The large-scale separation of particles into clusters (blobs) corresponding to the infalling
massive subhalos and to the background MW particles is still observable. Understand-
ing the small-scale features requires some more time. Figure 3.10 shows the output for
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n_componenets = 6,n_neighoburs = 30,min_dist = 0. The clusters in this space ap-
pear closer than those in the other spaces with lower dimensions. Further investigation is
required to assess the viability of higher n_componenets values. Theoretically speaking,
the high-dimensional maps (3D and 6D) should have more information stored in the form
of independent axes. But nothing can be said without further investigation.

3.3.4 Metric (metric)

In simple words, UMAP minimises the cross entropy between the weighted graph of the
input data and the graph of the output. The weighting of edges is done using the dis-
tance information between points. This is exactly why different metrics lead to different
results. The topography of the input data is dependent on the distance metric. In this work,
the choice of metric seems to make very little difference, provided the metrics fall under
the Minkowski formalism. Figure 3.11 shows exactly this. Metrics like the Manhattan,
Chebyshev, or a general Minkowski seem to make little difference to the output. However,
non-minkowski-like metrics like Canberra produce drastic changes to the output map. The
metrics used for this study are -

1. Canberra metric - d(~p,~q) = Sn

i=1
|pi�qi|
|pi|+|qi|

2. Chebyshev metric - d(~p,~q) = maxi(|pi �qi|)

3. Manhattan metric - d(~p,~q) = Sn

i=1|pi �qi|

4. Minkowski metric - d(~p,~q) = (Sn

i=1|pi �qi|k)1/k (k = 2 in this work)

Whether we choose Minkowski-like metrics or special metrics like the Canberra metric
depends on the physics of the problem. Figure 3.3 shows the clusters obtained using the
Euclidean metric (Minkowski metric with k = 2), and Figure 3.12 shows the 5 most massive
clusters from the Canberra map. The solid division between the 4 quadrants of the XY space
shows the unphysical nature of the clusters identified via the Canberra metric. This can be
attributed to the grid-dependent nature of the metric. This is a strong reason to move away
from using metrics like Canberra.
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3.4 DBSCAN & HDBSCAN

DBSCAN and HDBSCAN are clustering algorithms that rely on the difference in densities
between noisy regions and clusters. In simulations, we have objects of a wide range of
densities ranging from very dense subhalos to relatively diffused host halo. Fine-tuning
the parameters of DBSCAN and HDBSCAN to find all of these structures in a single run
is nearly impossible. It will also change from simulation to simulation or region to region
within a single simulation snapshot. Especially with DBSCAN only looking for structures
with a density greater than the user-defined density. For this reason, we tried the iterative
hierarchical DBSCAN technique mentioned in Section 2.3.2.

We perform the iterative process for different input data, as you will see in the subse-
quent sections. All data is normalised with the virial radius and maximum circular velocity
of the MW.

• For 2D phase space (Vr � r), the values for Vr and r are calculated with respect to
the MW centre and normalised over the maximum circular velocity and Rvir,MW,
respectively.

• For 3D position space (x,y,z), the particle positions are (x0,y0,z0) =
~xp� ~xMW

Rvir,MW
where

~xMW is the position of the centre of the MW and Rvir,MW is the virial radius of the
MW.

• For 6D phase space (x,y,z,vx,vy,vz), the particle positions and velocities are modified
as (x0,y0,z0) =

~xp� ~xMW

Rvir,MW
and (v0

x
,v0

y
,v0

z
) =

~vp� ~vMW

Vcmax
where ~vMW is the velocity of the

centre of the MW and Vcmax is the maximum circular velocity of the MW.

3.4.1 Phase Space (2D)

Figure 3.13 shows the iterative process applied in the 2D phase space for a fixed min_samples
value of 30 and for a varying eps values calculated as f ⇥min(30�NN distribution) where
f = 1.15. Fixing both the fraction f and the min_samples is definitely not the most optimal
configuration for this technique. However, doing so can still help us gauge the capabilities
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of this technique.

Figure 3.13 shows the first 10 iterations of the process. The most noticeable feature
when clustering in this space is the circular rings in real space (XY plot). For the initial
steps, the particles in phase space are clustered with very small extents in Vr and r. From
the later steps, one can see a minutely larger extent in the r space, but overall, the spherical
shell structure of clusters in real space is preserved throughout the steps.

3.4.2 Position Space (3D)

Figure 3.14 shows the iterative process applied in 3D position space for a fixed min_samples
value of 30 and for a varying eps values calculated as f ⇥min(30�NNdistribution) where
f = 1.15. Again, fixing both the fraction f and min_samples is definitely not the most ef-
ficient approach, but it is a good trial to test the technique.

Figure 3.14 shows iterations 7 through 16 of the process. The initial iterations do not
find big structures because of the stringent density requirements. A total of 26,373 (0.52%
of the total particles) were identified as part of clusters. Therefore, to make better use of
real estate, we show iterations 7 through 16. As shown in Figure 3.14, the algorithm starts
picking up small spherical clusters in real space (circular in XY plot). In the later iterations,
we see the algorithm pick up the cores of the MW (light green cluster at the centre) and the
massive infalling subhalos (purple clusters).

3.4.3 Phase Space (6D)

Figure 3.15 shows the iterative process applied in 6D phase space for a fixed min_samples

value of 30 and for a varying eps values calculated as f ⇥min(30�NNdistribution) where
f = 1.15. Again, fixing the fraction f and min_samples is an inefficient approach but a
good preliminary run.
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As expected, this input data gives the best result for this iterative DBSCAN technique.
From Figure 3.15, we can see that clusters are not always spherical or densely packed in
real space. We get large but diffuse clusters in real space, which when compared with their
phase space counterparts, turn out to be substructures. We also observe the identification of
the massive infalling halos (near the bottom of the XY plot) in multiple iterations, indicating
the incomplete identification of the halo in each step. Initially, the algorithm picks up the
dense cores as shown by the blue clusters in figures 3.15f and 3.15g (around (-0.5, -1.5) in
XY plot). In the subsequent iterations, the algorithm picks up less dense clusters (comprised
of different particles) in the same region. However, compared to the previous applications
of this iterative technique, we see the identification of more physically sound structures.

3.5 Dense Neural Networks

From the 6D phase space iterative DBSCAN, which required human intervention in each
step, Dense Neural Network (aka neural network) is one step closer to automating the entire
process. For training and testing, we need labelled and disjoint datasets from the same dis-
tribution. The idea is for the binary classifier to identify the underlying relationships among
particles of a particular kind (substructure particles) and what separates them from the rest
(host halo particles). The dataset used is 6D phase space information taken with respect to
the MW centre and normalised over the virial radius and maximum circular velocity of the
MW. This is the same as in the case of the 6D phase space DBSCAN technique (refer 3.4).

Training is done on all the particles in the box at z = 0. There are a total of ⇡ 5⇥
106 particles, which are split into training-validation-test as ⇡ 90 : 5 : 5. To ascertain the
robustness of the network, it is tested on a 1Mpc h

�1 box from around the MW at z =

0.5. After numerous experiments with architecture and hyper-parameters, we settled on the
following -

1. The architecture is shown in Figure 3.16a. The network has 27,753 parameters, with
12 non-trainable parameters and 27,741 trainable parameters.

2. The box at z = 0 has ⇡ 5M particles split into a training sample of 4.45M particles,
a validation sample of 270k particles and a test sample of 270k particles. There are
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⇡ 3.71M particles belonging to the negative class (not-substructure) and ⇡ 1.27M

particles belonging to the positive class (substructure).

3. The box at z= 0.5 has a total of ⇡ 3.96M particles, with ⇡ 2.95M particles belonging
to the negative class and ⇡ 1M particles belonging to the positive class.

4. Training batch size is 1000

5. Trained with Early Stopping with a patience of 4 and min_delta of 10�3.

The particles are labelled according to Sections 2.2.1 and 2.2.2. All the particles la-
belled as subhalo particles form the positive class for the network, and all the particles left
unlabelled form the negative class of the network (host halo particles). The basic results
from training and testing are as follows -

1. Technical results - the network trains for 28 epochs, with each epoch taking 26s.

2. The training and testing ROCs1 are shown in Figure 3.16c. The performance of the
network on particles from the same snapshot as training is remarkable. However,
the performance across snapshots is poor. This is depicted by the high value of area

under the curve (AUC) for the training and testing sets at z = 0 and the low AUC
value for the testing set from z = 0.5.

3. Since there exists a class imbalance in both snapshots and ROCs are insensitive to
class imbalances[58], F1 scores2is a better metric for judging the network’s perfor-
mance and deciding what threshold to use. Figure 3.16b shows the F1 score plot for
the network performance on the various datasets as a function of threshold. The F1
scores agree with the conclusions from the ROC curves. The network’s performance
for the dataset from z = 0.5, for the threshold where the datasets from z = 0 peak, is
very poor.

1Receiver Operating Characteristic curve (ROC curve) is a plot of T PR vs FPR for varying thresholds.
The area under the ROC curve is labelled AUC. AUC is 0 for a model with 100% wrong predictions and is
1 for a model with 100% correct predictions. T PR = T P

T P+FN
is the true positive rate, and FPR = FP

FP+T N
is

the false positive rate. T P is the true positives, i.e., positive class objects that are predicted to be positive by
the network. T N is the true negatives, i.e., negative class objects that are classified to belong to the negative
class. FP is the false positives, i.e., negative class objects predicted to belong to the positive class. FN is
false negatives, i.e., positive class objects predicted to belong to the negative class.

2
F1 = 2

�
P⇥R

P+R

�
where P = T P

T P+FP
is the precision and R = T P

T P+FN
is the recall (also known at T PR). An

excellent model (with a particular threshold) has an F1 score of 1, while a subpar model has a low F1 score.
Explanation for each individual term is provided in the previous footnote 1
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3.6 Discussion

Let us summarize all the results of this work and some of their possible explanations.
We will begin with the iterative DBSCAN technique, then move on to DNN and finally
to UMAP. We performed an iterative DBSCAN from a bottom-up fashion to identify the
densest to least dense objects in 2D phase space (Vr � r), 3D position space and 6D phase
space. The 2D phase space seemed to find clusters distributed in bins of constant radial
distance. The initial steps find the densest regions in Vr � r space, which tend to have a
small spread in Vr and r. The small extent in r translates to spherical shells in the real space,
as seen in Figure 3.13. This is an artefact of clustering in the 2D phase space. In reality,
substructures are unlikely to have the form of spherical shells. Therefore, this technique is
unsuitable for separating out subhalos or other spherical substructures, let alone elongated
structures like streams which extend into a large number of radial bins.

In the case of 3D position space, the algorithm finds spherical structures like the cur-
rent halo finders. However, since the input data has only position information, the clusters
include both host halo and subhalo particles as long as they occupy volumes that are ei-
ther overlapping or close enough in real space. There is no distinction between host halo
particles and subhalo halo particles. The algorithm fails to identify any elongated substruc-
tures like streams. The algorithm is unable to distinguish between structures that have not
completely merged but are in the process of merging. Any overlap between distinct struc-
tures renders the algorithm unable to distinguish between the structures. In most cases,
these structures can be distinguished with velocity information, which was not used in this
version. Therefore, while this technique is useful to identify regions of varying density,
which can be used to distinguish substructure from the MW, the assignment of particles to
said substructures is incorrect. This will lead to inaccurate estimations for any phase space
distribution-dependent process like reaction and annihilation rates.

In the case of 6D phase space, the algorithm performs much better than the previous
two versions. As the algorithm has information on the velocity distribution as well as spa-
tial distribution, it is capable of separating out two merging objects, unlike the 3D version.
One of the biggest problems with this technique is the fact that it is incapable of producing
usable results without human intervention in each step. Manual verification of the clusters
and what they represent is required in each step. Therefore, instead of making lives eas-
ier, this makes it more difficult, which is against the objective of this work. Another thing
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to keep in mind is since the protocol is to find the densest structures, remove them from
the next step and repeat this cycle, very dense halo cores are identified first instead of the
entire halo. This is depicted in figures 3.15f, 3.15g, 3.15h and 3.15i, where the infalling
massive halos (located around (-0.5, -1.5) in XY plot) are picked up in multiple iterations
starting from their dense cores. Therefore, this protocol, by construction, is sub-optimal.
An improvement to this is what is implemented in ROCKSTAR, where one finds the largest
structures first and then goes down to deeper and deeper levels.

Another failed technique was the use of DNNs to classify particles as belonging to
the MW phase-mixed set of particles or subhalo particles. The subhalo particles could be
tidally disrupted streams of intact cores. This network (figure 3.5) was trained on the parti-
cles at z= 0 and tested on the particles at z= 0.5. The performance on the test set from z= 0
was incredible, but that on the z= 0.5 set was sub-par. In conclusion, the trained DNN man-
aged to separate out particles belonging to substructures in the same snapshot it was trained
but failed to match the same performance in a different snapshot (within the same simu-
lation). This leads us to believe the network was not learning the underlying distributions
of substructure particles in phase space, or the difference in the phase space regions occu-
pied by substructure particles and host halo particles. The network only has two classes,
while in reality, there could be n number of physically motivated classes of particles. This
could be a cause for the poor performance. It could also be that we failed to provide all
relevant information to the network in the context of the physics of the simulation. Maybe
DNNs just cannot be used for this task. Plenty of explanations and workarounds to explore.

These failures brought us to UMAP, a non-linear dimension reduction algorithm. UMAP
is run using n_neighoburs equal to roughly the peak of the halo mass distribution ob-
tained from ROCKSTAR and Consistent Trees. At first glance (figure 3.2), UMAP seems
to separate out different halos. Notice how it says halos and not subhalos. This is because
separating the subhalos using UMAP is not as straightforward. The 2D UMAP plot com-
fortably separates out tidally undisturbed massive infalling halos from the MW (figure 3.3).
Upon further investigation, one finds that the biggest feature of the UMAP plot, the ellipse,
is in itself a segregation plot where the particles are separated into different elliptical shells
based on their virialisation status (figure 3.4). Upon careful inspection of the various Vr � r

plots for the different elliptical shells, we can see a pattern. The innermost shell mostly
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consists of low Vr particles as indicated by the smaller extent of the Vr axis and the packing
of points close to the Vr = 0 reference line. The various elliptical shells also have different
numbers of substructures. Therefore, the segregation of particles is not simply based on
their virial status but also on their Vr values and whether or not the particles are part of
some substructure. This is good! We are able to distinguish between massive structures
and also segregate the MW particles based on their dynamics. Can we make this better?
Can we learn something about the huge area of streaks and slashes? Figure 3.5 tells us
that the region of streaks is the house for parts of many tidally disrupted subhalos, infalling
streams, infalling cores, etc. Infalling particles that are very close to their pericentre are
put within the ellipse, while infalling particles that have not crossed their pericentres are
put outside the ellipse. The intact core of the infalling subhalo is a single dense cluster in
UMAP space put outside the ellipse. In conclusion, UMAP separates out particles that are
infalling and turning around (at pericentre). In some cases, UMAP is capable of separating
out the leading head, trailing tail and the intact core of a tidally disrupted subhalo (figure
3.5b). UMAP also distributes completely phase-mixed subhalos (not subhalo anymore)
uniformly in the ellipse (based on their current Vr values), as shown in figure 3.6.
So, are we able to identify streams? Not quite. Are we able to able to separate out particles
with different dynamics? Very much so. We need to better understand what UMAP is do-
ing in order to manipulate it to give us the results we want. Maybe a different loss function
could give us better results? Maybe we need to pre-process our data differently? Maybe
the higher dimensions for outputs could solve our problem (figures 3.9,3.10)?

Answering the question in the introduction section of this work - can we precisely find
elongated structures or separate out particles based on their dynamics, will go a long way
in helping us ascertain the microphysics of dark matter. Since the goal is to find a method
to do so, Maybe UMAP might not be the answer to the question we are asking. Once we
establish the capabilities of UMAP as a structure finder we can explore other types of ML
algorithms like GNNs to solve this problem. There are a lot of questions to be answered and
lots of paths to be explored. But regardless of what the next step is, UMAP, a topological
algorithm, definitely manages to study the dynamics of the system to some extent. That
should be the main takeaway from this work.
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(a) (b)

(c) (d)

(e)
Figure 3.1: Figure 3.1a shows the distribution of all the particles at z = 0 in the box.
The positions of the particles are taken relative to the centre of the MW (as estimated by
ROCKSTAR) and normalized with the virial radius of MW (Rvir,MW). The colours depict
the density. Figure 3.1b shows the Vr�r plot of the particles that extend outside the box (for
visualisation purposes). Vr and r are estimated using the MW centre position and velocity.
The colours depict the density. Figure 3.1c shows the positions of all the halos with respect
to the MW centre and normalised over the virial radius of the MW. The colours represent
the mass of the halo as powers of 10. The solid line shows the virial boundary of the MW.
Figure 3.1d shows the mass distribution of the halos in the box. Figure 3.1e shows the
halo mass function calculated from the simulation and the theoretical halo mass function
calculated by Tinker et al.[56] for the same mass range.
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Figure 3.2: UMAP generated from 1Mpc h
�1 centred at MW from z = 0 with UMAP pa-

rameters n_neighoburs = 30,min_dist = 0,n_componenets = 2,metric = euclidean.
The input data is the positions and velocities of all the particles relative to the MW centre
normalised over the virial radius (for position dimensions) and maximum circular velocity
(for velocity dimensions). Left - shows the scatter plot in UMAP space. Right - shows the
density plot in UMAP space.

Figure 3.3: Most massive clusters from DBSCAN when run in UMAP space with ⇡ 10.5%
particles classified as noise. DBSCAN finds 5647 clusters. Left - shows the clusters in
UMAP space. Centre - shows the corresponding particles in real space (XY ). The blue
circle shows the virial boundary of the MW. Right - Shows the phase space (Vr � r) distri-
bution of the particles. Colours remain constant throughout the plots.
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Figure 3.4: Three elliptical shells spanning the entire ellipse in UMAP space. The real
space (XY ) and phase space (Vr �r) plots of the particles belonging to each shell are shown
in rows 2 to 4. The blue circle in the XY plot is the virial boundary of the MW. The black
lines in the Vr � r are the Vr = 0 and Rvir,MW reference lines. The virialisation histogram in
the top right shows the distribution of 2KE

|U | values of the particles belonging to the different
regions. The vertical line in the virialisation plot is a reference line for 1.35 (condition used
in ROCKSTAR[38] and estimate by [57]). The % values in the legend on the plot show the
number of particles that follow 2KE

|U | < 1.35.
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(a)

(b)

(c)
Figure 3.5: Three different subhalos at z = 0 in UMAP space, real space (XY ) and phase
space (Vr � r) space. The colours within a row are constant for all three plots. The colours
are obtained using DBSCAN clustering in UMAP space. The green ellipse in the left col-
umn is the boundary of the ellipse in UMAP space (hand-selected for reference purposes).
The orange circle in the centre column is the virial boundary of the MW. The black lines in
the right column are the Vr = 0 and r = 0 reference lines.
Figure 3.5a shows a subhalo of mass 6.35⇥109

M�. DBSCAN identified three clusters with
1.8% of the particles classified as noise (violet-coloured points). Figure 3.5b shows a sub-
halo of mass 5.3⇥109

M�. DBSCAN identified 6 clusters with 2% of the particles classified
as noise (violet-coloured points). Figure 3.5c shows a subhalo of mass 3.5⇥109

M�. DB-
SCAN identified 2 clusters with 8.2% particles classified as noise (violet-coloured points).
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Figure 3.6: Two subhalos that have almost completely phase mixed. The left column shows
the UMAP space distribution. The pink ellipse is a reference boundary put in place by hand.
The orange curve in the centre column shows the virial boundary of the MW. The black
lines in the right column show the Vr = 0 and r = 0 reference lines. Top - a subhalo of mass
1.6⇥109

M�. Bottom - a subhalo of mass 4.3⇥109
M�.
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Figure 3.7: 2D UMAP-reduced maps generated from 6D phase space information. All
maps were generated using min_dist= 0 and metric= Euclidean. n_neighoburs values
of 5, 10, 30, 100, 150, 200 are used. The orientation of the maps may differ due to the
stochastic nature of the algorithm.
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(a)

(b)

(c)
Figure 3.8: Figure 3.8a shows three 2D UMAP-reduced maps generated using
n_neighoburs = 10 and min_dist = 0,0.5,1 respectively. Figure 3.8b shows maps for
the same min_dist values for a n_neighoburs value of 20. Figure 3.8c shows the same
for a n_neighoburs value of 30. All maps use the Euclidean metric.
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Figure 3.9: UMAP generated with n_neighoburs = 30,min_dist =
0,n_componenets = 3. Left shows the first two axes, centre shows the second and
third axes and right shows the first and third axes.

Figure 3.10: UMAP generated with n_neighoburs = 30,min_dist =
0,n_componenets = 6. Top row shows the first 4 axes and Bottom row shows the
rest of the axes.
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Figure 3.11: Maps for n_neighoburs value of 30 and min_dist value of 0 for various
distance metrics. Canberra metric d(~p,~q) = Sn

i=1
|pi�qi|
|pi|+|qi| . Chebyshev metric d(~p,~q) =

maxi(|pi � qi|). Manhattan metric d(~p,~q) = Sn

i=1|pi � qi|. Minkowski metric d(~p,~q) =
(Sn

i=1(�1)i+1|pi�qi|k)1/k for k = 2. The orientation of the maps differs due to the stochas-
tic nature of the algorithm.
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Figure 3.12: The 5 most massive clusters identified by DBSCAN. The left plot shows the
location in the UMAP-reduced map. The centre plot shows the same clusters (identified
by colours) in the XY plane (taken with respect to the MW centre and normalised with
Rvir,MW). The solid division between the negative and positive y values shows the un-
physical nature of the clusters. The right plot is the phase space plot of the same clusters
(identified by colours). We see the strict cut on the Vr values, which points to the unphysical
nature of the clusters.
UMAP run with 6D input (phase space) with a n_neighoburs value of 30, min_dist value
of 0 and n_componenets value of 2. DBSCAN - run with eps of 0.08 and min_samples

of 100. Particles classified as noise - 0.68%
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)
Figure 3.13: 2D phase space (Vr � r) iterative DBSCAN outputs for the first 10 steps.
The first plot in each pair represents the clusters in XY space, and the second in each
pair represents the 2D phase space Vr � r. The title of each pair of plots shows the eps

parameter value and the number of clusters identified in that particular step. After each
step, the identified clusters are removed from the input data for the next step. For step 2, all
the clusters from step 1 will be removed. For step 3, all from step 2 will be removed and so
on. This is elaborated in section 2.3.2.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)
Figure 3.14: 3D position space iterative DBSCAN outputs for iterations 7 through 16. The
first 6 iterations clustered a total of 26,373 (0.52% of the total particles). The first plot in
each pair represents the clusters in XY space, and the second in each pair represents the 2D
phase space Vr � r. The title of each pair of plots shows the eps parameter value and the
number of clusters identified in that particular step. After each step, the identified clusters
are removed from the input data for the next step. For step 2, all the clusters from step 1
will be removed. For step 3, all from step 2 will be removed and so on. This is elaborated
in section 2.3.2.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)
Figure 3.15: 6D phase space (x,y,z,vx,vy,vz) iterative DBSCAN outputs from the first 10
steps. The first plot in each pair represents the clusters in XY space, and the second in each
pair represents the 2D phase space Vr � r. The title of each pair of plots shows the eps

parameter value and the number of clusters identified in that particular step. After each
step, the identified clusters are removed from the input data for the next step. For step 2, all
the clusters from step 1 will be removed. For step 3, all from step 2 will be removed and so
on.
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(a)

(b)

(c)
Figure 3.16: Figure 3.16a shows the architecture of the network. Figure 3.16b shows the
F1 Score for varying thresholds on different datasets. Figure 3.16c shows the ROC curves
for training and testing sets. The ROC curves for both datasets from z = 0 overlap. The
dotted line is for reference. F1 score and ROCs are explained in the body and footnotes of
Section 3.5
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Conclusion

This was an exploratory work to devise an alternate method to find structures in cosmolog-
ical simulations. Since the current state of the art is capable of finding spherical structures
like halos and subhalos but fails when it comes to elongated structures like streams, we
wanted to explore various possible machine learning algorithms to find spherical as well
as elongated structures. Finding such structures can be useful in constraining the micro-
physical properties of dark matter, like annihilation rates and reaction rates, which depend
on the velocity distribution and spatial density of particles. The current constraints on the
DM annihilation cross sections, for example, is < sv > [2,3]⇥10�25cm3s�1[59]. These
numbers are assuming a WIMP–like scenario. Since these cross-sections are quite low,
highly dense regions of dark matter are promising places to look for signatures of dark
matter interactions. Dark matter halos and streams are some of the densest regions of dark
matter. Due to the high densities, we can use these regions to constrain certain known
channels of annihilation.
In our quest to find the one ML technique that would identify streams and subhalos, we
stumbled upon UMAP. UMAP is a non-linear dimension reduction algorithm which we
use to reduce 6D phase space to a 2D representation. In doing so, we find that, on the
largest scale, UMAP is capable of separating out the biggest halos in the data. Amongst
the MW particles (particles within the virial boundary of the MW), there is a segregation
of particles based on how relaxed[57] the particles are. UMAP also separates out different
parts of an infalling/tidally disrupted subhalo. Therefore, in a very broad sense, one can
say that UMAP separates particles based on their dynamics and is capable of finding ex-
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tended structures like subhalos and streams. The efficacy of this technique still has to be
rigorously tested before we can claim we have achieved our goal. The current halo finders
do not perform so well when it comes to identifying streams. So, UMAP takes us a step
further in identifying streams and other elongated substructures that could help constrain
the microphysics of dark matter and perform various studies of the dynamics of particles
under various dark matter paradigms. If the viability of UMAP as a structure-finder is es-
tablished, maybe we can explore other topological techniques and GNNs to find various
structures in simulations.
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