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Abstract

The challenge of accurately calculating differential cross-sections in QCD and the Standard
Model has many applications, especially in analysing data from particle accelerators such as
the LHC. The efficiency of traditional methods of cross-section calculation can be improved by
bypassing some tedious intermediate steps and in order to do so we propose a new application
of the quantum off-shell recursion framework in conjunction with the Largest Time Equation.
We intend to use unitarity of the S-matrix to obtain higher point tree order cross-sections from
lower point loop order amplitudes. We first review the quantum off-shell recursion framework
with a pedagogical calculation in 𝜙4 theory. We then introduce a field-doubling prescription for
𝜙4 theory which when used in conjunction with the recursion framework allows us to exhibit
unitarity explicitly. We finally obtain a proof-of-concept by deriving the tree order 6-point
cross-section in the regular 𝜙4 theory from the 3-loop order 4-point amplitude in the field-doubled
𝜙4 theory.
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CHAPTER 1

Introduction

Scattering amplitudes lay at the heart of quantum field theories. Obtaining these amplitudes
is necessary to study phenomena associated with particles. And to that end, Feynman

diagrams have been employed in calculations for many decades. Julian Schwinger once said,
“Like the silicon chips of more recent years, the Feynman diagram was bringing computation to
the masses.”[18,19] As an idea the Feynman diagram is remarkably simple and easy to understand,
and as a framework it is even more powerful.

But for problems involving gauge theories, the efficiency of the diagrammatic method comes
under scrutiny. In calculations at higher precision (increasing loop order) or for a larger number
of particles (increasing 𝑛), the count of Feynman diagrams relevant to the problem scales faster
than a factorial function. There are far too many diagrams while their numerical evaluation is
slow and computationally expensive.

𝑛 2 3 4 5 6 7 8

No. of diagrams 4 25 220 2485 34300 559405 10525900

Table 1.1: The number of tree Feynman diagrams contributing to the ‘𝑔 𝑔 → 𝑛𝑔’ process for a pure
non-Abelian gauge theory[40].

Moreover, the building blocks of Feynman diagrams – the Feynman rules and vertices – are
gauge-dependent for theories that have a gauge-redundancy in their actions and hence information
gleaned from diagrams can vary based on the choice of gauge and field-redefinition.

There are modern techniques that aim to make calculations more efficient while exposing the
mathematical structure of scattering amplitudes which wasn’t as evident with Feynman diagrams.
Using recursion relations is one such approach, of which there are two main classes: on-shell
and off-shell. The famous BCFW (Britto–Cachazo–Feng–Witten) recursion relations[20,21] are
an example of the former type, and in this setup one obtains tree amplitudes at higher points
(more external particles) from tree amplitudes at lower points (as low as 3 external particles)
by exploiting the analytic properties of on-shell amplitudes with a clever deformation[2]. An
obvious advantage of using such a method when compared to Feynman diagrams is the fact that
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one is working with gauge-invariant inputs (on-shell tree amplitudes). However, we are more
interested in the BG (Berends–Giele) recursion relations[22,23] which depend on the recursive
nature of interaction vertices of a theory. These recursion relations are off-shell, i.e. one or more
external legs are taken off-shell which allows us to use objects called currents. These currents
are then used to obtain amplitudes algebraically. Our interest in this type of recursion stems
from the fact that on-shell recursion methods are not easily applicable to more general classes of
theories and the efficiency of off-shell recursions tends to be higher as the number of external
legs increases[28].

While the BG recursion provides an organised way of repackaging the Feynman diagrammatic
expansion, there is a better way of constructing the off-shell recursions. The perturbiner method
detailed by Rosly & Selivanov[24–26] generates the same recursions using classical equations
of motion. The conventional perturbiner method which was limited to tree amplitudes has
been adapted to incorporate Dyson–Schwinger equations allowing one to extend the recursion
relations to loop orders. This novel framework – quantum off-shell recursions[1] – has a lot of
advantages: it is efficient, it requires knowledge of just the action of the theory, it is systematic
and hence can be very easily programmed on computers and most importantly, it is highly
extensible. It has already been applied beyond the contexts of scattering amplitudes for regular
quantum field theories, most recently in the realm of graviton scattering[5]. There is scope for
applications in other areas too: Schwinger–Keldysh formalism, quantum field theory in curved
background, and celestial holography to name a few.

§ 1.1 Goals and outline
We focus on applying the quantum off-shell recursion framework to the study of unitarity of
the S-matrix. We shall use the Largest Time Equation[6] (a generalization of the famous optical
theorem) to obtain higher point tree cross-section from lower point loop amplitudes. This runs
against the conventional usage of the optical theorem, wherein one obtains loop amplitudes by
stitching together tree amplitudes[27]. The quantum off-shell recursion framework is a perfect
candidate for this investigation as the computation of loop amplitudes is no longer a drastic
bottleneck. Establishing this result would mark significant progress in amplitude techniques as
one could obtain QCD cross-sections skipping the laborious step of color decomposition.

The goals of this thesis are: to re-iterate the convenience and power of the quantum off-
shell recursion framework; and to develop a computationally efficient method for calculating
cross-sections in gauge theories using the Largest Time Equation.

The thesis is structured as follows:
In chapter 2 we discuss the background of this study, with a brief introduction to scattering
amplitudes. We then take a look into unitarity methods and compare the approaches of generalized
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unitarity and the Largest Time Equation. And finally we review color management in gauge
theories.
In chapter 3 we will use the quantum off-shell recursion framework to obtain the 3-loop order
4-point amplitude in 𝜙4 theory.
In chapter 4 we introduce the field-doubling prescription for 𝜙4 which allows us to use the Largest
Time Equation algebraically. We shall obtain the tree order 6-point cross-section in the regular
theory from the 3-loop order 4-point amplitude in the field-doubled theory to demonstrate the
utility of our method.
In chapter 5 we collect our results and summarise some insights gained from the calculations.
We conclude by listing some of the future directions that can be taken from here.

We supply a few appendices at the end of the thesis.
In appendix A we begin the calculation for the pure Yang–Mills theory in the first-order formalism
by deriving the Dyson–Schwinger equations for all fields involved.
In appendix B we list all of the non-standard notation used in this thesis for easy reference.





CHAPTER 2

Background

In this chapter we shall acquaint ourselves with some important concepts related to the study
of scattering amplitudes. Let us first try to understand what scattering amplitudes are.

§ 2.1 Scattering amplitudes
Scattering amplitudes are elementary building blocks of particle physics. They serve as a crucial
link connecting theory and experiment. And to a large extent, the need to compute amplitudes
was the driving force behind the historical development of quantum field theory. The study of
amplitudes dates back to 1960s around the time when the S-matrix program was very much
in vogue. There was a resurgence in 1980s around the time when Parke and Taylor published
the monumental formula[29] responsible for massive simplification in calculations of QCD
amplitudes. This kickstarted the modern field as we now know it, with countless developments
made to push forward the state-of-the-art result by several loop orders.

Let us understand why amplitudes are so important. The key observable in collision experiments
is the cross-section 𝜎 where classically,

𝜎 =
no. of scattering events

time × projectile beam flux × no. of target particles
. (2.1)

It is a measure of the probability of a given scattering process to take place in terms of
energy/momenta of particles. However, a more useful quantity for physicists is the differential
cross-section d𝜎

dΩ which describes the angular dependence of the scattering event. This is actually
the form of the differential cross-section for 2-to-2 scattering. For general 𝑛-particle scattering
we have

d𝜎
d3𝑝1 · · · d3𝑝𝑛

,

where ®𝑝1, . . . , ®𝑝𝑛 are the final 3-momenta of the particles involved. For now let us stick to the
2-to-2 scattering regime.

Analogous to the relationship between the probability density |𝜓 |2 and the complex-valued
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wavefunction (or the probability amplitude) 𝜓 in quantum mechanics, we have

d𝜎
dΩ

∝ |M|2,

where M is the so-called scattering amplitude. The time evolution operator that evolves momenta
eigenstates from 𝑡 = −∞ to 𝑡 = ∞, relevant to scattering is called the scattering or S-matrix. In
some references, the scattering amplitude is defined as an element of the S-matrix

A = ⟨ 𝑓 |S|𝑖⟩, (2.2)

where |𝑖⟩ and | 𝑓 ⟩ are the initial and final scattering states. There is a subtle difference between
A and M: the S-matrix itself splits into

S = 1 + 𝑖T , (2.3)

where 1 is the identity matrix (represents the trivial outcome where particles remain unscattered)
and T is the transfer matrix which encodes all the interactions of a field theory and this is the
part of the S-matrix that is indeed responsible for scattering events; we define M as follows,

T = (2𝜋)4𝛿4(Σ𝑘)M, (2.4)

where 𝛿4(Σ𝑘) is enforcing 4-momentum conservation for external momenta explicitly, and the
differential cross-section is proportional to the quantity

|M|2 ≡ |⟨ 𝑓 |M|𝑖⟩|2. (2.5)

Therefore the quantity of interest is almost always M rather than A, and hence hereafter we
shall refer to M as the scattering amplitude unless explicitly mentioned.

The words ‘on-shell’ and ‘off-shell’ have appeared and will continue to do so frequently in this
thesis. We shall now try to understand what they mean. Recall the relativistic dispersion relation,

𝐸2 = 𝑝2𝑐2 + 𝑚2
0𝑐

4. (2.6)

If we were to rearrange the expression, we get

𝐸2 − 𝑝2𝑐2 = 𝑚2
0𝑐

4, (2.7)

which now describes a hyperboloid in the energy-momentum space. This hyperboloid is also
called the mass shell. Re-writing the above in natural units (and using the −+++ metric),

𝑝𝜇𝑝𝜇 = −𝑚2
0. (2.8)
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A particle is said to be on-shell if its 4-momentum obeys the above equation i.e. its energy and
momentum lies on the mass shell. In context of amplitudes, ‘on-shell’ implies that all incoming
and outgoing particles are on-shell and momentum conservation is observed.

§ 2.1.1 Calculating scattering amplitudes
Now we shall take a look at how one goes about calculating amplitudes. For a very long time,
the steps have largely remained the same.

Step 1. We read off the Feynman rules from the Lagrangian.

Step 2. We draw all Feynman diagrams up to a specific loop order1.

Step 3. Perform regularization and renormalization as and when needed to treat the divergences

Step 4. Perform the integration and sum up all the terms.

However, due to advancements in the field we now have an updated pipeline[30] to go about our
calculations more efficiently than before. For now let us continue to employ Feynman diagrams.

The first step is to use a computer program to generate Feynman diagrams. There exist programs
for the simplification of the corresponding symbolic forms. The next step is to filter out the
diagrams relevant for calculations. This makes calculations more efficient as not all diagrams are
relevant for a given problem. The next step is classification of diagrams, even with a filter the
number of Feynman diagrams can be daunting and one needs to simplify terms before integration
begins. Depending on the approach: diagrammatic or algebraic, we either focus on identification
of graph topologies or symbolic calculations to find and isolate arising tensor structures. There
could be millions of Feynman diagrams but only a couple of hundred topologies. Categorisation
into topologies saves a lot of computational effort and one usually goes further and identifies
more fundamental structures called minimal topology sets on which symbolic substitutions are
applied to obtain integral families. In the algebraic approach, after the identification of tensor
structures we try to form integral families.

Integration can’t be started just yet, there is more simplification to be done. IBP reduction is one
of the most popular methods used to form master integrals. Each integral is a linear combination
of simpler integrals known as master integrals, and solving just master integrals is enough.
There exist many programs using which IBP reduction can be carried out. And finally we
perform analytical or numerical integrations and arrive at the final expression.

We shall propose a pipeline based on the quantum off-shell recursion framework, that avoids the

1In the process of drawing Feynman diagrams, one can perform the diagrammatic expansion in terms of the number
of loops. This expansion corresponds to the ℏ expansion. The exponent of ℏ counts the number of loops in a
diagram and hence when we want to set the precision of the calculation, quantitatively we truncate the ℏ expansion
at some order.
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use of Feynman diagrams entirely and works towards obtaining master integrals, so that at the
end all we are left with is integration (which remains outside the scope of this thesis).

Useful references for this section are [2, 7, 31].

Next, we shall study unitarity methods used for calculating scattering amplitudes.

§ 2.2 Unitarity methods
Unitarity as an approach has been around for a very long time, but it didn’t find its way into
construction of amplitudes until much later[10]. The method of unitarity cuts is a powerful means
of obtaining loop order amplitudes by exploiting the unitarity of the S-matrix. The key idea
of this method is that one can construct loop amplitudes from on-shell tree amplitudes. Let us
discuss the method of unitarity cuts at 1-loop order.

§ 2.2.1 Unitarity cuts
The method of unitarity cuts started as a framework for 1-loop order calculations. Let us first see
how unitarity of the S-matrix comes into the picture. Enforcing unitarity gives,

S†S = 1, (2.9a)

(1 − 𝑖T †) (1 + 𝑖T) = 1, (2.9b)

�1 + 𝑖
(
T − T †

)
+ T †T = �1, (2.9c)

−𝑖
(
T − T †

)
= T †T . (2.9d)

We have obtained the statement of the famous optical theorem in terms of the transfer matrix. At
the level of matrix elements we can rewrite this as,

−𝑖⟨f |T − T † |i⟩ =
∑︁

n
⟨f |T † |n⟩⟨n|T |i⟩. (2.10)

Expanding the above expression perturbatively in coupling constant gives us at 1-loop order,

−𝑖
(
M (1)

i→f −
(
M (1)

i→f

)∗)
=

⨋
n
M (0)

i→n

(
M (0)

n→f

)∗
, (2.11a)

2 Im
(
M (1)

i→f

)
=

⨋
n
M (0)

i→n

(
M (0)

n→f

)∗
, (2.11b)
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The imaginary part of the amplitude is related to the discontinuity across a branch cut singularity
when one kinematic invariant (say, 𝑃2) is positive while all others are negative and hence we
have,

Disc𝑃2

(
M (1)

i→f

)
=

⨋
n
M (0)

i→n

(
M (0)

n→f

)∗
. (2.11c)

We compute the discontinuity using Cutkosky’s rules[11], and the act of taking the loop

72 Im I-loop I

Per
tree#

pap tree
p,
l ~ Pu

Figure 2.1: Diagrammatic representation of the unitarity cut. (𝑝1 + 𝑝2)2 is the kinematic invariant.

propagators on-shell and evaluating the Cutkosky’s rules at momenta that cross the cut is also
called the unitarity cut. The operation involves a summation over states that make it across the
cut, and a phase space integral that picks out (positive energy) solutions for the on-shell condition.
Here, the discontinuity is evaluated by a single continuous cut that factors the amplitude into two
on-shell tree amplitudes. But in general, unitarity cuts can involve more than one continuous
cut and take several propagators on-shell across other channels of momenta and factorize the
discontinuity of the amplitude into more than two on-shell tree amplitudes. The method of
reconstructing the full loop amplitude by systematic application of unitarity cuts at various
momenta channels is called generalized unitarity[10].

Instead of the explicit loop order Feynman diagrams, one expands the 1-loop order amplitude
in the basis of master integrals multiplied by rational functions of kinematic variables. The
evaluation of these master integrals is easier than computing the loop integrals for each diagram
and all that remains to determine the 1-loop amplitude is obtaining the coefficients. Let us define
the set of basic 1-loop scalar integrals which make up the basis of master integrals,

(tadpole) 𝐼1(𝐾𝑖) ≡
∫

d𝐷 𝑙
(2𝜋)𝐷

1
𝑙2
, (2.12a)

(bubble) 𝐼2
(
𝐾𝑖, 𝐾 𝑗

)
≡

∫
d𝐷 𝑙
(2𝜋)𝐷

1
𝑙2

(
𝑙 + 𝐾 𝑗

)2 , (2.12b)

(triangle) 𝐼3
(
𝐾𝑖, 𝐾 𝑗 , 𝐾𝑘

)
≡

∫
d𝐷 𝑙
(2𝜋)𝐷

1
𝑙2(𝑙 − 𝐾𝑖)2(𝑙 + 𝐾𝑘 )2 , (2.12c)

(box) 𝐼4
(
𝐾𝑖, 𝐾 𝑗 , 𝐾𝑘 , 𝐾𝑙

)
≡

∫
d𝐷 𝑙
(2𝜋)𝐷

1
𝑙2(𝑙 − 𝐾𝑖)2 (𝑙 − 𝐾𝑖 − 𝐾 𝑗 )2(𝑙 + 𝐾𝑙)2

, (2.12d)

...



10 Ch 2. Background

where for 𝐼𝑛, 𝑛 denotes the number of loop propagators and also the number of vertices in the
diagram, and 𝐾𝑖, 𝐾 𝑗 , · · · are the sums of external momenta at each vertex.

Ki ·
Ki Ki

Ki : :
l1 l1

Ke n Kn : : kj T i

Figure 2.2: Scalar 1-loop diagrams. 𝐾𝑖 , 𝐾 𝑗 , 𝐾𝑘 and 𝐾𝑙 are all outgoing momenta.

By integral reduction we have,

M (1) =
©­«
∑︁

K={𝐾1,...,𝐾𝑛}
𝑐1(K)𝐼1(K) + 𝑐2(K)𝐼2(K) + 𝑐3(K)𝐼3(K) + 𝑐4(K)𝐼4(K)ª®¬ + R . (2.13)

In 𝐷 = 4, we only need these 4 types of 1-loop scalar integrals. 𝑐1, 𝑐2, 𝑐3 and 𝑐4 are the sets of
rational coefficients that need to be determined, and R is a rational term that can’t be directly
computed from cuts in four dimensions. Since the coefficients are rational functions, the branch
cuts are located only in the master integrals and we have,

Disc𝑃2 M (1) =
©­«

4∑︁
𝑖=1

∑︁
K={𝐾1,...,𝐾𝑛}
𝑐𝑖 (K) Disc 𝐼𝑖 (K)ª®¬. (2.14)

We work with eq. (2.14) in the generalized unitarity method. It is an equality involving tree
order amplitudes on both sides of the equation. And many terms on the RHS vanish because
only a subset of the master integrals have a cut involving the given momentum 𝑃 2. We solve the
equation varying over all possible values of 𝑃. By applying multiple unitarity cuts, one obtains a
set of linear equations that relate the coefficients 𝑐𝑖 (K) to the result of the cut on the LHS, each
computed as a product of tree amplitudes. This effectively determines the 1-loop amplitude up
to a rational term R which is determined independently and the method of doing so remains
outside the scope of this discussion.

We shall now look at another attempt at perturbative unitarity in the form of the Largest Time
Equation.

2The positivity of the kinematic invariant 𝑃2 isolates the momentum channel 𝑃 of interest where 𝑃 is a sum of
some of the external momenta.
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§ 2.2.2 Largest Time Equation

The statement of optical theorem eq. (2.9d) holds true for the entire S-matrix i.e. in other words
it is a non-perturbative statement. But when dealing with perturbation theory in QFT, it is not
obvious why this statement would continue to hold true for truncated T . Above we saw the
usage of perturbative unitarity in the form of unitarity cuts at 1-loop order, but the Largest Time
Equation is Veltman’s attempt at proving perturbative unitarity at the level of individual Feynman
diagrams.

A full proof of perturbative unitarity via the Largest Time Equation is quite involved. For the
sake of illustrating the importance of this method, it is sufficient to include a sketch of the
proof using scalar field theory. The arguments can be extended to fermions, gauge fields and
spontaneously broken gauge theories. But they remain beyond the scope of this simple review.

Once again at the level of matrix elements we can rewrite the optical theorem as follows,

⟨f | (𝑖T)|i⟩ + ⟨f | (𝑖T)† |i⟩ = −
∑︁

n
⟨f | (𝑖T)† |n⟩⟨n| (𝑖T)|i⟩. (2.15)

But this time we focus on the imaginary part of the transfer matrix. The Largest Time Equation
is the diagrammatic analogue of eq. (2.15). But usually Feynman diagrams do not have the
notion of complex conjugation built in, to address that Veltman introduced it in the form of
vertex colouring.

Recall that Feynman diagrams comprise vertices and multiple types of edges, but now to denote
complex conjugation we introduce another type of vertex. One could define it to have a different
colour from the usual type or say that it is circled as opposed to a regular uncircled vertex.
Suppose that in the original scalar field theory (say, 𝜙3 theory) an uncircled vertex contributed
a factor of 𝑖𝜆, the circled vertex now contributes a factor of −𝑖𝜆. Given that we now have two
different kinds of vertices, it is natural to have at least four different kinds of propagators.

The simplest kinds of propagators between two spacetime points 𝑥 and 𝑦 are given by,

Δ±(𝑥 − 𝑦) =
∫

d3𝑘

(2𝜋)32𝐸𝑘
𝑒±𝑖𝑘 ·(𝑥−𝑦) . (2.16)

and notice that (
Δ+(𝑥 − 𝑦)

)∗
= Δ+(𝑦 − 𝑥) = Δ−(𝑥 − 𝑦). (2.17)

We can rewrite the propagators with a clever integration trick. Recall 𝐸𝑘 = 𝑘0 and consider the
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integral,

∫ ∞

−∞
d𝑘0𝛿

(
(𝑘0)2 − ®𝑘2 − 𝑚2

)
Θ(𝑘0) =

∫ ∞

−∞
d𝑘0


𝛿

(
𝑘0 −

√︁
®𝑘2 + 𝑚2

)
���𝑘0 +

√︁
®𝑘2 + 𝑚2

��� +
𝛿

(
𝑘0 +

√︁
®𝑘2 + 𝑚2

)
���𝑘0 −

√︁
®𝑘2 + 𝑚2

���
Θ(𝑘0).

(2.18a)

Integrating and picking up the positive solution 𝑘0 =

√︁
®𝑘2 + 𝑚2 gives,

1
2𝑘0 =

1
2𝐸𝑘

=

∫ ∞

−∞
d𝑘0𝛿

(
(𝑘0)2 − ®𝑘2 − 𝑚2

)
Θ(𝑘0). (2.18b)

Substituting in eq. (2.16) gives,

Δ+(𝑥 − 𝑦) =
∫

d4𝑘

(2𝜋)4 𝑒
𝑖𝑘 ·(𝑥−𝑦)2𝜋𝛿(𝑘2 + 𝑚2)Θ(𝑘0), (2.18c)

Δ−(𝑥 − 𝑦) =
∫

d4𝑘

(2𝜋)4 𝑒
−𝑖𝑘 ·(𝑥−𝑦)2𝜋𝛿(𝑘2 + 𝑚2)Θ(𝑘0), (2.18d)

replacing 𝑘 with −𝑘 gives,

Δ−(𝑥 − 𝑦) =
∫

d4𝑘

(2𝜋)4 𝑒
𝑖𝑘 ·(𝑥−𝑦)2𝜋𝛿(𝑘2 + 𝑚2)Θ(−𝑘0). (2.18e)

In the above derivation we used the fact that 𝛿(𝑎𝑏) = 𝛿(𝑎)
|𝑏 | + 𝛿(𝑏)

|𝑎 | and that Θ is the Heaviside step
function. It shall be apparent soon why this form is more suitable. Using these, let us define the
Feynman propagator 𝐷𝐹 as,

𝐷𝐹 (𝑥 − 𝑦) = Θ(𝑥0 − 𝑦0)Δ+(𝑥 − 𝑦) + Θ(𝑦0 − 𝑥0)Δ−(𝑥 − 𝑦). (2.19)

And we have the anti-Feynman propagator 𝐷∗
𝐹

,

𝐷∗
𝐹 (𝑥 − 𝑦) = Θ(𝑥0 − 𝑦0)Δ−(𝑥 − 𝑦) + Θ(𝑦0 − 𝑥0)Δ+(𝑥 − 𝑦). (2.20)

Let us assign these propagators as follows:

• 𝐷𝐹 (𝑥 − 𝑦) connects an uncircled vertex at 𝑥 to an uncircled vertex at 𝑦.

• 𝐷∗
𝐹
(𝑥 − 𝑦) connects a circled vertex at 𝑥 to a circled vertex at 𝑦.

• Δ+(𝑥 − 𝑦) connects a circled vertex at 𝑥 to an uncircled vertex at 𝑦.

• Δ−(𝑥 − 𝑦) connects an uncircled vertex at 𝑥 to a circled vertex at 𝑦.

Consider any Feynman diagram comprising 𝑛 vertices at spacetime points 𝑥1, . . . , 𝑥𝑛. Without
loss of generality, we assume that some vertices are circled and the remaining are not. Now pick
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one of these circled vertices and choose a reference frame where its spacetime point has the
largest time component i.e. 𝑥0

𝑚 > 𝑥
0
𝑖

for all 𝑖 ≠ 𝑚. Now take a copy of this diagram with just one
modification, the vertex at 𝑥𝑚 is now uncircled and the rest of the diagram is unchanged. This
ensures that the integral represented by this diagram picks up an extra minus sign due to the
colour of only a single vertex being changed. We shall now show that the sum of the integrals
represented by these diagrams is 0.

The sum is trivially 0 if the vertex at 𝑥𝑚 is an isolated point, but let us assume that it was
connected to at least one other vertex at say, 𝑥𝑙 . There are now two possibilities:

• If the vertex at 𝑥𝑙 is uncircled, we effectively have the sum of Δ+(𝑥𝑚 − 𝑥𝑙) (circled 𝑥𝑚 to
uncircled 𝑥𝑙) and 𝐷𝐹 (𝑥𝑚 − 𝑥𝑙) (uncircled 𝑥𝑚 to uncircled 𝑥𝑙). Since 𝑥𝑚 has the largest time,
we see that 𝐷𝐹 (𝑥𝑚 − 𝑥𝑙) = Δ+(𝑥𝑚 − 𝑥𝑙). The relative minus sign between the integrals of
the two diagrams ensures that the sum is Δ+(𝑥𝑚 − 𝑥𝑙) − Δ+(𝑥𝑚 − 𝑥𝑙) = 0.

• If the vertex at 𝑥𝑙 is circled, we effectively have the sum of 𝐷∗
𝐹
(𝑥𝑚 − 𝑥𝑙) (circled 𝑥𝑚 to

circled 𝑥𝑙) and Δ+(𝑥𝑚 − 𝑥𝑙) (uncircled 𝑥𝑚 to circled 𝑥𝑙). Since 𝑥𝑚 has the largest time, we
see that 𝐷∗

𝐹
(𝑥𝑚 − 𝑥𝑙) = Δ−(𝑥𝑚 − 𝑥𝑙). The relative minus sign between the integrals of the

two diagrams ensures that the sum is Δ−(𝑥𝑚 − 𝑥𝑙) − Δ−(𝑥𝑚 − 𝑥𝑙) = 0.

Now let us take 2𝑛 − 1 other copies of the original diagram such that we finally have all possible
vertex configurations ranging from all vertices completely circled to all vertices completely
uncircled with everything in between. We can form 2(𝑛−1) pairs of diagrams such that they only
differ in the colour of the vertex at 𝑥𝑚. The pairwise sum of integrals represented by diagrams is
0 and hence the total sum of these 2𝑛 integrals is 0. Let us denote the integral for the diagram
comprised entirely of uncircled vertices with 𝐼 (𝑥1, . . . , 𝑥𝑛) and the complex conjugation i.e. the
integral for the diagram comprised entirely of circled vertices with 𝐼∗(𝑥1, . . . , 𝑥𝑛). We shall
denote the integrals for all other kinds of diagrams (with mixed configuration of colour) with
𝐼 (𝑥1, . . . , 𝑥𝑛).

We rewrite the sum of 2𝑛 integrals as follows,

𝐼 (𝑥1, . . . , 𝑥𝑛) + 𝐼∗(𝑥1, . . . , 𝑥𝑛) = −
∑︁

𝐼 (𝑥1, . . . , 𝑥𝑛). (2.21)

Equation (2.21) is the coveted Largest Time Equation. Veltman showed the analogy between
this equation and eq. (2.15),

⟨f | (𝑖T)|i⟩ + ⟨f | (𝑖T)† |i⟩ = −
∑︁

n
⟨f | (𝑖T)† |n⟩⟨n| (𝑖T)|i⟩

≀ ≀ ≀
𝐼 (𝑥1, . . . , 𝑥𝑛) + 𝐼∗(𝑥1, . . . , 𝑥𝑛) = −

∑︁
𝐼 (𝑥1, . . . , 𝑥𝑛)

. (2.22)

The analogy on the LHS is much more apparent than the analogy on the RHS of the two equations.
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We shall heuristically establish the analogy on the RHS with the help of some explicit calculation.

-k ,

p -k ,

P -k ,

P
-k ,

4 I> & 8 7 O I - S O t g 7H y H y H y y
Tkz Tkz Tkz Tkz

Figure 2.3: The Largest Time Equation for 4-point tree diagram in 𝜙3 theory.

On the RHS we have the following integrals,

−𝜆2
[∫

d4𝑥 d4𝑦 𝑒𝑖(𝑘1+𝑘2)·(𝑥−𝑦)Δ−(𝑥 − 𝑦) +
∫

d4𝑥 d4𝑦 𝑒𝑖(𝑘1+𝑘2)·(𝑥−𝑦)Δ+(𝑥 − 𝑦)
]
.

Substituting eq. (2.16) in the above expression and integrating over 𝑥0 gives 𝛿(𝑘0
1 + 𝑘

0
2 − 𝑝

0) for
the Δ− term and 𝛿(𝑘0

1 + 𝑘
0
2 + 𝑝

0) for the Δ+ term. Therefore the Δ+ term vanishes and only the
diagram with an uncircled vertex at 𝑥 and a circled vertex at 𝑦 survives. It is easy to see now that
not all diagrams on the RHS of eq. (2.21) survive.

This is no coincidence, if one were to recall the alternate form for the Δ propagators:

Δ±(𝑥 − 𝑦) =
∫

d4𝑘

(2𝜋)4 𝑒
𝑖𝑘 ·(𝑥−𝑦)2𝜋𝛿(𝑘2 + 𝑚2)Θ

(
±𝑘0

)
, (2.23)

one can adopt the interpretation that energy always flows from an uncircled vertex to a circled
vertex. For Δ− the flow of energy is along the direction of time whereas for Δ+ the flow of energy
is opposite to the direction of time. This is why the 2nd diagram on the RHS of fig. 2.3 was found
to vanish. We can generalize this argument to more complicated diagrams and infer that only
those diagrams which have a physical3 flow of energy along the direction of time survive.

-
N

①
T-

- ②
---7 --- T

·

-

N

·

a

· · on ·
N

--· ·
7

Figure 2.4: Unphysical vs physical cuts.

It is precisely only those diagrams which when cut across Δ propagators leave only uncircled
vertices with external legs on one side and circled vertices with remaining external legs on the
other. This kind of factorisation should remind us of what we saw in eq. (2.11). Cut lines are put
on-shell by phase space integration accompanied by a summation over all states that cross the

3In accordance with the principle that energy can neither be created nor destroyed at a vertex.
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cut. Hence we have heuristically shown that the RHS of the Largest Time Equation is analogous
to the RHS of eq. (2.15), as side with uncircled vertices is a contribution to 𝑖T and the other side
is a contribution to (𝑖T)†.

If one can identify the |i⟩ state with the |f⟩ state, what we have on the RHS of eq. (2.15) is
a contribution to some cross-section. This is how we shall use the Largest Time Equation in
this thesis, we will compute the loop order amplitude and perform physical cuts and obtain
contributions to the cross-section we desire. But finding cut diagrams is not a trivial task, as the
complexity of Feynman diagrams increases naïve trial-and-error methods take exceedingly long
times. We shall propose a means to incorporate the quantum off-shell recursion framework with
the Largest Time Equation along with some algorithms to isolate cut diagrams easily.

If one were to compare the approaches of generalized unitarity and our method, we see that there
are several differences. Firstly, generalized unitarity is a method of obtaining loop amplitudes
whereas we intend to use the Largest Time Equation with a priori knowledge of the loop
amplitude to obtain cross-sections. Secondly, generalized unitarity works best for some theories
(in supersymmetric settings, the rational terms vanish) and extension to higher than 2-loop order
is not easy[9]. But for our method, we have no such restrictions and in principle we can apply it
to any theory and at any loop order.

Useful references for the subsection on generalized unitarity are [2, 9, 38]. Useful references for
the subsection on the Largest Time Equation are [6, 13, 35, 36].

Next, we shall study color decomposition and cross-sections in gauge theories.

§ 2.3 Managing color
When dealing with gauge theoretic scattering amplitudes, disentangling color4 and kinematical
degrees of freedom proves to be an efficient choice of approach. This is because a factorization
is possible that allows one to use partial or color-ordered or color-stripped amplitudes, which
are independent of color and easier to construct. We just have to find a suitable basis spanning
the color degrees of freedom of scattering amplitudes. For this section we shall deal with the
gauge group SU(𝑁) where 𝑁 is the number of colors exclusively and limit our discussion to
1-loop order at most.

§ 2.3.1 Color decomposition
Gluon fields take the adjoint representation of the gauge group, and carry indices 𝑎, 𝑏, . . . that
run from 1, . . . , 𝑁2 − 1. Fermions like quarks take the fundamental (and anti-fundamental)

4The author has chosen to use the American spelling to distinguish between regular colour and QCD color.
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representation and carry the fundamental (and anti-fundamental) indices 𝑖, . . . (and 𝑖, . . .) that
run from 1, . . . , 𝑁 . Let us choose the normalization of generators 𝑇𝑎 such that,

Tr
(
𝑇𝑎𝑇 𝑏

)
= 𝛿𝑎𝑏,

[
𝑇𝑎, 𝑇 𝑏

]
= 𝑖

√
2 𝑓 𝑎𝑏𝑐𝑇 𝑐 . (2.24)

we also define 𝑓 𝑎𝑏𝑐 =
√

2 𝑓 𝑎𝑏𝑐. We therefore have,

𝑖 𝑓 𝑎𝑏𝑐 = Tr
(
𝑇𝑎

[
𝑇 𝑏, 𝑇 𝑐

] )
. (2.25)

The vertex structure in pure Yang–Mills theory tells us that the 3-gluon vertex is proportional to
𝑓 𝑎𝑏𝑐 and the 4-gluon vertex is proportional to 𝑓 𝑎𝑏𝑥 𝑓 𝑥𝑐𝑑 + (perms. of 𝑏, 𝑐, 𝑑). The color factors
of 𝑠-, 𝑡- and 𝑢-channel diagrams of the 4-gluon tree amplitude are

𝑐𝑠 ≡ 𝑓 𝑎1𝑎2𝑏 𝑓 𝑏𝑎3𝑎4 , 𝑐𝑡 ≡ 𝑓 𝑎1𝑎3𝑏 𝑓 𝑏𝑎4𝑎2 , 𝑐𝑢 ≡ 𝑓 𝑎1𝑎4𝑏 𝑓 𝑏𝑎2𝑎3 . (2.26)

The Jacobi identity tells us that 𝑐𝑠 + 𝑐𝑡 + 𝑐𝑢 = 0 and hence only two independent color structures
exist for the 4-gluon tree amplitude. Upon explicit computation, we can conclude that

M (0)
4 = 𝑔2

(
Tr(𝑇𝑎1𝑇𝑎2𝑇𝑎3𝑇𝑎4)M̃ (0)

4 (1234) + (perms. of (234))
)
. (2.27)

The amplitude on the LHS is called a color-dressed or a full amplitude, and the amplitude on the
RHS is the color-stripped amplitude (denoted with a tilde). (1234) is a shorthand for helicity
and momentum states on legs 1 to 4. In general we have,

M (0)
𝑛 = 𝑔𝑛−2

∑︁
𝜎∈𝑆𝑛/Z𝑛

Tr(𝑇𝑎𝜎1𝑇𝑎𝜎2 · · ·𝑇𝑎𝜎𝑛 )M̃ (0)
𝑛 (𝜎1𝜎2 · · ·𝜎𝑛), (2.28)

where 𝑆𝑛/Z𝑛 is the set of all non-cyclic permutations in 𝑆𝑛, which is equivalent to 𝑆𝑛−1. Therefore
for an 𝑛-point amplitude, we have a trace-basis of (𝑛 − 1)! elements. Things become more
complicated when we look at 1-loop order, as more than one trace structure survives the
simplification and color decomposed form contains leading and sub-leading order primitive
color-stripped amplitudes,

M (1)
𝑛 = 𝑔𝑛

𝑁
∑︁

𝜎∈𝑆𝑛/Z𝑛

Tr(𝑇𝑎𝜎1𝑇𝑎𝜎2 · · ·𝑇𝑎𝜎𝑛 )M̃ (1)
𝑛,1 (𝜎1𝜎2 · · ·𝜎𝑛)

+
⌊𝑛/2⌋+1∑︁
𝑖=2

∑︁
𝜎∈𝑆𝑛/Z𝑛

Tr(𝑇𝑎𝜎1𝑇𝑎𝜎2 · · ·𝑇𝑎𝜎𝑖 ) Tr(𝑇𝑎𝜎𝑖 · · ·𝑇𝑎𝜎𝑛 )M̃ (1)
𝑛, 𝑖

(𝜎1𝜎2 · · ·𝜎𝑛)
 .

(2.29)
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M̃ (1)
𝑛, 𝑖

are the primitive color-stripped amplitudes5, and obtaining sub-leading order primitives
from leading ones is non-trivial. They are related by a permutation sum,

M̃ (1)
𝑛, 𝑖>1(1, 2, . . . , 𝑐 − 1; 𝑐, 𝑐 + 1, . . . , 𝑛) = (−1)𝑐−1

∑︁
𝜎∈𝐺

M̃ (1)
𝑛,1 (𝜎1, 𝜎2, . . . , 𝜎𝑛), (2.30)

where if 𝛼𝑖 ∈ {𝛼} ≡ {𝑐 − 1, 𝑐 − 2, . . . , 1} and if 𝛽𝑖 ∈ {𝛽} ≡ {𝑐, 𝑐 + 1, . . . , 𝑛} then 𝐺 is the set
of all permutations in 𝑆𝑛 which preserve the cyclic ordering of 𝛼𝑖 within {𝛼} and 𝛽𝑖 with {𝛽},
while allowing for all possible relative orderings of the 𝛼𝑖 with respect to 𝛽𝑖. One can think of 𝐺
as a riffle-shuffle group6 which allows cyclic permutations on the sub-stacks.

So far we discussed pure gluonic amplitudes, but things become even more complicated when
we introduce quark-antiquark pairs. To exhibit the advantages of the color decomposition, it
suffices to stop at the pure Yang–Mills theory. We shall list some properties of color-stripped
amplitudes:

• Cyclicity:
M̃𝑛 (1, 2, . . . , 𝑛) = M̃𝑛 (2, . . . , 1, 𝑛) = and so on . . .

• Parity:
M̃𝑛 (1, 2, . . . , 𝑛) = M̃𝑛

(
1̄, 2̄, . . . , 𝑛̄

)
,

where 𝑖 denotes helicity-inversion on the 𝑖th leg

• Reflection:
M̃𝑛 (1, 2, . . . , 𝑛) = (−1)𝑛M̃𝑛 (𝑛, 𝑛 − 1, . . . , 1),

this holds in presence of quark-antiquark pairs but only at tree order.

• Photon decoupling: ∑︁
𝜎∈Z𝑛−1

M̃ (0)
𝑛 (𝜎1, 𝜎2, . . . , 𝜎𝑛−1, 𝑛) = 0.

This identity follows from the fact that a pure gluonic amplitude with a single photon
vanishes since 𝑓 0𝑏𝑐 = 0. 0 is the color index of the𝑈 (1) generator.

• Gauge invariance
Like their color-dressed counterparts, color-stripped amplitudes are gauge invariant.

These properties are helpful in reducing the number of independent color-stripped amplitudes
significantly. We saw that the trace-basis has (𝑛 − 1)! elements, but Kleiss and Kuijf found that
this basis is actually overcomplete[32]. A new basis was proposed[8] which was composed of
structure constants instead of generators 𝑇𝑎. In this new basis we have the color decomposition

5𝑖 = 1 being the leading and the rest being the sub-leading order primitives.
6Credits to Varun Shah for the name.
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for pure gluonic tree amplitude,

M (0)
𝑛 = (𝑖𝑔)𝑛−2

∑︁
𝜎∈𝑆𝑛−2

𝑓 𝑎1𝑎𝜎2𝑥1 𝑓 𝑥1𝑎𝜎3𝑥2 · · · 𝑓 𝑥𝑛−3𝑎𝜎𝑛−1𝑎𝑛M̃ (0)
𝑛 (1𝜎2 · · ·𝜎𝑛−1𝑛), (2.31a)

M (0)
𝑛 = 𝑔𝑛−2

∑︁
𝜎∈𝑆𝑛−2

(𝐹𝑎𝜎2 · · · 𝐹𝑎𝜎𝑛−1 )𝑎1𝑎𝑛M̃
(0)
𝑛 (1𝜎2 · · ·𝜎𝑛−1𝑛), (2.31b)

where (𝐹𝑎)𝑏𝑐 ≡ 𝑖 𝑓 𝑏𝑎𝑐 is an SU(𝑁) generator in the adjoint representation. For the pure gluonic
1-loop amplitude we have,

M (1)
𝑛 = 𝑔𝑛

∑︁
𝜎∈𝑆𝑛−1/R

Tr(𝐹𝑎𝜎1 · · · 𝐹𝑎𝜎𝑛 )M̃ (1)
𝑛,1 (𝜎1, . . . , 𝜎𝑛), (2.32)

where R is the reflection R(1, 2, . . . , 𝑛) = (𝑛, 𝑛 − 1, . . . , 1). The utility of such a basis should
be evident by now. It makes computation of amplitudes easier. But the drawbacks of color
decomposition are apparent too, generally one is usually more interested in the evaluation of
cross-section (d𝜎), which is proportional to the amplitude squared. Even up to just the next to
leading order (NLO) contribution7 we have to calculate M (0)

𝑛 ×
(
M (0),(1)

𝑛

)∗
summed over all

color states. This immediately leads to a factorial complexity when doing the multiplication of
color-dressed amplitude as we have to sum over the permutations of color-stripped amplitudes
too[33].

The explicit summations with DDM basis are given below to indicate the non-triviality,

(LO)
∑︁

colors

���M (0)
𝑛

���2 =

(
𝑔2

)𝑛−2 (𝑛−2)!∑︁
𝑖, 𝑗=1

𝑐𝑖 𝑗M̃ (0)
𝑖

(
M̃ (0)

𝑗

)∗
, (2.33)

where the subscript on M̃ now refers to the color-stripped amplitude M̃𝑛 evaluated for the 𝑖th

permutation 𝜎𝑖 ∈ 𝑆𝑛−2. And 𝑐𝑖 𝑗 matrix elements are defined as

𝑐𝑖 𝑗 ≡
∑︁

colors
(𝜎𝑖{𝐹𝑎2 · · · 𝐹𝑎𝑛−1})𝑎1𝑎𝑛

[ (
𝜎𝑗 {𝐹𝑎2 · · · 𝐹𝑎𝑛−1}

)
𝑎1𝑎𝑛

]∗
. (2.34)

(NLO) 2
∑︁

colors
Re

(
M (0)

𝑛

(
M (1)

𝑛

))
= 2

(
𝑔2

)𝑛−1
Re


(𝑛−2)!∑︁
𝑖=1

(𝑛−1)!/2∑︁
𝑗=1

𝑐𝑖 𝑗M̃ (0)
𝑖

(
M̃ (1)

𝑗

)∗ , (2.35)

where the subscripts 𝑖, 𝑗 retain similar meanings but for different permutation groups. And 𝑐𝑖 𝑗

7Cross-sections are expanded perturbatively too, with their perturbation parameter being the (square of) coupling
constant. In our case, QCD cross-sections are expanded in the strong coupling constant 𝛼𝑆 = 𝑔2/4𝜋 as follows,

d𝜎 = d𝜎LO + 𝛼𝑆 d𝜎NLO + 𝛼2
𝑆 d𝜎NNLO + · · ·
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matrix elements are defined as

𝑐𝑖 𝑗 ≡
∑︁

colors
(𝜎𝑖{𝐹𝑎2 · · · 𝐹𝑎𝑛−1})𝑎1𝑎𝑛

[
Tr

(
𝐹𝑎1𝜎𝑗 {𝐹𝑎2 · · · 𝐹𝑎𝑛}

)
𝑎1𝑎𝑛

]∗
. (2.36)

Computation time can be saved if we obtain the color-dressed tree amplitude squared directly
and all that remains is the summation over colors to obtain leading order contribution to the
cross-section. One of the main goals of this thesis is to develop such a method using quantum
off-shell recursion framework and the Largest Time Equation.

We shall now discuss how one deals with the color sum at the end of computations.

§ 2.3.2 Color sum
We can rewrite eq. (2.27) as,

M (0)
4 = 𝑔2

∑︁
𝜎∈𝑆3

Tr(𝑇𝑎1𝑇𝑎𝜎2𝑇𝑎𝜎3𝑇𝑎𝜎4 )M̃ (0)
4 (1𝜎2𝜎3𝜎4). (2.37)

When computing the cross-section, we will have to deal with the product of traces summed over
color indices

Tr(𝑇𝑎1𝑇𝑎𝜎2𝑇𝑎𝜎3𝑇𝑎𝜎4 ) Tr(𝑇𝑎1𝑇𝑎 𝜉2𝑇𝑎 𝜉3𝑇𝑎 𝜉4 )
∏
𝑖, 𝑗

𝛿
𝑎𝜎𝑖 𝑎 𝜉𝑗 .

We shall use the following identity,

(𝑇𝑎)𝑖 𝑗 (𝑇𝑎)𝑘𝑙 = 𝛿𝑖𝑙𝛿 𝑗 𝑘 −
1
𝑁
𝛿𝑖 𝑗𝛿𝑘𝑙 . (2.38)

However, there is a much simpler way to compute products of traces and for that we extend the
gauge group SU(𝑁) to U(𝑁). This means including a phase generator 𝑇0 which commutes with
all generators of SU(𝑁). We normalise it as

Tr(𝑇0𝑇0) = 1. (2.39)

And hence we take 𝑇0 to be the diagonal matrix with entries 1/√𝑁. Equation (2.38) now simplifies
as follows,

(𝑇𝑎)𝑖 𝑗 (𝑇𝑎)𝑘𝑙 =
𝑁2−1∑︁
𝑎=0

(𝑇𝑎)𝑖 𝑗 (𝑇𝑎)𝑘𝑙 , (2.40a)

=

𝑁2−1∑︁
𝑎=1

(𝑇𝑎)𝑖 𝑗 (𝑇𝑎)𝑘𝑙 + (𝑇0)𝑖 𝑗 (𝑇0)𝑘𝑙 , (2.40b)

= 𝛿𝑖𝑙𝛿 𝑗 𝑘 − 1
𝑁
𝛿𝑖 𝑗𝛿𝑘𝑙 + 1

𝑁
𝛿𝑖 𝑗𝛿𝑘𝑙 , (2.40c)
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= 𝛿𝑖𝑙𝛿 𝑗 𝑘 . (2.40d)

We were able to extend our gauge group as we did because the U(1) gluon (also known as the
photon) doesn’t couple to SU(𝑁) gluons. We shall now compute the different products of traces.
First we calculate,

Tr(𝑇𝑎𝑇 𝑏𝑇 𝑐𝑇 𝑑)
(
Tr(𝑇𝑎𝑇 𝑏𝑇 𝑐𝑇 𝑑)

)∗
= Tr(𝑇𝑎𝑇 𝑏𝑇 𝑐𝑇 𝑑) Tr((𝑇𝑎𝑇 𝑏𝑇 𝑐𝑇 𝑑)†), (2.41a)

= Tr(𝑇𝑎𝑇 𝑏𝑇 𝑐𝑇 𝑑) Tr(𝑇 𝑑𝑇 𝑐𝑇 𝑏𝑇𝑎), (2.41b)

= (𝑇𝑎)𝑖 𝑗 (𝑇 𝑏𝑇 𝑐𝑇 𝑑) 𝑗𝑖 (𝑇 𝑑𝑇 𝑐𝑇 𝑏)𝑘𝑙 (𝑇𝑎)𝑙𝑘 , (2.41c)

= (𝑇𝑎)𝑖 𝑗 (𝑇𝑎)𝑙𝑘 (𝑇 𝑏𝑇 𝑐𝑇 𝑑) 𝑗𝑖 (𝑇 𝑑𝑇 𝑐𝑇 𝑏)𝑘𝑙 , (2.41d)

= 𝛿𝑖𝑘𝛿 𝑗 𝑙 (𝑇 𝑏𝑇 𝑐𝑇 𝑑) 𝑗𝑖 (𝑇 𝑑𝑇 𝑐𝑇 𝑏)𝑘𝑙 , (2.41e)

= Tr(𝑇 𝑏𝑇 𝑐𝑇 𝑑𝑇 𝑑𝑇 𝑐𝑇 𝑏), (2.41f)

= 𝑁 Tr(𝑇 𝑏𝑇 𝑐𝑇 𝑐𝑇 𝑏), (2.41g)

= 𝑁2 Tr(𝑇 𝑏𝑇 𝑏), (2.41h)

= 𝑁3 Tr(1) = 𝑁4. (2.41i)

Next structure we calculate is,

Tr(𝑇𝑎𝑇 𝑏𝑇 𝑐𝑇 𝑑)
(
Tr(𝑇𝑎𝑇 𝑏𝑇 𝑑𝑇 𝑐)

)∗
= Tr(𝑇𝑎𝑇 𝑏𝑇 𝑐𝑇 𝑑) Tr(𝑇 𝑐𝑇 𝑑𝑇 𝑏𝑇𝑎), (2.42a)

= Tr(𝑇 𝑏𝑇 𝑐𝑇 𝑑𝑇 𝑐𝑇 𝑑𝑇 𝑏), (2.42b)

= 𝑁 Tr(𝑇 𝑐𝑇 𝑑𝑇 𝑐𝑇 𝑑). (2.42c)

Note that for any matrix we have,

(𝑇𝑎𝐴𝑇𝑎)𝑖 𝑗 = (𝑇𝑎)𝑖𝑘 (𝐴)𝑘𝑙 (𝑇𝑎)𝑙 𝑗 = 𝛿𝑖 𝑗𝛿𝑘𝑙 (𝐴)𝑘𝑙 = Tr(𝐴)𝛿𝑖 𝑗 . (2.42d)

If 𝐴 = 𝑇0, then we get
√
𝑁𝛿𝑖 𝑗 but for all other generators we get 0. Using this we get,

𝑁 Tr(𝑇 𝑐𝑇 𝑑𝑇 𝑐𝑇 𝑑) = 𝑁3/2 Tr(𝑇0), (2.42e)

= 𝑁2. (2.42f)

All remaining trace products are listed as follows,

Tr(𝑇𝑎𝑇 𝑏𝑇 𝑐𝑇 𝑑)
(
Tr(𝑇𝑎𝑇 𝑐𝑇 𝑏𝑇 𝑑)

)∗
= 𝑁2, (2.43a)

Tr(𝑇𝑎𝑇 𝑏𝑇 𝑐𝑇 𝑑)
(
Tr(𝑇𝑎𝑇 𝑐𝑇 𝑑𝑇 𝑏)

)∗
= 𝑁2, (2.43b)

Tr(𝑇𝑎𝑇 𝑏𝑇 𝑐𝑇 𝑑)
(
Tr(𝑇𝑎𝑇 𝑑𝑇 𝑐𝑇 𝑏)

)∗
= 𝑁2, (2.43c)

Tr(𝑇𝑎𝑇 𝑏𝑇 𝑐𝑇 𝑑)
(
Tr(𝑇𝑎𝑇 𝑑𝑇 𝑏𝑇 𝑐)

)∗
= 𝑁2. (2.43d)
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Now on squaring eq. (2.27) and summing over all color indices, we will have terms propor-
tional to

���M̃ (0)
4 (1𝜎2𝜎3𝜎4)

���2 and terms proportional to M̃ (0)
4 (1𝜎2𝜎3𝜎4)

(
M̃ (0)

4 (1𝜉2𝜉3𝜉4)
)∗

where
𝜎, 𝜉 ∈ 𝑆3 and 𝜎 ≠ 𝜉. As we saw earlier, the squares of amplitudes will be accompanied with a
factor of 𝑁4 coming from the color structure and the interference terms will appear with a factor
of 𝑁2. And we have,∑︁

colors

���M (0)
4

���2 = 𝑔4𝑁4
∑︁
𝜎∈𝑆3

���M̃ (0)
4 (1𝜎2𝜎3𝜎4)

���2 + 𝑔4𝑁2
∑︁
𝜎,𝜉∈𝑆3
𝜎≠𝜉

M̃ (0)
4 (1𝜎2𝜎3𝜎4)

(
M̃ (0)

4 (1𝜉2𝜉3𝜉4)
)∗
.

(2.44)
We can simplify this further by using the photon decoupling identity for color-stripped amplitudes,∑︁

𝜎∈𝑆3

M̃ (0)
4 (1𝜎2𝜎3𝜎4) = 0. (2.45)

Squaring and re-arranging the above equation gives,∑︁
𝜎∈𝑆3

���M̃ (0)
4 (1𝜎2𝜎3𝜎4)

���2 = −
∑︁
𝜎,𝜉∈𝑆3
𝜎≠𝜉

M̃ (0)
4 (1𝜎2𝜎3𝜎4)

(
M̃ (0)

4 (1𝜉2𝜉3𝜉4)
)∗
. (2.46)

Inserting this into eq. (2.44) gives us,∑︁
colors

���M (0)
4

���2 = 𝑔4𝑁2
(
𝑁2 − 1

) ∑︁
𝜎∈𝑆3

���M̃ (0)
4 (1𝜎2𝜎3𝜎4)

���2. (2.47)

We were able to see that for 2-to-2 pure gluonic scattering, the cross-section is obtained from the
sum of squares of color-stripped amplitudes. However, this neat structure may not be preserved
when we introduce quarks into our theory.

Useful references for this section are [2, 7, 8, 37].

Having gained some understanding of topics and developed motivation behind a key goal of this
thesis, the next step is to perform a pedagogical calculation using the quantum off-shell recursion
framework.





CHAPTER 3

𝜙4 theory

We shall now use the quantum off-shell recursion framework to derive the integrands for the
4-point amplitude of 𝜙4 theory up to 3-loop orders avoiding Feynman diagrams entirely!

There are many steps involved in the calculation:

Step 1. Deriving the Dyson–Schwinger equation(s) of the theory

Step 2. Generating recursion relations using them by substitution of the perturbiner expansions

Step 3. Solving these recursion relations to obtain off-shell currents

Step 4. Performing the amputation of the off-shell leg and imposing the on-shell condition to
obtain the amplitude integrands

Step 5. Reducing the full expression into a collection of sets called topologies (grouping terms
based on graph isomorphisms)

Step 6. Finding the minimal spanning set of topologies and performing the integration

We shall focus on steps 1 to 5 in this thesis. Finding the minimal spanning set and performing
the integration using the IBP reduction method remains to be a part of upcoming work.

§ 3.1 Deriving the Dyson–Schwinger equation
In the conventional tree order perturbiner method one relies on the classical equations of motion
to construct the recursion relations, but as shown in [1] the Dyson–Schwinger equations are
perfectly suitable to extend the formalism to loop orders. We shall use the representation of the
Dyson–Schwinger equations used in [1]. The action used in our calculations is the classical
action for 𝜙4 theory along with an external source 𝑗 (𝑥) ≡ 𝑗𝑥

1 with bare mass𝑚 and bare coupling
𝜆 for the fields,

𝑆[𝜙, 𝑗] =
∫

d4𝑥

[
−1

2
𝜕𝜇𝜙𝑥𝜕𝜇𝜙𝑥 −

1
2
𝑚2𝜙2

𝑥 −
𝜆

4!
𝜙4
𝑥 + 𝑗𝑥𝜙𝑥

]
. (3.1)

1A similar convention shall be followed by fields where for any field Π, Π(𝑥) ≡ Π𝑥
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We denote integrations as follows,∫
𝑥,𝑦,...

≡
∫

d4𝑥 d4𝑦 · · · ,
∫
𝑝,𝑞,...

≡
∫

d4𝑝

(2𝜋)4
d4𝑞

(2𝜋)4 · · · , (3.2)

and rewrite the action in terms of the kinetic operator 𝐾𝑥𝑦 ≡ 𝐾 (𝑥, 𝑦) and the 4-point interaction
vertex 𝑉𝑥𝑦𝑧𝑤 ≡ 𝑉 (𝑥, 𝑦, 𝑧, 𝑤) as

𝑆[𝜙, 𝑗] = −1
2

∫
𝑥,𝑦

𝜙𝑥𝐾𝑥𝑦𝜙𝑦 +
𝜆

4!

∫
𝑥,𝑦,𝑧,𝑤

𝑉𝑥𝑦𝑧𝑤𝜙𝑥𝜙𝑦𝜙𝑧𝜙𝑤 +
∫
𝑥

𝑗𝑥𝜙𝑥 , (3.3)

where we have

𝐾𝑥𝑦 =

(
−□𝑦 + 𝑚2

)
𝛿4(𝑥 − 𝑦), (3.4a)

𝑉𝑥𝑦𝑧𝑤 = −𝛿4(𝑥 − 𝑦)𝛿4(𝑥 − 𝑧)𝛿4(𝑥 − 𝑤). (3.4b)

To derive the classical equation of motion for 𝜙𝑥 from eq. (3.3), we simply take a functional
derivative with respect to 𝜙𝑣,

𝛿𝑆

𝛿𝜙𝑣
= −

∫
𝑦

𝐾𝑣𝑦𝜙𝑦 −
𝜆

3!
𝜙3
𝑣 + 𝑗𝑣, (3.5a)

renaming 𝑣 → 𝑥,

𝛿𝑆

𝛿𝜙𝑥
= −

∫
𝑦

𝐾𝑥𝑦𝜙𝑦 −
𝜆

3!
𝜙3
𝑥 + 𝑗𝑥 , (3.5b)

and because the action is extremal, LHS must vanish.

−
∫
𝑦

𝐾𝑥𝑦𝜙𝑦 −
𝜆

3!
𝜙3
𝑥 + 𝑗𝑥 = 0. (3.5c)

Equation (3.5c) is the required classical equation of motion. Now we shall define the propagators
of this theory. The free propagator 𝐷𝑥𝑦 ≡ 𝐷 (𝑥, 𝑦) is defined as the inverse of the kinetic operator,

∫
𝑦

𝐾𝑥𝑦𝐷𝑦𝑧 = 𝛿
4(𝑥 − 𝑧), (3.6a)

𝐷𝑥𝑦 =

∫
𝑝

𝐷̃ 𝑝𝑒
𝑖𝑝·(𝑥−𝑦) . (3.6b)
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𝐷̃ 𝑝 ≡ 𝐷̃ (𝑝) is the Fourier transform of the (position-space) free propagator and it is defined
explicitly as2,

𝐷̃ 𝑝 =
1

𝑝2 + 𝑚2 − 𝑖𝜖
. (3.7)

The dressed propagator D𝑥𝑦 which includes all loop order corrections is related to the exact
2-point function as follows,

D𝑥𝑦 =

∫
𝑝

D̃𝑝𝑒
𝑖𝑝·(𝑥−𝑦) =

𝑖

ℏ
⟨0|𝑇

(
𝜙𝑥𝜙𝑦

)
|0⟩, (3.8)

where 𝑇 is the time-ordering operator. And the momentum space dressed operator D̃𝑝 with
self-energy Π

(
𝑝2) is,

D̃𝑝 =
1

𝑝2 + 𝑚2 − Π
(
𝑝2) , (3.9)

where Π
(
𝑝2) is given by all one-particle irreducible (1PI) diagrams in the 2-point function and

it itself receives loop order corrections Π = Π (1) + Π (2) + · · ·

𝑖

ℏ
Π (1)

(
𝑝2

)
= −𝜆

2

∫
𝑞

1
𝑞2 + 𝑚2 , (3.10a)(

𝑖

ℏ

)2
Π (2)

(
𝑝2

)
=
𝜆2

4

∫
𝑞,𝑟

(
1(

𝑞2 + 𝑚2) (𝑟2 + 𝑚2)2

+ 2
3

1(
(𝑞 + 𝑟 − 𝑝)2 + 𝑚2) (𝑞2 + 𝑚2) (𝑟2 + 𝑚2) ) . (3.10b)

Let us return to the derivation of the Dyson–Schwinger equation. From eq. (3.5c), we have to
promote the scalar field 𝜙 to the operator 𝜙 which is defined as,

𝜙 ≡
(
𝜑 + ℏ

𝑖

𝛿

𝛿 𝑗

)
. (3.11)

𝜑 is the classical field or in other words, the VEV (vacuum expectation value) of the scalar field
𝜙 in presence of a source.

𝜑𝑥 ≡ 𝜑 𝑗 (𝑥) =
⟨0|𝜙𝑥 |0⟩ 𝑗
⟨0 | 0⟩ 𝑗

. (3.12)

2The 𝑖𝜖 factor is omitted from now on for convenience unless required.
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It must be noted that 𝜑 is indeed the field of interest to which we apply the perturbiner expansion.
Using the above ansatz on eq. (3.5c), we get3

−
∫
𝑦

𝐾𝑥𝑦

(
𝜑𝑦 +

ℏ

𝑖

𝛿

𝛿 𝑗𝑦

)
− 𝜆

3!

(
𝜑𝑥 +

ℏ

𝑖

𝛿

𝛿 𝑗𝑥

)3
+ 𝑗𝑥 = 0, (3.13a)

−
∫
𝑦

𝐾𝑥𝑦𝜑𝑦 −
𝜆

3!
𝜑3
𝑥 −

𝜆

2
ℏ

𝑖
𝜑𝑥
𝛿𝜑𝑥

𝛿 𝑗𝑥
+ 𝜆

3!
ℏ2 𝛿2𝜑𝑥
𝛿 𝑗𝑥𝛿 𝑗𝑥

+ 𝑗𝑥 = 0, (3.13b)

−
∫
𝑦

𝐾𝑥𝑦𝜑𝑦 −
𝜆

3!
𝜑3
𝑥 −

𝜆

2
ℏ

𝑖
𝜑𝑥𝜓𝑥,𝑥 +

𝜆

3!
ℏ2𝜓𝑥,𝑥,𝑥 + 𝑗𝑥 = 0. (3.13c)

Rewriting, ∫
𝑦

𝐾𝑥𝑦𝜑𝑦 = 𝑗𝑥 −
𝜆

3!
𝜑3
𝑥 −

𝜆

2
ℏ

𝑖
𝜑𝑥𝜓𝑥,𝑥 +

𝜆

3!
ℏ2𝜓𝑥,𝑥,𝑥 , (3.13d)

𝜙𝑥 =

∫
𝑦

𝐷𝑥𝑦

(
𝑗𝑦 −

𝜆

3!
𝜑3
𝑦 −

𝜆

2
ℏ

𝑖
𝜑𝑦𝜓𝑦,𝑦 +

𝜆

3!
ℏ2𝜓𝑦,𝑦,𝑦

)
. (3.13e)

§ 3.1.1 Descendant equations
We now introduce descendant fields. Objects like 𝛿𝑛𝜑

𝛿 𝑗 ···𝛿 𝑗 are crucial to our framework and can be
treated as fields by themselves. Let us use the following notation,

(First descendant) 𝜓𝑥,𝑦 ≡
𝛿𝜑𝑥

𝛿 𝑗𝑦
, (3.14a)

(Second descendant) 𝜓𝑥,𝑦,𝑧 ≡
𝛿2𝜑𝑥
𝛿 𝑗𝑦𝛿 𝑗𝑧

, (3.14b)

...

moreover 𝜓𝑥,𝑥 = lim𝑦→𝑥 𝜓𝑥,𝑦 and 𝜓𝑥,𝑥,𝑥 = lim𝑦→𝑥
𝑧→𝑥

𝜓𝑥,𝑦,𝑧 and so on. These objects are the so-called
descendant fields.

Equation (3.13e) is our coveted Dyson–Schwinger equation. Now observe that we have 3
undetermined fields but only 1 equation. We can take repeated functional derivatives with
respect to 𝑗 on the Dyson–Schwinger equation and generate equations with descendant fields as
subjects. These equations shall be called descendant equations. Carefully taking a functional

3If we must be pedantic, one ought to note that in this kind of substitution
(
𝜑𝑥 + ℏ

𝑖
𝛿

𝛿 𝑗𝑥

)3
should be treated carefully,

this expression is actually

lim
𝑦→𝑥
𝑧→𝑥

(
𝜑𝑥 +

ℏ

𝑖

𝛿

𝛿 𝑗𝑥

) (
𝜑𝑦 +

ℏ

𝑖

𝛿

𝛿 𝑗𝑦

) (
𝜑𝑧 +

ℏ

𝑖

𝛿

𝛿 𝑗𝑧

)
.
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derivative once gives us,

𝜓𝑥,𝑧 = 𝐷𝑥𝑧 −
𝜆

3!

∫
𝑦

𝐷𝑥𝑦

(
3𝜑2

𝑦𝜓𝑦,𝑧 + 3
ℏ

𝑖

(
𝜑𝑦𝜓𝑦,𝑦,𝑧 + 𝜓𝑦,𝑦𝜓𝑦,𝑧

)
− ℏ2𝜓𝑦,𝑦,𝑦,𝑧

)
. (3.15)

However in the first descendant equation 𝜓𝑦,𝑦,𝑦,𝑧 (the third descendant) appears for the first time.
Now we have 2 equations and 4 undetermined fields. Taking a functional derivative again gives
us,

𝜓𝑥,𝑧,𝑤 = − 𝜆
2!

∫
𝑦

𝐷𝑥𝑦

(
𝜑2
𝑦𝜓𝑦,𝑧,𝑤 + 2𝜑𝑦𝜓𝑦,𝑧𝜓𝑦,𝑤

+ ℏ

𝑖
𝜑𝑦𝜓𝑦,𝑦,𝑧,𝑤 + ℏ

𝑖
𝜓𝑦,𝑤𝜓𝑦,𝑦,𝑧 +

ℏ

𝑖
𝜓𝑦,𝑧𝜓𝑦,𝑦,𝑤 + ℏ

𝑖
𝜓𝑦,𝑦𝜓𝑦,𝑧,𝑤

−1
3
ℏ2𝜓𝑦,𝑦,𝑦,𝑧,𝑤

) . (3.16)

It is apparent now that taking additional functional derivatives will introduce newer descendants,
always leaving us with fewer equations than variables. We perform an ℏ-expansion of the
classical field and its descendants and truncate equations up to a particular order in ℏ. By doing
so, we are fixing the highest loop order in calculation. We are allowed to perform a perturbative
expansion as such, because the classical field is related to the generating function for connected
diagrams𝑊 [ 𝑗]4 in the following manner,

𝜑𝑥 ≡
𝛿𝑊 [ 𝑗]
𝛿 𝑗𝑥

. (3.17)

The perturbative (ℏ) expansions for 𝜑𝑥 , 𝜓𝑥,𝑦, 𝜓𝑥,𝑦,𝑧, . . . as listed as follows,

𝜑𝑥 =

∞∑︁
𝑛=0

(
ℏ

𝑖

)𝑛
𝜑
(𝑛)
𝑥 , (3.18a)

𝜓𝑥,𝑦 =

∞∑︁
𝑛=0

(
ℏ

𝑖

)𝑛
𝜓
(𝑛)
𝑥,𝑦 , (3.18b)

𝜓𝑥,𝑦,𝑧 =

∞∑︁
𝑛=0

(
ℏ

𝑖

)𝑛
𝜓
(𝑛)
𝑥,𝑦,𝑧, (3.18c)

...

We take a simple example to show how the truncation works. Suppose we truncate the

4It is defined as,

exp
(
𝑖

ℏ
𝑊 [ 𝑗]

)
= 𝑍 [ 𝑗] =

∫
D𝜙 exp

(
𝑖

ℏ
𝑆[𝜙, 𝑗]

)
.
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Dyson–Schwinger equation at 3-loop order, eq. (3.13e) is now of the form

𝜑𝑥 = (· · · ) + ℏ

𝑖
(· · · ) +

(
ℏ

𝑖

)2
(· · · ) +

(
ℏ

𝑖

)3
(· · · ). (3.19)

Let us see what fields contribute to the highest loop order, in our case since the highest loop
order is 3 the fields contributing to it are 𝜑(3) , 𝜓 (2)

(· , ·) , 𝜓
(1)
(· , · , ·) . This is because the first descendant

𝜓(· , ·) comes attached with ℏ and the second descendant 𝜓(· , · , ·) comes attached with ℏ2. It seems
enough to truncate the expansion of first descendant equation at 2-loop order.

𝜓𝑥,𝑦 = (· · · ) + ℏ

𝑖
(· · · ) +

(
ℏ

𝑖

)2
(· · · ). (3.20)

Again for the highest loop order, the contributing fields are 𝜓 (2)
(· , ·) , 𝜓

(1)
(· , · , ·) , 𝜓

(0)
(· , · , · , ·) . Because

a tree order term has appeared, this ansatz is now complete. At the end, we need just 4
equations: the Dyson–Schwinger equation at 3-loop order, first descendant equation at 2-loop
order, second descendant equation at 1-loop order and the third descendant equation at tree
order. To summarise, we notice the pattern – if we truncate Dyson–Schwinger equation at 𝑙-loop
order, then for the 𝑛th descendant we need to truncate its equation at 𝑚-loop order such that
𝑛 + 𝑚 = 𝑙 and 𝑛, 𝑚 ≥ 0. Therefore, we end up needing just 𝑙 + 1 equations. Because we are
deriving the 3-loop order amplitude, we just need one more equation in addition to eqs. (3.13e),
(3.15) and (3.16),

𝜓𝑥,𝑧,𝑤,𝑣 = − 𝜆
2!

∫
𝑦

𝐷𝑥𝑦

(
𝜑2
𝑦𝜓𝑦,𝑧,𝑤,𝑣 + 2𝜓𝑦,𝑧𝜓𝑦,𝑤𝜓𝑦,𝑣

+ 2𝜑𝑦𝜓𝑦,𝑧𝜓𝑦,𝑤,𝑣 + 2𝜑𝑦𝜓𝑦,𝑤𝜓𝑦,𝑧,𝑣 + 2𝜑𝑦𝜓𝑦,𝑣𝜓𝑦,𝑧,𝑤
) . (3.21)

We have all the equations we need, let us now derive the recursion relations using perturbiner
expansions.

§ 3.2 Quantum perturbiner expansion
We first see how the quantum perturbiner expansion comes into being. A sketch of the
derivation[1] shall be outlined. The generator𝑊 [ 𝑗] can be expanded with respect to 𝑗𝑥 centered
at 𝑗𝑥 = 0,

𝑊 [ 𝑗] =
∞∑︁
𝑛=2

1
𝑛!

∫
𝑥1, 𝑥2,..., 𝑥𝑛

𝛿𝑛𝑊 [ 𝑗]
𝛿 𝑗𝑥1𝛿 𝑗𝑥2 · · · 𝛿 𝑗𝑥𝑛

����
𝑗=0
𝑗𝑥1 𝑗𝑥2 · · · 𝑗𝑥𝑛 , (3.22a)

=
ℏ

𝑖

∞∑︁
𝑛=2

1
𝑛!

∫
𝑥1, 𝑥2,..., 𝑥𝑛

𝐺𝐶 (𝑥1, 𝑥2, . . . , 𝑥𝑛)
𝑖 𝑗𝑥1

ℏ

𝑖 𝑗𝑥2

ℏ
· · ·

𝑖 𝑗𝑥𝑛

ℏ
, (3.22b)
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where 𝐺𝐶 (𝑥1, . . . , 𝑥𝑛) is the connected 𝑛-point correlation function by definition. Using the fact
that 𝜑𝑥 ≡ 𝛿𝑊 [ 𝑗]

𝛿 𝑗𝑥
, we can derive an expansion for the classical field,

𝜑𝑥 =

∞∑︁
𝑛=1

1
𝑛!

∫
𝑦1, 𝑦2,..., 𝑦𝑛

𝐺𝐶 (𝑥, 𝑦1, 𝑦2, . . . , 𝑦𝑛)
𝑖 𝑗𝑦1

ℏ

𝑖 𝑗𝑦2

ℏ
· · ·

𝑖 𝑗𝑦𝑛

ℏ
. (3.23)

The external source 𝑗𝑥 is a parameter of the theory, we choose to define it in a manner so as to
obtain scattering amplitudes from off-shell currents. Therefore we choose 𝑗𝑥 to reproduce the
LSZ (Lehmann–Symanzik–Zimmermann) reduction formula in eq. (3.22b).

𝑗𝑥 =

𝑁∑︁
𝑖′=1

∫
𝑦𝑖′

K𝑥𝑦𝑖′ 𝑒
−𝑖𝑘𝑖′ ·𝑦𝑖′ =

𝑁∑︁
𝑖′=1

K̃ (−𝑘𝑖′)𝑒−𝑖𝑘𝑖′ ·𝑥 , (3.24)

where 𝑘𝑖′ are the on-shell external momenta for 𝑁 particles and K𝑥𝑦 is the inverse of the dressed
propagator D𝑥𝑦. ∫

𝑦

D𝑥𝑦K𝑦𝑧 = 𝛿
4(𝑥 − 𝑧), (3.25a)

D̃𝑝K̃𝑝 = 1. (3.25b)

This implies that
K̃𝑝 = 𝑝

2 + 𝑚2 − Π

(
𝑝2

)
. (3.26)

We need to compute the 1PI 2-point function to explicitly define the source5. The source is also
expanded in ℏ.

𝑗𝑥 =

∞∑︁
𝑛=0

(
ℏ

𝑖

)𝑛
𝑗
(𝑛)
𝑥 , (3.27)

and from eq. (3.10) we have at various loop orders,

𝑗
(0)
𝑥 =

𝑁∑︁
𝑖′=1

(
𝑘2
𝑖′ + 𝑚2

)
𝑒−𝑖𝑘𝑖′ ·𝑥 , (3.28a)

𝑗
(1)
𝑥 = − 𝑖

ℏ

𝑁∑︁
𝑖′=1

Π (1)
(
𝑘2
𝑖′

)
𝑒−𝑖𝑘𝑖′ ·𝑥 , (3.28b)

𝑗
(2)
𝑥 = −

(
𝑖

ℏ

)2 𝑁∑︁
𝑖′=1

Π (2)
(
𝑘2
𝑖′

)
𝑒−𝑖𝑘𝑖′ ·𝑥 , (3.28c)

...

If we substitute the expansion of 𝑗𝑥 into eq. (3.22b) at 𝑛 = 𝑁 order specifically then we obtain
the 𝑁-point scattering amplitude summed over all permutations of the external particles through

5As we shall see later, this requirement can be relaxed.
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the LSZ reduction formula,

∑︁
𝜎∈𝑆𝑁

M𝜎(𝑘1,..., 𝑘𝑁 ) =
ℏ

𝑖
(2𝜋)4𝛿4 (𝑘𝑖1···𝑖𝑁 ) 𝑁∑︁

𝑖1,..., 𝑖𝑁

𝐺̃𝐶
(
𝑘𝑖1 , 𝑘𝑖2 , . . . , 𝑘𝑖𝑁

) 𝑁∏
𝑗=1

𝑖

ℏ
K̃

(
−𝑘𝑖 𝑗

)
, (3.29)

where 𝑘𝑖1···𝑖𝑁 ≡ 𝑘𝑖1 +· · ·+ 𝑘𝑖𝑁 and 𝐺̃𝐶
(
𝑘𝑖1 , . . . , 𝑘𝑖𝑁

)
is the connected 𝑁-point correlation function

in momentum space. We now define the quantum off-shell current Φ𝑖1···𝑖𝑁 to be the amputated
correlation function with one off-shell leg assigned the momentum −𝑘𝑖1···𝑖𝑁 (in accordance with
momentum conservation).

Φ𝑖1···𝑖𝑁 ≡ 𝐺̃𝐶
(
−𝑘𝑖1···𝑖𝑁 , 𝑘𝑖1 , . . . , 𝑘𝑖𝑁

) 𝑁∏
𝑗=1

𝑖

ℏ
K̃

(
−𝑘𝑖 𝑗

)
, (3.30)

which along with substitution of 𝑗𝑥 expansion in eq. (3.23) leads to the quantum perturbiner
expansion of the classical field 𝜑𝑥

𝜑𝑥 =

𝑁∑︁
𝑖1=1

Φ𝑖1𝑒
−𝑖𝑘𝑖1 ·𝑥 +

𝑁∑︁
1≤𝑖1<𝑖2

Φ𝑖1𝑖2𝑒
−𝑖𝑘𝑖1𝑖2 ·𝑥 + · · · +

∑︁
1≤𝑖1<𝑖2<···<𝑖𝑛

Φ𝑖1···𝑖𝑛𝑒
−𝑖𝑘𝑖1 · · ·𝑖𝑛 ·𝑥 + · · · ,

=
∑︁
P

ΦP𝑒
−𝑖𝑘P ·𝑥 .

(3.31)

where P,Q,R, . . . are ordered words that comprise letters 𝑖, 𝑗 , 𝑘, . . . which are essentially
multi-particle labels running from 1 to 𝑁 . The length of a word is called its rank and denoted as
|P |. The action of the permutation group on the letters of a word leave the off-shell currents
invariant i.e. for a rank-𝑛 word P,

Φ𝜎(P) = ΦP , ∀𝜎 ∈ 𝑆𝑛. (3.32)

The definition of these off-shell currents requires that words with repeated letters vanish, and this
forces the maximum rank of a word to be the number of external particles 𝑁 . We now define
quantum perturbiner expansions for descendant fields too.

𝜓𝑥,𝑦 =

∫
𝑝

Ψ𝑝 |∅𝑒
𝑖𝑝·(𝑥−𝑦) +

∑︁
P

∫
𝑝

Ψ𝑝 |P𝑒
𝑖𝑝·(𝑥−𝑦)𝑒−𝑖𝑘P ·𝑥 , (3.33a)

𝜓𝑥,𝑦,𝑧 =
∑︁
P

∫
𝑝,𝑞

Ψ𝑝𝑞 |P𝑒
𝑖𝑝·(𝑥−𝑦)+𝑖𝑞·(𝑥−𝑧)𝑒−𝑖𝑘P ·𝑥 , (3.33b)

𝜓𝑥,𝑦,𝑧,𝑤 =

∫
𝑝,𝑞,𝑟

Ψ𝑝𝑞𝑟 |∅𝑒
𝑖𝑝·(𝑥−𝑦)+𝑖𝑞·(𝑥−𝑧)+𝑖𝑟 ·(𝑥−𝑤) +

∑︁
P

∫
𝑝,𝑞,𝑟

Ψ𝑝𝑞𝑟 |P𝑒
𝑖𝑝·(𝑥−𝑦)+𝑖𝑞·(𝑥−𝑧)+𝑖𝑟 ·(𝑥−𝑤)𝑒−𝑖𝑘P ·𝑥 ,

(3.33c)
...
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Ψ𝑝 |P ,Ψ𝑝𝑞 |P , . . . are the quantum off-shell currents associated with the descendant fields, and
henceforth shall be referred to as the descendant currents for ΦP . The momenta 𝑝, 𝑞, . . . are
off-shell loop momenta.

Note that the first and third descendant currents have a zero-mode term. An off-shell current has
two parameters, rank and order. ΦP is an order-1 quantity as it denotes an object with 1 off-shell
leg, Ψ𝑝 |P is an order-2 quantity as it denotes an object with 2 off-shell legs, and so on. The
rank of a current denotes the number of on-shell legs instead. So this means that a zero-mode
(rank-0) first descendant (order-2) current represents just 2 off-shell legs and no on-shell legs.
Such an object is permitted by the theory (due to the presence of the propagator), but zero-mode
for an order-3 current is not possible due to the theory missing a 3-point vertex and because 𝜙4

theory has no diagrams for odd number of external legs. Rank-0 order-4 objects are permitted by
the theory due to the presence of a 4-point vertex, hence we see a zero-mode term for the third
descendant current as well. Another thing worth noting is that the quantum off-shell current
and its descendants have an ℏ-expansion because they are derived from the connected 𝑁-point
correlation function in momentum space.

Da so

... ... ...

n
2

I n
2

I n
2

I

-

-
-

v
P ↑ I 12 ...I
-12-

-p/12--n - pal

Figure 3.1: A diagrammatic representation of off-shell currents. Blue lines are off-shell.

§ 3.3 Deriving recursion relations
Now that we have the most important building blocks of our framework, let us derive recursion
relations for the quantum off-shell current order by order.

§ 3.3.1 Tree order
Consider the tree order terms in eq. (3.13e),

𝜑
(0)
𝑥 =

∫
𝑦

𝐷𝑥𝑦

(
𝑗
(0)
𝑦 − 𝜆

3!

(
𝜑
(0)
𝑦

)3
)
. (3.34)
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We substitute the perturbiner expansions on both sides and compare coefficients of 𝑒−𝑖𝑘P ·𝑥 . Let
us first check for words of rank > 1. This obviously excludes the source term as it contributes to
just rank-1.

∑︁
P

Φ
(0)
P 𝑒−𝑖𝑘P ·𝑥 = − 𝜆

3!

∫
𝑦

𝐷𝑥𝑦

(∑︁
Q

Φ
(0)
Q 𝑒−𝑖𝑘Q ·𝑦

) (∑︁
R

Φ
(0)
R 𝑒−𝑖𝑘R ·𝑦

) (∑︁
S

Φ
(0)
S 𝑒−𝑖𝑘S ·𝑦

)
, (3.35a)

= − 𝜆
3!

∑︁
P

∫
𝑦

∫
𝑝

𝐷̃ 𝑝𝑒
𝑖𝑝·(𝑥−𝑦)

∑︁
P=Q∪R∪S

Φ
(0)
Q Φ

(0)
R Φ

(0)
S 𝑒−𝑖𝑘P ·𝑦, (3.35b)

= − 𝜆
3!

∑︁
P

∫
𝑦

𝑒𝑖𝑦·(−𝑝−𝑘P )

(2𝜋)4

∫
d4𝑝 𝐷̃ 𝑝𝑒

𝑖𝑝·𝑥
∑︁

P=Q∪R∪S
Φ

(0)
Q Φ

(0)
R Φ

(0)
S , (3.35c)

= − 𝜆
3!

∑︁
P

∫
𝛿4(𝑝 + 𝑘P) d4𝑝 𝐷̃ 𝑝𝑒

𝑖𝑝·𝑥
∑︁

P=Q∪R∪S
Φ

(0)
Q Φ

(0)
R Φ

(0)
S , (3.35d)

= − 𝜆
3!

∑︁
P
𝐷̃ (−𝑘P)

∑︁
P=Q∪R∪S

Φ
(0)
Q Φ

(0)
R Φ

(0)
S 𝑒−𝑖𝑘P ·𝑥 . (3.35e)

Comparing coefficients on both sides,

Φ
(0)
P = − 𝜆

3!
1

𝑘2
P + 𝑚2

∑︁
P=Q∪R∪S
Φ

(0)
Q Φ

(0)
R Φ

(0)
S . (3.35f)

Abusing existing notation and using a new one we finally have,

Φ
(0)
P = − 𝜆

3!
𝐷P ⌈ΦΦΦ⌋ (0)P ∀ |P| > 1. (3.35g)

There are several things to note here. Firstly, in eq. (3.35b), we combined the summations over
three words on the RHS into two summations, one running over a global word P and a secondary
summation that means to sum over all possible distributions of the letters of the ordered word P
into non-empty ordered words Q,R and S. We then performed two integrations: one to obtain a
𝛿-function in momentum space and the other to perform a 𝛿-substitution. We finally compared
coefficients on both sides for the common sum (over P) and obtained the recursion relation
eq. (3.35g). A new bracket

⌈
·
⌋ (𝑛)
P is defined as (in general for any current and any loop order),⌈

ΦΦ · · ·Ψ𝑝Ψ𝑞𝑟 · · ·
⌋ (𝑛)
P ≡

∑︁
𝑎+𝑏+𝑐+𝑑+···=𝑛
𝑎,𝑏,𝑐,𝑑,...≥0

∑︁
P=Q∪R∪S∪T ···
Φ

(𝑎)
Q Φ

(𝑏)
R · · ·Ψ(𝑐)

𝑝 |SΨ
(𝑑)
𝑞𝑟 |T · · · . (3.36)

This bracket denotes the distributed summation of a word into non-empty ordered words and
simultaneously the distributed summation of a particular loop order into non-negative loop
orders, it shall greatly simplify the recursion relations. Moreover, the notation for propagators
has been abused such that

𝐷P ≡ 𝐷̃ (−𝑘P), (3.37a)
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𝐷 𝑝 |P ≡ 𝐷̃ (𝑝 − 𝑘P), (3.37b)

𝐷 𝑝𝑞 |P ≡ 𝐷̃ (𝑝 + 𝑞 − 𝑘P), (3.37c)
...

Having derived the recursion relation for the tree order current Φ(0) , we shall find the initial
condition on the lowest allowed rank for Φ. From the definition, it is obvious that rank-0 current
Φ

(0)
∅ vanishes. Hence, we need to define the rank-1 tree order current and for that we use the

expressions for source 𝑗𝑥 .

𝑁∑︁
𝑖′=1

Φ
(0)
𝑖′ 𝑒

−𝑖𝑘𝑖′ ·𝑥 =

∫
𝑦

𝐷𝑥𝑦 𝑗
(0)
𝑦 , (3.38a)

=

∫
𝑦

∫
𝑝

𝐷̃ 𝑝𝑒
𝑖𝑝(𝑥−𝑦)

𝑁∑︁
𝑖′=1

(
𝑘2
𝑖′ + 𝑚2

)
𝑒−𝑖𝑘𝑖′ ·𝑦, (3.38b)

performing the two integrations like earlier,

=

𝑁∑︁
𝑖′=1

�����
𝐷̃ (−𝑘𝑖′)

���
���(

𝑘2
𝑖′ + 𝑚2

)
𝑒−𝑖𝑘𝑖′ ·𝑥 . (3.38c)

Comparing coefficients,

Φ
(0)
𝑖′ = 1. (3.38d)

Thus we see that rank-1 tree order currents are simply unity. Now let us move to the derivation
of 1-loop order recursion relations.

§ 3.3.2 1-loop order
The equations we need are the 1-loop order terms in eq. (3.13e) and tree order terms in eq. (3.15),

𝜑
(1)
𝑥 =

∫
𝑦

𝐷𝑥𝑦

[
𝑗
(1)
𝑦 − 𝜆

2!

((
𝜑
(0)
𝑦

)2
𝜑
(1)
𝑦 + 𝜑(0)

𝑦 𝜓
(0)
𝑦,𝑦

)]
, (3.39a)

𝜓
(0)
𝑥,𝑧 = 𝐷𝑥𝑧 −

𝜆

2!

∫
𝑦

𝐷𝑥𝑦

(
𝜑
(0)
𝑦

)2
𝜓
(0)
𝑦,𝑧 . (3.39b)

We once again substitute the perturbiner expansions and obtain the recursion relations as earlier.

Φ
(1)
P = − 𝜆

2!
𝐷P

(
1
3
⌈ΦΦΦ⌋ (1)P +

∫
𝑝

⌈
ΦΨ𝑝

⌋ (0)
P

)
∀ |P| > 1, (3.40a)

Ψ
(0)
𝑝 |P = − 𝜆

2!
𝐷 𝑝 |P

⌈
ΦΦΨ𝑝

⌋ (0)
P ∀ |P| > 0. (3.40b)
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Once again, we have to set initial conditions for our recursion relations. Let us first check the
zero-mode of the first descendant current.∫

𝑝

Ψ
(0)
𝑝 |∅𝑒

𝑖𝑝·(𝑥−𝑧) = 𝐷𝑥𝑧, (3.41a)

=

∫
𝑝

𝐷̃ 𝑝𝑒
𝑖𝑝·(𝑥−𝑧) . (3.41b)

Comparing coefficients,

Ψ
(0)
𝑝 |∅ = 𝐷̃ 𝑝 ≡ 𝐷 𝑝 |∅. (3.41c)

Now let us check the initial condition for 1-loop order off-shell current. The only rank-1
contributions are,

𝑁∑︁
𝑖′=1

Φ
(1)
𝑖′ 𝑒

−𝑖𝑘𝑖′ ·𝑥 =

∫
𝑦

𝐷𝑥𝑦

[
𝑗
(1)
𝑦 − 𝜆

2!

𝑁∑︁
𝑖′=1

Φ
(0)
𝑖′ 𝑒

−𝑖𝑘𝑖′ ·𝑦
∫
𝑝

Ψ
(0)
𝑝 |∅

]
, (3.42a)

substituting from eqs. (3.10a) and (3.28b),

=

∫
𝑦

𝐷𝑥𝑦

(
− 𝑖
ℏ

𝑁∑︁
𝑖′=1

Π (1)
(
𝑘2
𝑖′

)
𝑒−𝑖𝑘𝑖′ ·𝑦 − 𝜆

2!

𝑁∑︁
𝑖′=1

∫
𝑝

𝐷̃ 𝑝𝑒
−𝑖𝑘𝑖′ ·𝑦

)
, (3.42b)

=

∫
𝑦

𝐷𝑥𝑦

(
�������������
𝜆

2!

𝑁∑︁
𝑖′=1

∫
𝑞

1
𝑞2 + 𝑚2 𝑒

−𝑖𝑘𝑖′ ·𝑦 −
����������𝜆

2!

𝑁∑︁
𝑖′=1

∫
𝑝

𝐷̃ 𝑝𝑒
−𝑖𝑘𝑖′ ·𝑦

)
. (3.42c)

Finally we have,

Φ
(1)
𝑖′ = 0. (3.42d)

It has been proposed[1] that all rank-1 loop-order off-shell currents vanish. While the proposition
remains unproven, we shall assume it to be true and continue6.

Φ
(𝑛)
𝑖′ = 0 ∀ 𝑛 ≥ 1. (3.43)

§ 3.3.3 2- and 3-loop orders
Now we shall list results for 2-loop and 3-loop orders directly. The equations relevant for 2-loop
order recursion relations are 2-loop order terms from eq. (3.13e), 1-loop order terms from

6The verification of this assumption has been carried out up to 3-loop order currents.
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eq. (3.15) and tree order terms from eq. (3.16).

𝜑
(2)
𝑥 =

∫
𝑦

𝐷𝑥𝑦

[
𝑗
(2)
𝑦 − 𝜆

2!

((
𝜑
(0)
𝑦

)2
𝜑
(2)
𝑦 +

(
𝜑
(1)
𝑦

)2
𝜑
(0)
𝑦 + 𝜑(0)

𝑦 𝜓
(1)
𝑦,𝑦 + 𝜑(1)

𝑦 𝜓
(0)
𝑦,𝑦 +

1
3
𝜓
(0)
𝑦,𝑦,𝑦

)]
, (3.44a)

𝜓
(1)
𝑥,𝑧 = − 𝜆

2!

∫
𝑦

𝐷𝑥𝑦

[
2𝜑(0)

𝑦 𝜑
(1)
𝑦 𝜓

(0)
𝑦,𝑧 +

(
𝜑
(0)
𝑦

)2
𝜓
(1)
𝑦,𝑧 + 𝜑(0)

𝑦 𝜓
(0)
𝑦,𝑦,𝑧 + 𝜓 (0)

𝑦,𝑦𝜓
(0)
𝑦,𝑧

]
, (3.44b)

𝜓
(0)
𝑥,𝑧,𝑤 = − 𝜆

2!

∫
𝑦

𝐷𝑥𝑦

[(
𝜑
(0)
𝑦

)2
𝜓
(0)
𝑦,𝑧,𝑤 + 2𝜑(0)

𝑦 𝜓
(0)
𝑦,𝑧𝜓

(0)
𝑦,𝑤

]
. (3.44c)

We substitute the required perturbiner expansions and obtain the 2-loop order recursion relations,

Φ
(2)
P = − 𝜆

2!
𝐷P

(
1
3
⌈ΦΦΦ⌋ (2)P +

∫
𝑝

(⌈
ΦΨ𝑝

⌋ (1)
P +

∫
𝑞

1
3
Ψ

(0)
𝑝𝑞 |P

))
∀ |P| > 1, (3.45a)

Ψ
(1)
𝑝 |P = − 𝜆

2!
𝐷 𝑝 |P

(⌈
ΦΦΨ𝑝

⌋ (1)
P +

∫
𝑞

(⌈
ΦΨ𝑝𝑞

⌋ (0)
P +

⌈
Ψ𝑝Ψ𝑞

⌋ (0)
P

))
∀ |P| ≥ 0, (3.45b)

Ψ
(0)
𝑝𝑞 |P = − 𝜆

2!
𝐷 𝑝𝑞 |P

(⌈
ΦΦΨ𝑝𝑞

⌋ (0)
P + 2

⌈
ΦΨ𝑝Ψ𝑞

⌋ (0)
P

)
∀P ≥ 1. (3.45c)

To derive the initial conditions for these recursion relations, it is enough to simply read off the
recursion relations and substitute the initial conditions that we already know e.g Φ

(0)
𝑖

, Ψ(0)
𝑝 |∅

etc. And the same continues for higher loop orders. This is why the knowledge of self-energy
operator explicitly isn’t needed. With the assumption that Φ(𝑛)

𝑖
= 0 ∀ 𝑛 ≥ 1, we can construct

and solve recursion relations easily. We truly don’t need Feynman diagrams for this method!
Now we finally state the 3-loop order recursion relations.

Φ
(3)
P = − 𝜆

2!
𝐷P

(
1
3
⌈ΦΦΦ⌋ (3)P +

∫
𝑝

(⌈
ΦΨ𝑝

⌋ (2)
P +

∫
𝑞

1
3
Ψ

(1)
𝑝𝑞 |P

))
∀ |P| > 1, (3.46a)

Ψ
(2)
𝑝 |P = − 𝜆

2!
𝐷 𝑝 |P

(⌈
ΦΦΨ𝑝

⌋ (2)
P +

∫
𝑞

(⌈
ΦΨ𝑝𝑞

⌋ (1)
P +

⌈
Ψ𝑝Ψ𝑞

⌋ (1)
P + 1

3

∫
𝑟

Ψ
(0)
𝑝𝑞𝑟 |P

))
∀ |P| ≥ 0,

(3.46b)

Ψ
(1)
𝑝𝑞 |P = − 𝜆

2!
𝐷 𝑝𝑞 |P

(⌈
ΦΦΨ𝑝𝑞

⌋ (1)
P + 2

⌈
ΦΨ𝑝Ψ𝑞

⌋ (1)
P +

∫
𝑟

(⌈
ΦΨ𝑝𝑞𝑟

⌋ (0)
P

+
⌈
Ψ𝑝Ψ𝑞𝑟

⌋ (0)
P +

⌈
Ψ𝑞Ψ𝑝𝑟

⌋ (0)
P +

⌈
Ψ𝑟Ψ𝑝𝑞

⌋ (0)
P

)) ∀ |P| ≥ 1, (3.46c)

Ψ
(0)
𝑝𝑞𝑟 |P = − 𝜆

2!
𝐷 𝑝𝑞𝑟 |P

(⌈
ΦΦΨ𝑝𝑞𝑟

⌋ (0)
P + 2

⌈
Ψ𝑝Ψ𝑞Ψ𝑟

⌋ (0)
P + 2

⌈
ΦΨ𝑝Ψ𝑞𝑟

⌋ (0)
P

+ 2
⌈
ΦΨ𝑞Ψ𝑝𝑟

⌋ (0)
P + 2

⌈
ΦΨ𝑟Ψ𝑝𝑞

⌋ (0)
P

) ∀ |P| ≥ 0. (3.46d)

We have finally constructed all the recursion relations needed to compute the 4-point amplitude
up to 3-loop orders. Note that these same recursions can be used for 𝑛-point amplitudes up to
3-loop orders, the derivation depends the truncation point of the ℏ-expansion but not the rank of
the currents. We can also extrapolate the number of recursion relations needed for 𝑛-loop order
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amplitudes, for 𝑛 loops we would need

(𝑛 + 1) (𝑛 + 2)
2

recursion relations.

We now move on to discussing the implementation of this framework in Mathematica®, for
solving the recursion relations and performing further simplifications.

§ 3.4 Solving and simplifying
The next step is to use a CAS to solve these recursion relations because at 3-loop order recursions
are extremely tedious calculations to do by hand. We chose to use Mathematica® due to ease of
access and logical syntax.

§ 3.4.1 Implementation
We shall discuss some common pitfalls awaiting someone doing this calculation. While setting
up the code, it is important to design functions that take care of the distributed summation in
eq. (3.35b). It is not easy to deal with the presence of zero-modes in the recursion relations
either. The next step is to define the maximum rank of words used in the calculation. Here we
are interested in the 4-point function, which is why we restrict the rank of the words to 3 (3
on-shell legs and 1 off-shell leg that will be brought on-shell after amputation). From the above
recursion relations it should be apparent that they need to be solved in a particular order:

Φ(0) → Ψ
(0)
𝑝 → Φ(1) → Ψ

(0)
𝑝𝑞 → Ψ

(1)
𝑝 → Φ(2) → Ψ

(0)
𝑝𝑞𝑟 → Ψ

(1)
𝑝𝑞 → Ψ

(2)
𝑝 → Φ(3) .

And to ensure that the code is efficient, it makes sense to create container variables for the
results of the recursion relation so that we only have to solve each recursion only once. One
should also notice that there are two different kinds of loop momenta at play in the recursions.
For example, take a look at eq. (3.46a). On the LHS, we have a 3-loop order quantity which
must mean that there are 3 loop momenta at play (say 𝑝, 𝑞 and 𝑟). But on the RHS there are
terms without explicit loop integrals and we only have 2 independent loop integrations (for 𝑝
and 𝑞) but the third loop momenta is supposedly hidden. It is really important to take care of
this distinction in the code lest something breaks during evaluations. Lastly, it is recommended
to turn on parallelization to solve recursion relations as it improves the speed of calculations.
But due to some technical details (parallelization overhead) benefits are best reaped for more
complicated calculations (2- or 3-loop orders for example).

Once these things are dealt with, solving recursion relations should be straightforward and we
proceed to obtain amplitudes from the off-shell currents.
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§ 3.4.2 Amputation
We don’t have the full amplitudes yet, to convert off-shell currents into amplitudes we use the
following equation,

M (𝑛) (𝑘1, . . . , 𝑘𝑁+1) = lim
𝑘2

1· · ·𝑁→−𝑚2
𝑝

𝑛∑︁
𝑗=0

K̃ ( 𝑗) (𝑘1···𝑁 )Φ(𝑛− 𝑗)
1···𝑁 . (3.47)

The above equation7 means that we obtain the 𝑁 + 1-point 𝑛-loop order amplitude from rank-𝑁
current. The limit enforces the on-shell condition (eq. (2.8)) and we sum over various loop orders
of the dressed kinetic operator (eq. (3.26)) and of the rank-𝑁 off-shell current. Momentum
conservation is imposed by setting 𝑘𝑁+1 = −𝑘1···𝑁 . This also means that in the amplitude
expression, the propagator 𝐷1···𝑁 should vanish because this blows up when the on-shell
condition is imposed. If it survives, then something was done incorrectly and hence it serves as
a preliminary check for calculations.

However, using this equation turns out to be a rather inefficient method because we have to also
calculate the higher loop order contributions to the kinetic operator which are non-trivial and then
perform a multiplicative sum which increases the overall computational cost. A collaborator8

suggested a much more efficient way of performing the amputation. This newer method of
amputation is based on the physical meaning of amputated diagrams. To put it simply, amputated
diagrams are those which don’t have loops on external legs. A propagator of a theory contains all
loop order corrections (in the form of self-energy operator) to the trivial tree order term which is
just the identity. Thus, the suggested method of amputation was to take all propagators which
carried the ‘correct’ momentum (after momentum conservation) for the off-shell leg −𝑘1···𝑁

(i.e. 𝐷1···𝑁 in our case) and replace them with identity. We have essentially discarded all loop
corrections on the external off-shell leg.

t t t - * ....

↓

Figure 3.2: Loop corrections being ‘amputated’.

7Also note that this equation differs in convention to the equation in [1], but the amplitudes obtained have the right
sign convention.

8Hojin Lee, Department of Physics and Astronomy, Seoul National University
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Algebraically,
𝐷1···𝑁 → 1, (𝐷1···𝑁 )𝑛 → 0 ∀ 𝑛 > 1. (3.48)

This ansatz easily extends to theories with more than one kind of propagator, once we fix the
external state of the off-shell leg we can identify the correct propagator to set to identity. This
shall be demonstrated in the following chapter when we deal with the field-doubled theory.

§ 3.4.3 Simplification of results
Performing the said amputation gives us the amplitudes. Our results are as follows,

𝑖M (0)
4 = −𝜆, (3.49a)

𝑖M (1)
4 =

𝜆2

2!

∫
𝑝

𝐷 𝑝 |∅
(
𝐷 𝑝 |12 + 𝐷 𝑝 |23 + 𝐷 𝑝 |13

)
, (3.49b)

𝑖M (2)
4 = −𝜆

3

4!

∫
𝑝,𝑞

𝐷 𝑝 |∅𝐷𝑞 |∅ × (36 terms. . . ), (3.49c)

𝑖M (3)
4 =

𝜆4

4!3!

∫
𝑝,𝑞,𝑟

𝐷 𝑝 |∅𝐷𝑞 |∅𝐷𝑟 |∅ × (813 terms. . . ). (3.49d)

These results agree with integrands obtained from Feynman diagrams. Let us see how these
results can be further simplified.
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Figure 3.3: Diagrams belonging to same topology, related to each other by loop momenta renaming

If we consider two terms from the 2-loop amplitude:

𝜆3

3!
𝐷 𝑝 |∅𝐷𝑞 |∅𝐷 𝑝𝑞 |3𝐷 𝑝𝑞 |123,

𝜆3

3!
𝐷 𝑝 |∅𝐷𝑞 |∅𝐷 𝑝 |12𝐷 𝑝𝑞 |123,
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and construct their Feynman diagrams (bottom row in fig. 3.3) and label the momenta properly,
we notice that the two diagrams are related to each other by a simple renaming (or shifts) of loop
momenta. These two diagrams belong to the same topology. We now discuss the methods to
find these topologies and greatly simplify the amplitude expressions.

Let us assume that we are working with 2-loop order terms in the amplitude. We first generate a
list of all possible shifts based on linear combinations of external momenta 𝑘1, 𝑘2, · · · , 𝑘𝑛 and
loop momenta 𝑝, 𝑞. Shifts were chosen to be of the form,

𝑙 → 𝑎𝑘P + 𝑏𝑙P , (3.50)

where 𝑙 ∈ {𝑝, 𝑞} and 𝑎, 𝑏 ∈ {1,−1}. And we have

𝑙∅ = 0, 𝑙1 = 𝑝, 𝑙2 = 𝑞, 𝑙12 = 𝑝 + 𝑞. (3.51)

We then develop a criterion to filter out shifts that are incompatible9 with each other. For
example:

(𝑝 → 𝑘1, 𝑞 → 𝑘2), (Incompatible)

(𝑝 → 𝑘12 − 𝑝, 𝑞 → 𝑞). (Compatible)

The remaining shifts are implemented simultaneously and we obtain new forms for propagators
in the form of a tuple. For example after implementing shifts,

𝐷 𝑝 |∅𝐷𝑞 |∅𝐷 𝑝𝑞 |3𝐷 𝑝𝑞 |123 →
{
𝐷 𝑝 |12𝐷𝑞 |3𝐷 𝑝𝑞 |12𝐷 𝑝𝑞 |∅, 𝐷 𝑝 |∅𝐷𝑞 |∅𝐷 𝑝 |12𝐷 𝑝𝑞 |123, · · ·

}
. (3.52)

We implement a weighted-sum procedure, where a preference is set for propagators and this
allows us to isolate a single element from the tuple and thus guaranteeing10 a canonical form for
each topology. An example of weights is shown:

𝐷 𝑝 |∅ → 1014,

𝐷𝑞 |∅ → 1013,

...

𝐷12|𝑝𝑞 → 10−2,

𝐷123|𝑝𝑞 → 10−3.

In this scheme, we are preferring propagators 𝐷 𝑝 |∅, 𝐷𝑞 |∅ over 𝐷12|𝑝𝑞, 𝐷123|𝑝𝑞, and hence we

9Here incompatibility refers to fact that on shifting loop momenta the resultant momenta configurations no longer
have any physical interpretation.

10Weights need to be chosen in proper manner to ensure a noticeable difference in sums.
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shall see that the canonical forms of topologies will more likely have the former propagators
over the latter. It is apparent from the description of the method that this is not much better than
a brute-force attempt and while it works successfully up to 2-loop orders, the ansatz proves to
be terribly inefficient for 3-loop order terms. This apparent failure led us to discover several
references[3,4,14] on topology identification. An algorithm[3,4] (referred to as Pak algorithm in
some texts) seemed promising but its implementation wasn’t compatible with our approach of
quantum off-shell currents.

We believe that the field-doubling prescription is a good candidate for implementing loop
momenta shifts. The structure of the amplitudes of such a theory would be richer given that
there are more than one kinds of propagators and vertices. In the next chapter, we shall discuss
the field-doubling prescription to use the Largest Time Equation with the quantum off-shell
recursion framework.

This chapter is heavily based on [1] and served as both a review and an extension of the reference.



CHAPTER 4

Field-doubled 𝜙4 theory

In this chapter we focus on the field-doubling prescription. We shall calculate the 3-loop order
4-point amplitude in this theory and from it obtain the tree order 6-point cross-section via

unitarity. The steps of the calculation broadly remain the same as before but we first elaborate
upon the field-doubling prescription and emphasize changes from the regular 𝜙4 theory. After
which we shall derive the Dyson–Schwinger equations and proceed from there.

§ 4.1 Field-doubling
Recall eq. (2.11a). We can generalize it to higher loop orders and obtain

−𝑖
(
M (𝑎)

i→f −
(
M (𝑎)

i→f

)∗)
=

⨋
n
M (𝑏)

i→n

(
M (𝑐)

n→f

)∗
, (4.1)

where the loop orders satisfy 𝑎 > 𝑏 and 𝑎 > 𝑐. We aim to obtain the RHS of eq. (4.1) from the
LHS, and for that we construct a field-doubled action as follows,

𝑆 𝑓 .𝑑 [𝜙, 𝑗] = 𝑆[𝜙, 𝑗] − 𝑆∗ [𝜙, 𝑗] . (4.2)

This action should generate amplitudes proportional to the LHS of eq. (4.1). To keep track of the
complex-conjugated action, it is useful to define indices + and −. Therefore, we now work with
a pair of scalar fields 𝜙± and their associated external sources 𝑗±, we denote them collectively
with capital indices 𝐴, 𝐵, . . . ∈ {+,−}. The action is defined as

𝑆
[
𝜙𝐴, 𝑗 𝐴

]
= 𝑆

[
𝜙+, 𝑗+

]
− 𝑆[𝜙−, 𝑗−], (4.3a)

= −1
2

∫
𝑥,𝑦

𝜙𝐴𝑥 𝐾
𝐴𝐵
𝑥𝑦 𝜙

𝐵
𝑦 −

𝜆𝐴

4!

∫
𝑥

𝑉 𝐴𝐵𝐶𝐷𝐸𝜙𝐵𝑥 𝜙
𝐶
𝑥 𝜙

𝐷
𝑥 𝜙

𝐸
𝑥 +

∫
𝑥

𝜂𝐴𝐵 𝑗 𝐴𝑥 𝜙
𝐵
𝑥 , (4.3b)

where we picked the form similar to eq. (3.3) and

𝜂𝐴𝐵 ≡
(
𝜂++ 𝜂+−

𝜂−+ 𝜂−−

)
=

(
1 0
0 −1

)
, (4.4)
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and the non-vanishing components of 𝑉 𝐴𝐵𝐶𝐷𝐸 are

𝑉+++++ = 1, 𝑉−−−−− = −1. (4.5)

The kinetic operator 𝐾𝐴𝐵
𝑥𝑦 is defined as,

𝐾𝐴𝐵
𝑥𝑦 ≡

(
𝐾++
𝑥𝑦 0
0 𝐾−−

𝑥𝑦

)
=

((
−□𝑦 + 𝑚2)𝛿4(𝑥 − 𝑦) 0

0 −
(
−□𝑦 + 𝑚2)𝛿4(𝑥 − 𝑦)

)
. (4.6)

We now define the propagators of the theory 𝐷𝐴𝐵
𝑥𝑦 by the equation∫

𝑦

𝐾𝐴𝐵
𝑥𝑦 𝐷

𝐵𝐶
𝑦𝑧 = 𝛿𝐴𝐶 𝛿4(𝑥 − 𝑧). (4.7)

And we obtain,

𝐷++
𝑥𝑦 =

∫
𝑝

𝑒𝑖𝑝·(𝑥−𝑦)

𝑝2 + 𝑚2 − 𝑖𝜖
, (4.8a)

𝐷+−
𝑥𝑦 =

∫
𝑝

𝑒𝑖𝑝·(𝑥−𝑦)2𝜋𝛿(𝑝2 + 𝑚2)Θ(𝑝0), (4.8b)

𝐷−+
𝑥𝑦 = −

∫
𝑝

𝑒𝑖𝑝·(𝑥−𝑦)2𝜋𝛿(𝑝2 + 𝑚2)Θ(−𝑝0), (4.8c)

𝐷−−
𝑥𝑦 = −

∫
𝑝

𝑒𝑖𝑝·(𝑥−𝑦)

𝑝2 + 𝑚2 + 𝑖𝜖
. (4.8d)

Note that we had the freedom to define 𝐷+−
𝑥𝑦 and 𝐷−+

𝑥𝑦 propagators as we saw fit, and we chose
the definition that implemented Cutkosky’s rules[11] so as to implement cuts algebraically. The
momentum space propagators are then given by,

𝐷̃++
𝑝 =

1
𝑝2 + 𝑚2 − 𝑖𝜖

, (4.9a)

𝐷̃+−
𝑝 = 2𝜋𝛿(𝑝2 + 𝑚2)Θ(𝑝0), (4.9b)

𝐷̃+−
𝑝 = −2𝜋𝛿(𝑝2 + 𝑚2)Θ(−𝑝0), (4.9c)

𝐷̃−−
𝑝 = − 1

𝑝2 + 𝑚2 + 𝑖𝜖
. (4.9d)

We proceed to derive the Dyson–Schwinger equations of the theory.
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§ 4.2 Dyson–Schwinger equations and descendants

Like earlier, we take a functional derivative with respect to 𝜙𝐹𝑧 in eq. (4.3b) and rename indices
to obtain the classical equations of motion,

−
∫
𝑦

𝐾𝐴𝐵
𝑥𝑦 𝜙

𝐵
𝑦 −

𝜆𝐸

3!
𝑉 𝐴𝐵𝐶𝐷𝐸𝜙𝐵𝑥 𝜙

𝐶
𝑥 𝜙

𝐷
𝑥 + 𝜂𝐵𝐴 𝑗𝐵𝑥 = 0, (4.10a)

−
∫
𝑦

𝐾𝐴𝐵
𝑥𝑦 𝜙

𝐵
𝑦 −

𝜆𝐸

3!
𝑉 𝐴𝐵𝐶𝐷𝐸𝜙𝐵𝑥 𝜙

𝐶
𝑥 𝜙

𝐷
𝑥 + 𝜂𝐴𝐵 𝑗𝐵𝑥 = 0, (4.10b)

where we exploited the symmetry of 𝜂. Now when we promote the fields to operators, care must
be taken to symmetrize terms that were symmetric earlier i.e. after 𝜙 → 𝜙 =

(
𝜑 + ℏ

𝑖
𝛿
𝛿 𝑗

)
we get,∫

𝑦

𝐾𝐴𝐵
𝑥𝑦 𝜙

𝐵
𝑦 = −𝜆

𝐸

3!
𝑉 𝐴𝐵𝐶𝐷𝐸

1
3!

(
𝜙𝐵𝑥 𝜙

𝐶
𝑥 𝜙

𝐷
𝑥 + perms.

)
+ 𝜂𝐴𝐵 𝑗𝐵𝑥 , (4.11a)∫

𝑦

𝐾𝐴𝐵
𝑥𝑦 𝜑

𝐵
𝑦 = −𝜆

𝐸

3!
𝑉 𝐴𝐵𝐶𝐷𝐸

1
3!

((
𝜑𝐵𝑥 + ℏ

𝑖

𝛿

𝛿 𝑗𝐵𝑥

) (
𝜑𝐶𝑥 𝜑

𝐷
𝑥 + ℏ

𝑖

𝛿𝜑𝐷𝑥

𝛿 𝑗𝐶𝑥

)
+ perms.

)
+ 𝜂𝐴𝐵 𝑗𝐵𝑥 ,

(4.11b)

after careful expansion, we get∫
𝑦

𝐾𝐴𝐵
𝑥𝑦 𝜑

𝐵
𝑦 = 𝜂𝐴𝐵 𝑗𝐵𝑥 − 𝜆

𝐸

3!
𝑉 𝐴𝐵𝐶𝐷𝐸

(
𝜑𝐵𝑥 𝜑

𝐶
𝑥 𝜑

𝐷
𝑥 + 3

ℏ

𝑖
𝜑
(𝐵
𝑥 𝜓

𝐶𝐷)
𝑥,𝑥 − ℏ2𝜓

(𝐵𝐶𝐷)
𝑥,𝑥,𝑥

)
, (4.11c)∫

𝑥,𝑦

𝐷𝐹𝐴
𝑧𝑥 𝐾

𝐴𝐵
𝑥𝑦 𝜑

𝐵
𝑦 =

∫
𝑥

𝐷𝐹𝐴
𝑧𝑥

[
𝜂𝐴𝐵 𝑗𝐵𝑥 − 𝜆

𝐸

3!
𝑉 𝐴𝐵𝐶𝐷𝐸

(
𝜑𝐵𝑥 𝜑

𝐶
𝑥 𝜑

𝐷
𝑥 + 3

ℏ

𝑖
𝜑
(𝐵
𝑥 𝜓

𝐶𝐷)
𝑥,𝑥 − ℏ2𝜓

(𝐵𝐶𝐷)
𝑥,𝑥,𝑥

)]
,

(4.11d)

𝜑𝐹𝑧 =

∫
𝑥

𝐷𝐹𝐴
𝑧𝑥

[
𝜂𝐴𝐵 𝑗𝐵𝑥 − 𝜆

𝐸

3!
𝑉 𝐴𝐵𝐶𝐷𝐸

(
𝜑𝐵𝑥 𝜑

𝐶
𝑥 𝜑

𝐷
𝑥 + 3

ℏ

𝑖
𝜑
(𝐵
𝑥 𝜓

𝐶𝐷)
𝑥,𝑥 − ℏ2𝜓

(𝐵𝐶𝐷)
𝑥,𝑥,𝑥

)]
.

(4.11e)

Performing appropriate renaming,

𝜑𝐴𝑥 =

∫
𝑦

𝐷𝐴𝐵
𝑥𝑦

[
𝜂𝐵𝐶 𝑗𝐶𝑦 − 𝜆

𝐹

3!
𝑉𝐵𝐶𝐷𝐸𝐹

(
𝜑𝐶𝑦 𝜑

𝐷
𝑦 𝜑

𝐸
𝑦 + 3

ℏ

𝑖
𝜑
(𝐶
𝑦 𝜓

𝐷𝐸)
𝑦,𝑦 − ℏ2𝜓

(𝐶𝐷𝐸)
𝑦,𝑦,𝑦

)]
. (4.11f)

where we used the usual notation for descendant fields. Now we explicitly write eq. (4.11f) after
selecting the non-vanishing components of 𝑉 ,

𝜑𝐴𝑥 =

∫
𝑦

𝐷𝐴+
𝑥𝑦

(
𝑗+𝑦 −

𝜆+

3!

(
𝜑+𝑦

)3
− 𝜆

+

2!
ℏ

𝑖
𝜑+𝑦𝜓

++
𝑦,𝑦 +

𝜆+

3!
ℏ2𝜓+++

𝑦,𝑦,𝑦

)
−

∫
𝑦

𝐷𝐴−
𝑥𝑦

(
𝑗−𝑦 − 𝜆

−

3!

(
𝜑−𝑦

)3
− 𝜆

−

2!
ℏ

𝑖
𝜑−𝑦𝜓

−−
𝑦,𝑦 +

𝜆−

3!
ℏ2𝜓−−−

𝑦,𝑦,𝑦

) . (4.12)
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We have derived the Dyson–Schwinger equations for this theory. Let us now derive the descendant
equations by repeatedly taking functional derivatives with respect to the sources 𝑗 𝐴,

𝜓𝐴𝐴
′

𝑥,𝑧 = 𝐷𝐴+
𝑥𝑧 𝜂

+𝐴′ + 𝐷𝐴−
𝑥𝑧 𝜂

−𝐴′

− 𝜆
+

3!

∫
𝑦

𝐷𝐴+
𝑥𝑦

(
3
(
𝜑+𝑦

)2
𝜓+𝐴′
𝑦,𝑧 + 3

ℏ

𝑖
𝜑+𝑦𝜓

++𝐴′
𝑦,𝑦,𝑧 + 3

ℏ

𝑖
𝜓+𝐴′
𝑦,𝑧 𝜓

++
𝑦,𝑦 − ℏ2𝜓+++𝐴′

𝑦,𝑦,𝑦,𝑧

)
+ 𝜆

−

3!

∫
𝑦

𝐷𝐴−
𝑥𝑦

(
3
(
𝜑−𝑦

)2
𝜓−𝐴′
𝑦,𝑧 + 3

ℏ

𝑖
𝜑−𝑦𝜓

−−𝐴′
𝑦,𝑦,𝑧 + 3

ℏ

𝑖
𝜓−𝐴′
𝑦,𝑧 𝜓

−−
𝑦,𝑦 − ℏ2𝜓−−−𝐴′

𝑦,𝑦,𝑦,𝑧

) . (4.13)

Above are the 4 first descendant equations,

𝜓𝐴𝐴
′𝐴′′

𝑥,𝑧,𝑤 = −𝜆
+

2!

∫
𝑦

𝐷𝐴+
𝑥𝑦

((
𝜑+𝑦

)2
𝜓+𝐴′𝐴′′
𝑦,𝑧,𝑤 + 2𝜑+𝑦𝜓+𝐴′

𝑦,𝑧 𝜓
+𝐴′′
𝑦,𝑤

+ℏ
𝑖
𝜑+𝑦𝜓

++𝐴′𝐴′′
𝑦,𝑦,𝑧,𝑤 + ℏ

𝑖
𝜓+𝐴′′
𝑦,𝑤 𝜓

++𝐴′
𝑦,𝑦,𝑧 +

ℏ

𝑖
𝜓+𝐴′𝐴′′
𝑦,𝑧,𝑤 𝜓++

𝑦,𝑦 +
ℏ

𝑖
𝜓+𝐴′
𝑦,𝑧 𝜓

++𝐴′′
𝑦,𝑦,𝑤

)
+ 𝜆

−

2!

∫
𝑦

𝐷𝐴−
𝑥𝑦

((
𝜑−𝑦

)2
𝜓−𝐴′𝐴′′
𝑦,𝑧,𝑤 + 2𝜑−𝑦𝜓−𝐴′

𝑦,𝑧 𝜓
−𝐴′′
𝑦,𝑤

+ℏ
𝑖
𝜑−𝑦𝜓

−−𝐴′𝐴′′
𝑦,𝑦,𝑧,𝑤 + ℏ

𝑖
𝜓−𝐴′′
𝑦,𝑤 𝜓

−−𝐴′
𝑦,𝑦,𝑧 + ℏ

𝑖
𝜓−𝐴′𝐴′′
𝑦,𝑧,𝑤 𝜓−−

𝑦,𝑦 +
ℏ

𝑖
𝜓−𝐴′
𝑦,𝑧 𝜓

−−𝐴′′
𝑦,𝑦,𝑤

)
. (4.14)

Above are the 8 second descendant equations, and notice that we truncated them at 1-loop order.
This is in accordance with the truncation rule mentioned at the end of section 3.1.1.

𝜓𝐴𝐴
′𝐴′′𝐴′′′

𝑥,𝑧,𝑤,𝑣 = −𝜆
+

2!

∫
𝑦

𝐷𝐴+
𝑥𝑦

((
𝜑+𝑦

)2
𝜓+𝐴′𝐴′′𝐴′′′
𝑦,𝑧,𝑤,𝑣 + 2𝜓+𝐴′

𝑦,𝑧 𝜓
+𝐴′′
𝑦,𝑤 𝜓

+𝐴′′′
𝑦,𝑣

+ 2𝜑+𝑦𝜓+𝐴′
𝑦,𝑧 𝜓

+𝐴′′𝐴′′′
𝑦,𝑤,𝑣 + 2𝜑+𝑦𝜓+𝐴′′

𝑦,𝑤 𝜓
+𝐴′𝐴′′′
𝑦,𝑧,𝑣 + 2𝜑+𝑦𝜓+𝐴′′′

𝑦,𝑣 𝜓+𝐴′𝐴′′
𝑦,𝑧,𝑤

)
+ 𝜆

−

2!

∫
𝑦

𝐷𝐴−
𝑥𝑦

((
𝜑−𝑦

)2
𝜓−𝐴′𝐴′′𝐴′′′
𝑦,𝑧,𝑤,𝑣 + 2𝜓−𝐴′

𝑦,𝑧 𝜓
−𝐴′′
𝑦,𝑤 𝜓

−𝐴′′′
𝑦,𝑣

+ 2𝜑−𝑦𝜓−𝐴′
𝑦,𝑧 𝜓

−𝐴′′𝐴′′′
𝑦,𝑤,𝑣 + 2𝜑−𝑦𝜓−𝐴′′

𝑦,𝑤 𝜓
−𝐴′𝐴′′′
𝑦,𝑧,𝑣 + 2𝜑−𝑦𝜓−𝐴′′′

𝑦,𝑣 𝜓−𝐴′𝐴′′
𝑦,𝑧,𝑤

)
. (4.15)

Above are the 16 third descendant equations truncated at tree order. We now have all the
equations. Note that all these fields have their own ℏ-expansions. We shall now substitute the
perturbiner expansions and obtain the recursion relations order by order.

§ 4.3 Obtaining the recursion relations
First let us list the perturbiner expansions for these new fields. The form remains the same as
earlier, but the currents now gain indices.

𝜑𝐴𝑥 =
∑︁
P

Φ𝐴
P𝑒

−𝑖𝑘P ·𝑥 , (4.16a)
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𝜓𝐴𝐵𝑥,𝑦 =

∫
𝑝

Ψ𝐴𝐵
𝑝 |∅𝑒

𝑖𝑝·(𝑥−𝑦) +
∑︁
P

∫
𝑝

Ψ𝐴𝐵
𝑝 |P𝑒

𝑖𝑝·(𝑥−𝑦)𝑒−𝑖𝑘P ·𝑥 , (4.16b)

𝜓𝐴𝐵𝐶𝑥,𝑦,𝑧 =
∑︁
P

∫
𝑝,𝑞

Ψ𝐴𝐵𝐶
𝑝𝑞 |P𝑒

𝑖𝑝·(𝑥−𝑦)+𝑖𝑞·(𝑥−𝑧)𝑒−𝑖𝑘P ·𝑥 , (4.16c)

𝜓𝐴𝐵𝐶𝐷𝑥,𝑦,𝑧,𝑤 =

∫
𝑝,𝑞,𝑟

Ψ𝐴𝐵𝐶𝐷
𝑝𝑞𝑟 |∅ 𝑒

𝑖𝑝·(𝑥−𝑦)+𝑖𝑞·(𝑥−𝑧)+𝑖𝑟 ·(𝑥−𝑤) +
∑︁
P

∫
𝑝,𝑞,𝑟

Ψ𝐴𝐵𝐶𝐷
𝑝𝑞𝑟 |P 𝑒

𝑖𝑝·(𝑥−𝑦)+𝑖𝑞·(𝑥−𝑧)+𝑖𝑟 ·(𝑥−𝑤)𝑒−𝑖𝑘P ·𝑥 .

(4.16d)

We shall take a step towards simplifying the cluttered notation. While listing ℏ-expansions of the
Dyson–Schwinger equations or of the descendant equations, we adopt the following convention,

𝜑
𝐴,(0)
𝑥 → 𝜑𝐴0 , 𝜓

𝐴𝐴′,(0)
𝑥,𝑧 → 𝜓𝐴𝐴

′

0 , 𝜓
±𝐴′,(0)
𝑦,𝑧 → 𝜓±𝐴′

0 , 𝑗
±,(0)
𝑦 → 𝑗±0 , · · · , (4.17)

where we have dropped the position space indices completely in favour of loop order. One
can easily recover those indices by examining 𝐴, 𝐴′, 𝐴′′, . . . or ± indices. If one observes the
Dyson–Schwinger equations (or its descendants), one realises that the signature indices and
position space indices are in some sense linked. 𝐴 comes with 𝑥, 𝐴′ comes with 𝑧, and so on; but
± always come with 𝑦1. We can also ignore the position space integral as its presence too can
be inferred while recovering the position space indices. Also note that propagators are defined
according to the following convention,

𝐷𝐴𝐵
P ≡ 𝐷̃𝐴𝐵 (−𝑘P), (4.18a)

𝐷𝐴𝐵
𝑝 |P ≡ 𝐷̃𝐴𝐵 (𝑝 − 𝑘P), (4.18b)

𝐷𝐴𝐵
𝑝𝑞 |P ≡ 𝐷̃𝐴𝐵 (𝑝 + 𝑞 − 𝑘P), (4.18c)

𝐷𝐴𝐵
𝑝 |∅ ≡ 𝐷̃

𝐴𝐵 (𝑝), (4.18d)
...

§ 4.3.1 Tree order
Collecting the tree order terms in eq. (4.12),

𝜑𝐴0 =

[
𝐷𝐴+

(
𝑗+0 − 𝜆

+

3!
(
𝜑+0

)3
)
− 𝐷𝐴−

(
𝑗−0 − 𝜆

−

3!
(
𝜑−0

)3
)]
. (4.19)

Substituting the perturbiner expansions gives us,

Φ
𝐴,0
P = −𝜆

+

3!
𝐷𝐴+

P
⌈
Φ+Φ+Φ+⌋ (0)

P + 𝜆
−

3!
𝐷𝐴−

P ⌈Φ−Φ−Φ−⌋ (0)P ∀ |P| > 1. (4.20)

1With a single exception of 𝐷𝐴+
𝑥𝑧 𝜂

+𝐴′ term in the first descendant equations.
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To define the initial conditions we must first define the external sources as follows,

𝑗 𝐴𝑥 =

𝑁∑︁
𝑖′=1

𝜂𝐴𝐵K̃𝐵𝐶 (−𝑘𝑖′)𝜀𝐶𝑖′ 𝑒−𝑖𝑘𝑖
′ ·𝑥 . (4.21)

The definition looks a lot more complex than it was for regular 𝜙4 theory. But K̃𝐴𝐵 is the dressed
kinetic operator for this theory and like we saw earlier, we don’t need to know the explicit forms
of the loop order corrections, and 𝜂 was added to make our (sign) conventions compatible with
regular 𝜙4 theory. The 𝜀𝐴

𝑖
term is simply the polarization of the 𝑖th leg. For theories with more

than one kinds of fields, polarization vectors tend to make an appearance as they allow us to
set the choice of fields at different external legs. In our problem, we shall isolate the 𝑢-channel
2-to-2 scattering and hence fix the polarizations as follows,

𝜀+1 = 1, 𝜀+2 = 0, 𝜀+3 = 0, 𝜀−1 = 0, 𝜀−2 = 1, 𝜀−3 = 1, (4.22)

which means that the field on the 1st leg is 𝜙+, and the fields on the 2nd and 3rd legs are 𝜙−2. We
now derive the initial conditions,

𝑁∑︁
𝑖′=1

Φ
𝐴,0
𝑖′ 𝑒−𝑖𝑘𝑖′ ·𝑥 =

∫
𝑦

𝐷𝐴+
𝑥𝑦 𝑗

+
0 − 𝐷𝐴−

𝑥𝑦 𝑗
−
0 , (4.23a)

=

∫
𝑦,𝑝

𝑒𝑖𝑝·(𝑥−𝑦)
(
𝐷̃𝐴+
𝑝 𝑗+0 − 𝐷̃𝐴−

𝑝 𝑗−0

)
, (4.23b)

=

𝑁∑︁
𝑖′=1

∫
𝑦,𝑝

𝑒𝑖𝑝·(𝑥−𝑦)𝑒−𝑖𝑘𝑖′ 𝑦
(
𝐷̃𝐴+
𝑝 𝜂

++K̃+𝐵,0(−𝑘𝑖′)𝜀𝐵𝑖′ − 𝐷̃𝐴−
𝑝 𝜂−−K̃−𝐵,0(−𝑘𝑖′)𝜀𝐵𝑖′

)
,

(4.23c)

performing the position space integration,

= (2𝜋)4
𝑁∑︁
𝑖′=1

∫
𝑝

𝛿4(𝑝 + 𝑘𝑖′)𝑒𝑖𝑝·𝑥
(
𝐷̃𝐴+
𝑝 𝐾̃

+𝐵 (−𝑘𝑖′)𝜀𝐵𝑖′ + 𝐷̃𝐴−
𝑝 𝐾̃−𝐵 (−𝑘𝑖′)𝜀𝐵𝑖′

)
,

(4.23d)

from the structure of the kinetic operator we have,

= (2𝜋)4
𝑁∑︁
𝑖′=1

∫
𝑝

𝛿4(𝑝 + 𝑘𝑖′)𝑒𝑖𝑝·𝑥
(
𝐷̃𝐴+
𝑝 𝐾̃

++(−𝑘𝑖′)𝜀+𝑖′ + 𝐷̃𝐴−
𝑝 𝐾̃−−(−𝑘𝑖′)𝜀−𝑖′

)
,

(4.23e)

2The off-shell leg has 𝜙+ field and hence 𝜀+4 = 1, but in our framework this fact comes into play later and will be
brought up while discussing amputation.
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performing the momentum space integration gives,

=

𝑁∑︁
𝑖′=1

𝑒−𝑖𝑘𝑖′ ·𝑥
(
𝐷̃𝐴+(−𝑘𝑖′)𝐾̃++(−𝑘𝑖′)𝜀+𝑖′ + 𝐷̃𝐴−(−𝑘𝑖′)𝐾̃−−(−𝑘𝑖′)𝜀−𝑖′

)
, (4.23f)

=

𝑁∑︁
𝑖′=1

(
𝛿𝐴+𝜀+𝑖′ + 𝛿𝐴−𝜀−𝑖′

)
𝑒−𝑖𝑘𝑖′ ·𝑥 , (4.23g)

=

𝑁∑︁
𝑖′=1

𝜀𝐴𝑖′ 𝑒
−𝑖𝑘𝑖′ ·𝑥 . (4.23h)

Comparing coefficients on both sides,

Φ
𝐴,0
𝑖′ = 𝜀𝐴𝑖′ . (4.23i)

The derivation is rather straightforward with just one thing that we must pay attention to, in
eq. (4.23d) we made the substitution K̃0 → 𝐾̃ . This is justified because the tree order dressed
propagator is simply the undressed propagator3 and likewise, the tree order kinetic operator must
be equal to the undressed kinetic operator.

§ 4.3.2 1-loop order
Collecting 1-loop order terms in eq. (4.12) and tree order terms in eq. (4.13),

𝜑𝐴1 =

[
𝐷𝐴+

(
𝑗+1 − 𝜆

+

2!

( (
𝜑+0

)2
𝜑+1 + 𝜑+0𝜓

++
0

))
−𝐷𝐴−

(
𝑗−1 − 𝜆

−

2!

( (
𝜑−0

)2
𝜑−1 + 𝜑−0𝜓

−−
0

))] , (4.24a)

𝜓𝐴𝐴
′

0 = 𝐷𝐴𝐵𝜂𝐵𝐴
′ − 𝜆

+

2!
𝐷𝐴+ (𝜑+0 )2

𝜓+𝐴′
0 + 𝜆

−

2!
𝐷𝐴− (

𝜑−0
)2
𝜓−𝐴′

0 . (4.24b)

On substituting the perturbiner expansions we get,

Φ
𝐴,1
P = −𝜆

+

2!
𝐷𝐴+

P

(
1
3
⌈
Φ+Φ+Φ+⌋ (1)

P +
∫
𝑝

⌈
Φ+Ψ++

𝑝

⌋ (0)
P

)
+ 𝜆

−

2!
𝐷𝐴−

P

(
1
3
⌈Φ−Φ−Φ−⌋ (1)P +

∫
𝑝

⌈
Φ−Ψ−−

𝑝

⌋ (0)
P

) ∀ |P| > 1, (4.25a)

Ψ
𝐴𝐴′,0
𝑝 |P = −𝜆

+

2!
𝐷𝐴+
𝑝 |P

⌈
Φ+Φ+Ψ+𝐴′

𝑝

⌋ (0)
P + 𝜆

−

2!
𝐷𝐴−
𝑝 |P

⌈
Φ−Φ−Ψ−𝐴′

𝑝

⌋ (0)
P ∀ |P| ≥ 1. (4.25b)

Like before we make the assumption that,

Φ
𝐴,𝑛
𝑖

= 0 ∀ 𝑛 ≥ 1. (4.26)

3The ‘dress’ in dressed refers to loop order corrections that the bare or undressed propagator receives.
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And it is not too hard to find out the initial conditions for Ψ𝐴𝐴′,0
𝑝 |∅ ,∫

𝑝

Ψ
𝐴𝐴′,0
𝑝 |∅ 𝑒𝑖𝑝·(𝑥−𝑧) = 𝐷𝐴𝐵

𝑥𝑧 𝜂
𝐵𝐴′ , (4.27a)

=

∫
𝑝

𝐷̃𝐴𝐵
𝑝 𝑒𝑖𝑝·(𝑥−𝑧)𝜂𝐵𝐴

′
. (4.27b)

Comparing both sides,

Ψ
𝐴𝐴′,0
𝑝 |∅ = 𝐷𝐴𝐵

𝑝 |∅ 𝜂
𝐵𝐴′ . (4.27c)

§ 4.3.3 2- and 3-loop orders

It is now possible to use the initial conditions from earlier to derive the higher order initial
conditions directly from the recursion relations. Collecting 2-loop order terms in eq. (4.12),
1-loop order terms in eq. (4.13) and tree order terms in eq. (4.14),

𝜑𝐴2 =

[
𝐷𝐴+

(
𝑗+2 − 𝜆

+

2!

( (
𝜑+0

)2
𝜑+2 +

(
𝜑+1

)2
𝜑+0 + 𝜑+0𝜓

++
1 + 𝜑+1𝜓

++
0 + 1

3
𝜓+++

0

))
−𝐷𝐴−

(
𝑗−2 − 𝜆

−

2!

( (
𝜑−0

)2
𝜑−2 +

(
𝜑−1

)2
𝜑−0 + 𝜑−0𝜓

−−
1 + 𝜑−1𝜓

−−
0 + 1

3
𝜓−−−

0

))] , (4.28a)

𝜓𝐴𝐴
′

1 = −𝜆
+

2!
𝐷𝐴+

(
2𝜑+0𝜑

+
1𝜓

+𝐴′
0 +

(
𝜑+0

)2
𝜓+𝐴′

1 + 𝜙+0𝜓
++𝐴′
0 + 𝜓++

0 𝜓+𝐴′
0

)
+ 𝜆

−

2!
𝐷𝐴−

(
2𝜑−0𝜑

−
1𝜓

−𝐴′
0 +

(
𝜑−0

)2
𝜓−𝐴′

1 + 𝜙−0𝜓
−−𝐴′
0 + 𝜓−−

0 𝜓−𝐴′
0

) , (4.28b)

𝜓𝐴𝐴
′𝐴′′

0 = −𝜆
+

2!
𝐷𝐴+

( (
𝜑+0

)2
𝜓+𝐴′𝐴′′

0 + 2𝜑+0𝜓
+𝐴′
0 𝜓+𝐴′′

0

)
+ 𝜆

−

2!
𝐷𝐴−

( (
𝜑−0

)2
𝜓−𝐴′𝐴′′

0 + 2𝜑−0𝜓
−𝐴′
0 𝜓−𝐴′′

0

)
.

(4.28c)

Substituting perturbiner equations to obtain 2-loop order recursion relations,

Φ
𝐴,2
P = −𝜆

+

2!
𝐷𝐴+

P

(
1
3
⌈
Φ+Φ+Φ+⌋ (2)

P +
∫
𝑝

(⌈
Φ+Ψ++

𝑝

⌋ (1)
P +

∫
𝑞

1
3
Ψ

+++,0
𝑝𝑞 |P

))
+ 𝜆

−

2!
𝐷𝐴−

P

(
1
3
⌈Φ−Φ−Φ−⌋ (2)P +

∫
𝑝

(⌈
Φ−Ψ−−

𝑝

⌋ (1)
P +

∫
𝑞

1
3
Ψ

−−−,0
𝑝𝑞 |P

)) ∀ |P| > 1, (4.29a)

Ψ
𝐴𝐴′,1
𝑝 |P = −𝜆

+

2!
𝐷𝐴+
𝑝 |P

(⌈
Φ+Φ+Ψ+𝐴′

𝑝

⌋ (1)
P +

∫
𝑞

(⌈
Φ+Ψ++𝐴′

𝑝𝑞

⌋ (0)
P +

⌈
Ψ++
𝑞 Ψ+𝐴′

𝑝

⌋ (0)
P

))
+ 𝜆

−

2!
𝐷𝐴−
𝑝 |P

(⌈
Φ−Φ−Ψ−𝐴′

𝑝

⌋ (1)
P +

∫
𝑞

(⌈
Φ−Ψ−−𝐴′

𝑝𝑞

⌋ (0)
P +

⌈
Ψ−−
𝑞 Ψ−𝐴′

𝑝

⌋ (0)
P

)) ∀ |P| ≥ 0,

(4.29b)
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Ψ
𝐴𝐴′𝐴′′,0
𝑝𝑞 |P = −𝜆

+

2!
𝐷𝐴+
𝑝𝑞 |P

(⌈
Φ+Φ+Ψ+𝐴′𝐴′′

𝑝𝑞

⌋ (0)
P + 2

⌈
Φ+Ψ+𝐴′

𝑝 Ψ+𝐴′′
𝑞

⌋ (0)
P

)
+ 𝜆

−

2!
𝐷𝐴−
𝑝𝑞 |P

(⌈
Φ−Φ−Ψ−𝐴′𝐴′′

𝑝𝑞

⌋ (0)
P + 2

⌈
Φ−Ψ−𝐴′

𝑝 Ψ−𝐴′′
𝑞

⌋ (0)
P

) ∀ |P| ≥ 1. (4.29c)

Collecting 3-loop order terms in eq. (4.12), 2-loop order terms in eq. (4.13), 1-loop order terms
in eq. (4.14) and tree order terms in eq. (4.15),

𝜑𝐴3 =

[
𝐷𝐴+

(
𝑗+3 − 𝜆

+

3!

( (
𝜑+1

)3 + 3!𝜑+0𝜑
+
1𝜑

+
2 + 3

(
𝜑+0

)2
𝜑+3

+3𝜑+2𝜓
++
0 + 3𝜑+1𝜓

++
1 + 3𝜑+0𝜓

++
2 + 𝜓+++

1

) )
− 𝐷𝐴−

(
𝑗−3 − 𝜆

−

3!

( (
𝜑−1

)3 + 3!𝜑−0𝜑
−
1𝜑

−
2 + 3

(
𝜑−0

)2
𝜑−3

+3𝜑−2𝜓
−−
0 + 3𝜑−1𝜓

−−
1 + 3𝜑−0𝜓

−−
2 + 𝜓−−−

1

) )]
, (4.30a)

𝜓𝐴𝐴
′

2 = −𝜆
+

2!
𝐷𝐴+

( (
𝜑+0

)2
𝜓+𝐴′

2 + 2𝜑+0𝜑
+
1𝜓

+𝐴′
1 + 2𝜑+0𝜑

+
2𝜓

+𝐴′
0 +

(
𝜑+1

)2
𝜓+𝐴′

0

+𝜑+1𝜓
++𝐴′
0 + 𝜑+0𝜓

++𝐴′
1 + 𝜓++

0 𝜓+𝐴′
1 + 𝜓++

1 𝜓+𝐴′
0 + 1

3
𝜓+++𝐴′

0

)
+ 𝜆

−

2!
𝐷𝐴−

( (
𝜑−0

)2
𝜓−𝐴′

2 + 2𝜑−0𝜑
−
1𝜓

−𝐴′
1 + 2𝜑−0𝜑

−
2𝜓

−𝐴′
0 +

(
𝜑−1

)2
𝜓−𝐴′

0

+𝜑−1𝜓
−−𝐴′
0 + 𝜑−0𝜓

−−𝐴′
1 + 𝜓−−

0 𝜓−𝐴′
1 + 𝜓−−

1 𝜓−𝐴′
0 + 1

3
𝜓−−−𝐴′

0

)
, (4.30b)

𝜓𝐴𝐴
′𝐴′′

1 = −𝜆
+

2!
𝐷𝐴+

( (
𝜑+0

)2
𝜓+𝐴′𝐴′′

1 + 2𝜑+0𝜑
+
1𝜓

+𝐴′𝐴′′
0 + 2𝜑+1𝜓

+𝐴′
0 𝜓+𝐴′′

0 + 2𝜑+0𝜓
+𝐴′
1 𝜓+𝐴′′

0

+2𝜑+0𝜓
+𝐴′
0 𝜓+𝐴′′

1 + 𝜑+0𝜓
++𝐴′𝐴′′
0 + 𝜓+𝐴′

0 𝜓++𝐴′′
0 + 𝜓+𝐴′′

0 𝜓++𝐴′
0 + 𝜓++

0 𝜓+𝐴′𝐴′′
0

)
+ 𝜆

−

2!
𝐷𝐴−

( (
𝜑−0

)2
𝜓−𝐴′𝐴′′

1 + 2𝜑−0𝜑
−
1𝜓

−𝐴′𝐴′′
0 + 2𝜑−1𝜓

−𝐴′
0 𝜓−𝐴′′

0 + 2𝜑−0𝜓
−𝐴′
1 𝜓−𝐴′′

0

+2𝜑−0𝜓
−𝐴′
0 𝜓−𝐴′′

1 + 𝜑−0𝜓
−−𝐴′𝐴′′
0 + 𝜓−𝐴′

0 𝜓−−𝐴′′
0 + 𝜓−𝐴′′

0 𝜓−−𝐴′
0 + 𝜓−−

0 𝜓−𝐴′𝐴′′
0

)
,

(4.30c)

𝜓𝐴𝐴
′𝐴′′𝐴′′′

0 = −𝜆
+

2!
𝐷𝐴+

( (
𝜑+0

)2
𝜓+𝐴′𝐴′′𝐴′′′

0 + 2𝜓+𝐴′
0 𝜓+𝐴′′

0 𝜓+𝐴′′′
0

+2𝜑+0𝜓
+𝐴′
0 𝜓+𝐴′′𝐴′′′

0 + 2𝜑+0𝜓
+𝐴′′
0 𝜓+𝐴′𝐴′′′

0 + 2𝜑+0𝜓
+𝐴′′′
0 𝜓+𝐴′𝐴′′

)
+ 𝜆

−

2!
𝐷𝐴−

( (
𝜑−0

)2
𝜓−𝐴′𝐴′′𝐴′′′

0 + 2𝜓−𝐴′
0 𝜓−𝐴′′

0 𝜓−𝐴′′′
0

+2𝜑−0𝜓
−𝐴′
0 𝜓−𝐴′′𝐴′′′

0 + 2𝜑−0𝜓
−𝐴′′
0 𝜓−𝐴′𝐴′′′

0 + 2𝜑−0𝜓
−𝐴′′′
0 𝜓−𝐴′𝐴′′

)
. (4.30d)
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Substituting perturbiner expansions one last time,

Φ
𝐴,3
P = −𝜆

+

2!
𝐷𝐴+

P

(
1
3
⌈
Φ+Φ+Φ+⌋ (3)

P +
∫
𝑝

(⌈
Φ+Ψ++

𝑝

⌋ (2)
P +

∫
𝑞

1
3
Ψ

+++,1
𝑝𝑞 |P

))
+ 𝜆

−

2!
𝐷𝐴−

P

(
1
3
⌈Φ−Φ−Φ−⌋ (3)P +

∫
𝑝

(⌈
Φ−Ψ−−

𝑝

⌋ (2)
P +

∫
𝑞

1
3
Ψ

−−−,1
𝑝𝑞 |P

)) ∀ |P| > 1, (4.31a)

Ψ
𝐴𝐴′,2
𝑝 |P = −𝜆

+

2!
𝐷𝐴+
𝑝 |P

(⌈
Φ+Φ+Ψ+𝐴′

𝑝

⌋ (2)
P +

∫
𝑞

(⌈
Φ+Ψ++𝐴′

𝑝𝑞

⌋ (1)
P +

⌈
Ψ++
𝑞 Ψ+𝐴′

𝑝

⌋ (1)
P

+
∫
𝑟

1
3
Ψ

+++𝐴′,0
𝑝𝑞𝑟 |P

))
+ 𝜆

−

2!
𝐷𝐴−
𝑝 |P

(⌈
Φ−Φ−Ψ−𝐴′

𝑝

⌋ (2)
P +

∫
𝑞

(⌈
Φ−Ψ−−𝐴′

𝑝𝑞

⌋ (1)
P +

⌈
Ψ−−
𝑞 Ψ−𝐴′

𝑝

⌋ (1)
P

+
∫
𝑟

1
3
Ψ

−−−𝐴′,0
𝑝𝑞𝑟 |P

))
∀ |P| ≥ 0,

(4.31b)

Ψ
𝐴𝐴′𝐴′′,1
𝑝𝑞 |P = −𝜆

+

2!
𝐷𝐴+
𝑝𝑞 |P

(⌈
Φ+Φ+Ψ+𝐴′𝐴′′

𝑝𝑞

⌋ (1)
P + 2

⌈
Φ+Ψ+𝐴′

𝑝 Ψ+𝐴′′
𝑞

⌋ (1)
P +

∫
𝑟

(⌈
Φ+Ψ++𝐴′𝐴′′

𝑝𝑞𝑟

⌋ (0)
P

+
⌈
Ψ+𝐴′
𝑝 Ψ++𝐴′′

𝑞𝑟

⌋ (0)
P +

⌈
Ψ+𝐴′′
𝑞 Ψ++𝐴′

𝑝𝑟

⌋ (0)
P +

⌈
Ψ++
𝑟 Ψ+𝐴′𝐴′′

𝑝𝑞

⌋ (0)
P

))
+ 𝜆

−

2!
𝐷𝐴−
𝑝𝑞 |P

(⌈
Φ−Φ−Ψ−𝐴′𝐴′′

𝑝𝑞

⌋ (1)
P + 2

⌈
Φ−Ψ−𝐴′

𝑝 Ψ−𝐴′′
𝑞

⌋ (1)
P +

∫
𝑟

(⌈
Φ−Ψ−−𝐴′𝐴′′

𝑝𝑞𝑟

⌋ (0)
P

+
⌈
Ψ−𝐴′
𝑝 Ψ−−𝐴′′

𝑞𝑟

⌋ (0)
P +

⌈
Ψ−𝐴′′
𝑞 Ψ−−𝐴′

𝑝𝑟

⌋ (0)
P +

⌈
Ψ−−
𝑟 Ψ−𝐴′𝐴′′

𝑝𝑞

⌋ (0)
P

))
∀ |P| ≥ 1,

(4.31c)

Ψ
𝐴𝐴′𝐴′′𝐴′′′,0
𝑝𝑞𝑟 |P = −𝜆

+

2!
𝐷𝐴+
𝑝𝑞𝑟 |P

(⌈
Φ+Φ+Ψ+𝐴′𝐴′′𝐴′′′

𝑝𝑞𝑟

⌋ (0)
P + 2

⌈
Ψ+𝐴′
𝑝 Ψ+𝐴′′

𝑞 Ψ+𝐴′′′
𝑟

⌋ (0)
P

+ 2
⌈
Φ+Ψ+𝐴′

𝑝 Ψ+𝐴′′𝐴′′′
𝑞𝑟

⌋ (0)
P + 2

⌈
Φ+Ψ+𝐴′′

𝑞 Ψ+𝐴′𝐴′′′
𝑝𝑟

⌋ (0)
P

+2
⌈
Φ+Ψ+𝐴′′′

𝑟 Ψ+𝐴′𝐴′′
𝑝𝑞

⌋ (0)
P

)
+ 𝜆

−

2!
𝐷𝐴−
𝑝𝑞𝑟 |P

(⌈
Φ−Φ−Ψ−𝐴′𝐴′′𝐴′′′

𝑝𝑞𝑟

⌋ (0)
P + 2

⌈
Ψ−𝐴′
𝑝 Ψ−𝐴′′

𝑞 Ψ−𝐴′′′
𝑟

⌋ (0)
P

+ 2
⌈
Φ−Ψ−𝐴′

𝑝 Ψ−𝐴′′𝐴′′′
𝑞𝑟

⌋ (0)
P + 2

⌈
Φ−Ψ−𝐴′′

𝑞 Ψ−𝐴′𝐴′′′
𝑝𝑟

⌋ (0)
P

+2
⌈
Φ−Ψ−𝐴′′′

𝑟 Ψ−𝐴′𝐴′′
𝑝𝑞

⌋ (0)
P

)
∀ |P| ≥ 0.

(4.31d)

Having produced all the recursion relations up to 3-loop orders, we can proceed to solving them.
The next step would be to obtain the results, simplify them and demonstrate unitarity.
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§ 4.4 Interpretation of results
We work our way to obtaining the cross-section from amplitudes. First, we perform the
amputation.

§ 4.4.1 Amputation
With this theory, amputation is not as straightforward because we now have 4 propagators to
potentially set to identity and 2 off-shell currents to potentially amputate. Picking the correct
propagator to set to identity depends on the signature of the off-shell current and picking the
signature of the current to amputate in turn depends on the desired polarization of the off-shell
leg. The meaning of Φ𝐴

1···𝑁 is that we have 𝑁 on-shell legs (1, . . . , 𝑁) each of whose polarizations
have been set and the polarization of the off-shell leg is given by 𝐴. In our example, we are
interested in the 𝑢-channel of 2-to-2 scattering and hence wish to set the polarization of the 4th

leg as that of the 1st leg. Therefore we amputate the Φ+
123 currents. And we set 𝐷++

123 to identity
(line joining 𝜆+ vertex and + external state.). With the following replacements

𝐷++
123 → 1, 𝐷+−

123 → 0, 𝐷−+
123 → 0, 𝐷−−

123 → 0, (𝐷++
123)

𝑙 → 0 (∀ 𝑙 > 1), (4.32)

amputation is complete and we shall obtain our amplitudes. Next we shall filter out terms that
don’t contribute to physical cuts that we desire.

§ 4.4.2 Filtering physical cuts
We calculated the 4-point amplitude up to 3-loop orders because we aim to obtain the 6-point
tree order cross-section. This can understood from power counting of the coupling constant (in
the regular theory),

M4 = 𝜆M̄ (0)
4 + 𝜆2M̄ (1)

4 + 𝜆3M̄ (2)
4 + 𝜆4M̄ (3)

4 + O(𝜆5), (4.33a)

M6 = 𝜆2M̄ (0)
6 + 𝜆3M̄ (1)

6 + 𝜆4M̄ (2)
6 + +O(𝜆5), (4.33b)

M8 = 𝜆3M̄ (0)
8 + 𝜆4M̄ (1)

8 + O(𝜆5), (4.33c)
...

Above we expanded the amplitude in terms of the coupling constant and M̄ represents the part
of the amplitude stripped of the coupling constant. It should be apparent from above that

M (3)
4

cuts
� M (0)

6

(
M (0)

6

)∗
+M (1)

4

(
M (1)

4

)∗
+M (0)

4

(
M (2)

4

)∗
+M (2)

4

(
M (0)

4

)∗
. (4.34)
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The absence of M (0)
4

(
M (0)

8

)∗
and M (0)

4

(
M (1)

6

)∗
terms is a consequence of the fact that unitarity

cuts are feasible only if the intermediate states are the same on both sides of the cut. We desire to
only isolate terms on the LHS of eq. (4.34) that lead to the M (0)

6

(
M (0)

6

)∗
(henceforth referred to

as the tree-tree) structure. After isolating such terms we could perform the cutting procedure and

I &
I G

I G 2
6

↳
7
f 7

&

7
-

4 3

5
S

j
8

5
f

Figure 4.1: The term cross-section refers to LHS above, whereas what we obtain is the RHS. By
identification one may relate the two, but there is a subtle difference.

obtain the cross-section. Let us illustrate this with the example of the 1-loop order amplitude.
Similar to eq. (4.34), we have at 1-loop,

M (1)
4

cuts
� M (0)

4

(
M (0)

4

)∗
. (4.35)

The result we obtain for the 1-loop order field-doubled amplitude is,

𝑖M (0)
4,𝑢 =

∫
𝑝

1
2
Δ+𝑝23Δ−

𝑝𝜆+𝜆−, (4.36)

where in our code, we used the following convention,(
𝐷++
𝑝𝑞𝑟 |P 𝐷+−

𝑝𝑞𝑟 |P
𝐷−+
𝑝𝑞𝑟 |P 𝐷−−

𝑝𝑞𝑟 |P

)
≡

(
𝐷+𝑝𝑞𝑟P −Δ+𝑝𝑞𝑟P
Δ−𝑝𝑞𝑟P −𝐷−𝑝𝑞𝑟P

)
. (4.37)

And 𝐷+, 𝐷−,Δ+ and Δ− propagators behave like the ones described in section 2.2.2. The Δ

propagators denote the physical cut and the result should be a product of terms with 𝐷+, 𝜆+ on
one side and 𝐷−, 𝜆− on the other (representing the (𝑖T)† and (𝑖T) sides of the optical theorem
respectively). The cutting procedure is as follows,∫

𝑝

1
2
Δ+𝑝23Δ−

𝑝𝜆+𝜆− =
1
2

⨋
𝜆+𝜆−, (4.38a)
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where the loop integral has been replaced with a phase space integral over two physical states
after substitution of the expression for the Δ propagators. The role of this phase space integral is
to pick out as many on-shell states as the number of propagators cut. We introduce a summation
over these on-shell states to distribute them across lines being cut. In our case this translates to
two external states labelled by say, 5 and 6, being each assigned the loop momentum 𝑝 after
carrying out the phase space integral,

=
1
2

[ (
𝜆+𝜆−

)
𝑝→5 +

(
𝜆+𝜆−

)
𝑝→6

]
, (4.38b)

= 𝜆+𝜆−, (4.38c)

=

[(
𝑖M (0) (1+4+5+6+)

)
×

(
−𝑖M (0) (2−3−5−6−)

)]
. (4.38d)

We just showed the algebraic method of performing the cut. There was no need to draw a

I

L &
I 4+P

/

·
(

⑧ - · % ①

4ths ↓ Xt
3 ! 4

-

EAtP-Pxx
-xt

Figure 4.2: The diagrammatic representation of eq. (4.38)

Feynman diagram and find the right cut diagram. However, the case of 1-loop amplitude is very
simple. We didn’t have to filter any terms. But in the case of the 3-loop amplitude we must
apply a filter. First using power counting we shall define a canonical form for terms that have
the physical cut. But this constaint is not enough to completely discard unphysical cuts. Then
we define a filter using the structure of loop momenta in these terms. Together these filters are
sufficient to isolate the necessary terms.

First let us discuss how one can isolate exactly those terms which contribute to tree-tree structure.
We shall make use of the well-known fact that for any connected tree with 𝑛 vertices, there are
𝑛 − 1 edges. Now let us focus on one side of the cut, i.e. the side with 𝐷+ propagators and
𝜆+ vertices. From this theorem we have the constraint that post-cutting, we must be left with
(𝐷+)𝑛−1(𝜆+)𝑛 structure. Likewise for the other side we must have (𝐷−)𝑛−1(𝜆−)𝑛. And using
the fact that for a theory with 𝜙𝑛-like interaction we have the following relations

𝐿 = 𝑃 −𝑉 + 1, (4.39a)

𝑛𝑉 = 𝑁 + 2𝑃, (4.39b)
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eliminating 𝑉 ,

𝐿 = 𝑃 − (𝑁 + 2𝑃)
𝑛

+ 1, (4.39c)

(𝐿 − 1) + 𝑁
𝑛

= 𝑃

(
𝑛 − 2
𝑛

)
, (4.39d)

𝑃 =
𝑛(𝐿 − 1) + 𝑁

𝑛 − 2
. (4.39e)

where 𝐿 is the number of loops, 𝑉 is the number of vertices, 𝑃 is the number of internal lines and
𝑁 is the number of external lines. And finally recalling eq. (4.34), we use the correspondence
between (2𝑛 + 1)-loop 4-point amplitude and the 2(𝑛 + 2)-point tree order cross-section. Putting
all of these mathematical facts together gives us a canonical form for diagrams that contribute to
cuts,

𝑓
(
𝜆+𝜆−

) (𝑛+1)/2 (𝐷+ · · ·𝐷+)︸         ︷︷         ︸
𝑛−1

2 terms

(Δ · · ·Δ)︸    ︷︷    ︸
𝑛+1 terms

(𝐷− · · ·𝐷−)︸          ︷︷          ︸
𝑛−1

2 terms

where 𝑓 is the symmetry factor attached to the term and 𝑛 is the loop order of the field-doubled
theory. This formula is valid for all theories with a 4-point interaction vertex with 4 external legs
(2-to-2 scattering). However, not all terms of this form give us ‘physical’ cuts. Some terms have
unphysical cuts which don’t contribute to the RHS of eq. (2.15). An additional filter is needed.

I & &

/

S

D- ' ↳ t

· · ⑧
↑

·

S

⑧ ①

De ! is
D

'
A X Dt

i ·

xt x-3D + D+AAAGAD-D-

Figure 4.3: This diagram has the canonical form, but we see that it allows for unphysical cuts.

We propose a filter based on the momenta structure of Δ propagators. By this we mean that we
shall examine the momenta carried by these propagators. Let us take the example of 3-loop
order terms, then we have the following momenta

𝑝, 𝑞, 𝑟︸︷︷︸
loop momenta

, 𝑘1, 𝑘2, 𝑘3︸     ︷︷     ︸
external momenta

then using the loop momenta as a basis, we check the linear independence of the momenta of the
4 Δ propagators. If the smallest linearly independent set is smaller than the basis, we discard the
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term. For example,

1
8
(
𝜆+

)2(𝜆−)2𝐷+𝑝Δ+𝑟Δ+𝑟23Δ−
𝑟Δ−𝑟𝐷−𝑞 is discarded,

but
1

12
(
𝜆+

)2(𝜆−)2𝐷+𝑟Δ+𝑝𝑞3 Δ+𝑞𝑟123Δ−
𝑞Δ−𝑝𝑞𝑟13 𝐷−𝑝 is kept.

In the former term, there is only 𝑟 but in the latter term we have4 𝑝 + 𝑞, 𝑞 + 𝑟 , −𝑞 and −𝑝 − 𝑞 − 𝑟
which can be row-reduced to the basis. The filtering criterion is that for the canonical 𝑛-loop
order terms, the momenta structure for (𝑛+1) Δ propagators must of rank-𝑛 in the sense explained
above. With these two filters in place, we successfully isolate the diagrams that reproduce the
tree-tree structure. Next we shall discuss the process of loop momenta shifting.

§ 4.4.3 Loop momenta shifting
Unlike in regular 𝜙4 theory, we have a lot more granular information encoded in terms comprising
the amplitude. It is possible for us to fix a canonical form for the Δ propagators that acts as a
constraint, while leaving 𝐷+ and 𝐷− propagators free. We pick the form,

Δ+𝑝𝑞𝑟23 Δ−𝑝Δ−𝑞Δ−𝑟

and rename (as discussed in section 3.4.3) the loop momenta 𝑝, 𝑞, and 𝑟 in each term to achieve
this form5. The terms now essentially only differ in the momenta configurations of 𝐷+ and 𝐷−
propagators. This results in a very good constraint (at least for 3-loop order) and classifies all
the topologies up to permutations (in 𝑝, 𝑞 and 𝑟). We go one step further and fix a preferred
permutation to get rid of that redundancy as well. This finally leaves us with the following terms
of interest,

𝑖M′(3)
4

(𝜆−𝜆+)2 =
1
6
𝐷+𝑝23Δ+

𝑝𝑞𝑟

23 Δ−𝑝Δ−𝑞Δ−𝑟𝐷−𝑝23 +
1
2
𝐷+𝑝23Δ+

𝑝𝑞𝑟

23 Δ−𝑝Δ−𝑞Δ−𝑟𝐷−𝑞23

+ 𝐷+𝑝𝑞123Δ+
𝑝𝑞𝑟

23 Δ−𝑝Δ−𝑞Δ−𝑟𝐷−𝑝𝑟2 + 1
2
𝐷+𝑝𝑞123Δ+

𝑝𝑞𝑟

23 Δ−𝑝Δ−𝑞Δ−𝑟𝐷−𝑝23

+ 1
2
𝐷+𝑝𝑞1 Δ+𝑝𝑞𝑟23 Δ−𝑝Δ−𝑞Δ−𝑟𝐷−𝑝23 +

1
2
𝐷+𝑝23Δ+

𝑝𝑞𝑟

23 Δ−𝑝Δ−𝑞Δ−𝑟𝐷−𝑝𝑞2

+ 1
2
𝐷+𝑝23Δ+

𝑝𝑞𝑟

23 Δ−𝑝Δ−𝑞Δ−𝑟𝐷−𝑝𝑞3 + 1
4
𝐷+𝑝𝑞1 Δ+𝑝𝑞𝑟23 Δ−𝑝Δ−𝑞Δ−𝑟𝐷−𝑝𝑞2

+ 1
4
𝐷+𝑝𝑞1 Δ+𝑝𝑞𝑟23 Δ−𝑝Δ−𝑞Δ−𝑟𝐷−𝑝𝑞3

. (4.40)

4Δ+(𝑝) = Δ−(−𝑝).
5There are multiple ways of renaming momenta of Δ propagators so that we end up with the canonical form. This is
because the canonical form is invariant under permutations of 𝑝, 𝑞 and 𝑟. But it suffices to pick any one of such
renamings.
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M′(3)
4 denotes the filtered physical terms from M (3)

4 . Further simplification may be possible but
we haven’t explored that direction yet. We shall now try and obtain the cross-section from above.

§ 4.4.4 From amplitude to cross-section

In order to obtain the tree-tree form, we need to take care of a few things. Recall that the
polarizations set for the problem are,

1+, 4+, 2−, 3−.

And because now we have four lines to cut, we sum over four physical states 5, 6, 7 and 8. The
resultant terms should look like,[(

𝑖M (0) (1+4+5+6+7+8+)
)
×

(
−𝑖M (0) (2−3−5−6−7−8−)

)]
.

An identification must be made so as to ensure that labels appearing on 𝐷+,Δ+ propagators are
1 and 4 only, we make the following replacements in propagator indices

123 → 4, 23 → 14. (4.41)

Next we have to set the Δ propagators to unity (representing the completion of the phase space
integral) and assign the on-shell loop momenta 𝑝, 𝑞 and 𝑟 to all permutations of physical states
5, 6, 7 and 8. But with one important caveat, for the sake of future comparison we replace labels
containing 8 with its complement i.e. for example in the term,

𝐷+148𝐷−238
by momentum conservation
−−−−−−−−−−−−−−−−−−−→ 𝐷+567𝐷−567. (4.42)

This is done because while comparing results with 6-point tree order amplitudes, we shall use
the off-shell recursion framework to generate the amplitude and treat the 8th leg as the off-shell
leg which is never explicitly named in recursion relations. After massaging of terms, we get

𝑖M′(3)
4 =

(
𝜆−𝜆+

)2 (𝐷+145 + 𝐷+146 + 𝐷+147 + 𝐷+156 + 𝐷+157

+𝐷+167 + 𝐷+456 + 𝐷+457 + 𝐷+467 + 𝐷+567) ×
(𝐷−235 + 𝐷−236 + 𝐷−237 + 𝐷−256 + 𝐷−257

+𝐷−267 + 𝐷−356 + 𝐷−357 + 𝐷−367 + 𝐷−567)

. (4.43)

Next we shall derive the 6-point tree order amplitudes and check our result.
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Figure 4.4: The diagrammatic representation of eq. (4.40). These are the only diagrams that contribute
to physical cuts at 3-loop orders.
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§ 4.4.5 6-point tree order
To derive the tree level result, we must use the correct particle labels and set the word accordingly.
We choose two words 14567 and 23567 for our recursion relations. We can use eq. (3.35g)
with 𝐷 → 𝐷+ and Φ → Φ+. Solving these recursion relations gives us Φ+

14567 and Φ+
23567. We

perform the amputation by setting 𝐷+14567 and 𝐷+23567 to unity respectively. We now have
𝑖M (0)

1+4+5+6+7+8+ and 𝑖M (0)
2+3+5+6+7+8+ . To flip the signature on the second term we perform complex

conjugation by the following replacements,

𝜆+ → −𝜆−, 𝐷+ → 𝐷−. (4.44)

Explicitly we have,

𝑖M (0)
1+4+5+6+7+8+ =

(
𝜆+

)2 (𝐷+145 + 𝐷+146 + 𝐷+147 + 𝐷+156 + 𝐷+157

+𝐷+167 + 𝐷+456 + 𝐷+457 + 𝐷+467 + 𝐷+567)
, (4.45a)

−𝑖M (0)
2−3−5−6−7−8− = (𝜆−)2 (𝐷−235 + 𝐷−236 + 𝐷−237 + 𝐷−256 + 𝐷−257

+𝐷−267 + 𝐷−356 + 𝐷−357 + 𝐷−367 + 𝐷−567)
, (4.45b)

And finally we confirm that

𝑖M′(3)
4 =

[(
𝑖M (0) (1+4+5+6+7+8+)

)
×

(
−𝑖M (0) (2−3−5−6−7−8−)

)]
(4.46)

Thus via unitarity, we were able to obtain a higher point cross-section from a lower point loop
amplitude! This entire calculation serves as a proof-of-concept for the utility of our framework.
It should be apparent now how one can use perturbative unitarity in this manner for their
calculations. In future work, we shall demonstrate this for colored theories.



CHAPTER 5

Discussion

We conclude this thesis with a discussion on the results, conclusions drawn from them and
some considerations for future work.

§ 5.1 Results
We outlined two main goals for this thesis in section 1.1 and we shall lay out the results in that
context.

We have exhibited the utility of the framework through calculations. We showed how one starts
out with just the action and proceeds to obtain the expressions for amplitudes. The procedure
is very straightforward and completely algebraic in nature, we don’t even have to construct the
loop order corrections for the self-energy operator. Implementation is also relatively simple.
We were able to obtain the 3-loop 4-point amplitude and perform loop momenta shifting up to
2-loop orders. We were able to adapt our framework to the field-doubling prescription easily.

We have schematically shown that perturbative unitarity is applicable for obtaining cross-sections
using our framework. Starting out with the action for the field-doubled theory we were able to
obtain cross-sections at tree order for the regular theory.

We were able to perform loop momenta shifting up to 3-loop orders in this theory. The procedure
for isolating physical cut diagrams was also laid out systematically and it remains to be seen
whether it can be extended to higher loop orders. We verifiably obtained the 6-point cross-section
at tree order and this serves as an important proof-of-concept for our method. In future work,
we shall extend it to colored theories. Our algorithms can be generalized for more complicated
theories as no special assumptions were made.

We were able to demonstrate the Largest Time Equation algebraically.
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§ 5.2 Conclusions
We began with a discussion on the background for this thesis so that the readers could grasp key
concepts needed for calculations. We presented a short review of two different approaches to
unitarity: generalized unitarity and the Largest Time Equation. We contrasted the two approaches
and showcased how we were going to implement the latter for our method. We also discussed
how one tackles color in gauge theories and what it means to calculate cross-sections. We
presented a case for our motivations and elaborated on the goals we worked towards. The
quantum off-shell recursion framework was a candidate for our work and we showed with a
pedagogical calculation how it was used in action. We then took a step at exhibiting unitarity
with the field-doubling prescription and successfully obtained the tree order 6-point cross-section
from the 3-loop 4-point amplitude.

We observed the advantages of the framework and understand why it can potentially serve as
a great alternative to Feynman diagram based approaches to amplitudes and beyond. We also
observed how the field-doubling prescription is relatively simple and results in recursion relations
with exactly double the number of terms from the regular theory. We realise that calculations
grow to become more tedious and complicated but the added benefits of being able to isolate
specific channels of scattering at will and performing loop momenta shifting effortlessly make
the trade-off worth it. Although we shall indeed work on automating the process of field doubling
given a regular theory.

We derived the principles for selection of relevant physical cut diagrams from graph-theoretic
notions and momenta constraints, we remain curious to see whether there exist other ways to
constrain terms. We are investigating the possibility of obtaining only these terms directly from
modified recursion relations. If we are successful, the efficiency of our method would greatly
increase.

We were able to perform loop momenta shifting in the field-doubled theory and we plan to adapt
those algorithms for use in regular theories. We aim to publish a Mathematica® package based
on our code that would prepare amplitudes for integration.

We also plan on working towards performing integration in tandem with solving the recursion
relations. Currently we solve the recursion relations and obtain unevaluated integrals at the
end, which means we have to perform multiple loop integrals at once. But if we were to solve
the recursion relations up to 1-loop order and then perform the integration and then solve
the recursion relations up to 2-loop order and then perform the integration for the new loop
momentum and so on, we might increase the overall efficiency of computation as we are tackling
relatively simple integrals at each stage rather than a single monstrous one at the end.

Now to talk about colored theories, we see a lot of work ahead of us still. We need to derive the



§5.2 Conclusions 61

recursion relations up to 1-loop order in all helicity configurations. A CAS implementation of
the pure Yang–Mills theory still remains tricky, the complexity of the theory requires ingenious
solutions. We shall simplify the Dyson–Schwinger equations by adopting the spinor-helicity
formalism which will lead to cancellations of terms. New notation for descendant fields and
currents is in the pipeline. We shall then use the color-dressed perturbiner expansions[1,34] and
solve for the 1-loop order 4-point amplitude. And then proceed with field-doubling to obtain
cross-sections.

We feel that this framework’s potential hasn’t still been fully tapped into. With the submission
of supervisor’s group’s latest work[5], we shall move towards applying the quantum off-shell
recursion framework to perturbative methods in General Relativity. We aim to perform
gravitational wave calculations for spinning binary black hole systems[12,15] using our framework
and reproduce state-of-the-art results. Adapting the worldline[16] and biadjoint scalar[17] theories
for use with the framework are also possibilities worth investigating.





APPENDIX A

Pure Yang–Mills theory

So far we have dealt with scalar theories, we now introduce a non-Abelian gauge theory. In
this appendix, we shall derive the Dyson–Schwinger equations for the pure Yang–Mills

theory in the first-order formalism.

§ A.1 First-order formalism
The action for pure Yang–Mills theory with the Feynman–’t Hooft gauge condition 𝜕𝜇𝐴𝑎𝜇 = 0
and with the associated Faddeev–Popov ghosts is given by,

𝑆[𝐴, 𝑐, 𝑐, 𝑗 , 𝜂, 𝜂] =
∫
𝑥

lim
𝑦→𝑥

−1
4
𝐹
𝑎𝜇𝜈
𝑥 𝐹

𝑎𝜇𝜈
𝑦 − 1

2
𝜕
𝜇
𝑥 𝐴

𝑎𝜇
𝑥 𝜕

𝜈
𝑦 𝐴

𝑎𝜈
𝑦 − 𝜕𝜇𝑥 𝑐𝑎𝑥D

𝑎𝑏𝜇
𝑦 𝑐𝑏𝑦

+
∫
𝑥

𝐴
𝑎𝜇
𝑥 𝑗

𝑎𝜇
𝑥 + 𝑐𝑎𝑥𝜂𝑎𝑥 + 𝜂𝑎𝑥𝑐𝑎𝑥

, (A.1)

where 𝑗 , 𝜂, 𝜂 are the sources for 𝐴, 𝑐, 𝑐 fields respectively. 𝜕𝑥 here means that the derivative acts
on a quantity located at 𝑥, this notation is important because we can easily deal with quantities
like 𝜕𝜇𝑥 𝑌 𝑎𝑥 𝑍

𝑎𝜇
𝑦 where the partial derivative is contracted with a quantity it doesn’t act on. We

work with the following conventions,

𝐹
𝑎𝜇𝜈
𝑥 = 𝜕

𝜇
𝑥 𝐴

𝑎𝜈
𝑥 − 𝜕𝜈𝑥 𝐴

𝑎𝜇
𝑥 + lim

𝑦→𝑥
𝑔 𝑓 𝑎𝑏𝑐𝐴

𝑏𝜇
𝑥 𝐴𝑐𝜈𝑦 + 𝐽𝑎𝜇𝜈𝑥 , (A.2a)

D𝑎𝑏𝜇
𝑥 = 𝛿𝑎𝑏𝜕

𝜇
𝑥 − 𝑔 𝑓 𝑎𝑏𝑐𝐴𝑐𝜇𝑥 . (A.2b)

Where 𝐽 is the external source of the field strength tensor. Expanding the covariant derivative D
in eq. (A.1),

𝑆YM =

∫
𝑥

lim
𝑦→𝑥

−1
4
𝐹
𝑎𝜇𝜈
𝑥 𝐹

𝑎𝜇𝜈
𝑦 − 1

2
𝜕
𝜇
𝑥 𝐴

𝑎𝜇
𝑥 𝜕

𝜈
𝑦 𝐴

𝑎𝜈
𝑦 − 𝜕𝜇𝑥 𝑐𝑎𝑥𝜕

𝜇
𝑦 𝑐

𝑎
𝑦

+
∫
𝑥

lim
𝑦→𝑥
𝑧→𝑥

𝑔 𝑓 𝑎𝑏𝑐𝐴
𝑎𝜇
𝑥 𝜕

𝜇
𝑦 𝑐

𝑏
𝑦𝑐
𝑐
𝑧 +

∫
𝑥

𝐴
𝑎𝜇
𝑥 𝑗

𝑎𝜇
𝑥 + 𝑐𝑎𝑥𝜂𝑎𝑥 + 𝜂𝑎𝑥𝑐𝑎𝑥

. (A.3)



64 Appx A. Pure Yang–Mills theory

Usually one expands the field strength tensor and obtains the vertices and propagators of the
theory. But using a subtle trick, we can avoid using the 4-point vertices usually found in
this theory and greatly simplify calculations. This ‘trick’ is also referred to as the first-order
formalism where the field strength tensor too is treated like an independent field1. Notice,

−1
4
𝐹
𝑎𝜇𝜈
𝑥 𝐹

𝑎𝜇𝜈
𝑦 =

1
4
𝐹
𝑎𝜇𝜈
𝑥 𝐹

𝑎𝜇𝜈
𝑦 − 1

2
𝐹
𝑎𝜇𝜈
𝑥 𝐹

𝑎𝜇𝜈
𝑦 , (A.4a)

=
1
4
𝐹
𝑎𝜇𝜈
𝑥 𝐹

𝑎𝜇𝜈
𝑦 − 1

2
𝐹
𝑎𝜇𝜈
𝑥

(
𝜕
𝜇
𝑦 𝐴

𝑎𝜈
𝑦 − 𝜕𝜈𝑦 𝐴

𝑎𝜇
𝑦 + lim

𝑧→𝑦
𝑔 𝑓 𝑎𝑏𝑐𝐴

𝑏𝜇
𝑦 𝐴

𝑐𝜈
𝑧 + 𝐽𝑎𝜇𝜈𝑦

)
, (A.4b)

=
1
4
𝐹
𝑎𝜇𝜈
𝑥 𝐹

𝑎𝜇𝜈
𝑦 − 1

2
𝐹
𝑎𝜇𝜈
𝑥 𝜕

𝜇
𝑦 𝐴

𝑎𝜈
𝑦 + 1

2
𝐹
𝑎𝜇𝜈
𝑥 𝜕𝜈𝑦 𝐴

𝑎𝜇
𝑦

− lim
𝑧→𝑦

1
2
𝑔 𝑓 𝑎𝑏𝑐𝐹

𝑎𝜇𝜈
𝑥 𝐴

𝑏𝜇
𝑦 𝐴

𝑐𝜈
𝑧 − 1

2
𝐹
𝑎𝜇𝜈
𝑥 𝐽

𝑎𝜇𝜈
𝑦

. (A.4c)

Substituting the above in eq. (A.3) and performing integration by parts to simplify a few terms
gives us,

𝑆YM =

∫
𝑥

lim
𝑦→𝑥

1
4
𝐹
𝑎𝜇𝜈
𝑥 𝐹

𝑎𝜇𝜈
𝑦 − 1

2
𝐹
𝑎𝜇𝜈
𝑥 𝜕

𝜇
𝑦 𝐴

𝑎𝜈
𝑦 + 1

2
𝐹
𝑎𝜇𝜈
𝑥 𝜕𝜈𝑦 𝐴

𝑎𝜇
𝑦 + 1

2
𝐴
𝑎𝜇
𝑥 𝜕

𝜇
𝑦 𝜕

𝜈
𝑦 𝐴

𝑎𝜈
𝑦 −

∫
𝑥,𝑦

𝑐𝑎𝑥𝐾
𝑎𝑏
𝑥𝑦 𝑐

𝑎
𝑦

+
∫
𝑥

lim
𝑦→𝑥
𝑧→𝑥

𝑔 𝑓 𝑎𝑏𝑐
(
𝐴
𝑎𝜇
𝑥 𝜕

𝜇
𝑦 𝑐

𝑏
𝑦𝑐
𝑐
𝑧 −

1
2
𝐹
𝑎𝜇𝜈
𝑥 𝐴

𝑏𝜇
𝑦 𝐴

𝑐𝜈
𝑧

)
+

∫
𝑥

𝐴
𝑎𝜇
𝑥 𝑗

𝑎𝜇
𝑥 + 𝑐𝑎𝑥𝜂𝑎𝑥 + 𝜂𝑎𝑥𝑐𝑎𝑥 −

1
2
𝐹
𝑎𝜇𝜈
𝑥 𝐽

𝑎𝜇𝜈
𝑥

.

(A.5)

§ A.1.1 Field-redefinition
One peculiar feature of the action in first-order formalism is that there is no propagator for 𝐴𝑎𝜇𝑥
field. Without defining a propagator we won’t be able to derive anything meaningful for the
gluon fields. We can solve this problem by a simple field-redefinition of the field strength tensor,

𝐹′𝑎𝜇𝜈
𝑥 = lim

𝑦→𝑥
𝑔 𝑓 𝑎𝑏𝑐𝐴

𝑏𝜇
𝑥 𝐴𝑐𝜈𝑦 + 𝐽𝑎𝜇𝜈𝑥 , (A.6)

which implies the substitution,

𝐹
𝑎𝜇𝜈
𝑥 → 𝐹′𝑎𝜇𝜈

𝑥 + 𝜕𝜇𝑥 𝐴𝑎𝜈𝑥 − 𝜕𝜈𝑥 𝐴
𝑎𝜇
𝑥 . (A.7)

1This explains why we defined its external source.
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Performing the substitution in eq. (A.5) and dropping the prime from the new field strength
tensor gives,

𝑆YM =

∫
𝑥

𝐴
𝑎𝜇
𝑥 𝑗

𝑎𝜇
𝑥 + 𝑐𝑎𝑥𝜂𝑎𝑥 + 𝜂𝑎𝑥𝑐𝑎𝑥 −

1
2
𝐹
𝑎𝜇𝜈
𝑥 𝐽

𝑎𝜇𝜈
𝑥 −

∫
𝑥,𝑦

𝑐𝑎𝑥𝐾
𝑎𝑏
𝑥𝑦 𝑐

𝑎
𝑦

+
∫
𝑥

lim
𝑦→𝑥
𝑧→𝑥

𝑔 𝑓 𝑎𝑏𝑐
(
𝐴
𝑎𝜇
𝑥 𝜕

𝜇
𝑦 𝑐

𝑏
𝑦𝑐
𝑐
𝑧 −

1
2
𝐹
𝑎𝜇𝜈
𝑥 𝐴

𝑏𝜇
𝑦 𝐴

𝑐𝜈
𝑧 − 𝜕𝜇𝑥 𝐴𝑎𝜈𝑥 𝐴

𝑏𝜇
𝑦 𝐴

𝑐𝜈
𝑧

)
+

∫
𝑥

lim
𝑦→𝑥

1
4
𝐹
𝑎𝜇𝜈
𝑥 𝐹

𝑎𝜇𝜈
𝑦 − 1

2
𝜕
𝜇
𝑥 𝐴

𝑎𝜈
𝑥 𝐽

𝑎𝜇𝜈
𝑦 + 1

2
𝜕𝜈𝑥 𝐴

𝑎𝜇
𝑥 𝐽

𝑎𝜇𝜈
𝑦 + 1

2
𝐴
𝑎𝜇
𝑥 𝜕

𝜈
𝑦 𝜕

𝜈
𝑦 𝐴

𝑎𝜇
𝑦

, (A.8)

where we rewrite the 𝐴𝑎𝜇𝑥 𝜕𝜈𝑦 𝜕𝜈𝑦 𝐴
𝑎𝜇
𝑦 term as −𝐴𝑎𝜇𝑥 𝐾𝑎𝑏𝜇𝜈𝑥𝑦 𝐴𝑏𝜈𝑦 and finally obtain,

𝑆YM =

∫
𝑥

𝐴
𝑎𝜇
𝑥 𝑗

𝑎𝜇
𝑥 + 𝑐𝑎𝑥𝜂𝑎𝑥 + 𝜂𝑎𝑥𝑐𝑎𝑥 −

1
2
𝐹
𝑎𝜇𝜈
𝑥 𝐽

𝑎𝜇𝜈
𝑥 +

∫
𝑥,𝑦

−𝑐𝑎𝑥𝐾𝑎𝑏𝑥𝑦 𝑐𝑎𝑦 −
1
2
𝐴
𝑎𝜇
𝑥 𝐾

𝑎𝑏𝜇𝜈
𝑥𝑦 𝐴𝑏𝜈𝑦

+
∫
𝑥

lim
𝑦→𝑥
𝑧→𝑥

𝑔 𝑓 𝑎𝑏𝑐
(
𝐴
𝑎𝜇
𝑥 𝜕

𝜇
𝑦 𝑐

𝑏
𝑦𝑐
𝑐
𝑧 −

1
2
𝐹
𝑎𝜇𝜈
𝑥 𝐴

𝑏𝜇
𝑦 𝐴

𝑐𝜈
𝑧 − 𝜕𝜇𝑥 𝐴𝑎𝜈𝑥 𝐴

𝑏𝜇
𝑦 𝐴

𝑐𝜈
𝑧

)
+

∫
𝑥

lim
𝑦→𝑥

1
4
𝐹
𝑎𝜇𝜈
𝑥 𝐹

𝑎𝜇𝜈
𝑦 − 1

2
𝜕
𝜇
𝑥 𝐴

𝑎𝜈
𝑥 𝐽

𝑎𝜇𝜈
𝑦 + 1

2
𝜕𝜈𝑥 𝐴

𝑎𝜇
𝑥 𝐽

𝑎𝜇𝜈
𝑦

. (A.9)

The main changes after the field-redefinition are the vanishing of 𝐹𝜕𝐴 terms, the conversion of
𝐴𝜕𝜕𝐴 to 𝐴□𝐴 and the appearance of the 𝜕𝐴𝐴𝐴 vertex. Having derived the final action, we can
move to derivations of the classical equations of motion for all fields.

§ A.2 Dyson–Schwinger equations
Deriving the Dyson–Schwinger equations for this theory isn’t as straightforward as earlier. We
have different kinds of fields, each with their own external source. Promotion of the bare fields
to operators will prove to be a challenging step.

§ A.2.1 Faddeev–Popov ghosts

The classical equations of motion for the anti-ghost field 𝑐 are given by 𝛿𝐿𝑆
𝛿𝑐

= 0 and for eq. (A.9)
we have, ∫

𝑦

𝐾𝑎𝑏𝑥𝑦 𝑐
𝑏
𝑦 = 𝜂

𝑎
𝑥 + lim

𝑦→𝑥
𝑔 𝑓 𝑎𝑏𝑐

(
𝐴
𝑏𝜇
𝑥 𝜕

𝜇
𝑦 𝑐

𝑐
𝑦 + 𝜕

𝜇
𝑥 𝐴

𝑏𝜇
𝑥 𝑐

𝑐
𝑦

)
, (A.10)

where we performed an integration by parts on the 𝐴𝜕𝑐𝑐 term in the action and exploited the
anti-symmetry of 𝑓 𝑎𝑏𝑐. We then promote the ghost fields to operators 𝑐 ≡

(
C + ℏ

𝑖
𝛿𝐿

𝛿𝜂

)
and gluon
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fields to operators 𝐴̂ ≡
(
A + ℏ

𝑖
𝛿
𝛿 𝑗

)
and symmetrize,∫

𝑦

𝐾𝑎𝑏𝑥𝑦 C𝑏𝑦 = 𝜂𝑎𝑥 + lim
𝑦→𝑥

𝑔 𝑓 𝑎𝑏𝑐
[
A𝑏𝜇
𝑥 𝜕

𝜇
𝑦 C𝑐𝑦 + 𝜕

𝜇
𝑥 A𝑏𝜇

𝑥 C𝑐𝑦 +
1
2
ℏ

𝑖

(
𝜕
𝜇
𝑦

(
𝜓
𝑏𝜇,1𝑐
𝑥,𝑦 + 𝜓1𝑐,𝑏𝜇

𝑦,𝑥

)
+𝜕𝜇𝑥

(
𝜓
𝑏𝜇,1𝑐
𝑥,𝑦 + 𝜓1𝑐,𝑏𝜇

𝑦,𝑥

))] , (A.11)

where the descendants are now defined as,

𝜓 ·,1𝑐
·,𝑦 ≡ 𝛿𝐿 ·

𝛿𝜂𝑐𝑦
, 𝜓 ·,2𝑐

·,𝑦 ≡ 𝛿𝑅·
𝛿𝜂𝑐𝑦

, 𝜓
·,𝑏𝜇
·,𝑦 ≡ 𝛿·

𝛿 𝑗
𝑏𝜇
𝑦

, 𝜓
·,𝑏𝜇𝜈
·,𝑦 ≡ 𝛿·

𝛿𝐽
𝑏𝜇𝜈
𝑦

. (A.12)

Now the order of indices matters and we must be careful while symmetrizing. The final form of
Dyson–Schwinger equations for ghost fields is,

C𝑎𝑥 =

∫
𝑦

𝐷𝑎𝑏
𝑥𝑦𝜂

𝑏
𝑦 +

∫
𝑦

𝐷𝑎𝑏
𝑥𝑦 lim

𝑧→𝑦
𝑔 𝑓 𝑏𝑐𝑑

[
A𝑐𝜇
𝑦 𝜕

𝜇
𝑧 C𝑑𝑧 + 𝜕𝜇𝑦A𝑐𝜇

𝑦 C𝑑𝑧

+ 1
2
ℏ

𝑖

(
𝜕
𝜇
𝑧

(
𝜓
𝑐𝜇,1𝑑
𝑦,𝑧 + 𝜓1𝑑,𝑐𝜇

𝑧,𝑦

)
+ 𝜕𝜇𝑦

(
𝜓
𝑐𝜇,1𝑐
𝑦,𝑧 + 𝜓1𝑑,𝑐𝜇

𝑧,𝑦

))] . (A.13)

The classical equations of motion for the ghost field 𝑐 are given by 𝛿𝑅𝑆
𝛿𝑐

= 0 and for eq. (A.9) we
have, ∫

𝑦

𝐾𝑎𝑏𝑥𝑦 𝑐
𝑏
𝑦 = 𝜂

𝑎
𝑥 + lim

𝑦→𝑥
𝑔 𝑓 𝑎𝑏𝑐𝐴

𝑏𝜇
𝑥 𝜕

𝜇
𝑦 𝑐

𝑐
𝑦, (A.14)

from here we can derive the Dyson–Schwinger equations for anti-ghost fields by promotion to
𝑐̂ ≡

(
C + ℏ

𝑖
𝛿𝑅

𝛿𝜂

)
,

C𝑎𝑥 =
∫
𝑦

𝐷𝑎𝑏
𝑥𝑦𝜂

𝑏
𝑦 +

∫
𝑦

𝐷𝑎𝑏
𝑥𝑦 lim

𝑧→𝑦
𝑔 𝑓 𝑏𝑐𝑑

[
A𝑐𝜇
𝑦 𝜕𝑧C

𝑑

𝑧 +
1
2
ℏ

𝑖
𝜕
𝜇
𝑧

(
𝜓
𝑐𝜇,2𝑑
𝑦,𝑧 + 𝜓2𝑑,𝑐𝜇

𝑧,𝑦

)]
. (A.15)

§ A.2.2 Field strength tensor

The classical equations of motion for the field strength tensor are given by taking a functional
derivative on eq. (A.9) with respect to 𝐹 and setting it to 0,

𝐹
𝑎𝜇𝜈
𝑥 = lim

𝑦→𝑥
𝑔 𝑓 𝑎𝑏𝑐𝐴

𝑏𝜇
𝑥 𝐴𝑐𝜈𝑦 + 𝐽𝑎𝜇𝜈𝑥 . (A.16)

This is simply the definition of the new field strength tensor, it shouldn’t surprise us. We can
promote the fields to operators 𝐹̂ ≡

(
F + ℏ

𝑖
𝛿
𝛿𝐽

)
and we get,

F 𝑎𝜇𝜈
𝑥 = 𝐽

𝑎𝜇𝜈
𝑥 + lim

𝑦→𝑥
𝑔 𝑓 𝑎𝑏𝑐

(
A𝑏𝜇
𝑥 A𝑐𝜈

𝑦 + 1
2
ℏ

𝑖

(
𝜓
𝑏𝜇,𝑐𝜈
𝑥,𝑦 + 𝜓𝑐𝜈,𝑏𝜇𝑦,𝑥

))
. (A.17)
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An interesting thing to note is that there is no propagator defined for this field.

§ A.2.3 Gluons
The classical equations of motion for gluon fields are given by 𝛿𝑆

𝛿𝐴
= 0, and we have,∫

𝑦

𝐾
𝑎𝑏𝜇𝜈
𝑥𝑦 𝐴𝑏𝜈𝑦 = 𝑗

𝑎𝜇
𝑥 − 𝜕𝜈𝑥 𝐽

𝑎𝜇𝜈
𝑥 + lim

𝑦→𝑥
𝑔 𝑓 𝑎𝑏𝑐

[
𝜕
𝜇
𝑥 𝑐

𝑏
𝑥 𝑐
𝑐
𝑦 + 𝐹

𝑏𝜇𝜈
𝑥 𝐴𝑐𝜈𝑦 + 𝜕𝜇𝑥 𝐴𝑏𝜈𝑥 𝐴𝑐𝜈𝑦 − 𝜕𝜈𝑥 𝐴𝑏𝜈𝑥 𝐴

𝑐𝜇
𝑦

]
.

(A.18)

We promote all fields to operators as shown earlier, only now we have to be careful with the 𝜕𝑐𝑐
term because it needs to be anti-symmetrized owing to the Grassmannian nature of derivatives.

A𝑎𝜇
𝑥 =

∫
𝑦

𝐷
𝑎𝑏𝜇𝜈
𝑥𝑦

(
𝑗 𝑏𝜈𝑦 − 𝜕𝜆𝑦 𝐽𝑏𝜈𝜆𝑦

)
+

∫
𝑦

𝐷
𝑎𝑏𝜇𝜈
𝑥𝑦 lim

𝑧→𝑦
𝑔 𝑓 𝑏𝑐𝑑

[
𝜕𝜈𝑦C

𝑐

𝑦C𝑑𝑧 + F 𝑐𝜈𝜆
𝑦 A𝑑𝜆

𝑧

+ 𝜕𝜈𝑦 𝐴𝑐𝜆𝑦 𝐴𝑑𝜆𝑧 − 𝜕𝜆𝑦 𝐴𝑐𝜆𝑦 𝐴𝑑𝜈𝑧 + 1
2
ℏ

𝑖

((
𝜓𝑐𝜈𝜆,𝑑𝜆𝑦𝑧 + 𝜓𝑑𝜆,𝑐𝜈𝜆𝑧𝑦

)
+ 𝜕𝜈𝑦

(
𝜓1𝑑,2𝑐
𝑧𝑦 − 𝜓2𝑐,1𝑑

𝑦𝑧

)
+ 𝜕𝜈𝑦

(
𝜓𝑐𝜆,𝑑𝜆𝑦𝑧 + 𝜓𝑑𝜆,𝑐𝜆𝑧𝑦

)
− 𝜕𝜆𝑦

(
𝜓𝑐𝜆,𝑑𝜈𝑦𝑧 + 𝜓𝑑𝜈,𝑐𝜆𝑧𝑦

))] . (A.19)

We have finally derived all the Dyson–Schwinger equations for this theory. To proceed, one has
to simply take functional derivatives with respect to the external sources. However, to list them
here explicitly would require 16 equations. We are working on a new notational system that
would allow us to treat these equations more efficiently and would make implementation easier.
We leave the next steps in the procedure for future work.





APPENDIX B

Notation

In this appendix, we shall list all the non-standard notation used (and abused) in this thesis. We
shall also list some standard notation which has been abused leading to potential confusion.

§ B.1 Chapter 2
• 𝜎 represents both the cross-section and later in the chapter it is used to represent a member

of the permutation group.

• A and M are both used to represent amplitudes in literature, in this thesis we highlight a
subtle difference between the two: M represents just the interacting part of the theory
whereas A represents the full S-matrix element.

– While defining M, we yet again abused notation to simultaneously represent the
matrix and its elements. But in literature, once the final and initial states of the
scattering event have been fixed it is common to drop any notation associated with
them. In this thesis M has almost exclusively been used to denote the matrix element
rather than the matrix.

•
⨋

refers to the act of performing the phase space integral and taking the combinatorial
sum over resultant on-shell states.

• M̃ represents the color-stripped amplitude.

• M (0),(1)
𝑛 means M (0)

𝑛 or M (1)
𝑛 .

§ B.2 Chapter 3
• Integrals are represented as,∫

𝑥,𝑦,...

≡
∫

d4𝑥 d4𝑦 · · · ,
∫
𝑝,𝑞,...

≡
∫

d4𝑝

(2𝜋)4
d4𝑞

(2𝜋)4 · · · .
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• For any field Π𝑥 ≡ Π(𝑥).

• 𝐷𝑥𝑦 is the position space propagator, 𝐷̃ 𝑝 is the momentum space propagator, D𝑥𝑦 is the
dressed propagator and D̃𝑝 is the dressed propagator in momentum space.

– 𝐾𝑥𝑦, 𝐾̃𝑝, K𝑥𝑦 and K̃𝑝 are related in a similar manner.

• 𝑇 is the time-ordering operator, not to be confused with 𝑇𝑎 which are the generators of
SU(𝑁) in the fundamental representation.

• 𝜙 is the scalar field, 𝜑 is the classical field or the VEV of the scalar field, 𝜙 is the field
operator and Φ is the off-shell current.

• Descendant fields are defined as,

𝜓𝑥,𝑦 ≡
𝛿𝜑𝑥

𝛿 𝑗𝑦
, 𝜓𝑥,𝑦,𝑧 ≡

𝛿2𝜑𝑥
𝛿 𝑗𝑦𝛿 𝑗𝑧

, · · · .

The order of the descendant can be determined by the number of terms in subscripts on 𝜓.
First descendant has 2 terms, second descendant has 3 terms and so on.

– Ψ is the associated current and the order of the descendant current is determined
by the number of loop momenta it has in subscripts. First descendant has 1 loop
momenta, second descendant has 2 loop momenta and so forth.

•
∑︁
𝜎∈𝑆𝑁

M𝜎(𝑘1,..., 𝑘𝑁 ) represents summation of amplitudes over all permutations of its external

legs.

• 𝑘𝑖1···𝑖𝑁 = 𝑘𝑖1 + · · · + 𝑘𝑖𝑁 where 𝑖 𝑗 are particle labels.

• We introduce notation for the distributed summation over words and loop momenta,⌈
ΦΦ · · ·Ψ𝑝Ψ𝑞𝑟 · · ·

⌋ (𝑛)
P ≡

∑︁
𝑎+𝑏+𝑐+𝑑+···=𝑛
𝑎,𝑏,𝑐,𝑑,...≥0

∑︁
P=Q∪R∪S∪T ···
Φ

(𝑎)
Q Φ

(𝑏)
R · · ·Ψ(𝑐)

𝑝 |SΨ
(𝑑)
𝑞𝑟 |T · · · .

• A shorthand is used to represent propagators in recursion relations,

𝐷P ≡ 𝐷̃ (−𝑘P), 𝐷 𝑝 |P ≡ 𝐷̃ (𝑝 − 𝑘P), 𝐷 𝑝𝑞 |P ≡ 𝐷̃ (𝑝 + 𝑞 − 𝑘P), 𝐷 𝑝 |∅ ≡ 𝐷̃ (𝑝), · · · .

• In eq. (3.47), 𝑚𝑝 refers to the physical mass

§ B.3 Chapter 4
Notation largely remains unchanged from regular 𝜙4 theory.
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• 𝑝0 is the time component of 4-momentum 𝑝.

• We introduce a shorthand for writing out the Dyson–Schwinger equations and their
descendants,

𝜑
𝐴,(0)
𝑥 → 𝜑𝐴0 , 𝜓

𝐴𝐴′,(0)
𝑥,𝑧 → 𝜓𝐴𝐴

′

0 , 𝜓
±𝐴′,(0)
𝑦,𝑧 → 𝜓±𝐴′

0 , 𝑗
±,(0)
𝑦 → 𝑗±0 , · · · .

• For currents Φ𝐴,0
P , Ψ𝐴𝐵,0

𝑝 |P , Ψ𝐴𝐵𝐶,0
𝑝𝑞 |P , · · · the number in subscripts is the loop order.

• 𝜀 is the polarization, should not be confused with 𝜖 in Feynman’s 𝑖𝜖 prescription.

• Yet another representation for propagators is defined,(
𝐷++
𝑝𝑞𝑟 |P 𝐷+−

𝑝𝑞𝑟 |P
𝐷−+
𝑝𝑞𝑟 |P 𝐷−−

𝑝𝑞𝑟 |P

)
≡

(
𝐷+𝑝𝑞𝑟P −Δ+𝑝𝑞𝑟P
Δ−𝑝𝑞𝑟P −𝐷−𝑝𝑞𝑟P

)
.

• M′(3)
4 represents all physical cut diagrams from the 3-loop order 4-point amplitude.

§ B.4 Appendix A
• D is the covariant derivative for gauge theories.

•
𝛿𝐿

𝛿· and
𝛿𝑅

𝛿· are left-handed and right-handed Grassmannian derivatives.

• Classical fields or the VEVs are defined as,

A ≡ VEV(𝐴), F ≡ VEV(𝐹), C ≡ VEV(𝑐), C ≡ VEV(𝑐).

• Descendant fields are defined as

𝜓 ·,1𝑐
·,𝑦 ≡ 𝛿𝐿 ·

𝛿𝜂𝑐𝑦
, 𝜓·,2𝑐

·,𝑦 ≡ 𝛿𝑅·
𝛿𝜂𝑐𝑦

, 𝜓
·,𝑏𝜇
·,𝑦 ≡ 𝛿·

𝛿 𝑗
𝑏𝜇
𝑦

, 𝜓
·,𝑏𝜇𝜈
·,𝑦 ≡ 𝛿·

𝛿𝐽
𝑏𝜇𝜈
𝑦

.
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