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Abstract

In this thesis, we delve into the realm of particle physics with a focus on jet tagging using
deep learning algorithms. Specifically, we explore the PELICAN (Permutation Equivariant
Lorentz Invariant and Covariant Aggregator Network) architecture to identify jets originating
from top quarks and bottom quarks. Jet tagging is crucial for reconstructing the properties
of parent particles and probing new physics phenomena beyond the Standard Model. In this
thesis, we study the PELICAN architecture, verifying the claims of Lorentz symmetry and
Permutation symmetry preservation in the original paper. We put PELICAN to the test in a
more realistic scenario by working with the ATLAS Open Dataset and confirm PELICAN’s
robustness. We utilize multiple datasets to research PELICAN’s performance on various
input quantities to test the features that bolster PELICAN’s performance. We propose
incorporating 4-vector momentum data and trajectory displacement information to enhance
the accuracy of jet identification. We propose novel extensions to the PELICAN architecture,
including the use of spacetime displacement 4-vectors and scalar particle identification labels,
to improve the tagging of heavy-flavor jets. This work not only enhances the performance of
existing jet tagging algorithms but also opens new avenues for future research in the field.
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Chapter 1

Introduction

1.1 Introduction

Particle physics is a field that delves into the fundamental constituents of matter and the
forces that govern their interactions. At the forefront of this discipline lies the exploration of
high-energy collisions, where particles are accelerated to extreme speeds and made to collide
in controlled environments such as the Large Hadron Collider (LHC) at CERN (CERN, 2018).
Through the study of these collisions, physicists aim to unravel the mysteries of the universe,
from understanding the nature of dark matter and dark energy to probing the fundamental
forces that shape the cosmos.

The Standard Model (Wikipedia contributors, Accessed 2024) of particle physics provides
a framework for understanding the behavior of elementary particles and their interactions.
It describes the electromagnetic, weak, and strong nuclear forces and classifies particles
into two categories: fermions and bosons. Fermions, such as quarks and leptons, are the
building blocks of matter, while bosons, including photons and W and Z bosons, mediate the
fundamental forces. Despite its remarkable success in explaining a wide range of phenomena,
the Standard Model has limitations and does not account for phenomena such as gravity or
dark matter (Newman, 2023).

One of the crucial tasks in particle physics experiments is the identification and char-
acterization of particles produced in high-energy collisions. Particle identification plays a
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pivotal role in deciphering the underlying physics processes and discriminating between
different particle types. Among the myriad particles produced in collisions, jets are of partic-
ular interest. Jets are collimated sprays of particles resulting from the fragmentation and
hadronization of quarks and gluons produced in the collision. Identifying and tagging jets
accurately are essential for reconstructing the properties of parent particles and probing new
physics phenomena beyond the Standard Model.

In recent years, advancements in machine learning and artificial intelligence have revolu-
tionized the field of particle physics (Kasieczka et al., 2019a). Neural networks, in particular,
have emerged as powerful tools for particle identification and analysis. By training neural
networks on vast datasets of collision events, physicists can extract valuable insights into the
properties of particles and the dynamics of their interactions.

1.2 Motivation

This thesis focuses on identifying the source of ’collimated spray of particles’ that appear
in proton-proton collisions, called Jets.

Jets are the experimental signatures of quarks and gluons (partons) produced in high-
energy processes such as proton-proton collisions. These partons radiate more partons as
they propagate resulting in a parton shower. As quarks and gluons have a net colour charge
and cannot exist freely due to colour-confinement, thus, at lower energies, they come together
to form colourless hadrons, a process called hadronization. This spray of particles is called a
jet. The identification of the parton that originated a jet is called jet tagging.

As jets of particles propagate through the detector, they leave signals in components such
as the tracker and the electromagnetic and hadronic calorimeters. These signals are combined
using jet algorithms to form a reconstructed jet. Physics analysis is usually performed on
reconstructed jets.

This thesis focuses on a sub part of jet tagging called as Heavy Flavour tagging. Heavy
Flavour tagging, the identification of jets originating from t, b and c quarks, is a critical
component of the physics program of the ATLAS experiment (Collaboration et al., 2008) at
the Large Hadron Collider (LHC). Generally, Heavy Flavour tagging is split into top tagging
(for t) and flavour tagging (for b , c).
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Figure 1.1: A top quark + anti-top quark event at the LHC. The quarks have hadronized into
particle "jets" denoted in green and yellow. Figure has been taken from CMS Collaboration,
Accessed 2024.

Flavour tagging is of particular importance for the study of the Standard Model (SM) Higgs
boson and the top quark, which preferentially decay to b quarks through the channels H → b⃗b,
and t → bW+, and additionally for several Beyond Standard Model (BSM) resonances that
readily decay to heavy flavour quarks (G. Aad et al., 2020). The signatures used specifically
for b-tagging are -

• significant lifetime of b-hadrons, approximately 1.5 ps (10−12), provides the unique
signature of a secondary decay vertex which has a high mass and is significantly displaced
from the primary vertex

• b hadrons may also have a tertiary decay vertex, resulting from b → c decay chains.

• the reconstructed trajectories of charged particles (henceforth simply referred to as
tracks) have large impact parameters (IP) (“Graph Neural Network Jet Flavour Tagging
with the ATLAS Detector” 2022)
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On the other hand, for top tagging, the lifetime of the top quark (≈ 1025s) is shorter than
the hadronization time (≈ 1023s) and much shorter than the spin decorrelation time (≈ 1021s)
(Déliot and Mulders, 2020). Therefore the top quark decays before hadronisation and its spin
information is directly transferred to its decay products. Many years after its discovery, the
top quark still plays a fundamental role in the program of particle physics. The top quark is
the heaviest of all known elementary particles. Its mass is close to the EWSB (Electro-Weak
Symmetry Breaking) scale, and it may play an important role in the understanding of the
EWSB mechanism. Furthermore, the large top quark mass implies a large coupling to the
Higgs boson, thus establishing a privileged link to the Higgs sector (Gallinaro, 2013). The
signatures used specifically for top-tagging depend on the decay modes of the W boson-

• In the SM, the top quark decays with a branching fraction of almost 100 % to a b quark
and a W+ boson t → bW+.

• The W boson will subsequently decay to either two quarks (W → qq̄′ ), which are
observed as jets of particles, or to a charged lepton and a neutrino (W → lv).

• In proton collisions at the LHC top quarks are dominantly produced via the strong
interaction, resulting in a top quark-antiquark pair (tt̄). But, single top (or anti-top)
quark production modes via weak interaction also exist.

The technique used for top tagging and flavour tagging in the ATLAS and CMS collabo-
rations, has been to use High level quantity-based taggers. These taggers are trained on a
set of high level quantities which are observables (For example - Energy correlation ratios,
N-subjettiness, Angularity, etc.) that can be calculated from the measured properties of the
jet constituents. These quantities are hand-designed to draw out differences between signal
jets and background jets Identification of Hadronically-Decaying W Bosons and Top Quarks
Using High-Level Features as Input to Boosted Decision Trees and Deep Neural Networks in
ATLAS at

√
s = 13 TeV 2017.

In the same spirit, the natural next question is why we apply highly complex tagging
algorithms to a pre-processed set of kinematic observables rather than to actual data.
This question becomes especially relevant when we consider the significant conceptual and
performance progress in deep learning Kasieczka et al., 2019a. Deep learning, or the use of
neural networks with many hidden layers, is the tool that allows us to analyze low-level LHC
data without constructing high-level observables. These are the Constituent based, low level
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Figure 1.2: Performance of various taggers for top tagging on MC simulation. The plot
shows ’High level quantity based taggers’ like BDTs and DNN, in comparison to TopoDNN
which is a ’Low level quantity based tagger’(Gouskos, 2020).

taggers. Studies have consistently shown that we can expect great performance improvement
from low level taggers compared to the traditional taggersKasieczka et al., 2019a.
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Given this background, the primary goals of my thesis are:-

• To study which deep learning based jet tagging algorithm shows state-of-the-art (SOTA)
performance

• To analyze the deep learning algorithm’s performance and pinpoint the features respon-
sible for it.

• Studies have shown that introducing symmetries and physical constraints in the neural
network architectures leads to a boost in the jet tagging performance Li et al., 2022.
To test the performance of the deep learning algorithm on a more realistic dataset.

• To extend the same network architecture for a wider variety of use cases - flavor tagging,
event tagging, 4-momenta reconstruction, etc.

In this thesis we delve into the realm of Particle Physics and Jet tagging with a focus
on top tagging and bottom quark tagging using neural networks. The introductory chapter
provides a foundational understanding of Particle Physics and Jet tagging, elucidating
the motivations behind our focus. Following this, Chapter 2 delves into the theoretical
underpinnings, exploring particle interactions, calorimeters, detectors, shower development,
jet formation, measurement/reconstruction, and the pivotal process of jet tagging of particles.
Moving forward, Chapter 3 introduces the application of neural networks in Particle Physics,
with a particular emphasis on our chosen architecture, PELICAN (Permutation Equivariant
Lorentz Invariant and Covariant Aggregator Network). Chapter 4 provides insight into the
datasets utilized, offering a comprehensive understanding of their sources and characteristics.
Subsequently, Chapter 5 presents the results garnered from the application of the PELICAN
network to these datasets, evaluating its efficacy in top tagging (and few other particles).
Finally, Chapter 6 consolidates our findings, drawing conclusions, discussing their implications,
and outlining avenues for future research and refinement of our methodology. Through this
structured approach, we aim to contribute to the advancement of Particle Physics and the
development of Deep Learning-based algorithms for Jet tagging.



Part II

Theoretical Background





Chapter 2

Particle Interaction with Matter

To be detected, a particle must interact with the material of a detector. In this section, we
explore these interactions.

A particle may interact with an atomic nucleus as its first possibility. For instance,
this interaction might occur through the strong nuclear force for hadrons or via the weak
interaction for neutrinos. If the particle’s energy is sufficiently high, it may produce new
particles, often serving as the initial step in the detection process.

Apart from these short-range interactions, a charged particle can also excite and ionize
atoms along its trajectory, resulting in ionization energy losses, and emit radiation, leading to
radiation energy losses. Both processes stem from the long-range electromagnetic interaction.
They are important because they form the basis of most detectors for charged particles.
Photons, too, are directly detected through electromagnetic interactions, and at high energies,
their interactions with matter predominantly result in the production of e+e− pairs through
the pair production process

γ → e+ + e− (2.1)

and also Compton scattering. This process must occur near a nucleus to conserve energy and
momentum. All these interaction types are elaborated upon in the subsequent sections. This
section relies heavily on previous literature [Leo, 1994 , Green, 2000, Virdee, 2007 ]

11
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2.1 Short-range interactions with nuclei

For hadrons, the most important short-range interactions with nuclei are due to the
strong nuclear force, which is important for neutral and charged particles. As an illustration,
consider the simplest nucleus, a proton and an incident π−. There are two types of possible
reactions - elastic scattering such as

π− + p → π− + p (2.2)

and inelastic scattering such as

π− + p → π+ + π− + π0 + n (2.3)

in which the final state particles differ from those in the initial state. At high energies,
many inelastic reactions are possible, most of them involving the production of several
particles in the final state. The total cross-section is then given by -

σtotal = σelastic +
∑

σinelastic (2.4)

The probability of a hadron–nucleus interaction occurring as the hadron traverses a small
thickness dx of material is given by nσtotdx, where n is the number of nuclei per unit volume
in the material. Then, the mean distance traveled before an interaction occurs is given by
the collision length -

lcol =
1

nσtot

(2.5)

Neutrinos and antineutrinos can also be absorbed by nuclei, leading to weak interaction
reactions of the type

ν̄l + p → l− +X (2.6)

where l is a lepton and X denotes any hadron or set of hadrons allowed by the conservation
laws. As these proceed via the weak interaction, the cross-sections are extremely small
compared to the cross-sections for strong interaction processes and thus, the interaction
lengths are large. Such reactions are one of the basis of detecting neutrinos.
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2.2 Ionization Energy Loss

Ionization energy losses are important for all charged particles, (other than electrons
and positrons) at all but the highest attainable energies. When charged particles traverse
through matter, they lose energy to the atomic electrons via the Coulomb interaction. The
energy transferred to the electrons causes them either to be ejected from the parent atom
(ionisation) or to be excited to a higher level (excitation). The theory of such energy losses
was worked out by Bethe, Bloch and others in the 1930s. The Bethe-Bloch equations is -

dE

dx ion
= Kz2

Z

A

1

β2

[
1

2
ln

2mec
2β2γ2Tmax

I2
− β2 − δ(βγ)

2

]
(2.7)

Where,

• −dE
dx

: The average rate of energy loss of a charged particle per unit path length in the
material.

• K: A constant.

• z: The charge of the incident particle.

• Z: The atomic number of the material.

• A: The atomic mass of the material.

• β: The velocity of the incident particle relative to the speed of light.

• γ: The Lorentz factor.

• Tmax: The maximum kinetic energy transfer in a single collision.

• I: The mean excitation energy of the material.

• me: The electron mass.

• c: The speed of light.

• δ: The density effect parameter.

The notable features of this formula are :-
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• dE
dx ion ∝ 1

me
shows that the energy is lost the electrons

• dE
dx ion ∝ 1

β2 shows that slower incident particles lose more energy

• dE
dx ion ∝ z2 shows particles with more charge, lose more energy

• dE
dx minimum occurs are βγ = 4 (these are said to be minimum ionizing particles or MIPs)

Figure 2.1: Ionization energy loss for muons, pions and protons on a variety of materials.
Figure taken from (et al, 2006).

It is common practice to represent 2.7 as an areal density, where 2.7 is divided by mass
density ρ. Examples of the behavior of 2.8 for muons, pions and protons traversing a range
of materials are shown in 2.1

1

ρ

dE

dx ion
(2.8)
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2.3 Radiation energy losses

When a charged particle traverses matter it can also lose energy by radiative collisions,
especially with nuclei. The electric field of a nucleus will accelerate and decelerate the
particles as they pass, causing them to radiate photons, and hence lose energy. This process is
called bremsstrahlung(literally ‘braking radiation’ in German) and is a particularly important
contribution to the energy loss for electrons and positrons. In the intense electric field of a
nucleus, relativistic electrons radiate photons (bremsstrahlung), and photons can be converted
into electron-positron pairs (pair creation). The dominant Feynman diagram for electron
bremsstrahlung in the field of a nucleus, i.e.

e− + (Z,A) → e− + γ + (Z,A) (2.9)

is given in 2.2

Figure 2.2: The Feynman diagram for bremstrahlung. Figure taken from (Virdee, 2007).

A detailed calculation shows that the cross-section for energy losses due to radiation is
given by -

ρrad ∝ Z2α3

m2c4
(2.10)

and the energy loss -
dE

dx rad
∝ E

m2
(2.11)

From these results, we can see that radiation losses completely dominate the energy losses
for electrons and positrons at high enough energies, but are much smaller than ionization
losses for all particles other than electrons and positrons at all but the highest energies.
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2.4 Energy loss by photons

In contrast to heavy charged particles, photons have a high probability of being absorbed
or scattered through large angles by the atoms in matter. Consequently, a collimated
monoenergetic beam of I photons per second traversing a layer thickness dx of matter will
lose

dI = −Idx

λ
(2.12)

photons per second, which on integrating gives -

I(x) = I0e
−x
λ (2.13)

where, mean free path λ is analogous to the collision length for hadronic reactions. Photons
mainly lose energy via - the photoelectric effect, in which the photon is absorbed by the atom
as a whole with the emission of an electron; Compton scattering, where the photon scatters
from an atomic electron; and electron–positron pair production in the field of a nucleus or of
an atomic electron. The corresponding cross-sections on lead are shown in 2.3

Figure 2.3: Total experimental photon cross-section on a lead atom, together with the
contributions from (a) the photoelectric effect, (b) Compton scattering, (c) pair production
in the field of the atomic electrons and (d) pair production in the field of the nucleus. Figure
has been taken from (et al, 2006).



Chapter 3

Shower development and Jet formation

3.1 Shower Development

Now that we know how particles interact with matter, we can learn about the basic
blocks in a jet - particle showers. A particle shower refers to a cascade of secondary particles
produced when a high-energy particle interacts with matter. There are two types of showers -

• Electromagnetic Showers

• Hadronic Showers

3.1.1 Electromagnetic shower

A cascade of photons and electrons develops when a highly energetic photon or electron
is incident on an absorber material. 3.1 shows a schematic of an electromagnetic shower
produced by a photon. The photon pair-produces an electron-positron pair and these, in turn,
produce photons via bremsstrahlung. With an increasing depth of the absorber material, the
number of particles in the electromagnetic shower increases till some depth (called the shower
maximum) while the mean energy carried by the particles decreases.

3.2 shows the longitudinal development of the electron shower in different materials. The
multiplication of the shower particles continues until the energy carried by the particles is below

17
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Figure 3.1: A schematic of an electromagnetic shower induced by a photon. Figure taken
from (Virdee, 2007).

the critical energy (ϵ) of the material and the energy deposition increases accordingly. After the
shower maximum has been reached, the energy deposition falls off exponentially. At this point,
the photons lose energy mainly through the compton scattering or the photoelectric effect
and the electrons(/positrons) lose energy through ionization of the absorber material. The
shower maximum is deeper for the high Z material (low critical energy) as the multiplication
of shower particles continues down to lower energies.

Figure 3.2: Simulation of the longitudinal development of 10 GeV electron showers in
aluminum(Al), iron (Fe) and lead (Pb). Figure taken from (Virdee, 2007).

The electromagnetic shower spreads in the lateral direction due to multiple scattering of
the secondary e−, e+ and emission of photons away from the shower axis. The lateral extent
of the electromagnetic shower for different materials can be specified in terms of Moliere
radius (RM), which is the radius of the cylinder of infinite length, which contains 90 percent
of the shower energy.
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3.1.2 Hadronic shower

As mentioned in 2.1, a highly energetic hadron (charged or neutral) deposits its energy in
a material by interacting with its nuclei via strong nuclear interactions. A charged hadron
continues to lose its energy through ionization until it undergoes such a hadronic interaction.
The interaction of an incoming hadron with absorber nuclei leads to multiparticle production.
The secondary hadrons in turn interact with further nuclei leading to a growth in the number
of particles in the cascade. Nuclei may breakup leading to spallation products. The particle
multiplication continues until the energy carried by the secondary hadron goes below the
threshold for producing other hadrons. The cascade contains two distinct components, namely
the electromagnetic part (η/π0 → γγ) and the hadronic part (π+, π−, p, n, etc.).

Figure 3.3: A schematic of development of a hadronic shower. Figure taken from (Virdee,
2007).

The particles emitted during the nuclear spallation process have to overcome the nuclear
binding energy to escape the nuclear boundary. The energy needed for this process does
not contribute to the detector signal and is termed invisible energy. Hence, in general, the
energy deposited, which is available to convert to a signal, from a pion shower is less than an
electron shower of the same energy.

As seen from 3.4, for hadronic showers, there is a high shower-to-shower fluctuation in
energy carried by the electromagnetic component (mainly coming from π0) for a given pion
energy. Also, the depth at which the π0 is produced varies from shower to shower. The
longitudinal spread of hadronic showers is more than an electromagnetic shower of the same
energy. For example, ≈ 151cm of iron is needed to contain 99 percent of 100 GeV π− shower.
In comparison, ≈ 44cm of iron is needed to contain 99 percent of 100 GeV e− shower (Acar
et al., 2023).
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Figure 3.4: The simulation of energy deposition of two different 270 GeV pion in a block of
copper. Figure taken from (Virdee, 2007).

3.2 Jet Formation

In particle physics, a jet refers to a collimated spray of particles produced from the frag-
mentation and hadronization of quarks and gluons. Jets typically arise from the hadronization
of quarks and gluons that are produced in high-energy collisions, such as those occurring in
particle accelerators like the Large Hadron Collider (LHC) at CERN.

When high-energy quarks or gluons are produced in a collision, they cannot exist freely due
to the strong force confinement property of quantum chromodynamics (QCD). Instead, they
undergo a process called hadronization, where they fragment into a cascade of stable hadrons
(such as protons, neutrons, pions, and other mesons) before eventually being detected.

The resulting hadrons tend to be collimated, meaning they are emitted in roughly the
same direction as the original quark or gluon. This collimation arises from the conservation
of momentum and energy in the fragmentation process. As a result, the observed pattern of
particles appears as a focused spray or jet of particles traveling in a similar direction (Marzani
et al., 2019).

3.2.1 Two-jet events

Let us illustrate this with an example from Martin and Shaw, 2008.
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In the centre-of-mass energy range 15–40 GeV, electron–positron annihilation into hadrons
is dominated by processes like -

e+ + e− → q + q⃗ (3.1)

These can be regarded as occurring in two stages: a primary electromagnetic process leading
to the production of a quark–antiquark pair, followed by a strong interaction process, called
fragmentation, which converts the high-energy qq⃗ pair into two jets of hadrons. These jets are
emitted in opposite directions in the centre-of-mass frame in order to conserve momentum.
The fragmentation process that converts the quarks into hadrons is very complicated, and the
composition of the jets (i.e. the numbers and types of particles in the jet and their momenta)
varies from event to event.

A typical example of such an event observed in an electron–positron colliding-beam
experiment is shown in 3.5.

Figure 3.5: Basic mechanism of two-jet production in electron–positron annihilation. Figure
taken from (Martin and Shaw, 2008).

3.3 Parton Showers

The stage between the qq⃗ pair and the hadron formation (as shown as the small bubble
between the qq⃗ line and the hadrons in Figure 3.5) is called as a Parton shower.

A parton is a particle that is the constituent of hadrons. These partons, primarily quarks
and gluons, interact with each other during collision processes (Nagy and Soper, 2018).
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3.3.1 Quark Decays

• When a high-energy quark is involved in a collision, it can emit additional gluons as it
evolves from high to low momentum.

• This emission process is governed by QCD and occurs probabilistically, with the emission
probability depending on factors such as the energy and momentum transfer involved.

• The emitted gluons can subsequently split into quark-antiquark pairs, continuing the
cascade of parton emissions.

3.3.2 Gluon Decays

• Gluons, being the carriers of the strong force, can self-interact and split into quark-
antiquark pairs or emit additional gluons.

• Similar to quark emissions, gluon emissions occur probabilistically and depend on
factors such as the energy and momentum transfer involved in the interaction.

• These emitted quarks and gluons further undergo fragmentation and hadronization
processes, eventually forming collimated sprays of particles, or jets, observed in collider
experiments.

The propagation of the parton shower involves the successive emissions and interactions
of partons, resulting in a cascade of increasingly lower momentum partons. This cascade
continues until the partons reach a low enough energy scale where non-perturbative effects
become dominant, leading to the formation of stable hadrons (Ellis et al., 2003).



Chapter 4

Jet Measurement and Reconstruction

4.1 Jet Measurement

Till now we looked at the interactions of particles with matter, their development into
particle showers and subsequent jet definitions. This chapter focuses on the identification of
particles and their energy measurements, which is used to cluster jets in an event.

Particle Identification (ID) is a crucial aspect of most High Energy Physics experiments(the
detectors used depend on the physics under study). In a typical experiment two beams of
particles collide within the detectors (or a single beam collides with a fixed target). The
resulting events should be reconstructed as fully as possible, where usually many particles
emerge from the interaction point.

• Tracking detectors determine whether the particles are charged, and (in conjunction
with a magnetic field) measure their momentum and the sign of their charge

• Calorimeters measure the energy of particles, determine whether they have electro-
magnetic or hadronic interactions, and detect neutral particles

23
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4.1.1 Measurement of Energy - Calorimeters

Hadronic calorimeters are primarily used to measure the energies of jets (Virdee, 2007).
To measure the energy of a jet, it is necessary to measure the energy and position of the jet
constituent particles. Calorimeters measure the energy and position of the particles that pass
through them and are designed to fully contain the showers that develop from e−, e+, photons
and hadrons. The absorber medium is where the particle shower develops and deposits most
of its energy and the active medium is where the deposited energy is actually measured.
Based on the active and absorber material construction, calorimeters can be of two types:
homogenous and sampling calorimeters.

• In homogeneous calorimeters, a single medium serves both the purpose of shower
development (absorber) and energy measurements (active). For example, the current
CMS electromagnetic calorimeter (ECAL) is a homogenous calorimeter made up of
PbWO4 scintillating crystals. crystals.

• In sampling calorimeters, dense absorber layers are sandwiched between light active
layers. Most of the energy deposition occurs in the absorber layers and the active layers
take a snapshot of energy deposition at intermediate depths. These calorimeters are
mainly used to measure the energy from hadronic showers, which need a larger depth
for containment. For example, the current CMS hadronic calorimeter (HCAL) is a
sampling calorimeter with brass as the absorber material and plastic scintillators as the
active material.

4.1.2 Measurement of Momentum

In general the track of a charged particle is measured using several (N) position-sensitive
detectors in the magnetic field volume. Assume that each detector measures the coordinates
of the track with a precision of σ(x). Then, the obtainable momentum resolution depends
on: L (length of the measurement volume), B (magnetic field strength) and σ(position
resolution).
Consider a charged particle traversing a magnetic volume of side L with velocity v, with the
magnetic field pointing into the page, as shown in Figure 4.1. Assuming θ ≈ small,

L/2

ρ
= sin θ/2 ≈ θ/2 (4.1)
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Figure 4.1: A charged particle (red) traversing a magnetic volume (blue) of side L. Figure
taken from (Bracinik and Watson, 2012).

S = ρ

(
1− cos

θ

2

)
≈ ρ

θ2

8
(4.2)

From deflection in a magnetic field,

θ =
L

ρ
=

0.3BL

pT
⇒ S =

0.3

8

L2B
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s
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Say we measure sagitta from three (N=3) spacial points:

S = x2 −
x1 + x3

2
⇒ σ2(s) =

3

2
σ2(x) (4.4)
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=
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S
=

√
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2
σX

8pT
0.3BL2

(4.5)

For N equidistant measurements, the momentum resolution is described by the Gluckstern
formula (Bracinik and Watson, 2012):

σ (pT )

pT
=

√
720

N + 4
σX

8pT
0.3BL2

(4.6)
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4.1.3 Particle Identification

Particle identification (PID) is crucial for jet reconstruction in particle physics experiments
for several reasons[Martin and Shaw, 2008, Forty, 2017]:

• Background Suppression: In high-energy collisions, jets are often produced alongside
a large number of other particles from the underlying event and pileup interactions.
Accurate PID helps distinguish particles belonging to the jet of interest from these
background particles, thereby improving the purity of the reconstructed jet sample.

• Jet Energy Calibration: Different types of particles deposit energy differently in the
detector material. Accurate PID allows for the identification of particle types within
a jet, which in turn enables better energy calibration of the reconstructed jets. By
understanding the particle content of a jet, corrections can be applied to account for
energy losses and ensure the accurate determination of the jet’s energy.

• Understanding Jet Substructure: Jets may contain substructure features that
provide insight into the underlying physics processes. PID allows for the identification
of specific particles within a jet, such as heavy-flavor hadrons or photons, which can
help discriminate between different jet substructure configurations and aid in the study
of phenomena like quark/gluon discrimination, b-tagging, or Higgs boson decays to
specific final states.

• Background Rejection in Searches: In searches for new physics or rare processes,
it is essential to distinguish signal jets from background jets originating from known
Standard Model processes. PID provides discriminatory power to reject background
jets while preserving signal jets, thereby enhancing the sensitivity of searches for new
phenomena.
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Particle identification is performed using both the electromagnetic and hadronic calorime-
ters on the basis of lateral and longitudinal shower profiles. The demand is quite different
depending on the desired physics process.

There are various techniques used for particle identification (Virdee, 2007):-

1. Identification of Particles using Time of Flight - At low momenta the difference
in the time taken by different particles to traverse a certain distance can be used to
distinguish between them.

2. Identification of Particles using Specific Energy Loss - The difference in the
energy loss of charged particles traversing a medium at a given momentum by various
particles can be used to distinguish between them.

3. Identification of Electrons using Transition Radiation Detectors - It is based
on the principle that "Transition radiation is emitted when a charged particle moves
from a medium of refractive index n1 to a medium of a different index n2." This is the
concept behind the ATLAS Transition Radiation Tracker (Appendix A).

4. Identification of Particles using Particle-deposit containment - Electrons,
characterized by their electromagnetic interactions, primarily deposit energy in the
electromagnetic calorimeter (ECAL), yielding distinct clusters of energy deposits.
Hadrons, on the other hand, interact via the strong force and typically deposit energy
in both the ECAL and the hadronic calorimeter (HCAL). Muons, being minimally
ionizing particles, traverse through the detector, leaving minimal energy deposits in the
calorimeters but registering tracks in the inner tracking system and muon chambers.
Neutrinos, which interact weakly with matter, often escape detection altogether, leaving
behind little to no detectable signal in the detector. Their presence can be inferred by
calculating the "missing energy" in an event. Quarks, being confined within hadrons
due to color confinement, manifest their presence indirectly through jets.
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Figure 4.2: Particle identification by containing their energy deposits in specific regions of
the detector. Figure taken from (Bracinik and Watson, 2012).

4.2 Jet Reconstruction

The definition of a jet as being a ’collimated sprays of particles, produced in abundance in
high energy particle collisions’ is oversimplified in a few aspects. Mainly, whether two particles
are part of the same jet or belong to two separate jets has some degree of arbitrariness, related
to what we practically mean by “collimated”. The simple concept of what a jet is meant to
represent is therefore not sufficient to practically identify the jets in an event. To do this, one
relies on a jet algorithm, i.e. a well-defined procedure that tells how to reconstruct the jets
from the set of hadrons in the final state of the collision (Marzani et al., 2019). There is no
single, universal definition of a jet – which particles belong to a jet depend on the algorithm
used to combine particles into jets (Larkoski et al., 2020). An intuitive definition for a jet
algorithm consists of summing the momenta of all particles within a cone with fixed size
(Sterman and Weinberg, 1977). Naive cone algorithms are not infared and collinear (IRC)
safe – the requirement that the resulting jets be insensitive to arbitrarily low energy particles
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and collinear splittings. IRC safety is a useful theoretical requirement for making calculations
in pQCD and is also a convenient language for describing the experimental robustness to
noise and detector granularity. Over the past few decades, a number of jet algorithms have
been proposed. They typically fall under two big categories:

• cone algorithms

• sequential-recombination algorithms

Today, almost all studies involving jets performed at the LHC use the anti-kt algorithm (Cac-
ciari et al., 2008), which is a modification of the kt recombination algorithm. A generalization
of these algorithms leads to three classes, distinct only by the sign of the exponent of the
transverse momentum pT,i in the inter-particle distance measure:-

dij = min(p2kT i, p
2k
Tj)

∆2
ij

R2
(4.7)

This definition is used in the results section. The original kT algorithm, with k = 1 in
Equation 4.7, clusters soft and collinear particles first, the Cambridge/Aachen algorithm
(CA) (Dokshitzer et al., 1997), with k = 0, prioritizes particles in the clustering solely by
their angular proximity, and the anti-kT algorithm Cacciari et al., 2008, with k = 1, combines
the hardest particles first. The proposal of the anti-kT algorithm is also responsible for the
disappearance of cone-type algorithms in experimental studies.
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Chapter 5

Jet Tagging

5.1 Jet tagging

One of the most important questions about a jet is which type of elementary particle
initiates it. The technique for the identification of the elementary particle initiating a jet is
called "Jet Tagging". Jets initiated by different particles exhibit different characteristics. For
example, jets initiated by gluons tend to have a broader energy spread than jets initiated
by quarks. High-momentum heavy particles (e.g., top quarks and W, Z, and Higgs bosons)
that decay hadronically can lead to jets with distinct multi-prong structures. Therefore, the
identity of the source particle can be inferred from the properties of the reconstructed jet
(Qu and Gouskos, 2020). This analysis of the properties of a jet is called "Jet Substructure
Analysis".

Jet substructure techniques are used for the identification of the particle origin of jets.
Several substructure variables have been developed by the theoretical community that can be
used along with the jet mass for jet classification. Traditionally, the term ‘tagger’ indicates
the use of one or more of these variables to discriminate between jets coming from different
types of particles (Kogler et al., 2019).

The natural next question is why we apply highly complex tagging algorithms to a
pre-processed set of observables rather than to actual data. This question becomes especially
relevant when we consider the significant conceptual and performance progress in machine
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learning. Deep learning, or the use of neural networks with many hidden layers, is the tool
which allows us to analyze low-level LHC data without constructing high-level observables.
In recent years, machine learning (ML) has injected fresh blood in jet tagging. Jets are
regarded as images [Almeida et al., 2015, de Oliveira et al., 2016] or as sequences [Guest
et al., 2016], trees [Louppe et al., 2019], graphs [Qu and Gouskos, 2020], or sets [Komiske
et al., 2019] of particles, and ML techniques, most notably deep neural networks (DNNs), are
used to build new jet tagging algorithms automatically from (labeled) simulated samples or
even (unlabeled) real data, leading to new insights and improvements in jet tagging. A more
detailed review of Jet Representations and ML models is given in Appendix B.

Deep learning has now been applied to jets of every origin: electroweak bosons, gluons,
light quarks, heavy quarks, and even BSM particles. (Larkoski et al., 2020) provides a good
summary of these.

5.2 Some important particle properties

This section is meant to be a quick overview of some important particle jets that are
relevant for this thesis. Some parts of this have been taken from (Kheddar et al., 2024).

5.2.1 W and Z bosons

W and Z bosons are important closely related particles described by the SM of particle
physics. They play a significant role in the weak nuclear force, which is responsible for certain
types of particle interactions and radioactive decay. The existence and properties of the Z
boson, along with the W bosons, provided strong support for the electroweak theory and the
SM as a whole. However, as with the W boson, the Standard Model has limitations and does
not explain all aspects of particle physics, such as gravity, dark matter, and the hierarchy of
particle masses.

Here are some key points about the W and Z bosons:

• Charge and Variants: The W boson comes in two varieties: the W+ and the W−,
which carry a positive and negative electric charge, respectively. These particles are
antiparticles of each other. The Z boson is a neutral elementary particle.

• Mass and Spin: The W bosons masses are around 80.4 GeV/c2. The Z boson has a
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relatively large mass. Its mass is around 91.2 GeV/c2. Both W and Z bosons have a
spin of 1, which is a measure of their intrinsic angular momentum.

• Decay: The W and Z bosons are unstable and have a very short lifetime. They quickly
decay into other particles. For example, a W+ boson can decay into a positron (an
antielectron) and a neutrino, while a W− boson can decay into an electron and an
antineutrino. The Z can decay into various combinations of charged leptons (such as
electrons and muons) and their corresponding antiparticles, as well as neutrinos and
antineutrinos.

5.2.2 The Higgs boson

The Higgs boson is crucial to our understanding of how other particles acquire mass and,
by extension, how the universe’s structure and behavior arise. The key points about the
Higgs boson are:

• Origin of Mass: is associated with the Higgs field, a theoretical field that permeates
all of space. In the SM, particles acquire mass by interacting with the Higgs field. The
more a particle interacts with this field, the greater its mass will be. This mechanism
explains why some particles are heavier than others.

• Mass and Spin: the Higgs boson itself has a mass of around 125.1 GeV/c2. It has a
spin of 0, which means it has no intrinsic angular momentum.

• Decay: is unstable and quickly decays into other particles after its creation in high-
energy collisions. The specific decay modes and products depend on the energy at
which it is produced.

• Higgs field Interaction: is a carrier of the interaction associated with the Higgs field.
When particles move through space, they interact with this field, which gives them
mass. The Higgs boson itself is the quantized excitation of this field.

5.2.3 The top quark

The Top Quark is one of the fundamental particles described by the Standard Model of
particle physics. It holds a special place in particle physics due to its extremely large mass



34 A Study of Physics-motivated Deep learning based algorithms for Jet tagging

and its role in various processes involving high-energy collisions. Here are some key points
about the top quark:

• Mass: The top quark is the heaviest known elementary particle. Its mass is approxi-
mately 173.2 GeV/c2, which is even heavier than an entire atom of gold.

• Quarks and the Strong Force: Quarks are the building blocks of protons and
neutrons, which are the constituents of atomic nuclei. The top quark, like all quarks,
experiences a strong nuclear force, which is responsible for holding quarks together
within hadrons (particles composed of quarks).

• Weak Decays: Due to its high mass, the top quark is relatively short-lived and decays
before it can form bound states with other quarks to create hadrons. It decays primarily
through weak interaction, one of the fundamental forces described by the Standard
Model.

• Production and Detection: The top quark is typically produced in high-energy
particle collisions, such as those that occur in experiments at particle accelerators
like the LHC. Due to its high mass, the top quark is often produced along with its
corresponding antiquark. Researchers detect its presence indirectly by observing its
decay products, which can include other quarks, leptons (such as electrons and muons),
and neutrinos.

• Role in Electroweak Symmetry Breaking: The top quark is of particular interest
in theories related to electroweak symmetry breaking, a phenomenon that explains why
certain particles acquire mass. Its large mass plays a significant role in the behavior of
the Higgs boson and its interactions.
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Chapter 6

Brief Overview of Neural Networks

6.1 Neural Networks

A neural network is a mathematical framework that encapsulates a functional representa-
tion. During the process of training a neural network, specific parameters of the network,
such as the coefficients of its functional representation, are iteratively adjusted to make
the network’s output approximate a desired but often unknown function. The potential
for the network to approximate any function closely depends on factors like its capacity,
architecture, training duration, and the availability of relevant data[Elbrächter et al., 2021].
The objective of training is to discover a function that accurately represents the underlying
problem, enabling the network to make accurate predictions for new data within the same
problem domain, thus exhibiting generalization capability. However, it’s important to note
that achieving generalization power isn’t guaranteed for all neural networks even after training
(Winter, 2021).

Neural networks are composed of neurons (nodes) and weights (edges) that are arranged
in consecutive layers (see Figure 6.1) such that each layer’s neurons receive their inputs from
the previous layer’s neurons and send their outputs to the successive layer’s neurons. Data is
fed to the network via the first (input) layer, undergoes transformations in the intermediate
(hidden) layers until it arrives at the final (output) layer that can be read out and interpreted.
The amount of hidden layers separates shallow neural networks from deep networks. Deep
networks can easily span tens or hundreds of hidden layers.
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Figure 6.1: Simple neural network architecture. Figure reproduced from Chollet, 2017

Data propagating through a neural network is successively transformed by the neurons of
each layer. Each neuron transforms its inputs into a single output value, called activation. In
a fully connected neural network architecture (Fig 6.1) the activation of a single neuron is
defined by -

a(x⃗) = σ(
∑
i

wihxi + b) (6.1)

where, x⃗ represents the inputs, wih the connecting weights and b the bias term. The
weights and biases are the free parameters of the network, usually initialized to random values
before adjustment due to network training. σ is a non-linear function (tanh, sigmoid, ReLU,
softmax, etc.) that allows the model to capture non-linear relationships in the input data.

Geometrically, a neuron activation transforms the input in three ways:

• Transform the input linearly:
∑

i wihxi

• Translate to a different position by b.

• Warp by σ. This effectively maps the input into a non-linear manifold.

Successive non-linear layers allow complex transformations. These networks are referred
to as deep neural networks (DNNs). Non-linearity is a decisive criterion for depth since a
stack of linear hidden layers, on the other hand, can be collapsed to a single layer containing
linear combinations of the former. Therefore, DNNs are much more powerful than shallow
(linear) nets.
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Since successive hidden layers obtain their inputs from previous layers. In this form
the (forward) propagation of data through the network can be computed rather easily by
basic linear algebra subprograms that are highly optimized for matrix multiplications. A
graphical processing unit (GPU) can further accelerate the computation by introducing many
computational cores that allow for massive parallelization. As network training is a curve
fitting process involving many free parameters, care must be taken to not overfit (or underfit)
the model on the training data. Overfitting happens when the parameters are tuned too
much. The desired function is for example linear while the network learned a quadratic fit
due to the presence of noise in the training data, i.e. the network learns a fit to random
fluctuations caused by noise which do not capture the underlying problem. Underfitting
is the reverse process of a linear fit to a desired quadratic function resulting from too few
network parameters or insufficient training time. To prevent overfitting or underfitting, the
training process should be monitored and halted at the right time. Additionally, so-called
regularization techniques can be used to prevent overfitting.

The training process is guided by a so-called loss (or objective) function L. Since neural
networks can be trained for different purposes (classification, regression, reconstruction, data
generation, etc.) a multitude of loss functions can be found in the literature. For a given input,
the loss function takes the activations of the network’s output layer and a corresponding
desired output (ground truth) as input and generates a single real number to be minimized.

If the desired output (truth) has been generated in advance by experts or external sources
one speaks of supervised learning. One variant of supervised learning is self-supervised
learning in which the ground truth and input data are identical.
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Chapter 7

Introduction to PELICAN

7.1 PELICAN

The accurate prediction of jets in particle physics experiments demands neural networks
that maintain critical symmetries, such as Lorentz invariance, to ensure reliable results across
different reference frames. Traditionally, achieving Lorentz invariance has involved selecting
invariant observables or preserving equivariant representations in neural network architectures.
However, the PELICAN architecture (Bogatskiy et al., 2022) introduces a novel approach
by leveraging the complete set of Lorentz invariants, specifically pairwise dot products
between input 4-momenta. By simplifying the architecture and enhancing interpretability,
training, and overall performance, PELICAN addresses the complexity of jet tagging tasks
effectively. To tackle the permutation structure inherent in particle data, PELICAN employs
permutation-equivariant architectures, ensuring that network predictions remain invariant
under permutations of input particles. This approach maintains physical consistency while
modeling complex interactions between particles. By utilizing permutation-equivariant layers,
PELICAN can effectively capture the intricate symmetries of the problem, enhancing its
adaptability and performance in jet tagging tasks. Ultimately, by embracing fundamental
symmetries like Lorentz invariance, PELICAN exemplifies the potential of physics-aware
neural networks to deliver reliable and interpretable results in particle physics experiments,
paving the way for advancements in understanding complex physical phenomena. (Bogatskiy
et al., 2024)
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7.2 PELICAN Architecture

The PELICAN architecture simplifies previous approaches in jet tagging by utilizing
a complete set of Lorentz-invariants, specifically pairwise dot products between input 4-
momenta. This approach enhances the architecture’s interpretability, ease of training, and
overall performance in jet tagging tasks.

7.2.1 Inputs and Embeddings

This component describes the preprocessing of input data, including the computation of
pairwise dot products of 4-momenta and the incorporation of auxiliary beam particles to
restore orientational knowledge within datasets. Embedding layers further process the dot
products and scalar data, facilitating flexible processing while preserving Lorentz symmetry.

7.2.2 Permutation Equivariant Blocks

The permutation equivariant blocks transform arrays of rank 2 and play a crucial role in
maintaining permutation symmetry within the architecture. These blocks consist of message
and aggregation components, which apply linear aggregation functions and mix aggregators
to ensure that the architecture respects permutation symmetry, which is vital for accurate
jet tagging.

7.2.3 Classification and 4-Vector Regression Outputs

This component discusses how the PELICAN architecture can serve as both a classifier
for jet tagging and a provider of 4-vector outputs for tasks such as momentum reconstruction.
Different output layers are employed depending on the task, ensuring that the architecture can
adapt to various jet tagging requirements while maintaining performance and interpretability.
In the realm of particle physics experiments, particularly in tasks like jet tagging, ensuring that
neural networks maintain certain symmetries is crucial for accurate and reliable predictions.
One such symmetry is Lorentz invariance, which ensures that the output of the network
remains unchanged under any Lorentz transformation applied to the input 4-vectors (energy-
momentum vectors). This property is essential for preserving the physical consistency of
predictions across different reference frames. Traditionally, enforcing Lorentz invariance in
neural networks has been approached in various ways. One common method involves selecting
a set of invariant observables as inputs, while another draws inspiration from convolutional
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neural networks (CNNs) by preserving group-equivariant latent representations in hidden
layers. These approaches aim to regulate the network’s behavior and improve its performance.
In this work, a different approach is taken. Instead of hand-picking invariant observables or
focusing solely on equivariant representations, the complete set of Lorentz invariants on the
input 4-vectors is computed. These invariants, which depend only on pairwise dot products
of the 4-vectors, are used as the network input. Remarkably, it is demonstrated that these
invariant dot products alone can yield state-of-the-art performance in a simpler architecture,
showcasing the power of leveraging fundamental physical principles in neural network design.
Furthermore, to address the challenges posed by the permutation structure of particle data,
permutation-equivariant architectures are employed. These architectures ensure that the
network’s predictions remain invariant under permutations of the input particles, maintaining
physical consistency. By utilizing permutation-equivariant layers, the network can effectively
model complex interactions between particles while respecting the inherent symmetry of the
problem.
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Chapter 8

Evaluation Metrics

8.1 Evaluation Metrics

In the evaluation of neural network models, several metrics are commonly employed to
assess their performance and effectiveness in various tasks. These metrics provide insights
into different aspects of the model’s behavior and can help researchers and practitioners
make informed decisions about model selection and optimization. Here, we discuss the key
evaluation metrics used in our analysis:

• Accuracy: Accuracy is a fundamental metric that measures the proportion of correctly
classified instances among all instances in the dataset. It is calculated as the ratio of the
number of correctly predicted samples to the total number of samples in the dataset.

• AUC Score: The Area Under the Receiver Operating Characteristic (ROC) Curve
(AUC score) is a performance metric commonly used in binary classification tasks. It
quantifies the ability of the model to distinguish between positive and negative instances
across all possible thresholds. A higher AUC score indicates better discrimination ability.

• ROC Curve: The ROC curve is a graphical representation of the trade-off between
True Positive Rate (TPR) and False Positive Rate (FPR) across different threshold
values. It plots the TPR against the FPR for various threshold settings, providing
insights into the model’s performance at different classification thresholds.
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• True Positive Rate (TPR): TPR, also known as sensitivity or recall, measures
the proportion of positive instances that are correctly identified by the model. It is
calculated as the ratio of true positives to the sum of true positives and false negatives.

• False Positive Rate (FPR): FPR measures the proportion of negative instances that
are incorrectly classified as positive by the model. It is calculated as the ratio of false
positives to the sum of false positives and true negatives.

• Background Rejection at 0.5: Background rejection at a specific signal efficiency
point, often denoted as background rejection at 0.5, quantifies the model’s ability to
suppress background events while maintaining a certain level of signal efficiency. It
represents the ratio of background events rejected to the total number of background
events at a signal efficiency of 0.5.

These evaluation metrics provide valuable insights into the performance of neural network
models and help assess their suitability for specific classification tasks. By considering multiple
metrics, researchers can gain a comprehensive understanding of a model’s strengths and
weaknesses and make informed decisions about model optimization and deployment.
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Chapter 9

Dataset Description

9.1 Top Quark Tagging Reference Dataset

This is a dataset of Monte-Carlo simulated training and testing events for the evaluation
of top quark tagging architectures. It contains a total of 1.2M training events, 400k validation
events, and 400k test events.The leading 200 jet constituent four-momenta are stored, with
zero-padding for jets with fewer than 200. For each event, the jet constituents are sorted by
pT , with the highest pT one first. (Kasieczka et al., 2019b)

9.2 ATLAS Top Tagging Open Data

The ATLAS Top Tagging Open Data Set consists of jets taken from simulated collisions
of protons at a center of mass energy of 13 TeV. The signal and background jets come from
simulations of two different processes:

• Signal: A heavy Z boson (termed Z’) with mass of 2 tera-electron-volts decaying to a
top anti-top quark pair.

• Background: Jets initiated by light quarks and gluons. These particles are copious
by-products of proton-proton collisions at the LHC
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9.3 JetClass Dataset

The dataset includes a total of 10 types of jets. The jets in this dataset generally fall
into two categories. The background jets are initiated by light quarks or gluons (q/g) and
are ubiquitously produced at the LHC. The signal jets are those arising either from the top
quarks (t), or from the W, Z or Higgs (H) bosons. For top quarks and Higgs bosons, it further
considers their different decay modes as separate types, because the resulting jets have rather
distinct characteristics and are often tagged individually.



Chapter 10

Verifying Lorentz and Permutation Sym-
metry

This section presents the performance evaluation of the PELICAN model across various
datasets and input types. The results demonstrate the model’s effectiveness in jet tagging
tasks, emphasizing its adherence to fundamental symmetries and its robustness in realistic
settings.

10.1 Reproduce Results from the Paper

The first step before starting any new research work is to verify the claims of the ex-
isting works. Therefore, the obvious first step was to test PELICAN’s performance on the
Max Planck Institute for Physics’s setup and compare this to the reported values in the paper.

10.1.1 Performance on Top Quark Tagging Reference Dataset

The PELICAN model was evaluated on the Top Quark Tagging Reference Dataset, where
it was trained to distinguish between hadronic top jets and QCD jets. The performance
metrics, including accuracy and AUC, are summarized in Table 10.1.
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Model Accuracy AUC

PELICAN (paper) 0.94 0.987

PELICAN (MPP) 0.94 0.987

Table 10.1: PELICAN’s performance on the Top Quark Tagging Reference Dataset

These results highlight the PELICAN model’s high performance and consistency when
tagging top quark jets. The identical performance metrics for both the paper and MPP
versions of PELICAN indicate robust implementation and training protocols.

10.2 Lorentz Symmetry in PELICAN

Symmetries in ML are known to produce less complex models which respect basic geo-
metrical rules and arguably provide more opportunities for interpretability and explainability
of the results. Even in realistic settings where the symmetries are merely approximate,
symmetry-constrained architectures often outperform more general architectures in terms of
pure accuracy (Li et al., 2024, but this is not always true.

PELICAN has Lorentz symmetry built inherently into the architecture (Bogatskiy et al.,
2022). The Lorentz symmetry is one of the fundamental symmetries of the Standard Model
of particle physics.Lorentz invariance is the mathematical encapsulation of the fact that the
outcomes of physical phenomena don’t depend on the inertial frame of the observer. In the
context of particle accelerators, this boils down to the observation that all initial and final
states of a particle interaction are the same in all inertial frames. This is formally reflected
in the fact that the Standard Model of particle physics is Lorentz-invariant, and therefore
any model of any physically relevant processes described by the Standard Model can be as well.

To verify that the PELICAN model respects Lorentz and permutation symmetries, ex-
periments were conducted where the input data was transformed accordingly. The results,
presented in Tables 10.2 and 10.3, show consistent performance, indicating the model’s
symmetry invariance.
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10.3 Testing Lorentz Invariance

PELICAN incorporates Lorentz symmetry in the network architecture by making the
final inputs of the network a Lorentz invariant quantity. Given a set of 4-vector inputs
p1, p2, ..., pN , it computes a complete set of Lorentz invariants on that set. As proven by
H.Weyl in his book ’The Classical Groups’, the space of symmetric invariants constructed
out of a collection of vectors in the fundamental representation consists of functions of only
the pairwise invariant dot products. In short, all totally symmetric Lorentz invariants can be
written in the following form:

I(p1, . . . , pN) = f ({pi · pj})i,j (10.1)

Hence, PELICAN’s final inputs are the pairwise dot products of the input 4-vectors.

To test whether PELICAN is Lorentz symmetric in working, we look at the following:-
if the inputs to the network are a collection of 4-vectors p1, p2, ..., pN and the output is
F (p1, p2, ..., pN) -

F (λp1, λp2, ...., λpN) = F (p1, p2, ..., pN) (10.2)

where, λ is a Lorentz transformation.

10.3.1 Training

The Hyperparameter for the training are listed below:-

• Dataset = Top Quark Tagging Reference Dataset (9.1)

• GPU = NVIDIA A100-SXM4-40GB with 40960 MB of GPU memory

• Batch size = 64

• Number of epochs = 15

• Optimizer = Adam

• Activation = leaky ReLU

• Train events = 600k
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• Validation events = 400k

• Test events = 400k

• Learning rate: lr-init=0.0025 to lr-final=1e-6

10.3.2 Evaluation

Once the training of the model was complete, we evaluated it on two testing samples.
Sample 1 contains 400k events from the Top Quark Tagging Reference Dataset, while Sample
2 consists of Sample 1 events modified by an arbitrary Lorentz Transformation.

• For two inertial frames moving relative to their x-axis direction

Λ =



γ −βγ 0 0

−βγ γ 0 0

0 0 1 0

0 0 0 1



• Let v = 0.6c, then, the Lorentz transformation matrix is

Λ =



1.25 −0.75 0 0

−0.75 1.25 0 0

0 0 1 0

0 0 0 1





Verifying Lorentz and Permutation Symmetry 55

Data Accuracy AUC

Sample 1 0.94 0.987

Sample 2 (Lorentz transformed) 0.94 0.987

Table 10.2: PELICAN’s performance under Lorentz transformations

As the model performance does not change between Sample 1 and Sample 2, the hypothesis
that ’PELICAN architecture is inherently Lorentz invariant due to the specialized inputs’ is
True.

10.4 Testing Permutation Invariance

PELICAN addresses the permutation nature of particle data by using architectures that
maintain prediction consistency regardless of the order of input particles.
Experimentally, to verify that PELICAN respects permutation symmetry, the network
performance should not change based on the order of input particles, i.e.

F (p1, p2, ...., pN) = F (pi, pj, ..., pk) (10.3)

10.4.1 Training

The Hyperparameter for the training are listed below:-

• Dataset = Top Quark Tagging Reference Dataset (9.1)

• GPU = NVIDIA A100-SXM4-40GB with 40960 MB of GPU memory

• Batch size = 64

• Number of epochs = 15

• Optimizer = Adam

• Activation = leaky ReLU
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• Train events = 600k

• Validation events = 400k

• Test events = 400k

• Learning rate: lr-init=0.0025 to lr-final=1e-6

10.4.2 Evaluation

The model was first trained on ≈ 600k events from the Top Tag Dataset. Then we
evaluated it on two testing samples. Sample 1 contains 400k events from the Top Quark
Tagging Reference Dataset, while Sample 2 consists of Sample 1 events that whose particle
order (per event) was permuted.

Data Accuracy AUC

Sample 1 0.94 0.987

Sample 2 (Permuted inputs) 0.94 0.987

Table 10.3: PELICAN’s performance under input permutations

The ability to maintain performance under these transformations confirms
the model’s invariance properties. This invariance is crucial for ensuring that the
model’s predictions are not biased by arbitrary changes in the data representation,
thus reflecting true physical properties.



Chapter 11

Testing PELICAN’s performance on a more
realistic dataset

11.1 Performance on the ATLAS Top Tag Open Dataset

The PELICAN model’s robustness was further tested on the more realistic ATLAS Top
Tag Open Dataset. This dataset involves a challenging task of tagging top quark jets from
the decay of a heavy Z boson against a background of jets initiated by light quarks and
gluons. The performance metrics for this dataset are shown in Table 11.1.

Model AUC ACC 1/(ϵB) at ϵS = 0.5 Params Inference Time

PELICAN (no wts) 0.966 0.902 203 48327 0.85 ms

PELICAN (with wts) 0.960 0.891 150.3 48327 0.85 ms

Table 11.1: PELICAN’s performance on the ATLAS Top Tag Open Dataset

PELICAN was trained on about 2 mil events which is 5 percent of the full dataset but,
it still performs just as good as the other taggers reported in the paper (11.2). We believe
that this observation aligns with the statement that symmetries in ML produce less complex
models requiring smaller datasets without loss of performance.

57



58 A Study of Physics-motivated Deep learning based algorithms for Jet tagging

Model AUC ACC ε−1
bkg@εsig = 0.5 ε−1

bkg@εsig = 0.8 # Params Inference Time

ResNet 50 0.885 0.803 21.4 5.13 1, 486, 209 9 ms

EFN 0.901 0.819 26.6 6.12 1, 670, 451 4 ms

hIDNN 0.938 0.863 51.5 10.5 93,151 3 ms

DNN 0.942 0.868 67.7 12.0 876,641 3 ms

PFN 0.954 0.882 108.0 15.9 689,801 4 ms

Particle Net 0.961 0.894 153.7 20.4 764,887 38 ms

Table 11.2: Best performing taggers on the ATLAS Top Tag Dataset

The performance on this dataset showcases PELICAN’s applicability in real-
world scenarios, maintaining high accuracy and AUC while demonstrating efficient
inference times. This robustness is essential for practical applications in high-
energy physics experiments.



Chapter 12

Comparison of PELICAN’s performance
using different pairwise quantities as in-
puts

12.1 Comparison of performance using different pairwise

quantities

Currently, PELICAN is one of the best jet taggers in the literature (Bogatskiy et al.,
2024). It achieves state-of-the-art performance on the benchmark with fewer learnable
parameters than the previous highest-performing network. This incredible performance even
at low parameters has been attributed to the: inherent Lorentz symmetry and Permutation
invariance to inputs. A natural next question is whether the particular architecture of
PELICAN is still performant even without Lorentz invariant inputs i.e. ’Can the performance
of PELICAN be attributed to the layer of the neural network? Or does Lorentz invariance
(through inputs) play a major role?’ To test this, we trained PELICAN using different
pairwise input quantities, non-Lorentz invariant and compared its performance.

The pairwise inputs tested are -

• Pairwise Invariant Mass
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• Pairwise Jet Clustering measures - kT, anti-kT, CA

• pT-weighted angular separation

For the pairwise invariant mass,
mij = (pi + pj)

2 (12.1)

For the pairwise jet clustering algorithm measures,

dij = min(p2kT i, p
2k
Tj)

∆2
ij

R2
(12.2)

where, k=1 is the kT distance measure, k=0 is the Cambridge/Aachen distance measure and
k=-1 is the anti-kT distance measure.

For the pT-weighted angular separation (pAS),

dij = (∆Rij)
2pT,ipT,j (12.3)

12.1.1 Training

The training and testing for this hypothesis were done on both the -Top Quark Tagging
Reference Dataset and the ATLAS Top Tagging Open Dataset.

The Hyperparameter for the training are listed below:-

• Dataset = Top Quark Tagging Reference Dataset (9.1) and ATLAS Top Tagging Open
Dataset (9.2)

• GPU = NVIDIA A100-SXM4-40GB with 40960 MB of GPU memory

• Batch size = 64

• Number of epochs = 15

• Optimizer = Adam

• Activation = leaky ReLU

• Train events = 400k
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• Validation events = 400k

• Test events = 400k

• Learning rate: lr-init=0.0025 to lr-final=1e-6

12.1.2 Evaluation

To analyze the impact of different pairwise quantities on the PELICAN model’s perfor-
mance, various inputs relevant to jet physics were tested. The results for different input types
on the Top Quark Tagging Reference Dataset and the ATLAS Top Tag Open Dataset are
summarized in Tables 12.1 and 12.2.

The evaluation of the training was done on the two dataset separately. The results are
given in the tables below.

Input Type Accuracy AUC 1/(ϵB) at ϵS = 0.5

Dot Products 0.94 0.987 402

Invariant Mass 0.94 0.987 406

CA 0.89 0.957 66

Anti-kT 0.68 0.717 3.9

kT 0.68 0.717 3.9

pAS 0.68 0.719 3.8

Table 12.1: PELICAN’s performance with different pairwise inputs on the Top Quark
Tagging Reference Dataset
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Input Type Accuracy AUC 1/(ϵB) at ϵS = 0.5

Dot Products 0.89 0.960 150.3

Invariant Mass 0.89 0.960 151

CA 0.56 0.582 2.6

Anti-kT 0.56 0.583 2.6

kT 0.56 0.580 2.5

pAS 0.56 0.586 2.5

Table 12.2: PELICAN’s performance with different pairwise inputs on the ATLAS Top Tag
Open Dataset

Figure 12.1: ROC Curve for PELICAN performance on Top Quark Tagging Reference
Dataset



Comparison of PELICAN’s performance using different pairwise quantities as inputs 63

Figure 12.2: ROC Curve for PELICAN performance on ATLAS Top Tagging Open Dataset

Figure 12.3: ROC Curves for Invariant mass inputs and Regular dot product inputs coincide
for Top Quark Tagging Reference Dataset
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Figure 12.4: ROC Curve for Invariant mass inputs and Regular dot products coincide for
ATLAS Top Tagging Open Dataset

We can see from the performance metrics and the ROC curves that PELICAN performs
the best with (1) Pairwise Invariant mass or (2) Pairwise dot-products as input. There is
a considerable performance difference between PELICAN having Lorentz invariant inputs
like these, versus, PELICAN trained on (3) Pairwise Jet clustering measure or (4)Pairwise
pT-weighted angular separation, which are not Lorentz-invariant inputs.

Further, from 12.4 the Pairwise Invariant Mass and Pairwise dot-products provide the
network with the same overall information, and hence, they performance similarly. This can
be seen as -

mij = (pi + pj)
2 = (Ei + Ej)

2 −
∑

(pi + pj)
2 (12.4)

Hence, Pairwise Invariant mass has the information of Pairwise dot-products implicit.

As a test, we also evaluated PELICAN on the kT measure with pairwise mass information
implicit, but this did not perform any better than kT or antikT.
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For the Pairwise pT-weighted angular separation, it can be shown that -

m2
ij ≈ (∆Rij)

2pT,ipT,j (12.5)

But, PELICAN did not perform the best on this, which may imply that ’approximate Lorentz
invariant’ inputs would not improve PELICAN’s performance.

These comparisons reveal that while PELICAN maintains high performance
with dot products and invariant mass inputs, the model’s effectiveness decreases
with other input types. This indicates the importance of selecting appropriate
pairwise quantities for optimal jet tagging performance.
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Chapter 13

Extending PELICAN for tagging other
particles

PELICAN demonstrates state-of-the-art performance for the objectives of ’Top Quark Tagging’
and ’Quark-vs-gluon-initiated jet tagging’. To extend PELICAN for the task of tagging other
jets such as H → b⃗b and H → cc⃗, it is necessary to modify PELICAN’s architecture so as to
incorporate more input information during training.

The signature signals of b and c jets primarily arise from the decay products of heavy-
flavor hadrons (such as B mesons for b jets and D mesons for c jets) within the jets. These
signatures include:

• Secondary Vertices: Heavy-flavor hadrons produced in b and c jets have relatively
long lifetimes compared to light-flavor hadrons. As a result, they can travel a measurable
distance before decaying. The presence of secondary vertices, displaced from the primary
vertex of the collision, is a distinctive signature of b and c jets.

• Impact Parameters: Tracks originating from the decay of heavy-flavor hadrons
have large impact parameters, reflecting the displaced nature of their decay vertices.
Measurement of these impact parameters within a jet provides additional discrimination
power for identifying b and c jets.

• Jet Substructure: The substructure of b and c jets, including the distribution of
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energy and momentum among their constituent particles, may exhibit characteristic
patterns due to the presence of heavy-flavor hadrons. Machine learning techniques, such
as jet substructure analysis, can exploit these patterns for b and c jet identification.

• Lepton Tagging: Some heavy-flavor hadrons decay semi-leptonically, producing
charged leptons (e.g., electrons or muons) in their decay chain. The presence of isolated
leptons within a jet can serve as a signature of b and c jets, particularly when combined
with other discriminators.

We propose few methods to extend PELICAN to accommodate this type of extra infor-
mation.

13.1 Invariant Spacetime 4-vector products

For this, we use the 9.3 JetClass dataset which is a new large and comprehensive dataset
to advance deep learning for jet tagging. This dataset provides the necessary 4-vectors
(E, px, py, pz) in units of GeV for the basic functioning of the PELICAN architecture. Along
side this,it includes the measured values and errors of the transverse and longitudinal
impact parameters of the particle trajectories in units of mm. This trajectory displacement
information is critical for tagging jets involving a bottom (b) or charm (c) quarks.

We use the transverse and longitudinal trajectory displacement information to construct
a 3-dimensional trajectory displacement per particle. We these use kinematic considerations
to estimate the time ’t’, to create the spacetime displacement 4-vector per particle per event.
This set of spacetime displacement 4-vectors can be a second matrix input to PELICAN just
like the usual momentum 4-vectors. The information from the two sets can be combined
using a dense neural network and propagated.

By doing this, we would be able to allow PELICAN access to information about ’Displaced
Vertices’ which would aid in b and c jet identification.

13.2 Scalar particle identification labels

This is the simplest method we propose to extend PELICAN to tag jets of other particles.
For this, in the "Input and Embed" stage of PELICAN, we add one label per particle to the
scalar list -
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• L = 1 if the particle is associated with the secondary vertex

• L = 0 if the particle is associated with the primary vertex

This procedure of incorporating labels is already present in the PELICAN architecture.

13.3 Performance of PELICAN on tagging other particles

13.3.1 Training

The Hyperparameter for the training are listed below:-

• Dataset = JetClass Dataset

• GPU = NVIDIA A100-SXM4-40GB with 40960 MB of GPU memory

• Batch size = 64

• Number of epochs = 15

• Optimizer = Adam

• Activation = leaky ReLU

• Train events = 800k

• Validation events = 200k

• Test events = 200k

• Learning rate: lr-init=0.0025 to lr-final=1e-6

13.3.2 Evaluation

PELICAN’s performance for tagging -

• H → b⃗b

• H → cc⃗
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• W → qq
′

• Z → qq⃗

is given below.

Process AUC Accuracy BgRj@ϵS = 0.5

H → b⃗b 0.98 0.927 403

H → cc⃗ 0.97 0.919 270

W → qq
′ 0.96 0.904 190

Z → qq⃗ 0.96 0.900 126

Table 13.1: Performance of PELICAN for tagging other jets

Figure 13.1: ROC Curve for PELICAN tagging Higgs, W and Z in the JetClss Dataset
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From the above results, it obvious that PELICAN already performs as good as the
state-of-the-art taggers. Making the improvements would improve the performance a lot.

These preliminary results show that the PELICAN model can be extended for tagging
other particles, such as Higgs, W-boson, and Z-boson jets, on the JetClass Dataset. These
results suggest that incorporating additional information, like impact parameters and sec-
ondary vertex information, can further enhance the model’s performance while preserving its
fundamental symmetries.

This extension will demonstrate the versatility of the PELICAN model,
potentially suggesting that it can be adapted to a variety of jet tagging tasks.
Future work will focus on refining these capabilities and integrating additional
features to enhance performance further.
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Appendix A

ATLAS Detector

A.1 ATLAS Detector

The ATLAS detector at the LHC covers nearly the entire solid angle around the collision
point. It consists of an inner tracking detector surrounded by a thin superconducting solenoid,
electromagnetic and hadron calorimeters, and a muon spectrometer incorporating three large
superconducting air-core toroidal magnets. The inner-detector system (ID) is immersed in a
2 T axial magnetic field and provides charged-particle tracking in the range |η| < 2.5. The
high-granularity silicon pixel detector covers the vertex region and typically provides four
measurements per track. It is followed by the silicon microstrip tracker (SCT), which usually
provides eight measurements per track. These silicon detectors are complemented by the
transition radiation tracker (TRT), which enables radially extended track reconstruction
up to |η| = 2.0. The TRT also provides electron identification information based on the
fraction of hits (typically 30 in total) above a higher energy deposit threshold corresponding
to transition radiation. Reconstructed charged particles are assumed to have a charge of ±1.

A complete overview of the ATLAS detector is provided in Ref. Collaboration et al.,
2008.
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Appendix B

Jet Representations

B.1 Jet Representations

Tet representations are visualizations of the complex and dynamic behavior of particle jets
produced in high-energy collisions. These representations can take various forms, including
images, particle clouds, and energy flow diagrams. In image representations, jets are depicted
as colorful clusters of particles emerging from the collision point, providing a snapshot of
the underlying physics processes. Particle clouds, on the other hand, display the spatial
distribution of particles within the jet, offering insights into their energy distribution and
substructure. Energy flow diagrams illustrate the flow of energy and momentum within the
jet, highlighting the interactions and decays of individual particles. Each representation offers
unique perspectives on jet properties and dynamics, enabling physicists to study phenomena
such as jet substructure, quark-gluon discrimination, and the production of heavy-flavor
particles. By leveraging advanced visualization techniques, researchers can uncover valuable
insights into the fundamental particles and forces that govern the universe.
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