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Abstract

This thesis serves three broad purposes. It delves into understanding the positivity phe-
nomena observed in solutions to classical and contemporary enumeration problems in finite
vector spaces, such as counting subspaces and flags of various types in a vector space. It
offers a non-standard and elementary approach to grasping the geometry of Grassmannians
and flag varieties. Finally, it serves as an exposition for the intriguing problem of compre-
hending the behavior of subspaces under repeated application of a linear map through the
study of subspace profiles.
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Introduction

It is a basic fact that the number of d-dimensional subspaces in the vector space Fn
q is

given by the formula

(1)
(qn − 1)(qn−1 − 1) · · · (qn−d+1 − 1)

(qd − 1)(qd−1 − 1) · · · (q − 1)
.

When we substitute in q = 1, this formula surprisingly yields the binomial coefficient
(
n
d

)
,

which is the number of subsets of {1, . . . , n} that have size d. While this may seem quite
magical, a shift in perspective, due to Knuth [Knu71], clears it all up: viewing subspaces as
d× n reduced row echelon form matrices, each subspace can be labelled by a subset of size
d which records the pivot columns of the associated matrix. The number of matrices with a
given pivot set is always a power of q; for example the number of 3× 5 matrices with pivot
set equal to {1, 2, 5} is q4. 1 0 ∗ ∗ 0

0 1 ∗ ∗ 0
0 0 0 0 1


So, the enumeration of these subspaces becomes a sum over these subsets, of powers of q,
which naturally reduces to

(
n
d

)
when q = 1. Notable, this also shows that the formula 1,

which is a priori only a rational function in q, simplifies into a polynomial in q with positive
coefficients.

Butler’s seminal work in the 1980s ventures into a related exploration, delving into the
enumeration of subgroups of finite abelian p-groups Zλ1

p ×· · ·×Zλr
p , where λ is a partition of

size n. When λ = (1, . . . , 1), we obtain as a special case, the problem of enumerating linear
subspaces in Zn

p , which can be solved using reduced row echelon form matrices as before.
Birkhoff [Bir35], in the 30s, found a way to label subgroups of abelian p-groups using
matrices akin to the reduced row echelon form matrices. Butler leveraged these Birkhoff
standard matrices to prove that the number of subgroups is also given by a polynomial in
p having positive integer coefficients which can be interpreted in terms of a combinatorial
statistic on certain fillings of λ.

Meanwhile, nineteenth century geometers had introduced the Grassmannian, a geometric
object whose points are parameterized by d-dimensional subspaces of complex vector spaces,
to answer questions in enumerative geometry. The partitioning of the subspaces on the basis
of pivot sets was already known to lend a geometrically meaningful decomposition of this
space known as its Schubert decomposition. In that sense, Knuth’s insight can be seen as an
enumerative implication of the topological study of the collection of subspaces.
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In the 1980s, contemporaries of Butler were investigating the geometry of the set of
linear subspaces (as well as other linear algebraic objects) which are invariant under a nilpo-
tent linear transformation, motivated by problems in geometric representation theory. This
prompts questions on whether the geometric analysis of these spaces, similar to those of the
Grassmannian, could offer a fresh perspective on Butler’s enumerative and combinatorial
results. Moreover, it raises the question of whether the positivity phenomenon observed in
these counting problems may be stemming from the inherent geometric properties of these
spaces, suggesting a deeper connection between geometry and enumerative combinatorics.

Structure of the thesis

This thesis primarily revolves around trying to understand the positivity phenomena.
We see how this is pervasive in solutions to several classical and not-so-classical problems
that have occupied enumerative combinatorialists for the last few decades. We argue that
the positivity must be a consequence of the ability to organize the objects to be enumerated
into geometric spaces that have a nice decomposition, such as an affine paving. In doing this,
we accomplish our second aim, which is to develop an elementary, non-standard approach
to the geometry of the Grassmannians and the flag varieties. Lastly, we aim to provide
an introduction to the intriguing and challenging problem of understanding the behavior of
subspaces under repeated application of a linear map.

The thesis is structured into three parts. The first part serves as a foundation, cov-
ering essential definitions and theorems from algebraic geometry and topology in Chapter
1, and introducing combinatorial objects such as partially ordered sets, permutations, and
partitions, along with their diagrams and symmetric functions in Chapter 2. These objects
play an important role in the theory we develop and will recur throughout the subsequent
chapters.

The second part makes up the geometric content of this thesis. We begin by outlining
the concept of paving an algebraic variety over graded posets in Chapter 3, enabling the
computation of Betti numbers. This involves discussions on Poincaré duality and Borel-
Moore homology. This framework is then applied to study the Grassmannian in Chapter 4,
followed by the flag varieties in Chapter 5, and their fixed point varieties under a unipotent
action in Chapter 6.

The final part focuses on enumeration. Chapter 7 investigates the lattice of subspaces of a
vector space that are preserved under the action of any linear transformation, computing its
invariant flag generating polynomial. The geometric analysis of part two allows us to count
the number of flags in a vector space preserved by a nilpotent linear transformation, which
leads to an explicit expression for the invariant flag generating polynomials for arbitrary
operators. Lastly, Chapter 8 introduces the problem of enumerating subspaces by their
profiles, as in [BCRR92, Nie95, PR23a]. We discuss the recent progress towards a solution
as well as describing a new combinatorial proof of the case of diagonal linear transformations.
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Original Contribution. The notion of an affine paving is well-known (e.g. [Ful97]),
but we introduce a new perspective by defining affine pavings over graded posets in Definition
3.2. To the best of the author’s knowledge, the discussion in Chapters 4 and 5 about the
geometry of the Grassmannians and flag varieties is novel. While Chapter 6 is based on
the work in [Shi85], we clarify several proofs and rectify some inaccuracies in the proofs
provided therein, along with restating the definitions and theorems in modern terminology.
As far as the author is aware, using the analysis of the geometry of the fixed point variety
to deduce the enumerative and order-theoretic work of Butler is new. Finally, Chapter 8 is
almost entirely original work.
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Part 1

Preliminaries





CHAPTER 1

Some Geometry & Topology

1. Algebraic Geometry

All geometric objects we will study in this thesis are defined by algebraic equations. The
basic idea of algebraic geometry is to understand the geometric and topological properties
of these objects, such as their dimension, smoothness, and topology by using tools and
techniques from algebra. In this section we will briefly discuss the requisite definitions and
results from the subject, following conventions in [Har77] and [SKKT00].

1.1. Affine Varieties. Let F be any field. By An
F, or simply An (if F is understood),

we shall mean the set of n-tuples of elements of F. We call An
F affine n-space over F; its

elements will be called points. In particular, A1
F is the affine line, A2

F the affine plane.

Definition 1.1. An algebraic set in An is the common zero set of a collection, {fi}i∈I ,
of polynomials in n variables defined over F. We write

Y = Z({fi}i∈I) ⊆ An,

for this set of common zeros.

Remark 1.1. A priori an algebraic set Y may be defined as the zero set of a possibly
infinite set of polynomials in F[x1, . . . , xn]. However, Hilbert’s Basis theorem (see [AM69,
Theorem 7.5]) guarantees the existence of a finite subset whose zero set is also Y .

Example 1. When F = R and n = 2, algebraic sets can be visualized as subsets of the
Cartesian plane.

(1) The unit circle {(x, y) ∈ A2 | x2 + y2 = 1} is an algebraic set because it is defined
by the vanishing of the polynomial x2 + y2 − 1 ∈ R[x, y]. More generally, any conic
section is an algebraic set.

(2) The zero set of the polynomial xy ∈ R[x, y] is a pair of straight lines.
(3) The zero set of the polynomials x, y in R[x, y] is the singleton set {(0, 0)} containing

the origin. Similarly, any point in A2 is an algebraic set.

1.1.1. Zariski Topology. The affine space is the zero set of the zero polynomial, while the
empty set is the zero set of the entire polynomial ring. Furthermore, it is easy to check that
the the intersection of any family of algebraic sets as well as the union of two algebraic are
algebraic sets. So, the collection of complements of algebraic sets form a topology, which we
call the Zariski topology on An.
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Example 2. Choosing a basis for an n-dimensional F -vector space V identifies it with
An

F . Every vector in V is specified by a unique element of An
F ; these are its coordinates with

respect to the basis. This allows us to define a ring of polynomial functions on V consisting
of polynomials in the coordinates of the points of V . As a result, V is endowed with a Zariski
topology.

1.1.2. Irreducibility. In Example 1, the pair of straight lines can be written as the union
of two smaller algebraic sets: the x and y axes. However, the circle cannot be expressed as
a union like this. We would like to capture this notion of indivisibility of algebraic sets.

Definition 1.2. A nonempty subset of a topological space X is irreducible if it cannot
be expressed as the union of two proper subsets, each closed in the subspace topology.

Proposition 1.1. The closure of an irreducible subset of a topological space is also an
irreducible subset.

Proof. If Y can be written as the union Y = Y1 ∪ Y2 of two closed subsets, then Y
can be expressed as a union (Y1 ∩ Y ) ∪ (Y2 ∩ Y ) of subsets, both closed in Y . Since Y is
irreducible, it must be contained in one of the closed subsets, say Y ⊆ Y1. This implies
Y = Y1, so Y is irreducible. □

An affine algebraic variety is an irreducible algebraic subset of An. Unless otherwise
states, an affine variety will be equipped with the subspace topology. Any open subset of an
affine variety is called a quasi-affine variety. For example, the affine space minus any point
is a quasi-affine variety.

1.2. Projective Varieties. By An
F, or simply An (if F is understood), we shall mean

the set of n-tuples of elements of F. We call An
F affine n-space over F; its elements will be

called points. In particular, A1
F is the affine line, A2

F the affine plane.

A projective n-space over F, writeen Pn
F, or simply Pn, is defined to be the set of equiv-

alence classes of (n + 1)-tuples (a0, a1, . . . , an) of elements of F, not all zero, under the
equivalence relation given by (a0, . . . , an) ∼ (εa0, . . . εan) for all ε ∈ F− {0}.

Elements of Pn are called points and if P is a point then any (n + 1)-tuple (a0, . . . , an)
in the equivalence class P is called a set of homogeneous coordinates for P . We often
write P = [a0, . . . , an] using square brackets to indicate that (a0, . . . , an) are homogeneous
coordiates for P .

Unlike the affine case, a polynomial f ∈ F[x0, . . . , xn] is not a well-defined function
on Pn. However, if f is a homogeneous polynomial of degree d, then f(εa0, . . . , εan) =
εdf(a0, . . . , an), ensuring that the property of f taking value zero or not is well-defined.

Definition 1.3. A projective algebraic set is the common zero set of a collection, {fi}i∈I ,
of homogeneous polynomials in n+ 1 variables defined over F. We write

Y = Z({fi}i∈I) ⊆ Pn,
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for this set of common zeros.

Arguing as we did in 1.1.1, we observe that the collection of complements of the algebraic
sets form what is called the Zariski topology on Pn. As a result, we can define a Projective
algebraic variety to be an irreducible algebraic set in Pn, together with the induced topology.

Example 3. Suppose V is a vector space, then the collection of lines in V is the associated
projective space PV . Just like before, choosing a basis of V identifies PV with Pn−1. This
allows us to speak of homogeneous polynomials on PV and also equip PV with a Zariski
topology.

1.2.1. Irreducible Components. A topological space X is called Noetherian if it satisfies
the descending chain condition for closed subsets: for any sequence Y1 ⊇ Y2 ⊇ · · · of closed
subsets, there is an integer r such that Yr = Yr+1 = · · · .

Example 4. Affine spaces An and Projective spaces Pn are Noetherian topological
spaces. Since a subset of a Noetherian topological space is also Noetherian, this implies
that all affine and projective algebraic sets are also Noetherian.

Proposition 1.2. In a Noetherian topological space X, every nonempty closed subset Y
can be expressed as a finite union Y = Y1 ∪ · · · ∪ Yr of irreducible closed subsets Yi. If we
require that Yi ̸⊇ Yj for i ̸= j, then the Yi are uniquely determined. These are called the
irreducible components of Y .

Proof. This is [Har77, Proposition 1.5]. □

Since affine and projective spaces are Noetherian, Proposition 1.2 implies that every
affine (resp. projective) algebraic set can be expressed uniquely as a finite union of affine
(resp. projective) varieties.

1.3. Category of Quasi-Projective Varieties. We have defined affine and projective
varieties. We now introduce quasi-projective varieties, a notion that encompasses both cases
and the category of objects we will primarily be interested in.

Definition 1.4. An open subset of a projective variety is a quasi-projective variety.

In other words, quasi-projective varieties are locally closed subsets1 of a projective space
Pn. The class of quasi-projective varieties includes all projective, affine and quasi-affine
varieties. This is because any affine space An can be identified with the complement of the
zero set of any homogeneous linear polynomial, such as a coordinate function x0, on Pn.

Remark 1.2. Heuristically, we can think of quasi-projective varieties as being defined
by taking some polynomials equal to 0 and other polynomials to not be equal to 0.

1Locally closed sets are intersections of a closed set with an open set.
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We will often simply say variety to mean quasi-projective variety. A subvariety of a
variety is a subset which is itself a variety; it is easy to check that this is equivalent to the
subset being irreducible and locally closed. Having defined the objects of the category, we
can now define morphisms between them:

Definition 1.5. If X ⊆ Pn and Y ⊆ Pm are quasi-projective varieties, then a morphism
of varieties is a map F : X → Y such that for each P ∈ X, there exist homogeneous
polynomials f0, . . . , fm in n+ 1 variables such that F is given by [f0, . . . , fm] on some open
set containing P . Often we will take the open set to be the one of the sets {xi ̸= 0}.

2. Singular Homology

Algebraic topology studies topological spaces by assigning them algebraic objects, such
as groups and rings, which remain invariant under topological equivalences. In this thesis,
we will compute topological invariants known as Betti numbers for various algebraic varieties
that have traditionally interested combinatorialists. For this reason, we discuss the necessary
background on singular homology, as outlined in standard references such as [Hat02].

2.1. Constructing Homology Groups. Singular homology associates a sequence of
abelian groups, known as the singular homology groups, to every topological space. The
construction of these groups begins with the notion of a standard k-simplex, denoted ∆k,
which is the convex hull of the standard basis vectors, labeled e0, . . . , ek, in Rk+1.

Definition 2.1. A singular k-simplex of a topological space X is a continuous map from
the standard k-simplex into X. The group Ck(X) consists of formal linear combinations of
singular k-simplices with complex coefficients, and its elements are referred to as k-chains.

For each i = 0, . . . , k, there exists a map from the standard (k − 1)-simplex to the face
of the standard k-simplex not containing the standard basis vector ei, which maintains the
order of the vertices of the (k − 1)-simplex. Composing this map with a singular k-simplex
produces a singular (k − 1)-simplex, σi, that is referred to as the kth face of σ. This also
allows us to define the boundary operator ∂ = ∂k : Ck(X) → Ck−1(X) by linearly extending
the action on simplices:

∂k(σ) =
k∑

i=0

(−1)iσi,

to all chains.

The kernel of ∂k forms the set of k-cycles, denoted by Zk(X), while the image of ∂k+1

is the set of k-boundaries, denoted by Bi(X). An elementary calculation (c.f. [Hat02,
Lemma 2.1, p. 105]) shows that the composition ∂k−1∂k = 0, implying that for every k,
Bk(X) ⊆ Zk(X).

This means we can represent the groups Ck(X) and the maps ∂k as a chain complex :

(2) · · · ∂3−→ C2(X)
∂2−→ C1(X)

∂1−→ C0(X)
∂0−→ (0).

10



Definition 2.2. The kth singular homology group of X is the quotient

Hk(X) = Zk(X)/Bk(X),

of the k-cycles by the k-boundaries.

The chain groups are complex vector spaces. The homology groups, which are quotients
of subspaces of the chain groups, are therefore also vector spaces. In fact, the homology
groups for every space we will encounter will be finite dimensional complex vector spaces.
The kth Betti number of X, denoted by bk(X), is the dimension of Hk(X).

Remark 2.1. Strictly speaking, we have defined singular homology with complex coef-
ficients. The conventional approach, as developed in [Hat02], employs integer coefficients.
In this approach, a k-chain is initially defined as an integer linear combination of singular
k-simplices, leading to the homology groups being finitely generated abelian groups.

Utilizing complex coefficients often simplifies computations, while retaining the ability
to capture the free part of the abelian group through the Betti numbers.

2.1.1. Relative Homology. If U is a subset of a topological space X, then denote by Ck(A)
the set of k-chains of X all of whose simplices take values in A. Then the boundary of a
k-chain in Ck(A) is a (k − 1)-chain in Ck−1(A). Therefore, the boundary operator descends
to a map

∂k : Ck(X)/Ck(A) → Ck−1(X)/Ck−1(A),

between the quotients, that we will call the groups of chains of X relative to A. We can
define the relative k-cycles as the kernel of ∂k.

Definition 2.3. The kth homology group of X relative to A is defined as the quotient

Hk(X,A) = ker ∂k/im∂k+1,

of the relative k-cycles by the relative k-boundaries. Note that when A is empty, the relative
homology groups are the usual homology groups.

2.2. Functoriality. Consider pairs of topological spaces (X,A) and (Y,B), where A ⊂
X and B ⊂ Y . We use the shorthand f : (X,A) → (Y,B) to mean that f is a continuous
function from X to Y , which maps the subset A into B. Composing f with any chain in X
gives a chain in Y , which induces a map between the chain groups of X and Y that commutes
with the boundary operators. This map descends to a map between the homology groups,
known as the pushforward of f , and denoted by f∗ : Hk(X,A) → Hk(Y,B). The pushforward
satisfies various desirable properties which can be easily checked:

(1) the pushforward of the identity map on a topological space is the identity map on
its homology groups,

(2) the pushforward of compositions is the composition of pushforwards.

In other words, singular homology defines a functor from the category of topological spaces
to the category of abelian groups.

11



2.3. Eilenberg-Steenrod axioms. Computing the homology groups of a topological
space from first principles is usually impractical, so we give a list of fundamental properties
of singular homology that for reasonably nice topological spaces completely characterize the
singular homology groups. These are the Eilenberg-Steenrod axioms

(1) (Dimension axiom) The zeroth homology group of a space with a single point is
isomorphic to C, while all higher homology groups are trivial.

(2) (Homotopy axiom) If two continuous maps are homotopic to each other, then their
pushforwards are equal. This implies, in particular, that two topological spaces with
the same homotopy type have the same homology groups.

(3) (Additivity axiom) If a topological space X is the topological sum of subspaces Xa,
then the homology groups of X are direct sums of the homology groups of the Xa.

(4) (Long exact sequence) Pushing forward the inclusions (A,∅) → (X,∅) and (X,∅) →
(X,A) gives a long exact sequence

· · · → Hk(A)
i∗−→ Hk(X) → Hk(X,A) → Hk−1(A) → · · ·

in homology.

(5) (Excision axiom) If U is a subset of A with closure contained in the interior of A,
then the inclusion (X − U,A− U) → (X,A) induces an isomorphism

Hk(X − U,A− U)
∼−→ Hk(X,A),

between the homology groups.

Example 5. Euclidean space Rn is contractible, so the homotopy axiom implies that its
homology groups coincide with the homology groups of a one point space. By the dimension
axiom, H0(Rn) = C, while Hk(Rn) = 0 for all k larger than 0.

Example 6. Consider a convex neighborhood U of the origin in Rn, and let k > 1. The
convexity of U ensures that the closure of Rn − U is contained in Rn − {0}. Excising this
set, we obtain Hk(Rn,Rn − {0}) = Hk(U,U − {0}).

As U is contractible, Hk(U) = 0. Consequently, by the long exact sequence in homology,
the homology groups Hk(U,U −{0}) and Hk−1(U −{0}) are isomorphic. Further, the latter
is isomorphic to Hk−1(S

n−1) by the homotopy axiom. In conclusion, Hk(Rn,Rn − {0}) =
Hk−1(S

n−1).

Example 7. In [Hat02], it is shown that Hk(Sn) = Hk−1(Sn−1) for all k and n. So, we
can deduce that H0(S

n) = Hn(Sn) = C, while all other homology groups vanish.

By the previous example, this also implies that Hn(Rn,Rn − {0}) = C, while the other
groups vanish.

12



CHAPTER 2

Combinatorial Preliminaries

The objective of this chapter is to familiarize the reader with certain important combi-
natorial objects, establish relevant notation and definitions, and compile essential results for
subsequent chapters.

1. Partially ordered sets

A partially ordered set P (or poset, for short) is a set, together with a binary relation
denoted ≤ (or ≤P when there is a possibility of confusion), satisfying the following three
axioms:

(1) For all t ∈ P , t ≤ t (reflexivity).
(2) If s ≤ t and t ≤ s, then s = t (antisymmetry).
(3) If s ≤ t and t ≤ u, then s ≤ u (transitivity).

We say that two elements s and t of P are comparable if one of s ≤ t or t ≤ s is true;
otherwise s and t are incomparable.

Example 8. The set of natural numbers form a poset ordered as usual. For example,
2 ≤ 3 and 4 ≤ 4. In particular, for any finite n, the set [n] = {1, 2, . . . , n} forms a finite
poset under this order.

Example 9. The set of divisors of any number n can also be ordered by divisibility. We
define i ≤ j if i divides j. For example, if n = 20, we will have 2 ≤ 4 ≤ 20.

Example 10. The set of all subsets of a given set can be ordered by inclusion, meaning
A ≤ B if every element of A is also in B. In general, any collection of sets can be ordered
by inclusion to form a poset: an example that will be particularly important is the poset of
all linear subspaces of a given vector space.

1.1. Basic Properties of Posets.

Definition 1.1. A function f : P → Q from a poset P to a poset Q is order-preserving
if s ≤ t in P implies that f(s) ≤ f(t). It is an isomorphism if it also has an order-preserving
inverse. Two posets P,Q are said to be isomorphic, denoted P ∼= Q if there is an isomorphism
from P to Q.

For example, if P (S) denotes the poset of all subsets of a finite set S ordered by inclusion,
then P (S) ∼= P (T ) if and only if S and T are of the same size.
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Definition 1.2. Analogously, a function f : P → Q is order-reversing if s ≤ t in P
implies that f(t) ≤ f(s). An order-reversing map is an anti-isomorphism if it also has
an order-reversing inverse. Two posets P,Q are said to be anti-isomorphic if there is an
anti-isomorphism from P to Q.

Definition 1.3. A subposet of a poset P , is a subset Q of P and a partial ordering of
Q inherited from the ordering of P . An interval [s, t] in P is the subposet corresponding to
the subset of all elements p such that s ≤ p ≤ t in P .

Definition 1.4. A chain (or totally ordered set or linearly ordered set) is a poset in
which any two elements are comparable. Thus the poset [n] of Example 8 is a chain. A
subset C of a poset P is called a chain if C is a chain when regarded as a subposet of P .

A poset Q is said to be a refinement of a poset P if there is an order preserving bijection
from P to Q. Visually, if we think of P and Q as having the same ground set, then ≤Q adds
extra order relations to ≤P . A linear extension of a poset P is a chain which refines P .

1.1.1. Hasse Diagrams. If s, t ∈ P , then we say that t covers s if s < t and no element
u ∈ P satisfies s < u < t. A finite poset P is completely determined by its cover relations.
The Hasse diagram of a finite poset P is the graph whose vertices are the elements of P ,
whose edges are the cover relations, and such that if s < t then t is drawn above s.

Example 11. The Hasse diagram of the poset of divisors of 20 (rf. Example 9) is

20

10 4

5 2

1

Figure 1. The poset of divisors of 20

1.1.2. Graded Posets. A rank function on a poset P is a function rk: P → N such that
rk(s) = 0 if s is a minimal element, and rk(t) = rk(s) + 1 if t covers s in P . If rk(s) = i, we
say that s has rank i. The Hasse diagram of a graded poset can be drawn so that for all i,
the rank i elements all have the same vertical coordinate.

Definition 1.5. A poset P equipped with a rank function is called a graded poset. The
rank-generating polynomial of a finite poset P is the polynomial

F (P, x) =
∑
s∈P

xrk(s).
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Example 12. All examples of posets we have seen are graded. The poset of all subsets
of a given set (see Figure 2) is graded, where the size of each subset is a rank function.

The poset of all divisors of a given number is graded by the rank function given by the
number of prime factors, counted with multiplicity.

123

12 13 23

∅

1 2 3

Figure 2. The poset of subsets of {1, 2, 3}

Example 13. The Tamari posets are a family of posets that cannot be graded.

Figure 3. The smallest Tamari poset having 5 elements

1.1.3. Lattices. If s and t are elements of a poset P , then an upper bound is an element
u ∈ P such that s ≤ u and t ≤ u. A least upper bound (or join) is an upper bound u
satisfying u ≥ v for any other upper bound v. This least upper bound, when it exists, is
unique and is denoted s∨ t (read as s join t). Similarly, one defines the greatest lower bound
(or meet) s ∧ t (read as s meet t) when it exists.

A poset L is said to be a lattice if every pair of its elements has both a unique meet and
a unique join.
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Example 14. Every example of a poset we have encountered till now is a lattice. For
instance, the poset of all subsets of a given set forms a lattice with meet being the intersection
and join being the union.

The poset of divisors of a given natural number is a lattice where the meet of two numbers
is their greatest common divisor, while join is their least common multiple.

The reader can check by inspection that the Tamari poset of five elements in Figure 3 is
also a lattice.

Example 15. The following Hasse diagram defines a poset which is not a lattice, as can
be easily seen.

Figure 4. A poset which is not a lattice

1.2. Constructing new posets.

1.2.1. Direct Products. If P and Q are posets, then the direct product of P and Q is
defined as the poset P × Q on the Cartesian product of the sets P and Q. In P × Q, the
order relation ≤ is defined such that (s, t) ≤ (s′, t′) if and only if s ≤ s′ in P and t ≤ t′ in Q.

It’s worth noting that due to this definition, P ×Q and Q×P are isomorphic, so we can
carry out the product in any order.

If P andQ are graded with rank-generating functions F (P, x) and F (Q, x), then P×Q is a
graded poset with rank function rk(s, t) = rkP (s)+rkQ(t) and F (P×Q, x) = F (P, x)F (Q, x).

1.2.2. Dual of a Poset. The dual of a poset is the poset P ∗ on the same set as P , but
such that s ≤ t in P ∗ if and only if t ≤ s in P . If P and P ∗ are isomorphic, then P is
called self-dual. The Hasse diagram of dual poset P ∗ is obtained by vertically reflecting (i.e.
reflecting about the horizontal axis) the Hasse diagram of the poset P .

Remark 1.1. The identity function is an anti-isomorphism from P to P ∗, so P is self-dual
if and only if it is anti-isomorphic to itself.

Example 16. The rank generating polynomial of any self-dual poset exhibits an inter-
esting property: if P is a self-dual graded poset with maximum rank n, then the number
of elements of rank i is equal to the number of elements of rank n − i. In particular, the
coefficients of F (P, x) form a palindromic sequence.

1.3. Bruhat Order. The symmetric group Sn denotes the set of all permutations
w : [n] → [n]. Any permutation w can be represented as a word w = w1w2 · · ·wn, with
wi being w(i). For example, 123456 is the identity permutation in S6.
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We define a partial order ≤ on Sn, called the Bruhat order. If v, w ∈ Sn are two
permutations, then say v ≤ w if for all i = 1, . . . , n, the subword v1 · · · vi when sorted is
term-by-term dominated by the subword w1 · · ·wi when sorted.

Figure 5. Bruhat Order on S4 (taken from [BB05, p. 21])

Example 17. Consider the permutations 136245 and 561423 in S6. Let us compare
their subwords:

sort(1) = 1 < 2 = sort(2)

sort(13) = 13 < 56 = sort(56)

sort(136) = 136 < 156 = sort(561)

sort(1362) = 1236 < 1456 = sort(5614)

sort(13624) = 12346 < 12456 = sort(56142).

So, 136245 < 561423 in Bruhat order. It is easily seen that the identity is the smallest
element with respect to the bruhat order, while the permutation w0 = n, n − 1 · · · 1 is the
largest.

Let w = w1 · · ·wn ∈ Sn, then an inversion in w is a pair i < j such that wi > wj. Define
the length of w to be the number of inversions in w. A simple calculation shows that the
length of the identity is zero, while the length of w0 is n(n− 1)/2.

Proposition 1.1. The symmetric group Sn equipped with the Bruhat order is a graded
poset with rank function given by the length of a permutation.

17



Observe that right multiplying a permutation w by w0 has the effect of replacing any
wi in the corresponding word w1 · · ·wn by n− wi + 1. This means that v ≤ w implies that
w0v ≥ w0w, and multiplication by w0 is an anti-isomorphism on Sn. This means that

Proposition 1.2. The Bruhat order is self-dual.

2. Diagrams and Tableaux

A partition λ = (λ1, λ2 . . .) is a weakly decreasing sequence of non-negative integers
containing only finitely-many nonzero terms. We will not distinguish between two sequences
which differ only by a string of zeroes at the end. For example, the sequences (3, 2, 0), (3, 2)
and (3, 2, 0, 0, 0) are all the same partition.

The nonzero λi are called the parts of λ, and the sum of the parts, denoted |λ|, is the
size of the partition. If |λ| = n, we say that λ is a partition of n, and write λ ⊢ n1

Sometimes it is convenient to describe a partition in exponential notation:

λ = 1m12m2 · · ·

means that mi many parts of λ equal i. For example, the partition (4, 3, 3, 2, 1, 1) will be
represented as 122324 in exponential notation.

A related notion to that of a partition is a composition. A sequence µ of positive integers
is said to be a composition of n if

∑
i µi = n. So, partitions of n can be viewed as special

compositions where the entries in the sequence weakly decrease.

If the sequences are allowed to have zero entries then they are called weak compositions.

2.1. Diagrams. A diagram of a weak composition µ may be formally defined as the
set of points (i, j) in Z2 for all j = 1, . . . , µi. In drawing such diagrams, we shall adopt the
convention, as with matrices, that the first coordinate i (the row index) increases as one goes
downwards, and the second coordinate j (the column index) increases as one goes from left
to right. For example, the diagram of the weak composition (5, 2, 0, 3) is

• • • • •
• •

• • •

.

1To insert the symbol ⊢ in a document use \vdash.
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It is usually convenient to draw diagrams with squares instead of points, in which case the
diagram is

,

consisting of five squares in the first row, followed by two squares in the second row, none
in the third row and three in the last row. We usually denote the diagram of a composition
µ by the same symbol µ.

Example 18. The diagram of the partition (5, 4, 4, 1) is

.

The conjugate of a partition λ is the partition λ′ whose diagram consists of points (i, j)
such that (j, i) belongs to the diagram of λ. So, the conjugate of the partition (5, 4, 4, 1) is
the partition (4, 3, 3, 3, 1) with diagram

.

2.2. Partial Order on Diagrams. A partial order can be defined on the set of all
weak compositions. We say µ ≤ µ′ if, after padding both sequences with enough zeros, we
have µi ≤ µ′

i for all i ≥ 1. This relationship is visually intuitive when considering diagrams:
µ ≤ µ′ if and only if the diagram of µ is contained within the diagram of µ′. Thus, we refer
to this order as the containment order, denoted by µ ⊆ µ′.

Example 19. Consider compositions (3, 1, 3) and (5, 4, 4, 1), then (3, 1, 3) ⊆ (5, 4, 4, 1),
as can be seen by the inclusion of the diagrams

⊆ .

By confining this ordering to the subset of all partitions, we derive a poset termed the
Young lattice. This lattice is graded, whereby partitions are organized based on their size.
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2.3. Tableaux. A tableau2 on a partition λ is a function from the squares of the diagram
λ to N. A tableau can be graphically represented as a filling of the squares of λ by their
respective images. For example,

(3)

3 2 8 8 8

1 1 9 1

7 6 5 4

6

is a tableau on the partition (5, 4, 4, 1). Suppose λ has size n, then the weight of a tableau
on λ is a weak composition µ = (µ1, . . .) such that for all i, µi is the number of entries of
the tableau which are equal to i. The weight of the tableau (3), is equal to the composition
(3, 1, 1, 1, 1, 2, 1, 3, 1).

Let us now define some special kinds of tableaux that will recur in the thesis.

Definition 2.1. A tableau is said to be weakly row increasing (or simply, row-weak) if
the entries in every row weakly increase on reading from left to right.

Example 20. The tableau in (3) is not weakly row increasing because the first row starts
with a 3 followed by a 2. On the other hand, the tableau

1 1 2 2 3

4 5 6 7

2 2 2 2

6

is weakly row increasing.

Definition 2.2. A tableau is said to be weakly row and column increasing (or simply
weak) if the entries in every row weakly increase when read from left to right and the entries
in every column weakly increase when read from top to bottom.

A tableau is said to be semistandard if it is weak and the entries strictly increase down
each column. A semistandard tableaux of weight (1, . . . , 1) (n times) is said to be standard.

2.3.1. Tableaux as chains. Suppose we have a row-weak tableaux on a partition λ with
weight equal to a composition µ. Then a handy trick is to view the tableaux as a chain in
the poset of weak compositions. Of course, for all i ≥ 1, the subset of squares of λ that have
entries no greater than i is the diagram of some weak composition, and these diagrams form
an increasing sequences of diagrams.

Example 21. Consider the tableau given in Example 20. Then we can think of it as the
chain

⊆ ⊆ · · · ⊆ ⊆ .

2From the french word for table. Its plural form is tableaux.
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If the tableau is a weak tableau, then we obtain a chain of Young diagrams. In fact, a
standard tableaux is a maximal chain in the Young lattice.

2.3.2. The column-sort. We define an operation on the collection of tableaux, known as
the column-sort, which simply sorts the rows of a tableau and makes them weakly increase
when read from top to bottom. If we start with a row-weak tableau and then apply column-
sort, obviously the resulting tableau will have weakly increasing columns. However, it’s not
immediately clear if the rows will also continue to remain weakly increasing.

Example 22. Let us apply column-sort to the tableau given in Example 20:

1 1 2 2 3

4 5 6 7

2 2 2 2

6

column−sort−−−−−−−→

1 1 2 2 3

2 2 2 2

4 5 6 7

6

.

Here, the resulting tableau has weakly increasing entries in each row and column.

Proposition 2.1. The operation column-sort maps row-weak tableaux into weak tableaux.

3. Symmetric Polynomials

The symmetric group Sn acts on the polynomial ring F[x1, . . . , xn] by permuting the
variables x1, . . . , xn. A polynomial f(x1, . . . , xn) is said to be a symmetric polynomial if
w · f = f for all w ∈ Sn, i.e. if it is a fixed point for this action.

A basis of the space of symmetric polynomials is given by the monomial symmetric
polynomials mλ. For any partition λ, which can be written in exponential notation as
1m12m2 · · · , denote by xλ = xλ1

1 · · ·xλn
n . The polynomial mλ is defined as

mλ(x1, . . . , xn) =
1

m1!m2! · · ·
∑
w∈Sn

w · xλ.

Another basis of the space of symmetric polynomials is the collection of complete homo-
geneous polynomials indexed also by partitions. For any r ≥ 0, we define the polynomials

hr(x1, . . . , xn) =
∑

1≤i1≤···≤ir≤n

xi1 · · ·xir .

In other words, hr is the sum of every possible monomial of degree r. Then for a partition
λ, define hλ to be the product hλ1hλ2 · · · of the polynomials corresponding to the parts of λ.

We can define a scalar product ⟨·, ·⟩ on the space of symmetric functions with respect to
which themλ and the hλ are dual bases. This is known as the Hall scalar product. This much
is all we will need for our purposes, but a complete treatment of the theory of symmetric
functions can be found in [Mac15, Ber09].
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CHAPTER 3

Paving a Variety by Affines

1. Poincaré Duality & Fundamental Classes

The Poincaré Duality theorem [Hat02, Theorem 3.30, p. 241] states that for all k, the
kth homology groups and the (n − k)th cohomology groups of any n-dimensional oriented,
compact, real manifold are isomorphic. In particular, if N is connected, the zeroth cohomol-
ogy group being isomorphic C implies that the nth homology group is also isomorphic to C.
This means that there exists a generator, denoted [N ], for the nth homology group called
the fundamental class of N .

If M is an m-dimensional submanifold of N , then the fundamental class [M] which
generates the mth homology group of M. The inclusion of M in N pushes the class [M]
forward to themth homology group ofN . Roughly speaking, this allows us to locate elements
in the homology groups of M by identifying submanifolds of N .

1.1. Borel-Moore Homology. If a manifold is not compact, a fundamental class need
not exist. For example, Rn is an n-dimensional manifold. However, since it is contractible,
its nth homology group is trivial. We can fix this by introducing a version of homology
where Poincaré duality is ensured for every manifold.

Definition 1.1. Let X be a topological space that is embedded as a closed subspace of
an m-dimensional oriented real manifold M. The Borel-Moore homology groups, denoted
H i(X), are defined by the formula

H i(X) = Hm−i(M,M−X).

For an m-dimensional oriented manifold X, if we set M = X, we obtain the equation
H i(X) = Hm−i(X) for Borel-Moore homology. In particular, any oriented (not necessarily
compact) manifold has a fundamental class in Borel-Moore homology.

Proposition 1.1. When X is an m-dimensional compact, oriented manifold, the Borel-
Moore homology coincides with the singular homology.

Proof. We have seen that the Borel-Moore homology groups H i(X) are equal to the
singular cohomology groups Hm−i(X), but because X is compact, these are isomorphic to
Hi(X) by Poincaré duality. □
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2. Fundamental classes of algebraic varieties

Complex projective spaces and open sets of complex projective spaces taken together with
the Euclidean topology are real manifolds. By Hilbert’s basis theorem, a projective algebraic
variety X in projective m-space is defined as the zero set of a finite set of homogeneous
polynomials, say f1, . . . , fr, on CPm. In other words, X is the level set F−1(0) of 0 for the
smooth function F = (f1, . . . , fr) : CPm → Cr. Similarly, every quasi-projective algebraic
variety can be viewed as the level set for a smooth function on an open set in complex
projective space.

According to the constant rank level-set theorem [Tu11, Theorem 11.2, p. 116], if F =
(f1, . . . , fm) : N → M is a smooth map of manifolds, and p is an element of M such that
the Jacobian matrix dF (p) of F

dF (p) =


∂f1
∂x1

(p) · · · · · · ∂f1
∂xn

(p)
...

...
...

...
∂fm
∂x1

(p) · · · · · · ∂fm
∂xn

(p)

 ,

has constant rank in the level set F−1(p) in N , then F−1(p) is a submanifold of N . This
motivates the following definition.

Definition 2.1. A quasi-projective variety X defined as the vanishing set of polynomials
f1, . . . , fr in some open set of projective space is said to be smooth if Jacobian matrix of
F = (f1, . . . , fr) has the same rank on all points of X.

It immediately follows that any smooth, quasi-projective variety is a smooth manifold,
and when the variety is oriented, compact and connected, it has a fundamental class. The
essential feature of Borel-Moore homology is that it extends the existence of a fundamental
class to any algebraic set, without requiring smoothness, compactness or irreducibility.

Proposition 2.1. Let X be a projective algebraic set of dimension k. Then the 2kth
Borel-Moore homology group has a generator for each k-dimensional irreducible component
of X, while the higher Borel-Moore homology groups vanish.

Proof. Refer to [Ful97, Lemma 4, p. 219]. □

3. Affine Paving

The homology groups of various familiar topological spaces have been computed, for
example, in [Hat02]. Let us describe them and make some important observations.

Example 23 (Spheres). A real n-sphere Sn is defined as the zero locus of the polynomial
x20 + · · ·+ x2n − 1 over R. As we have have seen in Example 7, the zeroth and nth homology
groups of Sn are isomorphic to Z, while the remaining homology groups are trivial.
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The sphere is the union of the singleton consisting the basis vector en and its complement.
The complement is a subvariety which is isomorphic, as a variety, to an Rn via stereographic
projection. Furthermore, the closure of the complement adds back the point (1, 0, . . . , 0),
which can itself be viewed as R0. So, Sn can be decomposed into affine spaces, one of
dimension n and one of dimension zero. Interestingly, for each non-trivial homology group,
there is an affine space of the respective dimension.

Figure 1. Stereographic Projection of S2

Example 24 (Projective Space). The complex projective n-space CPn is a 2n-dimensional
real manifold. The odd numbered homology groups of CPn are all trivial, while the even
numbered ones from 0 to 2n are isomorphic to C.

The space CPn can also be decomposed into subvarieties, one for each i = 0, 1, . . . , n,
depending on the first nonzero homogeneous coordinate of any point. The ith subvariety
will be isomorphic to an (n − i)-dimensional complex affine space, which is the same as
R2(n−i). As should be evident, the ranks of the homology groups are again reflected in the
decomposition of the variety into affine spaces.

The observation in Examples 23 and 24 can be explained by means of a phenomenon
known as an affine paving of a variety. The following version is due to Fulton [Ful97,
Lemma 6, p. 222].

Definition 3.1. An affine paving of an algebraic variety X is a filtration ∅ = X0 ⊂ · · · ⊂
Xr = X, satisfying, for all i = 1, . . . , r, Xi −Xi−1 is isomorphic to an affine space.

Lemma 3.1. If a projective algebraic variety X has an affine paving, then for each i, the
Betti number b2i is equal to the number of affine spaces that are isomorphic to Ci, while the
odd Betti numbers are zero.

Before we dive into proving Lemma 3.1, let’s see what happens to the long exact sequence
in homology when working with Borel-Moore homology.
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Lemma 3.2. If U is open in X, and Y is the complement of U in X, then there is a long
exact seqeunce

(4) · · · → H i(Y ) → H i(X) → H i(U) → H i−1(Y ) → H i−1(X) → H i−1(U) → · · · ,
in Borel-Moore homology.

Proof. See [Ful97, Lemma 3, p. 219]. The idea of the proof is that if X can be embed-
ded as a closed subspace of an orientable manifold M, then M−Y is an orientable manifold
containing U as a closed subspace. Then, this is the long exact sequence in cohomology
applied to M−X ⊂ M− Y ⊂ M. □

Proof of Lemma 3.1. Let X0 ⊂ · · · ⊂ Xr = X be the affine paving and let Up be
the difference Xp − Xp−1. We first argue by induction on p that the odd Betti numbers
of Xp are zero. Assuming the result for p − 1, Xp−1 and Up have trivial homology in odd
dimensions. Plugging these into the long exact sequence (4), we deduce that Xp must also
have odd homology trivial. As a result, its Betti numbers are also zero in odd dimensions.

Similarly, for each i, we argue by induction on p that b2i(Xp) is equal to the number of
Uj isomorphic to Ci, given j ≤ p. The vanishing of odd homology for all involved spaces
implies the existence of short exact sequences

0 → H2i(Xp−1) → H2i(Xp) → H2i(Up) → 0,

which means that H2i(Xp) = H2i(Xp−1)⊕H2i(Up). By induction, the assertion follows. □

Definition 3.2. Let P be a finite graded poset with rank function rk. A projective
algebraic variety X is said to have an affine paving over P if there exist subvarieties Ua of
X indexed by elements of P such that

(1) X is the disjoint union of the Ua,
(2) each Ua is isomorphic to the affine space Crk(a), and
(3) the closure Ua contains the subvarieties Ub whenever b ≤ a in P .

Theorem 3.3. Let P be a finite graded poset and let X be a projective algebraic variety
with an affine paving over P . Then the odd Betti numbers of X are zero, while for each i,
the Betti number b2i(X) is equal to the number of elements in P of rank i.

Proof. Choose a linear extension P∗ of P (e.g., by arbitrarily ordering elements of the
same rank). If P has k elements, label its elements a1, . . . , ak so that i ≤ j implies that
ai ≤ aj in P∗. The subvarieties Xi =

⋃
j≤i

Uaj define an affine paving of X, and so we can

apply Lemma 3.1. □
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CHAPTER 4

Grassmannians

Grassmannians are geometric spaces that parametrize all possible linear subspaces of
a given dimension in a vector space. The study of these spaces can be traced back to
nineteenth century enumerative geometry, which seeked answers to questions such as “How
many lines intersect two given lines and a point in Euclidean space”. These can be re-
cast into understanding the intersections of certain subspaces of the Grassmanian, known as
Schubert varieties. As we will discover in this chapter, Schubert varieties have a rich geomet-
ric structure that can be completely described by means of combinatorial objects known as
partitions. This makes them amenable to studying various important geometric phenomena
such as homology and smoothness etc.

1. The Plücker Map

Let us fix a field F, and let V = Fn be an n-dimensional vector space with a standard
basis {e1, . . . , en}. The d-dimensional Grassmannian, denoted by Gd(V ), is the set of all
d-dimensional linear subspaces of V . For d = 1, we obtain the set of lines in V , which is the
projective space PV associated to V .

Let us denote by C(d, n) the set of all d-subsets of [n]; we will often think of a set s
in C(d, n) as being an increasing sequence s1 < s2 < · · · < sd of its elements. If W is a
d-dimensional subspace of V , then the exterior power ∧dW is a one-dimensional subspace
of ∧dV . Consequently, we can view W as a point in P ∧d V . The space ∧dV has a basis
labelled by elements of C(d, n): each basis element es = es1 ∧· · ·∧esd is formed by taking the
wedge product of d standard basis vectors chosen from the subset s specified by the index.
Not distinguishing a vector from its coordinates with respect to this basis identifies P ∧d V

with P(nd)−1, which gives the Plücker map

φ : Gd(V ) → P(nd)−1.

Suppose that W is in Gd(V ), then φ(W ) is the point [w1 ∧ · · · ∧ wd] in P ∧d V for any
ordered basis {w1, . . . , wd} of W . Let us represent the basis as rows of a d× n matrix

(5)


w11 w12 · · · · · · w1n

w21 w22 · · · · · · w2n

· · · · · · · · · · · · · · ·
wd1 wd2 · · · · · · wdn


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with entries defined by wi =
∑

j wijej. Then the homogeneous coordinates of φ(W ) in P∧dV

are the d× d minors of the matrix (wij), which we denote

Ps = det(wisj)1≤i,j≤d, s = s1 < · · · < sd.

These are called the Plücker coordinates of W . In what follows we will use the notation
Ps1···sd even when the si do not form an increasing sequence.

Example 25. Suppose that U is the two-dimensional subspace of C3 spanned by the
rows of the 2× 3 matrix: (

1 0 3
−1 2 1

)
.

Let us compute the homogeneous coordinates of ϕ(U) in the projective space P2:

ϕ(U) =

[
det

(
1 0
−1 2

)
, det

(
1 3
−1 1

)
, det

(
0 3
2 1

)]
= [2, 4,−6] = [1, 2,−3].

Proposition 1.1. The map ϕ is injective.

Proof. Suppose W is a d-dimensional subspace of V . Given φ(W ), we can recover W
as the kernel of the map from V to ∧d+1V which takes a vector v to its wedge product with
some representative of φ(W ) in ∧dV . To see this, let us choose an ordered basis of V such
that the first d basis vectors w1, . . . , wd span W . Then the map sends a vector v to some
scalar multiple of v ∧ w1 ∧ · · · ∧ wd. If v is in the kernel, expressing it in terms of the basis
shows that it must be spanned by w1, . . . , wd. □

Proposition 1.2. The image of ϕ is a closed subset of ∧dV .

We will need the following lemma to show this.

Lemma 1.3. An element η ∈ ∧dV can be expressed as a wedge product of d vectors in
V if and only if the kernel of map Φη : V → ∧d+1V , which sends v to v ∧ η has dimension at
least d.

Proof. If η = w1 ∧ · · · ∧ wd, then the vectors w1, . . . , wd are in the kernel of Φη. This
means that the kernel has dimension at least d. To establish the reverse direction, let’s
assume that the kernel contains d linearly independent vectors, which we can conveniently
take as the first d standard basis vectors without loss of generality. Expressing η with respect
to this basis, first we wedge it with e1. Since this must be zero, this allows us to deduce
that the coefficients of the basis vectors es corresponding to subsets not containing 1 must
be zero. Repeating this process with e2, . . . , ed, we arrive at the conclusion that the only
basis vector with nonzero coefficients is e1 ∧ · · · ∧ ed. In other words, η = ce1 ∧ · · · ∧ ed for
some nonzero scalar c. □

Proof of Proposition 1.2. We will find a collection of homogeneous polynomials in
the Plúcker coordinates such that the Grassmannian corresponds to the set of points where
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the polynomials vanish. We have a linear map

Φ: ∧d V → Hom(V,∧d+1V )

which sends η ∈ ∧dV to the map Φη as defined in Lemma 1.3. Here, we interpret the
space Hom(V,∧d+1V ) as the space of n×

(
n

d+1

)
matrices. By Lemma 1.3, the Grassmannian

corresponds to the set of points whose image has rank at most n− d, or in other words, the
set of points defined by the vanishing of all (n− d+ 1)× (n− d+ 1) minors of their image
under Φ. These minors are all homogeneous polynomials in the Plücker coordinates, and as
a result, Gd(V ) is closed. □

The Plücker map is an embedding of the Grassmannian as a projective algebraic subset
of P ∧d V . We will show by the end of this chapter that it is indeed a projective variety.

Remark 1.1. The collection of homogeneous polynomials we found in the proof of Propo-
sition 1.2 does not generate the full homogeneous vanishing ideal of the Grassmannian. An
interested reader can read about the Plücker relations, a collection of quadratic polynomials
which generate the ideal, in [Man01, Section 3.1.3].

2. Schubert Cells

The projective space P∧d V can be divided into subsets Us, as s varies over all d-subsets
of [n], depending on what the index of the first nonzero homogeneous coordinate of a point
is. A Schubert cell Ωs is defined as the intersection of the subset Us with the Grassmannian.
As a result, they are locally closed subsets of P ∧d V and the Grassmannian has a partition

Gd(V ) =
⊔

s∈C(d,n)

Ωs,

into the Schubert cells.

2.0.1. Canonical Bases. We have defined Schubert cells as certain natural subsets of the
Grassmannian viewed as a subset of projective space, sure. However, an obvious question
arises: What subspaces do these points correspond to? Can we provide an equally natural
description of these subspaces?

Definition 2.1. An ordered basis {w1, . . . , wd} of W is a canonical basis if (wij) is a
matrix in reduced row echelon form, i.e. if there exists a sequence 1 ≤ c1 < · · · < cd ≤ n,
such that (1) the entry wij = 0 whenever j < ci, and (2) wicj = 1 whenever i = j, and 0
otherwise.

Since every matrix corresponds to a unique matrix in reduced row echelon form, all
subspaces have a unique canonical basis. Therefore, the indices c1, . . . , cd are also uniquely
determined, and are called the set of pivots of the subspace or the basis. We will often also
refer to the column number of any vector’s first nonzero entry as its pivot.
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Example 26. Suppose U is the two-dimensional subspace of C4 spanned by the rows of
the 2× 4 matrix (

−1 2 −1 3
2 −4 2 1

)
.

The point ϕ(U) has Plücker coordinates equal to [0, 0, 1, 0,−2, 1], which implies that U is an
element of the Schubert cell Ω{1,4}.

To find the canonical basis of U , we can put the above matrix into its reduced row echelon
form: (

1 −2 1 0
0 0 0 1

)
,

This matrix has pivot set equal to {1, 4}, which is intriguingly also the index of the Schubert
cell which contains U .

2.0.2. Partial Order on C(d, n). The set of d-subsets of n can be made into a poset by
defining r ≤ s if the sequence s is termwise larger than the sequence r. In other words, if
r = {r1 < · · · < rd} and s = {s1 < · · · < sd}, then ri ≤ si for all i = 1, . . . , d.

Example 27. Suppose r = {1, 3, 5}, s = {2, 3, 6} and t = {1, 2, 6}. Then r ≤ s and
t ≤ s. However, r and t are not comparable.

Lemma 2.1. The lexicographic order is a refinement of ≤. In particular, if r precedes s
lexicographically, then r ̸≥ s.

Proof. If r precedes s lexicographically, then there is some i for which ri < si, so it
cannot be that r ≥ s. □

Lemma 2.2. Suppose W ∈ Gd(V ) has pivot set equal to s, then the Plücker coordinate
Pr is zero whenever r ̸≥ s.

Proof. Once again, let us represent the canonical basis of W as the rows of a d × n
matrix, as in (5). In each column numbered 1, . . . , si − 1, all entries except the the first
i− 1 are zero, thus generating a subspace of at most i− 1-dimensions in Fi. Now, suppose
that r ̸≥ s, then there is an i such that ri < si. This implies that the first i columns of the
submatrix with columns numbered 1, . . . rd must be linearly dependent. This ensures that
the Plücker coordinate Pr, being the determinant of the submatrix, must be zero. □

On the other hand, a similar argument using canonical bases shows that the coordinate
indexed by the pivot set must be non-zero 1. So we can deduce the following from Lemmas
2.1 and 2.2.

Proposition 2.3. The points of a Schubert cell Ωs correspond exactly to subspaces
W ∈ G(d, V ) with pivots equal to s.

1The reader should verify these for Example 26.
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2.1. Affine-ness of Cells. In preparation of investigating the geometry of the Schubert
cells let us recast some of what we have discussed in more geometric terms. Define V d =
V × · · · × V (d times) to be the set of d-tuples of vectors in V . Viewing as d × n matrices
with entries in k identifies V d with the affine dn-space Ad×n. For every s ∈ C(d, n), the
reduced row echelon form matrices with pivots s define a linear subvariety of V d:

Es = {(xij) ∈ V d : xij = 0 if i ≤ si and xisj = δij},
where δij is 1 if i = j and zero otherwise. Similarly, we can think of the wedge product as a
map

ϖ = ϖd : V
d → ∧dV

defined by (v1, . . . , vd) 7→ v1 ∧ · · · ∧ vd. If pd = p : ∧d V − {0} → P ∧d V is the usual
projection map, then the Plücker embedding of the Grassmannian can be thought of as the
composition ϖp.

Example 28. Suppose n = 5 and d = 3, then every element of V d can be represented
by a matrix x11 x12 x13 x14 x15

x21 x22 x23 x24 x25
x31 x32 x33 x34 x35

 .

Suppose we have a subset S = {1, 3, 4} ∈ C(3, 5), then a generic element of ES is a matrix
of the form 1 ∗ 0 0 ∗

0 0 1 0 ∗
0 0 0 1 ∗

 ,

where a ∗ can be replaced by any field element.

Proposition 2.3 is then saying that the morphism pϖ is a bijection from the set of reduced
row echelon matrices Es to the Schubert cell Ωs. Turns out, we can say more.

Theorem 2.4. The map pϖ : Es → Ωs is an isomorphism of varieties.

warm-up 1. To prove Theorem 2.4, we just need to find a morphism inverse to pϖ. Let
us first warm up with the case of s = {1, . . . , d}, where a generic element of Es is of the form

(6)


1 0 · · · · · · 0 x1,d+1 · · · x1,n
0 1 · · · · · · 0 x2,d+1 · · · x2,n
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · · · · 1 xd,d+1 · · · xd,n

 .

Then, we obtain among the Plücker coordinates, P1,...,i−1,j,i+1,...,d = xi,d+j. This gives rise
to the required inverse, and so Ω1,...,d is isomorphic to E1,...,d.

Proof of Theorem 2.4. We can easily permute the columns of every matrix in Es so
that the the pivot columns are in positions 1, . . . , d. Every entry in a pivot column except
the 1 is zero, so this operation transforms all the matrices into the form (6), while the
Plücker coordinates might undergo shuffling and sign changes. However, these changes can
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be precisely described by the permutation applied. Consequently, we are still able to recover
the matrix entries as Plücker coordinates, as discussed in warm-up 1. □

The sets Es are affine spaces. A direct implication of Theorem 2.4 is that Schubert cells
are isomorphic to affine spaces. Consequently, they are locally closed, irreducible (due to
the irreducibility of affine spaces), subsets of the Grassmannian. In other words, they are
subvarieties of the Grassmannian.

2.1.1. Partitions. The dimension of these affine spaces Es can be computed by counting
the free entries (represented by the ∗’s in Example 28) in the respective matrices. The
number of ∗’s in the ith row is λi = (n− d)− si + i and λ = (λ1, . . . , λd) is a partition.

The correspondence s ↔ λ establishes a bijection between the set of d-subsets of [n] and
the set of partitions whose Young diagrams fit within a d × (n − d) rectangle, the Young
diagram of the partition dn−d. As previously discussed, this set is the interval [∅, dn−d] in
the Young lattice, and the bijection is actually an anti-isomorphism of posets.

The upshot is that we can index the Schubert cells by partitions.

Theorem 2.5. For every partition λ ⊆ dn−d, the Schubert cell Ωλ
∼= A|λ| is isomorphic

to an affine space of dimension equal to the size of the partition.

3. Schubert Varieties

Schubert varieties Xs are defined as the closures of the Schubert cells Ωs in P∧dV . Given
that the Schubert cells are quasi-projective varieties, this implies that Schubert varieties, as
their name suggests, are projective algebraic varieties.

Proposition 3.1. For all s ∈ C(d, n), we have Xs =
⊔
r≥s

Ωr.

We will show this by first locating for all r ≥ s, the Ωr in Xs. We put

Dr = {(xij) ∈ V d | xij = 0 if j < ri} and

E′
r = {(xij) ∈ Dr | xiri ̸= 0}.

Observe that any matrix in E′
r has pivot set equal to r, so its image under pϖ is also equal

to the Schubert cell Ωr. Moreover, the closure E
′
r in V d is Dr and the set Ds contains the

sets E′
r whenever r ≥ s.

Lemma 3.2. Suppose r > s are two d-subsets of [n]. Then we have the inclusion Ωr ⊆ Xs.

Proof. This follows simply from the observations made above. Because r ≥ s, the set
E′
r is contained in the set Ds. Then we apply pϖ:

Ωr ⊆ p(ϖDs − {0})
= p(ϖE′

s − {0}).
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Recall that under a continuous function, the image of the closure of a set is contained in the
closure of the image of that set. Because pϖ is continuous, we get

Ωr ⊆ pϖE′
s = Ωs = Xs,

as claimed. □

Next, we show that the Schubert variety XS does not intersect the cells Ωr when r ̸≥ s.
Because the Schubert cells partition the Grassmannian, this would imply Proposition 3.1.

Lemma 3.3. Suppose r, s ∈ C(d, n) and r ̸≥ s. Then the intersection Ωr ∩Xs is empty.

Proof. Since r ̸≥ s, the sth Plücker coordinate of every point in the Schubert cell Ωs

is zero. This means that the cell is contained in the closed subset Z(Ps), defined by the
vanishing of the sth coordinate. Consequently, the Schubert variety Xs, its closure, is also
contained in Z(Ps).

On the other hand, the rth Plücker coordinate of any point in the Schubert cell Ωr cannot
be zero, as shown in Lemma 2.1. Hence, the intersection ΩB ∩XS must be empty. □

Corollary 3.4. Suppose r, s ∈ C(d, n). The following are equivalent:

(1) r ≤ s,
(2) Xr ∩ Ωs ̸= ∅,
(3) Xr ⊇ Xs.

The subset {1, . . . , d} is the smallest element of C(d, n), which means

X1,...,d =
⊔

s∈C(d,n)

Ωs = Gd(V ).

In particular, Gd(V ) is a Schubert variety. We have finally shown that

Theorem 3.5. The Grassmannian is a projective variety.

4. Betti numbers of the Grassmannian

The Schubert decomposition of the complex Grassmannian is a partition of the space
into affine spaces indexed by partitions, which are elements of a graded poset [∅, dn−d].
Furthermore, Proposition 3.1 can be restated when we label the Schubert cells and Schubert
varieties by partitions as follows. For all λ ⊆ dn−d,

(7) Xλ =
⊔
µ⊆λ

Ωµ.

These together imply that the Schubert decomposition is an affine paving over [∅, dn−d].
So, the Grassmannian has trivial Betti numbers in odd dimensions, while its 2ith Betti
number is equal to the number of partitions of size i contained in dn−d.
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Example 29. When n = 5 and d = 2, the Betti numbers of the Grassmannian are
computed below:

b12 = 1

b10 = 1

b8 = 2

b6 = 2

b4 = 2

b2 = 1

∅ b0 = 1

Therefore, the Poincaré polynomial of the Grassmannian G2(V ) is 1+ t+2t2+2t3+2t4+
t5 + t6.
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CHAPTER 5

Flag Varieties

Instead of subspaces of fixed dimension in a vector space, we now study chains of linear
subspaces, or flags. In studying the geometry of the collection of all flags we are led to their
decomposition into cells indexed this time by permutations. Particularly, we will see how
the combinatorics of permutations helps us in describing the enumerative and topological
features of these spaces.

1. Complete Flag Varieties

A flag of subspaces in a vector space refers to a sequence of subspaces where each subspace
is contained within the next one, starting from the zero subspace, going up to the entire space.
The type of a flag denotes the sequence of codimensions of each subspace relative to the next.
More precisely, a flag

W• = (∅ = W0 ⊆ W1 ⊆ · · · ⊆ Wm−1 ⊆ Wm = V ) ,

in V has type µ = (µ1, . . . , µm), where µi = dimWi − dimWi−1. A complete flag is a flag of
type (1, . . . , 1) (n times) and the complete flag variety is the set of all complete flags in V .

1.1. The Segre Embedding. Complete flags can be considered as elements of the
product G1(V )× · · · × Gn−1(V ). Thus, F(V ) ⊆ PV × · · · ×P ∧n−1 V . It’s noteworthy that
any product of projective spaces can be embedded into a larger projective space using the
Segre embedding.

Let V1, V2 be vector spaces of dimensions k, l, respectively. The map PV1 × PV2 →
P(V2 ⊗ V2) defined by sending ([v1], [v2]) → ([v1 ⊗ v2]) is well-defined and injective. This is
known as the Segre embedding. In coordinates, the map sends an ordered pair [a0, . . . , ak−1]×
[b0, . . . , bl−1] to [. . . , aibj, . . .] ordered lexicographically.

Lemma 1.1 ([Har77]). The image of the Segre embedding is an algebraic subset of
P(V1 ⊗ V2).

Let N =
(
n
1

)
+ · · ·+

(
n

n−1

)
− 1. We can Segre embed the product of projective spaces

ψ : PV × · · · ×P ∧n−1 V → P
(
V ⊗ · · · ⊗ ∧n−1V

) ∼= PN ,

and identify the complete flag variety F(V ) with its image under ψ in PN .

Proposition 1.2. The image ψ(F(V )) is an algebraic subset of PN .
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Proof. The proof is very similar to the proof of Proposition 1.2 and can be found in
[Gec03, Theorem 3.3.11]. □

The map ψ is the Plücker embedding of the complete flag variety and the homogeneous
coordinates of points of ψ(F(V )) are their Plücker coordinates. In this section we will show
that the image is irreducible and therefore has the structure of a projective variety. Hence-
forth, points of the flag variety will mean both the flags of subspaces and the corresponding
points in projective space.

1.2. Schubert Decomposition of the Flag Variety. The Plücker coordinates on the
flag variety are indexed by tuples of subsets of [n] ordered lexicographically, so that the ith
entry is a subset of size i. It easily follows from the description of the Segre embedding
that the image of any point in the product of the Schubert cells Ωsi is a point in the
projective space PN whose first nonzero homogeneous coordinate is indexed by the tuple
(s1, . . . , sn). Moreover, inclusion relations that are imposed among the subspaces of a flag
manifest themselves at the level of the indexing subsets as well.

Proposition 1.3. Let s1, . . . , sn−1 be subsets of [n] such that for all i = 1, . . . , n− 1, the
set si has size i. Then there is a flag W• such that Wi has pivot set si if and only if the sis
form an increasing sequence of subsets. That means that the subsets satisfy

∅ ⊂ s1 ⊂ · · · ⊂ sn−1 ⊂ [n].

Proof. Let us consider a flagW•, where for each i = 1, . . . , n−1, the subspaceWi has a
pivot set equal to si. The pivots are the column numbers containing the first nonzero entry
of each canonical basis vector. Since every vector in the subspace is a linear combination
of these basis vectors, their first nonzero coordinate must also appear in one of the columns
indexed by si. Furthermore, the inclusion Wi ⊂ Wi+1 implies that the subspace Wi+1 also
contains vectors with the first nonzero entry in positions indexed by the set si. Consequently,
si is contained in the set of pivots si+1 of Wi+1.

Conversely, for any increasing sequence of subsets, we can construct a flag W• such that
each Wi is spanned by basis vectors corresponding to elements of the subset si. Then Wi

will have pivot set equal to si. □

1.2.1. Schubert Cells. The natural action of the symmetric group Sn on [n] induces a
free and transitive action on the collection of increasing sequences of subsets. As a result,
there exists a bijective correspondence between Sn and the set of increasing sequences.

Let S be the sequence

∅ ⊆ {1} ⊆ {1, 2} ⊆ · · · ⊆ {1, . . . , n},
where the ith element is the subset {1, . . . , i}. The bijection can be explicitly described
as a permutation w being mapped to the sequence w · S, where the ith element is the set
{w(1), . . . , w(i)}. Henceforth, we will not distinguish between a permutation w and the
corresponding sequence wS, often denoting the Plücker coordinates by permutations as Pw.
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Example 30. If n = 5 , then the permutation 32514 ∈ S5 maps the increasing sequence

∅ ⊆ {1} ⊆ {1, 2} ⊆ {1, 2, 3} ⊆ {1, 2, 3, 4} ⊆ {1, 2, 3, 4, 5},
to the increasing sequence

∅ ⊆ {3} ⊆ {2, 3} ⊆ {2, 3, 5} ⊆ {1, 2, 3, 5} ⊆ {1, 2, 3, 4, 5}.
Definition 1.1. For each permutation w ∈ Sn, we define the Schubert cell Ωw as the

image under the Segre embedding of the set of complete flags whose set of pivots corresponds
to w under the bijection described above.

This gives the Schubert decomposition of the complete flag variety

F(V ) =
⊔

w∈Sn

Ωw.

Note that the Schubert cell Ωw is also the subset of points in PN where the first nonzero
Plücker coordinate is indexed by wS. As a result, they are locally closed subsets of PN .

1.2.2. The Dual Bruhat Order Sn. If v and w are two permutations in Sn, then for each
i = 1, . . . , n−1, we can compare the subsets {w(1), . . . , w(i)} and {v(1), . . . , v(i)} in C(i, n).
This gives rise to a partial order on Sn.

Definition 1.2. If v, w ∈ Sn, then v ≤ w if for all 1 ≤ i ≤ n− 1, we have

{w(1), . . . , w(i)} ≤ {v(1), . . . , v(i)} in C(i, n).

Example 31. Let n = 4 and we have permutations u = 1324, v = 4132 and w = 3412 in
S4 written in one line notation. Then v ≤ u and w ≤ u, but v and w are not comparable.

Remark 1.1. This partial order is dual to the Bruhat order we discussed in Section 2.
In particular, it is graded.

321

231 312

213 132

123

123

213 132

231 312

321

Figure 1. Bruhat and dual Bruhat orders on S3

Proposition 1.4. If v and w are permutations in Sn satisfying v ̸≤ w, then the Plücker
coordinate Pv of any flag in Ωw is zero.

Proof. Since v ̸≤ w, there exists an i for which {v(1), . . . , v(i)} ̸≥ {w(1), . . . , w(i)}
in C(i, n). Lemma 2.2 implies that the homogeneous coordinate indexed by the subset
{v(1), . . . , v(i)} of every subspace in the Schubert cell Ωw(1),...,w(i) is zero. This implies that
the Plücker coordinate Pv of every point in Ωw must also be zero. □
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1.3. Topology of the cells. A basis for a complete flag in V is an ordered basis of
V such that for all i = 1, . . . , n − 1, the first i basis vectors constitute a basis for the ith
subspace in the flag. We can represent a basis {w1, . . . , wn} of a flag W• as rows of an n× n
matrix 

w11 w12 · · · · · · w1n

w21 w22 · · · · · · w2n

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
wn1 wn2 · · · · · · wnn

 ,

with entries defined by wi =
∑

j wijej.

It’s important to note that row operations, such as scaling a row by a nonzero scalar or
adding to a row a multiple of any row above it, do not alter the flag generated by the matrix.
We begin with the first row and scale it appropriately to ensure that the first nonzero entry
becomes one. Then, for every row below the first one, we add a suitable scalar multiple of
the first row to eliminate all entries in the column corresponding to the leading one. This
process is repeated for subsequent rows, resulting in a matrix where the first nonzero entry
in each row is one, and every entry below a leading one in the same column is zero.

Indeed, for every i = 1, . . . , n − 1, the positions of the leading ones in the first i rows
correspond to the pivots of the subspaceWi. Consequently, the permutation w corresponding
to the Schubert cell containing the flag is encoded as the indices of the columns containing
the leading ones in each row.

Definition 1.3. Any complete flag in the Schubert cell Ωw has a unique canonical basis
{x1, . . . , xn} which satisfies

xiw(i) = 1 for all i = 1, . . . , n− 1, and

xij = 0 if j < w(i) or w−1(j) < i.
(8)

Example 32. Let us consider the flag in C4 generated by the rows of the 4× 4 matrix
0 −2 −4 0
2 −1 −4 −6
0 4 8 2
−1 0 4 1

 .

The row elimination procedure described above allows us to compute the canonical basis of
the flag, obtained as the rows of the matrix

0 1 2 0
1 0 −1 3
0 0 0 1
0 0 1 0

 .

The leading ones in each row (coloured red) form the permutation matrix of the permutation
2143, which means that the flag is an element of the Schubert cell Ω2143.
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Let us define V n = V × · · · × V (n times) as the set of n-tuples of vectors in V , or
equivalently, the affine space An×n whose elements are n×n matrices with entries in F. For
w ∈ Sn, the collection of canonical bases of flags in the cell Ωw can be viewed as the subset

Ew = {(xij) ∈ V n | xiw(i) = 1, xij = 0 if j < w(i) or w−1(j) < i}
of V n defined by the linear conditions given in (8). This makes it a linear subvariety of V n,
thus it is isomorphic to an affine space.

Suppose a tuple of vectors in V n forms a basis of a flag in V , then the computation of
the Plücker coordinates of this flag can be described in terms of the various affine spaces as
follows. We define a morphism between the two affine spaces

ϖ : V n → V ⊗ ∧2V ⊗ · · · ⊗ ∧n−1V

by sending any tuple in V n to a tensor where the ith component is computed by taking the
wedge product of the first i vectors. We also have the usual projection map

p : V ⊗ ∧2V ⊗ · · · ⊗ ∧n−1V → PN .

Then the Plücker embedding of the flag variety can be thought of as the composition pϖ.

Example 33. Suppose n = 4, then every element of V n can be represented by a matrix
x11 x12 x13 x14
x21 x22 x23 x24
x31 x32 x33 x34
x41 x42 x43 x44

 .

Suppose we pick a permutation 2143 ∈ Sn, then a generic element of Ew is a matrix of the
form 

0 1 ∗ ∗
1 0 ∗ ∗
0 0 0 1
0 0 1 0

 ,

where a ∗ can be replaced by any field element.

The discussion in the beginning of the section is then saying that the morphism ϖp
restricts to a bijection from the subvariety Ew to the Schubert cell Ωw.

Theorem 1.5. In fact, the map pϖ : Ew → Ωw is an isomorphism of varieties.

warm-up 2. To prove Theorem 1.5, we just need to find a morphism which is inverse
to pϖ. Let us first warm up with the case of when w is the identity permutation, where an
element of Ew is of the form

(9)


1 x12 · · · · · · · · · x1n
0 1 · · · · · · · · · x2n
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
0 0 · · · · · · 1 xn−1,n

0 0 · · · · · · 0 1

 .
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Then the Plücker coordinate indexed by the sequence of subsets

({1}, {1, 2}, . . . , {1, . . . , i− 1}, {1, . . . , i− 1, j}, {1, . . . , i+ 1}, . . . , {1, . . . , n}) ,

obtained by replacing the subset {1, . . . , i} in the sequence S with the subset {1, . . . , i −
1, j}, is equal to xij. This gives rise to the required inverse, and so when w is the identity
permutation, the Schubert cell Ωw is isomorphic to Ew.

Proof of Theorem 1.5. Applying the permutation w−1 to the columns of any matrix
in Ew moves the leading ones into the diagonal entries. If the entry in position (i, j) in the
resulting matrix is nonzero, then (i, w(j)) cannot satisfy the condition in (8), i.e. i ≥ j and
w(i) ≥ w(j).

In particular, all the nonzero entries must be above the diagonal, and so this operation
transforms all the matrices into the form (9), while the Plücker coordinates might undergo
shuffling and sign changes. However, these changes can be precisely described by the per-
mutation applied. Consequently, we are still able to recover the matrix entries as Plücker
coordinates, as discussed in warm-up 1. □

Another implication of the proof is that the affine spaces Es are of dimension equal to
the number of pairs j > i satisfying w(j) > w(i).

Definition 1.4 (depth of a permutation). A non-inversion in w is a pair j > i, such that
w(j) > w(i). The depth1 of a permutation w, denoted dep(w), is defined as the number of
non-inversions in w.

The depth of a permutation is the rank function for the dual Bruhat order.

According to Theorem 1.5, the Schubert cell Ωw is isomorphic to an affine space of
dimension dep(w). Consequently, they are locally closed, irreducible (due to the irreducibility
of affine spaces), subsets of the complete flag variety. In other words, they are subvarieties
of the complete flag variety.

Example 34. In Example 33, we saw that elements of E2143 are matrices of the form
0 1 ∗ ∗
1 0 ∗ ∗
0 0 0 1
0 0 1 0

 .

We can apply the permutation inverse to 2143 (which is 2143 itself) to the columns to obtain
1 0 ∗ ∗
0 1 ∗ ∗
0 0 1 0
0 0 0 1

 .

1Recall that the length of a permutation is the number of inversions.
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Note that the ∗s are now in the positions (1, 3), (1, 4), (2, 3), (2, 4) which are also the non-
inversions in 2143. So, the depth of 2143 is equal to 4.

2. Schubert Varieties

Schubert cells are locally-closed, irreducible subsets of PN , so their closures Xw = Ωw

are projective varieties. These are the Schubert varieties of the complete flag variety. The
following analogue of Proposition 3.1 can be proven.

Proposition 2.1. For all permutations w ∈ Sn the Schubert variety Xw is equal to the
disjoint union

⊔
v≤w

Ωv.

We will proceed in a manner identical to our proof of Proposition 3.1. Let us first locate
the Schubert cells Ωv for all permutations v ≤ w. Put

Dw = {(xij) ∈ V n | xij = 0 if j < w(i)} and

E′
w = {(xij) ∈ Dw | xiw(i) ̸= 0}.

Observe that the first i rows of any matrix in E′
w have pivot set {w(1), . . . , w(i)}, so its

image under pϖ is the Schubert cell Ωw. Also, Dw is the closure E′
w of E′

w in V n and for all
v ≤ w, it is easily verified that ϖ(Dw) contains ϖ(E′

v).

Lemma 2.2. Suppose v, w ∈ Sn and v ≤ w. Then Ωv ⊆ Xw.

Proof. The lemma follows from a simple application of the observations above. Because
v ≤ w, ϖ(E′

v) ⊆ ϖ(Dw), and so applying p:

Ωv ⊆ p(ϖDw − {0})
= p(ϖE′

w − {0}).
Recall that under a continuous function, the image of the closure of a set is contained in the
closure of the image of the set. Because pϖ is continuous

Ωv ⊆ pϖE′
w = Ωw = Xw,

as claimed. □

Lemma 2.3. Suppose v, w ∈ Sn and v ̸≤ w. Then Ωv ∩Xw = ∅.

Proof. Because v ̸≤ w, it follows from 1.4 that any point in the Schubert cell Ωw has
the Plücker coordinate labelled by v equal to 0. Another way to say this is that the Schubert
cell, Ωw is contained in the zero set of the coordinate xv. This is a closed set, so the closure
Xw ⊆ Z(xv) as well. On the other hand, the vth coordinate of every point in the Schubert
cell Ωv is nonzero. So, the intersection Ωv ∩Xw must be empty. □

The Schubert cells partition the complete flag variety, so Proposition 2.1 follows from
Lemmas 2.2 and 2.3.
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The identity permutation is the largest element under the dual Bruhat order on Sn. This
means that the Schubert variety

Xid =
⊔
v≤id

Ωv = F(V )

is equal to the complete flag variety. So, we have finally shown that

Corollary 2.4. The complete flag variety is a projective algebraic variety.

3. Paving the complete flag variety

The Schubert decomposition of the complete flag variety (over C) expresses it as a parti-
tion into affine spaces indexed by permutations, which are elements of a graded poset. This
implies that the Schubert decomposition is an affine paving over the dual Bruhat order. So,
the Grassmannian has trivial Betti numbers in odd dimensions, while its 2ith Betti number
is equal to the number of permutations in Sn with i non-inversions. Because the Bruhat
order is self-dual, this is also the number of permutations in Sn with i inversions.

Example 35. The Bruhat order of S3 is drawn in Figure 1. So, the Poincaré polynomial
of the complete flag variety on C3 is 1 + 2t+ 2t2 + t3.

4. Partial Flag Varieties

The partial flag variety of type µ, denoted Fµ(V ), is the collection of all flags of type µ
in V . When µ = (d, n− d), a flag of type µ represents a d-dimensional linear subspace of V ,
and when µ = (1, . . . , 1) (repeated n times), the corresponding flag is a complete flag in V .
Thus, the notion of partial flag varieties encompasses the Grassmannians and the complete
flag variety as special cases. In this section, we will briefly see how our investigation of the
goemetry of the Grassmannians and the complete flag variety can be carried out for general
partial flag varities. This involved embedding them in a projective space, describing their
Schubert decomposition, and studying the resulting Schubert cells and varieties.

4.1. Projective algebraic structure. Let us fix a type µ = (µ1, . . . , µm) and let
di = µ1 + · · · + µi for all i = 1, . . . ,m. Then flags of type µ are elements of the product
G(d1, V ) × · · · × G(dm−1, V ), which means that the flag variety Fµ(V ) can beviewed as a
subset of the product P ∧d1 × · · · ×P∧dm−1 of projective spaces.

If N =
(
n
d1

)
+ · · · +

(
n

dm−1

)
− 1. Then the product of projective spaces can be Segre

embedded into the projective space PN

ψ : P ∧d1 × · · · ×P∧dm−1 → P
(
∧d1 ⊗ · · · ⊗ ∧dm−1

) ∼= PN ,

and we identify Fµ(V ) with its image under ψ in PN . As before, one can show that the
image of a flag variety ψ(Fµ(V )) is a closed subset of PN .
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4.1.1. Plücker coordinates. The homogeneous coordinates, which are also known as the
Plücker coordinates, on the flag variety are indexed by tuples of subsets of [n] ordered
lexicographically, so that the ith subset is a subset of size di. The inclusion relations that
are imposed among the subspaces of a flag manifest themselves at the level of the indexing
subsets as well: the proof of Proposition 1.3 can be adapted to show that the coordinate
indexed by a tuple (s1, . . . , sm−1) of subsets, is zero, unless the si form an increasing sequence
of subsets, i.e. they satisfy

∅ ⊂ s1 ⊂ · · · ⊂ sm−1 ⊂ [n].

4.2. Schubert Decomposition. The action of the symmetric group Sn on [n] leads
to a transitive action on the collection of increasing sequences by application to each subset
in the sequence, just as we saw in Section 1.2.1 for the complete flag variety. Let S be the
increasing sequence

{1, . . . , d1} ⊆ {1, . . . , d2} · · · ⊆ {1, . . . , dm−1},
then its stabilizer is the subgroup of permutations that permute the first µ1 elements, the next
µ2 elements, and so on. Particularly, this subgroup is isomorphic to Sµ = Sµ1 × · · · ×Sµm ,
which is often termed as Young subgroups.

As a result, the collection of increasing sequences is in a bijective correspondence with
the space of cosets Sn/Sµ of the Young subgroup, and a coset wSµ corresponds to the
sequence wS. Every coset must contain a unique element of minimal depth; we denote the
set of minimal-depth coset representatives by Sµ. The minimal depth coset representatives
w are characterized by the property that for all i = 1, . . . ,m, we have

w(j) > w(k) for all j < k in {di−1 + 1, . . . di}.

Definition 4.1. Let w ∈ Sµ be a minimal depth coset representative. Then a Schubert
cell Ωw is the image under the Segre embedding ψ of the collection of flags of type µ whose
set of pivots corresponds to the coset of w under the bijection described above.

This gives the Schubert decomposition of the partial flag variety

Fµ(V ) =
⊔

w∈Sµ

Ωw.

Note that the Schubert cell Ωw is also the subset of points in PN where the first nonzero
homogeneous coordinate is the one indexed by the sequence wS. Consequently, the Schubert
cells are locally closed subsets of PN .

Theorem 4.1. Let w ∈ Sµ, then the Schubert cell Ωw is isomorphic to the affine space
Adep(w).

Proof. The proof of Theorem 1.5 can be adapted to prove this. □

A direct implication of the theorem is that Schubert cells are locally closed, irreducible
(due to the irreducibility of affine spaces), subsets of the flag variety. In other words, they
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are quasi-projective subvarieties. So, for any w ∈ Sµ we can define the Schubert variety,
denoted Xw, to be the closure of the Schubert cell Ωw.

The various Schubert varieties for the flag variety of type µ satisfy inclusion relations
according to the subposet Sµ of the dual Bruhat order. For all w ∈ Sµ the Schubert variety
Xw =

⊔
v≤w

Ωv, where the disjoint union is over v ∈ Sµ. Let w be the permutation of minimum

depth in the set Sµ. Then the corresponding Schubert variety, Xw, contains all the Schubert
cells, and we have

Xw =
⊔
v≤w

Ωv = Fµ(V ).

This finally shows that

Corollary 4.2. The partial flag varieties are projective algebraic varieties.
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CHAPTER 6

Fixed Point Varieties

The fixed points of a linear transformation T on a vector space V are the solutions
to the homogeneous system Tv − v = 0 of linear equations, so they form an algebraic
subset of the associated projective space. Moreover, any linear mapping on V induces linear
transformations on the various exterior powers of V and their tensor products. We conclude
that the sets of points fixed by such transformations in the Grassmannian and flag varieties
are algebraic sets as well. In this chapter, we follow the work of Shimomura [Shi85], and
study the geometry of this space of fixed points, when T is a unipotent linear transformation.

1. Invariant Subspaces

Proposition 1.1. Suppose we have two similar linear transformations on a vector space
V . Then there is an automorphism of the projective space PV which maps the fixed point
set of one to the other.

Proof. Suppose the linear automorphism X conjugates one of the transformations to
the other. Application of the linear map X induces an isomorphism of the projective space
PV , sending the set of fixed points of one transformation to the set of fixed points of the
other. □

If T is a unipotent transformation of V , then T − I is a nilpotent transformation. The
transformations T and T − I have the same invariant subspaces. The similarity classes of
unipotent and nilpotent linear transformations are defined by their Jordan canonical forms,
which correspond to partitions indicating the sizes of the blocks.

Example 36. Consider the following unipotent matrix along with its corresponding
nilpotent matrix 

1 1 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

 and


0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

 .

Both their Jordan blocks are of size 2, 2 and 1, and so correspond to the partition (2, 2, 1).

Definition 1.1. The shape of a unipotent(or nilpotent) linear transformation is the par-
tition obtained from the sizes of the Jordan blocks.
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Fix a partition λ and label the squares of the diagram of λ from 1 to n, going down each
column from top to bottom, starting with the rightmost column and then moving left, as in
Example 37.

Example 37. The squares of the partition (4, 3, 2) will be labelled

c7 c4 c2 c1

c8 c5 c3

c9 c6

.

Let us define a linear transformation N on V by specifying its action on the standard
basis vectors as follows.

(1) If the square labelled ci is in the first column of λ, then we send the standard basis
ei to zero.

(2) If the square immediately to the left of the square labelled ci is labelled cj, then
map ei to ej.

It is evident that this transformation is a nilpotent linear transformation on V with shape
equal to λ. Certainly, by adding the identity map to this transformation, we obtain a
unipotent transformation on V also of shape λ.

Example 38. Labelling the diagram as in Example 37, for instance, the corresponding
operator will send e2 to e4, which will be mapped to e7, and then to 0.

Remark 1.1. The choice of how we label the squares of the diagram might appear
arbitrary at first glance, but it actually possesses a notable property. Let us consider the
map N as a function defined on the ordered set {1, . . . , n,∞}, where i is viewed as the basis
vector ei and ∞ represents the zero vector in V . Then N preserves order: i ≤ j implies that
Ni ≤ Nj.

The reader should check, for instance, that if we were to label the squares row by row
instead of column by column, this property would not always hold.

Definition 1.2. We denote by Fix(Gd(V )) the subset of the Grassmannian Gd(V ) whose
points correspond to the subspaces that are invariant under the nilpotent linear transforma-
tion N described earlier.

The Schubert cells of the Grassmannian are indexed by d-subsets of [n]; it will be helpful
to think of these as tableaux of weight (d, n − d) on λ. To illustrate, given a subset s in
C(d, n), we place 1s in the squares ci corresponding to elements of s, and place 2s in the
remaining squares. Frequently, we will colour in the squares to represent the 1s, while the
uncoloured squares will be understood to contain 2s.
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Example 39. The tableau of shape (4, 3, 2) associated to the subset {2, 3, 6, 8} ⊂ [9] is

1 2 1 2

1 2 1

2 1

≡

Definition 1.3. If τ is a tableau of shape λ and weight (d, n − d), then we denote by
Fix(Ωτ ) the set of fixed points contained in the Schubert cell corresponding to t.

Clearly Fix(Ωτ ) = Ωτ ∩ Fix(Gd(V )), so it is a locally closed subset of P ∧d V .

Proposition 1.2. The fixed point set Fix(Ωτ ) is nonempty if and only if the tableau τ
is row-weak.

Proof. If the tableau τ is row-weak, then any entry to the left of a 1 must also be a 1.
Consequently, the subspace in the Schubert cell Ωτ , spanned by the standard basis vectors
ei corresponding to elements of τ , is N-invariant.

Conversely, consider a subspace in Ωτ . If the entry in the cith square of λ is a 1, then
there exists of a vector in the subspace with its leading nonzero entry in position i. According
to Remark 1.1, applying N will yield a vector whose pivot is positioned as indicated by the
square to the left of ci. If the subspace were N-invariant, then this shows that any entry to
the left of a 1 must also be a 1, proving that τ must be row-weak. □

Definition 1.4. Let τ be a row-weak tableau of weight (d, n − d). The label of the
rightmost cell in its row which contains a 1 (if one exists) is referred to as an initial number
for τ .

Example 40. The tableau on the partition (4, 3, 2) in Example 39 is not row-weak.
However,

is row-weak. The set of initial numbers (marked with a •) of this tableau is {2, 6}:

•

•
.

1.1. The val statistic. In Section 2.1, we introduced linear subvarieties Eτ (indexed
by d-subsets s there) of V d, which consist of canonical bases in V with pivot set τ . Let
τ1 < · · · < τd be the elements of τ . Then, we define a function ρ on Eτ taking values in V d,
which replaces the jth vector of the input with N applied to the ith vector whenever the
square labeled τj is immediately to the left of the square labeled τi in λ. The function ρ is
linear, so the image ρ(Eτ ) is also a linear subvariety of V d.
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Theorem 1.3. The restriction of the function pϖ (as defined in 2.1) to ρ(Eτ ) ⊂ V d is
an isomorphism onto the fixed point set Fix(Ωτ ).

Proof. Let v1, . . . , vd be linearly independent vectors in V . The map pϖ assigns to the
tuple (v1, . . . , vd) the point in the Grassmannian corresponding to the subspace they span.
It can be easily verified that our construction of ρ ensures that pϖ maps ρ(Eτ ) into Fix(Ωτ ).

Therefore, all we need to do is provide an inverse morphism. The map pϖ is an isomor-
phism between the sets Eτ → Ωτ , so the composition ρ(pϖ)−1 defines a map from Fix(Ωτ )
to ρ(Eτ ). This is the required inverse. □

We have shown that the fixed point set Fix(Ωτ ) of any Schubert cell is isomorphic to
an affine space. So, they are subvarieties of the Grassmannian. Any element of ρ(Eτ ) only
depends on the choice of the vectors where the pivot positions are equal to an initial number
of τ . So, the dimension of Fix(Ωτ ) can be computed by counting, for each initial number,
the number of 2s in λ which are in a cell with a larger label.

Example 41. The tableau in 40 has two initial numbers. Let us colour the first one in
blue and indicate the squares it counts with bullets:

• • •

Similarly, for the second initial number:

•

So, the dimension of the affine space is 3 + 1 = 4.

We can carry out a more refined counting. Suppose the square labelled j in λ contains a
2. We denote by val(cj) the number of initial numbers in τ that are smaller than j. We set
val(c) = 0 whenever c is a square with entry 1. It is evident that the dimension of Fix(Ωτ )
is equal to the sum of the values of all the squares in λ; we shall call this the value of τ .

Furthermore, if the entry in cj is a 2, then any initial number i < j is located either

(1) In a row above j and in the same column, or in a column to the right of j.
(2) In a row below j and in a column to the right of j.

Hence, val(j) is simply the number of entries in the same column above j and the number
of entries in the column immediately to the right below j which are equal to 1.
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Example 42. Things are often easier to parse using examples. Let us again consider the
tableau from Example 40, drawn with the labels:

7 4 2 1

8 5 3

9 6

Then, the pair (8, 2) can instead be counted as the pair (8, 7). Similarly, the pair (8, 6) is
counted by itself.

Remark 1.2. When τ is a weakly row and column increasing tableau (i.e. a weak
tableau), then the entry below a 2 cannot be a 1. This implies that the value of a square
with entry 2 is simply the number of 1s in the same column above it.

Theorem 1.4. If τ is a row-weak tableau on λ, then the subvariety Fix(Ωτ ) of Ωτ is
isomorphic to the affine space Aval(τ).

1.2. Inclusion Relations. The inclusion of Schubert varieties in the Grassmannian
was determined by the ordering of the d-subsets of [n]. For example, when n = 9 and
d = 5, the Schubert variety X24679 is contained in the Schubert variety X12479 because
{1, 2, 4, 7, 9} ≤ {2, 4, 7, 6, 9} in C(d, n).

However, these two correspond to the following tableaux on λ:

7 4 2 1

8 5 3

9 6

and

7 4 2 1

8 5 3

9 6

Given that the values of both tableaux are equal to 4, we cannot generally expect the
inclusion of the closures of the fixed point subsets of the Schubert cells. However, we can
identify certain special inclusion relations.

1.2.1. The column-sort operation. Recall the column-sort operation, denoted S, on tableaux
which sorts each column to make the entries in each column weakly increase from top to
bottom. According to Proposition 2.1, column-sorting a row-weak tableau results in a weak-
tableau. To that end, for a weak tableau τ , let S−1(τ) be the set of all row-weak tableau
which give τ upon column-sorting.

Proposition 1.5. For all γ ∈ S−1(τ), we have Fix(Ωγ) ⊆ Fix(Ωτ ).

Proof. See [Shi85, Theorem 2.5]. □

1.3. Irreducible Components. If W is in Fix(Gd(V )), then the restriction of the
nilpotent transformation N to W is also nilpotent, and has shape contained in λ. Let us
identify a weak tableau τ with the Young diagram defined by the entries which equal 1, and
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define Yτ to be the collection of subspaces in Fix(Gd(V )) such that the shape of N restricted
to W is τ .

Clearly, any subspace in Yτ must be an element of the cell Fix(Ωτ ′) for some row-weak
τ ′ satisfying S(τ ′) = τ . That is,

Yτ =
⋃

τ ′∈S−1(τ)

Fix(Ωτ ′).

Lemma 1.6. If τ < γ are weak tableaux of weight (d, n− d) on λ, then for all row-weak
τ ′ ∈ S−1(τ), we have τ ′ ̸≥ γ.

Proof. If r ≤ s in C(d, n), then for all k ∈ 1, . . . , n, the set r ∩ {1, . . . , k} is larger in
size than the set s ∩ {1, . . . , k}. This is because if si ≤ k then ri ≤ k as well.

Applying this observation to τ and γ for k = λ1 + · · · + λi, we deduce that the number
of 1s of τ in the first i columns of λ from the left must be smaller than the number of 1s in
γ. Since the column-sort operation does not change the number of 1s in any column of τ ′,
τ ′ cannot be larger than γ. □

Proposition 1.7. If τ is a weak tableau, then Yτ is an irreducible, locally closed subset
of Fix(Gd(V )).

Proof. If Fix(Xτ ) is the fixed point subset of the Schubert variety Xτ , then using
Lemma 1.6, we can express Yτ as the difference

Yτ = Fix(Xτ ) −
⋃

γ weak
τ<γ

Fix(Xγ)

of two closed sets, which implies that Yτ is locally closed.

That it is irreducible follows because τ > τ ′ for any τ ′ ∈ S−1(τ), so Yτ is equal to the
closure of the irreducible set Fix(Ωτ ) in Yτ . □

The fixed point variety is the union of the Yτ , and therefore, also of their closures.
According to Proposition 1.2, this provides us with the decomposition of Fix(Gd(V )) into its
irreducible components:

Fix(Gd(V )) =
⋃

τ weak

Y τ .

2. Fixed Points of Flag Varieties

Let µ = (µ1, . . . , µm) be a composition of n, and for all i = 1, . . . ,m, let di = µ1+ · · ·+µi.
The set of flags of type µ in V such that each constituent subspace is preserved by N
corresponds to the fixed point set of the flag variety Fµ(V ) under the associated unipotent
action. We denote this space by Fix(Fµ(V )).
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The Schubert cells of Fµ(V ) are indexed by increasing sequences of subsets of [n] such
that the size of the ith subset is di. Similar to the approach used for the Grassmannians, we
can represent such an increasing sequence as a tableau of weight µ on λ. Given an increasing
sequence τ = τ1, . . . , τm−1, we assign a 1 to the squares with labels in τ1, 2 to the squares
with labels in τ2 but not in τ1, and so on.

Example 43. Let n = 9 and µ = (3, 1, 5). The tableau on λ = (4, 3, 2) corresponding to
the increasing sequence

{3, 5, 9} ⊆ {1, 3, 5, 9} ⊆ {1, . . . , 9},
is

1 3 3 2

3 1 1

3 3

.

Definition 2.1. If τ is a tableau of weight µ on λ, then we denote by Fix(Ωτ ) the
collection of fixed points in the Schubert variety Ωτ of the flag variety. We have

Fix(Fµ(V )) =
⊔
τ

Fix(Ωτ ).

If a flag W• is in Fix(Ωτ ), then by definition, its constituents Wi are elements of Fix(Ωτi)
for all i = 1, . . . ,m− 1. As a result, the weight (di, n− di) tableau on λ corresponding to τi
are row-weak. It is easily verified that this is equivalent to τ itself being row-weak. So, we
have shown one direction of the following lemma.

Lemma 2.1. The fixed point subset Fix(Ωτ ) of Ωτ is nonempty if and only if τ is a
row-weak tableau.

Proof. We have shown earlier that τ being row-weak is a necessary condition. Con-
versely, suppose that τ is a row-weak tableau. For all i = 1, . . . ,m − 1, let Wi be the
di-dimensional N-invariant subspace of V that is spanned by the basis vectors ej corre-
sponding to the squares of λ with entries at most i. Then W• is an element of the Schubert
cell Ωτ . Therefore, the intersection Fix(Ωτ ) is nonempty. □

2.1. The value of a tableau.

Definition 2.2. Let τ be a row-weak tableau of weight µ on λ. Define its value val(τ)
recursively as follows:

(1) If µ has only one part, put val(τ) = 0 .
(2) If µ = (µ1, µ2) has two parts, val is defined as in Theorem 1.4.
(3) If µ = (µ1, . . . , µm−1, µm) and m > 2, put µ′ = (µ1, . . . , µm−1). Let τ ′ be the µ′-

tableau obtained by deleting the squares with figure m from τ and rearranging the
rows into a partition. Then τ ′ is a weak µ′-tableau of shape λ′, where λ′ is a Young
diagram with n− µm cells. Finally, define

val(τ) = val(τ ′) + val(τ(m−1)).
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Theorem 2.2. The fixed point set Fix(Ωτ ) is isomorphic to the affine space Aval(τ).

Proof. This follows from Proposition 1.3. □

Remark 2.1. According to Theorem 2.2, the fixed point set of the Schubert varieties are
subvarieties of Fix(Fµ(V )). It has been shown that this decomposition of the fixed point set
Fix(Fµ(V )) of the flag variety into affine spaces gives rise to an affine paving of the space
(See [BO11]).

2.2. Irreducible Components. Let τ be a weight µ weak tableau. Then, analogous to
the what we did for the Grassmannian, we can put S−1(τ) be the set of all row-weak tableau
which give τ upon column-sorting. Then we have the following analogue of Proposition 1.5.

Proposition 2.3. For all γ ∈ S−1(τ), the fixed point set of the Schubert variety Fix(Ωγ)

is contained in the closure Fix(Ωτ ) of the fixed point set of the Schubert variety Fix(Ωτ ).

If τ is a weak tableau, then the diagrams τi are Young diagrams of certain partitions.
We can put

Yτ =

{
W• ∈ Fix(Fµ(V ))

∣∣∣∣ N|Wi
is a nilpotent map
of shape τi

}
.

Theorem 2.4. Let τ be a weight µ weak tableau of shape λ. Then the subset Yτ is an
irreducible, locally closed subvariety of Fix(Fµ(V )).

Proof. By the definition of Ωλ
β, we have that Yτ can be written as the union

Yτ =
⋃

τ ′∈S−1(τ)

Fix(Ωτ ′)

of fixed point subsets of the Schubert varieties indexed by tableaux τ ′ which give τ upon
column-sorting. If we denote the fixed point set of a Schubert variety Xτ by Fix(Xτ ), then
we can express Yτ as the difference

Yτ = Fix(Xτ ) −
⋃

γ weak
γ>τ

Fix(Xγ).

Hence Yα is locally closed. Furthermore, it is irreducible because it is the closure of the
irreducible set Fix(Ωτ ) in Yτ . □

So, the fixed point variety is the union of the Yτ , and therefore, also of their closures.
According to Proposition 1.2 and Theorem 2.4, this provides us with the decomposition of
Fix(Fµ(V )) into its irreducible components:

Fix(Fµ(V )) =
⋃

τ weak

Y τ .
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2.3. Components of maximum dimension. While we’ve managed to identify the ir-
reducible components in Fix(Fµ(V )), there’s a lingering issue. We haven’t yet excluded the
possibility of inclusions between the various Y τ . For instance, in the cases of the Grassman-
nians and the flag varieties, all Schubert varieties were contained within a single Schubert
variety.

Understanding these inclusions between the various closures and describing the tableaux
that genuinely index irreducible components is generally challenging. However, we can say
something: if Y τ has maximum dimension among all the other sets, then it cannot be
included in some larger irreducible component. Consequently, Y τ must itself be an irreducible
component; now we provide an elegant description of the tableaux that achieve maximum
dimension.

Suppose τ is a weak, weight µ tableau of shape λ. Then for all i = 1, . . . ,m − 1, the
di-tableau αi corresponds to a Young diagram of size di. It follows from Theorem 1.4 that
val(α) can be calculated by counting for each entry i in λ the number of entries smaller than
i in the same column. Because the tableau is weak, these entries have to be above the i, so
the contribution from the rth column of la is at most

(λ′r − 1) + (λ′r − 2) + · · ·+ 1 + 0 =

(
λ′r
2

)
.

For the equality to hold, every entry in τ should count all entries above it, meaning the
entries should be strictly increasing down every column.

Proposition 2.5. The value val(α), of a weak tableau τ on a partition λ is at most∑
i

(
λ′
i
2

)
. The equality holds if and only if τ is a semistandard Young tableaux.

Corollary 2.6. The sets Y τ , where τ is semistandard, constitute the irreducible compo-
nents of Fix(Fµ(V )) with maximum dimension. This, combined with Remark 2.1, implies
that the top Betti number of this space equals the Kostka number Kµ,λ. This number
represents the count of semistandard weight µ tableaux on the diagram of λ.
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Part 3

Enumeration





CHAPTER 7

Lattice of invariant subspaces

An invariant subspace of a linear mapping T : V → V is a subspace that is preserved by
T . The collection of all invariant subspaces ordered by inclusion forms a poset that we shall
denote by L(T ). The intersection of two invariant subspaces is invariant and is the largest
subspace contained in both of them, while the sum of two invariant subspaces is the smallest
invariant subspace containing both of them. So, the poset L(T ) is equipped with meet and
join operations. In other words,

Proposition 0.1. The poset L(T ) is a lattice.

Proposition 0.2. The lattice of invariant subspaces of two similar linear transformations
are isomorphic.

Proof. If two linear transformations are similar, then there is a linear automorphism
X which conjugates one to the other. Applying X results in an isomorphism between the
two lattices. □

Lemma 0.3. Let T : V → V be a linear transformation. Then the lattice L(T ) is self-
dual.

Proof. Consider a linear transformation T : V → V . The annihilator of a subspace W
in V is defined as the set of vectors in V whose dot product with every vector in W is zero.
It is easy to check that when W is invariant under T , its annihilator is a subspace which is
invariant under the transpose of T . The function that maps a subspace to its annihilator is
an order-reversing bijection.

Moreover, any linear transformation is similar to its transpose. This implies that the
lattice of subspaces invariant under T is isomorphic to the lattice of subspaces invariant
under the transpose. These together imply that the lattice L(T ) is self-dual. □

Proposition 0.4. Every interval in L(T ) is self-dual.

Proof. If W and W ′ are T -invariant subspaces of V such that W ′ contains W , then T
naturally gives rise to linear maps on both W ′ and the quotient W ′/W . Quotienting out W
leads to an inclusion preserving bijection between the subspaces of W ′ containing W and
the subspaces of W ′/W . This is the fourth isomorphism theorem for vector spaces.

In fact, the above correspondence is a bijection between the T -invariant subspaces of the
two vector spaces. So, the interval [W,W ′] in the lattice L(T ) is isomorphic, as a poset,
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to the lattice of T -invariant subspaces of W ′/W . It follows from Lemma 0.3 that this is
self-dual. □

Example 44. Let us compute the invariant subspaces for a diagonalisable operator that
has all its eigenvalues distinct. Each eigenvalue corresponds to a one-dimensional eigenspace,
which is obviously invariant. Furthermore, the subspace generated by any subset of the
eigenvectors is also invariant.

In other words, for each subset of [n], the subspace generated by the basis vectors corre-
sponding to elements of the subset is invariant. It requires a straightforward calculation to
check that these are all the invariant subspaces. This shows, in particular, that the lattice
of invariant subspaces is isomorphic to the lattice of subsets of [n], which is often known as
the Boolean lattice.

Figure 1. Lattice of invariant subspaces for a diagonal linear map on F3.

1. Invariant flag generating polynomial

Let us revisit the concept of a flag of subspaces in a vector space, which is a sequence
of subspaces where each subspace is contained within the next one, starting from the zero
subspace and ending at the entire space. If T : V → V is a linear map, then a flag is said to
be T -invariant if all of its constituent subspaces remain invariant under T .

The type of a flag is the sequence of codimensions of each subspace relative to the next.
More precisely, a flag

W• = (∅ = W0 ⊆ W1 ⊆ · · · ⊆ Wm−1 ⊆ Wm = V ) ,

in V has type µ = (µ1, . . . , µm), where µi = dimWi − dimWi−1. There exists an inclusion-
reversing bijection on the interval [Wi−1,Wi+1] because it is self-dual. The subspace Wi is an
element in the interval and will be mapped to a subspace W ′

i that has codimension equal to
dimWi+1 − dimWi relative to Wi−1. The flag obtained by replacing Wi with W

′
i in W• is a

flag of type equal to the µ but with µi and µi+1 swapped. This leads to a bijection between
the collection of flags of types differing by a swap of two adjacent terms. What’s more, any
permutation can be written as a product of such swaps, which gives us
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Theorem 1.1. Let µ and µ′ be two sequences with entries differing only up to a permu-
tation. Then there is a bijective correspondence between the collection of flags in V of type
µ and of type µ′.

An obvious thing to try, as combinatorialists, is to count the number of invariant flags
of a given type. However, this is only meaningful when we take the field F = Fq to be the
finite field with q elements, whence there are always only finitely many flags. Let αT (µ; q)
denote the number of T -invariant flags, then it is an immediate consequence of Theorem 1.1
that if two sequences µ, µ′ differ by a permutation, then αT (µ; q) = αT (µ

′; q).

A useful way to record the αT (µ; q) is via the generating polynomial for T -invariant flags:

FT (x1, . . . , xm; q) =
∑
µ

αT (µ; q)x
µ1

1 · · ·xµm
m

Corollary 1.2. The polynomial FT is a symmetric polynomial that can be expanded as

FT =
∑
µ⊢n

αT (µ; q)mµ

with respect to the monomial symmetric functions.

2. Factorising the lattice

In Example 44, we saw how every invariant subspace of a diagonalizable operator with
distinct eigenvalues is in a sense built up from certain special invariant subspaces: the
eigenspaces. This decomposition enabled us to explicitly describe and enumerate the points
and flags in the lattice of invariant subspaces. However, not all linear transformations are
diagonalizable. Nevertheless, the theory of modules over a principal ideal domain provides
a method for decomposing them into simpler pieces.

2.1. Primary decomposition of linear maps. The primary decomposition of a linear
transformation T on V expresses the vector space V as a direct sum of smaller invariant
subspaces, on the basis of their behaviour with respect to repeated application of T .

Definition 2.1. Let f(t) be any irreducible monic polynomial over F. Given a linear
transformation T on V , put

Vf = {v ∈ V | f r(T )v = 0 for some r ∈ N}.
Then Vf is T -invariant and so we can define the f -primary part of T to be the restriction of
T to Vf .

Theorem 2.1. Let T : V → V be a linear transformation whose minimal polynomial
factorises into powers fa1

1 , . . . , f
ar
r , of irreducible polynomials. Then V decomposes into

non-zero subspaces
V = Vf1 ⊕ · · · ⊕ Vfr ,

and the minimal polynomial of the restriction of T to each subspace Vfi , denoted Tfi , is f
ai
i .
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Proof. The first assertion follows upon viewing V along with the T action as an F [t]-
module and applying [Jac85, Theorem 3.11]. The second can then be easily checked. □

Example 45. Let us describe the primary decomposition of diagonalisable linear trans-
formations. An operator with eigenvalues ν1, . . . , νr has minimal polynomial (t− ν1) · · · (t−
νr), and the polynomial t− νr annihilates the eigenspace with eigenvalue νr. Consequently,
we can express the linear transformation as a direct sum of maps acting on the eigenspaces
through scalar multiplication by the corresponding eigenvalue.

More broadly, the primary decomposition of any linear transformation over an alge-
braically closed field, such as C, aligns perfectly with the transformation’s Jordan canonical
form. The vector space decomposes into the generalized eigenspaces, and the linear map
restricted to each of these subspaces is represented by the Jordan blocks corresponding to
the respective eigenvalues.

Definition 2.2. Let f(t) be an irreducible monic polynomial. A linear transformation T
is called f -primary if T = Tf . By Theorem 2.1, this is the same as the minimal polynomial
of T having a unique irreducible factor.

2.1.1. Structure of primary transformations. We have succeeded in simplifying the study
of a linear transformation to understanding several nicely-behaved linear transformations
acting on a smaller space via the primary decomposition. As we will now see, primary
transformations can themselves be written as a direct sum of certain indecomposable trans-
formations – the cyclic transformations.

Definition 2.3. Suppose T is a linear transformation on V . A subspace W of V is said
to be a cyclic subspace if there exists a vector v in W such that the sequence v, Tv, T 2v, . . .
generates V . If V is itself a cyclic subspace, then T is called a cyclic transformation.

Example 46. Suppose e1, . . . en are the standard basis vectors of V . The shift operator
maps for all i = 1, . . . , n − 1, the ith standard basis vector to the i + 1st standard basis
vector, and maps en to 0. Then the shift operator is a cyclic transformation because e1 is a
cyclic vector. In general, any vector with a nonzero component in the direction of e1 will be
cyclic.

Any diagonalizable linear map with distinct eigenvalues is also cyclic. Without loss of
generality, let us assume that the standard basis vectors e1, . . . , en are eigenvectors with
eigenvalues ν1, . . . , νn, respectively. For any (c1, . . . , cn) ∈ V , there is a polynomial f such
that f(νi) = ci for all i = 1, . . . , n. The polynomial f evaluated on the linear map sends the
vector (1, . . . , 1) to (c1, . . . , cn). This means that (1, . . . , 1) must be a cyclic vector. Similarly,
one can show that a vector is cyclic, provided none of its coordinates are zero.

Cyclic transformations are especially interesting because of the following lemma.

Lemma 2.2. Let g be any polynomial over the field F. Upto similarity, there exists a
unique cyclic linear transformation with minimal polynomial g.
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Proof. If T is a cyclic linear transformation with minimal polynomial g, where g =
a0 + a1t+ · · ·+ adt

d is a polynomial of degree d, then the collection {v, Tv, . . . , T d−1v} must
form a basis of V . With respect to this basis, the map T can be represented by the matrix

0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
. . . . . .

...
0 0 · · · 1 −ad−1

 ,

which is known as the companion matrix of g. Consequently, every cyclic linear transforma-
tion with minimal polynomial g can be represented by the companion matrix, implying that
they are all similar. □

Theorem 2.3. Let f be an irreducible monic polynomial over F. if T : V → V is
an f -primary linear transformation, then there exist T -cyclic subspaces W1, . . . ,Wr of V
satisfying

V = W1 ⊕ · · · ⊕Wr.

Proof. See [Jac85, Section 3.8]. □

In the notation of Theorem 2.3, the cyclic subspaces W1, . . . ,Wr are all f -primary. So
there is, after possibly reordering the subspaces, a partition λ = λ1 ≥ · · · ≥ λr > 0, such
that the restriction of T toWi has minimal polynomial fλi . We can deduce using Lemma 2.2
that there is a bijective correspondence between partitions and similarity classes of f -primary
transformations. We will denote by Tf,λ a f -primary linear transformation corresponding to
λ and say that λ is the shape of Tf,λ.

Applying Theorems 2.1 and 2.3, any linear map T on an n-dimensional vector space V
uniquely specifies irreducible polynomials f1, . . . , fr, and partitions λ1, . . . , λr, such that T
can be written as the direct sum:

(10) T = Tf1,λ1 ⊕ · · · ⊕ Tfr,λr .

This information can be organized into the Jordan datum of T , which is a function from
the set of all irreducible monic polynomials over F taking values in the set of all partitions,
which sends the polynomials fi to the partitions λi and the rest to the empty partition.
Conversely, any such function Θ leads to an operator TΘ, provided the function satisfies∑

f deg(f)|Θ(f)| = n, which is forced by the dimensions of the spaces on left and right hand

side in (10) being equal.

Corollary 2.4. The Jordan datum gives rise to a bijective correspondence between the
set of all partition-valued functions satisfying the above property and the set of similarity
classes of linear transformations on an n-dimensional vector space V .

2.2. Application to Lattices. We will now see how the algebraic machinery of primary
decomposition can be useful in better understanding the lattices of invariant subspaces.

63



Theorem 2.5. If T is a linear map with primary decomposition T = Tf1 ⊕· · ·⊕Tfr , then
the lattice L(T ) factorises into

L(T ) ∼= L (Tf1)× · · · × L (Tfr) ,

the product of the lattices corresponding to the primary parts of T .

Proof. Suppose W is a T -invariant subspace of V . For each i = 1, . . . , r, the subspace
Wfi , defined as in Definition 2.1, is equal to the intersection W ∩ Vfi . The intersection is a
Tfi-invariant subspace of Vfi ; this leads to an order-preserving map from the lattice L(T ) to
the product of the lattices corresponding to the primary parts of T .

It is evident that the map is surjective. Moreover, according to Theorem 2.1, W decom-
poses as the direct sum W = Wf1 ⊕ · · · ⊕Wfr , indicating that the Wfi determine W and
estabishing that the map is injective. □

In terms of the invariant flag generating polynomial, Theorem 2.5 states that

Corollary 2.6. If T is a linear map on Fn
q with primary decomposition T = Tf1⊕· · ·⊕Tfr ,

then the invariant flag generating polynomial FT factorises as

(11) FT (x1, . . . , xm; q) =
r∏

i=1

FTfi
(x1, . . . , xm; q).

3. The case of Nilpotent Operators

In this section, we will use the geometric machinery developed in part two to enumerate
flags of various types which are invariant under a nilpotent operator of a given shape. Let
us start with a warm-up and take the zero map as our nilpotent operator.

warm-up 3 (Invariant subspaces). All subspaces are invariant with respect to the zero
map, so counting d-dimensional invariant subspaces is the same as counting the points on
some Grassmannian. The Schubert decomposition of the Grassmannian Gd(V ) in terms of
partitions is

Gd(V ) =
⊔

λ⊆dn−d

Ωλ.

Taking sizes on both sides we get

| Gd(V )| =
∑

λ⊆d×(n−d)

A|λ|

=
∑

λ⊆d×(n−d)

q|λ|

For all i = 0, . . . , d(n− d), the number of partitions λ ⊆ d× (n− d) of size i is equal to the
2ith Betti number of the Grassmannian. This means that
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Theorem 3.1. The number of d-dimensional subspaces of V is equal to the polynomial

d(n−d)∑
i=0

b2i(Gd(V ))qi,

which is also the Poincaré polynomial of the Grassmannian evalauted at q. In particular,
the count is a polynomial in q with positive integer coefficients.

warm-up 4 (Invariant flags). Let µ = (µ1, . . . , µm) be a composition of n. Then to count
flags of type µ in V which are invariant under the zero map is also equivalent to counting
the points on the flag variety Fµ(V ). This space has Schubert decomposition:

Fµ(V ) =
⊔

w∈Sµ

Ωw.

Let us take sizes on both sides:

|Fµ(V )| =
∑
w∈Sµ

Aℓ(w)

=
∑
w∈Sµ

qℓ(w).

The cells form an affine paving of the flag variety over Sµ, so for all i ≥ 0, the number of
w ∈ Sµ with ℓ(w) = i equals the 2ith Betti number of the flag variety.

Theorem 3.2. The number of flags of type µ in V is equal to∑
i≥0

b2i(Fµ(V ))qi,

i.e. the Poincaré polynomial of the Grassmannian evaluated at q. In particular, the count is
a polynomial in q having positive integer coefficients.

Corollary 3.3. The number of complete flags in V is equal to

n(n−1)/2∑
i=0

b2i(F(V ))qi.

Let λ be a partition, then the number of flags in V of type µ that are invariant under
a nilpotent operator of shape λ can similarly be calculated used the decomposition of the
space Fix(Fµ(V )) into cells:

Theorem 3.4. The number of flags of type µ in V invariant under a nilpotent operator
of shape λ is equal to the sum over row-weak tableau∑

τ row-weak

qval(τ) =
∑
i≥0

b2i(Fix(Fµ(V )))qi, .

As a result, this is also a polynomial in q with positive integer coefficients.
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4. Reduction to Nilpotence

We have shown that the number of flags of a given type invariant under a nilpotent
operator of shape λ is the generating polynomial for the val statistic on certain fillings of the
Young diagram of λ. We will now see how this allows us to enumerate flags invariant under
any operator.

Lemma 4.1 (Jordan-Chevalley decomposition of primary operators). Let f(t) be an
irreducible monic polynomial over the field F satisfying f ′(t) ̸= 0, and T : V → V be an
f -primary linear transformation. Then there are linear maps S,Q, both polynomials in T ,
such that T = S +Q, f(S) = 0 and Q is nilpotent.

Proof. This is a consequence of the more general Jordan-Chevalley decomposition of
endomorphisms of V , as in [Baj11, p. 14]. A more elementary proof carried out in the case
when F is a subfield of complex numbers can be found in [HK61, Theorem 8, p. 217] (if
the reader can get their hands on the first edition.) The argument can be made to work in
the more general situation as long as f ′(t) is not zero. Taylor’s formula for polynomials only
holds when working over fields of characteristic zero, but the proof in [HK61] requires only
an equation of the form f(a+ b) ≡ f(a) + f ′(a)b mod b2, which is always valid. □

If T is as in 4.1, then S and Q are called the semisimple and nilpotent parts of T ,
respectively. The matrix S is invertible, so the algebra of polynomials in S over F forms
a field, denoted by K and the linear action of S on V turns V into a K-vector space.
Additionally, T, S and Q commute among themselves because the transformations S and Q
are polynomials in T ; as a result, T and Q are K-linear maps.

We denote by subscripts, such as LK(T ) or LF(T ), the field over which we are considering
the subspaces invariant under T . The following theorem, due to Brickman and Fillmore
[BF67, Theorem 6], establishes a relation between the lattice of T -invariant subspaces with
the lattice of subspaces invariant under its nilpotent part Q.

Theorem 4.2. In the notation as above, the lattices LF(T ) and LK(Q) are isomorphic.

Proof. The linear map S is a polynomial in T , so W ∈ LF(T ) implies that W ∈ LF(S).
Thus W is K-linear, and so the lattices LF(T ) = LK(T ) are identical. Finally, over K, the
linear map S acts as a scalar and so every subspace is S-invariant. So, ifW is preserved by T ,
then it must also be preserved by T−S, which is equal to Q. Therefore, LK(T ) = LK(Q). □

Remark 4.1. In Theorem 4.2, is the shape of the nilpotent transformation Q equal to
the shape of the f -primary T we started with? Suppose Q, when viewed as an K-linear
transformation, has shape λ. Then V decomposes as a direct sum V = V1 ⊕ · · · ⊕ Vr of
K-linear subspaces cyclic with respect to Q such that for all i = 1, . . . , r, the application
QλiVi is trivial.

On the other hand, the K-linear subspaces Vi are a fortiori also F-linear. Furthermore,
the subspaces being Q-cyclic over K implies that they are T -cyclic over F. This is because
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S and Q are polynomials in T , allowing the action of T to emulate any action induced by
Q and S. Finally, it is not hard to check that modulo Q, the polynomial f evaluated on
T is equal to f evaluated on S, which is zero. This means that for all i = 1, . . . , r, we get
f(T )λiVi = QλiVi = 0, and so the shapes agree.

Definition 4.1. If T is a nilpotent linear transformation of shape λ, then denote by
Fλ the invariant flag generating function, FT , of T . In Section 3, we have shown that the
coefficients of the monomials of Fλ are always polynomials in q.

Corollary 4.3. If T is a linear map on Fn
q with Jordan datum Θ, then the invariant flag

generating polynomial FT is

FT (x1, . . . , xm; q) =
∏
f

FΘ(f)(x
deg f
1 , . . . , xdeg fm ; qdeg f ).

Proof. This follows from (11), Theorem 4.2 and Remark 4.1. □

Corollary 4.4. For every linear map, the number of invariant flags of a given type is a
polynomial in q with positive integer coefficients.

4.1. Similarity Class Types. Suppose we are working over a finite field F = Fq

with q elements. Then Theorem 4.2 says something very interesting: the lattice of invariant
subspaces for an f -primary transformation is isomorphic to the lattice of invariant subspaces
of a nilpotent transformation, viewed as a linear map over a field extension of degree equal to
the degree of f , having the same shape as the primary transformation. But there is a unique
such field extension and all nilpotent transformations of the same shape are conjugate, which
means that the lattice of an f -primary transformation depends on f only through its degree.
This motivates the following definition.

Definition 4.2. Jordan data Θ1 and Θ2 are said to be of the same type if there is a
degree preserving relabelling γ of the set of all monic irreducible polynomials over F, such
that Θ1 = Θ2 ◦ γ. As a result, the type of Θ only records the degrees of the polynomials
(and not the polynomials themselves) for which Θ takes a certain value λ.

Two linear transformations are said to be of the same similarity class type if their Jordan
data are of the same type. This leads to a partition of the collection of all linear transfor-
mations, much coarser than the similarity classes. However, Theorem 4.2 implies that

Theorem 4.5. The lattice of invariant subspaces of a linear transformation only depends
on its similarity class type. In other words, if T, T ′ are of the same type, then the lattices
L(T ) and L(T ′) are isomorphic.

As a result, the invariant flag generating polynomial of a linear map is also only a function
of its similarity class type.
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CHAPTER 8

Enumerating Subspaces by Profile

So far, we have extensively examined subspaces of a vector space that are preserved under
the action of an operator. In this final chapter of the thesis, we will introduce the notion of
the profile of a subspace and delve into recent progress made toward enumerating subspaces
based on their profiles. This topic is particularly intriguing because various aspects of the
problem have connections to the theory of symmetric functions, orthogonal polynomials,
classical combinatorial objects, free probability theory, and more.

1. Profiles

Let V be a n-dimensional vector space over an arbitrary field F.

Definition 1.1. Let ∆ be a linear mapping on V and µ = (µ1, . . . , µk) be a sequence of
positive integers satisfying µ1 + · · ·+ µk ≤ n. A subspace W ⊆ V has ∆-profile µ if

dim(W +∆W + · · ·∆i−1W ) = µ1 + · · ·µi for each 1 ≤ i ≤ k

and
W +∆W + · · ·∆kW = W +∆W + · · ·∆k−1W.

Remark 1.1. Suppose the subspace W ⊆ V has ∆-profile µ = (µ1, . . . , µk) and µ1 +
· · · + µk < n. The subspace V ′ = W +∆W + · · · is then easily seen to be ∆-invariant and
under the restriction of ∆ to V ′, W has profile equal to µ with µ1 + · · · + µk = dimV ′. As
a result, we will assume that the entries of a profile add up to n.

1.1. Properties of Profiles. The sequences that occur as profiles of subspaces have
the additional property of being integer partitions.

Lemma 1.1. Suppose W has ∆-profile µ = (µ1, . . . , µk), then µ1 ≥ µ2 · · · ≥ µk.

Proof. Put U0 = (0) and Uj = W + · · ·∆j−1W for all j = 1, . . . , k. Then for each
j = 1, . . . , k, the subspace Uj is ∆-invariant and contains Uj−1. Moreover, ∆ maps the
subspace Uj−1 into the subspace Uj. As a result, ∆ descends to a map Uj/Uj−1 → Uj+1/Uj.
Since Uj+1 ⊆ Uj + ∆(Uj), this map is a surjection. Therefore, uj = dim(Uj/Uj−1) ≥
dim(Uj+1/Uj) = uj+1. □

Example 47. Profiles of subspaces generalize many classical ways to describe the be-
haviour of a subspace under an operator. For instance, if W ⊆ V is an m-dimensional
subspace invariant under ∆, then it has profile equal to (m). On the other hand, if v ∈ V
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is a cyclic vector for ∆, then the one-dimensional subspace generated by v has ∆-profile
(1, 1, . . . , 1) (n times).

Proposition 1.2. If ∆,∆′ are similar linear transformations on V , then the set of sub-
spaces that have ∆-profile µ is in bijection with the set of subspaces that have ∆′-profile
µ.

Proof. Since the linear maps ∆,∆′ are similar, there is an invertible linear map X such
that ∆′X = X∆. If W ⊆ V has ∆-profile equal to µ, then for each i = 1, . . . , k, we have

µ1 + · · ·µi = W +∆W + · · ·∆i−1W

= XW +X∆W + · · ·X∆i−1W

= XW +∆′XW + · · · (∆′)i−1XW.

So, the map W → XW is the required bijection. □

2. Enumerating Subspaces of a Given Profile

When F = Fq, there are only finitely many subspaces of W , so we denote by σ(µ,∆) the
number of subspaces V with ∆-profile µ.

We can readily deduce the enumerative analogue of Proposition 1.2.

Proposition 2.1. Let µ be a partition. If ∆ and ∆′ are similar linear maps on V , then
σ(µ,∆) = σ(µ,∆′).

In [BCRR92], Bender, Coley, Robbins and Rumsey propose the following combinatorial
problem.

Problem 1. Given µ and ∆ compute σ(µ,∆).

Using the Möbius inversion on the lattice of subspaces of V , they show that the σ(µ,∆)
for various values of µ satisfy a large system of linear equations. They solve these equations
in two cases to obtain compact formulae for the σ(µ,∆). When ∆ is a simple operator (i.e.
its characteristic polynomial is irreducible), we have

σ(µ,∆) =
qn − 1

qµ1 − 1

∏
j≥2

qµj(µj−1)

[
µj−1

µj

]
,

and when ∆ is a regular nilpotent operator (equivalantly, nilpotent with one-dimensional
null space), then

σ(µ,∆) =
∏
j≥2

qµ
2
j

[
µj−1

µj

]
.
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2.1. The Chen-Tseng Recursion.

Definition 2.1. Let r be a positive integer and suppose ∆ ∈ Mn(Fq). Given sequences
λ = (λ1, . . . , λr) and ν = (ν1, . . . , νr) of nonnegative integers, denote by ϕ(λ, ν; ∆) the
number of flags W1 ⊆ W2 ⊆ · · · ⊆ Wr of subspaces of F

q
n such that

dimWi = λi for 1 ≤ i ≤ r

dim(Wi ∩∆−1Wi) = νi for 1 ≤ i ≤ r

∆Wi ⊆ Wi+1 for 1 ≤ i ≤ r − 1.

If λ = ν, any subspace Wi satisfying the first two conditions must be ∆-invariant. So,
ϕ(λ, λ; ∆) is equal to the number of ∆-invariant flags W1 ⊆ · · · ⊆ Wr of type λ.

Lemma 2.2. Given a partition µ = (µ1, . . . , µk), let mi = µ1 + · · · + µi for 1 ≤ i ≤ k.
We have

σ(µ,∆) = ϕ(λ, ν; ∆)

where λ = (mk, . . . ,m1) and ν = (mk,mk−1 − µk, . . . ,m1 − µ2).

Proof. Subspaces U with ∆-profile µ are in a one-to-one correspondence with flags
U1 ⊆ · · · ⊆ Uk where Ui = U +∆U + · · ·+∆i−1U for 1 ≤ i ≤ k. It can be easily checked that
these satisfy the above conditions. Conversely, suppose a flag W• satisfies the conditions.
We have

λi − νi = dimWi − dim(Wi ∩∆−1Wi)

= dim

(
Wi +∆−1Wi

∆−1Wi

)
= dim

(
∆Wi +Wi

Wi

)
.

This means that dim(∆Wi+Wi) = mi+1, which along with the third condition forcesWi+1 =
Wi +∆Wi. □

Chen and Tseng [CT13, Lemma 2.7] proved that the ϕ(λ, ν; ∆) (and particularly the
σ(µ,∆) by Lemma 2.2) satisfy a recursion in which the base cases are of the form ϕ(η, η; ∆).
Solving the recursion in many cases has led to alternate proofs of the two cases answered in
[BCRR92] and some more (See [GR12, CT13, AR22b, AR22a]).

For ∆ ∈ Mn(Fq), the recursion involves coefficients that are products of q-binomial
coefficients that depend only on λ and ν. These observations, together with Lema 2.2, imply
the following result.

Theorem 2.3. There are polynomials gµλ(t) ∈ Z[t] for every partition µ and every
partition λ of n such that

σ(µ,∆) =
∑
λ⊢n

gµλ(q)α∆(λ; q),

for every prime power q and every ∆ ∈Mn(Fq).
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Recall that the invariant flag generating polynomial F∆(x1, . . . , xk; q) of ∆ is defined as∑
λ⊢n

α∆(λ; q)mλ. Putting Gµ(x1, . . . , xk; q) =
∑
λ⊢n

gµλhλ, where hλ is the complete homoge-

neous polynomial associated to the partition λ, we can restate Theorem 2.3 as:

Theorem 2.4. There is a symmetric polynomial Gµ(x1, . . . , xk; q) in Z[x1, . . . , xk; t] such
that

σ(µ,∆) = ⟨Gµ, F∆⟩,

for every prime power q and every ∆ ∈Mn(Fq).

So, we have reduced computing σ(µ,∆) and solving Problem 1 to computing the sym-
metric polynomials Gµ. An expression for these in terms of classically studied polynomials
called the q-Whittaker polynomials was found in [Ram23].

2.2. Similarity Class Types. An interesting implication of Theorem 2.3 is that the
quantity σ(µ,∆) only depends on the operator ∆ via the lattice of invariant subspaces of ∆.
In Chapter 2, we proved that the lattice of invariant subspaces of an operator only depended
on its similarity class type. So α∆(µ; q) and as a result, σ(µ,∆) also only depend on the
similarity class type. We have the following strengthening of Proposition 2.1

Corollary 2.5. Let µ be a partition. If ∆ and ∆′ ∈ End(V ) have the same similarity
class type, then σ(µ,∆) = σ(µ,∆′).

Problem 2. We conjecture that we can similarly strengthen Proposition 1.2: Let V be
a finite dimensional vector space defined over an arbitrary field. Let µ be a partition, ∆ and
∆′ operators on V with the same similarity class type. There exists an explicit bijection
between the collection of subspaces of V that have ∆-profile µ and those that have ∆′-profile
µ.

3. Diagonal Operators

The problem of enumerating subspaces by profiles also interacts with several well-studied
combinatorial objects; this connection first manifests itself when studying the quantities
σ(µ,∆) for diagonalizable operators ∆. Prasad and Ram [PR23a] compute σ(µ,∆) when
the operator has distinct eigenvalues, in terms of a combinatorial statistic on certain discrete
objects known as set partitions. In this section, we will provide an alternate proof of the
result of Prasad and Ram, as well as generalize the theorem to all diagonalizable operators.
Let us first assume that ∆ has distinct eigenvalues.

3.1. Two-Part Profiles. Consider a d-dimensional subspace W of V such that the
subspace along with its image under ∆ span all of V ; that is W + ∆W = V . In this
situation, the profile of W looks pretty simple: just two parts, (d, n− d).
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3.1.1. Chord Diagrams. A chord diagram is a visual representation of an involution w
in Sn. We arrange n nodes labelled 1, . . . , n along the X-axis. and to their right, a node
labelled ∞. A circular arc lying above the X-axis is used to connect the elements of each
transposition of w, while each fixed point of w is connected to the node ∞.

The chord diagram of the involution (1, 4)(2, 6)(7, 8) in the set S8 is shown below:

1 2 3 4 5 6 7 8 ∞

We will refer to the left end of each arc as an opening node, and the right end as a closing
node. In the above example, the opening nodes are 1, 2, 3, 5, 7, while the closing nodes are
4, 6 and ∞. A crossing is a pair of arcs [(i, j), (k, ℓ)] such that i < k < j < ℓ. The chord
diagram above has four crossings, namely [(1, 4), (2, 6)], [(1, 4), (3,∞)], [(2, 6), (3,∞)], and
[(2, 6), (5,∞)]. Let v(w) denote the number of crossings of the chord diagram of an involution
w.

3.1.2. Subspaces and Chord Diagrams. To every subspace W of V with ∆-profile equal
to (d, n − d), we can associate a chord diagram on n + 1 nodes with d opening nodes. Let
w1, . . . , wd be the echelon basis of W and c1 < · · · < cd the corresponding pivots. The chord
diagram has c1, . . . , cd as its opening nodes; for all i = 1, . . . , d, if the set

pivots(W +∆(w1 + · · ·+ wi))− pivots(W +∆(w1 + · · ·+ wi−1))

is nonempty an arc connecting the ith opening node to the unique element, and if the set is
empty, then to ∞.

Proposition 3.1. The number of subspaces of V with ∆-profile (d, n−d), that correspond
to a chord diagram w is equal to

(q − 1)n−dq(
d
2) · qv(w).

Corollary 3.2. The number of subspaces of V with ∆-profile (d, n − d) is given by the
sum

(q − 1)n−dq(
d
2) ·

∑
w

qv(w).

3.2. Set Partitions. A set partition A = {A1, . . . , Am} of [n] is a decomposition

[n] = A1 ∪ · · · ∪ Am,

of [n] into pairwise disjoint non-empty subsets A1, . . . , Am of [n]. The subsets A1, . . . , Am

are called the blocks of A. The shape of the set partition A is the list of cardinalities of
A1, A2, . . . , Am sorted in weakly decreasing order. So the shape of A is a partition of size n.

Example 48. The partition A = {1, 2, 7}∪ {3, 6}∪ {4, 5} of the set {1, . . . , 7} will often
be written as 127|36|45. The shape of the partition is (3, 2, 2).
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We shall denote by Π(n) the set of all partitions of [n], and when λ ⊢ n is a partition of
n, by Π(λ) the set of partitions of {1, 2, . . . , n} of shape λ.

3.2.1. The Interlacing Statistic. We will denote by N the set N along with an additional
element ∞, that is taken to be larger than every element of N.

Definition 3.1 (The arcs of a set). Suppose A ⊂ N has elements a1, . . . , al written in
increasing order. Its jth arc is the pair (aj, aj+1) for j = 1, . . . , l−1, and its lth arc is (al,∞).

Figure 1. interlacing number of the partition 127|36|45.

Definition 3.2 (Interlacing Number). Let n ∈ N. Let A = A1| · · · |Am ∈ Πn with
|Ai| = li. The interlacing number, denoted v(A), of A is the number of crossings (as in
Section 3.1.1) between the jth arcs of the sets A1, . . . , Am for all j = 1, . . . ,min

i
li.

Example 49. The interlacing number of the partition A = 127|36|45 is 2. The arcs,
together with the two crossings that contribute to v(A), are shown in Figure 3.2.1.

Table 1 shows the arcs and the number of interlacings for some more set partitions of the
set {1, . . . , 7}. The first, second, and third arcs are shown in different colours. Only crossing
arcs of the same colour contribute to the interlacing number.

3.3. The General Case. A consequence of the discussion of the two-part profiles case
is a new proof of the following theorem (See [PR23a, Theorem 4.7]) of Prasad and Ram:

Theorem 3.3. If ∆ ∈Mn(Fq) is diagonalizable with distinct eigenvalues then

σ(µ,∆) = q

∑
j≥2

(µj2 )
(q − 1)

∑
j≥2

µj

bµ′(q),

where µ′ is the partition conjugate to µ and

bλ(q) =
∑

A∈Π(λ)

qv(A).

This approach simply extends to understanding the case when ∆ is an arbitrary diago-
nalizable matrix.
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A Arcs of A v(A)

127|36|45
1 2 3 4 5 6 7 ∞

2

127|35|46
1 2 3 4 5 6 7 ∞

3

12|357|46
1 2 3 4 5 6 7 ∞

2

12|36|457
1 2 3 4 5 6 7 ∞

1

12|35|467
1 2 3 4 5 6 7 ∞

1

12|367|45
1 2 3 4 5 6 7 ∞

0

Table 1. Interlacing numbers of some set partitions of {1, . . . , 7}

Definition 3.3. A partition A of [n] is said to be a refinement of a partition B if every
block of A is contained in some block of B. Refinement is a partial order on Π(n) and we
write A ≤ B to mean A refines B.

It is easily checked that any two partitions have a meet and a join, so refinement makes
Π(n) into a lattice. The smallest element of this lattice is the discrete partition, whose blocks
are singletons.

Definition 3.4. Let B ∈ Π(n). A partition A ∈ Π(n) is transverse to B if each block
of A has exactly one element from every block of B. In other words, A is transverse to B if
their meet, A ∧B, is the discrete partition.

Example 50. The partitions 127|36|45 and 13|246|57 are transverse, while 127|36|45 and
13|247|56 are not.

Denote by Π(λ,B) the collection of partitions of [n] of shape λ which are transverse to
B.
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Let ∆ be a diagonalizable matrix with eigenvalues d1, . . . , dk. If the di-eigenspace is of
dimension νi then we may assume without loss of generality that ∆ =

⊕
i diIνi . Define A∆

to be the set partition such that i and j are in the same block whenever the i-th and the
j-th diagonal entries of ∆ are equal.

Theorem 3.4. If ∆ ∈Mn(Fq) is as above then

σ(µ,∆) = q

∑
j≥2

(µj2 )
(q − 1)

∑
j≥2

µj

b∆µ′(q)

where µ′ is the partition conjugate to µ and

b∆λ (q) =
∑

A∈Π(λ,A∆)

qv(A).

We note that this specializes the main theorem of [PR23a] because when ∆ has distinct
eigenvalues, A∆ is the discrete partition and so every partition is transverse to A∆.

Remark 3.1. We have seen, in this thesis, how we can geometrically interpret why the
solutions to various counting problems in finite vector spaces end up being polynomials with
positive integer coefficients. While counting subspaces by profile leads to polynomials, the
coefficients can be negative integers as well. A natural direction of research is to interpret
this phenomenon geometrically, in particular the positive polynomials bλ(q) that show up in
the solution of the ∆ diagonalizable case.
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