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Abstract

The thesis explores in great detail how the advancements in machine learning could be lever-
aged to further fundamental research in physics. We use the transformer architecture to classify
different phases of matter with interpretable models. We propose a modified architecture, the
correlator transformer, that provides full interpretability in terms of correlation functions. We
also show that transformers could be a good variational ansatz generator for quantum many-
body systems and find good approximations for ground state energies for different Heisenberg
systems.

A significant portion of the thesis is dedicated to applying vision transformers for phase
classification in different systems. Considerable work has been done in regard to phase clas-
sification using neural networks, and with great success. But, despite their effectiveness, they
tend to operate as "black boxes". This work seeks to shed some light on these black boxes in
terms of physically relevant observables. By training vision transformers on a range of sys-
tems, from lattice models like the Ising and Z2 gauge models to continuous systems such as the
Fermi gas, the thesis provides new insights into how a neural network "perceives" these phases
of matter. The goal is not only to classify these phases accurately but also to understand the
underlying physical correlations the models use to make their decisions, thus addressing the
critical challenge of interpretability in deep neural networks.

Deep neural networks have the potential to serve as universal function approximators, and
this capability has been used to successfully solve quantum many-body systems variationally.
Thus, the second part of the thesis focuses on this aspect of the transformer. We show that a
vision transformer can parameterise the quantum many-body wave functions and approximate
their ground state and other observables accurately.
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Chapter 1

Introduction

Our search for gaining new knowledge has always been limited by the tools we have. Un-
derstanding the complexities of quantum many-body systems is among the most exciting and
challenging areas of physics. Most models used to study many-body systems are not exactly
solvable, and we are forced to rely on numerical tools. Thanks to mathematical simplifications
and clever algorithms [1, 2, 3, 4, 5, 6, 7] we have been able to explore many interesting many-
body phenomena. Thus, developing new and improving existing tools to further our numerical
capabilities is crucial to fundamental research.

The advent of technological innovations in machine learning (ML) (particularly in deep
learning) has catapulted many fields to unprecedented levels of efficiency, accuracy, and dis-
covery. These advancements have not only reshaped existing industries but have also paved the
way for entirely new areas of application. From healthcare [8, 9, 10] and finance [11, 12, 13] to
autonomous vehicles and environmental conservation, ML is revolutionizing how we analyze
data, make decisions, and understand the world around us. Deep learning utilizes computational
models with many hidden layers to learn data representations at varying levels of abstraction
[14]. This strategy has pioneered advanced performance in areas like speech recognition, visual
object recognition, and object detection, as well as fields including drug discovery [15, 16, 17]
and genomics [18]. Deep learning uncovers complex patterns within large datasets through the
backpropagation of gradients.

As ML techniques have become more prevalent in industrial settings, there has been a
growing interest among physicists to explore its capabilities, especially in the study of quantum
many-body systems [19, 20, 21]. Models in physics are built on physical laws and constraints,
and we can interpret the outcomes of the model based on these laws. While in deep learning,
models are agnostic about the underlying rules that govern the data. Neural networks are trained
to uncover these hidden laws or features the data possesses. This makes understanding how
deep neural networks arrive at their decisions a significant challenge. To successfully model a
physical system using a neural network, it is crucial that we know what the model is "doing".
Deep learning models are infamously hard to interpret due to their inherent layered structure.

Among the plethora of deep learning models, the Transformer neural network, intended
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to improve natural language processing [22], has single-handedly allowed us to develop more
efficient large language models, for e.g., Chat-GPT, Gemini ...etc. The transformer marks its di-
vergence from existing architecture in its ability to capture long-range dependencies and its in-
herent parallelizability. This has paved the way for groundbreaking advancements in sequence
modelling tasks. With this great power comes great opaqueness in interpretability. Although it
gives state-of-the-art benchmarks, from a physicist’s point of view, the interpretability of such
models remains a problem that still needs to be tackled. The first part of this thesis endeavours
to shed some light on the black box and explain why a model can accurately classify two phases
in terms of physical observables.

In this seminal paper [20], the authors show that a class of neural networks called Re-
stricted Boltzmann Machines (RBM) can be used to generate variational ansatz and thereby
solve quantum many-body Hamiltonians using variational Monte Carlo. The second part of
the thesis focuses on using the transformer architecture to find good approximations to ground
state energies for a few correlated systems.

This thesis is structured as follows:

• Chapter 2: Reviews the Transformer architecture, focusing on its origins and evolution.

• Chapter 3: Discusses phase classification with an emphasis on interpretability. Results
for each physical system are presented in different sections.

• Chapter 4: Although related to interpretable phase classification, in this separate chap-
ter we discuss our modification to the standard transformer architecture to make phase
classification interpretable with regards to correlation functions.

• Chapter 5: Discusses Neural Quantum States (NQS) and ground state search using trans-
formers

• Chapter 6: Concluding remarks on this work and discusses possible future directions.

Therefore, this thesis is dedicated to exploring the applications of transformer neural net-
works in correlated systems.

18



19

Chapter 2

The Transformer

The transformer, initially developed to enhance sequence-to-sequence problems such as natural
language processing (NLP) was introduced by[22]. It has now become the state of the art in
not only NLP but also image classification.

Figure 2.1: Schematic of a transformer decoder and encoder modules. Fig from [22]

The transformer architecture (Fig: 2.1) is composed of an encoder and a decoder, each
constructed from a series of identical layers. The core of both the encoder and decoder layers
is the self-attention mechanism. Within the context of NLP, this makes the model capable of
attending to words at a different location in the input sentence when encoding or decoding a
particular word. This mechanism gives the transformer the ability to understand the context of
a word within a sentence, which is critical for accurate translation and text generation.

• Encoder: The encoder processes the input data and creates a set of representations that
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the decoder can use. Every layer in the encoder consists of two sub-components: the
first is a multi-head self-attention mechanism, and the second is a densely connected
feed-forward network. The transformer’s self-attention mechanism employs scaled dot-
product attention, which computes the relevance of all words in the input sequence w.r.t
each other words (tokens).

• Decoder: The decoder handles the generation of output sequences. Similar to the encoder
the decoder has two sub layers but it also has an additional sub layer that computes
attention over the encoder output. This aids the decoder in concentrating on important
segments of the input sequence, improving its ability to generate contextually appropriate
outputs.

• Self-Attention: Self-attention is a function that evaluates and links various locations
within a single sequence to derive a representation of the same sequence. That’s why
the name "self". What this allows is to enable the model to generate a contextual under-
standing of the tokens in a sequence. This is crucial in all NLP tasks. The self-attention
is used in three different ways: in the encoder for handling the input, in the decoder for
handling the output, and between the encoder and decoder (encoder-decoder attention)
to help the decoder attend to relevant parts of the input.

2.1 Attention Mechanism

The attention mechanism is among the most important concepts in contemporary machine
learning, especially in the field of NLP. It provides a way for models to concentrate on the
most pertinent segments of the input for decision-making purposes, similar to the way humans
pay attention to certain aspects of our environment over others.

Attention was first introduced as a sequence-to-sequence (seq2seq) model component to
improve machine translation. In early seq2seq models the encoder compressed the whole input
sequence (source language text) into a fixed-length vector, from which the decoder produced
the output sequence (text in the target language). However, this architecture struggled with
long sequences because the fixed-length vector became an information bottleneck. To address
this,[23] introduced an attention mechanism that allowed the decoder to look back at the input
sequence and dynamically focus on different parts of it during the translation process. This not
only improved the translation quality but also made the internal decision-making process of the
model more interpretable.

One way to think about the attention mechanism is transforming a query along with a col-
lection of key-value pairs into an output, where the output is values weighted by the similarity
score between the query and key. This similarity score can be computed in different ways, but
the most common is scaled dot product attention.

20
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The Scaled Dot-Product Attention is described by,

Attention(Q,K,V ) = softmax
(

QKT
√

d

)
V. (2.1)

Where Q is the query matrix, K is the key matrix V is the value matrix, d is the dimensionality
of the keys (query, value), and the scaling factor is used for stability for gradient propagation.

The softmax function is applied across the keys for each query, resulting in weights that
sum to 1 to give the attention probabilities. The output is values weighted by the degree of
similarity between the query and its associated key.

The Transformer model extends this idea with "Multi-Head Attention," which allows the
model to collectively attend to short-range and long-range information from different represen-
tational spaces. This is achieved by performing the attention function in parallel for each head
and then concatenating the results:

MultiHead(Q,K,V ) =Concat(head0,head1, ...,headn)W 0

Where each head is computed as:

headi = Attention(QW Q
i ,KW K

i ,VWV
i ) (2.2)

All W are projection matrices that are learned during training.

The advent of attention mechanisms has been pivotal in the field of large language models
as it enabled the development of more sophisticated models that can handle long sequences and
complex relationships within the data. It has also improved the interpretability of models, as
the attention weights give information about which part of the data is more relevant to the task
at hand.

2.2 Positional Embedding

Positional embeddings are a crucial component of the Transformer architecture, which enables
the model to take into account the order of the sequence data it processes. Since Transformers
lack the inherent sequential processing of models like RNNs, positional embeddings are nec-
essary to provide context that the relative position of tokens in a sequence can convey. We will
briefly go through the three main types of positional embeddings: sine-cosine, learnable and
relative positional embeddings.

Sine-Cosine Positional Embedding

The original Transformer model uses fixed, non-learnable positional embeddings (absolute)
based on sine and cosine functions of different frequencies. The intuition is that these functions

21
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can provide a unique signal for each time step, and their periodic nature allows the model to
generalize to sequence lengths unseen during training. The positional information is usually
encoded after a linear projection of the patched (to N patches) snapshot to a hidden dimension
subspace (d). This is done to make the model more generalizable. The embedding can be
written as,

PE(i,2 j) = sin
(

i
100002 j/d

)
PE(i,2 j+1) = cos

(
i

100002 j/d

)
.

Here, i∈ {0,1, ...N−1} is the position of N patches and j ∈ {0,1, ....,(d−1)/2}where d is
the embedding dimension. Each positional encoding dimension is represented by a sinusoidal
function, where the wavelengths progress geometrically from 2π to 10000 · 2π . This type of
encoding allows each token to have a distinct positional encoding.

Learnable Positional Embedding

Alternatively, positional embeddings can be parameters that the model learns during training.
This approach treats positions like words in NLP, assigning each position a vector just like word
embedding, and these vectors are learned as part of the model’s training process. The advantage
here is that the model can learn complex positional relationships that are specific to the task
at hand. The embeddings are initialized randomly and then adjusted through backpropagation.
Since they are trainable parameters, this increases the complexity of the model compared to
absolute positional embedding.

Relative Positional Embedding

Relative positional embeddings were introduced to improve upon the absolute positional em-
beddings used in the original Transformer. The idea is to embed the relative positions of tokens
with respect to one another rather than their absolute position in the sequence. This is especially
helpful in data where an element’s relative location is more significant than its absolute position
within the sequence. The Transformer can learn to use these relative positions effectively. The
relative positions can be either fixed or learnable.

Relation-aware positional embedding that allows for translational invariance was intro-
duced by [24] in which they add a term to the attention computation that represents the relative
position. This was modified by [25] to have both parallizabilty and interpretabilty.

Attention(Q,K,V ) = softmax
(

QKT
√

dk
+Fp

)
V (2.3)

Here, Fp is the Toeplitz matrix parametrized by scoring function fθ .(Fp)i j = fθ ( j− i),

22



23

where fθ ( j− i) models the how the ith position relate to the jth and can be written as [25],

fθ (k) =
S

∑
s=1

αsexp(−|βs|(k− γs)
2) (2.4)

where k = (i− j) and αs,βs,γs are trainable parameters for the kernel s. The kernels can be
thought of as different realizations of these set of weights (usually we use 1 to 3).

Each of these approaches to positional embedding has its advantages and may be more
suitable for different tasks or datasets. Absolute embeddings offer generalization capabilities
and are computationally simple, while learnable embeddings provide flexibility and can poten-
tially capture more complex positional information. Relative embeddings focus on the context
of token pairs and can provide a more dynamic understanding without large computational
overhead.

2.3 Vision Transformer

The vision transformer introduced by [26] modified the transformer to classify image-like data.
Traditional convolutional neural networks or CNNs have been the go-to models for image-
related tasks, utilizing layers with convolutions that process local kernels and build up an un-
derstanding of spatial features of the input data. ViT challenges this norm by leveraging the
Transformer’s self-attention mechanism to process images and, thereby, allowing the model to
have long-range dependencies. Images contain a vast number of pixels and, hence, features

Figure 2.2: Schematic of Vision Transformer (ViT). Fig from [26]

compared to words in a sentence. The Vision Transformer addresses this issue by viewing im-
ages as a series of flattened 2D patches, similar to words in a sentence, rather than as a grid of
pixels. The basic concept behind ViT is to divide a picture into fixed-size patches, use a linear
embedding to reduce the dimension, add position embeddings, and then run the sequence of
these embeddings through a conventional Transformer encoder.
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• Patch Embedding: ViT begins by dividing an image into patches. These patches are flat-
tened and changed into a series of vectors with reduced dimensions. through a trainable
linear projection. This process is similar to tokenization in NLP, with image patches
being the visual tokens.

• Position Embeddings: Since the order of the input is not automatically taken into account
by the Transformer, ViT encodes the patch embeddings with the positional embedding to
retain information about the location of each patch within the image.

• Transformer Encoder: The resulting sequence of patch embeddings, with positional in-
formation included, is then fed to a Transformer encoder. Multi-headed self-attention
and MLP blocks (multi-layer perceptrons) are arranged in alternating layers to form the
encoder, just like the original Transformer used in NLP. Layer normalization and residual
connections are also included, enhancing training stability and performance.

• Multi-Head Attention: The self-attention mechanism lets the model focus on the most
important segments of the image as it processes each patch. This allows the model to
recognize and incorporate dependencies over long distances and understand global con-
texts within the image.

We tune the standard ViT architecture according to the demands of the data. A watered-
down simpler model is considered for simpler systems like classical ising, and a more complex
architecture is considered for Cooper pair classification. The specifics of the model and data
are given in the next section.
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Chapter 3

Interpretable Phase Classification

3.1 Overview

Machine learning, with its ability to discern patterns and relationships in large datasets, offers
powerful tools for phase classification. Neural networks, when trained with appropriate non-
linear function and depth, can be applied to snapshots to identify various order parameters
and extremely non-trivial states such as topological phases. [19, 27] demonstrated that we can
recognize phases and phase transitions in a variety of physical systems using fully connected
and convolutional neural networks. [28] demonstrated the scheme of confusion learning to
find critical points. Other works using unsupervised learning approaches [29, 30, 31, 32, 33],
addressing the sign problem[34, 35] and classification of topological phases [36, 37, 38, 39, 40]
has been demonstrated successfully with the use of neural networks.

Most of the time, even though the neural network successfully classifies non-trivial phases
of matter, the interpretability or "why" or "what" the model learns remains a black box. Many
works have been done towards more interpretable, physics-friendly neural networks. [41, 42]
shows support vector machines (SVM) learning the mathematical form of physical observables
that can discriminate the two phases, [43] explores the learned weights of neural networks for
interpretability, [44] uses principle component analysis (PCA) to understand phase transitions
and fermionic critical points. Other works in this direction include but are not limited to ob-
taining analytical forms of nematic order parameters[45] and looking at the learned correlation
functions [46] with CCNN. This work intends to extend the ideas of CCNN [46] with Trans-
formers that can handle continuous quantum systems and long-range correlations.

In this chapter, we explore interpretability by employing different methods, including the
attention maps from the transformer, PCA analysis and looking at the learned weights to find
correlations.
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3.2 Classical Ising 2D

The transverse field Ising Hamiltonian is given by

H =−J ∑
<i, j>

σ
z
i σ

z
j −h∑

i
σ

x
i . (3.1)

Where J is the coupling between the nearest neighbours and h is the external magnetic field.
We train the model with snapshots ranging from T = 0.25 to T = 4. The dataset is for h = 0
with ferromagnetic interaction J > 0. At low temperatures, we have a magnetic order; all spins
are either up or down. In contrast, at higher temperatures, the state has a random magnetic
order.

3.2.1 Results

Figure 3.1: Principal component analysis of classification tokens 10000 snapshots.

The results are for the given hyperparameters below, and we achieve 100% accuracy.

Hidden dim d = 4

Patch size = 2

Number of layers = 1

Number of attention heads = 1

Hidden drop out = 0.0

Attention drop out = 0.0

Learning rate = 0.005

Epochs = 5

Batch size = 64
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We use the standard ViT with classification token but without any positional embedding. The
ground state data is the ferromagnetic state, and the excited state has random magnetization.
The model achieved 99.98% accuracy in the classification. From the principal component
analysis (PCA) of the model output Fig:3.1, we can see that the model learns the magnetization
of the system to classify between the excited state and the ground state. We find three distinct
domains corresponding to +1,0(0.5) and −1(0) magnetization. We can conclude that the
model learns the magnetization of the system to classify.

3.3 Z2 LGT in (1+1) D

3.3.1 ViT

Figure 3.2: Schematic of vision Transformer Encoder

The Attention in Fig 3.2 is given by the expression,

Attention(Q,K,V ) =

(
QKT
√

d

)
V. (3.2)

Where d is the hidden dimension we chose for the model, here, we do not implement a softmax
activation function to control the order of correlations the model accesses. Next, we look into
how the transformer works on the level of pixels. Consider an image of dimension (h,c), c is
the number of channels. First, we patch the image into grids of size (p ∗ c), p designate the
desired patch size.
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The patched input image X has shape (h/p,cp). This patched image is then linearly pro-
jected by a projection matrix W p (Eqn 3.3) to the hidden dimension space d. We do not have
any bias terms for the linear projections.

X p = XW p, where W p has shape (cp,d)

X p
i j =

cp

∑
a=1

XiaW p
a j, where X p has shape (h/p,d) (3.3)

We include a learnable positional embedding (P) by element-wise multiplication for all the
projected patches.

The Query (Q), Key (K), and Value (V ) are obtained by further linear projections (by the
projectors W q,W k,W v) of these projected patches, which are described below (Eqn 3.4).

Q = X pW q

Qi j =
d

∑
b=1

X p
ibW q

b j

Similarly,

KT
i j =

d

∑
k

W kT

ik X pT

k j

Vi j =
d

∑
m=1

X p
imW q

m j (3.4)

The Q, K and V serve as the representations of the image in the hidden dimension subspace.
The attention map is then computed in the following manner,

ai j = ∑
r

QirKT
r j =

d

∑
r,b,m=1

X p
ibW q

brW
kT

rk X pT

k j

ai j =
1√
d

d

∑
r,b,m=1

X p
ibX pT

k j W q
brW

kT

rk (3.5)

The final attention is computed by weighing these attention scores (a) with values (V ).

Attention (A) = aV

Ai j =
1√
d

h/p

∑
r=1

d

∑
p,b,k,m=1

cp

∑
a,l,n=1

XiaXT
lr XrnW p

abW p
nmW pT

kl W q
bpW kT

pk W v
m j

=
1√
d

h/p

∑
r=1

d

∑
p,b,k,m=1

cp

∑
a,l,n=1

XiaXT
lr XrnPibPT

krPrmW p
abW pT

nm W p
klW

q
bpW kT

pk W v
m j. (3.6)

For the final classification, we take the mean over all the tokens before further projecting it
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into Logits.

Logits (ŷ) = AmeanW +B

(3.7)

where W is a dX2 weight matrix and B are the biases. We use the Cross-Entropy loss function,
which is given by,

L =− 1
N

N

∑
i=1

yi log(ŷi) (3.8)

where N is the number of classes, y is the true distribution and ŷ is the predicted distribution.

3.3.2 Theory and data

The Hamiltonian of the Z2 Lattice Gauge Theory in (1+1)-D is described as follows [47]

Ĥ0 = J
L−1

∑
j=1

(
â†

j τ̂
z
j, j+1â j+1 +H.c.

)
−h

L

∑
j=1

τ̂
x
j, j+1, (3.9)

Where â†
j , â j are the bosonic ladder operators acting on matter site j, τ

z
j, j+1 denotes the gauge

field between the matter site j and j+1 and τx
j, j+1 denotes the electric field between the matter

site j and j+1. The local generator Ĝ of the gauge invariance is defined as

Ĝ j = (−1)n̂ j τ̂
x
j−1, jτ̂

x
j, j+1, (3.10)

Ĝ j|ψ⟩= g j|ψ⟩ (3.11)

with eigenvalues g j =±1.

Figure 3.3: a)1d chain indicating the matter (n j) and links (τx
j ) and the patching for patch size

2, b) the indices of elements inside a patch (P).

We generate a 1D chain of length 16, with matter values measured in the Fock space basis
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(0,1) and link values measured in the τx basis (−1,1). For the convenience of interpretability
we change the matter values to (1,−1) prior to feeding the data into the transformer.

3.3.3 Results

The results are for the given hyperparameters below, and we achieve 99.89% accuracy.

Hidden dim d = 16

Patch size = 2

Number of layers = 1

Number of attention heads = 1

Hidden drop out = 0.0

Attention drop out = 0.0

Learning rate = 0.01

Epochs = 10

Batch size = 64

From Eqn: 3.6 we can construct the weights of the 3 point correlator in the following way

Cir
aln =

d

∑
p,b,k,m=1

PibPT
krPrmW p

abW pT

nm W p
klW

q
bpW kT

pk W v
m j. (3.12)

Where a, l,n ∈ {0,1,2,3}, denotes the 4 elements inside a patch (Fig: 3.3 b)). We fix
i = r = 0. That is, we look for the correlations inside the first patch specifically (and ignore the
superscript for convenience). Of the physically relevant correlations, the ones we are interested
in of the index C023, which would contain the relevant terms from Gauss’s Law (Eqn: 4.14).

Since we changed the matter values from 0,1 to 1,−1, the (−1)n j would just become n j,
allowing us to directly get the Gauss’s Law from the 3rd order correlation. From Fig: 3.4 we
can see that the weights of the term 023, which denotes the terms of the kind n̂ jτ̂

x
j−1, jτ̂

x
j, j+1 have

greater weightage. We sum over all permutations of a given index. It is important to note that
the weights of the correlators of the type {Caaa,Cann,Caan...} etc are non-zero (at most the same
order). But of the unique (of the type Caln) 3rd order correlators, we find that the transformer is
focusing on the most physically relevant one, i.e. those which constitute the Gauss’s law.

Fig: 3.5 depicts the weights of all possible 3rd order correlations. All third order terms that
has index 1 (C1an) has significantly reduced weights compared to the other. The large weights of
correlators such as C220,C200,C000 ... indicates towards the transformer giving similar weights
to the individual elements 0,2,3 and ignoring 1.
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Figure 3.4: Absolute weights of unique 3rd order terms in the Attention averaged over 50
different realizations. The indices denote the position of the relevant elements as described in
Fig:3.3

Figure 3.5: Absolute weights of all possible 3rd order terms in the Attention averaged over 50
different realizations

3.4 Ising Gauge Theory 2D

3.4.1 ViT

The Attention in Fig 3.6 is given by the expression,

Attention(Q,K,V ) =

(
QKT
√

d

)
V. (3.13)
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Figure 3.6: Schematic of vision Transformer Encoder

Where d is the hidden dimension we chose for the model. Here, we do not implement a softmax
activation function to control the order of correlations the model accesses. Next, we look into
how the transformer works on the level of pixels. Consider an image of dimension (h,h,c), c

being the number of channels. First, we patch the image into grids of size (p ∗ p), p designate
the desired patch size.

The patched input image X has shape ((h/p)2,cp2). This patched image is then linearly
projected by a projection matrix W p (Eqn 3.14) to the hidden dimension space d and appended
by the classification token. The classification token is a learnable parameter of shape (1,d). We
do not have any bias terms for the linear projections except for the final classification projection.

X p = XW p, where W p has shape (cp2,d)

X p
i j =

cp2

∑
a=1

XiaW p
a j, where X p has shape ((h/p)2,d)

Now the classification token (1,d) is added as the first element of X p

where X p now has shape ((h/p)2 +1,d) (3.14)

Importantly, we do not implement positional embedding. Though positional embedding helps
to capture inter-patch correlations, the discriminating feature for the Ising gauge data lies within
the patches. Therefore, positional embedding could be omitted to make the model simpler and
more accurate.
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The Query (Q), Key (K), and Value (V ) are obtained by further linear projections (by the
projectors W q,W k,W v) of these projected patches. The attention map is calculated as follows,

ai j = ∑
r

QirKT
r j =

d

∑
r,b,m=1

X p
ibW q

brW
kT

rk X pT

k j

ai j =
1√
d

d

∑
r,b,m=1

X p
ibX pT

k j W q
brW

kT

rk (3.15)

And as discussed before, the attention is given by,

Attention (A) =aV (3.16)

Ai j =
(h/p)2+1

∑
r=1

d

∑
p,b,k,m=1

cp2

∑
a,l,n=1

XiaXT
lr XrnW p

abW p
nmW pT

kl W q
bpW kT

pk W v
m j

For the final classification, the transformer receives only the classification token part of the
attention output (Acls

1 j = A1 j).

Acls
1 j =

1√
d

(h/p)2+1

∑
p=1

d

∑
k,r,b,m=1

X p
1bX pT

kp X p
pmW q

brW
kT

rk W q
m j (3.17)

X p
1b represents the classification token. This is then linearly projected to get the logits for

the loss function.

Logits (ŷ) = AclsW +B

ŷi =
1√
d

(h/p)2+1

∑
p=1

d

∑
s,k,r,b,m=1

X p
1bX pT

kp X p
pmW q

brW
kT

rk W q
msWsi +

d

∑
s=1

Bs (3.18)

where W is a dX2 weight matrix and B are the biases. We use the Cross-Entropy loss function
to optimize the weights and biases.

3.4.2 Theory

The Z2 Ising gauge theory in 2D is a model of tremendous interest in quantum computation
and condensed matter physics, known for its applications in understanding topological order
and quantum error correction. The theory is described in terms of spins on the links of a two-
dimensional lattice.

The Z2 Ising Lattice Gauge Theory Hamiltonian in two dimensions is defined as

H =−J ∑
p

∏
l∈p

σ
z
l (3.19)
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Figure 3.7: a) Ground state where Gauss’s law is satisfied, b) Excited state where Gauss’s law
is violated.

Here, the coupling constant is denoted by J, and the first sum covers all plaquettes p in the
lattice.

Gauss’s Law Constraint:

For the gauge invariance, each plaquette p of the lattice must satisfy the Gauss’s law:

Gp = ∏
l∈p

σ
z
l = 1 (3.20)

The system has a highly degenerate ground state, comprising all possible configurations where
Gp = 1 is obeyed. At finite temperatures, the gauge constraint is violated locally. This excited
state is characterised by

Gp = ∏
l∈p

σ
z
l =±1 (3.21)

3.4.3 Results

We consider a system of size 16X16, with 2 channels for horizontal and vertical links. The
results are for the given hyperparameters below, and we achieve 100% accuracy.
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Figure 3.8: a),b) Excited state snapshots and their corresponding attention maps, c),d) ground
state snapshots and their corresponding attention maps

Hidden dim d = 8

Patch size = 2

Number of layers = 1

Number of attention heads = 1

Hidden drop out = 0.0

Attention drop out = 0.0

Learning rate = 0.01

Epochs = 20

Batch size = 64

Surprisingly, the transformer is able to classify the phases with weighted 2-point correlators.
To understand this, we describe the possible sum of 2nd-order correlations, represented dia-
grammatically in Fig 3.9. And find it possible to arrive at a constraint similar to Gauss’s law.

Fig 3.8 shows the attention map for the two phases, which unfortunately does not give
much insight into how the transformer is able to classify. So, we look into the weights inside
a (2X2X2) patch (Fig 3.10). We can construct the weights of these 2-point weight correlations
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Figure 3.9: We look for a possible sum of 2-point correlators in a plaquette that could differ-
entiate the phases. The 2-point correlation is calculated w.r.t the spins inside the red dots and
summed for each possible plaquette configuration. a) The ground state can take the values ±2,
b) while the excited state can take 0 and ±2

Figure 3.10: The weights (C) of the attention map in the first patch. The weights are computed
for 100 realizations and summed over by taking the absolute value.

from the weights of the attention maps Eqn: 3.15

Ci j
bk =

d

∑
r,b,m=1

W p
bnW pT

p j W q
brW

kT

rk (3.22)

We fix i = j = 0 to analyse the weights inside a single patch. Fig 3.10 shows the weights of the
attention map (Cbk) for the first patch averaged over 100 realizations. It is important to note that
a single patch consists of 8 link variables (spins), and only 4 of them constitute a plaquette. We
take the absolute value of each realization to minimize any loss of information. The weights
suggest links 2,5,6,7 contribute to the classification. This pattern remains the same for any
given patch. We calculate Gauss’s Law using these 4 spins for the 2 phases (Fig: 3.11).

By design, the transformer output (of the classification token) computes all possible 2-point
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Figure 3.11: a) Gauss’ law for the high-temperature phase, b) Gauss’s law for zero temperature
state

Figure 3.12: Mean of the transformer output(of the classification token) for each phase.

correlations. Fig: 3.12 shows a histogram of the transformer out for the 2 phases. We can
conclude that the model doesn’t need to look into 4th order correlations as the theory suggests
to differentiate the phases accurately.

3.5 Cooper Pairs

3.5.1 ViT

The Attention in Fig 3.13 is given by the expression,

Attention(Q,K,V ) = softmax
(

QKT
√

d

)
V. (3.23)

Where the softmax is applied on both the dimensions with the tokens, and d is the hidden
dimension we chose for the model. Next, we delve a bit deeper into how the transformer works
on the level of pixels. Assume an image of dimension (h,h,c), c being the number of channels.
First, we patch the image into grids of size (p ∗ p), p designate the desired patch size.

The patched input image X has shape ((h/p)2,cp2). This patched image is then linearly
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Figure 3.13: Schematic for Vision Transformer Encoder module

projected by a projection matrix W p (Eqn 3.24) to the hidden dimension space d and appended
by the classification token. The classification token is a learnable parameter of shape (1,d).
(The bias terms are present but are not explicitly written for the sake of simplification)

X p = XW p, where W p has shape (cp2,d)

X p
i j =

cp2

∑
a=1

XiaW p
a j, where X p has shape ((h/p)2,d)

Now the classification token (1,d) is added as the first element of X p

where X p now has shape ((h/p)2 +1,d) (3.24)

Next, we add positional embedding(Pi j) to X p to obtain the Embedded Patches in Fig 3.13. We
choose a learnable positional embedding. Interestingly, we find that the element-wise multipli-
cation of positional embedding provides better results than the traditional approach of adding
them. The Query (Q), Key (K), and Value (V ) are obtained by further linear projections (by
the projectors W q,W k,W v) of these embedded patches. The attention map is computed as

ai j =
1√
d

QKT =
1√
d

d

∑
p=1

d

∑
b=1

X p
ibW q

bpPib

d

∑
k=1

W k
pkX pT

k j PT
k j

ai j =
1√
d

d

∑
p,b,k=1

X p
ibX pT

k j PibPT
k jW

q
bpW k

pk (3.25)
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We apply Scale Norm (SN), which is

SN(x) =
x
||x||a

(3.26)

where ||.|| is the L2 norm and a is a learnable parameter. Now, we take softmax along the last
two dimensions, which denotes the tokens, to attenuate irrelevant portions and focus more on
the relevant parts of the snapshots that contribute to classification. This gives us the attention
probabilities (Eqn 3.27).

softmax
(
ai j
)
=

exp
(

1√
d ∑

d
p,b,k=1 X p

ibX pT

k j PibPT
k jW

q
bpW k

pk

)
∑
(h/p)2+1
m=1 ∑

(h/p)2+1
n=1 exp

(
1√
d ∑

d
p,b,k=1 X p

mbX pT

kn PmbPT
knW q

bpW k
pk

) (3.27)

The final attention output is obtained by weighing these attention probabilities by their respec-
tive Value (V ).

Attention (A) = softmax(a)V

Ai j =
d

∑
l=1

softmax(ail)Vl j

=
(h/p)2+1

∑
l=1

 exp
(

1√
d ∑

d
p,b,k=1 X p

ibX pT

kl PibPT
klW

q
bpW k

pk

)
∑

d
r=1 X p

lrPlrW v
r j

∑
(h/p)2+1
m=1 ∑

(h/p)2+1
n=1 exp

(
1√
d ∑

d
p,b,k=1 X p

mbX pT

kn PmbPT
knW q

bpW k
pk

)


X p = X p +A (3.28)

For the final classification, the transformer receives only the classification token part(X p
cls =X p

1 j)
Eqn (3.29) of the transformer output (X p). ∑X p

1 j represents the learnable classification token.

X p
1 j = X p

1 j +
(h/p)2+1

∑
l=1

 exp
(

1√
d ∑

d
p,b,k=1 X p

1bX pT

kl P1bPT
klW

q
bpW k

pk

)
∑

d
r=1 X p

lrPlrW v
r j

∑
(h/p)2+1
m=1 ∑

(h/p)2+1
n=1 exp

(
1√
d ∑

d
p,b,k=1 X p

mbX pT

kn PmbPT
knW q

bpW k
pk

)

(3.29)

Which is then further linearly projected to get the logits for the loss function. We use the
Cross-Entropy loss function, which is given by,

L =− 1
N

N

∑
i=1

yi log(ŷi) (3.30)

where N is the number of classes, y is the true distribution and ŷ is the predicted distribution.The
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explicit expression for the predicted distribution can be written as

ŷ = X p
clsW +B

ŷ j =
d

∑
s=1

X p
1sWs j +Bs

=
d

∑
s=1

X p
1s +

(h/p)2+1

∑
l=1

exp
(

1√
d ∑

d
p,b,k=1 X p

1bX pT

kl P1bPT
klW

q
bpW k

pk

)
∑

d
r=1 X p

lrPlrW v
rs

∑
(h/p)2+1
m=1 ∑

(h/p)2+1
n=1 exp

(
1√
d ∑

d
p,b,k=1 X p

mbX pT

kn PmbPT
knW q

bpW k
pk

)
Ws j

+
d

∑
s=1

Bs (3.31)

Where W and B are the weights and biases of the final linear layer.

3.5.2 Cooper Pair Data

Cooper pairs are pairs of opposite spin momentum fermions bounded together at low tempera-
tures. We generate synthetic data of momentum space snapshots of 2D Fermi gas in a harmonic
oscillator potential with tunable interaction strength. At low or zero interaction strength, there
is no pairing, while at sufficiently large interaction strength, the opposite spin fermions tend to
pair across the Fermi surface. This pairing is important for superfluidity and superconductivity
[48]. We generate configuration on a 50X50 (denoting pxXpy) grid with cooper pairs and with-
out while maintaining the total number of particles. The red and blue particles denote opposite
spin fermions. The excited state (with high interaction strength) has an opposite spin pair (red
and blue denote spin up and spin down, respectively) distributed over the Fermi surface (de-
noted by the dotted circle). Meanwhile, the ground state has a random distribution. Fig 3.14 a)

Figure 3.14: a) The excited state has two pairs of particles on the Fermi momenta b) the ground
state corresponds to randomly distributed particles. The dotted lines represent the Fermi mo-
menta.

represent one of the classes (Excited State) where there are two pairs of particles on the Fermi
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surface, and Fig 3.14 b) are snapshots where the particles are randomly distributed. The model
is trained on a set of these 2 classes of snapshots.

3.5.3 Results

The model is trained using the following hyperparameters.

Hidden dim d = 32

Patch size = 5

Number of layers = 1

Number of attention heads = 4

Hidden drop out = 0.2

Attention drop out = 0.2

Learning rate = 0.005

Epochs = 20

Batch size = 64

We are able to achieve an accuracy of 96.10%.

Figure 3.15: a),b) the excited state snapshots and their respective attention maps, c),d)the
ground state snapshots and their respective attention maps

Fig 3.15 a) and b) show how the attention map focuses on the cooper pairs of the excited
state. While Fig 3.15 c) and d) shows the attention maps for the ground state, and we can see
the Transformer trying to locate the particles on the Fermi momenta but cannot find more pairs.
All attention maps are computed w.r.t the classification token. From these attention maps, we
can conclude that the transformer can identify the long-range correlations in our snapshot by
locating the cooper pairs.
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3.5.4 Analysis of Attention Maps

The attention map is computed by averaging over the attention maps of all the heads. Looking
into each attention map in the individual heads gives insights into what each head is focusing
on.

Figure 3.16: a) Excited state snapshot and the corresponding attention map, b),c),d),e) are the
attention map for head1, head2, head3 and head4, respectively

Fig 3.16 shows how different attention heads attend to different parts of the excited state
snapshot.

Figure 3.17: a) Ground state snapshot and the corresponding attention map, b),c),d),e) are the
attention map for head1, head2, head3 and head4, respectively

Fig 3.17 shows how different attention heads attend to different parts of the ground state
snapshot. These attention maps show that the transformer is looking for the Cooper pairs at the
surface. We can also infer that head 2 contributes more to the underlying physics for fixed hy-
perparameters and seeds. Analysing these attention maps one can arrive at the conclusion that
the transformer is focusing on the particles on the surface (Cooper pairs) to make a distinction
between the two classes of snapshots.
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3.6 Percolation

3.6.1 ViT

Figure 3.18: Schematic of vision Transformer Encoder

We use the same Transformer as we used for the 2D Ising Gauge Theory (Fig: 3.18) but
with positional embedding. And here, this is crucial for the model’s high performance because
it has to learn long-range correlations.

As discussed earlier, the patched input image X has shape ((h/p)2,cp2). This patched
image is then linearly projected by a projection matrix W p (Eqn 3.32) to the hidden dimen-
sion space d and appended by the classification token. The classification token is a learnable
parameter of shape (1,d). We also use completely learnable positional embedding.

X p = XW p, where W p has shape (cp2,d)

X p
i j =

cp2

∑
a=1

XiaW p
a j, where X p has shape ((h/p)2,d)

Now the classification token (1,d) is added as the first element of X p

where X p now has shape ((h/p)2 +1,d)

Then we element wise multiply a learnable position embedding P.

X p
i j =

cp2

∑
a=1

XiaW p
a jPi j (3.32)

The Query (Q), Key (K), and Value (V ) are obtained by further linear projections (by the
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projectors W q,W k,W v) of these projected patches. The attention map is given by,

ai j = ∑
r

QirKT
r j =

d

∑
r,b,k=1

X p
ibW q

brW
kT

rk X pT

k j

ai j =
1√
d

d

∑
r,b,k=1

X p
ibX pT

k j W q
brW

kT

rk (3.33)

And as discussed before, the attention is given by,

Attention (A) =aV (3.34)

Ai j =
(h/p)2+1

∑
p=1

d

∑
r,b,k,m=1

cp2

∑
a,l,n=1

X p
ibX p

kp
T X p

pmW q
brW

kT

rk W v
m j

For the final classification, the transformer receives only the classification token part of the
attention output (Acls

1 j = A1 j).

Acls
1 j =

1√
d

(h/p)2+1

∑
p=1

d

∑
k,r,b,m=1

X p
1bX pT

kp X p
pmW q

brW
kT

rk W q
m j (3.35)

X p
1b represents the classification token. This is then linearly projected to get the logits for

the loss function.

Logits (ŷ) = AclsW +B

ŷi =
1√
d

(h/p)2+1

∑
p=1

d

∑
s,k,r,b,m=1

X p
1bX pT

kp X p
pmW q

brW
kT

rk W q
msWsi +

d

∑
s=1

Bs (3.36)

where W is a dX2 weight matrix and B are the biases. We use the Cross-Entropy loss function
to optimize the weights and biases.

3.6.2 Results

Data 1

We generate a 16X16 lattice of random spins directed from one edge to the opposite edge. We
classify the 2 classes, those that reach the opposite edge as percolated and those that don’t as
a non-percolated state. The idea here is to test if the transformer can learn long-range correla-
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Figure 3.19: a),c),e) Attention maps for a few examples of percolated snapshots, b),d),f) atten-
tion maps for a few examples of non-percolated snapshots

tions. We get an accuracy of 99.99% for this classification.

Hidden dim d = 8

Patch size = 2

Number of layers = 1

Number of attention heads = 1

Learning rate = 0.01

Epochs = 20

Batch size = 64

Fig: 3.19 shows the attention map w.r.t the classification token (these attention maps are
interpolated to the image size). There is a concentration of attention score at the lower edge
where the percolated spins end. It seems the transformer is looking at whether a snapshot
reaches the bottom edge to decide whether it is percolated.

Data 2

Previously, we considered a simplified model for percolation, i.e. the percolated lattice random
spins directed from one edge to the opposite edge. Here, we add more complexity by randomly
rearranging the spins in the percolated images to make the non-percolated snapshots. This is
done so that the transformer can’t just look at the lower edge to make the classification. The
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data still consists of a 16X16 lattice with constant magnetization. The results are for the given
hyperparameters, and we achieve 98.69% accuracy.

Figure 3.20: a),c),e) Percolated snapshots and corresponding attention map, b),d),f) non-
percolated snapshots and corresponding attention map

Hidden dim d = 8

Patch size = 2

Number of layers = 1

Number of attention heads = 1

Learning rate = 0.01

Epochs = 10

Batch size = 64

Although the total magnetization is constant across both phases, the high accuracy suggests that
the model is aware of the spatial distribution of the spins. This is confirmed by the attention
maps in Fig 3.20. The attention map seems to roughly follow the spins’ distribution in both
phases.

Fig: 3.21 shows the principle component analysis of the classification token.
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Figure 3.21: a) PCA analysis of the classification token, b) The mean of classification token of
the two phases after training

3.7 Other Synthetic Data

3.7.1 Data

To simulate a bilayer material (similar to graphene bilayers) with antiferromagnetic coupling
between the layers, we generate snapshots with antiferromagnetic order about the vertical axis
(Fig:3.22). The snapshots are 16X16 with each side representing 1 layer; therefore, the snap-
shots are unfolded bilayer. We train the transformer to see whether it can learn to classify this
ordered state against a disordered one (random magnetization).

Figure 3.22: Snapshot with antiferromagnetic coupling about the red dotted line, which is the
folding axis of the bilayer. The left-hand side would be 1 layer and the right-hand side the
other.

3.7.2 Results

The results are for the given hyperparameters, and we achieve 99.99% accuracy.
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Figure 3.23: a),c),e) Snapshots with antiferromagnetic bilayer coupling and their attention
maps, a),c),e) Phases with random magnetization and their attention maps

Hidden dim d = 16

Patch size = 4

Number of layers = 1

Number of attention heads = 1

Learning rate = 0.01

Epochs = 10

Batch size = 64

Fig: 3.23 shows the attention map obtained from the transformer. We can clearly see that the
attention map for the antiferromagnetic phase reflects the underlying pattern. All the attention
maps are computed w.r.t the classification token.

3.7.3 Data

We generate spins in 16X16 lattices with mirror symmetry about the vertical axis and train it
against a random configuration of spins. The aim of these generated data is to see whether the
transformer learns this symmetry. This could then be extended for systems with much more
complicated symmetries.
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Figure 3.24: a), b) Mirror symmetric snapshots and their respective attention maps, c), d)
random snapshots and their respective attention maps

3.7.4 Results

Hidden dim d = 16

Patch size = 2

Number of layers = 1

Number of attention heads = 1

Learning rate = 0.01

Epochs = 10

Batch size = 64

The model achieves an accuracy of 99.99%. We see that the attention maps in the figure
Fig: 3.24 a) and b) do not have mirror symmetry but are similar to the case of bilayer Fig: 3.23.
We conclude that the transformer attention maps do not always reflect the exact underlying
symmetry.
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Chapter 4

Correlator Transformer

4.1 Architecture

Figure 4.1: Schematic of the correlator transformer encoder

Here, the Attention in Fig: 4.1 can be written as

Attention =
1√
d

QKTV (4.1)

Consider a snapshot of dimension (h,h,c) where h,c are the height and number of channels.
We first divide this snapshot into equal patches of dimension pX p, where p is the patch size.
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The snapshot now will have the dimension ((h/p)2,cp2). After this patching, we have a linear
projection of the hidden dimension subspace d. This is done to make the model more general-
izable. This projected patch (x1) can be used as it is for the input of the correlator attention or
can be provided with additional learnable positional embedding depending on the input data.
We call this the first order term x1 in Fig: 4.1, which remains the first input of all subsequent
correlator transformer layers. By default, we don’t use any layer norm (denoted by Norm in
Fig: 4.1), and it is used only if it is crucial for the model’s performance. This is chosen to keep
the model as simple as possible for better interpretability. The projected snapshot X1 can be
written as,

X1 = XW p, where W p has shape (cp2,d)

X1
i j =

cp2

∑
a=1

XiaW p
a j, where X p has shape ((h/p)2,d) (4.2)

In the first layer, both the query and key projections are computed from X1, which returns
the second-order terms X2. The query projection in the second layer remains the same, while
the key projection is now computed from the output of the first layer X2. This now computes
the third-order terms X3. Therefore, using n transformer layers would enable us to compute
up to (n+1)th order terms. We use a dropout layer to guide the network in obtaining the most
critical features. The query and key for the first transformer layer can be written as

Q1 = X1W Q
1

K1 = X1W K
1 (4.3)

Meanwhile, the value is a linear projection of the sine cosine embedding. The sine cosine
positional embedding is,

PE(i,2 j) = sin
(

i
100002 j/d

)
PE(i,2 j+1) = cos

(
i

100002 j/d

)
.

Here, i ∈ {0,1, ...N− 1} is the position of N patches and j ∈ {0,1, ....,d− 1} where d is
the embedding dimension. Since these are not learnable parameters, they do not increase the
complexity of the model. The value, then, is

V1 = (PE)W v
1 (4.4)
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The attention score of the first layer (X2) can now be written as,

X2 = Q1KT
1 V1

= X1W Q
1 W KT

1 X1T
(PE)W v

1 (4.5)

The nth layer attention can be defined as,

An+1 = Q1KT
n Vn = Xn+1 (4.6)

Where Q1 denotes the query projection from X1, Kn denotes the key projection from Xn and
Vn is the value projection from the positional embedding at each layer n. This attention can be
thought of as weighing the different correlations in QKT with their positional information.

We take a mean over each order correlator and have a linear projection to form the logits
for the Cross-Entropy loss function coupled with an L1 regularization loss with strength λ .

After the training, we collect these learned correlators and do a regularization path analysis
to understand which order terms influence the classification the most.

This modified architecture shares the same number of parameters as that in a traditional
vision transformer.

4.1.1 Regularization Path Analysis

Regularization path analysis is a method for feature selection. We use the L1 regularization or
the lasso regression. The idea is to collect all the learned correlators xn and do a lasso regression
to see which of these n− point correlators is the most important for phase classification.

y = β0 +β1x1 +β2x2 + .....+βnxn (4.7)

Now, we need to find the appropriate β that would give us the best fit (Linear regression),
and by looking at which βn is the more prominent, we can say xn is the important order of
correlation in the system. To make sure that we isolate the crucial βn we add a regularization
term L

L = λ (|β1|+ |β2|+ ....+ |βn|) (4.8)

Now we do a linear regression and find the βn by minimizing(
y−β0−

n

∑
j=1

β jx j

)2

+λ

n

∑
j=1

∣∣β j
∣∣ (4.9)

We solve Eqn:4.9 for varying strengths λ starting from very high where the regression fails
and slowly reduces it. And by looking at the coefficients βn for all λ , we can deduce which
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particular order of correlation is the most crucial in a quantum phase.

4.2 Heisenberg 2D

The Hamiltonian is given by

Ĥ =−J ∑
⟨i, j⟩

(
Ŝx

i Ŝx
j + Ŝy

i Ŝy
j + Ŝz

i Ŝ
z
j

)
(4.10)

Where J is the nearest neighbour coupling constant and Sx,y,z are the spin operators. We train
the transformer on a class of antiferromagnetic state (AFM) (J > 0) against completely random
magnetization. The AFM ground states are projective measurements of Sz on each site. Here,

Figure 4.2: a) A ground state configuration, b) a random configuration, c) the position of the
spins inside a 2X2 patch denoted by the red square

we multiply an additional learnable positional embedding to x1 before it enters the attention
mechanism. The results are for the given hyperparameters:

Hidden dim d = 16

Patch size = 2

Number of layers = 3

Learning rate = 0.02

Epochs = 50

λ = 0.001

Fig: 4.3 shows the accuracy and loss for the classification. Since the transformer is able
to classify the ground state and excited state of the Heisenberg AFM, we ask which are the
important correlations that the model learns to do the classification with such high accuracy.
For this, we do a regularization path analysis of all order terms that the transformer computes.
Fig: 4.4 depicts the regularization path for each 4 order correlators the transformer learns, and
it says that the 2nd order correlations are the most crucial for the classification between the
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Figure 4.3: Accuracy and loss metrics for Heisenberg AFM classification

Figure 4.4: Regularization path analysis for the given hyperparameters

2 phases. Now we ask which 2nd order correlator is important, so we compute the 2nd order
weight matrix inside a patch Eqn: 4.11.

C
2

rs = ∑PikPT
lnW p

rkW
pT

ls W 1Q
km W 1KT

ml (4.11)

Here, the sum r,s goes through the 4 spins inside a patch (first patch), and P denotes the learn-
able positional embedding, W p denotes the linear projection matrix for the hidden dimension
projection whereas W 1Q,W 1K are query and key projections of the first layer. Fig: 4.5 repre-
sents the weights of 2nd order correlations between the 4 spins of a patch. This indicates that
the transformer is focusing more on the nearest neighbour correlations. That is, the correlations
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Figure 4.5: The mean absolute weights inside a patch over different realizations. Pi goes over
the spins inside the patch.

between the nearest neighbour spins 01,02 have more weight than the next nearest neighbour
spin correlator 03.

4.3 Z2 LGT in (1+1) D

We use the same data as we discussed in Chapter 3, the Hamiltonian being

Ĥ0 = J
L−1

∑
j=1

(
â†

j τ̂
z
j, j+1â j+1 +H.c.

)
−h

L

∑
j=1

τ̂
x
j, j+1, (4.12)

Where â†
j , â j are the bosonic ladder operators acting on matter site j, τ

z
j, j+1 denotes the gauge

field between the matter site j and j+1 and τx
j, j+1 denotes the electric field between the matter

site j and j+1.

The local generator Ĝ of the gauge invariance is defined as

Ĝ j = (−1)n̂ j τ̂
x
j−1, jτ̂

x
j, j+1, (4.13)

Ĝ j|ψ⟩= g j|ψ⟩ (4.14)

with eigenvalues g j =±1. Our ground state is where g j = 1∀ j, and the excited state is where
g j =±1.

We use a layer norm layer before the linear projection of x1 and xn. The results are for the
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Figure 4.6: a) Schematic of the 1D Z2 LGT, b) the positions of the elements inside a patch (only
elements 0,2,3 contribute to the gauge constraint

given hyperparameters:

Hidden dim d = 8

Patch size = 2

Number of layers = 3

Learning rate = 0.001

Epochs = 100

λ = 0.002

Fig: 4.7 shows the classification results, and we achieve near-perfect accuracy. Now, we

Figure 4.7: Accuracy and loss metrics for the 1D LGT classifications

look into the regularization path (Fig: 4.8) to see which order correlations the transformer
focuses on. The transformer focuses on the 3rd-order correlations needed to calculate the gauge
constraint. Now, we plot the weights of correlations inside a single patch Eqn: 4.15(which
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constitutes 4 elements, as detailed in Chapter 3).

C
3

drs = ∑PiaPT
k jPnlW

p
daW pT

kr W p
slW

1QT

mk W 2Q
ac W 1K

lm W 2KT

cb W 1V T

bn (4.15)

Where W iM denotes the projection of ith layer and M ∈Q,K,V denotes the query, key and value
projection. From Fig: 4.9, we see that it gives more weightage to the correlations between the
terms that constitute the 3rd-order gauge constraint. We can conclude that the transformer is
learning 3rd order gauge constraint to classify the 1D Z2 LGT phases.

Figure 4.8: Regularization path analysis for 1d LGT

Figure 4.9: 3rd order weights corresponding to all the combinations of the elements inside a
patch over 10 different realizations
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4.4 Ising LGT 2D

We use the same data as we discussed in Chapter 3, the Hamiltonian is given by

H =−J ∑
p

∏
l∈p

σ
z
l (4.16)

Here, the coupling constant is denoted by J, and the first sum covers all plaquettes p in the
lattice. Fig: 4.10 depicts both channels of a sample ground state snapshot and the positions of
the spins inside a 2X2X2 patch.

Figure 4.10: Position of the 8 spins (links) inside a patch. Only the spins 2,5,6,7 forms the
plaquette

We use a layer norm layer before the linear projection of x1 and xn. The results are for the
given hyperparameters:

Hidden dim d = 6

Patch size = 2

Number of layers = 3

Learning rate = 0.01

Epochs = 100

λ = 0.0001

Fig:4.11 shows the classification results of the transformer on the 2 phases. We now look into
the regularization path analysis Fig:4.12, which indicates that the transformer is learning 4th-
order correlations to differentiate between the 2 phases. This is promising because the gauge
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Figure 4.11: Accuracy and loss metrics for the Ising LGT classifications

Figure 4.12: Regularization path analysis for the Ising LGT snapshots

constraint is a 4-point correlator. To check whether our model is learning the correct correlator,
we construct the 4-point correlation matrix (Eqn: 4.17), where the indices go through all 8
spins inside a single (2X2X2) patch.

C
4

hdrs = ∑W p
hgW pT

ad W p
rkW

pT

ls W 1Q
km W 2QT

ca W 3Q
gp W 1KT

ml W 2K
bc W 3KT

pq W 1V
nb W 2V T

q f (4.17)

Fig:4.13 depicts the weights of the 4-point correlators that the transformer learns, and we can
see that the index 2567 has more weightage. As discussed in the classification in Chapter 3,
we know that the spins at position 2,5,6,7 include the 4 links that form the plaquette. We
can clearly say that the transformer is learning the 4-point gauge constraints (Gauss’s law) to
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Figure 4.13: The 4th order correlator weights learned by the transformer

distinguish between the zero-temperature and high-temperature phases.

4.5 Cooper pairs

Here, we demonstrate the ability of the transformer to capture long-range correlation, which
most existing architectures find challenging. The synthetic data depicting momentum space
snapshots are generated by distributing +1 for the spin up and −1 for the spin down on a
30X30 grid with a Fermi radius of 10. The excited state has 2 cooper pairs and 2 pairs randomly
distributed inside the Fermi surface. The ground state has 2 pairs on the Fermi surface, but none
forms a pair. This is done so that the transformer won’t just count the particles on the surface
to make the classification. Fig: 4.14 shows one example from both the classes.

Here, we multiply an additional learnable positional embedding to x1 before it enters the
attention mechanism. The results are for the given hyperparameters:
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Figure 4.14: a) A ground state snapshot with zero cooper pairs, b) an excited state snapshot
with 2 cooper pairs

Hidden dim d = 16

Patch size = 2

Number of layers = 3

Learning rate = 0.01

Epochs = 50

λ = 0.0001

Figure 4.15: Accuracy and loss metric for Cooper pair classification

Fig: 4.16 indicates that the 2nd order correlations are the most important for discriminating
the two snapshot classes. We plot the 2nd-order attention map to see which 2nd-order correlator
is the most important. Fig: 4.17 shows the attention map w.r.t the highlighted patch in red
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Figure 4.16: Regularization path analysis for the Cooper pair data

Figure 4.17: Attention maps w.r.t the highlighted particles on the Fermi surface.

square. We see that the transformer focuses on the opposite momentum pair in a cooper-
paired state, while no such structure exists in the randomly distributed phase. We can conclude
from the regularization path analysis and the attention maps that the transformer is learning to
identify the long-range cooper pairs to distinguish between the two classes of snapshots.
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4.6 Percolation

We use the same data from Chapter 3: percolated snapshots are connected spins from one edge
to the other, and the non-percolated snapshots are where this connection is broken. Here,

Figure 4.18: a) A percolating snapshot, b) a non-percolating snapshot

Figure 4.19: Accuracy and loss metric for the percolation classification

we multiply an additional learnable positional embedding to x1 before it enters the attention
mechanism. The results are for the following hyperparameters:

Hidden dim d = 16

Patch size = 2

Number of layers = 3

Learning rate = 0.01

Epochs = 20

λ = 0.001
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Fig: 4.19 depicts the classification metric, and we reach a very good accuracy from the
beginning. The regularization path analysis Fig:4.20 tells us that the transformer uses 2nd

Figure 4.20: Regularization path analysis for the percolation problem

Figure 4.21: a) c) Attention maps for the percolated state, b) d) attention maps for the non-
percolated state. All attention maps are w.r.t the highlighted patch in red.

order correlations to distinguish between the 2 classes of percolation data. We now explore
what these 2nd order correlations are by looking at the 2nd order attention map Fig:4.21.

It is unclear what particular 2nd-order terms the transformer learns, but we can see that the
transformer attention map focuses on the percolation path. We plot the mean of this attention
map for a set of snapshots from each class Fig:4.22. This tells us that the transformer finds
discriminating features from the 2nd-order attention map.
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Figure 4.22: Mean of attention for both percolated (denoted by GS) and non-percolated (de-
noted by ES)

4.6.1 Note

It is important to note that the order of correlations given by the regularization paths is not 100%
robust against changing hyperparameters. For e.g., in our testing, we found the transformer
focused on 2nd order correlators for classifying Ising LGT and by inspecting the weights, we
found that it is indeed possible to construct a 2nd order gauge constraint-like term. Also, we
found 4th order correlation for the cooper pair; that is, it could locate all the pairs on the surface
to make the classification. This shows the strength of the transformer in computing higher-order
long-range correlations. Thus, we have to be careful when interpreting such results.
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Chapter 5

Neural Quantum States

5.1 Overview

Neural Quantum States (NQS) represent a novel approach in the field of condensed matter
physics, leveraging the strength of artificial neural networks to model complex quantum sys-
tems. Carleo and Troyer’s [20] seminal paper on neural quantum states using the Restricted
Boltzmann Machine (RBM) opened the field of neural networks in solving many-body quan-
tum systems. This approach has gained significant attention for its potential to solve problems
that are intractable for traditional numerical methods. A neural network with a sufficient num-
ber of parameters and non-linear activation functions can be treated as a universal function
approximator [49, 50, 51]. Since then, there have been implementations using Feed Forward
Neural Networks (FFNN) [52, 53, 54, 55], Recurrent Neural Networks (RNN) [56, 57, 58, 59],
Convolutional Neural Networks (CNN) [21, 60, 61, 62] and Auto encoders [63, 64, 60]. In this
thesis, we use transformers as a variational ansatz generator. Previous works include but are
not limited to [65, 66, 67, 68, 69].

Consider a system whose wave functions are parameterized by θ in configuration basis σ .
The expectation value of any observable Ô is calculated as

⟨Ô⟩= ⟨Ψθ |Ô|Ψθ ⟩
⟨Ψθ |Ψθ ⟩

=
∑σ ,σ ′⟨Ψθ |σ⟩⟨σ |Ô|σ ′⟩⟨σ ′|Ψθ ⟩

∑σ |⟨Ψθ |σ⟩|2

=
∑σ ⟨Ψθ |σ⟩⟨σ |Ψθ ⟩

(
∑σ ′⟨σ |Ô|σ ′⟩⟨σ ′|Ψθ ⟩

)
∑σ |⟨Ψθ |σ⟩|2

=
∑σ |⟨Ψθ |σ⟩|2

(
∑σ ′⟨σ |Ô|σ ′⟩⟨σ ′|Ψθ ⟩

)
∑σ |⟨Ψθ |σ⟩|2

. (5.1)
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We can see the above equation comprising of the following two terms,

P(σ) =
|⟨Ψθ |σ⟩|2

∑σ |⟨Ψθ |σ⟩|2
(5.2)

Oloc(σ) = ∑
σ ′

⟨σ |Ô|σ ′⟩⟨σ ′|Ψθ ⟩
⟨σ |Ψθ ⟩

(5.3)

where P(σ) denotes the probability amplitude of the wave function for a given config-
uration σ , and Oloc is the local estimator of the observable Ô. We can approximate this
quantum mechanical expectation value by sampling a sufficiently large number of samples
(σ0,σ1, ....σN)from the probability distribution P(σ) and can be expressed as

⟨Ô⟩ ≈ 1
N

N

∑
i=1

Oloc(σ
(i)) (5.4)

where N is the number of samples. These samples are the snapshots we used in Chapter 3 for
phase classification.

The idea of NQS is to generate appropriate variational wave function Ψθ and variationally
reach ⟨Ô⟩. We use transformer neural network to generate these variational anzast.

5.1.1 Variational Monte Carlo

Monte Carlo methods are a broad class of computational algorithms that estimate numerical
outcomes through repeated random sampling. These methods are particularly useful in for
solving problems that may be deterministic in principle but are too complex for analytical
solutions.

For any trial wave function ψT , the energy expectation is calculated as follows

ET =
⟨ψT |Ĥ|ψT ⟩
⟨ψT |ψT ⟩

. (5.5)

The true ground state energy E0 of the Hamiltonian Ĥ will always be less than ET .

E0 ≤
⟨ψT |Ĥ|ψT ⟩
⟨ψT |ψT ⟩

. (5.6)

To obtain a reliable approximation of the ground state within the bounds of current compu-
tational power, it is essential that we parameterize the trial wave function using appropriate
variational parameters. First, we construct a trial wave function ψT = ψT (σ ,θ). for a many
body configuration σ parameterised by m variational parameters θ = (θ1,θ2, ...θm). The ex-
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pectation value of the Hamiltonian is given by

E[H] = ⟨H⟩=
∫

dσ Ψ∗T (σ ,θ)H(σ)ΨT (σ ,θ)∫
dσ Ψ∗T (σ ,θ)ΨT (σ ,θ)

. (5.7)

We evaluate this integral using the Metropolis Hasting Algorithm. The parameters are updated
according to Stochastic Reconfiguration, which is touched upon in the next section.

Algorithm 1 Variational Monte Carlo (VMC) Algorithm

1: Initialize wavefunction ΨT (σ).
2: Initialize total energy accumulator Etotal = 0.
2: for i = 1 to M do
3: Propose a spin exchange σ → σ ′.

4: Compute Metropolis acceptance ratio A(σ → σ ′) = min(1,
∣∣∣ΨT (σ

′ ;⃗θ)
ΨT (σ ;⃗θ)

∣∣∣2).
5: Generate a random number r ∈ [0,1].
5: if r < A(σ → σ ′) then
6: Accept the move: σ = σ ′.

7: Compute the local energy EL(σ) = ĤΨT (σ ;⃗θ)
ΨT (σ ;⃗θ)

.

8: Accumulate the energy: Etotal = Etotal +EL(σ).
9: end loop

10: Compute the average energy: Eapprox =
Etotal

M .

5.1.2 Stochastic Reconfiguration

Introduced by [70], stochastic reconfiguration (SR) is a stochastic iterative method for energy
minimization using variational Monte Carlo. Unlike standard optimization methods that use
gradient descent, which can be inefficient due to the complex, high-dimensional landscapes
typical in quantum problems, SR takes into account the curvature of the parameter space.

The goal is to find the ground state energy of a quantum system by iteratively updating the
parameters of a trial wave function. This involves calculating the energy gradient concerning
the parameters and the S matrix, which represents the metric of the parameter space.

Consider a variational wavefunction Ψθ parameterized by a set of parameters θ The expec-
tation value of the Hamiltonian H is given by:

E(θ) =
⟨Ψθ |H|Ψθ ⟩
⟨Ψθ |Ψθ ⟩

(5.8)

We define an operator Ôk at each iteration and parameter θk, which is diagonal in the configu-
ration basis.

Ôk =
∂θkψθ

ψθ

(5.9)
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The gradient of the energy with respect to the parameters θ is:

F(θ) =
∂E(θ)

∂θ
(5.10)

Stochastic Reconfiguration updates the parameters θ according to:

∆θ =−S−1(θ)F(θ) (5.11)

S(θ) is defined as:

Si j(θ) = ℜ

[
⟨Ψθ |Ô†

i Ô j|Ψθ ⟩
⟨Ψθ |Ψθ ⟩

−
⟨Ψθ |Ô†

i |Ψθ ⟩⟨Ψθ |Ô j|Ψθ ⟩
⟨Ψθ |Ψθ ⟩2

]
(5.12)

Here, Ôi and Ô j are the operators corresponding to the partial derivatives of Ψθ (log(Ψ(θ))

with respect to θi and θ j, and ℜ denotes the real part.

Algorithm 2 Stochastic Reconfiguration (SR) Algorithm

1: Perform a VMC simulation to collect M samples of configurations {σ0,σ1, ...σm}.
1: for each sample i = 1 to M do
2: Compute the derivatives of the wavefunction ∇θ logΨT (σi; θ⃗).
3: Accumulate F (⃗θ) and S(⃗θ) using EL and ∇θ logΨT .
4: Average F (⃗θ) and S(⃗θ) over M samples.
5: Solve the linear system S(⃗θ)∆θ⃗ =−F (⃗θ) for ∆θ⃗ .
6: Update the parameters: θ⃗ ← θ⃗ +η∆θ⃗ .

The variational Monte Carlo and optimization are done using Netket[71], and the trans-
former is written in Jax [72].

5.2 ViT NQS

Here, we implement ViT with talking multi-head attention, which allows all heads to share
the information between them. This is achieved by having a linear projection of all the heads,
resulting in the mixing of information from these heads. The input configurations are patched
and projected to the hidden dimension space in the Embeddings block in Fig: 5.1 (a), then it
goes through the multi-head attention and finally linearly projected and summed over all the
patches to get log(Ψ) after applying the log(cosh(.)) non-linear activation function. Working
with the logarithm of the wave function gives more stability for gradient propagation. We use
relative positional embedding [25].

Attention(Q,K,V ) =

(
QKT
√

dk
∗Fp

)
V (5.13)
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Figure 5.1: a) Schematic of the ViT NQS (The activation function (
∫
) we use is log(cosh(.)),

b) talking multi-head attention block

Where Fp is the Toeplitz matrix parametrized by scoring function fθ . (Fp)i j = fθ ( j− i), where
fθ ( j− i) models the how the ith position relate to the jth and can be written as,

fθ (k) =
S

∑
s=1

αsexp(−|βs|(k− γs)
2) (5.14)

where k = (i− j) and αs,βs,γs are trainable parameters for the kernel s.

5.3 Heisenberg AFM 1D

The one dimensional Heisenberg Hamiltonian is defined as

H = J
N

∑
i=1

(
Sx

i Sx
i+1 +Sy

i Sy
i+1 +Sz

i S
z
i+1
)

(5.15)

Sα
i (α = x,y,z) are the spin operators at site i. J is the exchange coupling constant, which

quantifies the strength and type (ferromagnetic for J < 0 or antiferromagnetic for J > 0) of the
interaction between neighbouring spins. N is the total number of spins in the chain, and the
periodic boundary condition is assumed (SN+1 = S1).

5.3.1 Results

We use a hidden dim d = 32 and number of heads h = 16 for L = 14,16,22. For L = 24, d = 48
and h = 24. Patch size is 2 for the above lattice. The NQS ground state energy converges to
the exact diagonalization results with relative error ε ≈ 0.01% (Fig: 5.2). The relative error is
given by ε =

|Enqs−Eexact |
Eexact

.
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Figure 5.2: The ground state energy for lattice size a) L=14, b) L=16, c) L= 22 , d) L=24.

5.4 J1− J2 Heisenberg 1D

The Hamiltonian for the 1D J1− J2 Heisenberg chain is defined as:

H = J1 ∑
i

S⃗i · S⃗i+1 + J2 ∑
i

S⃗i · S⃗i+2 (5.16)

The spin operator at site i, denoted as S⃗i. This operator is a vector comprising: Sx
i , Sy

i ,
and Sz

i . The model is defined through two primary coupling constants, J1 and J2. The J1 term
quantifies the interaction energy between spins that are directly adjacent, acting as the coupling
constant for nearest neighbour (NN) spin interactions. Antiferromagnetic coupling is indicated
by a positive J1, whereas ferromagnetic coupling is suggested by a negative J1. J2 represents the
coupling constant for next-nearest neighbour (NNN) spin interactions, capturing the interaction
energy between spins separated by two sites. The J2 coupling adds frustration to the system if
its interactions compete with those of J1.

An important observable that we calculate is the structure factor, which is defined as

χ (⃗q) =
1
L ∑

i j
⟨σ z

i .σ
z
j ⟩e

i⃗q(i− j) (5.17)

5.4.1 Results

The transformer uses d = 32, h = 16 and patch size =4 for lattice size L = 16. In the evaluation
of the structure factor (Eqn: 5.17), we compute χ (⃗q = π).
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Figure 5.3: Results for system size L= 16 a),b) Energy and structure factor for J2/J1 = 0.2,
c),d) Energy and structure factor for J2/J1 = 0.8

Fig 5.3 shows the results for a chain of length 16. While the transformer performs ex-
tremely well in the lower frustration limit, it has a reduced accuracy when the system is highly
frustrated. For J2/J1 = 0.8 we have the relative error ε ≈ 1.4% while J2/J1 = 0.2 have a bet-
ter convergence in energy with ε ≈ 0.08% For a slightly larger system of 40 spins (Fig: 5.4),

Figure 5.4: Energy for system size L= 40 a) For J2/J1 = 0, b) for J2/J1 = 0.8. The DMRG
results are from [65].

we get similar convergence as previously. With ε ≈ 1.6% for the highly frustrated case and
ε ≈ 0.07% for no next nearest neighbour coupling. We use d = 32,h = 16 and patch size= 10.

For system size L = 8 and J2/J1 = 0.8 (Fig: 5.5), the transformer finds the ground state of
highly frustrated regime with excellent convergence ε ≈ 0.004%. We use d = 16,h = 8 and
patch size= 2.
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Figure 5.5: a) Ground state energy for system size L=8 with J2/J1 = 0.8, b) structure factor for
the same system.

5.5 Heisenberg AFM 2D

The two-dimensional Heisenberg Hamiltonian is defined as

H = J ∑
⟨i, j⟩

(
Sx

i Sx
j +Sy

i Sy
j +Sz

i S
z
j

)
(5.18)

Sα
i (α = x,y,z) are the spin operators at lattice site i. J is the exchange coupling constant. J >

0 for antiferromagnetic coupling, while J < 0 for ferromagnetic coupling. The sum ∑⟨i, j⟩ runs
over nearest-neighbour pairs of spins.r

5.5.1 Results

For the 4X4 lattice, we use d = 48 and h=24, with patch size =2 and for 6x6 lattice we use
d = 128, h=64 and patch size =3. The number of parameters we use are less than their respective
Hilbert space dimension, although of the same order. Fig 5.6 shows the ground state energy

Figure 5.6: Ground state energy for a) L= 4X4, b) L = 6X6

obtained through ViT NQS with reference to the exact diagonalization results [73]. While 4X4
shows relatively good convergence (ε ≈ 0.2%), 6X6 lattice has an error of ε ≈ 0.5%.
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Chapter 6

Conclusions and Outlook

Artificial intelligence, or, to be more specific, the application of deep neural networks in con-
densed matter physics problems, holds significant potential in discovering and probing fun-
damental physics. It has already been proven that these methods can be powerful tools in
exploring domains where the traditional methods come short. With this great power comes
great opaqueness in interpretability. This thesis has focused on making deep neural networks
more "scientific" by exploring ways to shed light on what and why the model is able to classify
certain physical states. We were successful in obtaining various higher-order correlators that
are crucial for discriminating the phases. We also find long-range dependencies in synthetic
cooper pair data, which traditional CNN models would have difficulty considering.

We also explored the transformer in its ability to parameterize many-body wave functions
and reach good approximations for the ground state energy. Thus, we demonstrate the success
of adopting transformer neural networks in the study of quantum many-body systems in the
interpretability of phases and parametrizing the wave functions.

Future directions could include a general transformer architecture that could output the
most relevant order correlations. The current thesis explored this, but the transformer was able
to classify with orders of correlations that are different from standard theory for the model
(for eg: Z2 ising gauge theory). The ability of the transformer to find physically irrelevant
correlations and classify them happens to be a big bottleneck in interpretability with regard
to correlation functions. Regarding the NQS, many things could be done, including the time
evolution of states and improving the architecture itself for better convergence, especially in
the frustrated regime.
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