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Abstract
Levy Process are used in finance for Asset Modeling and Risk Management. Markov

Modulated Levy Process(MMLP) are a more flexible class of Stochastic Processes

which capture phase changes arising in economies by allowing jumps in drift and

volatility, linked to hidden states of a Markov chain. Theses models have been used

to model option prices, renewable energy markets as well as for risk quantification.

While Bayesian inference methods exists for simpler regime-switching models, we aim

to extend it to more complex MMLPs.

Our approach involves applying Bayesian estimation techniques to recover the hidden

states and the parameters associated with each state of the Markov Chain. We

propose Markov Chain Monte Carlo algorithms to perform Bayesian inference for

MMLPs. This will allow for a more data-driven analysis of asset returns with regime

shifts and jumps.
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Chapter 1

Introduction

Most of the financial models used assumes the market conditions to be uniform but

that is usually not the case as economies undergoes changes in their state (e.g expan-

sion,normal,recession). Regime switching models address this by allowing the model

parameters to also switch between small number of distinct states. These states are

described by a special type of random process called a Markov chain, which jumps

between states according to fixed probabilities.

During each state the model behaves like a standard Levy process. Which im-

plies the asset price has defined randomness and trend dependent on the state.

When the underlying Markov chain state changes the randomness and the trend

also switches. When a model combines these two elements - a Markov chain for

state switching and a Levy process for price movement within each state - it’s called

Markov-modulated Levy process (MMLP). This model is more realistic than stan-

dard models because it captures the idea that market conditions can change over time.

Hidden Markov Models or Regime switching models have been used extensively in

finance literature to account for different type of phases occurring in the economy.

[Cheng-Der Fuh, 2012] uses regime switching Brownian motion for pricing options and

[Anindya Goswami, 2019] price options in a regime switching jump-diffusion models.

Also, [Ivanov, 2022] explores risk quantification for Variance-Gamma Process with

regime switching and [Rasmus, 2016] explores derivative pricing for regime switching

levy process particularly regime switching Normal Inverse Gaussian(NIG) process.

[Shaw, 2019] uses similar model to study US Corporate Option-Adjusted Spreads.

Regime switching Levy process also find great use for modelling wind energy out-

put, in the paper [Veraart, 2016] models the impact of wind production on electricity

1



2 CHAPTER 1. INTRODUCTION

prices using a regime-switching Levy process. Since, regime switching levy process

are widely used in various fields including derivative pricing, risk quantification and

energy prices modelling. Therefore a robust and efficient algorithm to carry out in-

ference for these models is necessary.

In this project, we address the problem of inference for regime switching models for

asset returns using Markov Modulated Levy processes (MMLP).The regime switch-

ing extension is one of many generalizations of Levy Process models of asset price

dynamics. Bayesian Inference for Markov modulated geometric Brownian motion

(MMGBM) models have already been explored e.g. in [Srikanth K. Iyer, 2009] so we

naturally intend to extend it to Levy Models. The paper [Das and Goswami, 2019]

by Milan Kumar Das and Anindya Goswami develops a statistical methodology for

evaluating binary regime-switching models, specifically extensions of the geometric

Brownian motion (GBM) model using squeeze duration analysis, We plan to explore

possibility of applying Bayesian estimation techniques for estimating the parameters

associated with Markov Modulated Levy Processes. [Milan Kumar Das, 2023] also

explores binary regime models with jump discontinuities, focusing on inference meth-

ods and practical implications in their study. We wish to come up with Bayesian

inference procedure for Markov modulated Levy processes, that allows the drift and

volatility of the asset(Stock) to jump among different values. The jumps are deter-

mined by a continuous-time Markov chain but in a way that each state of the chain

is associated with one value for drift and one for volatility. An MCMC algorithm is

to be developed to perform exact Bayesian inference for MMLPs.

The general Regime switching Levy Process

Let Xt be a continuous time Markov chain on finite space. A regime-switching model

is a stochastic process (St) which is solution of the stochastic differential

equation given by

dSt = κ(Xt)(η(Xt)− St)dt+ σ(Xt)dY
ζ(Xt)
t (1.1)

where κ(Xt), η(Xt), σ(Xt) are functions of the Markov chain X.

• κ denotes the mean-reverting rate;

• η denotes the long-run mean;

• σ denotes the volatility of X.
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Y ζ(X) is a stochastic process which is a NIG Levy process with its parameters (µ, δ, α, β)also

Markov modulated.

To carry out Bayesian inference for the Markov Modulated Levy process, we con-

sider the path of the Markov Chain as an additional parameter. If we consider

M possible states of the Markov Chain then our parameter space would be Θ̂ =

{(κ̂i, θ̂i, σ̂i, µ̂i, δ̂i, α̂i, β̂i, ) for i = 1, ..,M} and we would also have the path space

(Xt)t∈[0,n] ∈ D([0, n], 1, ...,M). If we have observations (S1, .., Sn) = S1:n and a given

prior distribution for each of the parameters, then we have to find the posterior dis-

tribution of Θ, X[0,n] conditional on our observation that is we try to estimate the

density f(Θ;X[0,n]|S1:T ).

The Thesis is structured as follows. The first chapter introduces the problem state-

ment and the motivation for carrying out this project. The second chapter introduces

important concepts and definitions which will be used throughout the thesis. The

third chapter introduces Bayesian Infernce using Truncated Dirichlet prior method

for regime switching process in a genralized setting. The fourth chapter provides

methedology for Truncated Dirichlet prior method of bayesian infernce for markov

modulated Ornstein-Uhlbeck process. The fifth chapter provides methedology for

Truncated Dirichlet prior method of bayesian infernce for markov modulated geomet-

ric Levy(NIG) process. The sixth chapter introduces Particle Markov Chain Monte

Carlo method for bayesian infernce in generalized setting as well as provide method-

ology about how to use it for our two models. The seventh chapter contains results

of numerical experiments and the eighth chapter includes discussion for implications

of our work and the scope for future research.
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Chapter 2

Preliminaries

We start by introducing essential concepts that are used throughout thesis. We first

introduce Levy processes. Then we give a brief introduction on Bayesian Inference.

Then we introduce Dirichlet prior and stick breaking process which are very important

for our method. And at the end we give methods to estimate transition matrices form

sample paths of the Markov Chain.

2.1 Levy Process

Levy process are the most used class of stochastic process to model financial data, eco-

logical data as well as in signals processing. We first define them mathematically and

also give important characterisations associated with them. The refrence used in this

section are [Cont and Tankov, 2004],[Schoutens, 2003] and[Barndorff-Nielsen, 1997].

Definition 1. A cadlag stochastic process(Yt) on a given probability space is a Levy

process if satisfies the following three conditions:

• Stationary increments : The distribution of Yt+h − Yt doesn’t depends on t

• Independent increments: for any increasing sequence of times t0...tn, the random

variables Yt0 , Yt1 − Yt0 , ..., Ytn − Ytn−1 are independent.

• Stochastic Continuity:∀ϵ > 0 limh→0 P(|Yt+h − Yt| ≥ ϵ) = 0

One thing to note that is that the third condition doesn’t imply that sample paths

are continuous.

5
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Another important property of a Levy process (Yt) is that its distribution is infinitely

divisible.

Also if F is an infinitely divisible distribution then there exists a Levy process (Yt)

such that the distribution of Y1 is given by F.

The simplest Levy processes are the compound Poisson process whose sample paths

are piece-wise constant functions.

Definition 2. We define the Levy measure for a Levy process as follows:

let (Yt) be a levy process on Rd. The measure µ on Rd is:

µ(A) = E[#{t ∈ [0, 1] : ∆Yt ̸= 0,∆Yt ∈ A}] A ∈ B(Rd) (2.1)

The most important results for Levy processes are the Levy Ito decomposition

and Levy-Khinchin representation which gives us two ways of characterizing Levy

processes.

Theorem 1. Levy Ito decomposition Let (Yt) be a Levy process on Rd and µ is

its Levy measure , Then

• The jump measure of Y, denoted by JY , is a Poisson random measure on [0,∞]×
Rd with intensity measure µ(dy)dt.

• There exist a vector γ and a d-dimensional Brownian motion (Bt) with covari-

ance matrix A such that:

Yt = γt +Bt + Y l
t + lim

ϵ→0
Ŷ ϵ
t (2.2)

The above theorem explains that every Levy process can be characterised by three

quantities that are also called the Levy triplet of the process and include a vector γ,

a positive definite matrix A and a positive measure µ that uniquely determine its

distribution.

Theorem 2. Lévy–Khintchine representation Let (Yt) be a Levy process on

Rd with Levy triplet (A,µ, γ) and if we have E(eizYt) = etψ(z) then,

ψ(z) = −1

2
z.Az + iγ.z +

∫
Rd

(eizy − 1− izy1|y|≤1)µ(dy) (2.3)
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Definition 3 (Subordinator). A Subordinator is a stochastic process Y = (Yt)t≥0 that

is a Levy process and has the following property

P (Yt ≥ 0 for every t > 0) = 1

Proposition 1. Let Y = (Yt)t≥0 be a real valued Levy process then the following are

equivalent:

1.P (Yt ≥ 0 for every t > 0) = 1

2.P (Yt ≥ 0 for some t > 0) = 1

3.Sample paths are almost surely non decreasing i.e t ≥ s=⇒Yt ≥ Ys

with probability 1

4.Let (A,µ,b) be the charaterisitc triplet of Yt then

A = 0, µ((−∞, 0]) = 0,

∫ ∞

0

(x ∧ 1)µ(dy) <∞ and b > 0

To construct new Levy processes, we use three basic types of transformations,

under which the class of Levy processes is invariant: linear transformations, subor-

dination (time changing a Levy process with another increasing Levy process) and

exponential tilting of the L´evy measure. Linear transformation is the easiest one

which specifies that any linear transformation of a Levy process also gives a levy

process.

The second method is Subordination which is also the method through which NIG

process is developed which can be explained as follows:

Consider (St)t≥0 as a subordinator and (Wt)t≥0 as an independent Brownian mo-

tion. When we combine Brownian motion with a drift parameter µ using the subor-

dination process S, we create a fresh Levy process denoted as Xt = σW (St) + µSt.

If we examine this process on a different time scale, specifically the stochastic time

scale defined by St, it transforms into a Brownian motion. This new time scale has a

financial implication as it represents business time, indicating the cumulative rate at

which information is received.

Barndorff-Nielsen in his paper [Barndorff-Nielsen, 1997] gives us the construction of

the NIG process which we are going to be using in our project. It is constructed by

using an Inverse Gaussian Process as a subordinator .

Definition 4 (Inverse Gaussian Process). Inverse Gaussian Process is a Levy process
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with the marginal distribution given by Inverse Gaussian distribution. Formally

Z(IG) = {Z(IG)
t , t ≥ 0}

with parameters a and b >0 and has independent and stationary increments such that

Zt − Zs ∼fIG(z; a(t− s), b)

=
a(t− s)√

2π
ea(t−s)bz−3/2e

−1
2
((a(t−s))2z−1+b2z) z > 0

Here we use the definition provided by Ole Barndorff-Nielsen in his paper [Barndorff-Nielsen, 1997]

.

Definition 5 (NIG Process). if Zt is an Inverse Gaussian Process(see [Cont and Tankov, 2004])

with parameter δ and
√
α2 − β2 then we can represent NIG process as:

Yt = W (Zt) + βZt + µt (2.4)

WhereWt is a Brownian motion independent of zt with drift 0 and diffusion coefficient

1.

The marginal distribution of the NIG process is called the NIG distribution which

has four parameters (µ, δ, α, β).

• Location parameter (µ): location of the distribution. µ ∈ R

• Scale parameter (δ): scale/variance of the distribution. δ ∈ R>0

• Shape parameter (α): tail heaviness. α ∈ R>0

• Rate parameter (β): skewness of the distribution. β ∈ R and −α < β < α

The probability density function of NIG distribution can be written as

fNIG(x;α, β, δ, µ) =
α

π
exp

(
δ
√
α2 − β2 + β(x− µ)

)K1(αδ
√

1 + (x− µ)2/δ2)√
1 + (x− µ)2/δ2

.(2.5)

Here K1(x) =
1
2

∫∞
0
exp(−1

2
x(t + t−1))dt denotes the third Bessel kind function with

index 1. Therefore we can also define NIG process as

Y (NIG) = {Y (NIG)
t , t ≥ 0}
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with parameters α, β, µ, δ and has independent and stationary increments such that

Yt − Ys ∼ fNIG(x;α, β, (t− s)δ, (t− s)µ)

=
α

π
exp

(
(t− s)δ

√
α2 − β2 + β(x− (t− s)µ)

)K1(α(t− s)δ
√

1 + (x− (t− s)µ)2/((t− s)δ)2)√
1 + (x− (t− s)µ)2/((t− s)δ)2

.

We also observe that Normal distribution is just a special case of NIG distribution

which can rises as a special case by setting β = 0 and δ = σ2α and letting α →
∞.Therefore we can also say that the Brownian motion is a subclass of NIG Levy

process.

2.2 Bayesian Inference

Bayesian inference is a statistical method for updating probabilities based on new

evidence. The refrence used in this section are [Haugh, 2021]. It involves the use of

Bayes’ theorem, which can be expressed as:

Theorem 3 (Bayes Theorem). Let A and B random variables in a measurable prob-

ability space, then

fA|B(a|b) =
fB|A(b|a) · fA(a)

fB(b)
(2.6)

where:

fA|B(a|b) is the probability density of A given B = b,

fB|A(b|a) is the conditional probability density function (PDF) of B given A = a,

fA(a) is the probability density function (PDF) of A,

fB(b) is the marginal probability density function (PDF) of B.

In this continuous case, the probabilities are represented by probability density

functions, and integrals are used instead of summations.

2.2.1 Bayesian Infernce

In Bayesian setting we consider that our parameters for the model as well as the data

to be observed are random variables. We assign the parameter some probability den-

sity based on our initial knowledge which is called the prior density. Once the data
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is observed we use Bayes Theorem (2.6) to update our prior density. The updated

densities is called posterior density.

Definition 6 (Prior density). Let Θ be some unknown parameter vector of interest.

We assume Θ is random with some prior density, fΘ(θ). This captures our prior

uncertainty and knowledge regarding Θ. So we have initially :

Θ ∼ fΘ(θ)

We also consider our data to be random variable X and we consider observed data

to be a realisation of X. Therefor we can define

Definition 7 (Likelihood). The likelihood is the conditional probability of observing

the collected data x, given that we have the parameter to be Θ = θ. Represented

mathematically as:

fX|Θ(x|θ)

Now, we want to get the posterior density which is the updated density of Θ after

observing X = x formally defined as

Definition 8 (Posterior density). The Posterior density is the conditional probability

of Θ given that we have the data X. Represented mathematically as:

fΘ|X(θ|x)

The joint density of θ and X is given by

f(θ, x) = f(x|θ)f(θ) (2.7)

Now we use Bayes’s Theorem to compute the posterior distribution from the prior

and likelihood as follows

fΘ|X(θ|x) =
fX|Θ(x|θ) · fΘ(θ)

fX(x)
=

fX|Θ(x|θ) · fΘ(θ)∫
Θ
fX|Θ(x|θ) · fΘ(θ)dθ

(2.8)

Therefore using Bayes theorem we get a probability density over Θ, sometimes a point

estimate of Θ is required then we use the following:
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Definition 9 (maximum a posterior (MAP) estimator). The Mode of the posterior

density or the θ for which fΘ|X(θ|x) is maximum is called the maximum a posterior

(MAP) estimator.

Much of Bayesian analysis is concerned with “understanding” the posterior f(θ|X).

We can observe

fΘ|X(θ|x) ∝ fX|Θ(x|θ) · fΘ(θ) (2.9)

Where ∝ symbol denotes that f(θ|x) = C × fX|Θ(x|θ) · fΘ(θ) where C is a constant

which doesn’t depends on θ but might depend on X. Sometimes we can recognize

the form of the posterior by simply inspecting fX|θ(X|θ) · fθ(θ). But typically we

cannot recognize the posterior and cannot compute the denominator in (2.8) either.

In such cases approximate inference techniques such as Markov Chain Monte Carlo

are required.

2.3 Markov Chain Monte Carlo Sampling

2.3.1 The Sampling Problem

Suppose we are given a probability density

f(z) =
f̂(z)

Zp

where f̂(z) ≥ 0 is easy to compute but Zp which is the normalization constant is

(too) hard to compute. This very important situation arises in several contexts:

In Bayesian models such as ours where f̂(θ) = fX|θ(X|θ) · fθ(θ) is easy to compute

but Zp =
∫
θ
fX|θ(X|θ) · fθ(θ)dθ can be very difficult or impossible to compute.

2.3.2 Metropolis-Hastings Algorithm

Coming to our sampling problem, suppose we want to sample from a probability

density f(z) = f̂(z)
Zp

. To do this we construct a (reversible) Markov chain as follows

and this method is called the Metropolis-Hastings Algorithm. Here’s a step-by-step

description of the algorithm:
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1. Initialize the chain with an arbitrary starting point x0.

2. For each iteration t = 1, 2, 3, . . . , T :

(a) Propose a new sample x′ from a proposal distribution q(x′|xt).

(b) Compute the acceptance ratio:

α = min

(
1,
f̂(x′) · q(xt|x′)
f̂(xt) · q(x′|xt)

)

(c) Set Xt+1 = x′ with probability α otherwise set Xt+1 = x

In the algorithm, f(z) is the target distribution, q(x′|xt) is the proposal distri-

bution, and T is the total number of iterations. The acceptance ratio α determines

whether the proposed sample is accepted or rejected.

The resulting Markov chain is reversible with stationary distribution f(z) = f̂(z)
Zp

.

We can therefore sample from f(z) by running the algorithm until stationarity is

achieved and then using generated points as our samples. Note that Zp is not required

for the algorithm! Therefore to sample from the posterior of any parameter θ , f(θ|X)

we need fX|θ(X|θ) · fθ(θ) only as given in 2.9 using Metropolis Hastings Algorithm.

2.3.3 Gibbs Sampling

We use in this subsection [Tierney, 1994] as a reference. Gibbs sampling is a Markov

Chain Monte Carlo (MCMC) algorithm used for generating samples from a multi-

variate probability distribution. It is particularly useful when it is difficult to directly

sample from the joint distribution of all variables but is relatively easy to sample

from the conditional distributions of individual variables given the values of the other

variables.

• We want to sample from random variable x=(x1, .., xd) ∈ R with distribution

π(x1, .., xd)

• we can simulate the distribution of each component conditional on the others,

i.e. we can draw from π(xk|x1, .., xk−1, xk+1, .., xd) for each k=1 to d.

• We want to sample from the joint distribution, π(x). Gibbs sampling constructs

a path of Markov Chain, x(1) → x(2) → x(3) with each step given by

Simulate
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– xj+1
1 fromπ(xj+1

1 |xj2, ..., x
j
d)

– xj+1
2 fromπ(xj+1

2 |xj+1
1 , xj3, ..., x

j
d)

– xj+1
3 fromπ(xj+1

3 |xj+1
1 , xj+1

2 , xj4, ..., x
j
d)

– ......

Convergence of Gibbs sampling

Let X be a Markov chain with state space Ω ⊆ Rd with the transition Kernel:

P (x,A) = Pr(Xi+1 ∈ A|Xi = x) x ∈ Ω, A ⊂ Ω

Definition 10. Markov Chain X is π∗ irreducible if

π∗(A) > 0 =⇒ P (Xi ∈ A|X0 = x) > 0 for every x ∈ Ω

for some i ≥ 1.

This implies Markov Chain can visit all the states that have positive probability in π∗

starting from any state in the state space.

Definition 11. We say π is an invariant distribution for the above defined Markov

Chain if :

πP = π

We use the following proposition to show our Gibbs Sampler converges to the joint

distribution

Proposition 2. If P(.,.) is a π∗ irreducible and has invariant distribution π∗, then

π∗ is the unique invariant distribution of P. If P(.,.) is also aperiodic then for almost

every x ∈ Ω and all sets A we have

|Pm(x,A)− π∗(A)| → 0

as m→ ∞

Therefore to show that our Gibbs sampler Markov Chain converges to the true

distribution we just have to show that

Proposition 3. π(x1, .., xd) = π(x) is the invariant distribution measure for Markov

Chain created by gibbs sampler.



14 CHAPTER 2. PRELIMINARIES

Proof. The Markov chain created by the Gibbs sampler is a d-dimensional Markov

Chain where each state change occurs as follows:

(xi1, ..., (x
i
d) → (xi+1

1 , ..., (xi+1
d )

Therefore we can give the transition kernel as follows:

P (x, dy) = π(y1|x2, ..., xd)× π(y2|y1, x3, ..., xd)× ...× π(yd|y1, ..., yd−1)dy1...dyd

=
∏
k

π(yk|y1, ..., yk−1, xk+1, ..., xd)

Now, we first prove the following statement

π(yk|y1, ..., xk+1, ..., xd) =
π(yk|y1, ..., yk−1)π(xk+1, ..., xd|y1, ..., yk)

π(xk + 1, ..., xd|y1, ..., yk−1)

To the prove the above statement we use definition of conditional distribution as

follows:

RHS =
π(yk|y1, ..., yk−1)π(xk+1, ..., xd|y1, ..., yk)

π(xk + 1, ..., xd|y1, ..., yk−1)

= {π(y1, ..., yk−1, yk)π(xk+1, ..., xd, y1, ..., yk)

π(y1, ..., yk−1)π(y1, ..., yk)
}{ π(y1, ..., yk−1)

π(xk+1, ..., xd, y1, ..., yk−1)
}

=
π(xk+1, ..., xd, y1, ..., yk)

π(xk+1, ..., xd, y1, ..., yk−1)

= π(yk|y1, ..., yk−1, xk+1, ..., xd) = LHS

Now we finally prove our proposition that
∫
P (x, dy)π(x)dx = π(y).∫

P (x, dy)π(x)dx

=

∫
...

∫ ∏
k

π(yk|y1, ..., yk−1, xk+1, ..., xd)π(x1, ..., xd)dx1...dxd use above statement

=

∫
...

∫ ∏
k

π(yk|y1, ..., yk−1)π(xk+1, ..., xd|y1, ..., yk)
π(xk + 1, ..., xd|y1, ..., yk−1)

π(x1|x2, .., xd)π(x2, .., xd)dx1..dxd

=
∏
k

π(yk|y1, ..., yk−1)

∫
..

∫ ∏
k

π(xk+1, ..., xd|y1, ..., yk)
π(xk + 1, ..., xd|y1, ..., yk−1)

π(x1|x2, .., xd)π(x2, .., xd)dx1..dxd

Now observe
∏

k π(yk|y1, ..., yk−1) = π(y), So we just need to prove rest of terms equal



2.4. DIRICHLET PROCESS 15

to one. Rest of the terms are∫
..

∫
π(x2, .., xd|y1)..π(xd|y1, .., yd−1

������
π(x2, ., xd)..π(xd|y1, .., yd−2)

π(x1|x2, .., xd)������
π(x2, .., xd)dx1..dxd

=

∫
..

∫ ∏
j

π(xj+1, .., xd|y1, .., yj)
π(xj+2, .., xd|y1, .., yj)

π(x1, .., xd)dx1, .., dxd

=

∫
..

∫ ∏
j

π(xj|xj + 1, .., xd, y1, .., yj)dxj

=

∫
π(x|y)dx = 1

Hence we have proved that the joint distribution π(x1, .., xd) is the invariant distri-

bution for the markov chain created by the gibbs sampler

In our case we are going to use Gibbs Sampler to sample the joint distribution of

the parameters using the full conditionals of the each variable of the parameter space.

2.4 Dirichlet process

Dirichlet process is a stochastic process whose sample paths are probability distri-

butions. As we know stochastic processes are distributions over functions and paths

of the stochastic process are random functions. For DP, it is a probability measures

which are random functions with some properties and can be interpreted as probabil-

ity distributions over some set S. Hence a single draw from a DP outputs distribution

rather than producing a single parameter (vector).It is important to note that sample

paths of DP are discrete distributions over set S with probability 1. A base distri-

bution H and the concentration parameter, also known as the scaling parameter and

denoted by the positive real number α, together define the Dirichlet process. As

described in [Teh, 2010] The Dirichlet can be formally defined as follows:

Definition 12 (Dirichlet Process). A random distribution G is distributed according

to a DP, if its marginal distribution is Dirichlet distributed. let H be a distribution

over S and α be a positive real number. Then for any finite measurable partition

A1, ..., Ar of S ,we say G is Dirichlet process distributed with base distribution H and
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concentration parameter α, written G ∼ DP (α,H), if

(G(A1), ..., G(Ar)) ∼ Dir(αH(A1), ..., αH(Ar))

for every finite measurable partition A1, ..., Ar of S.

Where ”Dir” denotes the Dirichlet distribution.

Proposition 4. Draws from Dirichlet Process are random measures over the set S

that are discrete with probability one and therefore can be represented in the form:

µ(ω, s) = Σ∞
k=1Pk(ω)δsk(ω)(s)

Where sk ∈ S and Pk are random weights .

The base distribution represents the expected value of the process; hence, the

Dirichlet process draws distributions ”around” the base distribution in a similar man-

ner to how a normal distribution draws actual numbers around its mean.The scaling

parameter determines the degree of this discretization. Since α defines the discretiza-

tion we will have that as α −→ 0, all realisations will be concentrated at a single

value. Whereas when α −→ ∞, we will have G(A) −→ H(A) for any measurable

A, that is G(A) −→ H(A) pointwise. However this not equivalent to saying that

G −→ H. As draws from a DP will be discrete distributions with probability one,

even if H is smooth.

Fig. 2.1: Draws from the Dirichlet process DP (N(0, 1), α) . The four rows
use different α (top to bottom: 1, 10, 100 and 1000) and each row contains
three repetitions of the same experiment
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2.4.1 Stick Breaking Process

Stick Breaking Process is one of the most common way to sample from Dirichlet

process. It uses the important property of DP that sample paths of DP are discrete

distributions over set S with probability 1. [Sethuraman., 1994] used this property to

give a precise and straightforward construction of DP as follows:

Definition 13. let sk ∈ S , k = 0 to ∞ and sk(ω) are independent and identical

drawn according to H.

And let P ′
k(ω) be independently drawn from the distribution Beta (1,α) and let

Pk(ω) = P ′
k(ω)Π

k−1
i=1 (1− P ′

i (ω))

Then we can define a random measure on S which is a realization of DP ,µ(ω, s) as

follows:

µ(ω, s) = Σ∞
k=1Pk(ω)δsk(ω)(s)

The resemblance to ’stick-breaking’ can be seen by considering that we start with a

unit-length stick and then break it at P ′
1 and assigning P1 the length of stick we broke

off and in the next each step we break off a portion of the remaining stick according

to P ′
1 and assign this broken-off piece to P1 . The idea behind this is to repeatedly

cut off and throw away a random fraction (selected from a Beta distribution) of a

”stick” that is initially 1 length. We explicitly employ the discreteness and provide

the probability mass function of this (random) discrete distribution.

2.4.2 Finite truncation

We use an almost sure truncation of DP(α,H) in our algorithm like the one used in

[Ishwaran and Zarepour, 2000] which can be defined as:

Definition 14 (Truncated Dirichlet process). let sk ∈ S , k = 0 to N and sk(ω) are

independent and identically distributed according to H.

Then the druncated dirichlet process will be of the following form

fN(ω, .) =
N∑
k=1

Pk(ω)δsk(ω)(.)
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where,

P1(ω) = P ′
1(ω)

Pk(ω) = P ′
k(ω)Π

k−1
i=1 (1− P ′

i (ω)) (k = 2, ..., N − 1)

PN(ω) = ΠN−1
i=1 (1− P ′

i (ω))

And P ′
k(ω) , k = 1, ..., N − 1 are independent draws from the distribution Beta (1,α).

2.4.3 Distribution of Proportions

In the following section we derive the probability distribution of P=[P1, ..., PN ] which

will later allow us to get full conditional of P. The reference used in the section is

[Connor and Mosimann, 1969].

Definition 15. Let P1, P2, ..., Pk be non negative continuous random variable satis-

fying the constraint
∑
Pi = 1. Then P’s are called proportions.

We also define the following notations:

1. Sj =
∑j

i=1 Pi

2. P ′
i = Pi/[1− Si−1] where P

′
1 = P1 and P ′

k = 1

3. P= (P1, ..., Pk) with Pj1 = (P1, ..., Pj) and Pj2 = (Pj+1, ..., Pk)

4. Wj = (1/[1− Sj])Pj2

Lemma 1. Using the above definition we can see that Pi = P ′
i [
∏i−1

m=1(1− P ′
m)]

Definition 16. Given a random vector of proportions the proportion P1 is said to be

neutral if P1 is independent of the vector (P ′
i = Pi/[1− Si−1]; i ≥ 2)

Definition 17. Given P divided such that P= (Pj1, Pj2) .Pj1 is a neutral vector if it

is independent of Wj.

If Pj1 is a neutral vector for all j, then P is said to be completely neutral.

Theorem 4. Suppose P is completely neutral . Then the random variables P ′
i are

mutually independent. Let density of each P ′
i be uni-variate beta distribution B(ai, bi)
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then the density of P’s are:

[
k−1∏
i=1

B(ai, bi)]pbk−1−1
k

k−1∏
i=1

[pai−1
i (

k∑
j=i

pj)
bi−1−(ai+bi)] (2.10)

We call that the distribution as a generalized dirichlet distribution and represent it as

G(a1, b1, ..., ak, bk)

Proof. We first see that the distribution of vector

P’ = (P ′
1, ..., P

′
k−1) = [

k−1∏
i=1

B(ai, bi)−1zai−1
i (1− zi)

bi−1]

Now we know that transformation of probability distribution of a random vector(X)

to another random(Y) vector which is a function of the first one can be done by using

the below formula.

g(Y ) = |J |f(v(Y ))

where v is the inverse of the function that maps X to Y and is the jacobian matrix

for v .

Therefor in our case we have the jacobian to be


1 0 0...

0 1/[1-S1] 0...

0 0 1/[1-S2]...

. . .

 therefore

the Jacobian comes out to be
∏k−1

i=1 [1/(1− Si−1)]. Now applying the transformation

we obtain the density function of P = (p1, .., pk−1) to be

[
k−1∏
i=1

B(ai, bi)]pbk−1−1
k

k−1∏
i=1

[pai−1
i (

k∑
j=i

pj)
bi−1−(ai+bi)]

2.5 Estimation for Markov Chains

In this section we introduce the methhods to estimate Markov Chain transition ma-

trices if we have sample paths of the MC. This method will be later used as part of our

method. The references used in this section are [Inamura, 2006] and [Shalizi, 2009].
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2.5.1 Discrete time Markov chain with Discrete observations

Let X be a Discrete time Markov Chain with finite state space S=(s1, s2, ..., sK). We

know that the a DTMC is defined by its transition matrix

P =



P11 P12 ... P1K

P21 P22 ... P2K

P31 P32 ... P3K

. . . .

PK1 PK2 ... PKK


where Pij = Prob(X(tn+1) = j|X(tn) = i) Here we describe the Maximum Likelihood

method to get transition matrix from sample paths for a given DTMC.

Suppose we observe a sample path of the markov chain given as x1, x2, ..., xn.

The probability of this realization is:

Prob(X1 = x1)
n∏
t=2

Prob(Xt = xt|Xt−1 = xt−1)

Which can be rewritten in terms of the transition probabilities Pij,

L(P ) =Prob(X1 = x1)
n∏
t=2

Pxt−1xt

= Prob(X1 = x1)
k∏
i=1

k∏
j=1

P
ni,j

ij

Then we take the log likelihood of the above expression:

log(L)(P ) = log(Prob(X1 = x1)) +
∑
i,j

ni,j log(Pi,j)

Now we try to find the maximum likelihood but we also need to be careful of the

constraint ∑
j

Pi,j = 1
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Since we have K constraint equations we use introduce K Lagrange multipliers λ1, λ2, λ3, ..., λK .

And we get the new objective function to be :

log(L)(P )−
j∑
i=1

λi(
∑
j

Pi,j − 1) (2.11)

Now taking derivative with respect to Pi,j gives:

0 =
nij
Pij

− λi

λi =
nij
Pij

Pij =
nij
λi

from the constraint equation we have

m∑
j=1

nij
λi

= 1

m∑
j=1

nij = λi

Therefore we have the Maximum Likelihood Estimator to be:

PMLE
ij =

nij∑m
j=1 nij

(2.12)

2.5.2 Continuous time Markov Chain with Continuous ob-

servations

We now move to a CTMC with continuous observations.Suppose we have A CTMC

X(t) with K states then it is characterized by its generator matrix or also called q
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matrix.

Q =



Q11 Q12 ... Q1K

Q21 Q22 ... Q2K

Q31 Q32 ... Q3K

. . . .

QK1 QK2 ... QKK


which has the following properties:

K∑
j=1

Qij = 0for1 ≤ i ≤ K

0 ≤ −Qii =
∑
j ̸=i

Qij

Qi,j ≥ 0for all i ̸= j

Now suppose we have sample path of the CTMC as Xt which includes all the instance

in time when change in state occurs as well as the corresponding state change. Then

considering that the CTMC changes state from i to j at t1 and then from j to k at

time t2 and so on. We can then write the likelihood in the following way:

L(Q) = exp(−Qi(t2 − t1))Qij exp(−Qj(t3 − t2))Qjk...

=
K∏
i=1

∏
i ̸=j

(Qij)
Nij(T ) exp(−QiRi(T ))

where Ri(T ) =
∫ 1

0
1{x(s)=i}ds is the holding time at state i by the time t. Nij(t) is the

number of times state changes from i to j by time t. We now take log of the above

expression to get log likelihood as

log (L)(Q) =
K∑
i=1

∑
j ̸=i

log(Qij)Nij(T )−
K∑
i=1

∑
j ̸=i

QijRi(T )

Hence the maximum likelihood estimator is:

QMLE
ij =

Nij(T )

Ri(T )
(2.13)
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Bayesian Inference for Regime

Switching Processes

Now we will introduce Markov Modulation or regime switching process: We will first

define a Markov-Switching as:

Definition 18. Let (Xt)t∈[0,T ] be a continuous time Markov chain on finite space S:

= 1, 2, ..., M. The generator matrix of M, denoted by ΠM , is given by

ΠM
ij ≥ 0 if i ̸= j for all i,j ∈ S and ΠM

ii = −
∑
j ̸=i

ΠM
ij otherwise (3.1)

Next we consider some observable process say S which has independent and sta-

tionary increments and has parameters θ which determine its distribution. Mathe-

matically,

St+τ − St ∼ f(θ, τ) (3.2)

Where f(θ, τ) denotes the density of the increments. Now we want the parameters

denoted by θ to be regime switching or more precisely each state of the above defined

continuous time Markov chain corresponds to a different set of parameters θk. If lets

say the dimension of θ is K, i.e. the distribution f is a function of K variables, and

23
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our Markov Chain has say M states. Then we can denote it as

Θ :


1

...

M

 −→



θ11
...

θ1K

 , ...,

θM1

...

θMK


 (3.3)

where

Θ(Xt) −→


θXt1

...

θXtK

 (3.4)

So we can observe that θij corresponds to value of the jthparameter of the density in

state i.

So now our model can be denoted in the mathematical form as:

St+τ − St ∼ f(Θ(Xt), τ)

If the Markov chain remains in state X(t) till t+ τ

Note that now the distribution of increments is not identical or stationary anymore

but still independent.

Now, we want to fit a regime-switching model such as above. Thus the optimal set of

parameters to estimate is (θ̂i,j ˆX(.)) ∈ RM×K×D. where i = 1, ...,M and j = 1, ..., K.

Where {θ̂i,j; i = 1, ...,M ; j = 1, ..., K} ∈ RM×K are the parameters for the density as-

sociated and ˆX(.) ∈ D([0, T ], {1, ...,M}) is the path taken by the underlying Markov

Chain and D is the set of Cadlag paths of the continuous time Markov Chain

We define a prior density pθ for θ and then Bayesian inference relies on the joint

density

p(Θ;X[1,T ]|S[1,T ]) ∝ pθ(X[1,T ]|S[1,T ])p(θ)

For non-linear non-Gaussian models, pθ(X[1,T ]|S[1,T ]) and p(θ;X[1,T ]|S[1,T ]) do not usu-

ally admit closed form expressions, making inference difficult in practice. It is there-

fore, necessary to resort to approximations. Monte Carlo methods have been shown

to provide a flexible framework to carry out inference in such models.
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3.1 Truncated Dirichlet Prior Method

Now, to carry out inference for our model we develop a new type of MCMC method

called ”Truncated Dirichlet Prior Method” which is inspired by similar methods in

[Srikanth K. Iyer, 2009] and [Ishwaran and Zarepour, 2000] but this formulation for

generalized regime switching process is given in this thesis.

We first think of each individual path taken by then Markov Chain as a class, to which

we have to assign our observed data. Our models can be described in the following

hierarchical form:

(S|X i
t , θ) ∼f(S|X i

t , θ)

(X i
t |P ) ∼P

θ ∼f(θ)
P ∼P

In this semi parametric setting, S = (S1, ..., Sn) is the observed data while X =

(X1, ..., XN) are the individual path taken by then Markov Chain and each X i
t ∈

D([0, T ]{1, ...,M}) where D is the set of Cadlag paths of the continuous time Markov

Chain or the path space of the Markov Chain. Here θ = (θ1, ..., θM) is as defined

above and each θi ∈ RK

Now to carry out inference we place a Truncated Dirichlet process prior D(γ ,H),

on the path space of the MC (Xt), with precision parameter γ and mean H which

is a probability measure governing a MC on the path space D([0, ∞), S), the set of

cadlag functions. The initial distribution according to H is the uniform distribution

π0 = (1/M, . . . , 1/M), and the transition matrix is Q with qij = 1/(M -1), i ̸=j.

We can now rewrite the model as follows:

(S|Xi, θ) ∼f(S|Xi, θ)

(Xi|p) ∼
N∑
i=1

piδXi

(p,X) ∼(p)×HN(X)

θ ∼(θ)
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Fig. 3.1: Probability distribution over path space where we have chosen
N=9 and M=3



3.1. TRUNCATED DIRICHLET PRIOR METHOD 27

where X = (X1, ..., XN) are random paths generated from the distribution H and

(p1, ..., pN) ∼ D(1, γ) where pi is generated from the stick breaking mechanism.

The algorithm works in the following ways:

• We generate a large number (N) number of paths of the discrete Markov chain

with finite(M) number of states and treat them as classes.

• We use stick breaking mechanism to place a random probability distribution

over our path space.

• We also place appropriate prior distribution over all the parameters modulated

by the Markov Chain.

• Then we use the Blocked Gibbs Sampling technique to infer both the posterior

distribution over the path space of the Markov Chain as well as the posterior

distribution of the parameters simultaneously.

Blocked Gibbs Sampler

Once we have placed the appropriate priors for θ and X ,We use the Gibbs sampler

to sample the posterior distribution P(θ,X, p|S) directly. This method works by

iteratively drawing values from the conditional distributions of the blocked variables

f(θ|X,S)
f(X|θ, p, S)
f(p|X)

Doing so eventually produces values drawn from the distribution of (X, θ, p|S).
To run the blocked Gibbs, draw values in the following order:

1. Conditional for each component of θ i.e. θij:

Draw value from the conditional

(θij|S,X) ∼ f(θij)
∏

k:Xtk−1
=i

{f(Sk|θij, θi1, ..., θi(j−1), θi(j+1), ..., θiK , X, p)}

2. Conditional for X :Draw values
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f(X = x|p, θ, S) ∼
N∑
i=1

p∗i δXi
(.)

p∗i ∝
m∏
j=1

{
∏

k:Xi
ti
k−1

=j

f(Sk|θj1, ..., θjK)}pi

3. Conditional for p

By the conjugacy of the generalized Dirichlet distribution to multinomial sam-

pling, it follows that our draw is

P = (p1, ..., pN)

p1 = V ∗
1 and pk = (1− V ∗

1 )...(1− V ∗
k−1)V

∗
k (3.5)

where

(V ∗
k |Xj) ∼ β(a∗k, b

∗
k) (3.6)

a∗k =

a
∗
k = ak + 1 ifj = k

a∗k = ak else if j ̸= k

b∗k =

b
∗
k = bk + 1 ifj > k > 0

b∗k = bk elseifj ≤ k

The resulting Algorithm is as follows:

1. Choose appropriate priors for each component of the parameter θ.

2. Generate p=p1, p2, ..., pN from truncated stick breaking mechanism(γ,H)

3. Generate N paths of the Markov Chain and place the generalized dirichlet dis-

tribution over the N paths.

4. Choose one of the N paths according to the corresponding p

5. Iterate over the following steps:
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(a) Given a chosen path Xi:

i. Sample from the conditionals of each component of θ

(b) Sample p=p1, p2, ..., pN from the conditional of p

(c) Update the conditional of X according to the conditional above

(d) Choose one of the paths according to the distribution of X
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Chapter 4

Markov Modulated Mean reverting

OU process

The method described in this section is inspired by the method in [Srikanth K. Iyer, 2009]

but has not been previously developed to solve the infrence problem for MMOUs.

4.1 Model Definition

Definition 19. Let (Xt)t∈{0,1,..,T} be a Discrete time Markov chain on finite space S:
= 1, 2, ..., M. The probability transition matrix of Markov Chain, denoted by P, is
given by

Pij ≥ 0 for all i,j ∈ S and Pij = P (Xt+1 = j|Xt = i) (4.1)

We define our model as :

Definition 20. Regime Switching Ornstein–Uhlenbeck Model: For t ∈ {0, 1, .., T},
let Xt be a discrete time Markov chain with finite state space M = {1, . . . ,M} de-

fined as above. A regime-switching Ornstein–Uhlenbeck model is a stochastic process

St which can be described by the equation below:

dSt = κ(Xt)(θ(Xt)− St)dt+ σ(Xt)dW, (4.2)

where κ(Xt), θ(Xt), σ(Xt) are functions of the Markov chain X and W is a Brow-

nian motion. Where κ(Xt) and σ(Xt) ∈ R+, while θ(Xt) ∈ R

31
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Fig. 4.1: Xt is the underlying Markov Chain while S(t) is the MMOU
process

Proposition 5. If St is a stochastic process that is solution to the Stochastic differ-

ntial equation:

dSt =κ(θ − St)dt+ σdWt

Then the distribution of St can be given as

(St|S0 = s0) ∼ N (s0e
−κt + (1− e−κt)θ,

σ2

2κ
(1− e−2κt))

Proof. Let Ut = St − θ

then Ut satisfies the SDE:

dUt = −κUtdt+ σdWt

We again do a change of variable by multiplying by exponential of κt:

Ut = e−κtVt

By Ito’s integral, we can calculate that :

dVt = κeκtUtdt+ eκtdUt

= κeκtUtdt+ eκt(−κUtdt+ σdWt)

= σeκtdWt
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Now integrating both the sides and using Ito’s rule we get:

Vt = Vs + σ

∫ t

s

eκydWy

now to get the original solution we change variables again.

Ut = e−κtVt = e−κ(t−s)Us + σe−κt
∫ t

s

eκydWy

St = Ut + θ = θ + e−κ(t−s)(Ss − θ) + σ

∫ t

s

e−κ(t−y)dWy

Now observe that the above solution has two parts. first an exponential function and

second an integral with respect to Brownian motion.Therefore S would be normally

distributed. So now we calculate the expectation and Variance of our process S.

E[St|S0 = s0] = E[θ + e−κ(t)(S0 − θ) + σ

∫ t

0

e−κ(t−y)dWy] = θ + (s0 − θ)e−κt

We find the variance as:

V ar[St|S0 = s0] = E[(σ

∫ t

0

eκ(t−y)dWy)
2]

= σ2E[

∫ t

0

e−2κ(t−y)dy)] We use Itos Isometry

=
σ2

2κ
(1− e−2κt)

Therefore we finally get :

(St|S0 = s0) ∼ N (s0e
−κt + (1− e−κt)θ,

σ2

2κ
(1− e−2κt))

4.2 Inference Procedure

Now, we want to fit a regime-switching OU model such as above. Thus the optimal

set of parameters to estimate is (θ̂i, κ̂i, σ̂i, X̂t) ∈ R×R2×M
+ ×D[{0, 1, ..., T}, {1, ...,M}].

where i = 1, ...,M .
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Where (θ̂i, κ̂i, σ̂i) are the parameters for the OU process and ˆX(t) ∈ D[{0, 1, ..., T}, {1, ...,M}]
is the path taken by the underlying Markov Chain and D[{0, 1, ..., T}, {1, ...,M}] is
the set of possible paths for the Discrete time Markov Chain

We use the ”Dirichlet prior method” as explained in the previous section. Therefore

We first define the priors

4.2.1 Priors for the parameters

1. Placing a Truncated Dirichlet prior over the Truncated Markov Chain

Path Space

• We place a Truncated Dirichlet prior D(γ, H), on the truncated path space

of the DTMC (Xt), with precision parameter γ and mean H which is a

probability measure governing a DTMC on the path space D, the set of

cadlag functions.

• We define distribution H as follows:

(a) The initial distribution according to H is the uniform distribution π0

= (1/M,..., 1/M)

(b) The transition matrix according to distribution H is P with Pij =

1/(M), i, j = 1, ...,M .

• We then generate a N number of paths {X i
s∈{0,...,T}, i = 1, ..., N} from H.

• Then we generate the vector of probabilities {pi, i = 1, ..., N} from a trun-

cated stick-breaking scheme with parameter γ

• Finally we can define the prior probability distribution over the truncated

path space as:

P (.) =
N∑
i=1

piδXi(.)

2. Prior for discretization Parameter γ We also place a Gamma prior for

discretization Parameter γ.

γ ∼ Γ(ϵ1, ϵ2)

3. Prior for the instantaneous volatility σ
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Since square of instantaneous volatility can vary over the positive real line we

will use an inverse gamma prior for the instantaneous volatility.

σ2 ∼ IG(ν1, ν2) (4.3)

4. Prior for long term mean level θ

Since the long term mean level can vary over the whole real space we place a

normal prior over the mean level.

θ ∼ N (µ, ρ) (4.4)

5. prior for speed of reversion κ

We place an inverse gamma prior over the mean reversion rate as it also varies

over the real line.

κ ∼ IG(η1, η2) (4.5)

4.2.2 Gibbs Sampling Procedure

To carry out Gibbs Sampling we need to sample from the conditional for each of the

parameter defined above. We therefore derive these conditionals below:

Proposition 6. Conditional for σ2

The conditional for σ2 is as follows. If we have a given MC path X = X . Let X ∗ be

the list of unique states taken by the MC path.

Then we will for each j ∈ X ∗ draw from:

(σ2
j |S,X, κ, θ, S) ∝

∏
k:Xtk−1

=j

{ 1

bj
√
2π
e
− 1

2
(
Stk

−aj
bj

)2} νν12
Γ(ν1)

(σ2)(−ν1−1)e
− ν2

ν1 (4.6)

Where aj = Stk−1
e−κ(tk−tk−1) + (1− e−κ(tk−tk−1))θ and b2j =

σ2

2κ
(1− e−κ2(tk−tk−1))
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Proof. From the Bayes theorem we have

f(σ2
j = ⨿|S,X = X , κ = K, θ = T )

=
f(σ2

j = ⨿, S,X = X , κ = K, θ = T )∫
σ2
j
f(σ2

j = ∫ , S,X = X , κ = K, θ = T )dP (∫)

=
f(S|σ2

j = ⨿, X = X , κ = K, θ = T )f(σ2
j = ⨿, X = X , κ = K, θ = T )∫

σ2
j
f(S|σ2

j = ∫ , X = X , κ = K, θ = T )f(σ2
j = ∫X = X , κ = K, θ = T )dP (∫)

=
f(S|σ2

j = ⨿, X = X , κ = K, θ = T )f(σ2
j = ⨿|X = X , κ = K, θ = T )

(((((((((((((
f(X = X , κ = K, θ = T )∫

σ2
j
f(S|σ2

j = ∫ , X = X , κ = K, θ = T )f(σ2
j = ∫ |X = X , κ = K, θ = T )

((((((((((((((
f(X = X , κ = K, θ = T ))dP (∫)

=
f(S|σ2

j = ⨿, X = X , κ = K, θ = T )f(σ2
j = ⨿|X = X , κ = K, θ = T )∫

σ2
j
f(S|σ2

j = ∫ , X = X , κ = K, θ = T )f(σ2
j = ∫ , X = X , κ = K, θ = T )dP (∫)

=
f(S|σ2

j = ⨿, X = X , κ = K, θ = T )f(σ2
j = ⨿|X = X , κ = K, θ = T )∫

σ2
j
f(σ2

j = ∫ , S|X = X , κ = K, θ = T )dP (∫)

=
f(S|σ2

j = ⨿, X = X , κ = K, θ = T )f(σ2
j = ⨿|X = X , κ = K, θ = T )

f(S|X = X , κ = K, θ = T )

We can see the denominator is not dependent on σ2
j ,therefore we can write:

f(σ2
j = ⨿|S,X = X , κ = K, θ = T ) ∝ f(S|σ2

j = ⨿, X = X , κ = K, θ = T )f(σ2
j = ⨿|X = X , κ = K, θ = T )

Now from 5 , we can observe

f(S|σ2
j = ⨿, X = X , κ = K, θ = T )

=
∏

k:Xtk−1
=j

N (Stk ;Stk−1
e−K(tk−tk−1) + (1− e−K(tk−tk−1))T , σ

2

2K
(1− e−K2(tk−tk−1))

Now, if we let aj = Stk−1
e−K(tk−tk−1)+(1−e−K(tk−tk−1))T and b2j =

σ2

2K(1−e
−K2(tk−tk−1))

Then we can write

f(S|σ2
j = ⨿, X = X , κ = K, θ = T ) =

∏
k:Xtk−1

=j

{ 1

bj
√
2π
e
− 1

2
(
Stk

−aj
bj

)2}
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Now, for the second term we know the prior of σ2, therefore it would be as follows:

f(σ2
j = ⨿|X = X , κ = K, θ = T ) = IG(σ2; ν1, ν2)

=
νν12
γ(ν1)

(σ2)−ν1−1e
− ν2

ν1

Therefore we finally get:

f(σ2
j |S,X = X , κ = K, θ = T ) ∝ {

∏
k:Xtk−1

=j

1

bj
√
2π
e
− 1

2
(
Stk

−aj
bj

)2} νν12
Γ(ν1)

(σ2)(−ν1−1)e
− ν2

ν1

Proposition 7. Conditional for κ

Given MC path X = X and X ∗ be the list of unique states . For each j ∈ X ∗ draw :

(κj|S,X = X , σ2
j = ⨿, θj = T ) ∝ {

∏
k:Xtk−1

=j

1

dj
√
2π
e
− 1

2
(
Stk

−cj
dj

)2} ηη12
Γ(η1)

(κ)(−η1−1)e
η2
η1(4.7)

Where cj = Stk−1
e−κj(tk−tk−1) + (1− e−κj(tk−tk−1))T and d2j =

⨿2

2κ
(1− e−κj2(tk−tk−1))

Proof. From the Bayes theorem we have

f(κ = K|S,X = X , σ2 = ⨿, θ = T )

=
f(κ = K, S,X = X , σ2 = ⨿, θ = T )∫

σ2
j
f(κ = ↕, S,X = X , κ = K, θ = T )dP (↕)

=
f(S|κ = K, X = X , σ2 = ⨿, θ = T )f(κ = K, X = X , σ2 = ⨿, θ = T )∫

σ2
j
f(S|κ = ↕, X = X , σ2 = ⨿, θ = T )f(κ = ↕, X = X , σ2 = ⨿, θ = T )dP (↕)

=
f(S|κ = K, X = X , σ2 = ⨿, θ = T )f(κ = K|X = X , κ = K, θ = T )

((((((((((((((

f(X = X , σ2 = ⨿, θ = T )∫
σ2
j
f(S|κ = ↕, X = X , σ2 = ⨿, θ = T )f(κ = ↕|X = X , σ2 = ⨿, θ = T )

((((((((((((((

f(X = X , σ2 = ⨿, θ = T ))dP (↕)

=
f(S|κ = K, X = X , σ2 = ⨿, θ = T )f(κ = K|X = X , σ2 = ⨿, θ = T )∫

σ2
j
f(S|κ = ↕, X = X , σ2 = ⨿, θ = T )f(κ = ↕, X = X , σ2 = ⨿, θ = T )dP (↕)

=
f(S|κ = K, X = X , σ2 = ⨿, θ = T )f(κ = K|X = X , σ2 = ⨿, θ = T )∫

σ2
j
f(κ = ↕, S|X = X , σ2 = ⨿, θ = T )dP (↕)

=
f(S|κ = K, X = X , σ2 = ⨿, θ = T )f(κ = K|X = X , σ2 = ⨿, θ = T )

f(S|X = X , σ2 = ⨿, θ = T )
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We can see the denominator is not dependent on κj ,therefore we can write:

f(κ = K|S,X = X , κ = K, θ = T ) ∝ f(S|κ = K, X = X , σ2 = ⨿, θ = T )f(κ = K|X = X , σ2 = ⨿, θ = T )

Now from 5 , we can observe

f(S|κ = K, X = X , σ2 = ⨿, θ = T )

=
∏

k:Xtk−1
=j

N (Stk ;Stk−1
e−κ(tk−tk−1) + (1− e−κ(tk−tk−1))T , ⨿

2

2κ
(1− e−κ2(tk−tk−1))

Now, if we let cj = Stk−1
e−κ(tk−tk−1)+(1−e−κ(tk−tk−1))T and d2j =

⨿2

2κ
(1−e−κ2(tk−tk−1))

Then we can write

f(S|σ2 = ⨿, X = X , κ = K, θ = T ) =
∏

k:Xtk−1
=j

{ 1

dj
√
2π
e
− 1

2
(
Stk

−cj
dj

)2}

Now, for the second term we know the prior of κ, therefore it would be as follows:

f(j= K|X = X , κ = K, θ = T ) = IG(κ; η1, η2)

=
ηη12
Γ(η1)

(κ)(−η1−1)e
− η2

η1

Therefore we finally get:

f(κ|S,X = X , σ2 = ⨿, θ = T ) ∝ {
∏

k:Xtk−1
=j

1

dj
√
2π
e
− 1

2
(
Stk

−cj
dj

)2} ηη12
Γ(η1)

(κ)(−η1−1)e
η2
η1

Proposition 8. Conditional for θ

Given MC path X = X and X ∗ be the list of unique states . For each j ∈ X ∗ draw :

f(θj|S,X = X , σ2
j = ⨿, κj = K) ∝ {

∏
k:Xtk−1

=j

1

dj
√
2π
e
− 1

2
(
Stk

−cj
dj

)2} 1

γj
√
2π
e
− 1

2
(
θj−µj

γj
)2

(4.8)

Where cj = Stk−1
e−K(tk−tk−1) + (1− e−K(tk−tk−1))θ and d2j =

⨿2

2K(1− e−K2(tk−tk−1))
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Proof. From the Bayes theorem we have

f(θj = T |S,X = X , σ2 = ⨿, κ = K)

=
f(θ = T , S,X = X , σ2 = ⨿, κ = K)∫

θj
f(θ = ⊓, S,X = X , σ2 = ⨿θ = T )dP (⊓)

=
f(S|θ = T , X = X , σ2 = ⨿, κ = K)f(θ = T , X = X , σ2 = ⨿, κ = K)∫

θj
f(S|κ = ↕, X = X , σ2 = ⨿, θ = ⊓)f(κ = ↕, X = X , σ2 = ⨿, θ = ⊓)dP (⊓)

=
f(S|θ = T , X = X , σ2 = ⨿, θ = T )f(θ = T |X = X , κ = K, σ2 = ⨿)

((((((((((((((

f(X = X , σ2 = ⨿, κ = K)∫
θj
f(S|κ = ↕, X = X , σ2 = ⨿, θ = ⊓)f(θ = ⊓|X = X , σ2 = ⨿, κ = K)

((((((((((((((

f(X = X , σ2 = ⨿, κ = K))dP (⊓)

=
f(S|θ = T , X = X , σ2 = ⨿, κ = K)f(θ = T |X = X , σ2 = ⨿, κ = K)∫

θj
f(S|θ = ⊓, κ = K, X = X , σ2 = ⨿)f(θ = ⊓, X = X , σ2 = ⨿, κ = K)dP (⊓)

=
f(S|θ = T , X = X , σ2 = ⨿, θ = T )f(θ = T |X = X , σ2 = ⨿, κ = K)∫

θj
f(θ = ⊓, S|X = X , σ2 = ⨿, κ = K)dP (⊓)

=
f(S|θ = T , X = X , σ2 = ⨿, κ = K)f(θ = T |X = X , σ2 = ⨿, κ = K)

f(S|X = X , σ2 = ⨿, κ = K

We can see the denominator is not dependent on θj ,therefore we can write:

f(θ = T |S,X = X , κ = K, σ2 = ⨿) ∝ f(S|θ = T , X = X , σ2 = ⨿, κ = K)f(θ = T |X = X , σ2 = ⨿, κ = K)

Now from 5 , we can observe

f(S|θ,X = X , σ2 = ⨿, κ = K)

=
∏

k:Xtk−1
=j

N (Stk ;Stk−1
e−K(tk−tk−1) + (1− e−K(tk−tk−1))θ,

⨿2

2κ
(1− e−K2(tk−tk−1))

Now, if we let cj = Stk−1
e−K(tk−tk−1)+(1−e−K(tk−tk−1))θ and d2j =

⨿2

2K(1−e
−K2(tk−tk−1))

Then we can write

f(S|θ, σ2 = ⨿, X = X , κ = K, ) =
∏

k:Xtk−1
=j

{ 1

dj
√
2π
e
− 1

2
(
Stk

−cj
dj

)2}
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Now, for the second term we know the prior of θ, therefore it would be as follows:

f(θj = K|X = X , κ = K, σ2 = ⨿) = N (θ;µj, γj)

=
1

γj
√
2π
e
− 1

2
(
θ−µj
γj

)2

Therefore we finally get:

f(θ|S,X = X , σ2 = ⨿, θ = T ) ∝ {
∏

k:Xtk−1
=j

1

dj
√
2π
e
− 1

2
(
Stk

−cj
dj

)2} 1

γj
√
2π
e
− 1

2
(
θ−µj
γj

)2

Proposition 9. conditional for H

The re-estimation of the initial distribution and the transition matrix from a given

path Xi can be done by any standard MLE procedure for CTMC. We have chosen

to use simple gradient descent method for our algorithm. We also use the analytical

solution for the maximum likelihood estimate for the ctmc.

Proposition 10. conditional for X

f(X = x|p, σ, κ, θ) ∼
N∑
i=1

p∗i δXi
(4.9)

p∗i ∝
m∏
j=1

{
∏

k:xi,∗
ti
k−1

=j

1

bj
√
2π
e
− 1

2
(
Stk

−aj
bj

)}pi (4.10)

where Xi = (xi1, ..., x
i
n) and (xi,∗1 , ..., x

i,∗
n ) denote the current m unique values in the

path Xi



4.2. INFERENCE PROCEDURE 41

Proof. We know from the use of bayes theorem that

f(X = x|p,W, σ, κ, θ) =
f(X = x, p, S, σ, κ, θ)∫

X
f(X = y, p, S, µ, δ, α, β)dP (y)

=
f(κ = K, S,X = x, σ2 = ⨿, θ = T )∫

σ2
j
f(κ = ↕, S,X = y, κ = K, θ = T )dP (↕)

=
f(S|κ = K, X = x, σ2 = ⨿, θ = T )f(κ = K, X = x, σ2 = ⨿, θ = T )∫

X
f(S|κ = ↕, X = y, σ2 = ⨿, θ = T )f(κ = ↕, X = y, σ2 = ⨿, θ = T )dP (y)

=
f(S|κ = K, X = x, σ2 = ⨿, θ = T )f(X = x|σ2 = ⨿, κ = K, θ = T )

(((((((((((((
f(X = x, σ2 = ⨿, θ = T )∫

X
f(S|κ = ↕, X = y, σ2 = ⨿, θ = T )f(X = y|κ = ↕, σ2 = ⨿, θ = T )

(((((((((((((
f(κ = ↕, σ2 = ⨿, θ = T ))dP (y)

=
f(S|κ = K, X = x, σ2 = ⨿, θ = T )f(X = x|κ = K, σ2 = ⨿, θ = T )∫

X
f(S|κ = ↕, X = y, σ2 = ⨿, θ = T )f(κ = ↕, X = y, σ2 = ⨿, θ = T )dP (y)

=
f(S|κ = K, X = x, σ2 = ⨿, θ = T )f(X = x|κ = K, σ2 = ⨿, θ = T )∫

σ2
j
f(X = x, S|κ = ↕, σ2 = ⨿, θ = T )dP (y)

=
f(S|κ = K, X = x, σ2 = ⨿, θ = T )f(X = x|κ = K, σ2 = ⨿, θ = T )

f(S|κ = K, σ2 = ⨿, θ = T )

We can see the denominator is not dependent on X,therefore we can write:

f(X = x|p,W, σ, κ, θ) ∝ f(S|κ = K, X = x, σ2 = ⨿, θ = T )f(X = x|κ = K, σ2 = ⨿, θ = T )

Now from 5 , we can observe

f(S|σ2 = ⨿, X = x, κ = K, θ = T )

=
m∏
j=1

∏
k:xtk−1

=j

N (Stk ;Stk−1
e−Kj(tk−tk−1) + (1− e−Kj(tk−tk−1))Tj,

⨿2
j

2Kj

(1− e−Kj2(tk−tk−1))

Now, if we let aj = Stk−1
e−Kj(tk−tk−1)+(1−e−Kj(tk−tk−1))Tj and b2j =

⨿j

2K(1−e
−Kj2(tk−tk−1))

Then we can write

f(S|σ2
j = ⨿, X = X , κ = K, θ = T ) =

m∏
j=1

∏
k:xtk−1

=j

{ 1

bj
√
2π
e
− 1

2
(
Stk

−aj
bj

)2}

Also,f(X = x|p, σ, κ, θ) = f(X|p) =
∑N

k=1 piδXi
(.) Using the above facts we can write
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the following.

f(X = x|p, σ, κ, θ) ∝ f(S|X, p, σ, κ, θ)
N∑
k=1

piδXi
(x)

∝
N∑
i=1

δXi
(x)pi{

m∏
j=1

{
∏

k:xi,∗
ti
k−1

=j

1

bj
√
2π
e
− 1

2
(
Stk

−aj
bj

)}}

Proposition 11. conditional for P = (p1, ..., pN)

p1 = V ∗
1 and pk = (1− V ∗

1 )...(1− V ∗
k−1)V

∗
k (4.11)

where

(V ∗
k |Xj) ∼ β(a∗k, b

∗
k) (4.12)

a∗k =

a
∗
k = ak + 1 ifj = k

a∗k = ak elseifj ̸= k

b∗k =

b
∗
k = bk + 1 ifj > k > 0

b∗k = bk elseifj ≤ k

Proof. We first note that according to our model P (X = j|P ) = pj.

Therefore

f(P |X = j) =
f(X = j|P ) ∗ f(P )∫

p
f(X = j|P ) ∗ f(P )dP

Using the Bayes theorem

∝ f(X = j|P ) ∗ f(P )

∝ pj ∗ {
N−1∏
i=1

B(ai, bi)]pbN−1−1
N

N−1∏
i=1

[pai−1
i (

N∑
k=i

pk)
bi−1−(ai+bi)} Using Theorem 1

Let Pi =
∑N

k=i pk. then we can say.
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f(P |X = j) ∝ {pbN−1−1
N

j−1∏
i=1

pai−1
i (Pi)

(bi−1+1)−(ai+(bi+1))}p(aj+1)−1
j P

(bj−1+1)−((aj+1)+(bj))
j }

{
N−1∏
i=1

pai−1
i (Pi)

bi−1−(ai+bi)} (4.13)

From the above we can deduce that the vector P is distributed G(a∗1, b∗1, ..., a∗N , b∗N).
Which implies

p1 = V ∗
1 and pk = (1− V ∗

1 )...(1− V ∗
k−1)V

∗
k (4.14)

where

(V ∗
k |Xj) ∼ β(a∗k, b

∗
k) (4.15)

a∗k =

a
∗
k = ak + 1 ifj = k

a∗k = ak elseifj ̸= k

b∗k =

b
∗
k = bk + 1 ifj > k > 0

b∗k = bk elseifj ≤ k

Proposition 12. conditional for γ is

f(γ|p) = Γ(N + ϵ1 − 1, ϵ2 −
N−1∑
i=1

log(1− V ∗
i )) (4.16)

Proof. We can observe from Theorem 1 that the distribution for P is

{
N−1∏
i=1

B(ai, bi)]pbN−1−1
N

N−1∏
i=1

[pai−1
i (

N∑
k=i

pk)
bi−1−(ai+bi)} (4.17)

so now using the fact that we have ai = 1and bi = γ and also using the fact that
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Γ(1 + γ) = γΓ(γ) we get that

f(p|γ) ∝ γN−1pγ−1
N = γN−1e(γ−1) log(pN ) (4.18)

Therefore we can finally write using Bayes theorem

f(γ|p) ∝ f(p|γ)f(γ)
∝ γN−1e(γ−1) log(pN ) ∗ {γϵ1−1e−ϵ2γ} from the Gamma distribution

∝ γN+ϵ1−2e−(ϵ2−log(pN ))γe− log(pN ) Its an un-normalized Gamma distribution

f(γ|p) = Γ(N + ϵ1 − 1, ϵ2 − log(pN)) {pN =
N−1∏
i=1

V ∗
i }

f(γ|p) = Γ(N + ϵ1 − 1, ϵ2 −
N−1∑
i=1

log(1− V ∗
i ))

4.3 Gibbs Sampler Algorithm

We give the ”Truncated Dirichlet Prior Method algorithm for MMOU” as follows.
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Algorithm 1: Truncated DP Algorithm for Mean Reverting OU process

1 Choose hyper parameters ϵ1, ϵ2 ;
2 Generate γ from Gamma(ϵ1, ϵ2)
3 Generate N paths of the Markov Chain from the distribution H.
4 Draw (p=p1, p2, ..., pN) from stick breaking with mechanism(γ,H)
5 Choose one of the N paths according to the corresponding p
6 for i = 1 to . do
7 Update the conditional of X according to the conditional above
8 Choose one of the paths according to the distribution of X;
9 Given a path X update the conditionals for all the parameters:

10 Draw a new σ2 according to the equation 4.6
11 Draw a new κ according to the equation4.7
12 Draw a new θ according to the equation4.8
13 Define a∗k and b

∗
k according to equation 4.12 where k is the index of chosen

path
14 Compute p′is according to the equation 4.11
15 Draw a new γ according to the equation 4.16

16 end
17 Draw the most probable Markov Chain Path from the posterior distribution.
18 Estimate H according to the Maximum Likelihood Estimation of the most

probable Markov Chain Path.
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Chapter 5

Markov Modulated Geometric

Levy process

The method described in this section is inspired by the method in [Srikanth K. Iyer, 2009]

but has not been previously developed to solve the infrence problem for MMLPs.

5.1 Model Definition

Definition 21. Let (Xt)t∈[0,T ] be a continuous time Markov chain on finite space S:

= 1, 2, ..., M. The generator matrix of M, denoted by Q, is given by

Qij ≥ 0 if i ̸= j for all i,j ∈ S and Qii = −
∑
j ̸=i

Qij otherwise (5.1)

We define our model as :

Definition 22. Regime Switching Geometric Levy Model: For all t∈[0, T], let St be
a continuous time Markov chain on finite space S = {1, . . . ,M} defined as above.

A Regime Switching Geometric Levy model is a stochastic process St which can be

described the equation below:

St = expY ζ
t (Xt) (5.2)

where Y ζ
t is a regime switching NIG Levy process.

Proposition 13. If St is a stochastic process that can be described according to the

47
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following defintion:

St = expYt

Then the distribution of Zt = ln
(

St

St−1

)
can be given as

Zt = ln

(
St
St−1

)
∼ NIG(α, β, δ, µ)

Proof. We have first

ln(St) = Yt Since Yt is NIG process

ln(St)− ln(St−1) = Yt − Yt−1 ∼ NIG(α, β, δ, µ) Finally

Zt = ln

(
St
St−1

)
∼ NIG(α, β, δ, µ)

Proposition 14. If A and B are random variables such that, A∼ NIG(α, β, µ1, δ1)

and B∼ NIG(α, β, µ2, δ2) . Then

A+B ∼ NIG(α, β, µ1 + µ2, δ1 + δ2)

Proposition 15. Given the path X = {Xs, 0 ≤ s ≤ n}, let Tj(t) be the time spent

by the path X in state j in the time interval [t - 1, t] Define

µ(t) =
M∑
j=1

µjTj(t) (5.3)

δ(t) =
M∑
j=1

δjTj(t) (5.4)

Then we have conditional on the path X, Zt ∼ NIG(α, β, µ(t), δ(t)), t=1,2,....,n .

5.2 Inference Procedure

Now, we want to fit a regime-switching exponential levy model such as above. Thus

the optimal set of parameters to estimate is (µ̂i, δ̂i, α̂, β̂, ˆX(t)) ∈ R2×M × R2 × D.
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where i = 1, ...,M .

Where (µ̂i, δ̂i, α̂, β̂) are the parameters for the NIG process if X(t) = i for all i =

1, ...,M and ˆX(t) ∈ D is the path taken by the underlying Markov Chain and D is

the set of Cadlag paths of the continuous time Markov Chain

We use the ”Dirichlet prior method” as explained in the previous section. Therefore

We first define the priors

5.2.1 Priors for the parameters

1. Placing a Dirichlet prior over the Markov Chain

• We place a Truncated Dirichlet prior D(γ, H), on the truncated path space

of the CTMC (Xt), with precision parameter γ and mean H which is a prob-

ability measure for the CTMC path space D, the set of cadlag functions.

• We define distribution H as follows:

(a) H defines the initial distribution as the uniform distribution. π0 =

(1/M,..., 1/M)

(b) The Q matrix according to distribution H is Q with Qij = 1/(M-1),

for all i,j s.t. i ̸= j.

• We then generate a N number of paths {X i
s∈[0,T ], i = 1, ..., N} from H.

• Then we generate the vector of probabilities {pi, i = 1, ..., N} from a trun-

cated stick-breaking scheme with parameter γ

• Finally we can define the prior probability distribution over the truncated

path space as:

P (.) =
N∑
i=1

piδXi(.)

2. Prior for discretization Parameter γ We also place a Gamma prior for

discretization Parameter γ.

γ ∼ Γ(ϵ1, ϵ2)

For each i=1,2,...,M , we define the priors as follows
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µi ∼ N (θ, τµ) (5.5)

δi ∼ HalfNormal(ν1) (5.6)

where HalfNormal(ν1) denotes f(x; ν1) =
√
2

ν1
√
π
exp

(
− x2

2ν21

)
, x > 0 with scale pa-

rameter ν1.

We also place priors on the remaining parameters α and β as follows

α ∼ IG(α1, α2) (5.7)

β ∼ IG(β1, β2) (5.8)

5.2.2 Preparing the observed data

To determine the conditional distribution of parameters,we first extract the change

in log-returns between Markov chain jump times. Let 0 = t0 < t1 < t2 < ... < tJ

be the times at which the path X changes state. Then we define the log-returns as

Wk = log(Stk/Stk−1
), k = 1, 2, .. , J. To derive realizations of the Wk from the

observed Z process, we must simulate NIG random variables conditioned on their

sums.

Let t ∈{0, 1, .. , n} for which the Markov chain switches state minimum once in the

time interval [t-1, t]. So for p, k we have tk−1 < t− 1 ≤ tk < ... < tk+p ≤ t < tk+p+1.

Let s0 = tk − (t − 1), si = tk+i − tk+i−1, sp+1 = t − tk+p, then mj = µjsi and

vj = δjsi, i=0,1,..p+1.

Then we have the joint density of (W0,W1, ...,Wk+p), given Zt = z as follows

f(u0, u1, .., up) =

∏p
i=0NIG(ui;α, β, µi, δi)NIG(z −

∑
ui;α, β, µp+1, δp+1)

NIG(z;α, β, µt, δt)
(5.9)

5.2.3 Gibbs Sampling procedure

We are now ready to estimate the posterior distributions of the parameters using

Gibbs sampling. In the following secton we derive the conditional distribution for

each of the parameters for the markov modulate levy process

X∗ is the set of distinct values observed in the path X of the CTMC.
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Proposition 16. Conditional for µ

The conditional for µ is as follows. for each j ∈ X∗ draw from

(µj|α, βj, δ,X,W ) ∝ {
∏

k:Xtk−1=j

fNIG(Wk|µj, δj, α, β)} ∗ N (µj; θ, τ
µ) (5.10)

similarly for each j∈ X −X∗ independently draw from the µj ∼ N (µj; θ, τ
µ)

Proof. Let k1, k2, k3, ... be the times at which the Markov chain takes value j.

Then using Bayes theorem and observing the fact that the state Markov chain will

remain in state j till ki + 1 which means Wki+1 will have parameters according to

state j we can state that.

Let κ = (α, β, δ,X)

f((µj|α, β, δ,X,W ) =
{
∏n

i=1 fNIG(Wki+1|µj, δj, α, β,X)∗} ∗ f(µj|κ)f(κ)∫
µj
{
∏n

i=1 fNIG(Wki+1|µj, δj, α, β,X)} ∗ f(µj|κ)f(κ)dµj

And since µj doesn’t depends on κ we can write the above equation in following

way

f((µj|θ, τµ, α, β, δ,X,W ) =
{
∏n

i=1 fNIG(Wki+1|µj, δj, α, β,X)} ∗ f(µj)∫
µ∗j
{
∏n

i=1 fNIG(Wki+1|µj, δj, α, β,X)} ∗ f(µ∗
j)dµ

∗
j

=
{
∏n

i=1 fNIG(Wki+1|µj, δj, α, β,X)} ∗ N (µj; θ, τ
µ)∫

µ∗j
{
∏n

i=1 fNIG(Wki+1, µ∗
j |δj, α, β,X)} ∗ dµ∗

j

=
{
∏n

i=1 fNIG(Wki+1|µj, δj, α, β,X)} ∗ N (µj; θ, τ
µ)

{
∏n

i=1 fNIG(Wki+1, |δj, α, β,X)}
now since the denominator doesn’t depend on µj, we can state

∝
n∏
i=1

{fNIG(Wki+1|µj, δj, α, β,X)} ∗ N (µj; θ, τ
µ)

∝ {
∏

k:Xtk−1=j

fNIG(Wk|µj, δj, α, β)} ∗ N (µj; θ, τ
µ)

Proposition 17. Conditional for δ

The conditional for δ is as follows. The sampling can be done in two steps first for

the observed states and then for the unobserved states as follows.
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for each j ∈ X∗ draw

(δj|α, β, µ,X,W ) ∼ {
∏

k:Xtk−1=j

fNIG(Wk|δj, µj, α, β)} ∗HalfNormal(δj; ν1) (5.11)

similarly for each j∈ X −X∗ independently draw from the δj ∼ HalfNormal(δj; ν1)

Proof. Let k1, k2, k3, ... be the times at which the Markov chain takes value j.

Then using Bayes theorem and observing the fact that the state Markov chain will

remain in state j till ki + 1 which means Wki+1 will have parameters according to

state j we can state that. Let κ = (α, β, µj, X)

f((δj|α, β, δ,X,W ) =
{fNIG(Wk1+1,Wk2+1, ..|µj, δj, α, β,X)} ∗ f(δj|κ)f(κ)∫

δ∗j
{fNIG(Wk1+1,Wk2+1, ..|δ∗j , µj, α, β,X)} ∗ f(δ∗j |κ)f(κ)dδ∗j

=
{fNIG(Wk1+1,Wk2+1, ..|µj, δj, α, β,X)} ∗ f(δj|κ)���f(κ)∫

δ∗j
{fNIG(Wk1+1,Wk2+1, ..|δ∗j , µj, α, β,X)} ∗ f(δ∗j |κ)���f(κ)dδ∗j

And since δj doesn’t depend on κ. We can write

f((δj|α, β, δ,X,W ) =
{fNIG(Wk1+1,Wk2+1, ..|µj, δj, α, β,X)} ∗ f(δj)∫

δ∗j
{fNIG(Wk1+1,Wk2+1, ..|δ∗j , µj, α, β,X)} ∗ f(δ∗j )dδ∗j

=
{
∏n

i=1 fNIG(Wki+1|µj, δj, α, β,X)} ∗HalfNormal(δj; ν1)∫
δ∗j
{
∏n

i=1 fNIG(Wki+1|δ∗j , µj, α, β,X)} ∗ f(δ∗j )dδ∗j

=
{
∏n

i=1 fNIG(Wki+1|µj, δj, α, β,X)} ∗HalfNormal(δj; ν1)∫
δ∗j
{
∏n

i=1 fNIG(Wki+1, δ∗j |µj, α, β,X)}dδ∗j

=
{
∏n

i=1 fNIG(Wki+1|µj, δj, α, β,X)} ∗HalfNormal(δj; ν1)

{
∏n

i=1 fNIG(Wki+1|µj, α, β,X)}
Since the denominator doesn’t depend on δj we can write the following

f((δj|α, β, δ,X,W ) ∝ {
n∏
i=1

fNIG(Wki+1|µj, δj, α, β,X)} ∗HalfNormal(δj; ν1)

∝ {
∏

k:Xtk−1=j

fNIG(Wk|µj, δj, α, β)} ∗HalfNormal(δj; ν1)

Proposition 18. Conditional for α

Given a MC path X and X∗ the list of unique states in X.
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The conditional for α is as follows:

(α|µ, β, δ,X,W ) ∝ {
∏
j∈X∗

{
∏

k:Xtk−1=j

fNIG(Wk|µj, δj, α, β)}} ∗ IG(α;α1, α2) (5.12)

Proof. Let κ = (µ, β, δ,X)

Then using Bayes theorem we can state the following:

f((α|µ, β, δ,X,W ) =
{fNIG(W1,W2, ..|µ, δ, α, β,X)} ∗ f(α|κ)f(κ)∫

α∗{fNIG(W1,W1, ..|δ, µ, α∗, β,X)} ∗ f(α∗|κ)f(κ)dα∗

=
{fNIG(W1,W2, ..|µ, δ, α, β,X)} ∗ f(α|κ)���f(κ)∫

α∗{fNIG(W1,W1, ..|δ, µ, α∗, β,X)} ∗ f(α∗|κ)���f(κ)dα∗

And since α doesn’t depend on κ. We can write

f((α|µ, β, δ,X,W ) =
{fNIG(W1,W2, ..|µ, δ, α, β,X)} ∗ f(α)∫

α∗{fNIG(W1,W1, ..|δ, µ, α∗, β,X)} ∗ f(α∗)dα∗

=
{fNIG(W1,W2, ..|µ, δ, α, β,X)} ∗ IG(α;α1, α2)∫

α∗{fNIG(W1,W1, .., α∗|δ, µ, β,X)}dα∗

=
{fNIG(W1,W2, ..|µ, δ, α, β,X)} ∗ IG(α;α1, α2)

{fNIG(W1,W1, ..|δ, µ, β,X)}
Since the denominator doesn’t depend on α we can write the following

f((α|µ, β, δ,X,W ) ∝ {fNIG(W1,W2, ..|µ, δ, α, β,X)} ∗ IG(α;α1, α2)

Let k1, k2, k3, ... be the times at which the Markov chain takes value j and observe the

fact that the state Markov chain will remain in state j till ki + 1 which means Wki+1

will have parameters according to state j. Then can state that.

f((α|µ, β, δ,X,W ) ∝ {
∏
j∈X∗

{
∏

k:Xtk−1=j

fNIG(Wk|µj, δj, α, β)}} ∗ IG(α;α1, α2)

Proposition 19. Conditional for β

Given a MC path X and X∗ the list of unique states in X.
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The conditional for β is as follows:

(β|µ, α, δ,X,W ) ∝ {
∏
j∈X∗

{
∏

k:Xtk−1=j

fNIG(Wk|µj, δj, α, β)}} ∗ IG(β; β1, β2) (5.13)

Proof. Let κ = (µ, β, α,X)

Then using Bayes theorem we can state the following:

f((β|µ, α, δ,X,W ) =
{fNIG(W1,W2, ..|µ, δ, β, α,X)} ∗ f(β|κ)f(κ)∫

β∗{fNIG(W1,W1, ..|δ, µ, β∗, α,X)} ∗ f(β∗|κ)f(κ)dβ∗

=
{fNIG(W1,W2, ..|µ, δ, β, α,X)} ∗ f(β|κ)���f(κ)∫

β∗{fNIG(W1,W1, ..|δ, µ, β∗, α,X)} ∗ f(β∗|κ)���f(κ)dβ∗

And since β doesn’t depend on κ. We can write

f((β|µ, α, δ,X,W ) =
{fNIG(W1,W2, ..|µ, δ, α, β,X)} ∗ f(β)∫

β∗{fNIG(W1,W1, ..|δ, µ, β∗, α,X)} ∗ f(β∗)dβ∗

=
{fNIG(W1,W2, ..|µ, δ, β, α,X)} ∗ IG(β; β1, β2)∫

β∗{fNIG(W1,W1, .., β∗|δ, µ, α,X)}dβ∗

=
{fNIG(W1,W2, ..|µ, δ, β, α,X)} ∗ IG(β; β1, β2)

{fNIG(W1,W1, ..|δ, µ, α,X)}
Since the denominator doesn’t depend on β we can write the following

f((β|µ, α, δ,X,W ) ∝ {fNIG(W1,W2, ..|µ, δ, α, β,X)} ∗ IG(β; β1, β2)

Let k1, k2, k3, ... be the times at which the Markov chain takes value j and observe the

fact that the state Markov chain will remain in state j till ki + 1 which means Wki+1

will have parameters according to state j. Then can state that.

f((β|µ, α, δ,X,W ) ∝ {
∏
j∈X∗

{
∏

k:Xtk−1=j

fNIG(Wk|µj, δj, α, β)}} ∗ IG(β; β1, β2)

Proposition 20. conditional for H

The re-estimation of the initial distribution and the transition matrix from a given

path Xi can be done by any standard MLE procedure for CTMC. We have chosen

to use simple gradient descent method for our algorithm. We also use the analytical
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solution for the maximum likelihood estimate for the ctmc.

Proposition 21. conditional for X

f(X = x|p, µ, δ, α, β) ∼
N∑
i=1

p∗i δXi

p∗i ∝ {
m∏
j=1

{
∏

k:xi,∗
ti
k−1

=j

fNIG(Wk|µj, δj, α, β)}}pi (5.14)

where Xi = (xi1, ..., x
i
n) and (xi,∗1 , ..., x

i,∗
n ) denote the current m unique values in the

path Xi

Proof. We know from the use of bayes theorem that

f(X = x|p,W, µ, δ, α, β) = f(X = x, p,W, µ, δ, α, β)∫
X
f(X = y, p,W, µ, δ, α, β)dP (y)

For the numerator we have,

f(X = x, p,W, µ, δ, α, β) = f(W |X, p, µ, δ, α, β)f(X = x|p, µ, δ, α, β)f(p, µ, δ, α, β)

Since the distribution of (p, µ, δ, α, β) doesn’t depend on X we can cancel it out from

the numerator as well as the denominator. Also,f(X = x|p, µ, δ, α, β) = f(X|p) =∑N
k=1 piδXi

(.) Using the above facts we can write the following.

f(X = x|p, µ, δ, α, β) ∝ f(W |X, p, µ, δ, α, β)
N∑
k=1

piδXi
(x)

∝
N∑
i=1

δXi
(x){

m∏
j=1

{
∏

k:xi,∗
ti
k−1

=j

1

bj
√
2π
e
− 1

2
(
Stk

−aj
bj

)}pi}

Proposition 22. conditional for P = (p1, ..., pN)
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p1 = V ∗
1 and pk = (1− V ∗

1 )...(1− V ∗
k−1)V

∗
k (5.15)

where

(V ∗
k |Xj) ∼ β(a∗k, b

∗
k) (5.16)

a∗k =

a
∗
k = ak + 1 ifj = k

a∗k = ak elseifj ̸= k

b∗k =

b
∗
k = bk + 1 ifj > k > 0

b∗k = bk elseifj ≤ k

Proof. We first note that according to our model P (X = j|P ) = pj.

Therefore

f(P |X = j) =
f(X = j|P ) ∗ f(P )∫

p
f(X = j|P ) ∗ f(P )dP

Using the Bayes theorem

∝ f(X = j|P ) ∗ f(P )

∝ pj ∗ {
N−1∏
i=1

B(ai, bi)]pbN−1−1
N

N−1∏
i=1

[pai−1
i (

N∑
k=i

pk)
bi−1−(ai+bi)} Using Theorem 1

Let Pi =
∑N

k=i pk. then we can say.

f(P |X = j) ∝ {pbN−1−1
N

j−1∏
i=1

pai−1
i (Pi)

(bi−1+1)−(ai+(bi+1))}p(aj+1)−1
j P

(bj−1+1)−((aj+1)+(bj))
j }

{
N−1∏
i=1

pai−1
i (Pi)

bi−1−(ai+bi)} (5.17)

From the above we can deduce that the vector P is distributed G(a∗1, b∗1, ..., a∗N , b∗N).
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Which implies

p1 = V ∗
1 and pk = (1− V ∗

1 )...(1− V ∗
k−1)V

∗
k (5.18)

where

(V ∗
k |Xj) ∼ β(a∗k, b

∗
k) (5.19)

a∗k =

a
∗
k = ak + 1 ifj = k

a∗k = ak elseifj ̸= k

b∗k =

b
∗
k = bk + 1 ifj > k > 0

b∗k = bk elseifj ≤ k

Proposition 23. conditional for γ is

f(γ|p) = Γ(N + ϵ1 − 1, ϵ2 −
N−1∑
i=1

log(1− V ∗
i )) (5.20)

Proof. We can observe from Theorem 1 that the distribution for P is

{
N−1∏
i=1

B(ai, bi)]pbN−1−1
N

N−1∏
i=1

[pai−1
i (

N∑
k=i

pk)
bi−1−(ai+bi)} (5.21)

so now using the fact that we have ai = 1and bi = γ and also using the fact that

Γ(1 + γ) = γΓ(γ) we get that

f(p|γ) ∝ γN−1pγ−1
N = γN−1e(γ−1) log(pN ) (5.22)
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Therefore we can finally write using Bayes theorem

f(γ|p) ∝ f(p|γ)f(γ)
∝ γN−1e(γ−1) log(pN ) ∗ {γϵ1−1e−ϵ2γ} from the Gamma distribution

∝ γN+ϵ1−2e−(ϵ2−log(pN ))γe− log(pN ) Its an un-normalized Gamma distribution

f(γ|p) = Γ(N + ϵ1 − 1, ϵ2 − log(pN)) {pN =
N−1∏
i=1

V ∗
i }

f(γ|p) = Γ(N + ϵ1 − 1, ϵ2 −
N−1∑
i=1

log(1− V ∗
i ))

5.3 Gibbs Sampler Algorithm

We give the whole algorithm as follows
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Algorithm 2: Algorithm for Geometric levy process

1 Choose hyper parameters ϵ1, ϵ2 ;
2 Generate γ from Gamma(ϵ1, ϵ2)
3 Generate N paths of the Markov Chain.
4 Draw p=p1, p2, ..., pN from stick breaking mechanism(γ,H)
5 Choose one of the N paths according to the corresponding p
6 for i = 1 to 10000 do
7 Update the conditional of X according to the conditional given in

equation 5.14
8 Choose one of the paths according to the distribution of X;
9 Given a path X update the conditionals for all the parameters:

10 Draw a new µj for all the states j according to the equation 5.10
11 Draw a new δj for all the states j according to the equation 5.11
12 Draw a new α according to the equation 5.12
13 Draw a new β according to the equation 5.13
14 Define a∗k and b∗k according to equation (5.16) where k is the index of

chosen path
15 Compute p′is according to the equation (5.15)
16 Draw a new γ according to the equation (5.20)

17 end
18 Draw the most probable Markov Chain Path from the posterior distribution.
19 Estimate H according to the Maximum Likelihood Estimation of the most

probable Markov Chain Path.
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Chapter 6

Particle MCMC

As stated in the previous sections, the main challenge in inference for Markov Modu-

lated Levy Processes is to sample effectively from the distribution of the Underlying

Markov Chain. Therefore we used Truncated Dirichlet Prior method in the previous

sections. In this section, We would like to introduce another method called the Parti-

cle Markov Chain Monte Carlo which solves the problem of sampling from the Under-

lying Markov Chain using Sequential Monte Carlo. The references used for this section

are [Christophe Andrieu and Holenstein, 2010] and [Arnaud Doucet, 2011]. We first

define the basic model which is very similar to the previous case but is defined again

for clarity.

Definition 23. We define (Xt)t∈{0,1,..,T} to be a Discrete time Markov chain on finite

space S: = 1, 2, ..., M. The probability transition matrix of Markov Chain, denoted

by P, is given by

Pij ≥ 0 for all i,j ∈ S and Pij = P (Xt+1 = j|Xt = i) (6.1)

Next we consider some observable process say S observed at discrete times ∆t for

simplicity we assume ∆t = 1. It has independent and stationary increments and has

parameters θ which determine its distribution. Mathematically,

St+1 − St ∼ f(θ) (6.2)

Where f(θ) denotes the density of the increments. Now we want the parameters

denoted by θ to be regime switching or more precisely each state of the above defined
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continuous time Markov chain corresponds to a different set of parameters θk. If lets

say the dimension of θ is K, i.e. the distribution f is a function of K variables, and

our Markov Chain has say M states. Then we can denote it as

Θ :


1

...

M

 −→



θ11
...

θ1K

 , ...,

θM1

...

θMK


 (6.3)

where

Θ(Xt) −→


θXt1

...

θXtK

 (6.4)

So we can observe that θij corresponds to value of the jthparameter of the density in

state i.

So now our model can be denoted in the mathematical form as:

St+1 − St ∼ f(Θ(Xt))

If the Markov chain was in state Xt at time t .

Note that now the distribution of increments is not identical or stationary anymore

but still independent.

Now, we want to fit a regime-switching model such as above. Thus the optimal set of

parameters to estimate is (θ̂i,j X̂) ∈ RM×K ×D. where i = 1, ...,M and j = 1, ..., K.

Where {θ̂i,j; i = 1, ...,M ; j = 1, ..., K} ∈ RM×K are the parameters for the density

associated and X̂ ∈ D is the path taken by the underlying Markov Chain and D is

the set of paths of the discrete time Markov Chain

We define a prior density pθ for θ and Bayesian inference relies on the joint density

f(Θ;X{1:T}|S{1:T}) ∝ fθ(X{1:T}|S{1:T})f(θ)

For non-linear non-Gaussian models, fθ(X{1:T}|S{1:T}) and f(θ;X{1:T}|S{1:T}) do not

usually admit closed form expressions, making inference difficult in practice. It is

therefore, necessary to resort to approximations. Monte Carlo methods have been
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shown to provide a flexible framework to carry out inference in such models.

6.1 Particle Gibbs Sampler

Our aim is to find the posterior f(Θ;X{1:T}|S{1:T}) , We will be using a modified

Gibbs sampler to do that. This works by alternately sampling from the conditional

distributions to get the joint distribution. So, we need to sample from:

fθ(X{1:T}|S{1:T})

f(θ|X{1:T}, S{1:T})

We use technique called Sequential Monte Carlo to sample from fθ(X{1:T}|S{1:T})

6.1.1 Sequential Monte Carlo

Sequential Monte Carlo are used to approximate posterior densities {fθ(X{1:n}|S{1:n});n ≥
1} sequentially. It provides an approximation of the posterior density as a set ofN ≥ 1

weighted random particles which can be represented as :

f̂θ,S1:T
(dx1:T ) :=

N∑
k=1

W k
T δXk

1:T
(dx1:T )

Where each Xk
1:n particle is a sample Markov Chain path from time 1 to n. And W k

n

is the weight associated with the kth particle at time n. The particles Xk
1:n and the

weights W k
n are random and their distribution depend on θ and observations S1:T .

Sequential Monte Carlo (SMC) relies on a proposal density function which is chosen

by the user, denoted by hθ(x1:n|S1:n) which has the following form

hθ(x1:T |S1:T ) = hθ(x1|S1)
T∏
n=2

hθ(xn|Sn, xn−1)

This function captures the probability of a sequence of states (x1 to xn) given a

sequence of observations (S1 to Sn). The important thing to account for while spec-

ifying proposal density is that the support of the target or posterior density should

be a subset of support of the proposal density. Thus usually proposal densities are

chosen with a wide support.
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The key point is that the proposal density allows us to sample states sequentially. It

does this by considering two parts:

• At time n=1, we sample the initial state x1 from a function hθ(x1|S1)that de-

pends only on the first observation S1.

• For time n=2,...,T we sample the next state xn using a function hθ(xn|Sn, xn−1)

that considers both the current observation Sn and the previous state Xn−1.

We also specify the prior for the Markov chain. Which for our use will be as specified

as in previous sections as:

• The initial distribution π1(.) = (1/M, ..., 1/M).

• The transition matrix according to the prior distribution is an uniform matrix

as P with Pij = 1/M for all i, j = 1...M

We then use importance sampling method where we find the ratio of true density and

proposal density to approximate the distribution of particles at each step which are

called the weights associated with each particle.

We denote the weight associated with particle k at time 1 i.e. Xk
1 withW k

1 . Therefore

the weights can be specified as :

for t=1

W k
1 =

fθ(X
k
1 |S1)

hθ(Xk
1 |S1)

=
π1(X

k
1 )fθ(S1|Xk

1 )

fθ(S1)hθ(Xk
1 |S1)

=
(1/M)fθ(S1|Xk

1 )

fθ(S1)hθ(Xk
1 |S1)

since fθ(S1) doesn’t depend on X1 we can say that

W k
1 ∝ (1/M)fθ(S1|Xk

1 )

hθ(Xk
1 |S1)

or the un-normalized weights can be calculated as :

w̃k1 =
(1/M)fθ(S1|Xk

1 )

hθ(Xk
1 |S1)

(6.5)
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Similarly at time n=2,...,T , we can calculate the un-normalized weight associated

with each particle as

w̃kn =
fθ(X

k
1:n, S1:n)

fθ(X
Ak

n−1

1:n−1, S1:n−1)hθ(Xk
n|Sn, X

Ak
n−1

n−1 )

=
fθ(X

k
1:n, S1:n|X

Ak
n−1

1:n−1, S1:n−1)

hθ(Xk
n|Sn, X

Ak
n−1

n−1 )

=
fθ(X

k
n, Sn|X

Ak
n−1

1:n−1, S1:n−1)

hθ(Xk
n|Sn, X

Ak
n−1

n−1 )

=
fθ(X

k
n, Sn|X

Ak
n−1

1:n−1)

hθ(Xk
n|Sn, X

Ak
n−1

n−1 )
Sn depends only on Xn

=
fθ(X

k
n|X

Ak
n−1

n−1 )× fθ(Sn|Xk
n)

hθ(Xk
n|S1:n, X

Ak
n−1

n−1 )
using Markov property

=
PAk

n−1,k
× fθ(Sn|Xk

n)

hθ(Xk
n|S1:n, X

Ak
n−1

n−1 )
using prior defined previously (6.6)

Where w̃kn is the un-normalized weight associated with article k at time n i.e. the par-

ticle Xk
1:n and therefore W k

n is the weights associated with the corresponding particle.

Akn−1 is used to denote which particle (identified by its index) was the ”parent” of

particle Xk
n at the previous time step (n-1). We then normalize the above computed

weights to obtain W k
n the final weights. We also specify the following notation which

is important in understanding the working of the subsequent defined methods. Bk
n

denotes the index of the ancestor of particle k at generation n. So we can observe that

Bk
T = k. Following the above notation we can write the evolution of a particle from

time 1 to T as follows: Xk
1:T = (X

Bk
1

1 , X
Bk

2
2 , ..., X

Bk
T−1

T−1 , X
Bk

T
T ) and we have the following

ancestral lineage associated with the particle chain Bk
1:T = (Bk

1 , ..., B
k
T−1, B

k
T = k).

Here’s how the sequential Monte Carlo algorithm works:

• We first sample N particles for time 1 using the proposal density hθ(.|S1).

• we then find the un-normalized weights associate with each particle as specified

in (6.5) and normalize them.

• We then specify f̂1(dx1) :=
∑N

k=1W
k
1 δXk

1
(dx1) which is the distribution of par-

ticles as time 1 and also F̂1(.) :=
∑N

k=1W
k
1 δk(.) which is the distribution over
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Fig. 6.1: Example of SMC algorithm with N=5 and T=3, the lighter
path is X2

1:3 = (X3
1 , X

4
2 , X

2
3 ) and has the lineage B2

1:3 = (3, 4, 2), taken from
[Christophe Andrieu and Holenstein, 2010]

the indexes of the particles at time 1.

• We then follow the following loop for n=2 to T:

– We choose parent indexed Akn−1 according to the distribution defined at

time n-1 i.e. F̂n−1(.) :=
∑N

k=1W
k
n−1δk(.).

– Then sample N particles for time n using the proposal density hθ(.|Sn, X
Ak

n−1

n−1 )

and define the kth particle at time n to be Xk
1:n := (X

Ak
n−1

1:n−1, X
k
n)

– We then find the un-normalized weights associate with each particle as

specified in (6.6) and normalize them.

– We then specify f̂n(dx1:n) :=
∑N

k=1W
k
n δXk

1:n
(dx1:n) which is the distribu-

tion of particles as time n and also F̂n(.) :=
∑N

k=1W
k
n δk(.) which is the

distribution over the indexes of the particles at time n.

We can then approximate the conditional distribution of

fθ(X{1:T}|S{1:T}) ∼ f̂T (dx1:T ) :=
N∑
k=1

W k
T δXk

1:T
(dx1:T )

The sequential monte carlo can be given as follows in algorithim form:
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Algorithm 3: Sequential Monte Carlo

1 Sample Xk
1 from the proposal density hθ(.|S1) for all k ∈ {1, ..., N}

2 Compute the weights associated with each particle as:

w̃1(X
k
1 ) =

fθ(X
k
1 , S1)

hθ(Xk
1 |S1)

=
π(Xk

1 )fθ(S1|Xk
1 )

hθ(Xk
1 |S1)

3 Normalize the weights

W1(X
k
1 ) :=

w̃1(X
k
1 )∑N

l=1 w̃1(X l
1)

4 Set the distribution as follows:

f̂1(dx1) :=
N∑
k=1

W k
1 δXk

1
(dx1)

F̂1(.) :=
N∑
k=1

W k
1 δk(.)

for n = 2 to T do

5 for k = 1 to N do

6 Sample Akn−1 from F̂n−1(.|Wn−1)

7 Sample Xk
n from hθ(.|Sn, X

Ak
n−1

n−1 ) and define Xk
1:n := (X

Ak
n−1

1:n−1, X
k
n).

8 end

9 Compute the weight associated with each particle:

w̃n(X
k
1:n) =

fθ(X
k
1:n, S1:n)

fθ(X
Ak

n−1

1:n−1, S1:n−1)hθ(Xk
n|Sn, X

Ak
n−1

n−1 )
=
fθ(X

k
n|X

Ak
n−1

n−1 )× fθ(Sn|Xk
n)

hθ(Xk
n|S1:n, X

Ak
n−1

n−1 )

10 Normalize the weights

W k
n :=

w̃n(X
k
1:n)∑N

l=1 w̃n(X
l
1:n)

11 Set the distribution as follows:

f̂n(dx1:n) :=
N∑
k=1

W k
n δXk

1:n
(dx1:n)

F̂n(.) :=
N∑
k=1

W k
n δk(.)

12 end
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6.1.2 Conditional Sequential Monte Carlo

To use Sequential Monte Carlo as part of Gibbs sampler we need a modified version

called as Conditional Sequential Monte Carlo. CSMC works by keeping a specific

path through the states, denoted by X1:T , and its associated lineage, denoted byB1:T ,

fixed during the resampling step.

In contrast to the fixed path and lineage, all other particles (representing different

potential paths through the data) are resampled as usual in Sequential Monte Carlo

(SMC). This selective resampling allows CSMC to focus on refining the neighborhood

around the chosen path, potentially leading to more efficient sampling in problems

with regime switching models.

Fig. 6.2: Example of N=5 ancestral lineages generated by a conditional
SMC algorithm for N =5 and T =3 conditional on X2

1:3and B2
1:3, taken from

[Christophe Andrieu and Holenstein, 2010]

We give the algorithm for conditional sequnetial monte carlo as follows with num-

ber of particles N and time steps as 1 to T:
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Algorithm 4: Conditional Sequential Monte Carlo

1 Define a specified path X1:T = (XB1
1 , ..., XBT

T ) and the ancestral lineage B1:T .

2 if k ̸= B1 then

3 Sample Xk
1 from the proposal density hθ(.|S1) for all k ∈ {1, ..., N}

4 end

5 Compute the weights associated with each particle as:

w̃1(X
k
1 ) =

fθ(X
k
1 , S1)

hθ(Xk
1 |S1)

=
π(Xk

1 )fθ(S1|Xk
1 )

hθ(Xk
1 |S1)

6 Normalize the weights

W1(X
k
1 ) :=

w̃1(X
k
1 )∑N

l=1 w̃1(X l
1)

7 Set the distribution as follows:

f̂1(dx1) :=
N∑
k=1

W k
1 δXk

1
(dx1), F̂1(.) :=

N∑
k=1

W k
1 δk(.)

for n = 2 to T do

8 for k = 1 to N do

9 if k ̸= Bn then

10 Sample Akn−1 from F̂n−1(.|Wn−1)

11 Sample Xk
n from hθ(.|Sn, X

Ak
n−1

n−1 ) and define Xk
1:n := (X

Ak
n−1

1:n−1, X
k
n).

12 end

13 end

14 Compute the weight associated with each particle:

w̃n(X
k
1:n) =

fθ(X
k
1:n, S1:n)

fθ(X
Ak

n−1

1:n−1, S1:n−1)hθ(Xk
n|Sn, X

Ak
n−1

n−1 )
=
fθ(X

k
n|X

Ak
n−1

n−1 )× fθ(Sn|Xk
n)

hθ(Xk
n|S1:n, X

Ak
n−1

n−1 )

15 Normalize the weights

W k
n :=

w̃n(X
k
1:n)∑N

l=1 w̃n(X
l
1:n)

16 Set the distribution as follows:

f̂n(dx1:n) :=
N∑
k=1

W k
n δXk

1:n
(dx1:n), F̂n(.) :=

N∑
k=1

W k
n δk(.)

17 end
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6.1.3 Particle Gibbs

Since the conditionals for the invidual parameters of Θ = {µi, δi, α, β ; i = 1, ...,M}
for MMLPS and Θ = {κi, θi, σi ; i = 1, ...,M} for MMOU, will be same as that

in previous sections(Chapter 4 for MMOU and chapter 5 for MMLP). this section

focuses on the generalized Particle Gibbs Sampler (PG) algorithm applicable to a

broader class of regime-switching models.

Here is the Particle Gibbs sampler for a general regime switching model.

Algorithm 5: Particle Gibbs Sampler

1 Place appropriate prior for each component of Θ

2 Sample θ(0) from the priors.

3 Generate one sample path of the Markov Chain from the uniform prior, say

X1:T (0).

4 for i = 1 to . do

5 Generate N paths according to conditional sequential Monte Carlo

conditioned on θ(i− 1) and X1:T (i− 1). Set the final distribution

obtained as {f̂ iT (dx1:T ) :=
∑N

k=1W
k
T δXk

1:T
(dx1:n)}

6 Choose one of the paths according to the distribution of X1:T (i) from the

distribution obtained above i.e {f̂ iT (dx1:T )}.
7 Given a path X1:T (i)

8 Sample from the conditionals of each component of θ

9 end

The algorithm in the following manner:

It starts by defining priors for all parameters in the model denoted by θ. We also

initialise values of parameters using samples from the prior distribution.

Then, it generates an initial sample path for the hidden Markov chain X1:T (0) using

the uniform prior defined previously. We then iterate over a loop and within each

iteration:

• We first generate N new sample paths and distribution {f̂ iT (dx1:T )} over these

paths using Conditional SMC conditioned on the current state of the model

parameters, θ(i− 1) and the previous hidden state path,X1:T (i− 1).

• One path X1:T (i) is chosen from the generated set based on the distribution

{f̂ iT (dx1:T )} over the paths as defined by the CSMC.
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• Gibbs Sampling: Given the chosen hidden path, X1:T (i) we use Gibbs sam-

pling by sampling from conditional distributions of individual components of

the model parameters θ.

Using the CSMC sampler we are able to draw from an approximation of fθ(X1:T |S1:T )

and then we use Gibbs sampler to draw samples from the distribution f(θ|X1:T , S1:T ).

By iteratively performing these steps, the PG sampler explores the joint posterior

distribution of all model parameters and the hidden states and the algorithm should

converge to the joint distribution f(θ,X1:T , S1:T ).
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Chapter 7

Results

In this section, we present the results of the algorithm on simulated data for both the

kind of models discussed in the previous section.

7.1 Markov Modulated Ornstein-Uhlbeck Process

We simulated a Markov Modulated OU process where all the three parameters κ, σ, θ

were dependent on underlying Markov Chain. We took the underlying Markov Chain

to have two states {0, 1} with the transition matrix as:[
0.55 0.45

0.35 0.65

]

Also the values for the parameters associated with each state is as follows:

κ = [0.1, 0.5]

θ = [1, 2]

σ = [1.2, 1.5]

The resulting Markov Chain and also the resulting Markov Modulated Ornstein

Uhlbeck process is as follows:

73
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Fig. 7.1: a)Markov Chain with transition Matrix=[[0.55 ,0.45],[0.35 , 0.65]
b)the resulting OU process

7.1.1 Truncated Dirichlet Prior Method

We generated 100 Markov Chain paths with uniform Transition Matrix and uniform

initial distribution as stated above. Then we placed a stick breaking Truncated Dirich-

let prior with number of classes equal to 100. Which gives the initial distribution as

follows over the 100 MC paths:
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Then we defined the priors for each parameter as described in the sections above.

We started with an initial value of 1 for all the parameters and ran our algorithm

2000 times. We took a burn-in period of 1000 iterations. The algorithm estimate the

parameters as follows:

κ0 κ1 θ0 θ1 σ0 σ1

True value 0.1 0.5 1 2 1.2 1.5

Posterior Mode 0.09 0.41 1.1 2 1.2 1.5

Table 7.1: True and estimated values

The posterior distribution and the trace plots for each of the above parameters is

as follows:

Fig. 7.2: Kappa in state 0
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Fig. 7.3: Kappa in state 1

Fig. 7.4: Theta in state 0

Fig. 7.5: Theta in state 1

Fig. 7.6: Sigma in state 0
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Fig. 7.7: Sigma in state 1

Also we estimate the transition matrix from the most probable path as follows:0.667 0.334

0.314 0.686



7.1.2 Particle MCMC method

We then used the same data to also try our Particle Gibbs method on the Markov

Modulated OU process. The proposal densities hθ(xn|Sn, xn−1) were taken to be

proportional to the likelihood function i.e hθ(xn|Sn, xn−1) ∝ fθ(Sn|xn). which we

then normalize.

Then we defined the priors for each parameter as described in the sections above. We

started with an initial value of 1 for all the parameters and initial Markov chain was

generated from the uniform prior over path space. We ran our algorithm 1000 times.

We took a burn-in period of 900 iterations. The algorithm estimate the parameters

as follows:

κ0 κ1 θ0 θ1 σ0 σ1

True value 0.1 0.5 1 2 1.2 1.5

Posterior Mode 0.12 0.55 1.3 2.2 1.1 1.4

Table 7.2: True and estimated values

The posterior distribution and the trace plots for each of the above parameters is

as follows:
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Fig. 7.8: Kappa in state 0

Fig. 7.9: Kappa in state 1

Fig. 7.10: Theta in state 0

Fig. 7.11: Theta in state 1
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Fig. 7.12: Sigma in state 0

Fig. 7.13: Sigma in state 1

7.2 Markov Modulated NIG Levy process

7.2.1 Truncated Dirichlet Prior Method

We simulated a Markov Modulated NIG Levy process where all the parameters µ, δ

were dependent on underlying Markov Chain. We took the underlying Markov Chain

to have two states {0, 1} with the transition matrix as:[
0.6 0.4

0.3 0.7

]

Also the values for the parameters associated with each state is as follows:

µ = [1, 1.3]

δ = [1.2, 1.7]

The resulting Markov Chain and also the resulting Markov Modulated Levy process

is as follows:
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Fig. 7.14: a)Markov Chain with transition Matrix=[[0.6, 0.4], [0.3, 0.7]]
b)the resulting Levy process

Then we defined the priors for each parameter as described in the sections above.

We started with an initial value of 1 for δ for both states and initial value of 0 for

µ for both states ,ran our algorithm 2000 times. We took a burn-in period of 1000

iterations. The algorithm estimate the parameters as follows:

µ0 µ1 δ0 δ1

True value 1 1.3 1.2 1.7

Posterior Mode 1 1.3 1.2 1.65

Table 7.3: True and estimated values

The posterior distribution and the trace plots for each of the above parameters is

as follows:
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Fig. 7.15: µ in state 0

Fig. 7.16: µ in state 1

Fig. 7.17: δ in state 0

Fig. 7.18: δ in state 1

Also we estimate the transition matrix from the most probable path as follows:
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0.281 0.719



7.2.2 Particle MCMC method

We then used the same data to also try our Particle Gibbs method on the Markov

Modulated NIG-Levy process. The proposal densities hθ(xn|Sn, xn−1) were taken to

be proportional to the likelihood function as before i.e hθ(xn|Sn, xn−1) ∝ fθ(Sn|xn).
which we then normalize.

Then we defined the priors for each parameter as described in the sections above. We

started with an initial value of 1 for δ for both states, initial value of 0 for µ for both

states and initial Markov chain path was generated from the uniform prior over path

space. We ran our algorithm 1000 times. The algorithm estimate the parameters as

follows:

µ0 µ1 δ0 δ1

True value 1 1.3 1.2 1.7

Posterior Mode 1.1 1.4 1.19 1.5

Table 7.4: True and estimated values

The posterior distribution and the trace plots for each of the above parameters is

as follows:

Fig. 7.19: µ in state 0
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Fig. 7.20: µ in state 1

Fig. 7.21: δ in state 0

Fig. 7.22: δ in state 1
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Chapter 8

Conclusion

The interplay between Markov Modulated Levy processes offers a powerful framework

for modeling real-world phenomena exhibiting dynamic jumps and state-dependent

behavior. Although a lot of literature exists on using MMLPs for derivative pricing

and risk management. Only one approximate Expectation Maximization approach

exists for performing Inference for Markov Modulated Levy Process.

In this project we set to develop an efficienct way to perform Inference for MMLPs

when both the parameters and the underlying Markov chain is unknown.

We used Bayesian inference as it provides mathematical rigorous approach and has

the following advantages over the Frequentest approach: Uncertainty Quantifica-

tion: It provides us with a posterior distribution which can be used to construct

confidence intervals allowing us to perform uncertanity quantification as well unlike

point estimates.

Incorporating Prior Knowledge: Using the prior distribution allows us to in-

corporate prior information in our inference procedure like the possible ranges of

estimators and helps to perform robust inference even in presence of outliers.

To carry out Bayesian inference we needed to find the conditional distribution of

each parameter for our model. The main challenge to that was we considered Markov

Chain paths as parameters and the space of Markov Chain paths is a complex param-

eter space and sampling from such a space is difficult. Therefore in order to tackle

that challenge we used two different methods Truncated Dirichlet prior method and

Particle MCMC. Which allowed us to sample effectively from the conditional distri-

bution for Markov Chain paths.
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We developed these new way of performing Bayesian inference for Markov Modu-

lated Levy processes which can efficiently and precisely perform the inference giving

us posterior distribution over both the parameter space and the Markov Chain path

space.

To check for the effectiveness of the method we applied it to two models. First, a

Markov modulated OU process. We considered the three parameters(κ, σ, θ) associ-

ated with OU process to switch between two states. Then we used our methods to

estimate the parameters in each state. As we can see from the previous chapter the

mode of posterior distribution is very close to the true values as well the posterior

distribution provides provides confidence intervals as well. We also estimate the tran-

sition matrix associated with the underlying Markov Chain which also seems quite

close to the true values.

Similarly we also simulated Markov Modulated exponential NIG process which switches

between two states and the parameters (µ, δ) change according to the switch, and ap-

plied our methods to the observed data. We again find the methods can effectively

estimate the parameter values for each state. We also calculated the transition matrix

for the underlying Markov chain which also comes quite close to the true values.

From the above and previous sections we can observe that the methods is effective

in estimating both the parameters as well as transition matrix for the underlying

Markov chain and can even be extended to other Markov switching stochastic pro-

cess. Although theses methods shows great promise in these simulation studies. We

also need to check the effectiveness of the algorithm by applying to real financial data.

Also the posterior distribution and therefore the confidence intervals calculated have

a big spread. Since these experiments were carried out on machine with limited com-

puting power. It can assumed that if the algorithm can be executed on a machine

with much more computing power, so that the loops can be executed more number

of times we will have a posterior distribution with much less variance.

This study looked into the usefulness of novel methods for parameter estimation in

hidden Markov-switching models. We applied the strategy to two simulated processes:

Markov-modulated Ornstein-Uhlenbeck (MMOU) and Markov-modulated exponen-

tial Normal Inverse Gaussian. The results seems promising and the approach was

successful in recovering the true parameter values for each state in both processes.

Furthermore, the computed transition matrices closely approximated the actual un-

derlying Markov chains. Thus, these methods should be investigated with more em-
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pirical data and computing power and so that we can have a good understanding

of the effectiveness and applicability to real world. And also compare it to other

methods which can be applied to similar problems.
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