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Abstract

The thermalization of a system when interacting with a thermal bath poses an interesting problem. If a system

eventually reaches a thermal state in the long-time limit, it is expected that its density matrix would resemble

the mean-force Gibbs state. Moreover, the correlation function must satisfy the Kubo-Martin-Schwinger

(KMS) condition or equivalently the Fluctuation-Dissipation Relation (FDR). In this work, we derive a

formal expression for the non-Markovian two-point function within the context of the weak coupling limit.

Using this expression, we explicitly compute the two-point function for specific models, demonstrating their

adherence to the KMS condition. Additionally, we have formulated a non-perturbative approach in the form

of a self-consistent approximation that includes partial resummation of perturbation theory. This approach

can capture strong coupling phenomena while still relying on simple equations. Notably, we verify that the

two-point function obtained through this method also satisfies the KMS condition. Another important idea

discussed in this thesis is how perturbing around the thermal equilibrium helps us learn about dynamics far

from equilibrium. Specifically, we demonstrate derived constraints on the master equation for open quantum

systems from the positivity of the production of relative von Neumann entropy for small perturbations around

the thermal equilibrium. We further show that these constraints are equivalent to the thermalization and

stability constraints. Drawing motivation from recent work on hydrodynamics, we illustrate how the poles of

the Green’s function for the open system capture the spectrum of the Liouvillian governing open system

dynamics.
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Introduction





Chapter 1

Introduction

In recent times, there has been a considerable amount of e↵ort in developing quantum technologies, especially

quantum computing. Understanding phenomena such as decoherence and entanglement is of fundamental

importance for this purpose. Open quantum systems have served as a good realistic model for studying

such phenomena. Therefore, understanding the process of thermalization in microscopic quantum systems in

contact with a thermal quantum environment is an important problem. It has applications ranging from

quantum technologies to the dynamics of black holes and that of the entire expanding universe.

We say that a certain quantity of the system has reached a steady state if its value has reached very close

to an equilibrium value. At the same time, what one calls equilibrium is usually less than what’s referred to

as thermal equilibrium; in other words, not all systems in steady state have reached thermal equilibrium. The

thermal state of a system is characterized by a few parameters such as temperature or chemical potential.

Consequently, in the process of going to thermal equilibrium, the system’s local observables forget the

information about the system’s initial state. In recent times, there has been a growing interest in understanding

the conditions and mechanisms governing thermalization in quantum many-body systems. In quantum

many-body systems, the Eigenstate Thermalization Hypothesis (ETH) explains the conditions under which

quantum many-body systems thermalize. Using the eigenstates of the many-body Hamiltonian as a tool

to understand the dynamics, the Eigenstate thermalization Hypothesis states that if a quantum system

at a given temperature indeed thermalizes for any initial state, then it should thermalize when any of the

Hamiltonian eigenstates is its initial state, i.e. any eigenstates of many-body hamiltonian are thermal.

In recent times, there has been a growing interest in understanding the conditions and mechanisms

governing the thermalization of a small (microscopic) open quantum system [1–9]. If the system’s degrees of

freedom are negligible compared to the bath degrees of freedom, one would naively expect that the system will

go to a steady state at the long time limit. However, before addressing the question of whether the stationary

state is thermal or not, it is necessary to identify criteria that allow a clear-cut detection of thermodynamic

3



4 Thermalization in Open Quantum Systems

equilibrium conditions in the stationary state. The precise density matrix state for an open quantum system

is given by the Mean Force State. For correlation functions, the thermality constraint is known as the KMS

condition.

In the first half of this thesis, we focus on the idea that perturbing the system around thermal equilibrium

helps us learn about important features of the dynamics out of equilibrium. We first demonstrate how

the Lindblad Master equation is constrained by the requirement of consistency with the Second Law of

thermodynamics. That is, we demand the positivity of relative von Neumann entropy production for Open

system dynamics. This gives us certain equality and inequality constraints on the coe�cients of the Master

equation. Then, we also look at thermalization and CPTP (Completely Positive Trace Preserving) constraints

and show that the constraints from the positivity of entropy production reproduce the constraints from

thermalization and stability.

Then, we demonstrate an abstract derivation of a general form for the retarded Green’s function for a

general model. Using this derivation, we systematically illustrate that the poles of the retarded Green’s

functions encapsulate the spectrum of the Liouvillian governing the density matrix dynamics. Moving forward,

we extend this demonstration to any higher-order retarded correlation function, explaining how the poles of

an n-point retarded Green’s function capture the Liouvillian’s spectrum. This result can be generalized to

any out-of-time-ordered correlation function and its corresponding spectrum of the Liouvillian.

Moving forward, it is important to consider not only the static properties of the density matrix of the

system, which describes its stationary state but also the dynamics of fluctuations. These fluctuations are

encoded, for example, in the two-time correlation function (adhering to the KMS relation). More precisely, at

the long time limit, (a) the density matrix of the system should be the mean-force density matrix [10, 11], and

(b) the correlation function of the system at the long time must satisfy the KMS condition or equivalently

the Fluctuation-Dissipation Relation (FDR) [1, 2, 12, 13].

A lot of work has already been done to address the first issue [10, 11]. However, till now, the discussion

about the second issue is very limited in the literature. To fill this gap, in this paper, our central focus will

be to answer this question as clearly as possible.

Except for exactly solvable models like Caldeira-Leggett [14], we generally resort to approximate techniques

to explicitly compute the correlation function. In this context, it remains unclear whether the approximate

correlation function adheres to the FDR, or, in other words, which approximation may violate it. Addressing

this, L. Sieberer et al.[15, 16] recently discussed the constraints and symmetries imposed on the total Swinger-

Keldysh (SK) action or, equivalently, on the total system-bath Hamiltonian. These constraints guide the

system toward thermalization at the long time limit.

We employed an approximate technique called the image operator method [17–19]. We use this method to

calculate the two-point correlation function, and then we explicitly demonstrate that the correlation function

satisfies the KMS relation. However, it’s important to note that the applicability of this method is limited to

specific examples; it does not universally guarantee the satisfaction of the KMS relation for a generic system.

Furthermore, the validity of this method is contingent upon the assumption of weak system-bath coupling.
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To go beyond the standard weak coupling limit, in the next part of our paper, we have developed a

self-consistent non-perturbative technique[20–29], namely the self-consistent Born approximation [30, 31]

or the NCA approach, following the Swinger-Keldysh path integral. Using this technique, we abstractly

show that the correlation function must obey the FDR relation for a general class of systems. The FDR

follows from the KMS relation [32, 33]. More precisely, the FDR is equivalent to a combination of quantum

mechanical time reversal and the KMS condition [15].
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Chapter 2

Preliminaries

Before delving into the work, I would like to present the basics of Open Quantum Systems and define

thermalization in terms of the state and correlation functions of the system. This will allow us to concretely

define thermalization and assess how accurately di↵erent techniques for calculating states and correlation

functions describe the thermalization of open quantum systems.

2.1 Open Quantum Systems

An open quantum system is a quantum-mechanical system that interacts with an external quantum

system, which is known as the environment or a bath. We can always write down the Hamiltonian of the

total system as H = HS +HR +�HSR, where HS is the Hamiltonian of the system of interest, HR represents

the Hamiltonian for the reservoir (bath), and HSR is the coupling Hamiltonian between the system and the

reservoir. Here, � represents the coupling strength between the system and the bath. We can show that under

the certain approximations the density operator of the system obeys the following Lindblad master equation

d

dt
⇢S(t) = L[⇢S(t)],

L[⇢S(t)] = �i[HS , ⇢S(t)] +
X

k

�k

✓
Lk⇢S(t)L

†
k � 1

2
{L†

kLk, ⇢S(t)}
◆

, (2.1.1)

where Lk’s are known as the jump operators of the system.

2.2 Mean Force Density Matrix

It is well known that the thermal state of a closed system with total Hamiltonian ‘H’ is given by the

Gibbs state:

⇢G =
e��H

Tr[ e��H ]
(2.2.1)

7



8 Thermalization in Open Quantum Systems

So, for open quantum systems with the total Hamiltonian of the form Htot = HS + �HSR +HR, where HS is

the Hamiltonian of the system of interest, HR represents the Hamiltonian for the reservoir (bath), and HSR

is the coupling Hamiltonian between the system and the reservoir; the thermal density matrix for the total

system is given by:

⇢tot =
e��(HS+�HSR+HR)

Tr[ e��(HS+�HSR+HR)]
(2.2.2)

Tracing out the bath, we get the reduced density matrix for system, that is the true thermal state of the

system. This state is called the Mean Force Density Matrix of the system.

⇢MF =
TrR[ e��(HS+�HSR)]

Tr[ e��(HS+�HSR)]
(2.2.3)

Obviously, at leading order in � thisis equal to the Gibbs state of the system.

2.3 KMS condition

The density matrix only captures the static properties of the system. The dynamical properties sucha s the

spectral density and response of the system to external perturbations are captured by the correlation function.

So, when a system reaches thermal equilibrium, the correlation functions satisfy a constarint independt of

the density matrix. This constarint is called the KMS condition. For example, for a two-point function, the

KMS condition is given by:

hA(tA)B(tB)i = hB(tB � i�/2)A(tA + i�/2)i (2.3.1)

The genralizaiton of KMS condition to multi-time correlation function is straightforward and givens

hA(tA,1, tA,2, ..., tA,N )B(tB,1, tB,2, ..., tB,M )i = hB(tB,1� i�/2, ..., tB,M � i�/2)A(tA,1+ i�/2, ..., tA,N + i�/2)i
(2.3.2)

2.4 Image Operator Formalism

The Image Operator framework describes open quantum systems in the Heisenberg Picture. Describing

the complete Heisenberg picture for an open quantum system this way involves multiple “image Heisenberg

operators” for each system observable. For an operator O(t), an image operator O↵�(t) is defined as :

O↵� = T †
↵O(t)T� . (2.4.1)

Where, {|ii |i✏I} and {|↵i |↵✏A} and thus, {|i↵i |i↵✏I,↵✏A} span the system, bath, and the total Hilbert

space respectively. And, T↵ is a projection operator defined as:

T↵ = |i↵i hi| . (2.4.2)

Clearly, the number of such image operators is equal to the environment Hilbert space. The key part of
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the formalism is a perturbative expansion of the image operators in terms of the single one-point operators,

which is accurate up to arbitrary orders in the system bath coupling given as:

O↵� =
1X

n=0

1X

k=0

1X

n1,...,nk=1

(�1)k(
�

~ )
n+n1+...+nkP (n)

↵� Pn1
S ...P (nk)

S OS(t). (2.4.3)

Where, OS(t) is the reduced system operator, and

U0(t) = e
�iH0t

~ , (2.4.4)

K̃(n)
↵� (t) =

Z t

0
dt1...

Z tn�1

0
dtnH̃I↵�1(t1)...H̃I�n�1�(tn), (2.4.5)

K(n)
↵� (t) = e

i(E↵�E
�
)t~U †

0 (t)K̃
(n)
↵� (t)U0(t), (2.4.6)

and finally,

P (n)
↵� A(t) ⌘

nX

r=0

in�2rK(n�r)†
�↵ (t)A(t)K(r)

�� (t), (2.4.7)

P (n)
S A(t) ⌘ P (n)

↵� A(t)⇢�↵. (2.4.8)

One can observe that the image operators depend non-linearly on the state of the environment. This

relationship is significant because it enables the construction of N-point-reduced system operators:

(O1(t1)...ON (tN ))S = (O1↵�1(t1)...O�n�1�(tN ))⇢�↵. (2.4.9)
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Part II

A close parallel between Open

Quantum Systems and Hydrodynamics





Chapter 3

Entropy Production Constraints

3.1 Entropy Production Functional

The last decade has seen tremendous progress in understanding dissipative dynamics from the e↵ective

field theory approach. This has led to a better understanding of hydrodynamics. In the context of

hydrodynamics, this approach has led to a new formulation based on symmetries [34], new constraints on the

transport parameters [35], stability of hydrodynamic equations [36], and much more. In a beautiful paper by

Bhattacharya et al. [35], it was shown that the coe�cients in Navier-Stokes equations follow certain equality

and inequality type relations in the higher derivative terms of the Navier-Stokes equation if one demands

the positivity of the production of local entropy current for perturbations around the global equilibrium

state. Taking inspiration from that work, in this chapter, I derive similar constraints on the coe�cients of

the Master Equation that describe the dynamics for Open Quantum systems.

3.1.1 Von Neumann Entropy

The von Neumann entropy is an important entropy functional. Given the state of an open quantum

system, ensemble in terms of a density matrix is defined by

S[⇢S(t)] = �Tr[⇢S(t) ln ⇢S(t)] (3.1.1)

3.1.2 Entropy Production Functional

Let’s suppose that the canonical equilibrium distribution (Gibbs state)

⇢thS =
e��HS

TrS [e��HS ]
(3.1.2)

is a stationary solution of the master equation. This means that L[⇢th] = 0.

13



14 Thermalization in Open Quantum Systems

For an Open Quantum System, the total entropy production at any time is

�(t) =
d

dt
S(t) + J(t) (3.1.3)

Where, S is the von Neumann entropy of the open system. The quantity J denotes the amount of entropy

which is exchanged per unit of time between the open system and its environment. Let’s consider an Open

System obeying Lindblad dynamics. The time derivative of the von Neumann entropy is easily evaluated to

be

d

dt
S(t) = �kBTr[L(⇢S(t)) ln ⇢S(t)] (3.1.4)

And, entropy flux is evaluated to be

J(t) = kBTr[L(⇢S(t)) ln ⇢
th
S (t)] (3.1.5)

So, the net entropy production is

�(t) = kBTr[L(⇢S(t))(ln ⇢
th
S (t)� ln⇢S(t))] (3.1.6)

3.1.3 Example: Harmonic Oscillator coupled with bath

Let’s consider the same example where a simple harmonic oscillator is interacting with a bath. For

simplicity, let’s take these following two jump operators, L1 = a† and L2 = a. Then the dynamics of ⇢S(t)

will govern by the following Lindblad master equation

d

dt
⇢S(t) =� i![a†a, ⇢S(t)] + �1

�
a†⇢S(t)a� 1

2
{aa†, ⇢S(t)}

�

+ �2
�
a⇢S(t)a

† � 1

2
{a†a, ⇢S(t)}

� (3.1.7)

Now if we do a small perturbation �(t) in the entropy production around the thermal state then the first

order term in �(t) is

�1(⇢thS + �(t)) = 2(��1e
��E1 + �2e

��E2)�(t) (3.1.8)

Since, �(⇢S(t)) is a convex function, so the first order term has to be zero which gives the following relation

between �1 and �2
�1 = e��!�2 . (3.1.9)

Similarly, the second order term in the perturbative parameter is

�2(⇢thS + �(t)) = 2(1 + e��!)�2 �2(t) . (3.1.10)
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Since, �(⇢S(t)) is a convex function, so the second order term has to be non-negative which demands that �2

has to be non-negative i.e. �2 � 0 and using Eq.(3.1.9) we can say �1 � 0.

3.1.4 Multiple steady state and Entropy Production

If there exists multiple steady states then perturbation in di↵erent directions give di↵erent results. To

understand this point we are going to take the example of a Dephasing Spin-Boson Model. The Hamiltonian

of the dephasing spin-boson model is,

H = HS +HR +HSR

=
!0

2
�z +

X

k

!kb
†
kbk +

X

k

↵k�z ⌦ (b†k + bk)
(3.1.11)

One can show that the reduced density operator obeys the following equation

d

dt
⇢S(t) = �i

!0

2
[�z, ⇢S(t)] + �11(0)[�z⇢S(t)�z � ⇢S(t)] (3.1.12)

The solution of the above equation is

⇢S(t) =

2

6664

⇢eeS (0) e�(i!0+2�11(0))t⇢egS (0)

e(i!0�2�11(0))t⇢geS (0) ⇢ggS (0)

3

7775
(3.1.13)

We can clearly see that this system has multiple steady states. Now if we do a diagonal perturbation �̂(t)

in the entropy production around the thermal state i.e. �̂(t) = �(t)

2

66664

1 0

0 �1

3

77775
then the change in entropy

production is zero. This result can be understood from the following fact that any diagonal perturbation in

the thermal state is a steady state of this system, so there will be no entropic cost to go from one steady

state to other. However, if we do an o↵-diagonal perturbation, the first order term is zero and the second

order term will be positive only if �(0) is positive.

3.1.5 Convexity of Entropy Production Functional

The Lieb’s theorem states that the functional

ft(A,B) = �Tr[X†AtXB1�t] (3.1.14)

is jointly convex in its arguments A and B. Here, A and B are positive operators, while X is an arbitrary

fixed operator and t is a fixed number in the interval [0, 1]. By Lieb’s theorem the functional

�Tr[(X⇢X† �X†X⇢) ln ⇢] (3.1.15)
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is convex.

Using this it can be shown that, the entropy production functional is non-negative and vanishes in a

stationary state, if and only if all �’s are non-negative. Moreover, in that case, �(⇢) is a convex functional on

the state space of the open system.

3.1.6 Perturbative expansion for Entropy Production

We know,

�(t) = �kBTr[L(⇢S(t))(ln⇢S(t))� ln ⇢thS (t)] (3.1.16)

Let’s write, ⇢S = ⇢thS + �

As, L[⇢th] = 0, and L[⇢1 + ⇢2] = L[⇢1] + L[⇢2]

We get,

�(t) = �kBTr[L(�(t))(ln
�
⇢thS (t) + �(t)

�
� ln ⇢thS (t)] (3.1.17)

Using the Taylor Expansion for Matrix Logarithms, we get,

�(t) = �kBTr[L(�(t))([

Z a

0
(⇢thS (t) + aI)�1�(t)(⇢thS (t) + aI)�1 + (⇢thS (t) + aI)�1�(t)(⇢thS (t) + aI)�1�(t)(⇢thS (t) + aI)�1 + ....])]

(3.1.18)

We know, L[�(t)] is a linear functional in delta. So, clearly, the zeroth and first order terms in this

perturbative expansion are zero. And, because of Lieb’s theorem, imposing the non-negativity of the second

order term (lowest order term in the expansion) is necessary and su�cient for imposing the non-negativity of

entropy production.

3.2 Completely Positive Trace Preserving Map

Any Complete Positive Trace Preserving (CPTP) quantum map can be expressed in the following

Kraus-operator representation

⇢S(t) =
X

↵

K↵(t)⇢S(0)K
†
↵(t) . (3.2.1)

Now the Lindblad equation (2.1.1) will have the Kraus operator representation if all the �k’s are non-negative.

So, complete positivity (CP) demands �k � 0. Hence, the Eq.(3.1.12) preserve the positivity of probabilities

only if �1 and �2 are both positive.
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3.3 Thermalization

If we demand that the thermal state should be a steady state solution of the Lindblad master equation

(3.1.12) i.e. L[⇢thS ] = 0, then it will give the following relation between �1 and �2

�1 = e��!�2. (3.3.1)

3.4 Summary

In this section, we have demonstrated how the coe�cients of the jump operators in the Lindblad Master

equation adhere to specific equality and inequality-type relations by requiring the positivity of the production

of the total von Neumann entropy during dissipative dynamics. Additionally, we have illustrated that the

equality relations are equivalent to those obtained by requiring thermalization, while the inequality-type

relations are equivalent to those obtained by demanding stability (or CPTP). Subsequently, we transition to

the case of multiple steady states and elucidate how our results generalize in that context.
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Chapter 4

Spectrum of Lindbladian and Poles of

Green’s functions

The Liouvillian spectrum for open quantum systems contains crucial information about the system’s dynamics.

Specifically, it always resides on the left half of the complex plane due to the dissipative nature of the

dynamics. Moreover, the lowest lying mode in the spectrum with a non-zero real part provides us with the

timescale of the system’s thermalization [37]. The distribution of the spectrum in a many-body system also

o↵ers hints about whether the underlying dynamics are chaotic or not [38].

In this section, we demonstrate how this spectrum, which governs the out-of-equilibrium dynamics, is

neatly captured in the poles of the steady-state correlation functions of the system. This finding complements

those of the previous section and illustrates how small perturbations around thermal equilibrium can assist

us in understanding crucial aspects of truly out-of-equilibrium dynamics.

4.1 Spectrum of Lindbladian and poles of two-point function

The dynamics of an open system is governed by the following Lindblad equation in the Markovian regime

d

dt
⇢s = L⇢s (4.1.1)

The retarded two-point function is defined as

GR(t, t0) = �i⇥(t� t0)h[O1(t), O2(t
0)]i (4.1.2)

Let’s assume t > t0 and O1 is one of the eigenvector of L i.e.

LO1 = �O1 , (4.1.3)

19
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where � is one of the eigenvalue of the L operator. Using Quantum Regression Theorem(QRT) we can show

that

GR(t, t0) = �i⇥(t� t0)e�(t�t0)h[O1(t
0), O2(t

0)]i (4.1.4)

Now at the steady state i.e. t0 ! 1 the retarded greens function becomes

GR(⌧) = C⇥(⌧)e�⌧ , (4.1.5)

where ⌧ = t� t0 and C is a constant. The fourier transform of GR is

GR(⌦) = C̃
1

i⌦� �
. (4.1.6)

4.1.1 Exceptional point

The point in the spectrum where the eigenvectors coalesce is known as an exceptional point (EP). When

two eigenvectors of the Lindbladian coalesce into one, a second-order non-Hermitian degeneracy is obtained.

We refer to it as EP2. Let’s assume k number of eigenvectors of L coalesce into one which we denoted by Ok
1 .

Then the retarded two-point function at the steady state will be

GR(⌧) = �limt0!1 i⇥(t� t0)h[Ok
1 (t), O2(t

0)]i = C⇥(⌧)
⇣ k�1X

j=0

dj⌧
j
⌘
e�⌧ (4.1.7)

Fourier transform of GR is

GR(⌦) =
k�1X

j=0

d̃j
1

(i⌦� �)j+1
. (4.1.8)

So if k numbers of eigenvectors coalesce then we will get poles of order k.

4.1.2 Examples

4.1.2.1 Caldeira-Legget model

For this model, we have calculated the spectrum of the L and they are given by (at T = 0)

�nm = �[(n+m)� + i(n�m)!0
0] , (4.1.9)

where n and m are non negative integers. Since, Lindbladian is infinite dimensional that’s why we got infinite

number of eigenvalues. For n = m = 0, �00 = 0 which ensures the unique steady state.

Now let’s calculate the following retarded two-point function at the steady state

GR(t, t0) = �i⇥(t� t0)h[a(t), a†(t0)]i (4.1.10)
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For the Caldeira-Legget model the above retarded correlation function is (using the QRT)

GR(t, t0) = �i⇥(t� t0) e�(i!0
0+�)(t�t0) (4.1.11)

In the frequency space it will be

GR(⌦) =
1

⌦� !0
0 + i�

(4.1.12)

Hence, the retarded correlator has a pole at ⌦ = !0
0 � i� . The eigenvalue of Lindbladian for n = 1,m = 0 is

�10 = �i!0
0 � �. So, the pole of retarded correlator and spectrum of the Lindbladian is related by

pole of [GR(⌦)] = i [eigenvalue of L̂ for n = 1,m = 0] . (4.1.13)

Similarly, we have seen that other eigenvalues of L̂ are related to the retarded correlation function of

di↵erent operators. For example, the pole of the following two-point function

GR(t, t0) = �i⇥(t� t0)h[a2(t), a†2(t0)]i (4.1.14)

is related to the eigenvalue of L̂ for n = 2,m = 0.

General operator:

Let’s consider the following operator

Anm(t) = ana†m(t) (4.1.15)

For the CL model we can show that

d

dt
hAnm(t)i = �[(n+m)� + i(n�m)!0

0]hAnm(t)i+ 2nm�hAn�1m�1(t)i (4.1.16)

If we write the above equation in the matrix form we will get

d

dt
hAnm(t)i = �[(n+m)� + i(n�m)!0

0]hAnm(t)i+ 2nm�hAn�1m�1(t)i (4.1.17)
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d

dt

2

6666666666666666666666666664

hA00i

hA01i

.

hA0mi

hA10i

.

hAnmi

3

7777777777777777777777777775

= M

2

6666666666666666666666666664

hA00i

hA01i

.

hA0mi

hA10i

.

hAnmi

3

7777777777777777777777777775

(4.1.18)

This Mij matrix is lower triangular with eigenvalues �M
nm = �[(n+m)�+ i(n�m)!0

0]. We can diagonlised

this matrix by changing the operator, Anm ! Ãnm i.e.

d

dt
hÃnmi = �M

nmhÃnmi . (4.1.19)

Now take the following retarded correlator

GR(t, t0) = �i⇥(t� t0)h[Ãnm(t), f(a, a†)(t0)]i (4.1.20)

Using QRT, we can easily show that

GR(⌧) = �i⇥(⌧)e�
M

nm
⌧ Ltt0!1h[Ãnm(t0), f(a, a†)(t0)]i , (4.1.21)

where we have set t = t0 + ⌧ . Finally, we have

GR(⌧) = �iC⇥(⌧)e�
M

nm
⌧ , (4.1.22)

where C = Ltt0!1h[Ãnm(t0), f(a, a†)(t0)]i. In the frequency space it is given by

GR(⌦) =
C

⌦� i�M
nm

(4.1.23)

Hence, pole is at ⌦ = i�M
nm. Now, �M

nm = �nm. Finally, we got the following relation

pole of [GR(⌦)] = i [spectrum of L̂ ] . (4.1.24)
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4.1.2.2 Dissipative Spin-Boson model

For the dissipative spin-boson model, the Lindblad operator has the following form

L =

2

66666666666664

��(n̄+ 1) 0 0 �n̄

0 �
⇥
i!0

0 + �(n̄+ 1/2)
⇤

0 0

0 0 �
⇥
� i!0

0 + �(n̄+ 1/2)
⇤

�(n̄+ 1) 0 0 ��n̄

3

77777777777775

. (4.1.25)

Eigenvalues of this superoperator(L) are

Eig(L) = {0, 1} . (4.1.26)

4.2 Spectrum of Lindbladian and poles of N-point function

N-point retarded greens function is defined as

GR(t1; t2....., tN ) =(�i)N�1
X

j

✓(t1 � tj1)✓(tj1 � tj2)......✓(tjN�1 � tjN )

⇥ [......[[O1(t1), Oj2(tj2)], Oj3(tj3)]....., OjN (tjN )] (4.2.1)

On the right hand side of the above equation we sum over all permutations of the operators {O2(t2), ..., ON (tN )},
but leave O1(t1) fixed. Now if we assume t1 > t2...... > tN then the above definition reduces to

GR(t1; t2....., tN ) =(�i)N�1✓(t1 � t2)✓(t2 � t3)......✓(tN�1 � tN )

⇥ [......[[O1(t1), O2(t2)], O3(t3)]....., ON (tN )] (4.2.2)

Let’s assume {Õn} are the eigenvectors of L operator i.e.

LÕn = �nÕn (4.2.3)

Now choose {On} operators such that they satisfies the following relations

Õ1 = O1 ;

Õ2 = [O1, O2] ;

.

Õn = [......[[O1, O2], O3]....., On] (4.2.4)
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Using Quantum Regression Theorem(QRT), we can easily calculate the following result

GR(⌧1, ⌧2....., ⌧N�1, tN ) = (�i)N�1✓(⌧1)✓(⌧2)......✓(⌧N�1)[ÕN�1(tN ), ON (tN )]
Y

j

e�j⌧j (4.2.5)

At the steady state i.e. tN ! 1 the retarded correlation becomes

GR(⌧1, ⌧2....., ⌧N�1) = C ✓(⌧1)✓(⌧2)......✓(⌧N�1)
Y

j

e�j⌧j , (4.2.6)

where C is a constant. If we do the fourier transformation of GR, we will get

GR(⌦1,⌦2.....,⌦N�1) = C
N�1Y

j=1

⇣ 1

i⌦j � �j

⌘
. (4.2.7)

So the poles of ⌦j ’s are the eigenvalues of the Lindbladian. If we take the Fourier transform of GR with

respect to ti rather ⌧i, we will get

GR(!1,!2.....,!N�1) = C̃
⇣ 1

!1 � i�1

1

!1 + !2 � i�2
.......

1

!1 + !2....+ !N�1 � i�N�1

⌘
. (4.2.8)

4.3 Summary

In this section, we first establish a direct correspondence between the poles of the retarded Green’s function

and the spectrum of the Liouvillian in an abstract manner. We utilize the quantum regression theorem to

achieve this correspondence. Subsequently, we demonstrate this relationship using simple examples such as

the Caldeira-Leggett model and the dissipative Spin-boson model.

Furthermore, we extend this correspondence by showing it abstractly for the poles of the N-point retarded

Green’s function and the Liouvillian. Although we focus on the retarded correlator in this discussion, we

anticipate that such a correspondence holds for any of the out-of-time ordered correlators.



Part III

Steady State correlation function and

consistency with KMS condition





Chapter 5

Steady State Correlation function un-

der the standard weak coupling limit

In this section, we want to derive the two-point correlation function at the steady state up to the leading order

in system-bath coupling strength. For our setup, we take the following general form of the total Hamiltonian

H = HS +HR +HSR

= HS +
X

k

⌦kb
†
kbk +

X

k

↵k(Sb
†
k + S†bk) ,

(5.0.1)

where bk and b†k represent the bosonic or fermionic annihilation and creation operator for the k-th mode,

respectively. The third term in Eq.(5.0.1) represents the system-bath coupling with the generic system

operator S coupled with the k-th bath mode with interaction strength ↵k.

5.1 Two-point function and Image Operator Formalism

Our first aim is to calculate the two-point correlation function of the form

hO1(t+ ⌧)O2(t)i = TrS
h
[O1(t+ ⌧)O2(t)]S ⇢S(0)

i
, (5.1.1)

where [O1(t+ ⌧)O2(t)]S denotes the two-point reduced operator [17, 18] defined as:

[O1(t+ ⌧)O2(t)]S = TrB
⇥
O1(t+ ⌧)O2(t) ⇢B

⇤
(5.1.2)

We follow the recipe of Ref. [18], to express the two-point reduced operator [O1(t + ⌧)O2(t)]S , up to the

leading order in the system-bath coupling, in terms of one-point reduced operators (O1S and O2S) (for details

see Appendix-??). Note that, the dynamics of the reduced one-point operator is governed by the Born master

equation [1].

27
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For the system defined in Eq.(5.0.1), we can explicitly show the two-point reduced operator is given by

[O1(t+ ⌧)O2(t)]S = O1S(t+ ⌧)O2S(t) +D1(t, ⌧) +D2(t, ⌧) , (5.1.3)

In Appendix-??, we have given the details of this derivation. Note that, to derive the above expression we

have only considered the weak coupling approximation i.e., we keep terms up to the leading order in the

system-bath coupling. The two-point reduced operator is not just the product of one-point reduced operators,

we also get two inhomogeneous terms D1(t, ⌧) and D2(t, ⌧) which are given by the following equations

D1(t, ⌧)=
X

j,l,m,n

Z
d⌦

2⇡
F⌘(⌦) e

i⌦⌧e�i(!j+!0
m
)(t+⌧)e�i(!̃l�!0

n
)t

Z t+⌧

0
d⌧ 01

h
O1jS(⌧

0
1), Sm

i
e�i[⌦�(!j+!0

m
)]⌧ 0

1

Z t

0
d⌧ 02

h
S†
n, O2lS(⌧

0
2)
i
ei[⌦+(!̃l�!0

n
)]⌧ 0

2 , (5.1.4)

D2(t, ⌧)=
X

j,l,m,n

Z
d⌦

2⇡
F̃⌘(⌦)e

�i⌦⌧ei(!
0
m
�!j)(t+⌧)e�i(!̃l+!0

n
)t

Z t+⌧

0
d⌧ 01

h
O1jS(⌧

0
1), S

†
m

i
ei[⌦+(!j�!0

m
)]⌧ 0

1

Z t

0
d⌧ 02

h
Sn, O2lS(⌧

0
2)
i
ei[(!̃l+!0

n
)�⌦]⌧ 0

2 (5.1.5)

where F⌘(⌦) = J(⌦)n⌘(⌦) and F̃⌘(⌦) = (J(⌦)�⌘F⌘(⌦)) with J(⌦) is the spectral density function of

the bath which is defined as J(⌦) = 2⇡
P

k |↵k|2�(⌦ � ⌦k). Note that, here n⌘(⌦) represents the Bose or

Fermi distribution function i.e. F⌘(⌦) = [e�⌦ + ⌘]�1 with ⌘ = +1 and ⌘ = �1 are for fermions and bosons,

respectively. !j corresponds to the possible energy di↵erences between the bare system eigenenergies that

appear by performing spectral decomposition for the operator O1S . In other words, we use the fact that

O1S(t) =
X

j

O1jS(t� t0)e�i!jt
0
+O(↵k). (5.1.6)

Similarly, !̃l and !0
m correspond to the possible energy di↵erences of the bare system for the operators O2S

and S respectively. Eq.(5.1.3)-Eq.(5.1.5) represents the two-point correlation function at any time.

For the rest of the paper, we focus on the steady-state correlation function. To obtain the steady state

correlation function, we simply need to take the t ! 1 limit in Eq.(5.1.3)-Eq.(5.1.5). Below, we will

illustrate the calculation of the steady state correlation function using the image operator method for two

paradigmatic models. Additionally, we will explicitly show that the obtained correlation function satisfies the

KMS condition.

5.2 Two-point correlation function at the steady state and KMS

for some specific models

Here, using the expression obtained in Eq.(5.1.3)-Eq.(5.1.5), we compute the correlation function for a

dissipative non-interacting bosonic/fermion system and for the dissipative spin-boson model. For both these

models, we show explicitly that the correlation function satisfies the KMS condition in the long-time limit.
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5.2.1 Dissipative Bosonic/Fermionic Model

We treat a single bosonic or fermionic degree of freedom as a system that is coupled to a corresponding

bosonic or fermionic thermal bath. The total Hamiltonian is given by

H = !0a
†a+

X

k

⌦kb
†
kbk +

X

k

↵k(a b
†
k + a† bk), (5.2.1)

where a and a† represent the bosonic or fermionic annihilation and creation operator for the system,

respectively. For this model, we want to calculate ha†(t + ⌧)a(t)i up to the leading order in system-bath

coupling at the steady state using Eq.(5.1.3)-Eq.(5.1.5). Let us first note that, for this correlation function,

O1 = a† and O2 = a in Eq. (5.1.3). With this identification, it is easy to show that the D1 term (expressed

in Eq.(5.1.4)) at the long time limit i.e. t ! 1, takes this interesting form,

D1 =

Z
d⌦

2⇡
F⌘(⌦) e

i⌦⌧

Z 1

0
d⌧ 01

h
a†S(⌧

0
1), a

i
e�i⌦⌧ 0

1

Z 1

0
d⌧ 02

h
a†, aS(⌧

0
2)
i
ei⌦⌧ 0

2

=

Z
d⌦

2⇡
F⌘(⌦) e

i⌦⌧
h
ã†S(i⌦), a

ih
a†, ãS(�i⌦)

i
, (5.2.2)

where ãS(�i⌦) is the Laplace transformation of aS(t) i.e. ãS(�i⌦) =
R1
0 dt aS(t)ei⌦t. It is interesting to

note that the Laplace transform is a feature specific to the steady state and appears naturally in the steady

state limit. Similarly, we can show that D2 (expressed in Eq. (5.1.5)) is zero for this model. Note that for

this model, the first term of Eq.(5.1.3) is zero since aS(1) = a†S(1) = 0 and the Laplace transformation of

aS(t) is (see Appendix-?? for details)

ãS(�i⌦) =
a

⇥
� i
�
⌦� !0 � ⌃(⌦)

�
+ J(⌦)

2

⇤ . (5.2.3)

Making these substitutions in Eq.(5.2.2), we get the following expression for the two-point correlation function

at the steady state

ha†(t+ ⌧)a(t)iss=
Z 1

0

d⌦

2⇡

ei⌦⌧F⌘(⌦)h�
⌦� !0 � ⌃(⌦)

�2
+
�
J(⌦)/2

�2i . (5.2.4)

It is worth noting how the two-point correlator expressed by the seemingly complicated Eq.(5.1.3)-Eq.(5.1.5),

takes on an elegant and simple form in the steady state limit. Another important feature of the above

equation is that at ⌧ = 0, the right-hand side becomes the steady-state one-point expectation value ha†aiss.
We want to determine whether the correlation function obtained in Eq.(5.2.4) satisfies the KMS condition or

not. The KMS condition states that:

ha†(t+ ⌧)a(t)iss = ha(t)a†(t+ ⌧ � i�)iss (5.2.5)
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So, to check the KMS condition, we need to find the other correlator also, i.e., ha(t)a†(t+ ⌧)i. Following the

exact similar steps, one can easily compute the following correlator

ha(t)a†(t+ ⌧)iss=
Z 1

0

d⌦

2⇡

ei⌦⌧
�
1� ⌘ n⌘(⌦)

�
J(⌦)h�

⌦� !0�⌃(⌦)
�2
+
�
J(⌦)/2

�2i (5.2.6)

Looking at Eq.(5.2.4) and Eq.(5.2.6), it is clear that the above correlators satisfy the KMS condition at the

steady state. Moreover, the obtained expression for the correlation functions in Eq.(5.2.4) and Eq.(5.2.6)

turns out to be the exact correlation function at the steady state.

5.2.2 Dissipative Spin-Boson Model (Secular)

We want to apply the same method to calculate the correlation function for another paradigmatic model,

namely the dissipative spin-boson model. The total Hamiltonian of the system is given by

H =
!0

2
�z +

X

k

⌦kb
†
kbk +

X

k

↵k(�� b†k + �+ bk) . (5.2.7)

where bk(b
†
k) represents the bosonic annihilation (creation) operator and �� (�+) is the lowering (raising)

operator of the spin-half system. Our aim is to compute h�+(t + ⌧)��(t)i up to the leading order in the

system-bath coupling. Let us first note that, O1 = �+ and O2 = �� in Eq. (5.1.3). With this identification,

it is easy to show that the D1 term (expressed in Eq.(5.1.4)) at the long time limit i.e. t ! 1, is given by

D1 =

Z
d⌦

2⇡
F�(⌦) e

i⌦⌧

Z 1

0
d⌧ 01

h
�+S(⌧

0
1),��

i
e�i⌦⌧ 0

1

Z 1

0
d⌧ 02

h
�+, a�S(⌧

0
2)
i
ei⌦⌧ 0

2

=

Z
d⌦

2⇡
F�(⌦) e

i⌦⌧
h
�̃+S(i⌦),��

ih
�+, �̃�S(�i⌦)

i
, (5.2.8)

where �̃�S(�i⌦) is the Laplace transformation of ��S(t) i.e. �̃�S(�i⌦) =
R1
0 dt ��S(t)ei⌦t. Similarly, we

can show that D2 (expressed in Eq.(5.1.5)) is zero for this model. Finally, by substituting the Laplace

transformation of the operators appearing in Eq. (5.2.8), we get the simple and explicit form of the two-point

correlation function at the steady-state

h�+(t+ ⌧)��(t)iss

=

Z 1

0

d⌦

2⇡

ei⌦⌧F�(⌦)h�
⌦� !0�⌃00(⌦)

�2
+
�
(n(⌦)+1/2)J(⌦)

�2i . (5.2.9)

By following the identical steps, we can find the following correlator

h��(t+ ⌧)�+(t)iss

=

Z 1

0

d⌦

2⇡

e�i⌦⌧ (1 + n�(⌦))J(⌦)h�
⌦� !0�⌃00(⌦)

�2
+
�
(n(⌦)+1/2)J(⌦)

�2i . (5.2.10)
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It is evident from Eq.(5.2.9) and Eq.(5.2.10) that the above correlators satisfy the KMS condition at the

steady state. Note that, the above expressions of the correlation function are obtained under only the weak

coupling limit.

5.3 Summary

Note that, by employing the image operator method developed in this section, we explicitly calculate the

two-point correlation function at the steady state for specific examples and demonstrate that they satisfy the

KMS relation. Our next aim is to develop a technique for calculating the correlation function that ensures

consistency with the KMS condition for a generic model. To be more precise, our technique will provide

insight into the KMS relation without explicit computation of the correlation function, Additionally, we aim

to go beyond the standard weak coupling limit for calculating correlation functions.

To achieve our goal, in the next section, we have developed an approximate and self-consistent non-

perturbative technique using the Swinger-Keldysh path integral. This technique not only enables us to

comment on the KMS relation for a generic type of system but also allows us to go beyond the weak coupling

limit.
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Chapter 6

Steady State Correlation function be-

yond the standard weak coupling limit

In this section, we initially develop a framework that will enable us to extend beyond the standard weak

coupling limit for calculating the steady-state two-point function. We achieve this by applying the “self-

consistent Born approximation” (or Non-Crossing Approximation, NCA). Then, we proceed to demonstrate

that this approximation, while providing a simple method for calculating the two-point function, also ensures

that the two-point correlators obey the Fluctuation-Dissipation Relation (FDR).

For this, we focus on a very general class of open quantum systems comprising a single bosonic mode

coupled to a Gaussian bosonic bath, with the total Hamiltonian H = HS +HB +HI,l +HI,nl, where we

take HS to be an arbitrary system Hamiltonian, and

HB =
X

k

!kb
†
kbk, HI,l =

X

k

↵k(a
†bk + ab†k),

HI,nl =
X

k

↵k(a
†manbk + a†namb†k). (6.0.1)

Here, bk and b†k represent the bosonic annihilation and creation operators for the k-th bath mode, respectively.

The third term, HI,l in Eq.(6.0.1), signifies the system-bath coupling through linear operators of the system,

coupled to the k-th bath mode with an interaction strength of ↵k. The fourth term, HI,nl represents the

system-bath coupling employing a generic non-linear operator (m,n � 0), coupled to the k-th bath mode with

an interaction strength of ↵k. Note that the non-linear system operator has been considered to be normally

ordered in the second-quantization notation.

33
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6.1 Steady State Green’s function and Schwinger Keldysh path

Integral

Our objective here is to study the steady-state green’s function for the system. To accomplish this, we

promote the total Hamiltonian to the Schwinger Keldysh Path Integral. The resulting Schwinger Keldysh

Action is expressed in Eq. (C.0.1) of Appendix-C, in the classical-quantum (cl-q) basis for the field operators.

The Schwinger-Keldysh functional integral, involving both system and bath degrees of freedom in the total

action, is quadratic in the bath degrees field. Assuming that the bath is in a thermal state, we can integrate

it out, resulting in an action expressed solely in system degrees of freedom. This action takes the form

S = SS + S0
l + S0

nl, as expressed in Eq.(C.0.2).

We employ the standard tool of Feynman diagrams to perturbatively calculate the self-energy ‘⌃̃(!)’ for

the steady-state Green’s function. The Dyson series

G(!) = G(0))(!) +G(0)(!)⌃̃(!)G(0)(!) + ...

= G(0) +G(0)⌃̃(!)G =
�
G�1

(0)(!)� ⌃̃(!)
��1

, (6.1.1)

relates the self-energy to the Green’s function, where G(0)(!) represents the system’s bare Green’s function.

For the class of models described by the Hamiltonian in Eq.(6.0.1), the self-energy always takes the form:

⌃̃ = ⌃̃S + ⌃̃I,l + ⌃̃I,nl. (6.1.2)

Here, ⌃̃S , ⌃̃I,l, and ⌃̃I,nl represent contributions to the self-energy arising from SS , S0
l , and S0

nl, and

correspondingly from HS , HI,l, and HI,nl, respectively.

6.2 Self Consistent Born Approximation for Steady State Green’s

fucntion

The ‘standard Born approximation’ involves expressing the Dyson series up to the leading order in the

self-energy. In contrast, the self-consistent Born approximation constitutes a straightforward non-perturbative

method that involves a partial resummation of perturbation theory. The self-consistent approximations are

widely used in various contexts in many-body physics, such as quantum transport [20–23] problems and

quantum impurity models, both in and out of equilibrium [24–28]. Moreover, it naturally appears in the

physics of large-N systems [30, 31]. This approach is capable of capturing strong coupling phenomena while

still relying on simple equations [29]. It is also referred to as the ‘Non-Crossing Approximation’ because,

heuristically, it can also be implemented by considering all orders of Feynman diagrams, which can be drawn

on the plane in such a way that the propagators don’t cross each other and intersect only at the vertices.

FIG. 6.1 depicts such diagrams for a simple example.

Implementing the self-consistent Born approximation involves two steps:

1. Write down the Dyson series with the Born approximation for the self-energy,
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2. Replace the ‘bare Green’s function’ inside self-energy with the total Green’s function.

To demonstrate how to implement the self-consistent Born approximation, we consider the total Hamilto-

nian of the form given by Eq.(6.0.1), with the simplest non-linear interaction Hamiltonian HI,nl:

HI,nl =
X

k

↵ka
†a(b†k + bk) (6.2.1)

Step 1: First, we calculate the self-energy at the leading order. Its form is expressed by Eq.(6.1.2). The

contribution to the leading-order self-energy from the system Hamiltonian HS , and interaction Hamiltonians

HI,l and HI,nl respectively are:

⌃̃(2)
S (!) =

0

BBB@

0 !0

!0 0

1

CCCA
, (6.2.2)

⌃̃(2)
I,l (!) =

0

BBB@

0 iJ(!) + ⌃(!)

�iJ(!) + ⌃(!) �2iJ(!) coth
⇣

�
2!
⌘

1

CCCA
, (6.2.3)

⌃̃(2)
I,nl(!) =

Z

⌧
DB(⌧) �G(0)(⌧)e

i!⌧ . (6.2.4)

Here, J(!) represents the bath spectral density function, and ⌃(!) = P
R
!0

1
⇡

J(!0)
!�!0 . Here, ‘DB ’ denotes the

bath Green’s function. The symbol ‘�’ is a concise representation of the Feynman diagrams arising from

standard Wick contractions. Its definition is provided in Appendix E. The corresponding Dyson series gives

the steady state Green’s function under Born approximation:

GB(!) =
�
G�1

(0)(!)� ⌃̃(2)
S (!)� ⌃̃(2)

I,l (!)� ⌃̃(2)
I,nl(!)

��1
. (6.2.5)

Step 2: Now, to implement the self-consistent Born approximation, we replace the bare Green’s function in

the above self-energy with the total Green’s function. For our example, the self-energy ⌃̃(2)
S (!) is independent

of G(0). So, it remains unchanged under this approximation. Similarly, the self-energy ⌃̃I,l and is always

independent of G(0). So, it always remains unchanged under this approximation. However, the self-energy

contribution ⌃̃(2)
I,nl, as expressed in Eq.(6.2.1), changes to:

⌃̃SC
I,nl(!) =

Z

⌧
DB(⌧) �GSC(⌧)ei!⌧ , (6.2.6)
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giving the self-consistent steady-state Green’s function

GSC(!) =
�
G�1

(0)(!)� ⌃̃S(!)� ⌃̃I,l(!)� ⌃̃SC
I,nl(!)

��1
. (6.2.7)

Let us note that ⌃̃S(!), originating from the system Hamiltonian, is always a purely real function and

does not contribute to the dissipative dynamics of the system. Consequently, it does not play a role in the

Fluctuation Dissipation relation, which is our next focus. Additionally, ⌃̃I,l, being independent of the system

Green’s function, always remains unchanged under the self-consistent Born approximation. Therefore, in

proving the consistency of the Non-Crossing Approximation with the Fluctuation Dissipation Relation, the

self-energy contribution ⌃̃I,nl plays a key role. Hence, it is useful to rewrite this Dyson series as follows:

GSC(!) =
�
G�1

1 (!)� ⌃̃SC
I,nl(!)

��1
, (6.2.8)

defining,

G1(!) =
�
G�1

(0)(!)� ⌃̃S(!)� ⌃̃I,l(!)
��1

. (6.2.9)

Doing this allows us to view G1 as a redefined bare Green’s function, and write a Dyson series with respect to

the non-linear interaction. Henceforth, unless stated otherwise, we refer to G1 as our bare Green’s function.

6.3 Consistency of Non-Crossing Approximation with the Fluctu-

ation Dissipation Relation

Here, focusing on the simple case for the non-linear interaction Hamiltonian as expressed by Eq.(6.2.1), we

demonstrate that the self-consistent steady-state Green’s function obeys the Fluctuation-Dissipation Relation

(FDR), i.e.,

GSC
K (!) =

�
GSC

R (!)�GSC
A (!)

�
coth

⇣�
2
!
⌘
. (6.3.1)

The arguments used to do so are proven in Appendix D and Appendix E. We have proved them for the

general class of models described by Hamiltonians in Eq.(6.0.1). So, analogous proof demonstrates FDR for

each of these models.

To prove this, we focus on an iterative mechanism of implementing the self-consistent Born approximation.

Upon substituting the Dyson equation for GSC on the right-hand side in Eq.(6.2.8), the self-energy ⌃̃SC
I,nl

recursively appears on the right-hand side of the equation again. This is why, self-consistent Born approxima-

tion is termed “self-consistent” [30]. As a result, the self-consistent Born approximation can be implemented

through the following iterative mechanism:

Initial Step: Write down the Dyson equation with the leading-order Green’s function G1 expressed by

Eq.(6.2.9), appearing inside the leading order self-energy for the model under consideration, expressed by
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Σ_1

Σ_2

Σ_3

Figure 6.1: Non-crossing diagrams captured by the Self-Energy ⌃̃1,nl, ⌃̃2,nl and ⌃̃3,nl, expressed by
Eq.(6.3.2), Eq.(6.3.3) and Eq.(6.3.4) respectively. Here, the solid lines represent a system propagator, and
the dashed lines represent a bath propagator.

Eq.(6.2.6), as follows:

⌃̃1,nl(!) =

Z

⌧
DB(⌧) �G1(⌧)e

i!⌧ ,

G2(!) =
�
G�1

1 (!)� ⌃̃(2)
1,nl(!)

��1
. (6.3.2)

Iteration 1: Define a new self-energy ‘⌃̃2,nl’ and a corresponding Green’s function ‘G3’ with the Green’s

function G2 appearing inside the self-energy:

⌃̃2,nl(!) =

Z

⌧
DB(⌧) �G2(⌧)e

i!⌧ ,

G3(!) =
�
G�1

1 (!)� ⌃̃2,nl((!)
��1

. (6.3.3)

Iteration 2: Further, define a new self-energy ‘⌃̃3,nl’ and a corresponding Green’s function ‘G4’ with the

Green’s function G3 appearing inside the self-energy:

⌃̃3,nl(!) =

Z

⌧
DB(⌧) �G3(⌧)e

i!⌧

G4(!) =
�
G�1

1 (!)� ⌃̃3,nl(!)
��1

(6.3.4)

.

.

Performing this iteration infinitely generates all the NCA diagrams, and therefore, generates the self-

consistent Green’s function GSC . This is a method for implementing the self-consistent Born approximation.

Now, to proceed further and use this to show that GSC obeys the FDR, we have proved two key statements.
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1. Proved in Appendix D: If the self-energy obeys the FDR, then the corresponding Green’s function

related to it by the Dyson series also obeys the same.

2. Proved in Appendix E: If the Green’s functions appearing inside the self-energy obey the FDR, then the

self-energy itself also obeys the same.

So, for the case of non-linear interaction Hamiltonian as expressed by Eq.(6.2.1), by alternately applying

Statement 1 and Statement 2, one can observe that Green’s function and self-energy generated at each step of

the iterative process satisfy the FDR. Further, as depicted in FIG. 6.1, each subsequent iteration corresponds

to a superclass of NCA diagrams with respect to the previous step. As mentioned earlier, performing

this iteration infinitely generates all the NCA diagrams. Thus, this demonstrates that the self-consistent

Green’s function also satisfies the FDR. As previously stated, Statement 1 and Statement 2 have been proved

abstractly for the class of models described by the Hamiltonian in Eq.(6.0.1), analogous proof demonstrates

FDR for each of these models.

6.4 Comparison of greens function obtained using di↵erent tech-

niques

In this section, we make a quantitative comparison between the self-consistent Green’s function GSC

given by Eq.(6.2.8), Green’s function G2 given by Eq.(6.3.2), and Green’s function GB from the standard

Born Approximation given by Eq.(6.2.5). The iterative mechanism for calculating the self-consistent Green’s

function discussed in the previous section highlights that Eq.(6.2.8) is not of the first order but rather of

infinite order. Hence, we emphasize that the self-consistent Green’s function might remain accurate even

when the Green’s function from the ‘standard Born approximation’ exhibits significant deviation. The

self-consistent Green’s function might also qualitatively capture the physics in the strong-coupling regime

[39], while quantitative accuracy cannot be expected there.

The Green’s function GSC corresponds to the self-energy ⌃̃SC , which contains all the NCA diagrams. As

depicted in FIG. 6.1, G2 corresponds to the self-energy ⌃̃1, which represents the smallest class of NCA diagrams

that satisfy the FDR. For the simple case of Hamiltonian given by Eq.(6.2.1), we explicitly demonstrate in

Appendix F that G2 satisfies the FDR. Conversely, in the same Appendix, we show that the steady-state

Green’s function GB from the ‘standard Born approximation’ fails to satisfy the FDR.

Here, we perform a quantitative comparison of the steady-state Green’s functions GSC(⌧), G2(⌧), and

GB(⌧) for the Hamiltonian in Eq.(6.2.1). The explicit analytical derivation for G2(⌧) and GB(⌧) is provided

in Appendix F. Meanwhile, we compute GSC(⌧) by numerically solving the integral-di↵erential equation

given by Eq.(6.2.8). Solving Eq.(6.2.8) requires GSC(0) and dGSC

d⌧ (⌧)|⌧=0 as initial conditions, which are

steady state one-point expectation values. Determining the precise initial condition amounts to computing a

density matrix, denoted as ⇢(t) using a self-consistent dynamical map (as detailed in paper [39]), and then

taking the t ! 1 limit. This has a high computational cost. So, instead of doing this, we use steady-state
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Figure 6.4: This plot depicts a comparison between the steady state Green’s functions G2, GB , and GSC

for �2 = 0.02. The blue, orange and green lines represent GB , G2, and GSC , respectively.

one-point expectation values associated with the Gibbs state,

⇢Gibbs =
e��HS

Tr
⇥
e��HS

⇤ , (6.4.1)

to compute GSC(⌧). For weak coupling, we expect the initial condition ⇢Gibbs should be very close to the

correct one. This is further supported by the observation that GSC(⌧) closely agrees with the other two

Green’s functions in FIG. 6.4. In contrast, for strong coupling, we expect the correct initial condition to

deviate from the one obtained from ⇢Gibbs. Therefore, by GSC(⌧)) plotted in FIG. 6.7 we aim to depict its

qualitative behavior and quantitative precision isn’t expected.

We consider here a thermal bath with the spectral density:

J(!) = ⇡
!

1 + !2
. (6.4.2)
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Figure 6.7: This plot depicts comparison between GB, G2, and GSC for �2 = 0.2. The blue, orange, and
green lines represent GB , G2, and GSC , respectively.

For comparison, we focus on the retarded Green’s function of the system, given by:

GR(!) =
�
G�1

1R(!)� ⌃̃nl,R(!)
��1

, (6.4.3)

FIG. 6.4 demonstrates that for weaker coupling, with �2 = 0.02, GSC(⌧), G2(⌧) and GB(⌧) closely agree

with each other. On the other hand, in FIG. 6.7 for stronger coupling, with �2 = 0.2, these functions exhibit

significant di↵erences. As discussed earlier, this deviation is expected because each of the steady-state Green’s

functions, GB , G2, and GSC , capture diagrams to di↵erent orders in perturbation theory. All these Green’s

functions display damped oscillatory behavior.



Part IV

Discussions and Outlook





Chapter 7

Conclusion

In the first half of this thesis, our focus is on the concept that perturbing the system around thermal equilibrium

aids in understanding crucial aspects of dynamics beyond equilibrium. We begin by showcasing how the

Lindblad Master equation is restricted by the need to comply with the Second Law of thermodynamics.

Specifically, we insist on the positivity of relative von Neumann entropy production for Open system

dynamics, leading to specific equality and inequality constraints on the coe�cients within the Master

equation. Additionally, we delve into thermalization and CPTP (Completely Positive Trace Preserving)

constraints, demonstrating that the constraints stemming from entropy production positivity mirror those

from thermalization and stability.

Furthermore, we present an abstract derivation outlining a general form for the retarded Green’s function

applicable to a broad model. Through this derivation, we methodically clarify that the poles of the

retarded Green’s functions encapsulate the spectrum of the Liouvillian that governs density matrix dynamics.

Expanding on this concept, we extend our demonstration to encompass any higher-order retarded correlation

function, elucidating how the poles of an n-point retarded Green’s function capture the Liouvillian’s spectrum.

This outcome can be extended to encompass any out-of-time-ordered correlation function and its corresponding

Liouvillian spectrum.

We anticipate that the advancements in understanding hydrodynamics over the past decade can o↵er

more insights into open quantum systems. Specifically, the classification of coe�cients in the higher derivative

terms of the Navier-Stokes equation based on certain symmetries has provided valuable lessons on how these

terms contribute to dissipative dynamics near equilibrium. Moreover, the Kubo formula in hydrodynamics

o↵ers an e�cient method for computing out-of-time ordered correlators. It would be intriguing to explore

whether analogous relations to the Kubo formula can be derived from an open quantum system governed by

the Lindblad Master equation.

Additionally, significant work by Minwalla et al. [40] has demonstrated a precise mapping between the

43
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Figure 7.1: Self Energy ‘⌃̃OCA’ for One Crossing Approcimation. Here, the solid line with a ‘dot’ represents
the total system Green’s function, and the dashed line represents a bath Green’s function.

dynamical equations of black holes out of equilibrium and the nonlinear Navier-Stokes equation. Hence,

we speculate that Black Hole Quasinormal Modes, which describe the behavior of black hole dynamics

under small perturbations around equilibrium, can be modeled using Feynman-Vernon Influence functions or,

equivalently, the Lindblad Master equation.

In open quantum systems, thermalization implies that multi-time correlation functions must conform

to the KMS/FDR condition. In this paper, we specifically explore the KMS condition for the two-point

correlation function. In instances of exactly solvable models like Caldeira-Leggett, we can explicitly verify the

satisfaction of the KMS condition by the two-time correlation function at late times. However, for non-exactly

solvable models, approximate techniques are required to compute the two-point function.

In the next part of the thesis, we employ the image operator method as an approximate technique,

illustrating that the resultant correlation function adheres to the KMS relation. Nonetheless, this method

establishes KMS only for specific examples and is reliant on the weak system-bath coupling approximation. To

go beyond the standard weak coupling limit, the subsequent section of our paper introduces a self-consistent

perturbative technique—the self-consistent Born approximation or NCA approach—based on the Schwinger-

Keldysh path integral. Through this approach, we abstractly show that the steady-state correlation function

must conform to the KMS relation for a generic system. This approach also allows us to go beyond the

standard weak coupling limit. To demonstrate this, we perform a quantitative comparison of the steady-state

Green’s functions from the NCA approach with the Green’s function from the standard weak coupling

limit. These functions closely agree for weak coupling, whereas di↵er significantly in the stronger coupling,

demonstrating that the NCA approach can help to go beyond the weak coupling limit.

It is worth mentioning that one can systematically go beyond the self-consistent Green’s function

approximation (NCA) by taking one crossing diagram (OCA). In other words, we can include a leading order

diagram beyond the NCA to the self-energy and make a comparison similar to the one depicted in FIG. 6.4

and FIG. 6.7. The self-energy corresponding to the OCA is depicted diagrammatically in FIG. 7.1. It will

again be interesting to see whether this bigger class of diagrams satisfies the KMS condition or not. Further,

one can try to make a comparison between the accuracy of the steady state green’s function derived using

NCA, OCA, and higher-order self-consistent approximations [39]. The principle of Self-Consistency is not

limited to expanding the two-point function. As an extension of our work, it will be interesting to check

whether the self-consistent diagrams for four-point and higher-point functions satisfy the KMS condition.

Along these lines, it would be interesting to investigate OTOC under the same set of ideas.

Another useful approximate way to calculate correlation function is the standard Quantum Regression

Theorem (QRT). The QRT asserts that understanding the time evolution of a single-point function is adequate
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for determining the time evolution of two-point or multi-point correlation functions. For calculating the

one-point function and to go beyond the standard weak coupling limit, recently in [39], the NCA-Master

equation or NCA Dynamical map was used. It is formally very similar and reduces to the standard master

equations at su�ciently weak coupling. An intriguing avenue of exploration would involve incorporating the

NCA Dynamical maps with the QRT to compute Green’s function. This dynamic analysis could then be

compared with the steady-state Green’s function calculated using the NCA approach outlined in this paper.

We expect that this conceptual framework, the NCA approach, is extendable to out-of-equilibrium

correlation functions [41]. Note that, to calculate the out-of-equilibrium correlation function we need

information of the system’s initial state. Additionally, it is known that out-of-equilibrium correlation functions

break translational symmetry, rendering Fourier space analysis di�cult. These two facts imply that, in

general, calculating the out-of-equilibrium correlation function is technically challenging. However, we believe

that this NCA technique is well-suited to go beyond the standard weak coupling limit in calculating the

out-of-equilibrium correlation functions.
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Appendix A

Image operator method

In this appendix, we present a detailed derivation of the two-point correlation function using the image

operator method. It’s important to note that our derivation applies to an arbitrary system Hamiltonian

interacting with a bath through a generic system operator S. The total Hamiltonian for our configuration is

given by the expression:

H = HS +HR +HSR

= HS +
X

k

⌦kb
†
kbk +

X

k

↵k(Sb
†
k + S†bk) ,

(A.0.1)

here bk and b†k represent bosonic or fermionic annihilation and creation operators, respectively. We want to

calculate the two-point function of the form, hO1(t+ ⌧)O2(t)i, at the steady state i.e. at t ! 1. To compute

hO1(t+ ⌧)O2(t)i, we are going to first express it in terms of one-point reduced operators. In Ref. [17, 18], it

was shown that the two-point reduced operator can be written as

[O1(t+ ⌧)O2(t)]S = O1S(t+ ⌧)O2S(t) + I[O1S(t+ ⌧), O2S(t)] . (A.0.2)

Here, O1S and O2S represent the reduced one-point operators whose evolution is governed by the Born master

equation [1]. The term I[O1S(t+ ⌧), O2S(t)] is referred to as the irreducible term, and it can be expressed in

terms of the one-point reduced operator up to the leading order in system-bath coupling as

I[O1S(t+ ⌧), O2S(t)]=

Z t+⌧

0
d⌧1

Z t

0
d⌧2 �(⌧2�⌧1)

h
O1S(t+ ⌧), S̃(�⌧1)

ih
S̃†(�⌧2), O2S(t)

i

+

Z t+⌧

0
d⌧1

Z t

0
d⌧2 ↵(⌧2�⌧1)

h
O1S(t+ ⌧), S̃†(�⌧1)

ih
S̃(�⌧2), O2S(t)

i
, (A.0.3)

where S̃(t) represents the interaction picture operator, defined as S̃(t) = e�iHStSeiHSt. This operator can be

decomposed as S̃(t) =
P

m Smei!
0
m
t, whereas ↵(⌧) and �(⌧) are intricately connected to the bath correlation
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function, or, to be more explicit,

↵(⌧) =
X

k

|↵k|2 TrR
h
bk b̃

†
k(�⌧)⇢R

i
=
X

k

|↵k|2
�
1� ⌘ n⌘(⌦k)

�
ei⌦k⌧ ,

�(⌧) =
X

k

|↵k|2 TrR
h
b†k b̃k(�⌧)⇢R

i
=
X

k

|↵k|2n⌘(⌦k)e
�i⌦k⌧ . (A.0.4)

In this context, n⌘(⌦) denotes the Bose or Fermi distribution functions, expressed as n⌘(⌦) = [e�⌦ + ⌘]�1,

where ⌘ = +1 corresponds to fermions, and ⌘ = �1 corresponds to bosons. Now, let’s focus on the first term

of the irreducible part, I[O1S(t+ ⌧), O2S(t)], in Eq.(A.0.3) i.e.

Z t+⌧

0
d⌧1

Z t

0
d⌧2 �(⌧2�⌧1)

h
O1S(t+ ⌧), S̃(�⌧1)

ih
S̃†(�⌧2), O2S(t)

i

=
X

j,l,m,n

Z t+⌧

0
d⌧1

Z t

0
d⌧2 �(⌧2�⌧1)

h
O1jS(t+ ⌧ � ⌧1), Sm

ih
S†
n, O2lS(t� ⌧2)

i
e�i(!j+!0

m
)⌧1e�i(!̃l�!0

n
)⌧2 +O(|↵k|4).

(A.0.5)

In the last step of the above equation, we insert the following expressions

O1S(t) =
X

j

O1jS(t� t0)e�i!jt
0
+O(|↵k|2),

O2S(t) =
X

l

O2lS(t� t0)e�i!̃lt
0
+O(|↵k|2) . (A.0.6)

Let’s define, ⌧ 01 = t+ ⌧ � ⌧1 and ⌧ 02 = t� ⌧2, from the definition of ⌧ 01 it is clear that the limit of ⌧ 01 will be

from t+ ⌧ to 0 and similarly the limit of ⌧ 02 will be from t to 0. In terms of these new variables, we get the

following expression

X

j,l,m,n

Z t+⌧

0
d⌧1

Z t

0
d⌧2 �(⌧2�⌧1)

h
O1jS(t+ ⌧ � ⌧1), Sm

ih
S†
n, O2lS(t� ⌧2)

i
e�i(!j+!0

m
)⌧1e�i(!̃l�!0

n
)⌧2

=
X

j,l,m,n

Z t+⌧

0
d⌧ 01

Z t

0
d⌧ 02 �(⌧ 01�⌧ 02 � ⌧)

h
O1jS(⌧

0
1), Sm

ih
S†
n, O2lS(⌧

0
2)
i
e�i(!j+!0

m
)(t+⌧�⌧ 0

1)e�i(!̃l�!0
n
)(t�⌧ 0

2) .

(A.0.7)

Similarly, we can simplify the other term of the irreducible part I[O1S(t+ ⌧), O2S(t)], expressed in Eq.(A.0.3).

Finally, by substituting ↵, � defined in Eq.(A.0.4), we get the two-point reduced operator formulated in

Eq.(5.1.3).



Appendix B

Laplace transformation

In this appendix, we are going to find the Laplace transformation of aS(t). To do that we are going to first

write down the equation of motion of aS(t)

d

dt
aS(t) = �i!0aS(t)�

Z t

0
dt0K(t� t0)aS(t

0) , (B.0.1)

where K(t� t0) =
P

k |↵k|2e�i!k(t�t0). Laplace transformation of the above equation gives

ãS(�i⌦) =
a

i(!0 � ⌦) + K̃(�i⌦)
, (B.0.2)

where K̃(�i⌦) = J(⌦)/2 + i⌃(⌦).
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Appendix C

Schwinger Keldysh Path Integral

The total Hamiltonian of Eq.(6.0.1) when promoted to the Schwinger-Keldysh Path Integral and expressed in

the classical-quantum basis for field operators takes the form S = SS + SB + SI,l + SI,nl, where

SI,l =

Z

⌧

�
a⇤c(⌧)bk,q(⌧) + a⇤q(⌧)bk,c(⌧) + h.c.

�
,

SI,nl =

Z

⌧

�
(a⇤man)c(⌧)bk,q(⌧) + (a⇤man)q(⌧)bk,c(⌧) + h.c.

�
. (C.0.1)

Here, a and b are complex-valued fields associated with the coherent states of the system and bath, respectively.

As the Schwinger-Keldysh functional integral, with a total action involving both system and bath degrees

of freedom, is quadratic in the latter, the bath can be integrated out. After integrating out the bath, the

reduced Schwinger-Keldysh action is, S = Ss + S0
l + S0

nl, where

S0
l =

Z

w

 

a⇤c(!) a⇤q(!)

!
0

BBB@

�2iJ(!)(2n(!) + 1) �iJ(!) + ⌃(!)

iJ(!) + ⌃(!) 0

1

CCCA

0

BBB@

ac(!)

aq(!)

1

CCCA
,

S0
nl =

Z

w

 

(a⇤man)c(!)(a⇤man)q(!)

!
0

BBB@

�2iJ(!)(2n(!) + 1) �iJ(!) + ⌃(!)

iJ(!) + ⌃(!) 0

1

CCCA

0

BBB@

(a⇤nam)c(!)

(a⇤nam)q(!)

1

CCCA
. (C.0.2)
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Appendix D

FDR : Self-Energy $ Green’s Function

In this section, we will demonstrate that if the self-energy ⌃̃I due to system bath interaction satisfies the

Fluctuation-Dissipation Relation (FDR), i.e.,

⌃̃K(!) =
�
⌃̃R(!)� ⌃̃A(!)

�
coth

⇣�
2
!
⌘
, (D.0.1)

then the corresponding Green’s function G, related to it by the Dyson series:

G(!) =
�
G�1

(0)(!)� ⌃̃I(!)
��1

, (D.0.2)

must also obey the same relation. Here, G(0) is the bare Green’s function with respect to the system-bath-

interaction, i.e., calculated using HS , and it is given by

G(0)(!) =

0

BBB@

0 1
!�⌃S(!)

1
!�⌃S(!) 0

1

CCCA
, (D.0.3)

where ‘⌃S ’ is the self-energy due to intra-system interactions, making it always a real-valued function. Using

the Dyson equation, it is easy to show that

G(!) =
�
G�1

(0)(!)� ⌃̃I(!)
��1

=

0

BBB@

⌃̃IK(!)

(!�⌃S(!)�⌃̃IA(!))(!�⌃S(!)�⌃̃IR(!))
1

!�⌃S(!)�⌃̃IR(!)

1
!�⌃S(!)�⌃̃IA(!)

0

1

CCCA
. (D.0.4)
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That implies,

GK(!)

GR(!)�GA(!)
=

⌃̃IK(!)

⌃̃IR(!)� ⌃̃IA(!)
. (D.0.5)

From here, it’s transparent that Green’s function G satisfies FDR if and only if ⌃̃I satisfies the same.



Appendix E

Proof of FDR for the general form of

leading order self-energy

In this section, working with the general class of models represented by the Action in Eq. (C.0.2), we

demonstrate a condition under which the leading-order self-energy term satisfies the FDR. To do that, we

first identify that the loops appearing in the leading-order self-energy diagrams can be classified into ‘rainbow’

and ‘rings’. We can classify all the Feynman diagrams into diagrams with a ring, and diagrams without a

ring. This classification is illustrated in FIG. E.3 for the total Hamiltonian of the form given by Eq. (6.0.1),

with the simple non-linear interaction Hamiltonian HI,nl = a†2abk + a†a2b†k.

It will turn out, that only the rainbow part of these diagrams plays a non-trivial role in consistency with

the FDR. The contribution from rings simply factors out from all the various time-ordered self-energies and,

therefore, is inconsequential for the consistency with the FDR. Consequently, for simplicity, we first focus

on the diagrams with no rings in the first subsection and prove the FDR. We then turn our attention to

diagrams with rings in the next subsection.

E.1 Diagrams with no rings

Using the Schwinger-Keldysh path integral and employing the standard tool of Feynman diagrams that

arise from the conventional Wick contraction, one can demonstrate that the leading-order self-energy diagrams

with no rings (so only rainbow loops) are of the following general form:

⌃̃(⌧) = G1(⌧1) �G2(⌧2) � ... �Gl(⌧l), (E.1.1)

where ⌧j 2 {⌧,�⌧} for all j, and Gj(⌧j) represents a system or bath Green’s function. We establish the rule

for the product ‘�’ in accordance with the rules for Wick contraction. The product ‘�’ is defined as follows:

55



56 Thermalization in Open Quantum Systems

for L = {1, 2, ..., l} ,

⌃̃K(⌧)=�i
X
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⌧⌫=�⌧
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, (E.1.2)

where, n(S) denotes the number of elements in the set S, S denotes the set complement to S, and 2Z and

[b]

Sunset loopsRainbow loopsRainbow loops

Figure E.1: Diagrams with no Rings

[b]
Ring loops

Sunset loopRainbow loopRainbow loop

Ring loops

Figure E.2: Diagrams with Rings

Figure E.3: The two classes of Feynman diagrams for the simple case of the non-linear interaction
Hamiltonian HI,nl = a†2abk + a†a2b†k. We define ‘rainbow’ as a loop that corresponds to two distinct vertices,
whereas, we define ‘ring’ as a loop that has only one vertex associated with it. Here, the solid lines represent
the system Green’s functions, and the dashed lines represent the bath Green’s functions.

2Z+ 1 denote the sets of all even and odd integers, respectively. We represent the self-energy matrix in terms

of the time-ordered self-energies as follows:

⌃̃(⌧) =

0

BBB@

0 ⌃̃A(⌧)

⌃̃R(⌧) ⌃̃K(⌧)

1

CCCA
. (E.1.3)
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As described in the paper [32], the contour-ordered thermal two-point correlators are related by the following

structure:

0

BBB@

GK(⌧) GR(⌧)

GA(⌧) 0

1

CCCA
=

Z

!
⇢(!)

0

BBB@

coth
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�
2!
⌘
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�✓(�⌧) 0

1

CCCA
e�i!⌧ . (E.1.4)

Where, ‘⇢(!)’ stands for ‘spectral function’ which is directly related to the Fourier Transform of commutators

in the theory:

Z

!
⇢(!)e�i!⌧ = h[ â†(⌧), â(0)]i. (E.1.5)

So, for j such that ⌧j = ⌧ ,

Gj(⌧) =

0

BBB@

GKj(⌧) GRj(⌧)

GAj(⌧) 0

1

CCCA

=
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!j

⇢j(!j)
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BBB@

coth
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�
2!j
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�✓(�⌧) 0
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CCCA
e�i!j⌧ . (E.1.6)

Next, for the convenience of denoting the product ‘�’, we perform the following transformation for Gj(⌧j) for

which, ⌧j = �⌧ :

Gj(�⌧) =

0

BBB@

GKj(�⌧) GAj(�⌧)

GRj(�⌧) 0

1

CCCA
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1

CCCA
e�i!0

j
⌧ , (E.1.7)

where we define !0
j = �!j and ⇢0j(!) = �⇢j(�!). It is important to note that it assumes the same form as

Gj(⌧). This equivalence enables us to consistently express the self-energy term with no rings, as follows:

⌃̃(⌧) = G1(⌧) �G2(⌧) � ... �Gl(⌧) (E.1.8)
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which gives, for L = {1, 2, ..., l} ,
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(E.1.11)

Here, expressing the thermal Green’s functions in the spectral function representation, one obtains,
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The self-energy adheres to the spectral function representation, as can be observed by employing the identity

coth
� lX
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, (E.1.15)

and defining its spectral function as,
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giving,
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This proves the FDR for leading-order self-energy rainbow diagrams when the Green’s functions appearing in

the self-energy obey the same.

E.2 Diagrams with Rings

Now, let’s consider leading-order self-energy diagrams that also include rings. Firstly, due to the hermiticity

of the interaction Hamiltonian, for any diagram with a ring involving the advanced Green’s function, there

exists a corresponding diagram with the ring involving the retarded Green’s function. Therefore, the net

contribution of these diagrams is proportional to GR(0)+GA(0). Since GR(0)+GA(0) = 0 [42], these diagrams

cancel out, leaving only the diagrams with all the rings involving Keldysh Green’s function. Interestingly,

these self-energy diagrams have the same general form as sunset diagrams with additional factors of the ring’s

Keldysh Green’s functions, i.e., GmK(0). So, for a self-energy diagram with ‘n’ rings:

⌃̃(⌧) =
⇣ nY

m=1

GmK(0)
⌘
G1(⌧1) �G2(⌧2) � ... �Gl(⌧l), (E.2.1)

where ⌧j✏{⌧,�⌧} for all j. Because the ring Green’s functions appear as common factors in all the time-ordered

self-energies, the previous section’s proof for FDR follows and we get:
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giving,
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This completes the proof that if the Green’s functions that appear inside the leading-order self-energy obey

the FDR, then the self-energy obeys the same.
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Appendix F

Analytical calculation of steady state

Green’s functions GB and G2

In this section, we derive the explicit form of the steady-state Green’s functions GB and G2, expressed

through the Dyson equations in Eq. (6.2.5) and (6.3.2), respectively. Additionally, we demonstrate that G2

satisfies the Fluctuation-Dissipation Relation (FDR), whereas GB fails to satisfy it.

Using the rules for product ‘�’ as stated in Appendix ??, the ⌃̃B (Born) and ⌃̃(2)
1,nl self energies defined in

Section IV are:
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Clearly,

⌃̃BK(!) = (⌃̃BR(!)� ⌃̃BA(!))
1
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�
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⌘ (F.0.2)
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Note that, it does not satisfy the FDR. As a result, as proved in Appendix ??, the corresponding Green’s

function GB also doesn’t satisfy the FDR. Similarly, if
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Then,
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Z
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⌘
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⇣
�
2!i

⌘
)
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1A(⌧) = i(DBK(⌧)G1A(⌧) +DBA(⌧)G1K(⌧))

= i✓(�⌧)
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r⇤i
X

k
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✓
�

2
!k

◆
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◆
)e�i(!⇤
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X

i

(�iJ(! � !i)(coth

✓
�

2
(! � !i)

◆
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✓
�

2
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◆
) + P
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!0
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⇣

�
2 (!

0 � !i)
⌘
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⇣
�
2!i

⌘
)

⇡(! � !0)
)

Using,

coth(x1 + x2) =
coth(x1) coth(x2) + 1

coth(x1) + coth(x2)
(F.0.4)

=) ⌃̃(2)
1K(!) =

�
⌃̃(2)

1R(!)� ⌃̃(2)
1A(!)

�
coth

✓
�

2
!

◆
(F.0.5)

So, the self-energy satisfies FDR. As a result, as proved in Appendix ??, the corresponding Green’s function

GB also satsfies the FDR.
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