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Abstract

The aim of this thesis is to investigate relaxation times of different polymer segments in

topologically modified ring polymeric systems. These topologically modified ring polymers

are relevant in the context of bacterial chromosome organizations[5]. But it is expected that

new emergent polymer physics phenomena will result as a consequence of the different topo-

logical modifications within ring polymers. In particular, in an already published paper in

the soft matter group of Prof. Apratim Chatterji[4], there are set of 12 different architectures

that have already been designed to study the role of internal loops in organization of polymer

segments within a confining cylinder. In addition, the group is also currently investigating

the organization of polymer segments as a consequence of internal loops in spherical confine-

ments. Due to the modified architecture, the dynamics (relaxation properties) of loops with

respect to each other and thereby the entire polymeric system can be very different from

what is known for ring or linear polymers. Single small loops repel other loops entropically

and likely entangle less compared to linear polymeric systems. The relatively fast relaxation

of internal loops could lead to a much faster relaxation in topologically modified ring poly-

mers as compared to standard ring polymers. We have focused on four different architectures

: Linear Chain, Ring, ”Inverted-8”/Dumbbell and Arc2. We have shown results of how their

size is affected due to introduction of the cross-links. Also, how their diffusion properties

change and how the various conformation vectors within these polymers relax. We have

also calculated the scaling through our data for these cases and compared it across these

architectures.
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Chapter 1

Introduction

1.1 Background of Soft Matter Physics

Soft Matter Physics essentially branches out of one of the fundamental fields in Physics,

Condensed Matter Physics. Soft Matter Physics, as the name suggests, deals with the

study of Soft Matter. What is Soft Matter? These are materials which exhibit intermediate

properties between solid and liquid states of matter. We have a few examples such as

Polymers, Colloids, Liquid Crystals, Foams etc. Everyday life examples can include semi-

solid gels or paste, plastics and many more. Soft matter is vastly found almost everywhere

in our world! Even the biological systems such as membranes, proteins and DNA consist of

soft matter. Thus it is very important to study these materials and their properties from

not just a physical but biological perspective as well.

From a historical perspective, researchers and scientists in the late 19th and early 20th

centuries began studying and exploring the properties of such materials, especially polymers

and colloids. However, in the latter half of the 20th century Soft Matter Physics actually

gained a lot of traction and emerged as a distinct field of study. One of the pioneering

works laying the foundation for the field was the seminal book ”The Physics of Polymer

Chains” by Paul Flory, published in 1969. This provided a solid theoretical framework for

understanding and studying the properties of polymer chains, which are the fundamental

units of many soft materials. Around the same time, significant contributions to the study of

understanding the dynamics of polymers and their behaviour in entangled systems were also
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being made. Especially by researchers like Pierre-Gilles de Gennes, who earned the Nobel

Prize in Physics in 1991 for his work on polymers and other soft matter systems, and Samuel

Edwards to name a few. In the 1970s and 1980s, the development of advanced experimental

techniques, such as light scattering, neutron scattering, and microscopy, allowed researchers

to probe the structure and dynamics of soft matter systems at various length and time scales.

These experimental advances, coupled with theoretical developments in areas like statistical

mechanics and computer simulations, led to a deeper understanding of the complex behavior

of soft matter systems.

The study of soft matter physics has been driven by the desire to understand the funda-

mental principles governing the behavior of these materials, as well as by the numerous ap-

plications of soft matter in various fields. For example, polymers are widely used in plastics,

rubbers, adhesives, and coatings, while liquid crystals are essential in display technologies.

Colloids and emulsions are found in many consumer products, such as paints, cosmetics,

and foods. Biological soft matter, such as membranes and proteins, plays a crucial role in

understanding the functioning of living systems.

Currently, Soft Matter Physics as a field is at a very exciting stage. It is a very interdis-

ciplinary field bridging multiple disciplines including physics, chemistry, biology, materials

science and engineering. It has countless real world applications in many areas of everyday

life. With so many technological advancements and more in the future, such a rapidly evolv-

ing field has great potential for major contributions in science and research in the future as

well!

1.2 Polymer Physics

Our work primarily focuses on Polymer Physics which comes under the umbrella of Soft

Matter Physics. Polymer physics is a branch of soft matter physics that deals with the study

of the structural, dynamic, and physical properties of polymers, which are large molecules

composed of repeating units called monomers. Statistical physics lies at the very core of

polymer physics, providing a fundamental framework for understanding the behavior and

properties of these complex macromolecular systems. The ability to describe the confor-

mational statistics and dynamics of polymer chains, as well as their phase behavior and

transitions, hinges upon the powerful tools and principles of statistical mechanics.
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One of the central themes in polymer physics is the study of polymer chain conforma-

tions and their associated entropy. Polymer chains, with their immense number of monomeric

units, possess a staggering number of possible configurations, each contributing to the overall

entropy of the system. There are rigorous models, such as the freely jointed chain, worm-like

chain, and rotational isomeric state models, to quantify the configurational entropy and pre-

dict the dimensions and conformational properties of polymer chains in various environments.

The concept of excluded volume, which accounts for the fact that different segments of a

polymer chain cannot occupy the same space, plays a crucial role in determining the scaling

behavior of polymer chain dimensions. Statistical physics provides analytical and compu-

tational approaches to incorporate this non-ideal behavior, enabling accurate predictions of

chain sizes and conformations in different solvent conditions.

Furthermore, there are intricate dynamics of polymer chains, which span a vast range of

time and length scales. The reptation model, describes the snake-like motions of polymer

chains through the constraints imposed by entanglements with neighboring chains. This

framework has been instrumental in understanding the viscoelastic behavior and relaxation

processes of polymer melts and concentrated solutions. Phase transitions, a fundamental

concept in statistical physics, are ubiquitous in polymer systems. The crystallization of

polymers, where ordered crystalline regions coexist with disordered amorphous regions, can

be understood through the lens of statistical mechanics, which provides insights into the

delicate balance between enthalpic and entropic contributions.

Computational approaches, such as molecular dynamics simulations and Monte Carlo

methods, have become indispensable tools in polymer physics, complementing theoretical

and experimental efforts. These techniques, grounded in statistical mechanics, allow re-

searchers to explore the conformational dynamics, phase behavior, and emergent properties

of polymer systems at various length and time scales, bridging the gap between microscopic

and macroscopic descriptions.
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1.3 Why study various Polymer Architectures and their

Relaxation properties?

The study of polymer architectures is a vital area within polymer physics, as the molecular

architecture of polymers significantly influences their physical properties, conformational

behavior, and overall performance in various applications.

The architecture of a polymer chain directly impacts its conformational statistics and

entropy. The classic Gaussian chain model, derived from statistical mechanics principles,

describes the scaling behavior of linear polymer chains, where the mean-square end-to-end

distance scales linearly with the number of monomers. However, as polymer architectures be-

come more complex, such as branched, star-shaped, or cyclic topologies, the conformational

behavior deviates from the simple Gaussian chain model, necessitating more sophisticated

theoretical treatments. One of the key challenges in studying complex polymer architectures

is accounting for the effects of topological constraints and excluded volume interactions.

Studying the relaxation properties of various polymer architectures is of great importance

in polymer physics, as it provides crucial insights into the dynamics, rheological behavior,

and processing characteristics of these materials. The relaxation processes of polymers span

a wide range of time scales, from fast local motions to slow, cooperative chain dynamics,

and are intimately tied to their molecular architecture and topological constraints.

My primary motivation for studying relaxation properties of different architectures stems

from the research work in Prof. Apratim Chatterji’s group. Initially, we were trying to

study the segregation properties of a few particular architectures crucial in modeling an

E.Coli chromosome as published in Apratim et al.’s work[4][5]. Then we felt the need of

a better understanding about the dynamics, especially the relaxation dynamics, of those

architectures. So we have tried to do an even more fundamental study by starting with

absolutely basic polymer architectures like linear-chain and ring polymers and then gradually

increase more complexity to study the relaxation properties due to these changes.
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1.4 Thesis Outline

We have used the basic bead-spring model for our polymers and performed Molecular Dy-

namics (MD) simulations over it. Our primary focus has been to first study the relaxation

properties of a single polymer in open vacuum space instead of a solvent. To exactly mimic

such dilute solutions we have to include hydrodynamics of the solvent as well. But we don’t

address it here in this work since it adds further more complications, while we are trying

to study these properties at a very basic level first and then add such complications later

once we grasp the basic understanding. We have different architectures which we formed by

introducing cross-links within polymers. We study :

• Static property like Radius of Gyration (Rg) to get an idea about the size of these

polymer architectures.

• Then we study their Diffusion properties and how/if the Diffusion scaling changes

across architectures.

• Finally, we address the Conformational relaxation properties of the polymers and com-

pare it across different architectures.
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Chapter 2

Theory and Methods

2.1 Role of Computational Methods

Computational methods play a pivotal role in polymer physics, providing powerful tools to

explore the intricate behavior and properties of these complex macromolecular systems. By

harnessing the principles of statistical mechanics and leveraging computational power, re-

searchers can gain unprecedented insights into the conformational dynamics, phase behavior,

and emergent properties of polymers across various length and time scales.

At the heart of computational approaches in polymer physics lies molecular simulations,

which enable the direct modeling and observation of polymeric systems at the molecular

level. Molecular dynamics (MD) simulations, based on the laws of classical mechanics and

statistical mechanics, have become an invaluable tool for studying the conformational dy-

namics and structural properties of polymer chains. By integrating the equations of motion

for individual atoms or coarse-grained beads, MD simulations provide a detailed picture of

how polymer chains move, deform, and interact with their surroundings. Coarse-grained

(CG) modeling techniques, which involve representing groups of atoms as single beads or

particles, have enabled simulations of larger polymer systems over longer time scales. CG

models, parameterized using statistical mechanics principles and informed by atomistic simu-

lations, can capture the essential features of polymer behavior while reducing computational

complexity. One of the key strengths of MD simulations in polymer physics is their ability to

capture the effects of excluded volume and topological constraints, such as entanglements,
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on the conformational statistics and dynamics of polymer chains. These simulations can

accurately reproduce phenomena like reptation, which describes the snake-like motions of

polymer chains through the constraints imposed by entanglements with neighboring chains.

Furthermore, MD simulations provide access to dynamic properties, such as relaxation times

and viscoelastic behavior, which are essential for understanding the processing and rheolog-

ical properties of polymeric materials.

The synergy between computational methods, theoretical models, and experimental tech-

niques has been a driving force in advancing our understanding of polymer physics. Com-

putational approaches provide a powerful means to test and refine theoretical models, while

experimental data serves as a benchmark for validating and improving computational meth-

ods. This iterative process has led to significant advancements in our ability to predict and

design polymeric materials with tailored properties for various applications.

We have performed MD simulations for our bead-spring model of polymers using LAMMPS

Molecular Simulation package. We extract the raw data from these simulation runs and then

analyze them further to calculate meaningful quantities related to our purpose. Finally, we

do statistical averaging of all the data over multiple independent runs and present the final

data.

2.2 Bead-spring model

The bead-spring model is a very fundamental yet effective model for studying polymer

physics. Each monomer is essentially a bead and these monomer beads are connected through

harmonic potential springs with a constant spring constant. These harmonic springs mimic

the bond between two monomers. This whole system depicts a polymer chain.
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Figure 2.1: Representation of a single bead-spring polymer unit

The spring constant is k and the equilibrium distance between both the monomers is 1

unit. So for a displacement of δx between the monomers, the potential energy is

U = k(δx)2/2

Figure 2.2: Polymer Simulation snapshots
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2.3 Model Description

2.3.1 Molecular Dynamics

Molecular dynamics (MD) simulations have emerged as invaluable tools for exploring the

intricate behavior of polymers at the molecular level. Polymers, with their diverse struc-

tures and dynamic properties, exhibit complex behaviors that pose significant challenges for

experimental investigation. In the realm of computational modeling, the Langevin Dynamics

approach plays a pivotal role in elucidating the dynamics and thermodynamics of polymer

systems. We look briefly into the intricacies of Langevin Dynamics and its application in

MD simulations of polymers.

The essence of Langevin Dynamics lies in its ability to combine deterministic Newtonian

mechanics with stochastic fluctuations, effectively modeling the motion of particles in a

medium. For polymer systems, Langevin Dynamics captures the intricate interplay between

deterministic forces arising from intramolecular interactions and the stochastic effects of

thermal fluctuations and solvent interactions. The Langevin equation, a cornerstone of this

approach, incorporates these elements to describe the motion of polymer chains in a solvent

environment.

The Langevin equation governing the motion of polymer segments can be expressed as[1]:

mi
d2ri
dt2

= Fi − γmi
dri
dt

+ ηi(t) (2.1)

Here, mi represents the mass of the i-th polymer segment, ri its position vector, Fi the

deterministic force acting on it, γ the friction coefficient, and ηi(t) a stochastic force term

representing random thermal fluctuations.

The Langevin equation is numerically integrated over small time steps using algorithms

like the Verlet integrator. At each time step, deterministic forces, including bonded and

non-bonded interactions within polymer chains and with solvent molecules, are computed.

Additionally, stochastic forces are introduced to mimic the random collisions experienced by

polymer segments. The friction coefficient γ governs the rate of dissipation of kinetic energy

due to interactions with the solvent.
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We have performed Langevin Dynamics Simulations on various polymer model configu-

rations and architectures (Linear Chain, Ring, Dumbbell etc.). We have used a bead spring

polymer model where we have a chain of spherical beads. Each bead has 2 neighbors to

which it is connected through harmonic spring interactions :

Vspring = κ(r − a)2

, where κ = 100kBT/a
2 is the spring constant of each spring. ’r’ is the distance between

two neighbouring monomers. ’a’ is the equilibrium length of each spring and is also the unit

of length in our simulation. We have used WCA potential to model the excluded volume

interactions between the monomers. The diameter/σ for each monomer is equal to 0.8a and

the WCA potential is :

VWCA = 4ϵ

[(σ
r

)12

−
(σ
r

)6
]
+ ϵ0 (∀r < 21/6σ) (2.2)

where ϵ = kBT . The quantity ϵ0 ensures that the potential goes to zero smoothly at the

cutoff, so that VWCA = 0 ∀ r greater than the cutoff. If the potential cutoff is at r = 21/6

like we have done here, then ϵ0 = ϵ.

2.3.2 Simulation Model details

We have focused on very dilute solutions (one polymer in open space) with excluded volume

interactions. Our LAMMPS script is for an NVE ensemble simulation. We have used

Velocity-Verlet Algorithm for numerical integration of equations of motion.

Given the positions ri and velocities vi of particles at time t, we first predict their positions

at a time t+∆t using the current velocities and the Verlet integration formula:

ri(t+∆t) = ri(t) + vi(t)∆t+
1

2
ai(t)(∆t)2 (2.3)

where ai is the acceleration of particle i calculated from the forces acting on it.

With the predicted positions, we compute the forces acting on each particle at time t+∆t
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using the updated positions. Finally, we use the predicted positions at t+∆t and the forces

to update the velocities to t+∆t using the Verlet algorithm:

vi(t+∆t) = vi(t) +
1

2
(ai(t) + ai(t+∆t))∆t

where ai(t+∆t) is the acceleration of particle i calculated using the updated forces.

2.3.3 LAMMPS Simulation parameters

• Units = LJ units

• κ (spring constant) = 100

• kBT (temperature) = 1

• a (equilibrium bond length) = 1

• γ = 1.0

• ϵ = 1.0

• σ = 0.8

• LJ potential cutoff = 0.898 LJ units

• η (dilute solvent) = 1.0

• ∆t (timestep) = 0.01 Simulation time units (STU)

• All of the values related to time calculation in this thesis are reported in terms of τ0,

which is equal to 1 simulation time unit. Simulation times are equal to :

No. of LD iterations in the simulation × ∆t (timestep)

12



2.4 Radius of Gyration (Rg)

The radius of gyration is a fundamental concept in polymer physics that provides a quantita-

tive measure of the size and spatial distribution of a polymer chain. It is a critical parameter

for understanding the structural and dynamical properties of polymers. Mathematically, it

is expressed as[7]:

R2
g =

1

2N2

∑
i,j

|ri − rj|2 (2.4)

where N is the no. of monomers in the polymer and ri, rj are the position vectors of ith,

jth monomers respectively.

We will use this calculated Rg to calculate the Diffusion times of the COM of the polymer.

2.5 Diffusion related analysis method

Diffusion Constant (D) is a measure of how quickly a polymer diffuses[2]. We plot the Mean

Square Displacement (< R2 >) of the polymer vs time for the displacements. We then

choose a suitable linear fit range for this plot. Then we find the Slope (m) of this linear fit.

This gives us the Diffusion Constant, D=m/6.

The technique used to find the suitable linear fit range is as follows :

• Calculate and plot MSD for the polymer.

• Take derivative of the MSD values and use the slope values to determine linear range

for Diffusion Constant calculation by doing semi-log plots and margin for deviation

from mean value = 5%.

• Do a linear fit till the calculated/estimated linear range for the MSD plot and calculate

Diffusion constant and Diffusion Relaxation time.

13



Figure 2.3: An example plot to demonstrate linear range calculation through derivative
(with respect to time) of MSD plot : d(MSD)/dt vs t for Linear Chain (with log-x axis and
averaged over 25 runs)

Figure 2.4: An example plot to demonstrate MSD plot for diffusion (LD data with linear
fit only in diffusive regime and initial ballistic regime is not included) : Avg MSD vs t for
Linear Chain (N=50 and data taken every 100 LD iterations)

14



After getting a rough estimate for our linear fit range, we use it to fit it on the original

MSD plot and extract the slope.

The diffusion time is a characteristic time scale that describes the time required for a

polymer chain to explore its configurational space through diffusive motion. The diffusion

time for a polymer chain is typically defined as the time required for the center of mass of

the polymer to diffuse a distance equal to its own radius of gyration (Rg). Mathematically,

the diffusion time (τdiff ) can be expressed as[8]:

< R2
g >= 6Dτdiff (2.5)

2.6 Vector conformation relaxation analysis method

Conformation Relaxation time (τconf ) refers to the time taken by a polymer to attain equili-

bration in terms of its conformational configuration. This means that the polymer becomes

indistinguishable from its initial conformation over the perturbations. There is an exponen-

tial decay relation between the autocorrelation function and time[3] :

< R(t) ·R(t+ dt) >= exp (−t/τ) (2.6)

This decay function looks like this after plotting :
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Figure 2.5: An example of Normalized autocorrelation plot for different vectors of ”Inverted-
8”(I8)/Dumbbell Architecture : Normalized autocorrelation function vs t for vector relax-
ation of Dumbbell (N=100 and averaged over 25 runs)

• For Conformation Relaxation Times we plot normalized time autocorrelation vs t. So

we plot < R(t) · R(t + dt) > vs t(in terms of τ0) where R is a vector spanning the

polymer for its conformation.

• Then we do its semi-log plot with natural log of y-axis to convert the exponential decay

to linear scale.

• Finally, we roughly get an idea of a linear range and fit a linear regression till that

range to extract the slope of this linear range.

• This slope is equal to −1/τ where τ is the desired relaxation time

The semi-log plot looks like this after linear fit :
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Figure 2.6: An example of semi-log plot of Normalized autocorrelation vs t for Linear Chain
(N=50 and averaged over 25 runs)

2.7 Various Architectures Used

For Diffusion related study it is relatively simple to just keep track of the COM and calculate

the desired quantities. But things get tricky with vector conformation relaxation related

calculations. With increasingly more complex architectures the amount of vectors to analyze

also increases. Thus one needs to keep track of all these vectors separately and calculate their

relaxation times to get more insights about the conformations of the polymer and obtain any

possible trends. We mention all the four architectures used in our study with information

about all the useful vectors :

2.7.1 Linear Chain

The Linear Chain is just a series of bead spring units connecting in a linear fashion to make a

chain like structure. Its two ends are disjoint and the monomers motion is restricted subject

to the springs it is attached. During the simulation or while studying its dynamics, we can

17



see that the linear chain is flexible and free to take countless arbitrary configurations making

a worm-like structure. Linear Chain is quite extensively used to do polymer physics related

studies. It is arguably the simplest Polymer architecture and has a plethora of research done

and still being done about its properties. It also serves as a nice fundamental architecture

for our study across the other architectures. It can be the fundamental polymer architecture

to which we add further complications and modified topology by adding more cross-links

and further complications.

Figure 2.7: Vector used for τConf calculation

For Diffusion the idea is relatively straight forward. We just keep track of the motion

of the Centre of Mass of this Linear Chain polymer with its unwrapped coordinates and

perform the diffusion related analysis as we have described already in above sections. But

for Conformation Relaxation related study we discussed above that we need vectors across

the polymer to study its conformation. So for Linear Chain we have used the End-to-end

vector to study. This vector just spans the whole contour length of the polymer chain

spanning from the first monomer of the chain to the last monomer as we can see in [Figure
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2.7].

2.7.2 Arc0/Ring Polymer

The Arc0/Ring Polymer is just a Ring like structure of polymer architecture where we

connect the two ends of a Linear Chain to make it like a ring or a closed/jointed loop thus

leaving no loose ends. We do this by introducing one more spring to the Linear Chain by

joining the two end monomers together. Just like a Linear Chain this is also flexible and

free to take countless arbitrary configurations but always keeping the loop intact. Ring

polymer is also studied quite a lot in Polymer physics. It is relatively quite simpler but very

effective to study polymer dynamics and very applicable as well in a lot of other studies. It

is definitely of the most fundamental architectures to study along with Linear Chain.

Figure 2.8: Ring Schematic

Diffusion study for Ring polymer is also very similar to Linear Chain or in fact any other

architectures by keeping track of the Centre of Mass of the Polymer and proceeding with
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techniques explained in previous sections. But here, the Conformation Relaxation related

study is a bit different than Linear Chain. There we were able to use the End-to-End vector

but for a Ring there is no such End-to-End vector. The End-to-End vector will just depict

a normal bond between any two monomers of the Ring, since it is Homopolymer and a

cyclic polymer. This is why we choose to study the ”Diametric” vectors of this Ring. By

”Diametric” we mean a vector connecting any two of the farthest monomers according to the

contour length of the polymer as shown in [Figure 2.8]. This is the longest possible vector

(based on contour length) Later on throughout the simulation the Ring is going to take a

lot of different configurations and our vector might keep on changing length and directions

as well. But the vector is always between those two chosen monomers only.

Now that we have decided what kind of vector we want, we can choose countless such

”Diametric” vectors Each of them should giving statistically very similar results. So just

for better averaging, we choose four such different vectors as shown in [Figure 2.8] and then

take the average of all of their individual results. Both of our next two architectures are

essentially derived from the Ring Polymer itself by just introducing cross-links in the Ring

Polymer. Also, this same concept of ”diameter” like vectors will be used there as well.

2.7.3 ”Inverted-8”(I8)/Dumbbell Polymer

The ”Inverted-8”/Dumbbell polymer architecture consists of just 1 more extra cross link than

Ring Polymer. We join any one pair of monomers of the ”Diametric” vector of the Ring

polymer. This essentially makes a figure something like two small ring-like loops connected

at one common junction point of monomers looking like an ”inverted-eight/∞” configuration

as shown in [Figure 2.9].

This configuration is basically two equally sized loops (in terms of contour length) but

each having half the contour length of the whole polymer joint together. So we can have 4

different vectors just like a Ring polymer for each of the individual small loops and study

the relaxation properties of these vectors separately to see how the conformation dynamics

change within these small loops as well. These small loop vectors are basically spanning the

whole small loop like a ”diameter”. So we have 8 such vectors (as shown in [Figure 2.9])

and we expect one group of 4 vectors for a particular small loop should give similar results

to group of the other 4 vectors for the other small loop over a statistically averaged data.
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Figure 2.9: ”Inverted-8”(I8)/Dumbbell loop vectors

Also, other than the small loops, we need some vectors which can somewhat span the

whole ”Inverted-8”/Dumbbell polymer as well. Similar to our concept of ”Diameter” like

vectors, we try to have a vector with the longest contour length for the whole polymer.

Now keep in mind that we have a cross-link in between the polymer. So we have to keep

that in account accordingly while comparing the contour lengths of vectors with respect to

number of monomers. For example, according to [Figure 2.10] if we choose a vector between

monomer 1 and monomer 100 then for a ring that is definitely the longest vector (contour

length wise) but here in this case it is literally just a bond vector thus being the smallest

vector. This is why we choose the ”diameter” like vectors as shown in [Figure 2.10]. Here

clearly the Vectors 10 and 11 are smaller than the vector 9 (which is the longest contour

length wise) but these vectors can provide more details about the conformation dynamics of

the whole polymer as well.

We see that introducing just one single cross link to our fundamental Ring polymer

architecture provides us with such a variety of vectors to study and we can extract interesting

details through them. It always becomes more and more tricky and complicated when we

introduce more and more complications to our architectures by these modified topologies as

we will see in the next case of Arc2 polymer architecture.
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Figure 2.10: ”Inverted-8”(I8)/Dumbbell diametric vectors

We have provided the details of all the vectors that we have chosen along with which

monomers are involved for those vectors. We have taken an example of a ”Inverted-8”/Dumbbell

polymer of total 200 monomers and mentioned all the vectors for this particular example

accordingly in the [Table 2.1].

• LoopA : [Monomer1] → [Monomer100]

• LoopB : [Monomer101] → [Monomer200]

• Vectors 1-8 are vectors within the smaller loops and of contour length 50 monomers

each

• Vectors 9-11 are vectors spanning the whole polymer across both the loops, much like

a diametric vector for a ring polymer, and of contour length 100 monomers each
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Vector Monomers Vector Monomers

1 (1 → 50) 7 (125 → 175)

2 (12 → 62) 8 (137 → 187)

3 (25 → 75) 9 (50 → 150)

4 (37 → 87) 10 (37 → 137)

5 (100 → 150) 11 (62 → 162)

6 (112 → 162)

Table 2.1: Vectors detail for ”Inverted-8”/Dumbbell polymer architecture

2.7.4 Arc2 Polymer

The Arc2[4] polymer architecture is important for us to study since that is where our moti-

vation to study the dynamics of these different architectures came in the first place. Arc2

was the primary architecture used to study the E.Coli Chromosome in Apratim et al.’s work,

later on modified as Arc2-2 for better understanding. So if we study the dynamics of the

Arc2 polymer architecture then we can use this knowledge and these results to study the

chromosome segregation study more effectively.

The Arc2 polymer architecture consists of 2 more extra cross links than Ring Polymer.

But here all the loops and the cross-links are not actually symmetric. The two small loops

are equal in size and symmetric to each other but the large loop is twice the size of each

of these small loops. So we have total 3 loops and all of these loops connect with each

other at the same junction as shown in [Figure 2.11]. This looks like a ”bunny-face” type of

structure. We have chosen total 15 vectors here. 4 vectors for one small loop, 4 vectors for

the other small loop and 4 vectors for the larger loop. The other 3 vectors span across the

different loops while trying to maximize the contour length as well. The concept is similar as

the ”diameter” vector concept but there is no such ”diameter” like vector here really which
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spans the whole polymer as well. This is why it becomes tricky which vectors to choose to

study.

Figure 2.11: Arc2 loop vectors representation

Figure 2.12: Arc2 diametric vectors representation

Vectors 1-8 have the similar concept as the small loop vectors in ”Inverted-8”/Dumbbell

polymer architecture. Even the larger loop vectors 9-12 follow the same concept with only
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difference of them being twice the size (in terms of contour length) of a small loop vector.

While vectors 13-15 consists of the vectors connecting the different pairs of monomers of

different loops with each other. Thus we have used all 3 such possible vectors to study.

• Loop C is the larger loop.

• Loop A and B are the smaller loops

• Vector : 1,2,3,4 for Loop A

• Vector : 5,6,7,8 for Loop B

• Vector : 9,10,11,12 for Loop C

We see that 2 more cross links to our fundamental Ring polymer architecture increases

the complexity even further with many more vectors to study and analyze. We can always

increase such complications even further and try to study the more complicated cases ac-

cording to our needs of particular architectures. But we will have to be careful about how

we proceed with our approach and then extract meaningful results out of it. That is the

most challenging part.

• LoopA : [Monomer1] → [Monomer125]

• LoopB : [Monomer375] → [Monomer500]

• LoopC : [Monomer125] → [Monomer375]

• Vectors 1-8 are vectors within the smaller loops

• Vectors 9-12 are vectors within the larger loop

• Vectors 13-15 are vectors spanning the whole polymer across the loops, much like a

diametric vector for a ring polymer

We have provided the details of all the vectors that we have chosen along with which

monomers are involved for those vectors. We have taken an example of a ”Inverted-8”/Dumbbell

polymer of total 200 monomers and mentioned all the vectors for this particular example

accordingly in the [Table 2.2].
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Vector Monomers Vector Monomers

1 (1 → 63) 9 (126 → 251)

2 (17 → 79) 10 (157 → 282)

3 (32 → 94) 11 (189 → 314)

4 (48 → 110) 12 (220 → 345)

5 (376 → 438) 13 (63 → 251)

6 (392 → 454) 14 (251 → 438)

7 (407 → 469) 15 (63 → 438)

8 (423 → 485)

Table 2.2: Vectors detail
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Chapter 3

Radius of Gyration

As we already discussed above in previous chapter, study of Radius of Gyration is always

quite important whenever we are trying to study the polymer architectures. We should

always first have an idea and data about the size of our polymer architecture before we

proceed further and Radius of Gyration is always a useful data to have regarding the size

of a polymer. One obvious thing we can say point is that as we increase the number of

monomers in our polymer, the size of the polymer increases. Thus the increase in Radius of

Gyration (Rg) is also proportional to the increase in the number of monomers (N). But the

main question here always is what is the scaling factor or the scaling law for this relation? If

we have a relation between Radius of Gyration and Number of monomers like this : Rg ∝ Nν ,

then what is the value of ν here? And we don’t just have to address it for just one type

of polymer architecture. We want to find out how/if the scaling changes for the different

polymer architectures as well.

Now according to theory, the Flory exponent ν ≈ 0.59 for a self-avoiding random walk

in 3-D space. This is for a polymer chain in dilute systems. So we try to check and verify

this scaling for our case as well. We then try to compare the scaling and sizes of polymers

across the different architectures also. By this data, we should get an idea of the size of

our polymer architectures too which we will use for our Diffusion scaling study in the next

chapter.
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3.1 Comparing Rg data across various architectures

The Rg data in [Table 3.1] clearly suggests that the polymer architectures affect the sizes of

the polymers. We can see that Linear Chain has the highest values of Rg generally and it

gradually keeps on decreasing as we keep making our polymer architecture more and more

compact by introducing more cross-links. We can have following general conclusion while

comparing the sizes/Rg values of different polymer architectures :

Linear Chain > Ring > Dumbbell > Arc2

Also, the obvious trend of increase in size with increase in number of monomers across a

particular polymer architecture is also clearly apparent.

Linear Chain Ring Dumbbell Arc2

N Rg σRg Rg σRg Rg σRg Rg σRg

50 4.47 0.09 3.32 0.01 3.07 0.01 2.79 0.01

100 6.89 0.26 4.59 0.007 4.66 0.06 4.19 0.03

200 10.33 0.39 7.72 0.07 7.05 0.06 6.35 0.04

300 13.51 0.84 9.92 0.16 9.03 0.13 8.07 0.09

500 17.80 1.52 13.34 0.39 12.31 0.30 10.92 0.15

1000 27.97 3.33 20.28 0.69 18.47 0.68 16.70 0.46

2000 41.56 5.93 30.81 2.99 28.17 1.99 25.08 1.32

Table 3.1: Radius of Gyration (Rg) data

We also do a log-log plot of this Radius of Gyration vs Number of Monomers data to

check the scaling of the Flory exponent ν.
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Figure 3.1: log-log Comparison of log(Rg) for Polymer Configurations vs log(N)

Figure 3.2: Comparison of Rg for Polymer Configurations vs N

Having a log-log plot [Figure 3.1] converts the Radius of Gyration vs Number of monomers

plot to linear scales. We do a scatter plot of all the data points we have and then do linear
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regressions over these scatter plots for their respective polymer architectures. We have

mentioned their respective slopes as well in the legend of the plots. These values of slopes

are the Flory exponents for their respective polymer architectures.

We can see that the Flory exponents for all of our architectures ν ≈ 0.6, quite similar to

the predictions of theory. One more interesting thing to note is that the scaling law and Flory

exponent doesn’t change even when the polymer architecture is different. So throughout the

different architectures, the Radius of Gyration vs Number of Monomers scaling is relatively

unaffected. So finally the scaling law becomes :

Rg2 ≈ N6/5

We can see this scaling relation in the comparison plot of Radius of Gyration (Rg) vs

Number of Monomers (N) in [Figure 3.2].
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Chapter 4

Diffusion Scaling

Now we focus on the diffusion of Centre of Mass of the whole polymer. We will discuss

about the Diffusion Constant (D) values of the polymer architectures and compare these

values across the different architectures we have. Diffusion Constants basically tells us about

how fast a polymer diffuses. So it will be interesting to see how the speed of diffusion of a

polymer is affected once we change it’s architecture.

Then we will also discuss about the Rouse relaxation times for diffusion of these polymers

and again compare these time values as well across the different architectures. This is

basically the time taken by a polymer to diffuse a distance of Rg units where Rg is the

Radius of Gyration of that particular polymer architecture.

4.1 Comparison of Diffusion Constants (D)

The Diffusion constants (D) data gives a very interesting result. We can see that for a

particular value of number of monomers (N), the diffusion constant across architectures is

almost identical as we can see the data in [Table 4.1]. This means that despite having

different polymer architectures with modified topologies and different number of cross-links

their diffusion speed is almost identical! So the diffusion speed solely depends on the number

of monomers.
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N D(LinearChain) D(Arc0) D(Dumbbell) D(Arc2)

50 2.06 · 10−2 2.07 · 10−2 2.01 · 10−2 2.05 · 10−2

100 9.74 · 10−3 9.64 · 10−3 9.68 · 10−3 1.04 · 10−2

200 5.33 · 10−3 4.95 · 10−3 5.05 · 10−3 5.16 · 10−3

300 3.30 · 10−3 3.19 · 10−3 3.40 · 10−3 3.46 · 10−3

500 2.03 · 10−3 2.01 · 10−3 2.08 · 10−3 2.06 · 10−3

1000 9.93 · 10−4 9.84 · 10−4 1.02 · 10−3 1.01 · 10−3

2000 5.05 · 10−4 5.10 · 10−4 5.04 · 10−4 5.18 · 10−4

Table 4.1: Diffusion Constant (D) data

Also, we do the same log-log plot analysis [Figure 4.1] again as we did for the Radius

of Gyration to check the scaling of Diffusion Constants (D) with respect to the number

of monomers (N). The log-log plot comparison converts the data to linear scales for easier

extraction of the scaling exponents. We then similarly do the linear regression on the scatter

plot and the slopes of these linear regressions give us the scaling exponent for the diffusion

constant (D) vs Number of monomers (N) for their respective polymer architectures.

We see that for all of the architectures, the slopes are almost exactly equal to -1. This

is also quite accurate as predicted according to the theory since D is always inversely pro-

portional to N according to theory. Also similar to Radius of Gyration data, the scaling law

doesn’t change even when the polymer architecture is different. So throughout the different

architectures, the Diffusion Constant vs Number of Monomers scaling is relatively unaffected

(In fact Marcus Muller in one of his works also showed this for Ring and Linear polymers in

isolated systems with no hydrodynamics[6]. So finally the scaling law becomes :

D ≈ 1/N
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Figure 4.1: log-log Comparison of Diffusion Constant log(D) for Polymer Configurations vs
N

We can clearly see this scaling relation in the comparison plot of Diffusion Constant (D)

vs Number of Monomers (N) in [Figure 4.2].

Figure 4.2: Comparison of Diffusion Constant (D) for Polymer Configurations vs N
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(a) N=50 (b) N=100

(c) N=200 (d) N=300

(e) N=500 (f) N=1000

Figure 4.3: Plots for MSD/t vs t comparison across various architectures for different cases
of No. of monomers in the polymer
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4.2 Comparison of Diffusion times (τdiff)

Now if we look at the diffusion times, based on the data and results we saw above, we should

already have gotten an idea of what is going to happen here. For Diffusion times,

< R2
g >= 6Dτdiff

Figure 4.4: log-log Comparison of log(τDiffusion) for Polymer Configurations vs log(N)

We have already calculated the Rg values. So we’ll use those values to calculate τPolymer
diff

for each polymer architecture. But the interesting result we found in last section was that

the Diffusion Constant (D) across the architectures is almost identical. That means if we

compare diffusion times across the polymer architectures, the diffusion constant basically

plays no role in it. But the Rg values obviously differ a lot since the sizes of the polymer

architectures are actually different. So according to the formula from theory, we can say

that the most dominant factor for the differing values of diffusion times across architectures

is mainly because of Radius of Gyration values only.

35



N τdiff (LinearChain) τdiff (Arc0) τdiff (Dumbbell) τdiff (Arc2)

50 162 89 78 63

≈ 1.62 · 102 ≈ 0.89 · 102 ≈ 0.78 · 102 ≈ 0.63 · 102

100 812 364 374 282

≈ 8.12 · 102 ≈ 3.64 · 102 ≈ 3.74 · 102 ≈ 2.82 · 102

200 3337 2005 1642 1303

≈ 3.33 · 103 ≈ 2.00 · 103 ≈ 1.64 · 103 ≈ 1.30 · 103

300 9223 5134 4003 3134

≈ 9.22 · 103 ≈ 5.13 · 103 ≈ 4.00 · 103 ≈ 3.13 · 103

500 26060 14730 12151 9632

≈ 2.60 · 104 ≈ 1.47 · 104 ≈ 1.21 · 104 ≈ 0.96 · 104

1000 131296 69667 55895 45818

≈ 13.12 · 104 ≈ 6.96 · 104 ≈ 5.58 · 104 ≈ 4.58 · 104

2000 569535 310334 262624 202205

≈ 5.69 · 105 ≈ 3.10 · 105 ≈ 2.62 · 105 ≈ 2.02 · 105

Table 4.2: Rouse relaxation times data for diffusion of polymers

If we look at the data in [Table 4.2], this is the trend that we can roughly see. Across

the architectures, the diffusion times decrease. Linear chain has the highest values of τdiff

and then subsequently the values keep on decreasing as we increase complexities in our

architectures since the Radius of Gyration (Rg) values also decrease subsequently for their

respective architectures. The increase of τdiff values across the different cases of number

of monomers for a particular architecture is quite obvious. As we increase the number of

monomers, the Rg will increase. Thus the polymer will take more time to diffuse a distance

of Rg units.
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Here as well we do the log-log plot analysis [Figure 4.3] to check the scaling of τdiff with

respect to the number of monomers (N). We have the linear regression for the scatter plot

and the slopes of these linear fits give us the scaling exponent for the τdiff vs Number of

monomers (N) for their respective polymer architectures.

Here for all of the architectures, the slopes are ≈ 2.2. Also similar to the scaling analysis

data in previous chapters as well, the scaling law doesn’t really change much across different

polymer architectures. The scaling exponent is mostly around 2.2 under the error limits. So

finally the scaling law becomes :

τdiff ≈ N2.2

Figure 4.5: Comparison of Diffusion times (τdiff ) for Polymer Configurations vs N
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Chapter 5

Conformation Relaxation

Finally, we discuss about the Conformation Relaxation properties for different polymer ar-

chitectures. We have different kinds of vectors for all of these different architectures that

we have already mentioned in previous chapters. We try to do a detailed analysis for them

here.

Although it will be a bit challenging to do comparisons here across the different archi-

tectures since all of the vectors across architectures are completely different from each other.

Thus there is no direct common ground for comparisons as we had for example in the case of

Diffusion where we just had to compare the Centre of Mass related data which is relatively

quite straight-forward. Nevertheless, we have tried to form some sort of common ground for

comparisons so we try to compare among the slowest relaxation times for each architecture.

This means for a particular architecture we see which vector is relaxing the slowest. We

choose that vector’s relaxation time for comparing τconf for that architecture among other

architectures.

5.1 Analyzing and choosing the slowest relaxation times

across various architectures

Choosing the slowest relaxation times for Linear Chain is relatively straight-forward. We just

have to choose the longest possible vector (according to contour length) since it’ll take the
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longest time to relax. So we can just directly report the values corresponding to the end-to-

end vector for Linear Chain’s conformation relaxation times. Even for the Ring polymer it is

relatively easy. The longest possible vector can be the diameter. So choose any one diameter

and report its relaxation results. We have chosen 4 such diameters just for better averaging

but eventually all of them will give similar results after statistically averaging. We can just

report the averaged relaxation related results for the Ring polymer’s conformation relaxation

times. But things become a bit difficult when we have higher complexity architectures with

more cross-links involved.

5.1.1 ”Inverted-8(I8)”/Dumbbell Vectors data

For ”Inverted-8”/Dumbbell polymer we have 11 different vectors. Some of them are similar

but we will have to individually look at the data for each of them and analyze which one has

the slowest relaxation time. We then choose τconf values of that vector for τPolymer
conf values of

the architecture. We have the data for all of the 11 vectors of the Dumbbell polymer given

in [Table 5.1] for vectors 1-8 and in [Table 5.2] for vectors 9-11 :

Table 5.1: ”Inverted-8(I8)”/Dumbbell small loop vectors

N(no.of monomers) Vec 1 Vec 2 Vec 3 Vec 4 Vec 5 Vec 6 Vec 7 Vec 8

50 143 106 56 134 146 104 53 132

100 583 491 219 491 637 550 221 534

200 2927 1626 821 1851 2789 2868 755 1694

300 5047 2016 1404 2394 5053 3567 1445 2334

500 15094 5977 4063 5571 10867 5261 3908 6399

1000 80827 33510 25055 33590 50147 41369 19068 34150

We can see that the vector 9, 10 and 11 are definitely of the slowest vectors, as expected

since they are also the longest vectors as well (contour length wise). They have quite similar

relaxation times as well. But one interesting thing to note is that vectors 1 and 5 are also

among the slowest vectors as well. In fact their times are also almost similar to vectors 9, 10

and 11. This suggests that for polymer architecture having cross-links, the vector connected

to the junction of 1 or multiple cross-links is also the slowest or one of the slowest vectors

for the whole polymer. Among the smaller loop also they are the slowest. For example in
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Loop A, vector 1 is the slowest then vector 2 and 4 are very similar since they are essentially

symmetrical vectors (symmetrical with respect to the cross-link junction point) and vector

3 is the fastest of them all evidently because it is the farthest from the cross-link junction

point.

Comparison of τconf for small loop vectors of ”Inverted-8(I8)”/Dumbbell polymer :

Vec 1 ≈ Vec 5 > Vec 2 ≈ Vec 4 ≈ Vec 6 ≈ Vec 8 > Vec 3 ≈ Vec 7

Table 5.2: ”Inverted-8(I8)”/Dumbbell large (diametric) vectors

N(no.of monomers) Vec 9 Vec 10 Vec 11

50 140 145 133

100 561 587 562

200 2268 2275 2409

300 4943 4700 5227

500 12202 10270 10903

1000 56147 53528 61428

5.1.2 Arc2 Vectors data

For Arc2 polymer we have 15 different vectors. Here as well we will individually look at the

data for each of these vectors and analyze which one has the slowest relaxation time. We

choose τconf values of that vector for the architecture. The data for all of the 15 vectors of

the Arc2 polymer given in [Table 5.3] for vectors 1-8, in [Table 5.4] for vectors 9-12 and in

[Table 5.5] for vectors 13-15.
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Table 5.3: Arc2 small loop vectors

N(no.of monomers) Vec 1 Vec 2 Vec 3 Vec 4 Vec 5 Vec 6 Vec 7 Vec 8

50 76 82 120 127 79 51 65 75

100 312 257 158 203 339 255 136 241

200 1415 1336 347 1303 1407 1164 339 1290

300 3145 3298 795 2749 2897 2604 747 1998

500 8675 3455 1726 4633 8664 5654 2588 6610

1000 28282 27651 7317 14420 33493 32706 6504 23673

Here vectors 1-8 follow a similar trend as in the Dumbbell polymer’s case :

Vec 1 ≈ Vec 5 > Vec 2 ≈ Vec 4 ≈ Vec 6 ≈ Vec 8 > Vec 3 ≈ Vec 7

Which is justified as well since they are essentially the same 2 small loops connected

exactly at one point again. Although much more restricted than the previous architecture’s

case. But they are symmetric to the cross-link junction point (contour length wise) so a

statistically well averaged data of both of them should give quite similar results as well.

Table 5.4: Arc2 large loop vectors

N(no.of monomers) Vec 9 Vec 10 Vec 11 Vec 12

50 116 93 70 87

100 506 274 203 292

200 1958 1658 984 1421

300 4350 3078 2303 3140

500 11185 7567 4163 6826

1000 78893 44164 33999 66995

Even for the large loop, it behaves exactly in a fashion how small loop vectors behave.

The vector connected to the cross-link junction is the slowest then the symmetric vectors

being relatively faster than the junction vector but similar to each other and finally the

furthest vector from junction being the fastest.

42



Table 5.5: Arc2 large (diametric) vectors

N(no.of monomers) Vec 13 Vec 14 Vec 15

50 117 101 63

100 377 405 275

200 1737 1583 1022

300 3577 4015 2353

500 8562 8691 4912

1000 62843 79460 23526

For the ”diameter” like vectors, vector 13 and 14 are similar since they are literally

symmetric vectors while vector 15 being the fastest since it is the shortest vector connecting

the monomer pair of both the small loops. Thus, this result is as expected.

Now the most interesting thing here to note is that Vector 9 is the slowest vector out of

every other vectors. This is because it is the largest vector which is directly connected to the

junction. We already discussed that the vectors connected to the junctions are among the

slowest. Vector 9 belong to the larger loop thus it is the longest such vector. So we choose

Vector 9’s relaxation time results for comparison of Arc2 across other architectures.

5.2 Comparison of τconf across various architectures

Now that we have established which vectors and values to choose for comparison of confor-

mation relaxation times across architectures, we have the data given in [Table 5.6] comparing

all of them together. The comparison data is slightly indicative of certain things but not

completely conclusive enough to claim anything concretely. Some indications are like Linear

Chain having the highest conformation relaxation time generally out of all architectures.
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N τconf (LinearChain) τconf (Arc0) τconf (Dumbbell) τconf (Arc2)

50 231 120 140 116

≈ 2.31 · 102 ≈ 1.20 · 102 ≈ 1.40 · 102 ≈ 1.16 · 102

100 793 482 561 506

≈ 7.93 · 102 ≈ 4.82 · 102 ≈ 5.61 · 102 ≈ 5.06 · 102

200 4098 1555 2268 1958

≈ 4.09 · 103 ≈ 1.55 · 103 ≈ 2.26 · 103 ≈ 1.95 · 103

300 5823 3604 4943 4350

≈ 5.82 · 103 ≈ 3.60 · 103 ≈ 4.94 · 103 ≈ 4.35 · 103

500 10444 9631 12202 11185

≈ 1.04 · 104 ≈ 0.96 · 104 ≈ 1.22 · 104 ≈ 1.11 · 104

1000 114410 58330 56147 78893

≈ 11.44 · 104 ≈ 5.83 · 104 ≈ 5.61 · 104 ≈ 7.88 · 104

Table 5.6: Conformation Relaxation times comparison data

Finally we do the log-log plot analysis [Figure 5.1] in hope of getting any trend for the

scaling of τconf with respect to the number of monomers (N). Slopes of the linear fits to our

scatter plots should give us the scaling exponent for their respective polymer architectures.

Here for the architectures, the slopes are ≈ 2.0 within the error limits. Here we can

actually see the slope of the linear fit deviating significantly across the architectures. There

does not really seem to be a definite pattern as a consequence of increasing cross-links within

the polymer. The scaling exponent is mostly around 2.0 under the error limits. So finally

the scaling law somewhat becomes :

τconf ≈ N2
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Figure 5.1: log-log Comparison of log(τconf ) for Polymer Configurations vs log(N)

The N2 scaling pattern can be seen in the comparison plot of Conformation Relaxation

times τconf vs Number of Monomers (N) in [Figure 5.2]

Figure 5.2: Comparison of Conformation Relaxation times (τconf ) for Polymer Configurations
vs N
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Chapter 6

Conclusion and Future Direction

We can see there has been a lot to unpack with just these 4 architectures only. We got

some really interesting and fundamental results which actually solidified our understanding

of these architectures to an extent while leaving so many more questions as well. We learned

and tried different techniques for the analysis some of which we are still testing and trying to

extract these results from the perspective of a different technique in hope that it can provide

more insights regarding some relatively unclear but exciting results. For example, regarding

conformation relaxation times we are trying different analysis techniques like stretched ex-

ponential decay analysis rather than the technique mentioned here. The quality of data can

also be increased by better averaging especially for conformation relaxation related data.

Our approach has always been to understand the absolute fundamentals first and only

then move on to bigger complexities. Thus we replicated and verified the initial data first and

then only produced new data regarding further architectures. Having good data for even the

static properties like Radius of Gyration (Rg) proved to be very beneficial for our dynamics

related study since we were able to use that data for our Diffusion related study. Our

Diffusion related data is quite concrete and provide a good fundamental base to build upon

for further architectures or maybe study of polymers in different confined or melt conditions

as well for the future. The Conformation relaxation data still needs some work since we are

still figuring out what is the best possible way to extract its meaningful properties. But we

have different and exciting ideas to approach it so it should be interesting!

To conclude, the results seem promising and exciting, especially for the architectures.
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These results about the Ring, Dumbbell and Arc2 polymers relaxation times call for further

investigations of relaxation time changes of topologically modified polymers. Also for future

investigation we can study MSD of monomers at different points of chain contour.

This signifies the end of this thesis.
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