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Abstract

Quantum computing offers a revolutionary approach to computation by leveraging quantum

bits or qubits. Quantum computers can perform certain calculations exponentially faster

than classical computers. In the context of factory layout planning, quantum annealing,

a specific quantum computing approach, can efficiently optimize complex problems by ex-

ploring multiple solutions simultaneously and quickly finding the optimal configuration for

factory layouts. By harnessing quantum annealing’s ability to navigate vast solution spaces

rapidly, factory planners can enhance efficiency, reduce costs, and improve overall produc-

tivity in designing optimal factory layouts. This thesis aims to prove that not only factory

layout planning is achievable using quantum annealing, but it is also many folds faster than

classical Monte-Carlo simulation techniques. This thesis proves that quantum annealing can

be used to generate multiple optimal or near-optimal layouts which can help in the early

stages of factory layout planning. By utilizing D’Wave’s QUBO formulation, a factory can

be divided into a number of positions and, along with the functional units, can be described

as a graph, with nodes mapping to qubits and the edges mapping to couplers between the

qubits in D’Wave’s QPUs. By qualitative and quantitative analysis, architects and engineers

can create multiple optimal layouts which can be used to streamline the creation of digital

doubles of the factory. The model created is flexible, as it takes no specialized data and just

requires the rate of transportation of product between functional units in a pipeline, and

the distance between each position with every other position. This makes this method be

applicable to any sort of factory, as long as it follows pipeline based production style.
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Chapter 1

Introduction

Quantum computing is pushing the frontier in technological advancements, leveraging the

principles of quantum mechanics to tackle problems beyond classical computers’ capabilities.

The concept was introduced by Richard Feynman (and independently by Yuri Manin) in his

paper Simulating Physics with computers, 1982 [3], who highlighted classical systems’ limi-

tations in simulating quantum behaviour. A typical example of showcasing this difference,

aptly explained by IBM[17]; is that a classical computer might be great at rigorous tasks like

sorting through a vast database of molecules and their features. However, when it comes to

simulating the behaviour of those molecules, it falls short.

Determining how a molecule behaves entails synthesization, real-world experimentation,

and documentation. If one wishes to tweak the molecule, one must go through the expensive

task of re-synthesizing, experimenting, and re-documenting the results, especially in indus-

tries like drug[2] and semiconductor design[4]. A classical supercomputer can try to simulate

every permutation of every part of a molecule using brute force, but, except for the most

elementary particles, no current computer has a large enough working memory or processing

power to handle all the possibilities by utilizing any known methods.

These complex problems are where a quantum computer shines. Quantum computers

take advantage of the inherent probabilistic nature of quantum mechanics by creating multi-

dimensional computing spaces. Any tweak one might want to make on a molecule will already

be encoded within the simulation, allowing simultaneous computation of all permutations of

the molecule.
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Quantum computing uses qubits, the quantum equivalent of classical bits, enabling new

ways to process information. Key features like superposition and entanglement distinguish

quantum systems from classical ones. Superposition allows qubits to represent multiple

configurations simultaneously, enhancing parallel computational power. Entanglement cor-

relates the behaviour of qubits, enabling interconnected operations that lead to advanced

computations.

On a separate note, manufacturing is pivotal in today’s global economy, serving as a

linchpin for economic development, innovation, and societal progress. Its significance em-

anates from various interrelated dimensions, each contributing to its importance. It serves as

a fundamental driver of economic growth and productivity. Creating goods and services gen-

erates employment opportunities across diverse skill levels, fostering income generation and

reducing unemployment rates. Its activities lead to the development of other sectors, such

as transportation, logistics, and services, which can amplify economic activity and enhance

overall prosperity.

Quantum computing can revolutionize manufacturing by addressing complex optimiza-

tion challenges in factory layout design, supply chain management, quality control, failure

predictions, and materials science. Its unparalleled computational power allows for efficient

analysis of vast datasets and also provides robust cybersecurity measures and safeguarding

sensitive manufacturing data in an increasingly digitized environment.

The motivation for this thesis arose from the already extensive study of simulating real-

world physical systems using computers. These digital simulations of physical systems are

cost-effective, as they eliminate the need to create an experimental setup to study them,

which is often time-consuming. It offers granular control and repeatability, allowing re-

searchers to systematically study the problem and verify and generate trends and patterns.

Due to our giant leaps in computational power, simulations have become accessible to a

broad range of students and researchers. It has enabled us to simulate larger and larger

systems over longer time scales, which is usually impossible or impractical to investigate

experimentally. Quantum computing is the next leap that will open up a whole new di-

mension and allow us to simulate quantum mechanical systems, as well as high-complexity

commercial problems with speed, accuracy and precision, which even the most advanced

supercomputers are nowhere near achieving.

Factory layout planning (FLP) is one of the first steps in designing a factory or a produc-
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tion pipeline. It is the systematic planning of the layout of machines, facilities, stations, etc.,

to minimize internal transportation of materials, manage storage and manpower, increase

overheads, and increase overall profits by minimizing production costs. Even considering all

our species’ innovations since the Industrial Revolution, this process is still long and arduous,

requiring significant amounts of money, data, manpower, and computation power.

This thesis aims to prove that when used properly, quantum computing can be an effec-

tive tool to help generate optimized layouts quickly and efficiently, reducing the amount of

preliminary manual work required.

1.1 A Brief Overview of Quantum Mechanics

Quantum states, represented by Dirac’s ket |ψ⟩, in time according to the Schrödinger equa-

tion:

iℏ
d

dt
|ψ(t)⟩ = Ĥ(t)|ψ(t)⟩ (1.1)

And we know that the time evolution of the Schrödinger equation is described by unitary

operators. So for a unitary operator Û(t), replacing |ψ⟩ with Û(t)|ψ⟩ in Eq.1.1, we get

iℏ
d

dt
Û(t) = Ĥ(t)Û(t) (1.2)

Where |ψ⟩ is the quantum state or wavefunction and Ĥ is the Hamiltonian

This has been extensively tested and verified by experiments and is probabilistic in nature.

This implies that the value, on measurement, of a state is not deterministic. Even after

repeating an identical evolution, measurement will not always yield the same value, even

though the wavefunction would be the same.

Due to the linearity of the Schrödinger equation, quantum states also evolve linearly, i.e.,

linear combinations of solutions are also solutions. This is what we call Superposition of

States. Upon measurement, the state can collapse into any of the eigenstates, each with a
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probability equal to the square of the probability amplitude. In general,

ψ = α1ψ1 + α2ψ2 + ...+ αnψn (1.3)

is a solution, where ψ1, ψ2, ..., ψn are solutions of the equation, and α2
1 + α2

2 + ...+ α2
n = 1

This fundamental property of quantum mechanics is the basis of all quantum computers.

1.1.1 A Conceptual Explanation of Superposition

Before going into specific details on quantum superposition, it is helpful to explain how the

term “superposition” is used in different contexts in both classical and quantum physics[8].

Classical Superposition

In classical mechanics, the concept of superposition is used to describe when two physical

quantities are added together to make another third physical quantity that is entirely different

from the original two. An example of this can be seen while studying waves. Two pulses

travelling on a string which pass through each other will interfere following the principle

shown in Fig.1.1, waves in the same phase interfere constructively, and waves in the opposite

phase interfere destructively. Noise-cancelling headphones work on this principle, recording

the surrounding sound and playing the same wave but with the opposite polarity into our

ears, causing destructive interference and negating noise. Another example is the vector sum

of two forces acting on a body.

Figure 1.1: Interference of waves
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Quantum Superposition

Quantum superposition occurs when non-classical particles, which have a high wave-particle

duality (nuclei, protons, electrons, photons, etc.), interact with one another. The most fa-

mous thought experiment that makes quantum superposition easier to understand is Schrodinger’s

Cat. This experiment presents a situation with a cat placed in a closed box along with a

radioactive nucleus that will emit a deadly amount of radiation once it decays. There is

no way to predict when that decay happens, as it is a spontaneous process, so there is no

way to know whether the cat is alive or dead unless we open the box to check. It can be

said that the cat is both alive and dead with some non-zero probability. In other words, the

cat is in a superposition state until we open the box and measure it. Upon measurement,

the cat is either alive or dead, and the superposition state has collapsed into a definite,

non-superposition eigenstate.

As stated before, a linear combination of solutions of the Schrödinger equation are also

solutions. So, the system in a superposition state, when measured, can decay into any of

the individual solutions. This loss of superposition is called decoherence and is one of the

biggest hurdles to overcome to create commercially viable quantum computers.

1.2 Qubits

The smallest unit of information on a classical computer is called a bit, and can have the value

0 or 1. Quantum computers, similarly, also have a basic unit of information called quantum

bits, or ”qubits”. Qubits represent the eigenstate of the wavefunction in the Schrödinger

equation. Like its classical counterpart, qubits can be in an ”off” state (denoted by |0⟩), and
an ”on” state (denoted by |1⟩). But that is where the similarities end. If we recall Eq.1.3, it

is evident that any linear combination of |0⟩ and |1⟩ is also a valid description of the wave

function. So, the general state of a qubit is of the form

α0|0⟩+ α1|1⟩ (1.4)
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where α0 and α1 are complex numbers and are subject to the normalization constraint:

|α0|2 + |α1|2 = 1 (1.5)

and |0⟩ and |1⟩ are orthonormal basis vectors of the 2 dimensional Hilbert space of the qubit.

1.2.1 Many-Qubit Systems

The state of a system with two or more qubits can be represented as a tensor product of all

the eigenstates of an individual qubit. For example, a 2-qubit system can have the states as

described by the tensor product of the individual states of each qubit:

|0⟩ ⊗ |0⟩ = |00⟩
|0⟩ ⊗ |1⟩ = |01⟩
|1⟩ ⊗ |0⟩ = |10⟩
|1⟩ ⊗ |1⟩ = |11⟩

(1.6)

An equally weighted superposition of all these states would be:

Ψ =
1

2
|00⟩+ 1

2
|01⟩+ 1

2
|10⟩+ 1

2
|11⟩ (1.7)

Where Ψ represents the state of the system. Note how the coefficients follow the constraint

in Eq.1.5. Upon measurement, the system will decay into any of the four eigenstates (as

listed in Eq.1.6). Similarly, an equally weighted system with 3 qubits will be of the form:

Ψ =
1√
8
|000⟩+ 1√

8
|001⟩+ 1√

8
|010⟩+ ...+

1√
8
|110⟩+ 1√

8
|111⟩ (1.8)

A basic example of interpreting the output of the system described by Eq.1.7 is that the

probability of the 2nd qubit having value 1 after measurement is (1
2
)2 + (1

2
)2 = 1

2
.
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1.2.2 Quantum Entanglement

Let’s assume that the state of a 2-qubit system is described as:

Ψ =

√
3

10
|00⟩+

√
5

10
|01⟩+

√
1

10
|10⟩+

√
1

10
|11⟩ (1.9)

Let’s ask ourselves what the probability of the system to be in the state |00⟩ is upon mea-

surement. Obviously, it is (
√

3
10
)2 = 0.3. But what if we ask, what is the probability of the

1st qubit being |0⟩? To find that out, we can simply take both states where the 1st qubit is

in the state |0⟩, which there are two of because of the state of the 2nd qubit, and add their

probabilities, which gives us 0.8.

While the answer of the second question might be a bit anticlimactic, the purpose of the

question is to realise the fact that the 1st qubit can be |0⟩ irrespective of whether the 2nd

qubit is |0⟩ or |1⟩. Similarly in Eq.1.8, each of the three qubits can collapse to |0⟩ or |1⟩
independently of the other two, giving us a total of eight possible eigenstates. The values

of each qubit are independent of the other qubits in the system. If we now take a similar

system but described by the state

Ψ =
|00⟩+ |11⟩√

2
, (1.10)

we can see that the probability of the 1st qubit to be |0⟩ is 0.5. But in this case the 2nd qubit

can only be in the |0⟩ state. Similarly if the 1st qubit is in the |1⟩ state, the only possible

state for the 2nd qubit is |1⟩. It can be said that the two qubits are entangled.

In formal terms, a pair or a group of particles is entangled when the quantum state of

each particle cannot be described independently of the other particle, while the entire system

as a whole can be described[9]. For example, a system of two particles is created in such a

way that the total spin is zero. That is, their state can be written as:

Ψ =
|01⟩+ |10⟩√

2
(1.11)

If we measure one particle and see the spin is clockwise (let’s say |1⟩), the other will always

have the opposite spin, i.e., the measurement of one qubit will cause the other qubit to

collapse automatically. In fact, any change to a qubit will instantly adjust the other qubit
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to be consistent with the quantum mechanical rules. We might be tempted to think that an

entangled qubit can ”feel” that a measurement is performed and ”knows” what the outcome

should be, but this is not the case. This phenomenon happens without any information

transfer; the particles could be billions of miles away from each other, and the entanglement

would still be present.

While this can raise questions about faster-than-light information transfer, that is untrue.

Suppose Alice and Bob each have a qubit from a pair of entangled qubits in the state |00⟩+|11⟩√
2

.

If Alice measures her qubit and gets |0⟩, Alice now knows that Bob will measure the state

of his qubit to be |0⟩, too. But Bob has no way of knowing the result Alice got. To Bob,

measuring his qubit provides him with no information on whether Alice measured her qubit

or not. It is mathematically provable that there is no test that Bob can do that will let him

know the same. Essentially, Bob’s measurement, to Bob, is random. The only way for Bob

to know Alice’s result of measurement is if Alice sends her result to Bob through a classical

channel, which is limited by the speed of light. This is called the No Communication

Theorem[13]. The mathematical proof, however, is outside the scope of this thesis.

1.3 Bits vs Qubits

Now that we know the basics of what qubits are and how they work, let’s compare them

to the more familiar classical bits. This section focuses on the benefits qubits possess over

classical bits.

1.3.1 Data Representation

For classical bits, we know:

• Bits have a value of either 0 or 1. Strings of bits are interpreted as binary encoding,

where each bit represents a power of 2

• Bits are independent; each bit can always exist in its state without any inherent cor-

relation with other bits

8



• They are deterministic; the value of a bit can be precisely determined at any time.

They indefinitely exist in that state unless explicitly changed.

And if we compare to the properties of qubits that we have discussed till now,

• Qubits can have a value of |0⟩ or |1⟩ and any linear combination of the two basis

vectors.

• Qubits can be independent, but they can also be entangled, where the state of a qubit

is inherently correlated to another single/group of qubits.

• The outcome of measuring a qubit is probabilistic. When measured, a qubit can

collapse into any of its basis states (|0⟩ or |1⟩), with probability equal to the square of

its coefficients in the superposition state.

1.3.2 Parallelism

Due to the ability of qubits to exist in superposition states, qubits can compute operations

on a vast number of permutations simultaneously. For example, take the task of searching

through an unsorted database. For a classical computer with N entries in the database, it

will have to search through each entry one by one, so the time required is proportional to N ,

or linear time (O(N)). Comparing that to quantum computers, Grover’s Algorithm[6] can

search through a dataset of size N in roughly O(
√
N) time, offering a quadratic speedup.

Another example is the factorization problems of large integers. The most efficient clas-

sical algorithm, the General Number Field Sieve[14] (GNFS) algorithm, has a subexponential

time complexity; it is higher than polynomial time but lower than exponential time. The

exact complexity, however, depends on various factors. Shor’s Algorithm[15], on the other

hand, works in polynomial time, more specifically O((logN)3), which is of course, going to

be much faster than the GNFS algorithm.

9



1.3.3 Data Storage and Manipulations

In classical computers, the computation power or ability to represent larger data rises linearly

with an increase in bits; in order to store an 8-bit binary number, a classical computer needs

8 bits. The addition of two 4-bit binary numbers requires 8 bits to store the numbers and

5 more bits to store the sum (assuming the largest possible sum). Similarly, the addition of

two 8-bit numbers requires 16 bits total for the addends and another 9 bits for the sum.

In contrast, in quantum computers, computation power doubles with every added qubit.

A singular qubit can only represent 2 bits, but adding another bit to the system allows the

system to store 4 bits of data (see Eq.1.6), while three qubits can store 8 bits of data (see

Eq.1.8).

In general, a classical computer needs N bits to store and manipulate an N -bit number.

Whereas a quantum computer with N qubits can store and manipulate a 2N -bit number.

To put this in perspective, consider: in order to double the computation power of an N -bit

classical computer, we would require 2N bits, and in order to double the power of a quantum

computer with N qubits, we would only require N + 1 qubits.

This difference between quantum and classical computing can be expanded into opera-

tions on vast arrays of numbers. One math operation on 2N numbers with an N -bit classical

computer will require 2N steps if done sequentially, or 2N parallel processors. Doing the

same operation on 2N numbers on a quantum computer with N qubits requires only ONE

step, as all the possible numbers are represented simultaneously due to superposition. This

phenomenon alone is the source of the massive advantage quantum computers have over clas-

sical computers in parallelised computing. Table1.1 consolidates all the differences discussed

till now.

1.4 Factory Layout Planning

Factory layout planning involves designing the optimal layout for a manufacturing facility

to ensure efficiency, productivity, and safety. It is a critical aspect that can lead to increased

productivity, reduced costs, and improved safety. Understanding the value stream and re-

quirements, optimizing material flow, incorporating flexibility into the design, and placing

10



Classical bit Qubit

Two discrete states, 0 and 1 Any linear combination of |0⟩ and
|1⟩

Are completely independent of
other bits

Can be independent or quantumly
entangled with other qubits

Can be measured completely Can be measured partially with
given probability

Are not affected by measurement Are changed by measurement
Can be copied Cannot be copied
Can be erased Cannot be erased

Computation power rises linearly
with increase in number of bits

Computation power rises
exponentially with increase in

qubits

Table 1.1: Difference between bits and qubits

equipment in appropriate locations are key principles of production layout planning. Fac-

tory planning focuses on the physical properties needed for a facility to fulfil its function,

including specifying equipment and modifications needed during operation. Layout planning

is more focused on arranging what goes where within the facility. Different types of facility

layouts include process layout, product layout, fixed-position layout, and cellular layout,

each suitable for different production processes and industries. Let’s explore these layout

ideologies further

Process Based Layout

The process layout, also known as the functional layout, organizes equipment and tools

into different groups based on production functions. In this layout, resources of a similar

nature or function are grouped together, making it suitable for customized, low-volume

products with varying processing requirements and sequences of operations. Examples of

facilities using process layouts include machine shops, hospitals, banks, auto repair shops,

libraries, and universities. The process layout aims to process goods or provide services that

involve diverse processing requirements and offer flexibility to handle various routes and

process needs efficiently. The design process for a process layout typically involves gathering

information, developing a block plan or schematic of the layout, and creating a detailed

layout. This type of layout is beneficial for minimizing transportation costs, distances, or

times within a facility
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Product Based Layout

The product layout is a production system where workstations and equipment are arranged

along the line of production, commonly seen in assembly lines. Work units move along

the line, and each workstation performs small amounts of work tailored to specific tasks,

leading to higher production rates. Product layouts are suitable for large-scale industries

with continuous processes like manufacturing units in industries such as sugar, paper, ce-

ment, automobiles, and electronic appliances like printers and refrigerators. This layout is

characterized by a structured arrangement of machines focused on producing a single final

product, where the output of one machine becomes the input for the next machine in a se-

quential manner. Product layouts require significant investment and space but are efficient

for high-volume, standardized products that require repetitive processes.

Fixed-Position Based Layout

A fixed-position layout is a production system where the primary components of a project

remain stationary while all other machinery, materials, and workforce come to the project.

This layout is commonly used in industries where the essential equipment or components

for operations are too heavy, intricate, or delicate to move, or when the project must be

completed in a specific location. Examples of industries and facilities that use fixed-position

layouts include airplane manufacturing, shipbuilding, boiler plants, turbines, construction

sites for bridges, dams, and properties, and even hospital operating rooms. The advan-

tages of a fixed-position layout include lower costs due to reduced product movement, easier

customization for specific projects, and reduced product damage from shipping and trans-

portation. However, there are also disadvantages, such as higher equipment movement costs,

the need for skilled workers, space limitations, and the potential for longer completion times

and project delays.

Cellular Based Layout

A cellular layout in manufacturing groups machines and equipment needed to produce a

specific product or process together, improving efficiency and communication. It involves

organizing workstations into self-contained cells, enhancing material flow, flexibility, quality

12



control, and reducing costs. Successful implementation requires identifying suitable prod-

ucts, emphasizing communication, investing in training, and monitoring performance for

continuous improvement.

1.5 Scope

Let’s focus on the product-based ideology for designing factory layouts. The methodology

used in this thesis is applied on a factory with a similar ideology but can be adapted to be

applied to any of the other ideologies. There are multiple steps required when designing a

factory layout. A comprehensive list is given below, along with an estimate of how long each

step takes.

1. Planning and Preparation (1-2 weeks): In this stage, pertinent information on the facil-

ity’s existing condition—such as process flows, material handling protocols, inventory

levels, and production volumes—must be gathered. Value stream mapping[12] exercises

are another tool stakeholders can use to find waste and inefficiencies in the current

design.

2. Process Mapping and Segmentation (2-4 weeks): For every product or product family,

create process maps or flowcharts, classifying them into groups according to compa-

rable requirements or manufacturing processes. Determining the production flow and

resource requirements for each section may also be part of this phase.

3. Stakeholder Engagement (2-4 weeks): Consult with engineers, operators, production

managers, and other relevant parties for their opinions. Make sure all company goals,

objectives, and financial restrictions are met. To increase support and buy-in for the

layout design, address objections and take suggestions into consideration.

4. Layout Design (4-8 weeks): Provide layout solutions that satisfy every product seg-

ment’s production needs. Organize resources, workstations, and equipment according

to the production flow. Make the best use of available space and include flexibility in

the layout plan.

5. Simulation and Analysis (2-4 weeks): Provide layout solutions that satisfy every prod-

uct segment’s production needs. Organize resources, workstations, and equipment
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according to the production flow. Make the best use of available space and include

flexibility in the layout plan.

6. Implementation (6-12 months): Carry out the implementation strategy, moving work-

stations, rearranging equipment, and upgrading infrastructure. In order to reduce

production disruptions during the changeover, collaborate with the appropriate teams.

Keep close tabs on developments and deal with any problems or difficulties that crop

up throughout implementation.

Of course, the time required for each step can vary wildly because of numerous factors like

the industry, geographic location, supply availability, scale of the factory, etc., which are

completely different for different factories, plus other unforeseen circumstances like resource

constraints, natural disasters, supply chain failures, equipment failures, which are impossible

to predict beforehand with any sort of reliability.

This Thesis focuses on improving upon the ”Layout Design” and ”Simulation and Anal-

ysis” steps highlighted above. It aims to provide a new way of optimizing factory layouts on

the basis of the rate of flow of products between machines or facilities (will be referred to as

functional units from now on) and the size and shape of the factory, along with the size of

functional units. It also aims to reduce the amount of manual labour of gathering copious

amounts of data, consequently reducing the amount of data dumped onto the engineers and

architects when simulating a digital twin of the factory[1].

Currently, technological limitations on our implementation of physical quantum com-

puters and solving algorithms impede our ability to generate granular, exact layouts. The

layouts that are currently computationally feasible to generate offer a starting point for

further qualitative analysis and fine-tuning done by engineers, to account for real-world con-

straints that will not always be mathematically modellable. This takes considerably less

data and takes up much less computing time, and can give preliminary knowledge that can

be used to analyse and pitch layouts much faster. Future technological innovations will al-

low the layouts to be much more exact while following the same methods, allowing further

flexibility by being able to prioritize speed over accuracy or vice versa.

14



Chapter 2

Theory

Now that we have a basic understanding of quantum computing and factory layout plan-

ning, this subsequent chapter will focus on the physics and implementation of the quantum

computer and the mathematical model used for this project.

There are many methods of engineering quantum computers, like Nuclear Magnetic Res-

onance Quantum Computers (NMRQC)[16]; which use the spin states of nuclei in molecules

as qubits, Trapped Ion qubits; which use the electron’s different excitation states in an op-

tically trapped ion as qubits, photonic qubits; where the presence of photons in a cavity

is used to denote the states. However, the most reliable form of qubits are created using

superconductors, as they provide an exceptional degree of control in manipulation, prepara-

tion, and efficient measurement, together with the possibility to tailor circuit properties and

implement tunable qubit frequencies and coupling strengths.

2.1 Two types of Quantum Computing

Gate-based quantum computers and annealing-based quantum computers represent two dif-

ferent approaches to quantum computing.
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2.1.1 Gate-Based Quantum Computers:

1. Gate-based models are more flexible and general than quantum annealing, as they can

encode and solve any problem that can be expressed as a quantum circuit.

2. Universal gate quantum computing relies on building reliable qubits where basic quan-

tum circuit operations can be put together to create any sequence, running increasingly

complex algorithms.

3. Gate-based models can implement a wider range of quantum algorithms than quantum

annealing, such as Grover’s search, Shor’s factorization, and quantum machine learning

algorithms.

2.1.2 Annealing-Based Quantum Computers:

1. Quantum annealing seeks to utilize effects known as quantum fluctuations to find the

best possible solution for the problem being solved.

2. Quantum annealing works by finding the minimum energy in the given problem’s

energy landscape

3. Quantum annealing works best on problems with many potential solutions where find-

ing a ”good enough” solution is sufficient, making it suitable for certain optimization

tasks like faster flight or aerospace material research.

In conclusion, gate-based quantum computers offer more flexibility and broader applica-

bility, while annealing-based quantum computers excel in specific optimization tasks. The

choice between these two approaches is clear when considering our problem; finding an op-

timal or near-optimal layout for a given factory.

2.2 Annealing

Before we delve into the process of quantum annealing, Let us understand what the process

of annealing is. This will help us to gain an understanding of the thought process behind

quantum annealers, and how they came to be.
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In metallurgy and materials science, annealing is a heat treatment technique used to

change a material’s physical and occasionally chemical properties to make it easier to work

with. In this procedure, a material is heated above its recrystallization temperature, kept at

that temperature for a specific duration of time, and then cooled slowly. Changes in ductility

and hardness result from atoms migrating inside the crystal lattice during annealing, which

lowers the amount of dislocations. The cooling process allows the material to recrystallize.

Annealing is essential for reducing internal stresses, boosting ductility, and regulating grain

size and phase composition. It can be used to enhance the formability, machinability, and

general mechanical qualities of a variety of metals, including copper, silver, brass, aluminium,

and steel. This manufacturing technique was so influential, that it gave birth to a new

variation of the Monte Carlo algorithm algorithm; Simulated Annealing.

2.2.1 Simulated Annealing

Simulated Annealing, which was first theorised by Kirkpatrick et al.,1983[11], can be used for

heuristic optimization or approximate Boltzmann sampling, as it is essentially a metropolis

algorithm. Here is how it works:

1. An initial configuration is chosen at random from the solution space of the system.

2. A change is proposed to the current configuration in the form of a new configuration

that is slightly different from the initial one.

3. The new configuration is evaluated by measuring the change in energy associated with

the update. Let’s call this change in energy ∆E

4. If ∆E < 0, i.e. the new configuration has a lower energy than the previous configura-

tion, it is immediately accepted. If ∆E > 0, the change is accepted with a probability.

The probability is given by

P (accept) = e−β∆E (2.1)

and β =
1

kBT
(2.2)

where kB is the Boltzmann constant and T is the temperature of the system. This is

called a Metropolis-Hastings update.
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5. If the update is accepted, the system is updated to the new configuration, and if

rejected the system is kept as is. The temperature of the system, is then decreased

according to a β-schedule, which is a sequence of temperatures that the system will

update itself through. Each metropolis update will be called a sweep.

6. Repeat steps 2 to 5 until a predefined number of sweeps are completed, or the system

reaches the final temperature in the β-schedule. Each completed run of the metropolis

algorithm will be called a read.

When β is large, the target distribution concentrates, at equilibrium, over the ground states

of the system. β-schedules can map any array of temperatures, but since solutions are

guaranteed to match the equilibrium for long and smooth β schedules, they are usually

linear, geometric, or logarithmic decreases in temperatures. Since problems can have a lot

of local minimas, it is advisable to simulate multiple reads with a large number of sweeps to

ensure the robustness of the solution.

2.3 Quantum Annealing by D’Wave

This study utilizes D’Wave’s quantum annealers. D’Wave uses superconducting loops as

qubits, embedded in a 2-dimensional lattice the size of a thumbnail. These Quantum Pro-

cessing Units, or QPUs, as coined by D’Wave, are maintained at around 12mK using a

dilution fridge to minimize external interference and to maintain superconductive proper-

ties. The latest and greatest annealers, their 5th generation Advantage systems, contain

more than 5000 qubits per qpu, giving users the ability to solve large problems with ease.

D’Waves complete documentation for their quantum computers can be found here[5].

2.3.1 How Quantum Annealing Works in D’Wave QPUs

The qubits in QPUs are the lowest energy states of the superconducting loops that make

up the D-Wave QPU. These states have a circulating current and a corresponding magnetic

field, as shown in Fig.2.1. As we know, these qubits can also exist in a superposition state

of the two states. At the end of the quantum annealing process, each qubit collapses from a

superposition state into either |0⟩ or |1⟩.
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Figure 2.1: Qubit in a QPU

An energy diagram, like the one in Fig.2.2, can be used to illustrate the physics of this

process. The diagram’s evolution is depicted in (a), (b), and (c). There is a single minimum

or valley (a) to start. When the barrier is raised due to the quantum annealing process, the

energy diagram is transformed into a double-well potential (b). In this instance, the 0 state

corresponds to the low point of the left valley, and the 1 state corresponds to the low point

of the right valley. At the end of the anneal, the qubit finds itself in one of these valleys.

Figure 2.2: change in the annealing diagram as the annealing process runs

Assuming all other factors remain constant, there is a 50% chance that the qubit will end

up in the 0 or 1 state. However, we may manipulate the likelihood that it will enter the 0 or

1 state by subjecting the qubit (c) to an external magnetic field. The double-well potential

is tilted by this field, which raises the likelihood that the qubit will fall into the bottom well.

A bias is a programmable quantity that regulates the external magnetic field; while the bias

is present, the qubit minimizes its energy.

Still, the bias by itself is not helpful. When you connect qubits so they may affect one
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another, or in other words, become entangled, that’s when their true potential is revealed. A

tool known as a coupler is used to accomplish this. Two qubits can be made to lean toward

opposite states via a coupler, or they can tend toward the same state—both 0 or both 1.

The correlation weights between connected qubits can be programmed by coupling strength,

just like a qubit bias. In the D-Wave quantum computer, configurable biases and weights

work together to define a problem.

Two qubits can be viewed as a single entity with four potential states when they are

entangled. This concept is demonstrated in Fig.2.3 by a potential with four states: |00⟩, |01⟩,
|10⟩, and |11⟩, each of which represents a distinct combination of the two qubits(Eq.1.6).

The coupling between qubits and their biases determine the relative energy of each state.

The qubit states are potentially delocalized in this landscape during the anneal, and at the

end of the anneal, they settle into |11⟩. Users set the biases and couplers’ values while

defining the problem. The quantum computer determines the minimum energy of an energy

landscape that is defined by the biases and couplings.

Figure 2.3: Energy Diagram showing the best answer

In summary, the system begins with a set of qubits all in the superposition states of 0

and 1. They are not entangled yet. The couplers and biases are added, and the qubits get

entangled when the annealing process starts. The system is now in a state of entanglement

with numerous potential solutions. Each qubit is in a classical state by the end of the anneal,

which either reflects the problem’s least energy state or one that is quite near to it.

20



2.3.2 Underlying Physics

For the D’Wave quantum computer, the Hamiltonian is described as

Hising = −A(T )
2

(∑
i

σ̂(i)
x

)
︸ ︷︷ ︸

Initial Hamiltonian

+
B(T )

2

(∑
i

hiσ̂
(i)
z +

∑
i>j

Ji,jσ̂
(i)
z σ̂

(j)
z

)
︸ ︷︷ ︸

Final Hamiltonian

(2.3)

where σ̂
(i)
x,z are Pauli matrices operating on a qubit qi, and hi and Ji,j are the qubit biases

and the coupling strengths. We can see that the Hamiltonian is the sum of two terms, the

Initial Hamiltonian and the Final Hamiltonian. Both Hamiltonians have a scaling factor

attached to them, A(T ) and B(T ), and these are called the energy scales.

• The first term, or the initial Hamiltonian’s lowest energy is when all qubits are in a

superposition state of |0⟩ and |1⟩. We will call it the tunnelling Hamiltonian.

• The second term, or the final Hamiltonian’s lowest energy is the solution to the problem

we are trying to solve. Thus we will call it the problem Hamiltonian.

Quantum annealing occurs between the time t = 0 and tf , which for simplicity, is pa-

rameterized as T ranging from 0 to 1. This is called the normalized anneal fraction. The

system begins at t = 0 in the ground state of the initial Hamiltonian(each spin si is in a

superposition state si = ±1), that is, A(0) ≫ B(0). As the annealing proceeds, the problem

Hamiltonian is slowly introduced to the system by increasing B, which contains all the biases

and couplers, while the initial Hamiltonian’s influence is slowly reduced by reducing A. At

the end of an annealing cycle (t = tf or T = 1), that is, B(T ) ≫ A(T ), ideally, the system

will have stayed in the ground state throughout the annealing process so that by the end

of the cycle the system is in the ground state of the problem Hamiltonian, which will be

the solution to our problem. Each qubit will have also decohered into a classical object by

the end of this cycle, as it would’ve collapsed into one of its two states. At this point, σ̂
(i)
z

can be replaced by classical spin variables si = ±1, and so the Hamiltonian is described by

the classical Ising spin system in Eq2.4, such that the spin states represent the low energy

solution.

Eising =
∑
i

hisi +
∑
i>j

Ji,jsisj (2.4)
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A clear advantage to note is that quantum annealing does not have to deal with the issue

of potentially getting stuck inside a local minima. As depicted in Fig.2.4, annealing would

require a lot of ”lucky” iterations or a supply of extra ”energy” to the system to overcome

the peaks around the minimas, but quantum annealing exploits quantum tunnelling and

superposition to go ”through” the peak while traversing the energy landscape to escape

from the local minima and potentially find the global minima.

Figure 2.4: Visual representation of the traversal through the energy landscape by quantum and simulated
annealing

2.3.3 Hardware and Energy Scales

The physical construction of the QPUs is a network of radio frequency superconducting

quantum-interference devices (rf-SQUID)[7]. The physical Hamiltonian is expressible as

H = −1

2

∑
i

[
∆q(ΦCCJJ(T ))σ̂

(i)
x − 2hi|Ip(ΦCCJJ(T ))|Φx

i (T )σ̂
(i)
z

]
+
∑
i>j

Ji,jMAFMIp(ΦCCJJ(T ))
2σ̂(i)

z σ̂
(j)
z

(2.5)

Here,

• ∆q is the energy difference between the two eigenstates ( |0⟩±|1⟩√
2

) of the qubit with no

externally applied flux. this energy difference is the contribution of coherent tunnelling

between the two energy wells.

• Ip is the magnitude of current flowing through the rf-SQUID qubits.
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• MAFM is the maximum mutual inductance generated between the qubits by the cou-

plers.

• Φx
i (T ) is an external flux applied to the qubits.

• ΦCCJJ(T ) is an external flux applied to all Josephson-junction[10] structures of the

qubits

If in Eq.2.5, we set Φx
i (T ) = MAFM |Ip(T )| we can see that as ΦCCJJ changes during the

anneal, Φx
i (T ) changes so as to the ratio of energy between the hi and Ji,j terms constant.

Physically, this means that as the annealing progresses, the magnitude of external flux needed

to maintain a steady h value increases. Now, Eq.2.5 can be mapped to Eq.2.3. Thus we get

the following expression for the energy scales A(T ) and B(T ):

A(s) = ∆q(ΦCCJJ(s)) (2.6)

B(s) = 2MAFM|Ip(ΦCCJJ(s))|2 (2.7)

This shows the problem Hamiltonian’s energy scale grows quadratically, as seen in Fig.2.5

2.4 Model Formulation

To solve problems using the Q’Wave QPUs, we need to formulate the problem Hamiltonian

(for simplicity, the problem Hamiltonian will be referred to just as the Hamiltonian). This

can be done using quadratic models.

2.4.1 Quadratic Models

The Ocean SDK provided by D’Wave has three quadratic models

• Binary Quadratic Models (BQM): These are unconstrained and use binary deci-

sion variables, which can either be true (yes) or false (no).
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Figure 2.5: Energy scales versus parameterized time s in D’Waves Advantage QPUs. The quantum critical
point (QCP) is the point in the anneal where A(s) and B(s) have the same magnitude. The system is very
sensitive to quantum fluctuations at this point.

• Constrained Quadratic Models (CQM): These can be constrained and can use

integer and binary decision variables.

• Discrete Quadratic Models (DQM): These are unconstrained and have discrete

decision variables.

For our FLP problems, we are going to be using a BQM. This class of quadratic models

can use either Ising formulation, where the decision variables are ±1 or Quadratic Uncon-

strained Binary Optimization (QUBO) formulation, where the decision variables are either

0 or 1. Both formulations work the same way, in fact, QUBO models are converted to Ising

models anyway when submitting a problem to the QPUs. But depending on the problem at

hand, choosing one of the two can simplify the Hamiltonian for our use. We will choose the

QUBO formulation for our problem.

The general QUBO model is an objective function (the Hamiltonian) on N binary vari-

ables represented as a real-valued, N × N upper-triangular matrix Q. The diagonal terms

(Qi,i) are the linear coefficients (biases) and the non-zero off-diagonal terms (Qi,j) are the

quadratic coefficients (coupling strengths). The Energy of the QUBO model is given by the
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expression

E(x) =
∑
i≤j

xiQi,jxj (2.8)

where xi is our binary decision variable (N = [x1, x2, x3, ..., xN ]), and xi ∈ {0, 1}. In scalar

notation, the objective can be expressed as:

Equbo =
∑
i

aiqi +
∑
i≤j

bi,jqiqj (2.9)

2.4.2 Building the model

To start, a qualitative analysis of the size of the factory and the size of the individual

functional units is done to choose a certain unit area A. This unit area is then used to divide

the factory into p positions P = {p1, p2, p3, . . . , pp} which are assigned to one of f functional

units F = {f1, f2, f3, . . . , ff}. The transportation intensity or rate of flow of product from

functional unit f to f ′ with f, f ′ ∈ F is stored in a square transportation matrix denoted

by T with dimensions f × f . Similarly, the distance between any two positions p, p′ ∈ P

is stored in a square distance matrix denoted by D with dimensions p × p. The matrix to

be optimized is denoted by X with dimensions f × p. The value of A affects the size of the

problem. A smaller A will increase the number of positions offering a more granular and

precise solution, but will also increase the complexity and time of the computation. Taking

larger values of A will result in a small problem that is easier to solve but will compromise

the accuracy of the solution. It is imperative to choose an appropriate value for A based on

our priorities.

A is also used to calculate the relative size of the functional units by dividing the actual

area of the functional units by A and rounding off to the nearest integer. The relative sizes

are denoted by S (S = {S1, S2, S3, ..., Sf}.)

Now we can define the Hamiltonian for our problem:

H1 = min

(∑
p,p′

∑
f,f ′

xf,p × xf ′,p′ (Dp,p′ × Tf,f ′)

)
(2.10)
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where xf,p ∈ X, and,

xf,p =

1 if functional unit f is in position p,

0 otherwise.
(2.11)

We can quickly verify the validity of this Hamiltonian with an example. If xf,p = 1 and

xf ′,p′ = 1, the energy of these two qubits is the product of the transportation intensity Tf,f ′ ,

and the distance Dp,p′ between the two positions they are placed in. If one of the decision

variables is 0, that is, the position p is empty, the entire expression becomes 0, irrespective

of the transportation intensity and distance When summed over all positions and functional

units, the energy will be minimized when functional units with high transportation intensity

are placed closer together. This is the basis of the minimization of energy of the Hamiltonian.

If the problem is submitted as is, the solver will just return a configuration where all machines

are placed on top of each other. This means we need to introduce some constraints into our

model.

As the QUBO model needs to be unconstrained, setting hard limitations on the Hamil-

tonian is not possible. However, we can apply penalties in the form of additional addends

to the Hamiltonian defined in Eq.2.10, which artificially inflate the energy for unfavourable

configurations.

Our model requires two penalties which can be modelled as

H2 =
∑
p

∑
f,f ′

xf,p × xf ′,p (2.12)

which enforces that the number of functional units assigned to a position p cannot exceed

1.

And,

H3 =
∑
f

(∑
p

xf,p − Sf

)2

(2.13)

which enforces that the number of positions assigned to a functional unit f must equal the
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relative size Sf of the functional unit.

The final Hamiltonian of our problem would be,

H = αH1 + βH2 + γH3 (2.14)

where α, β, and γ are hyperparameters. Here is where we will realise the benefit of using

a QUBO model. It is obvious that the Hamiltonian is only valid if we use 0 and 1 decision

variables, but another property is that on expanding the Hamiltonian, all the x2f,p terms can

be replaced with xf,p without losing any information.

2.4.3 Inputs for the Model

All the data about the factory was taken from Ojaghi et al., 2015. According to the data,

the following values are chosen/calculated.

• The number of functional units f = 13.

• Unit area A is chosen to be 5m2. Using this, the relative area of each functional unit

is calculated. The table of functional units, along with their size, is given in Table.2.1

• Number of positions p = 81. The factory floor is divided into a 9× 9 matrix.

• The transportation matrix is created by using the REL matrix given in the paper.

Since there isn’t actual transportation data provided, the pipeline given by the paper

is analyzed, and the elements in the transportation matrix are deleted(set to 0) if

the two functional units don’t have any product flow between them. The diagonal

elements of this matrix are what we will call internal flow, a non-physical quantity, as

a functional unit’s output cannot be its own input. Its only use is to incentivize the

solver to assign adjacent positions to the same functional unit. This value is set higher

than every other value to prevent ”breakage” of the functional units and is functionally

a hyperparameter. Finally, all values of the matrix are cubed.

• The distance matrix is created by taking the cartesian distance between the centres of

all positions.

• The hyperparameters that yielded the best results are α = 1, β = 200, γ = 300
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S. No. Department Size(m2) Relative Size
1 Receiving Department 48 10
2 Raw Material Sotrage 20 4
3 Crushing Department 34.8 7
4 Peeling Department 21 4
5 Chopping-Mixing Department 9.45 2
6 Chopping Department 5 1
7 Forming-Cooking Department 70 14
8 Cooking-Mixing Department 7.5 2
9 Blasting Department 67.5 14
10 Packaging Department 16.32 3
11 Filling Department 5 1
12 Food Court 15 3
13 Finished Goods 10 2

Table 2.1: Functional units and their sizes

T =



10 6 2 2 2 2 2 2 2 2 2 2 2

6 10 6 6 6 3 3 4 2 4 4 3 4

2 6 10 4 5 3 2 2 2 2 2 −4 2

2 6 4 10 3 5 2 4 2 2 2 −4 2

2 6 5 3 10 4 5 3 2 2 2 −4 2

2 3 3 5 4 10 3 5 2 3 2 −4 2

2 3 2 2 5 3 10 4 5 3 2 2 2

2 4 2 4 3 5 4 10 5 3 3 2 2

2 2 2 2 2 2 5 5 10 5 5 3 3

2 4 2 2 2 3 3 3 5 10 4 3 4

2 4 2 2 2 2 2 3 5 4 10 3 4

2 3 −4 −4 −4 −4 2 2 3 3 3 10 3

2 4 2 2 2 2 2 2 3 4 4 3 10



(2.15)
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D =



0 1 2 3 4 5 6 7 8 1 1.41 2.24 3.16 . . .

1 0 1 2 3 4 5 6 7 1.41 1 1.41 2.24 . . .

2 1 0 1 2 3 4 5 6 2.24 1.41 1 1.41 . . .

3 2 1 0 1 2 3 4 5 3.16 2.24 1.41 1 . . .

4 3 2 1 0 1 2 3 4 4.12 3.16 2.24 1.41 . . .

5 4 3 2 1 0 1 2 3 5.1 4.12 3.16 2.24 . . .

6 5 4 3 2 1 0 1 2 6.08 5.1 4.12 3.16 . . .

7 6 5 4 3 2 1 0 1 7.07 6.08 5.1 4.12 . . .

8 7 6 5 4 3 2 1 0 8.06 7.07 6.08 5.1 . . .

1 1.41 2.24 3.16 4.12 5.1 6.08 7.07 8.06 0 1 2 3 . . .

1.41 1 1.41 2.24 3.16 4.12 5.1 6.08 7.07 1 0 1 2 . . .

2.24 1.41 1 1.41 2.24 3.16 4.12 5.1 6.08 2 1 0 1 . . .

3.16 2.24 1.41 1 1.41 2.24 3.16 4.12 5.1 3 2 1 0 . . .
...

...
...

...
...

...
...

...
...

...
...

...
...

. . .


(2.16)

The transportation and distance matrices are given in Eq.2.15 and Eq.2.16 respectively.

The matrices are square symmetric. The distance matrix D is incompletely shown as the

true matrix is too big to fit onto the page, but it is easy to visualize what the matrix will

look like. Each position is labelled in the order of left to right of each row. Fig.2.6 depicts

the labelling of positions.
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Figure 2.6: Labels of the positions of the factory floor.
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Chapter 3

Results

The problem was solved through simulated annealing and quantum annealing. The quantum

solver used was D’Wave’s hybrid solver, as the problem was too large to be directly embed-

ded onto the QPUs. The hybrid solver uses a proprietary algorithm to break the problem

into smaller parts using classical means, solve each part on the QPU separately and then

consolidate all the parts again using a classical computer. Both methods return a matrix

whose elements are the values of the binary decision variables. An example is depicted by

Fig.3.1.

This matrix is then post-processed and represented as a layout of the factory. The layout

will be interpreted as a top-down view of the factory floor, allowing us to visualize where

each facility is placed (Fig.3.2).
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Figure 3.1: A solution generated by the Simulated Annealing Solver
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Figure 3.2: The post-processed solution

3.1 Simulated Annealing

Since simulated annealing is probabilistic, and there are multiple low-energy configurations

that are not physically possible due to breakage, multiple runs were statistically averaged to

highlight the most common spots for each functional unit to be placed.

Each run was initialized in a random configuration, and the number of sweeps was set to

400,000, while the reads were set to 1000. So a single simulated annealing process of 400,000

iterations was repeated 1000 times, and the best result from those 1000 runs was chosen, and

its energy was noted. We will call this a ”sample”. This set of 1000 simulations or samples

was repeated 80 times, and the statistical averaging of the samples was conducted. This was

done by counting the positions where each functional unit occurred.
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Figure 3.3: Occurence vs Position for functional unit 1

Figure 3.4: Occurence vs Position for functional unit 2
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Figure 3.5: Occurence vs Position for functional unit 3

Figure 3.6: Occurence vs Position for functional unit 4
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Figure 3.7: Occurence vs Position for functional unit 5

Figure 3.8: Occurence vs Position for functional unit 6
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Figure 3.9: Occurence vs Position for functional unit 7

Figure 3.10: Occurence vs Position for functional unit 8
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Figure 3.11: Occurence vs Position for functional unit 9

Figure 3.12: Occurence vs Position for functional unit 10
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Figure 3.13: Occurence vs Position for functional unit 11

Figure 3.14: Occurence vs Position for functional unit 12
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Figure 3.15: Occurence vs Position for functional unit 13

From Figs.3.3-3.15 we can see that most facilities peaks exist at different positions. While

some plots look like they contain separated high peaks, that is not the case. Vertical neigh-

bours of any cells, while far apart in labels (multiples of 9 apart), are geometrically very close

to each other. On closer inspection of the above figures where there are multiple dominant

peaks, it is visible that the peaks are ≈ 9 positions apart, which makes them immediate, or

near immediate vertical neighbours.

The same data can be depicted as a heatmap per functional unit, too; it will make the

visualization - of separate peaks not necessarily being geometrically far apart - easier.
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Figure 3.16: Heatmap of functional unit 1 Figure 3.17: Heatmap of functional unit 2

Figure 3.18: Heatmap of functional unit 3 Figure 3.19: Heatmap of functional unit 4

Figure 3.20: Heatmap of functional unit 5 Figure 3.21: Heatmap of functional unit 6
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Figure 3.22: Heatmap of functional unit 7 Figure 3.23: Heatmap of functional unit 8

Figure 3.24: Heatmap of functional unit 9 Figure 3.25: Heatmap of functional unit 10

Figure 3.26: Heatmap of functional unit 11 Figure 3.27: Heatmap of functional unit 12
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Figure 3.28: Heatmap of functional unit 13

When analysing the energies of the samples, the ratio of the minimum energy to the max-

imum energy was 1.008, negating the need to weigh the occurrences against their energies.

This also proves that the current number of sweeps is optimal for consistent layouts with

minimal variance. A quick analysis of the energies of the 80 samples is given below:

• Average computation time per sample = 85, 458.88s which is approximately 23.7 hours.

• Minimum and maximum energy in the sampleset = 16,329.64 & 16,470.98. The differ-

ence between the two is 141.34, which is a difference of 0.87% relative to the minimum

energy

• This negligible variance in energy proves that the results are consistent and repeatable.

• The hyperparameter values that generated the best results are α = 1, β = 200, γ = 300

The sample with the lowest energy generated by simulated annealing is given in Fig.3.29.
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Figure 3.29: best solution generated by the simulated annealing solver

3.2 Quantum Annealing

D’Wave’s hybrid solver service allows us to set a time limit on it. As it uses a hybrid of

classical and quantum algorithms, a certain time limit set is the total time taken for the

classical and quantum process. It was found that 30 seconds of total hybrid solver time

amounts to 1.5 seconds of total QPU usage with a variation of 1-2 milliseconds. The best

solutions generated by the Hybrid Solvers for 3 time limits (20s, 60s, 90s) are given below.
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Figure 3.30: A solution produced by the hybrid solver with time limit = 20s

Figure 3.31: A solution produced by the hybrid solver with time limit = 60s
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Figure 3.32: A solution produced by the hybrid solver with time limit = 90s

Due to access limitations, enough runs could not be submitted on the hybrid solvers for

statistical averaging to have any meaningful impact. It is important not to set the time

limit very high, as there is a possibility of the qubits decohering. An example of a layout

produced when the QPU has decohered is shown in Fig.3.33.
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Figure 3.33: A solution produced by the hybrid solver with time limit = 240s

It can be seen that a 20s or 60s time limit does not always produce a viable solution, but

90 seconds produces a layout that closely follows the heatmaps generated by the simulated

annealing solvers. The total QPU time taken for 20, 60, and 90 seconds of hybrid solver

is 1, 3, and 4.5 seconds respectively, which is unequivocally better than the time taken for

the simulated annealing run to take place. It is to be noted that the solutions generated

by the hybrid solvers are not always the same. A few examples of the different (but viable)

solutions generated by the quantum annealing solver (time limit = 90) are given in Fig.3.34

and Fig.3.35. These do not follow the layout described the simulated annealing solver, but

they highlight the probabilistic nature of quantum annealing. Each of these rough layouts

can be refined further to produce a valid and optimized layout of the factory.
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Figure 3.34: Alternate solution produced by Quantum annealing

Figure 3.35: Alternate solution produced by Quantum annealing
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Chapter 4

Discussion

4.1 Results

It is clear to see that the layouts generated by the hybrid solver follow the same pattern

as the layouts generated by simulated annealing. The difference lies in the time taken for

processing. The average time taken per sample for simulated annealing is roughly 85,500s

seconds or around 23.7 hours. On the contrary, quantum annealing can produce layouts of a

similar or even greater quality than simulated annealing in 90 seconds. Out of the 90-second

total time limit on the hybrid solver, the QPU was active for only 4.5 seconds.

While the layouts generated by both simulated annealing and quantum annealing are

not always physically feasible, it is obvious that functional unit 7 in Fig.3.2, for example,

cannot be broken into the little pieces like the layout suggests. However, it is obvious that

this layout intends to place functional unit 7 in the rectangle enclosed between positions 36

and 51. This breakage of functional units occurs due to the degeneracy of the Hamiltonian.

A layout with functional unit 7 being broken by a single position and functional unit 9 being

intact, will have the same energy with the breakage switched to functional unit 9 with 7 being

intact. While both will have higher energy than a layout with no breakage, the probabilistic

nature of quantum annealing and the physical limitation of qubits not being 100 isolated

from their surroundings lead to the Hamiltonian sometimes ending up in a higher energy

state. The statistical analysis of the layouts generated by the simulated annealing solver can

be used as verification to confirm the results we get from the quantum annealer.
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This is why qualitative analysis and further refining of the layout are necessary. This

situational analysis is used to create a digital double of the factory.

4.2 Why Use a Hybrid Solver

In order to understand the physical limitations we currently face, we can look at a problem

as a graph: where each decision variable, or qubit, is a node on the graph with a bias, and

the edge strength when connecting two nodes is the coupling strength. When mapping - or

”embedding” - a graph onto the QPU, it is not always enough to assign a singular qubit to

each node. On a QPU, every qubit is not coupled to every other qubit. D’Wave refers to

the number of other qubits a particular qubit is connected to, as the qubit’s ”degree”. In

D’Wave’s Advantage QPUs, each qubit has a degree of only 15. This means that there is

a possibility that there is no singular qubit that can be assigned to a node that has all the

physical couplings that a node requires for a problem. This is tackled by assigning multiple

qubits to a single node, essentially making the multiple qubits act as a single qubit. A

problem such as ours, where each node of the graph is connected to every other node, is

called a fully connected graph.

For our particular problem, where we have 81 ∗ 13 = 1053 decision variables or ”logical

qubits” in a fully connected graph, we have 1053C2 = 553878 total connections. Our current

technology comes nowhere near to being able to embed an entire graph of this size onto a

QPU. This is why a hybrid solver is used, it uses classical algorithms to chop the problem into

smaller parts and solve them on the QPU separately. The hybrid solver can solve problems

with over 12,000 logical qubits.
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Chapter 5

Conclusion and Future Prospects

5.1 Future Improvements

Currently, the biggest drawback of this model is that there is no way for the model to know

what the actual shape of the functional unit is. Two functional units of the shape 4m×10m

and 8m× 5m will both have an area of 40m2. The model currently prioritises arranging all

the pieces of the functional unit in a circle. Future improvements can incorporate the shape

of the functional unit as well, by including the diagonal length by penalising any piece that

is further than the diagonal distance away from the other distances. Or instead of using a

quadratic Hamiltonian, a cubic Hamiltonian can be used to check if the piece in question is

within the rectangle defined by the two edge pieces, and penalise the model if not.

Another possible improvement can be the creation of a better distance matrix. Instead of

just using the geometric distance between the positions, we can measure the distance using

the path that the model will actually be following, be it cranes, conveyor belts or any other

mode of transportation a factory might use.

This work utilized a BQM model, but this problem could also be tackled by using a

DQM model. A DQM model, or a discrete quadratic model, uses a discrete, finite set of real

values as the decision variables. Instead of the combinations of functional units and positions

as logical qubits, we assign a logical qubit to each position, and each position can collapse

to one of 14 discrete values (13 functional units and an empty space). This reduces the
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dimensionality of our X matrix, drastically reducing the number of logical qubits required.

This does come at a cost, however, as now ”empty space” is treated as a functional unit

by the model and requires to have a rate of flow defined. A logical qubit can be used as a

discrete variable by superposing multiple physical qubits; for example, our problem with 14

discrete values can be encoded in 4 qubits which provides 16 possible values with 2 values

to spare. However, this again causes a stronger limitation on the size of the problem we can

compute as it is added to the previous coupling limitations. However all these can simply

be overcome using better quantum computers as our technology improves.

5.2 Conclusion

This work proves that quantum computing can provide significant computational benefits

over classical methods, and that the same techniques that are used for the simulation of

physical problems can be applied to real-world problems. In the coming years, as our tech-

nologies are refined and improved upon, and we are able to create quantum computers with

even more qubits with longer decoherence times, we will unlock the potential to solve even

larger problems in a time frame which is negligible compared to the time current classical

simulations take.

It is obvious that a lot of factors that are going to be needed to create an accurate layout

are ignored. For example, a factory that manufactures metallic parts almost certainly has a

CNC machine, and it requires a constant supply of water during its operation. It is vital for

the machine to be placed in a place where there is direct access to water. Realistically, there

are then going to be only a few positions where it is viable to have the machine be placed.

Unfortunately, the model is not capable of taking into account such intricacies. while this

issue, in particular, can be tackled by simply removing the machine and the positions it

will take up, from the model while the rest of the pipeline is optimized normally, it is not

always going to be so easy. But, with some qualitative analysis and consulting with experts,

quantum annealing can provide multiple different variations of layouts that we are sure to

be near optimal. It is then going to be extremely easy to create a more refined digital double

of the factory.

Another benefit that this model provides is that it does not care what the product being

manufactured is, nor does it care about the size or shape of the factory. It takes minimal,
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non-identifiable data, which further protects the manufacturer’s trade secrets. This means

that the same Hamiltonian has the flexibility to be applied directly to a multitude of factories,

both manned and unmanned, and still be guaranteed to generate optimal layouts.
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