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1 Ample and Nef Line Bundles

The main goal of this report is to study the theory of positivity for line
bundles and divisors on a projective algebraic variety over an algebraically
closed field k. We discuss the basic theory of divisors, line bundles and linear
series before proceeding into the classical theory of ample line bundles. We
show how positivity can be recognised cohomologically and numerically. It
can be also measured geometrically which is discussed in [Laz17], but we
omit the discussion here. We describe the theory of Q- and R- divisors which
is used for studying limits of ample bundles. Furthermore after defining
Nef divisors, we discuss examples of ample cones and their structures with
examples. The first section of this report ends with defining amplitude for
a mapping and introduction towards the regularity theorem of Castelnuovo
and Mumford.

1.1 Preliminaries

We start the section by recalling some basic facts and notations, and con-
structions involving divisors and line bundles. We follow the convention of
[Har13]. After that we discuss intersection number of two divisors, numerical
equivalence between divisors and asymptotic versions of the Riemann-Roch
theorem. For the later, we follow the convention of [Laz17].

1.1.1 Line Bundles and Divisors

We start with the definition of Weil divisors, since these are easier to under-
stand geometrically, but the constraint is that they can be defined only on
cerntain types of Noetherian integral schemes. More generally on a scheme,
we can define Cartier divisor, and explain connection between these two di-
visors and invertible sheaves, also known as vector bundles.

For this, we give an example as discussed in [Har13]. Let C is non-singular
projective curve in X = P2

k, the projective plane over k, an algebraically
closed field. For each line L in X, we have L \ C as finite set of points. If
C is a curve of degree A, the intersection L \ C has exactly A points with
proper multiplicity. We denote L \ C =

P
niPi, where Pi 2 C are points in

the curve and ni are multiplicities. This formal sum is defined as a divisor
on C. In other words, divisor on a curve is an element of the free abelian
group on the points of X. As L varies, we obtain a family of divisors on C,
which are parameterised by a set of lines in X, which is the dual projective
space (P2)⇤. This set is known as linear system of divisors on C as we will
define later. Now, the embedding C ⇢ X can be reconstructed from its linear
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system in the following way. If P 2 C is point on the non-singular curve,
the set of divisors in the linear system containing the point P , corresponds
to lines in the dual space of P2, L 2 (P2)⇤ which passes through P , which in
turn determines P as unique point in X. We generalise this notion of linear
system and relations with embeddings in projective space later in detail.

If f is a rational function on X (a non-singular projective variety) then
we can associate to it a divisor as div(f) = Z0(f) � Z1(f), which is the
formal di↵erence of the set of points where f is 0 and the set of points where
f has a pole, counted with multiplicities. Such a divisor is called principal
divisor.

Consider L1 and L2 be two lines in the projective surfaceX = P2, say they
are given by homogeneous equations f1 = 0, f2 = 0 in X, and D1 = L1 \ C
and D2 = L2\C are corresponding divisors. Now f1/f2 is a rational function
on X, which can be restricted to a rational function h on C. Now, h has
zeroes at points of D1, and poles at the points of D2 by definition. The
existence of such a rational function can be taken as an intrinsic definition
of linear equivalence between two divisors divisors D1 and D2.

Before formally defining the Weil divisors, we have the following definition
from [Har13].

Definition 1.1.1. A scheme X is called regular in codimension 1 if every
local ring Ox of X of dimension 1 is regular.

Examples of such schemes are as follows. On a non-singular variety,
all the local rings are regular. Local ring of every closed point is regular.
Now, all local rings can be seen as localisation of local rings of closed points.
Hence non-singular varieties of a field are regular in codimension 1. Also,
on Noetherian normal scheme, all local rings of dimension 1 are integrally
closed domain, so a scheme of this type are regular in codimension 1.

We consider schemes which satisfies following property:

(*) X is an integral Noetherian seperated scheme, regular in co-dimension
1. Then the Weil divisors are defined as follows.

Definition 1.1.2. ([Har13]) A prime divisor on a scheme X satisfying (*) is
a closed integral subscheme T of co-dimension 1. A Weil divisor is element
of DivX, the free abelian group generated by the prime divisors. We denote,
D =

P
niTi, where Ti are prime divisors and ni 2 Z, where finitely ni’s are

non-zero. When all ni � 0, then we define D to be e↵ective divisor.

Now we define the notion of principal divisors in schemes of (*) type as
discussed earlier on a curve. We use valuations to determine the multiplicities
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ni’s in the definition of an Weil divisor. Consider T , a prime divisor on X,
and t 2 T is a generic point (closure of {t} is Y ). Then the local ring
Ot,X is a DVR with its quotient field K which is function field of X. The
corresponding valuation, denoted by vT , to be the valuation of T . Since
X is seperated scheme, T can be uniquely determined by its valuation due
to the following: If X is seperated scheme over the field k, then center of
all valuations K/k on X is unique. (A valuation of K/k has center x on
X (integral scheme of finite type over an algebraically closed field k) if its
valuation ring A dominates the local ring Ox,X).

Now if g 2 K⇤ be a non-zero rational function on X, vT (g) 2 Z. If
vT (g) > 0, we say that g has zero along T of vT (g) order and a pole of order
�vT (g) if it is negative. We have the following final lemma from [Har13].

Lemma 1.1.1. ([Har13]) Consider X is a scheme satisfying (*) and g 2 K⇤

is a non-zero function on X, then vT (g) = 0 for all but finitely many prime
divisors T .

This lemma allows us to make the following definition.

Definition 1.1.3. ([Har13]) The divisor of g denoted by (g) is defined by

(g) =
X

vT (g) · T,

where the sum is taken over all prime divisors of X. Any divisor which is
equal to divisor of a function is called a principal divisor.

From the properties of valuations we have if f1, f2 2 K⇤, (f1/f2) = (f1)�
(f2). So the map sending f 7! (f) will give homomorphism from the group
K⇤ to DivX, where its image consisting of principal divisors is subgroup of
the free group DivX.

For a scheme of type (*) we generalise the notion of linear equivalence as
described earlier.

Definition 1.1.4. ([Har13]) Two Weil divisors D1, D2 are defined as linearly
equivalent (D1 ⇠ D2) if we have D1�D2 is principal divisor. The free group
DivX modulo principle divisors is called the Divisor Class Group of X,
denoted by ClX.

This divisor class group gives us an way of determining whether a Noethe-
rian integral domain is UFD or not by the following result.

Proposition 1.1.1. ([Har13]) The Noetherian domain A is UFD if and only
if X = SpecA is normal scheme and the class group, ClX = 0.
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The following proposition from commutative algebra is useful for calcu-
lating the class group of projective spaces as we describe in following.

Proposition 1.1.2. ([Mat70]) Consider I is an integrally closed Noetherian
domain, then

I =
\

ht p=1

Ip

where intersection has been taken over all prime ideals of I of height one.

Using the equivalent condition of determining UFD using class groups,
we can calculate the class group of an a�ne space.

Example 1.1.1. ([Har13]) Take X = An
k , then the class group ClX = 0.

Since Spec k[x1, . . . , xn] = X is a UFD.

Example 1.1.2. ([Har13]) For a Dedekind domain, the ideal class group
defined in Algebraic Number Theory coincides with the definition of divisor
class group. If I is a Dedekind domain, then Cl(Spec I) is ideal class group of
I. Thus proposition 1.1.1 can be generalised to the fact that the Noetherian
domain I is Unique Factorization Domain if and only if the ideal class group
is trivial.

Now we define degree of divisor on the projective space over the alge-
braically closed field k.

Definition 1.1.5. ([Har13]) Let X = Pn
k , consider a divisor D =

P
niTi.

We define the degree of divisor D by degD =
P

ni deg Ti, where deg Ti are
degree of hypersurface Ti.

Let H denote the hypersurface x0 = 0, then we have the following: any
divisor of degree d is numerically equivalent to a multiple of hypersurface
divisor. This multiple is given by the following proposition and hence we
have an isomorphism to the group of integers.

Proposition 1.1.3. ([Har13]) Consider A, a divisor of degree n, then A ⇠

nH. For any g 2 K⇤, we have deg(g) = 0. This degree function produces an
isomorphism deg : ClX ! Z.

In the following proposition, we discuss that removing a co-dimension 2
subset from a variety, does not change its class group.

Proposition 1.1.4. ([Har13]) Let S ⇢ X be a proper closed subset and
V = X � S, then we have the following.
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1. There exists surjective homomorphism ClX ! ClV defined by

A =
X

niTi 7!

X
ni(Ti \ V ),

where we ignore the terms where Ti \ V is empty.

2. If codim(S,X) � 2, then ClX ! ClV is isomorphism.

3. If S is a irreducible subset of co-dimension 1, then there exists the exact
sequence

Z ! ClX ! ClV ! 0,

where we define the first map by 1 7! 1 · S.

Hence we have the following result on a projective curve which calculates
the class group of the complement of a curve of degree A in a projective
surface.

Example 1.1.3. ([Har13]) If C ⇢ Pn
k is irreducible projective curve of degree

d, then Cl(P2
� C) = Z/dZ.

We now discuss about divisor class group on a curve, we define the notion
of degree of a divisor on a curve and explain how is invariant under linear
equivalence. By a curve over a field k we mean an integral separated scheme
X of finite type over k of dimension 1. If X is proper over k, it is called
complete, and if all the local rings of X are regular, then X is said to be
non-singular. In this setup We have the following proposition.

Proposition 1.1.5. ([Har13]) Consider C is non-singular curve over field k
with function field K, then the following are equivalent.

1. C is a complete variety.

2. C is a projective variety.

3. C ⇠= t(Ck), where Ck is non-singular curve and t is the functor from
category of varieties to the category of schemes as described in [Har13].

We can classify the image of a morphism from a complete non-singular
curve to another curve by the following proposition, which enables us to
define degree of a morphism.

Proposition 1.1.6. ([Har13]) If C is a complete nonsingular curve over k,
and A is any curve over field k, and let g : C ! D be a morphism. Then
the image g(C) is a point, or g(C) = D. In the later case, K(C) is a finite
field extension of K(D), and the map g is a finite morphism and also D is
complete.
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Thus we have the following definition.

Definition 1.1.6. ([Har13]) If g : X ! Y be a finite morphism of curves, we
define the degree of g to be the degree of the field extension [K(X) : K(Y )].

So for a divisor on curve A =
P

niPi, where Pi are closed points, we define
the degree of A to be

P
ni. Thus we are able to define a homomorphism

between the divisor class groups of X and Y . Consider X, Y to be non-
singular curves.

Definition 1.1.7. ([Har13]) If g : X ! Y is a morphism then define homo-
morphism g⇤ : Div Y ! DivX. Take A 2 Y and let a 2 OA (an element of
K(Y )) is local parameter at A with vA(a) = 1, where vA is the valuation of
the DVR OA. Define

g⇤(A) =
X

g(P )=A

vP (t) · P.

Since f is a finite morphism, the sum is well defined, and we get a divisor on
X. If t0 = ut (where u is an unit) is another local parameter at A, for any
point P 2 X with g(P ) = A, u is an unit in OP , hence vP (a) = vP (t0). So
we can conclude that, g⇤A is independent of the choice of local parameter.
By linearity we extend it to a divisor on Y , and it is easy to check that it is
preserves linear equivalence. Hence g⇤ induces a homomorphism g⇤ : ClY !

ClX.

We can define the degree of a pullback of a divisor under a finite morphism
using the following proposition.

Proposition 1.1.7. ([Har13]) Consider g : X ! Y , a finite morphism, then
for each divisor A on Y , we have deg g⇤A = deg g · degA.

We conclude that degree of a principal divisor on complete nonsingular
curve C is zero. Let g 2 K(C)⇤, if g 2 k, then (g) = 0. If g 62 k, then the
inclusion of fields k(g) ✓ K(C) induces the finite morphism  : C ! P1,
which is an isomorphism and finite. Now (g) =  ⇤({0} � {1}). Since
{0}�{1} is a divisor of degree 0 on P1, we can conclude that (g) has degree
zero. Hence the degree function induces a surjective homomorphism from
the class group of X to the integers given by deg : ClX ! Z.

Therefore we have an equivalent condition to determine whether a non-
singular projective curve C is rational, which by definition means birational
to the projective line.

Example 1.1.4. ([Har13]) C is rational curve if and only if there exists
two distinct points P1, P2 2 C with P1 ⇠ P2, i.e. they are numerically

12



equivalent as divisors. If C is rational, it has an isomorphism to P1 and on
P1, every two points are linearly equivalent as proven in chapter 2 of [Har13].
Conversely, let C has two distinct points P1 ⇠ P2. Then there is a rational
function g 2 K(C) with (g) = P1 � P2. Consider the morphism  : C ! P1

determined by (g) as above. We have  ⇤({0}) = P1, hence  is a morphism
with degree 1, that is  is birational and C is rational.

Now we wish to extend our definition of divisor to divisors on arbitrary
schemes. The idea is: a divisor should be locally act like divisor of a rational
function. We define the concept of Cartier divisor on a scheme.

Definition 1.1.8. ([Har13]) For each open a�ne set U = SpecA, let S be
collection of elements of A which are not zero divisors, and K(U) is the local-
ization of A by the multiplicative system S. K(U) is called the total quotient
ring of A. For each open set U , we denote by S(U) the elements of �(U,OX)
which are not zero divisors in each local ring Ox for all x 2 U . Therefore,
the rings S(U)�1�(U,OX) forms a presheaf, whose associated sheaf of rings
K is called the sheaf of total quotient rings of O. On an arbitrary scheme,
this K generalizes the concept of function field on an integral scheme.

The cartier divisor on X is now defined to be a global section of the
following quotient sheaf of units.

Definition 1.1.9. ([Har13]) A Cartier Divisor on a scheme X is a global
section of the sheaf K⇤/O⇤.

A Cartier divisor on X can be described as giving an open cover {Ui}

of X, and for each i, an element fi 2 �(Ui,K⇤), such that for each i, j, we
have fi/fj 2 �(Ui \ Uj,O⇤). A Cartier divisor is said to be principal if it
is in the image of the natural map �(X,K⇤) ! �(X,K⇤/O⇤). Similarly as
Weil divisors, two Cartier divisors are said to be linearly equivalent if their
di↵erence is principal.

Now we establish the relation between Weil and Cartier divisors by the
following proposition from [Har13].

Proposition 1.1.8. ([Har13]) Let X be an integral, seperated Noetherian
scheme, all of whose local rings are unique factorization domains. Then the
group of Weil divisors DivX is isomorphic to the group of Cartier divisors
�(X,K⇤/O⇤), also principal Weil divisors corresponds to principal Cartier
divisors in this isomorphism.

On a ringed space X, a locally free OX-module of rank 1 is called an
Invertible sheaf, or a Line bundle. In the following we show that the iso-
morphism classes of line bundles forms a group. Firstly, we guarantee the
existance of inverse by the following proposition.
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Proposition 1.1.9. ([Har13]) If L and M are line bundles on a ringed space
X, then so is L ⌦ M. If L is a line bundle then there exists a line bundle
L

�1 such that L⌦ L
�1 ⇠= OX .

Hence we define the group of isomorphism classes of line bundles, the
Picard group as follows.

Definition 1.1.10. ([Har13]) For a ringed space X, the Picard group of
X,PicX is defined to be group of isomorphism classes of line bundles under
⌦.

In what follows, a divisor always corresponds to Cartier divisor unless
otherwise stated. We can associate a line bundle to a divisor by the following.
We follow the convention of [Laz17].

Definition 1.1.11. ([Laz17]) Consider A is Cartier divisor, the subsheaf
OX(A) of the sheaf of total quotient rings K is defined by taking OX(A) to
be the sub-OX-module of K generated by g�1

i on Ui. This is well-defined since
gi/gj is invertible on Ui \ Uj so g�1

i and g�1
j generate the same OX-module.

We say OX(A) to be the sheaf associated to A. Here {Ui} is an a�ne cover
of X.

Now for a scheme X we have the following relations which follows the
above definition.

Proposition 1.1.10. ([Laz17])

1. For a divisor A, the map sending A 7! OX(A) gives an injection be-
tween divisors and line bundles.

2. OX(A1 � A2) ⇠= OX(A1)⌦OX(A2)�1.

3. A1 ⇠ A2 if and only if OX(A1) ⇠= OX(A2) as line bundles.

So, on X, A 7! OX(A) is an injective homomorphism of the divisor class
group of divisors to PicX. But this map is not in general surjective. Because
there are line bundles which are not isomorphic to any invertible subsheaf of
K. Nakai has shown ([Laz17]) that the map is infact an isomorphism when X
is projective scheme over a field. It is infact an isomorphism if X is integral
scheme. Therefore, if X is noetherian, seperated, integral scheme whose all
local rings are UFDs then we have the isomorphism ClX ⇠= PicX.

We have the classifying theorem for line bundles on a projective space as
follows.

Proposition 1.1.11. ([Har13]) Every line bundle on Pn
k (for some field k) is

isomorphic to O(n) for some n 2 Z.
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1.1.2 Linear Series

X be a projective variety which is non-singular and defined over algebraically
closed field k. For line bundle L of X (which is in one-one correspondence
with the group of divisors, same in this case), global section �(X,L) form a
finite-dimensional k-vector space due to the following theorem.

Theorem 1.1.1. ([Har13]) Let k be a field, and A is a finitely generated
k-algebra and X is a projective scheme over A, and F be a coherent OX-
module. Then �(X,F) is a finitely generated A-module. In particular, if
A = k, then �(X,F) is a finite dimensional k-vector space.

We now show how a line bundle gives rise to a divisor on a scheme X.
Let L be a line bundle on X, and s 2 �(X,L) be a non-zero section of L. We
define an e↵ective divisor A = (s)0, the divisor of zeros of s as follows. Over
an open set U ✓ X where L is trivial, let  : L|U ! OU be an isomorphism.
Then  (s) 2 �(U,OU). Thus {U, (s)} gives e↵ective Cartier divisor A on
X as U varies over a cover of X. Then for a projective variety (non-singular)
we have the following.

Proposition 1.1.12. ([Har13]) Let A0 be a divisor onX and let L ⇠= OX(A0)
be the corresponding line bundle. Then

1. for each nonzero s 2 �(X,L), the divisor of zeros (s)0 is an e↵ective
divisor linearly equivalent to A0.

2. every e↵ective divisor linearly equivalent to A0 is (s)0 for some s 2

�(X,L).

3. two sections s, s0 2 �(X,L) have the same divisor of zeroes if and only
if there is a � 2 k⇤ such that s = �s0.

The proposition allows us to make the definition of complete linear system
as the following.

Definition 1.1.12. ([Har13]) A complete linear system on non-singular pro-
jective scheme or variety is defined to be set of e↵ective divisors linearly
equivalent to a given divisor A0 and is denoted by |A0|.

From the proposition, we get that, |A0| has an injection with (�(X,L)�
{0})/k⇤. Hence, |A0| has a structure of set of closed points of a projective
space over the field k.

Let L is a line bundle on a scheme X, and W ✓ H0(X,L) a nonzero
subset with finite dimension. Denote |W | = Psub(W ) the projective space of
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one dimensional subspaces of W . If X is a complete scheme or variety, |W |

is identified with the linear series of divisors of sections of W in the above
sense. We take W = H0(X,L) (which is finite dimensional if X is complete,
([Har13])) - yields a complete linear series |L|. Given a divisor A, we write
|A| to be the linear series corresponding the line bundle OX(A).

Evaluation of sections in V gives morphism evalV : V ⌦C OX ! L of
vector bundles on X. Using the vector bundle morphism we define base ideal
and base locus of a linear system.

Definition 1.1.13. ([Laz17]) The base ideal of |W |, denoted as

b(|W |) = b(X, |W |) ✓ OX ,

is image of the map W ⌦C L⇤
! OX determined by evalW . The base locus

Bs(|W |) ✓ X

of |W | is the closed subset of X cut out by base ideal b(|V |). To emphasize
on scheme structure on Bs(|W |) determined by the base ideal b(|W |) we
see Bs(|W |) as the base scheme of |W |. When W = H0(X,L) or W =
H0(X,OX(A)) is finite-dimensional, base ideals of the complete linear series
are written as b(|L|) and b(|A|). Then Bs(|W |) is set of points where all
sections in W vanish and b(|W |) is ideal sheaf spanned by those sections.

Example 1.1.5. ([Laz17]) Assume X is projective (or complete), for fixed
Cartier divisor A on X, for all n1, n2 2 Z, greater than 1, we have inclusion

b(|n1A|) · b(|n2A|) ✓ b(|(n1 + n2)A|)

from the natural homomorphism

H0(X,OX(n1A))⌦H0(X,OX(n2A)) ! H0(X,OX((n1 + n2)A))

determined by the multiplication of the sections.

Now we define the notion of globally generated line bundles, which are
also known as basepoint-free.

Definition 1.1.14. ([Laz17]) We say that |W | is free or basepoint-free if its
base locus is empty, that is, b(|W |) = OX . Divisor A or a line bundle L

is said to be free if the corresponding complete linear series to it is so. For
line bundles, we say that L is globally generated or generated by its global
sections.
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That is, a linear series |W | is said to be free if and only if for each x 2 X
there exists section t = tx 2 W such that t(x) 6= 0.

Now we describe how a linear series gives rise to a morphism of an irre-
ducible variety into a projective space, as described in [Laz17]. If dimW � 2
and Y = Bs(|W |), then the linear series |W | determines a morphism

 =  |W | : X � Y ! P(V )

from complement of the base locus to projective space of one-dimensional
subsets of W . So, for given x 2 X,  (x) is a hyperplane in W consisting
those sections which vanishes at x. We choose basis s0, . . . , sr 2 V , which
means that  is given by homogeneous coordinates by

 (x) = [t0(x), . . . , tr(x)] 2 Pr.

If X is irreducible variety, then we can ignore the base locus and view the
map  |W | as a rational mapping  : X 99K P(W ). If |W | is free then the
map  |W | : X ! P(W ) is a globally defined morphism.

The converse ([Laz17]) is also true that - a morphism to a projective space
gives rise to a linear series when Y = ;. Suppose given a morphism

 : X ! P(W )

from X to the projective space of a one-dimensional subset of a vector
space W also assume that  (X) does not lie on any hyperplane. Then
the pullback of the sections via  realizes W = H0(P,OP(1)) as subspace of
H0(X, ⇤

OP(1)), and |W | is a free linear series on X and  is identified with
the corresponding morphism  |W |.

1.1.3 Intersection Theory

In this section we discuss the intersection theory of two divisors or line bun-
dles. As the report proceeds it turns out to be one of the most important
aspect of positivity theory. In this regard, we quote the following theorem
from [Har13].

Theorem 1.1.2. (Bertini’s Theorem). ([Har13]) Let X be a non-singular
closed subvariety of Pn

k for an algebraically closed field k. Then there exists
a hyperplane H ✓ Pn

k , not containing X, and such that the scheme H \ X
is regular at every point. If dimX � 2, then H \ X is connected, hence
irreducible and soH\X is a non-singular variety. Also, the set of hyperplanes
with this property forms an open dense subset of the complete linear system
|H|, considered as a projective space.
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Let X be a surface as in above theorem. We define the intersection
number D1 ·D2 for any two divisors D1, D2 on X. If D1 and D2 are curves
on X and if P 2 D1 \D2 is a point of intersection, we say D1 and D2 meet
transversely at P if the local equations f1, f2 of D1, D2 at P generate the
maximal ideal mP of OP,X . Which implies that, D1, D2 are non-singular at
P since f1 generates the maximal ideal of P in OP,D1 = OP,X/(f2).

As proven in [Har13], if C,D are non-singular curves meeting transversely
at finite number of points P1, . . . , Pr, then the intersection number C · D
should be r.

According to the definition of intersection numbers, it satisfies the follow-
ing properties.

Theorem 1.1.3. ([Har13]) There is a unique pairing DivX ⇥ DivX ! Z
denoted by D1 ·D2 for any two Weil divisors D1, D2 such that

1. if D1, D2 are non-singular curves which meet transversely, then D1 ·

D2 = #(D1 \D2), the number of points in the intersection D1 \D2.

2. the pairing is symmetric: D1 ·D2 = D1 ·D2.

3. the pairing is additive: (D1
1 +D2

1) ·D2 = D1
1 ·D2 +D2

1 ·D2 and,

4. the pairing depends only on linear equivalence classes of divisoirs: if
D1

1 ⇠ D2
1 then D1

1 ·D2 = D2
1 ·D2.

If we have a collection of irreducible curves, and a very ample divisor then
we have following lemma from [Har13].

Lemma 1.1.2. ([Har13]) Let C1, . . . , Cr be irreducible curves on a surface
X, and let A be a very ample divisor (defined later). Then almost all curves
A0 in the complete linear system |A| are irreducible, non-singular, and meet
each of the Ci transversely.

The number of points in the intersection can be found by the following
formula.

Lemma 1.1.3. ([Har13]) Consider C1, an irreducible non-singular curve on
X and let C2 is any curve which meets C1 transversely, then

#(C1 \ C2) = degC(OX(C2)⌦OC1).

Intersection number of the two curves can be determined by taking a sum
of local intersection numbers over the points in the intersection.
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Proposition 1.1.13. ([Har13]) If C1, C2 are curves on X having no common
irreducible component, then

C1 · C2 =
X

P2C1\C2

(C1 · C2)P

Now we give two examples of calculating intersection numbers explicitly.
For curves in a projective surface we see that the intersection number is the
product of their degrees.

Example 1.1.6. ([Har13]) Let X = P2, then the Picard group, PicX ⇠=
Z, take class l of a line as a generator. Since any two straight lines are
equivalent and any two distinct straight lines meet only at one point, we
have l2 = 1. Thus if C1, C2 are curves of degrees m1,m2 respectively, we
have C1 ⇠ m2h, C2 ⇠ m1h. So, C1 · C2 = m1m2.

The following is an example of calculating intersection numbers of two
lines in a quadratic surface.

Example 1.1.7. ([Har13]) Consider X is a non-singular quadratic surface
in P3. Then PicX = Z � Z, we take generators the lines n1 of type (1, 0)
and n2 of type (0, 1). Then n2

1 = 0, n2
2 = 0, n1 · n2 = 1 since two straight

lines in same family are skew, and straight lines in opposite family meet at
one point. So if C1 is a curve of type (p, q) and C2 has type (p0, q0) then
C1 · C2 = pq0 + p0q.

Example 1.1.8. ([Har13]) Let ⌦X/k is sheaf of di↵erentials of X/k, and
!X =

V2 ⌦X/k be the canonical sheaf. Any divisorK in the linear equivalence
class corresponding to !X is called a canonical divisor. For example, if X =
P2, K = �2h, so K2 = 4.

The following proposition gives a formula for calculating genus of a non-
singular curve V .

Proposition 1.1.14. (Adjunction Formula) ([Har13]). If V has genus g on
surface X, and K is canonical divisor on X, then

2g � 2 = V · (V +K).

We also get the similar formula for calculating genus of a curve in a
quadratic surface as the following.

Example 1.1.9. ([Har13]) If V is a curve of type (p, q) on a quadratic surface,
then V +K has type (p� 2, q � 2), so,

2g � 2 = p(q � 2) + (p� 2)q,

so, g = pq � p� q + 1.
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For any divisor A on surface X, let l(A) be the dimension of the 0-
th cohomology of the line bundle corresponding to the divisor A. That is,
l(A) = dimk H0(X,OX(A)), thus we have l(A) = dim |A|+1, where |A| is the
complete linear system of A. The superabundance s(A) is defined to be the
dimension of the first cohomology group dimH1(X,OX(A)). The arithmetic
genus, pa of X is defined using the Euler characteristic if the structure sheaf,
by pa = �(OX)� 1. Using these convention, we have the following theorem.

Theorem 1.1.4. (Riemann-Roch) ([Har13]). If A is any divisor on a surface
X, then

l(A)� s(A) + l(K � A) =
1

2
A · (A�K) + 1 + pa.

The intersection theory on surface is relatively as compared to that in
higher dimension. It can be summarised by an unique bilinear map PicX ⇥

PicX ! Z. In higher dimension, to develop intersection theory we introduce
some functorial mappings g⇤ and g⇤ associated to a morphism g : X ! X 0

as in [Har13].
Let g : X ! X 0 be morphism of varieties and T is a subvariety of X.

The pushforward of the morphism is defined as follows. If the dimensions,
dim g(T ) < dimT , we set g⇤(T ) = 0. If dim g(T ) = dimT , then the function
field K(T ) is a finite extension field of K(g(T )) and we set

g⇤(T ) = [K(T ) : K(g(T ))] · g(T ).

Extending by linearity defines a group homomorphism g⇤ from the group of
cycles on X to the group of cycles on X 0.

Let U be any subvariety of X, consider g : Ũ ! U be normalization of U .
Then Ũ satisfies the condition (⇤), so Weil divisors and linear equivalence can
be discussed for the normalization. When D1 ⇠ D2 are linearly equivalent,
we say g⇤D1 and g⇤D2 are rationally equivalent as cycles on X. If X is a
normal scheme then the notion of rational equivalence coincides with usual
linear equivalence of Weil divisors.

Next, we discuss the axioms of intersection theory from [Har13]. For each
p, define Ap(X) to be the group of cycles of co-dimension p on X modulo

rational equivalence. Denote A(X) to be the graded group
nL

p=0
Ap(X), where

n = dimX. Now A0(X) = Z and Ap(X) = 0 for p > dimX. If X is
complete, we have a natural group homomorphism given by the degree from
An(X) to Z, defined by deg (

P
niZi) =

P
ni, where Zi are points.

Intersection theory is a set of axioms on a given class of varieties V. It
consists of a pairing Ar1(X) ⇥ Ar2(X) ! Ar1+r2(X) for all r1, r2 and for
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all X 2 V which satisfies following axioms. For Y 2 Ar1(X), Z 2 Ar2(X),
denote the intersection class by Y · Z.

For a given morphism g : X ! X 0 of varieties in V, we assume X ⇥X 0
2

V, we define a homomorphism, the pushforward, g⇤ : A(X 0) ! A(X) as
follows. For a sub-variety V 0

✓ X 0 we define

g⇤(V 0) = p1⇤(�g · p
�1
2 (V 0)).

where p1 and p2 are projections into first and second component of X ⇥X 0,
and �g is graph of g, considered as a cycle on X ⇥X 0.

The axioms are as follows as in [Har13].

1. The intersection pairing makes A(X) into a commutative associative
graded ring with identity for every X 2 V, and is defined as the Chow
ring of X.

2. For morphism of varieties g : X ! X 0 in V, g⇤ : A(X 0) ! A(X) is a
homomorphism of graded groups. If h : X 0

! X 00 is another morphism
then g⇤ � h⇤ = (h � g)⇤.

3. For any proper morphism g : X ! X 0 of varieties in V, g⇤ : A(X) !
A(X 0) is a homomorphism of graded groups, and h : X 0

! X 00 is
another morphism then h⇤ � g⇤ = (h � g)⇤.

4. If g : X ! X 0 be a proper morphism, if p 2 A(X) and q 2 A(X 0), then

g⇤(p · g
⇤q) = g⇤(p) · q.

This is called the Projection formula.

5. If Z1, Z2 are cycles on X, and � : X ! X ⇥X is diagonal morphism,
then

Z1 · Z2 = �⇤(Z1 ⇥ Z2).

6. If Z1, Z2 are sub-varieties on X intersecting properly (i.e., every irre-
ducible component of Z1 \ Z2 has co-dimension codimZ1 + codimZ2),
then we can write

Z1 · Z2 =
X

i(Z1, Z2;Wj)Wj,

where the sum is over irreducible componentsWj of Z1\Z2, and the in-
teger i(Z1, Z2;Wj) depends only on a neighborhood of the generic point
of Wj on X. Also i(Z1, Z2;Wj) is called local intersection multiplicity
of Z1 and Z2 along Wj.

21



7. If V is a subvariety of X and D is e↵ective cartier divisor which meets
V properly, then V ·D is cycle associated to Cartier divisor V \D on
V , defined by restriction of the local equation of D to V .

The following theorem guarantees that an unique intersection theory ex-
ists for cycles in non-singular projective varieties.

Theorem 1.1.5. ([Har13]) ConsiderV is class of non-singular quasi-projective
varieties over an algebraically closed field k. Then there exists an unique in-
tersection theory for cycles modulo rational equivalence on X 2 V which
satisfies above 7 axioms.

Example 1.1.10. ([Har13]) This example shows that intersection theory can
not be expected for singular varieties unlike above. For example, consider an
intersection theory on quadratic cone T : xy = z2 in P3, which is singular as
proved in [Har13]. Let U be the ruling z = x = 0 and V be z = y = 0. Then
2V is linearly equivalent to hyperplane section which can be taken as conic
C on T which meets U, V transversely in one point. So

1 = U · C = U · (2V ).

Using linearity, we get U · V = 1
2 62 Z. Hence the intersection theory does

not exist in the quadratic cone.

We now follow the convention of [Laz17] to denote intersection numbers.
Let X be a complete irreducible complex variety. For given Cartier divisors
A1, . . . , An 2 DivX and a irreducible subvariety Y ✓ X of dimension n, we
denote the intersection number

(A1 · . . . · An · Y ) 2 Z.

We can also define the intersection number topologically as follows using
characteristic classes.

Each of the line bundles OX(Ai) has its first Chern class

c1(OX(Ai)) 2 H2(X;Z),

The cup product of these gives an element

c1(OX(A1)) · . . . · c1(OX(An)) 2 H2n(X;Z).

Denoting by [W ] 2 H2n(X;Z) the fundamental class of W , cap product
finally leads to an integer:

(c1(OX(A1)) · . . . · c1(OX(An))) \ [V ] 2 H0(X;Z) = Z
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For r Cartier divisors on an r-dimensional irreducible projective (or com-
plete) variety X, we have the following properties of the intersection numbers
from [Laz17]. It matches with the definition of intersection number of two
curves on a surface as defined earlier. Here the intersection number is sym-
metric and multi-linear likewise the bi-linear case earlier.

1. The integer (A1 ·. . .·Ar) is symmetric and multi-linear in its arguments.

2. Similarly as previous, it depends only on linear equivalence class of Ai.

3. If A1, . . . , Ar are e↵ective divisors which meet transversely at smooth
points of X, then intersection number is given by

(A1 · . . . · Ar) = #{A1 \ . . . \ Ar}.

Given an irreducible subvariety U ✓ X of dimension m, the intersection
number

(A1 · . . . · Am · U) 2 Z
is defined ([Laz17]) by replacing each Ai with linearly equivalent divisors A0

i

whose support don’t contain U and intersecting the restrictions of A0

i on U .
If Ar is irreducible, reduced and e↵ective then we can compute (A1 · . . . ·Ar)
by taking U = Ar.

The intersection number satisfies projection formula: if g : Y ! X is a
generically finite proper map which is surjective, then

(g⇤A1 · . . . · g
⇤Ar) = (deg g) · (A1 · . . . · Ar)

This matches with proposition 1.1.7 for a single divisor A and a finite mor-
phism.

We now introduce the notion of numerical equivalence likewise linear
equivalence.

Definition 1.1.15. ([Laz17]) Two cartier divisors D, and D0
2 Div(X) are

numerically equivalent if their intersection number is same for all irreducible
curve T ✓ X, i.e.

(D · T ) = (D0
· T )

and it is written as D ⌘num D0.

This discussion allows us to defined the quotient group of the class group
by numerically trivial divisors, i.e. a divisor or a line bundle which is numer-
ically equivalent to zero.
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Definition 1.1.16. ([Laz17]) The Neron-Severi group of a scheme X is de-
fined to be the group

N1(X) = DivX/NumX

where NumX is the subgroup of DivX consisting of all numerically trivial
(numerically equivalent to 0) divisors.

The following proposition gives more information about the group struc-
ture of N1(X).

Proposition 1.1.15. ([Laz17]) The N1(X) is a free abelian group with finite
rank.

Definition 1.1.17. ([Laz17]) The rank of N1(X) is called the Picard number
of X, denoted by ⇢(X).

The following lemma allows us to talk about intersection number of classes
in N1(X) with a subvariety.

Lemma 1.1.4. ([Laz17]) Consider X is complete scheme, and

A1, . . . , An, A
0

1, . . . , A
0

n 2 DivX

be n-Cartier divisors on X. If Aj ⌘num A0

j for each j, then

(A1 · . . . · An · [U ]) = (A0

1 · . . . · A
0

n · [U ])

for all subscheme U ✓ X of pure dimension n.

Hence we have the following definition of intersection number of a repre-
sentative of classes in the group N1(X).

Definition 1.1.18. ([Laz17]) Given the classes d1, . . . , dk 2 N1(X), we de-
note by (d1, . . . , dk · [U ]) the intersection number of a representative of the
classes in discussion.

1.1.4 Riemann-Roch

We discuss asymptotic forms of the Riemann-Roch theorem here. It gives us
an asymptotic formula for Euler characteristic of a line bundle on a irreducible
projective variety X of dimension n. Before stating the theorem, we need to
make sense of the cycle and rank of a coherent sheaf F on X.
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Definition 1.1.19. ([Laz17]) The rank rank(G) of G is defined to be the
length of the stalk of G at the generic point of X. If X is reduced, then we
have

rank(G) = dimC(X)G ⌦C(X)

where C(X) is the (constant) sheaf of rational functions on X. If X is
reducible (of dimension n), then we define the rank of G along a n-dimensional
irreducible component U ofX : rankU(G) = length

Ou
Gu, where Gu is the stalk

of G at the generic point u of U . The cycle of G is defined to be the n-cycle

Zn(G) =
X

U

rankU(G) · [U ],

the sum is taken over all n-dimensional components of X.

Then we have the following theorem.

Theorem 1.1.6. (Asymptotic Riemann-Roch, I. [Laz17]) Take A a divi-
sor on X, then the Euler characteristic �(X,OX(kA)) is a polynomial whose
degree is not more than n in k with

�(X,OX(kA)) =
(An)

n!
kn +O(kn�1).

More generally, we have for all coherent sheaf G on X,

�(X,G ⌦OX(kA)) = rank(G) ·
(An)

n!
kn +O(kn�1).

This theorem gives us an estimate about the dimension of the i-th sheaf
cohomology groups of line bundles over X. As the following corollary states
-

Corollary 1.1.1. ([Laz17]) If H i(X,G⌦OX(kA)) = 0 for i > 0 and k >> 0
then

h0(X,G ⌦OX(kA)) = rank(G) ·
(An)

n!
kn +O(kn�1)

for large k. More generally, the above holds provided that

hi(X,G ⌦OX(kA)) = O(kn�1)

for i > 0.

If we have a finite etale covering ofX, then we can also calculate the Euler
characteristic of the pullback of any coherent sheaf on X via the covering
map.
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Proposition 1.1.16. ([Laz17]) Consider g : Y ! X is a finite etale covering
of complete schemes, and G is a coherent sheaf on X then

�(Y, g⇤G) = deg(Y ! X) · �(X,G).

Proposition 1.1.17. ([Laz17]) Take A is a divisor with the property that
the dimension of the i-th sheaf cohomology, hi(X,OX(kA)) = O(kn�1) for
i > 0. We fix ↵ 2 Q, ↵ > 0, with

0 < ↵n < (An).

Then for k >> 0, for all smooth points x 2 X there exists a divisor A =
Ax 2 |kA| with

multx(D) � k · ↵.

Here multx(D) denotes the usual multiplicity of D at the point x, that is
order of vanishing at the point x of local equation for D. This demonstrates
a construction of what is known as singular divisor.

1.2 The Classical Theory

Suppose we have a divisor A on a projective variety X, we want to make
sense of the fact that A is a positive divisor. Intuitively we ask if A is a
hyperplane section under a projective embedding of X - we then define A is
very ample. Since it is technically di�cult to work with very ample divisors
even on curves, we work with certain positive multiples of A to be very ample
- in this case A is said to be ample. In this section we discuss about how on a
projective variety, amplitude of a divisor or a line bundle can be characterised
cohomologically and numerically.

Now we define formally the ample and very ample line bundles.

Definition 1.2.1. ([Laz17]) Consider X is complete scheme and V is a line
bundle on X.

1. V is defined as very ample if there is a closed embedding X ✓ P of X
into a projective space PN such that

V = OX(1) =def OPN (1)|X .

2. V is ample if V ⌦k is very ample for some k > 0.

A Cartier divisor A on X is ample or very ample if the corresponding line
bundle OX(A) is so.

We have a characterisation for the ampleness of line bundles over an
irreducible curve X in the following.

Example 1.2.1. ([Laz17]) Consider X, an irreducible curve and V is line
bundle, then V is ample if and only if its degree, deg(V ) > 0.
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1.2.1 Cohomological Properties

The amplitude of a divisor or line bundle can be determined cohomologically
by the following theorem due to Cartan, Serre and Grothendieck. It deals
with the ampleness of a line bundle and its cohomologies after twisting (the
amount of twisting required will be determined later) and taking the tensor
product with a coherent sheaf.

Theorem 1.2.1. ([Laz17]) Consider V is a line bundle on complete scheme
X, and then the following are equivalent.

1. V is an ample line bundle.

2. (Serre vanishing). Given a coherent sheaf G on X, there exists k1 =
k1(G) 2 N with property that

H i(X,G ⌦ V ⌦k) = 0 for every i > 0, k � k1(G).

3. Given a coherent sheaf G on X, there exists k2 = k2(F) 2 N such that
G ⌦ V ⌦k is generated by global sections for every k � k2(G).

4. There exists k3 2 N such that V ⌦k is a very ample line bundle for every
k � k3.

For non-complete schemes, property 3 is taken as a definition of ampli-
tude.

The following examples give a way to construct more ample and very
ample divisors from a given ample divisor.

Example 1.2.2. ([Laz17]) Consider D1, D2 are Cartier divisors on the pro-
jective scheme X; if D1 is ample, so is kD1 + D2 for every k >> 0. Also,
kD1 +D2 is a very ample Cartier Divisor if k >> 0.

If we have two ample line bundles on two schemes, we can define an ample
line bundle on the product scheme by the following example.

Example 1.2.3. ([Laz17]) Consider V1 and V2 are ample line bundles on two
given projective schemes A and B, then pr⇤1V1 ⌦ pr⇤2V2 is ample line bundle
on A⇥ B.

Now consider two complete schemes, A and B, and a finite morphism
between them. Then, we can construct an ample line bundle on B from the
same given on A by the following proposition.
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Proposition 1.2.1. ([Laz17]) Let g : B ! A as above, and V is ample line
bundle on A. Then g⇤V is ample on B. Particularly, if B ✓ A is sub-scheme,
the restriction V |B of V to B is an ample line bundle.

The ampleness of a globally generated line bundle can be determined by
embedding the underlying scheme into a projective space determined by the
complete linear system corresponding to the line bundle, as follows.

Corollary 1.2.1. ([Laz17]) Suppose V is globally generated. Let

 =  |V | : A ! PH0(A, V )

be resulting map to the projective space determined by complete linear sys-
tem |V |. Then V is ample line bundle if and only if  is a finite mapping, or
equivalently if and only if Z

Z

c1(V ) > 0

for each irreducible curves Z ✓ A.

The following proposition gives us a method for checking the ampleness
of a line bundle on a complete scheme A, without checking on the whole
scheme.

Proposition 1.2.2. ([Laz17]) Consider V , line bundle on scheme A, then

1. V is an ample line bundle if and only if Vred is ample line bundle on
Ared.

2. V is an ample line bundle if and only if restricting V to all irreducible
component of A is ample.

The following theorem says if we have a proper morphism of schemes g :
A ! B, we can get a family of ample line bundles on the domain scheme from
a given line bundle on the sub-scheme of A which is obtained by preimage of
a fixed point in the codomain. The family of line bundles are on restriction
of preimages of an open neighborhood around that fixed point. To state
precisely, we have the following.

Theorem 1.2.2. ([Laz17]) Consider V a line bundle on A. Given p 2 P ,
write

Ap = g�1(p), Vp = V |Ap .

Assume, V0 is ample line bundle on A0 for some point 0 2 P . Then there
exists open neighborhood V of 0 in P such that Vp is ample on Ap for all
p 2 V .
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In the cohomological criterion for determining ampleness, we discussed
the Serre Vanishing. One useful application of Serre vanishing is the fol-
lowing. We develop the aymptotic Riemann-Roch theorem for ample cartier
divisors.

Example 1.2.4. (Asymptotic Riemann-Roch, II [Laz17]) Let A be an
ample Cartier divisor on an irreducible projective variety X which is n-
dimensional. Then

h0(X,OX(kA)) =
(An)

n!
· kn +O(kn�1).

More generally, for G, any coherent sheaf on X then the dimension of the
0-th sheaf cohomology group

h0(X,G ⌦OX(kA)) = rank(G)
(An)

n!
· kn +O(kn�1).

The following gives an upper bound on the dimension of 0-th cohomology
group of a line bundle on a irreducible projective variety X of dimension n.

Example 1.2.5. ([Laz17]) If A is any divisor on X, then there exists positive
constant C > 0 such that the dimension

h0(X,OX(kA))  Ckn for every k.

1.2.2 Numerical Properties

In this section we discuss Numerical properties to determine amplitude of a
line bundle or a divisor on a projective scheme X.

Theorem 1.2.3. (Nakai-Moishezon-Kleiman criterion. [Laz17]) Con-
sider V , line bundle X. Then V is ample if and only if its dimW times self
intersection is positive, i.e.

Z

W

c1(V )dim(W ) > 0

for all positive irreducible subvariety W ✓ X with positive dimension.

It can be shown [Laz17] that ampleness is invariant in an numerical equiv-
alence class. Which enables us to define ample class in N1(X).

Corollary 1.2.2. ([Laz17]) Consider A,A0
2 DivX are two numerically

equivalent Cartier divisors on X, then A is ample if and only if A0 is.
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Definition 1.2.2. ([Laz17]) A numerical equivalence class d 2 N1(X) is
ample if it is the class of ample line bundle or divisor.

If we know the Picard number, that is the rank of N1(X) of a projective
variety, we can conclude the following.

Example 1.2.6. ([Laz17]) Consider T , projective variety with ⇢(T ) = 1,
(Picard number), then all non-zero e↵ective divisors on T are ample divisors.

Now using the Nakai’s criterion we can conclude about the ampleness
of a line bundle or divisor over a projective scheme using its pullback via a
surjective, finite map as the following.

Corollary 1.2.3. ([Laz17]) Consider g : B ! A, a surjective, finite map, V
a line bundle on A. If g⇤V is an ample line bundle on B then V is ample on
X.

The Nakai’s Criterion is still valid for all complete scheme without as-
suming that it is projective scheme. The projectivity hypothesis has been
used in the proof for writing given divisor A as di↵erence of 2 very ample
divisors. However, we can modify this step in case of a complete scheme.

As an example of the above corollary, we have a way to determine whether
a line bundle corresponding to a divisor on a smooth projective surface A
is basepoint-free. Recall that, a line bundle is called basepoint-free if there
are enough sections to give a morphism into a projective space. We use the
morphism to a projective space from the surface and use the corollary as
follows.

Example 1.2.7. ([Laz17]) Consider T ✓ A is an irreducible curve with
positive self intersection, that is, (T 2) > 0. Then the line bundle, OX(kT ) is
basepoint-free for k >> 0.

This criterion can also be used to give an estimate of the growth of di-
mension of the cohomology groups of a coherent sheaf on a projective scheme
A, as we vary the number of twists.

Example 1.2.8. ([Laz17]) Consider a divisor E on A which has dimension
r. G a coherent sheaf on A, then for all i we have,

hi(A,G(kE)) = O(kr).

The higher sheaf cohomology groups might have maximal growth. If A is
smooth and �E is ample, then hr(A,OA(kE)) = h0(A,OA(KA�kE)) (where
KA is the canonical divisor) by the Serre duality, and the later group grows in
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the order of kr. For an example, consider A is the blowing up Blx(P2) of the
projective plane P2 at the point x, with the exceptional divisor as E. Then
we have h1(A,OA(kE)) =

�
k
2

�
has a quadratic growth. Thus the growth of

the sheaf cohomology groups can be determined.

We can also detect the growth of the sheaf cohomology groups of the pull-
backs of a divisor on projective, locally finite type schemes via a surjective,
finite map.

Example 1.2.9. ([Laz17]) Consider

⌧ : A0
! A

is such a map and A,A0 are schemes as mentioned above with dimension r.
E is a divisor on A and E 0 = ⌧ ⇤E. Then we have for all i � 0,

hi(A0,OA0(kE 0)) = hi(A, (⌧⇤OA0)⌦OA(kE)) +O(kr�1).

For a divisor A on a projective schemeX we have the following estimation.

Theorem 1.2.4. ([Laz17]) Consider A is r-dimensional projective scheme,
E a divisor on A with the following property:

(EdimW
·W ) � 0 for every irreducible sub-varieties W ✓ A,

then the dimension of the i-th sheaf cohomology group,

hi(A,OA(kE)) = O(kr�1) for i � 1.

1.3 Theory of the Q-Divisors and the R-Divisors

In the discussion of positivity, The discussion of small perturbations of a
given class is very useful. So we formalise the notion of Q- and R-divisors.

1.3.1 Definitions for Q-Divisors

Definition 1.3.1. ([Laz17]) Consider A is a scheme or algebraic variety. A
Q-divisor on the scheme A is defined as an element of Q-vector space

DivQA =def DivA⌦Z Q.

A Q-divisor E is integral if it is in the image of natural map from DivA !

DivQA, the Q-divisor is said to be e↵ective if it can be written of the form
E =

P
ciAi with ci � 0 and Ai is e↵ective.
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Now we define the support of a divisor as analogous to support of a
function in complex analysis.

Definition 1.3.2. ([Laz17]) Consider E 2 DivQA, a co-dimension one subset
T ✓ A supports E, or is a support of E if union of supports of Ei is contained
in T .

Now, for a complete scheme or variety A, we have the following generali-
sations of the definitions from previous discussions

Definition 1.3.3. ([Laz17]) Let A be complete.

1. For a given sub-scheme or sub-variety T ✓ A of pure dimension n, we
define the Q-valued intersection product as

DivQA⇥ . . .⇥DivQA ! Q,

(A1, . . . , An) 7! (A1 · . . . · Ak · [T ])

via extension of the scalars from the product we had on DivA.

2. The Q-divisors E1, E2 2 DivQ(A) are numerically equivalent, denoted
by E1 ⌘num, Q E2, if

(E1 · Z) = (E2 · Z)

for all curves Z ✓ A. We denote N1(A)Q the finite-dimensional Q-
vector space consisting of numerical equivalence classes of theQ-divisors.

3. The Q-divisors E1, E2 2 DivQ A are linearly equivalent, and written
as E1 ⌘lin Q E2 if there is an integer m such that mE1 and mE2 are
integral and linearly equivalent in the usual sense.

4. Consider g : B ! A is morphism such that image of all associated sub-
varieties of B meet support of E 2 DivQ A properly, then g⇤E 2 DivQ B
is defined via extension of the scalars from the pullback on the integral
divisors.

5. Consider g : B ! A is morphism of projective schemes or complete
varieties, extension of the scalars give functorially an induced homo-
morphism g⇤ : N1(A)Q ! N1(B)Q which is compatible with divisor
level pullback as in 4.

Similarly, we have the notion of ampleness of a divisor on Q-divisors as
the following.
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Definition 1.3.4. ([Laz17]) Given a Q-divisor E 2 DivQ A is said to be
ample if any one of the following equivalent conditions are satisfied.

1. E can be written as the form E =
P

miEi where mi 2 Q and mi > 0
for each i, and each Ei are ample divisor.

2. There exists n 2 N satisfying n · E is an ample and integral divisor.

3. E satisfies statement of the Nakai’s criterion, that is

(EdimW
·W ) > 0

for all irreducible sub-varieties W ✓ X with dimW > 0.

The following proposition asserts that small perturbation of a ample di-
visor by any arbitrary divisor still remains ample.

Proposition 1.3.1. ([Laz17]) Consider A is projective variety, D is ample
Q-divisor on A and F is arbitrary Q-divisor. Then D+↵F is ample Q-divisor
for every su�ciently small 0  |↵| << 1,↵ 2 Q. More generally, if we are
given a finite family of Q-divisors F1, . . . , Fn on A,

D + ↵1F1 + . . .+ ↵nFr

is an ample divisor for every su�ciently small 0  |↵i| << 1,↵ 2 Q.

1.3.2 R-Divisors and Their Amplitude

We define similarly the vector space over R as in [Laz17] by

DivR A = DivA⌦ R

of the R-divisors on a scheme A. E↵ective R-divisors, Pullbacks and supports
are likewise defined as before for Q-divisor.

Example 1.3.1. We have the following isomorphism from the groupN1(X)R
to the original N1(X)

N1(X)R = N1(X)⌦Z R.

Now we define amplitude for a R-divisor on a complete scheme A as
following.

Definition 1.3.5. ([Laz17]) Consider E, a R-divisor on A. It is defined to
be ample divisor if it can be written as finite sum

E =
X

niEi

where ni > 0, ni 2 R and Ei are ample Cartier divisors for each i.
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Similar to Nakai’s criterion we have the following method to check whether
a R-divisor is ample.

Proposition 1.3.2. ([Laz17]) Consider A, an ample R-divisor then

(AdimW
·W ) > 0

for each irreducible sub-varieties W ✓ A with dimW > 0.

As seen previously, we have

Proposition 1.3.3. ([Laz17]) Amplitude of R-divisor depends upon the nu-
merical equivalence class only.

As in the case of Q-divisors on a projective variety A, we have the open-
ness property of amplitude for a R-divisor. Which says that small perturba-
tions of ample R-divisors remain ample.

Example 1.3.2. ([Laz17]) Consider D, an ample R-divisor on A. Given a
finite family of R-divisors F1, . . . , Fn, the following R-divisor

D + ↵1F1 + . . .+ ↵nFn

is an ample divisor for each su↵ciently small 0  |↵i| << 1,↵ 2 R.

1.4 Nef Divisors and Line Bundles

It has been already seen that for a projective scheme A, a class d 2 N1(A)Q
is an ample class if and only if the Nakai’s inqualities

Z

W

ddimW > 0 for every irreducible W ✓ A with dimW > 0

are satisfied. From this, we can argue that the limits of amples classes should
be characterised by the corresponding weak inequalities

Z

W

ddimW
� 0 for every W ✓ A.

1.4.1 Definition and Formal Properties

We define Nef Line bundles on a complete scheme A, and discuss its proper-
ties as follows.
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Definition 1.4.1. ([Laz17]) A line bundle V on A is defined as numerically
e↵ective, or nef, if the self intersection

Z

T

c1(V ) � 0

for all irreducible curves T ✓ A. Similarly, for a Cartier divisor E on A (with
Z, Q or R coe�cients), we define it to be nef if

(E · T ) � 0

for all irreducible curves T ✓ A.

The following lemma is useful for determining nefness of a line bundle.

Proposition 1.4.1. ([Laz17]) Chow’s lemma reduces statements about com-
plete schemes or varieties to projective schemes. Consider A, a complete
scheme, then there is a projective scheme A0 along with surjective morphism
g : A0

! A which is isomorphism over dense open subset of the scheme A.

The properties of nefness of a line bundle on a complete variety are
straightforward.

Example 1.4.1. ([Laz17]) Consider V , line bundle on complete scheme A.

1. Consider g : B ! A, a proper mapping. If the line bundle V is nef then
g⇤V is nef line bundle on B, Particularly, restricting a nef line bundles
to a sub-scheme we get a nef line bundle.

2. For 1, if g is a surjective map and g⇤V is a nef line bundle on B, then
V is itself nef on A.

3. V is a nef line bundle if and only if Vred is a nef line bundle on Ared.

4. V is nef line bundle if and only if restricting it to each irreducible
component of A remains nef.

In the following two examples we get more methods for determining nef-
ness of a line bundle.

Example 1.4.2. ([Laz17]) Consider A, a complete variety, V a globally
generated line bundle on A, then V is nef.

For an irreducible curve T on a projective surface S nefness can be de-
termined by calculating the self-intersection number.

Example 1.4.3. ([Laz17]) If the self intersection number is positive, that is
(T 2) � 0, then we have T is a nef divisor.
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1.4.2 Theorem of Kleiman

The fundamental theorem of the nef divisors were given by Kleiman. It gives
a su�cient condition for a R-divisor E on a complete scheme A to be nef.

Theorem 1.4.1. ([Laz17]) Consider E, a nef R-divisor on A, then

(En
·W ) � 0

for all irreducible n-dimensional sub-variety W ✓ A. Similarly, in case of a
line bundle, Z

W

c1(V )dimW
� 0

for all nef line bundle V on A.

Like the openness criterion for ampleness, we have similar result for nef-
ness of R-divisors on a projective scheme A. That is small perturbation of
a nef divisor by an ample divisor gives an ample divisor. Note that the con-
dition 0 < |↵| << 1 previously, is here replaced by for any ↵ > 0 using nef
divisors.

Corollary 1.4.1. ([Laz17]) Consider E is nef R-divisor on A. For any given
ample R-divisor D on A, we have

E + ↵ ·D

is an ample divisor for all ↵ > 0. Conversely, for any two divisors E and D
such that E + ↵D is ample divisor for every su�ciently small ↵ > 0, then E
is a nef divisor.

The following gives a necessary and su�cient condition for a R-divisor on
a projective scheme A, to be ample divisor.

Corollary 1.4.2. ([Laz17]) Consider D an ample R-divisor on A. Given a
R-divisor E on A. Then we have E is an ample divisor if and only if there is
↵ > 0 such that

(E · T )

(D · T )
� ↵

for all irreducible curves T ✓ A.

Using the above result, we can get the following estimate of intersection
numbers of ample divisors on a projective variety A and irreducible curves
on it.
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Example 1.4.4. ([Laz17]) Consider E1 and E2 be ample divisors A, then
there exists m,M 2 Q,m,M > 0 such that

m · (E1 · T )  (E2 · T )  M · (E1 · T )

for all irreducible curves T ✓ A.

Using the following theroem due to Seshadri, we get a necessary and
su�cient condition for a divisor on a projective variety A to be ample divisor.
This is known as Seshadri’s criterion.

Theorem 1.4.2. ([Laz17]) Consider E is divisor on A. Then E is an ample
divisor if and only if there is ↵ > 0 such that

(E · T )

multt T
� ↵

for all points t 2 A and all irreducible curves T ✓ A which passes through t.

For a given proper map which is surjective between two algebraic varieties,
for a given line bundle on the domain, we can get a family of nef line bundles
if the restriction of the line bundle to a base space which is pre-image of a
fixed point under the map.

Proposition 1.4.2. ([Laz17]) Consider g : A ! B is proper surjective mor-
phism, V a line bundle on A. For given x 2 B, we put

Ax = g�1(x), Vx = V |Ax .

If V0 is given to be nef line bundle for some fixed point 0 2 B, then there
exists countable union I ⇢ B of proper sub-varieties of B which does not
contain 0 such that the restriction Vx is a nef line bundle for every x 2 B�I.

For nef classes on a complete scheme A, their intersection number is non-
negative.

Example 1.4.5. ([Laz17]) Consider d1, . . . , dn 2 N1(X)R be nef classes on
A. Then Z

A

d1 · . . . · dn � 0.

Example 1.4.6. ([Laz17]) Consider A, smooth projective surface which has
non-negative Kodaira dimension, that is |nKA| 6= for some n > 0, where KA

is the canonical divisor. Then the scheme A is minimal - that is it does not
contain any smooth rational curve which has self intersection number (�1) -
if and only if canonical divisor KA is a nef divisor. These surfaces are defined
as Minimal Surfaces.
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Example 1.4.7. ([Laz17]) In the above example 1.4.6, we point out a notion
of minimality in case of a higher dimensional algebraic variety. Non-singular
projective variety A is said to be minimal if the canonical divisor KA is a nef
divisor. Generally, a minimal variety is a normal projective variety which
has only canonical singularities with the canonical divisor KA to be nef.

1.4.3 Cones

ConsiderM , a finite-dimensional vector space over R. A cone in M is defined
by a set C ✓ M , which is stable under the multiplication by positive scalars.
In this section we discuss cones in N1(A)R for a scheme A.

Definition 1.4.2. ([Laz17]) The ample cone

Amp(A) ⇢ N1(A)R

of the scheme A is convex cone consisting of every ample R-divisor classes
on A. The nef cone

Nef(A) ⇢ N1(A)R

is convex cone which consists of all the nef R-divisor classes.

By the following theorem due to Kleiman we have a topological relation
between Ample and Nef cones of a projective scheme A.

Theorem 1.4.3. ([Laz17])

1. The nef cone Nef(A) is closure of ample cone, that is

Nef(A) = Amp(A).

2. The ample cone Amp(A) is interior of nef cone, that is

Amp(A) = int(Nef(A)).

Now we introduce the following definition of one-cycles on a complete
variety A for defining the Cone of curves or the Mori cone.

Definition 1.4.3. ([Laz17]) We denote the R-vector space by V1(A)R of the
real one-cycles on A which consists of all the finite R-linear combinations
of irreducible curves on the variety A. Elements � 2 V1(A)R are written as
formal sum

� =
X

bi · Ti
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where bi 2 R and Ti ⇢ A are irreducible curves for each i. Two given
one-cycles �1, �2 2 V1(A)R are defined as numerically equivalent when

(E · �1) = (E · �2)

for all E 2 DivR A. Corresponding vector space consisting of numerical
equivalence classes of one cycles is denoted by N1(A)R. Hence we have the
pairing

N1(A)R ⇥N1(A)R ! R, (⌘, �) 7! (⌘ · �) 2 R.
Also we have that the vector space N1(A)R is finite dimensional vector space
over R. We induce the standard Euclidean topology on this real vector space.

Now we are ready to define the Mori cone of curves over a complete variety
A.

Definition 1.4.4. ([Laz17]) Cone of curves denoted as

NE(A) ✓ N1(A)R

is cone which is spanned by classes of every e↵ective one-cycles on the variety
A. Precisely we define,

NE(A) =
nX

ni[Zi] | Zi ⇢ X is irreducible curve, ni � 0
o
.

The topological closure of this cone

NE(A) ✓ N1(A)R

is called the closed cone of curves on the variety A.

The cone defined above is not always closed, so we need to take its closure
in usual topology. An example where NE(A) is not closed is given later. The
following proposition builds a relation between the closed cone of e↵ective
curves with the nef cone as follows.

Proposition 1.4.3. ([Laz17]) The closed cone NE(X) is dual to the nef
cone, Nef(X), that is,

NE(A) = {� 2 N1(A)R | (⌘ · �) � 0 for each ⌘ 2 Nef(A)}.

For a fixed divisor E 2 DivR A on a complete scheme A, whic is not trivial
numerically. It is denoted by

 E : N1(A)R ! R
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linear functional given by intersection with E, we define:

E? = {� 2 N1(A)R | (E · �) = 0}

E>0 = {� 2 N1(A)R | (E · �) > 0}.

An important use of this Cone of curves is to determine ampleness of a
R-divisor on a projective variety. It is done using the following theorem.

Theorem 1.4.4. ([Laz17]) Consider E, a R-divisor on the variety A, then
the divisor E is an ample divisor if and only if

NE(A)� {0} ✓ E>0.

In other words, we choose norm on the real vector space N1(A)R, denote it
by

B = {� 2 N1(A)R | k�k = 1}

which is “unit sphere” of classes in the real vector spaceN1(A)R having length
1. Then the divisor E is an ample divisor if and only if

�
NE(A) \ S

�
✓ (E>0 \ B) .

The result is known as the Kleiman’s criterion to determine amplitude of
a R-divisor.

Now we look at some examples and applications of the theorem.

Example 1.4.8. ([Laz17]) Closed cone of curves NE(A) ⇢ N1(A)R on A
doesn’t contain any infinite straight line. Equivalently, if � 2 N1(A)R is class
with both �,�� 2 NE(A), then � = 0.

Example 1.4.9. ([Laz17]) Consider M , smooth projective surface then one-
cycles are same as divisors, so we have the equality

N1(A)R = N1(A)R.

1. We have inclusion of the cones

Nef(A) ✓ NE(A),

equality holds if and only if (T 2) � 0 for each irreducible curves T ⇢ A.

2. Assume T ⇢ A, irreducible curve for which, (T 2)  0, then NE(A) is
spanned by [T ], also the sub-cone

NE(A)T�0 =def T�0 \ NE(A).

3. In case 2, [T ] lies on boundary of the cone of curves NE(A). Also if,
(T 2) < 0 then [T ] spans extremal ray in that cone.
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1.4.4 Fujita’s Vanishing Theorem

The theorem by Fujita suggests, the Serre type vanishing theorems could
be operated uniformly with respect to some twists by the nef divisors. The
following is the statement of the theorem.

Theorem 1.4.5. ([Laz17]) Consider A, which is a complex projective scheme
and E is ample divisor on A. For all coherent sheaves G on A, there exits
n(G, E) 2 Z satisfying,

H i(A,G ⌦OA(nE +N)) = 0 for every i > 0, n � n(G, E)

and a nef divisor N on A.

Fujita showed that using an argument with the Frobenius that the the-
orem also holds over algebraically closed ground fields with positive charac-
teristic.

The following proposition gives a characteristic of line bundles over a
projective scheme A, using a finite type scheme.

Proposition 1.4.4. ([Laz17]) There exists scheme F (which is of finite type)
along with line bundle V on A⇥F with property that all numerically trivial
line bundles V on scheme A arise as restriction

Vp = V |Ap for p 2 F,

where Ap = A⇥ {p}.

Therefore we have the following corollary:

Corollary 1.4.3. ([Laz17]) The line bundle V on A is numerically trivial if
and only if there exists n 2 N with the property that V ⌦n is deformation of
trivial line bundle.

As previously discussed the growth of higher cohomology groups of ample
divisors, we dicuss the same for the nef divisors on a projective scheme A, in
the following theorem.

Theorem 1.4.6. ([Laz17]) Consider A has dimension k, E is a nef divisor
on scheme A. Then for all coherent sheaves G on A we have,

hi(A,G(rE)) = O(rk�i).

Hence, we similarly have the asymptotic form of Riemann-Roch theroem
for nef divisors on a d-dimensional irreducible projective variety A.
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Corollary 1.4.4. ([Laz17]) Consider E is nef divisor on A. Then

h0(A,OA(mE)) =
(Ed)

d!
·md +O(md�1).

Generally we have,

h0(A,G ⌦OA(mE)) = rank(G) ·
(Ed)

d!
·md +O(md�1)

for all coherent sheaves G on A.

1.5 Examples and Complements

In this section we provide some examples of the ample cones and the nef
cones on surfaces.

1.5.1 Ruled Surfaces

Consider S, a smooth projective surface with genus g, V is vector bundle
over S with rank 2. Denote P = P(V ) with

 : P(V ) ! S

be bundle projection. For simplicity of calculation, consider V is with even
degree. After the twist by suitable divisor without loss of generality we can
assume that deg(V ) = 0.

In this setup the group N1(P )R can be generated by two of the classes

⌘ = c1(OP (1)) and t = [T ]

where T is fibre of  . Intersection forms of P are determined by relations

(⌘2) = deg(V ) = 0, (⌘ · t) = 1, (t2) = 0.

Particular we have, ((pt+ q⌘)2) = 2pq. Now representing the class (pt+ q⌘)
by (p, q) in t�⌘ plane, we get that, nef cone Nef(P ) lies inside first quadrant
p, q � 0. Also, fibre T is evidently nef. Hence, non-negative “t-axis” forms a
boundary of two, of nef cone. In other words, t lies on boundary of NE(P ).

For second ray on boundary of Nef(P ), depends on geometry of the bundle
V . The following two cases are possible.

Case I: V is unstable. A rank 2 vector bundle V with degree 0 is
said to be unstable if V has line bundle quotient E with negative degree
e = deg(E) < 0. If we assume this quotient exists,

T = P(E) ⇢ P(V ) = P
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is e↵ective curve in class pt + ⌘. We have (T 2) = 2p < 0, it follows from
previous example - ray spanned by [T ] bounds the closed cone NE(P ). Hence
Nef(P ) is bounded by dual ray which is generated by (�pt+ ⌘).

Case II: U is semistable. A vector bundle with degree 0 is called semi-
stable if it doesn’t have quotients with negative degree. If V is semi-stable
vector bundle then all symmetric powers of V , SnV are same too. Which
implies, if D is line bundle with degree d satisfying H0(S, SnV ⌦ D) 6= 0,
then d � 0. Now, consider T ⇢ P is e↵ective curve. Then T arises as section
of OP (n)⌦  ⇤D for m 2 N and line bundle D on S. Now,

H0(P,OP (n)⌦  ⇤D) = H0(S, SnU ⌦D),

Hence we have d = deg(D) � 0. Equivalently, (pt + q⌘) class lies in first
quadrant. So, in this case, Nef(P ) = NE(P ).

The following examples shows us why we need to take closure of the cone
of curves, that is, it is not closed in usual topology. We take an example of
a ruled surface from [Laz17].

Example 1.5.1. ([Laz17]) For the second case in the previous example, we
determine if “positive ⌘-axis”, R+ · ⌘ lies in NE(X) of the e↵ective cones
or in the closure. Equivalently, if there is irreducible curve T ⇢ P such
that [T ] = n⌘ for n � 1. Existence of this curve is same as existence of
some line bundle D with degree 0 on S with H0(S, SnV ⌦ D) 6= 0, this
implies SnV is a semi-stable vector bundle but is not strictly stable. By the
virtue of theorem by Narasimhan and Seshadri, describing stable bundles
using unitary representations of fundamental group of the surface, ⇡1(S),
Hartshorne has checked when the surface S is with genus g(S) � 2, there are
bundles V with degree 0 on S with the following property:

H0(S, SnV ⌦D) = 0 for every n � 1

when deg(D)  0. It holds for “su�ciently general” semi-stable vector bundle
V . Hence there are no e↵ective curves T on resulting surface P = P(V ) along
with the class [T ] = n⌘, hence positive ⌘-axis is absent in the cone of the
e↵ective curves. The above example was given by Mumford.

Next, we give an example of a non-ample line bundle which is positive on
every irreducible curves.

Example 1.5.2. ([Laz17]) The above example by Mumford yields example
of surface P with line bundle on it V which satisfies

R
T c1(V ) > 0 for all

irreducible curves T ⇢ P , but V is not ample. Consider W is a vector bundle
which satisfies that H0(S, SnW ⌦ D) = 0 for every n � 1, let P = P(W )
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and V = OP (1). From this, we can see that it is not su�cient to check
the intersections with only curves in the Nakai’s criterion. This gives us an
example where linear functional  ⌘ which is determined by the intersection
with ⌘ is positive on cone of curves NE(P ) for non-ample vector bundle ⌘. It
explains why it is needed to take the closed cone NE(P ) in Theorem 1.4.4.

1.5.2 Product of Curves

Consider S, smooth irreducible projective curve over C with genus g = g(S).
Say A = S⇥S, p1, p2 : A ! E are projection maps. We fix the point Q 2 S.
In the group N1(A)R consider three classes

g1 = [{Q}⇥ S], g2 = [S ⇥ {Q}], d = [�],

where � ⇢ A is diagonal of A. Provided that the genus g(S) � 1, these
three classes are independent, if the surface S has general moduli then the
classes span N1(A)R . Intersections among the classes are given by:

(d · g1) = (d · g2) = (g1 · g2) = 1,

((g21)) = ((g22)) = 0,

(d2) = 2� 2g(S).

Elliptic curves. Let g(S) = 1 then A = S⇥S is abelian surface and we
have the following lemma.

Lemma 1.5.1. ([Laz17]) All e↵ective curves in the product space A is nef,
so

Nef(A) = NE(A).

The class ⇣ 2 N1(X)R is a nef class if and only if

(⇣2) � 0, (⇣ · l) � 0

for an ample class l. Particularly, if

⇣ = u · g1 + v · g2 + w · d,

then the class ⇣ is a nef class if and only if

uv + vw + wu � 0

u+ v + w � 0.
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1.5.3 Abelian Varieties

Consider a k-dimensional abelian variety A. M , fixed ample divisor on the
variety A. Then the following proposition which gives an equivalent condition
of being ample and nef divisor.

Proposition 1.5.1. ([Laz17]) The R-divisor E on A is an ample divisor if
and only if

(Ei
·Mk�i) > 0

for every 0  i  k, and E is a nef divisor if and only if (Ek
·Mk�i) � 0 for

every i.

Hence we have the equivalent condition for nef class which is not ample
class.

Corollary 1.5.1. [Laz17]0 Consider d 2 N1(A)R is nef class which is not
ample, we have (dk) = 0.

This gives rise to examples in which the nef cone is locally bounded by
polynomial hypersurfaces of large degree.

1.5.4 The Cone Theorem

Consider A, smooth complex projective variety, KA a canonical divisor on
A. For any divisor E on A write

NE(A)E�0 = NE(A) \ E�0,

for subset of NE(A) which lies in non-negative half-space determined by
divisor E. The following theorem is called Cone theorem.

Theorem 1.5.1. ([Laz17]) Consider A is a r-dimensional surface, the canon-
ical divisor KA is not a nef divisor.

1. There exist countably many rational curves Ti ✓ A, such that

0  �(Ti ·KA)  r + 1,

which along with NE(A)KA�0 generate the closed cone NE(A), that is

NE(A) = NE(A)KA�0 +
X

i

R+ · [Ti].
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2. Suppose L is a given ample divisor. For any ↵ > 0, there exist finitely
many such curves - say T1, . . . , Tk such that their classes lie in region
(KA + ↵ · L)0. Hence,

NE(A) = NE(A)(KA+↵L)�0 +
kX

j

R+ · [Ti].

Example 1.5.3. ([Laz17]) Suppose A is smooth projective variety for which
�KA is ample, where KA is the canonical divisor. Such variety is known as
Fano Variety in literature. Then the closed cone NE(A) ✓ N1(A)R is finite
rational polytope, which is spanned by classes of rational curves.

Example 1.5.4. ([Laz17]) Consider A, smooth projective d-dimensional va-
riety, E is ample integral divisor on A. Then KA + (d+ 1)E is a nef divisor,
KA + (d+2)E is an ample divisor. Generally, for H, any ample divisor with

(H · T ) � d+ 1 (respectively (H · T � d+ 2))

for all irreducible curves T ✓ A, then KA +H is a nef (respectively KA +H
is an ample) divisor.

1.6 Amplitude of a Mapping

Now we define the notion of amplitude relative to some mapping and some
facts related to it. Let g : A ! B is a proper map of schemes and take
coherent sheaf G on A, then the push-forward g⇤G is coherent sheaf on B,
therefore we form B-scheme:

P(G) =def ProjOB
(Sym(g*G)) ! B

its fibre over a fixed point b 2 B is projective space of 1-dimensional quotients
of fibre g⇤(G)⌦C(t). It is analogue of projective space of sections of a sheaf on
complete variety, in relative setting. Moreover, there exists natural mapping
g⇤g⇤G ! G. Its surjectivity is analogue of global generation of the sheaf G in
absolute situation.

These motivates to define Amplitude for scheme map.

Definition 1.6.1. ([Laz17]) Consider a proper map of schemes g : A ! B,
and V , a line bundle on A.

1. v is a very ample line bundle relative to the map g , or said to be g-very
ample, when canonical map

� : g⇤g⇤V ! V

is surjective map and defines embedding
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A P(g⇤V )

B

i

g

of schemes over B.

2. V is an ample bundle relative to g , or g-ample, when V ⌦n is g-very
ample for n 2 N.

Cartier divisor E on A is called very ample for the map g if correspond-
ing line bundle is g-very ample, and g-amplitude for Cartier Q-divisors are
defined by clearing the denominators.

Example 1.6.1. ([Laz17]) Consider W vector bundle on scheme B, then
Serre line bundle OP(W )(1) on S = P(W ) is an ample bundle for natural map
p : S ! B.

All properties in definition are local properties at the scheme B. Equiv-
alently, all conditions hold for g : A ! B if and if only they hold for all
restrictions gi : Ai = g�1(Wi) ! Wi of the map g to inverse images of open
sets of open covering {Wi} of B.

The first condition of definition is same as existence of coherent sheaf G
on B with embedding j : A ,! P(G) over B with V = OP(W )(1)|A. Such em-
beddings give rise to surjection ⇣ : g⇤G ! V . It determines homomorphism
� : G ! g⇤V with factorization

g⇤G V

g⇤g⇤V

⇣

g⇤�
�

of ⇣. Therefore we get that � is a surjective map. Also, given embedding j
is seen as composition of morphism i : A ! P(g⇤V ) which arises from � with
linear projection

(P(g⇤V )� P(coker ⇣)) ! P(G)
of B-schemes.

From this we conclude: B is a�ne - such that g⇤V is globally generated
line bundle - then V is a very ample line bundle for g if and only if there
exists embedding t : A ,! PN

⇥B such that V = t⇤OPN⇥B(1). This property
can also be taken as an alternative definition for a very ample line bundle
relative to some mapping. Now we have the following equivalent statements
for amplitude with respect to a map.
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Theorem 1.6.1. ([Laz17]) Consider a proper morphism g : A ! B of
schemes, V a line bundle on A. Then following statements are equivalent:

1. V is an ample line bundle for the map g.

2. For all coherent sheaves G on A, there is n1 = n1(G) 2 N with

Rig⇤(G ⌦ V ⌦n) = 0 for every i > 0, n � n1(G).

3. For all coherent sheaves G on A, there is m2 = m2(G) 2 N with the
canonical mapping

g⇤g⇤(G ⌦ V ⌦n) ! G ⌦ V ⌦n

is a surjective map when n � n2.

4. There exists n3 2 N with V ⌦n is g-very ample bundle for all n � n3.

The following theorem gives us a way to determine ampleness fibre-wise.

Theorem 1.6.2. ([Laz17]) Consider the proper map g : A ! B of schemes,
V line bundle on A, for b 2 B, say

Ab = g�1(b), Vb = V |Ab

Then V is an ample bundle for g if and only if Vb is an ample bundle on Ab

for each b 2 B.

Similarly, we have in following the Nakai’s criterion for determining am-
plitude for a scheme map.

Corollary 1.6.1. ([Laz17])Q-divisor E on A is an ample divisor with respect
to map g if and only if AdimW

·W > 0 for all irreducible sub-varieties W ⇢ A
with dimW > 0, which maps to a fixed point in B.

Following result gives a summary of connection between the relative and
the global amplitude.

Proposition 1.6.1. ([Laz17]) Let g : A ! B is a map of projective schemes,
V line bundle on A, suppose E is ample line bundle on B. Then V is g-ample
if and only if V ⌦ g⇤(E⌦n) is ample on A for every n >> 0.

Similar to amplitude we define nefness with respect to a map between
schemes.

48



Definition 1.6.2. ([Laz17]) Take g : A ! B, a proper morphism, V line
bundle on A is a nef bundle with respect to the map g if restriction Vb = V |Ab

of V to all fibres are nef line bundles, or in other words, if (c1(V ) · T ) � 0
for all curve T ⇢ A which maps to a fixed point in B.

However if a divisor is nef with respect to some map, then it need not be
a nef divisor. The following is an example for the same.

Example 1.6.2. ([Laz17]) Assume A = C ⇥ C is product of an elliptic
curve with itself and g : A ! C is projection to first co-ordinate. Say
F = C ⇥ {point} and � ⇢ A is diagonal of the product space. Then F ��
is a g-nef divisor. But, for all divisors H on C, the new divisor F ��+ g⇤H
has a self-intersection number -2, hence it cannot be a nef divisor.

Everything discussed in the section is applicable for varieties which are
defined over arbitrary algebraically closed field with any characteristic.

1.7 Castelnuovo–Mumford Regularity

Theorems by Cartan–Serre–Grothendieck imply - all cohomological proper-
ties associated to the coherent sheaf G on projective space P disappear after
a twist by su�ciently high multiple of hyperplane bundle. The Casteln-
uovo–Mumford regularity gives quantitative measure that how much twist is
required for this.

1.7.1 Definitions, its Formal Properties, and its Variants

Suppose W is a vector space over C with dimension d + 1, and we denote
P = P(W ) which is corresponding d-dimensional projective space. Then the
Castelnuovo-Mumford regularity of a coherent sheaf G on P, is defined as
follows.

Definition 1.7.1. ([Laz17]) Define the sheaf G is n-regular (n 2 Z) in sense
of Castelnuovo–Mumford when

H i(P,G(n� i)) = 0 for each i > 0.

Following are few examples of sheaves of above kind.

Example 1.7.1. ([Laz17])

1. The bundle OP(l) is (�l)-regular.

2. Ideal sheaf JS ✓ OP of linear subspace S ✓ P is 1-regular.
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3. Suppose A ✓ P is hypersurface with degree a, the structure sheaf of
A, that is OA, viewed as extension by zero as coherent sheaf on the
projective space P is (a� 1)-regular.

The following theroem is due to Mumford which determines regularity of
a sheaf on P.

Theorem 1.7.1. ([Laz17]) Suppose G is n-regular sheaf. Then for all i � 0:

1. The line bundle G(n+ i) is generated by global sections of it.

2. Natural maps

H0(P,G(n))⌦H0(P,OP(i)) ! H0(P,G(n+ i))

are surjective maps.

3. The sheaf G is (n+ i)-regular.

Hence we define regularity with respect to a globally generated ample line
bundle.

Definition 1.7.2. ([Laz17]) V , ample line bundle on a projective variety A
is generated by its global sections. G is a coherent sheaf on A. It is n-regular
with respect to V if the sheaf cohomology group

H i(A,G ⌦ V ⌦(n�i)) = 0 for i > 0.

Then we have the modified theorem by Mumford as follows.

Theorem 1.7.2. ([Laz17]) If G is n-regular sheaf on A relative to V . Then
for all l � 0:

1. G ⌦ V ⌦(n+l) can be generated by the global sections.

2. Natural map

H0(A,G ⌦ V ⌦n)⌦H0(A, V ⌦l) ! H0(A,G ⌦ V ⌦(n+l))

is a surjective maps.

3. The sheaf G is (n+ l)-regular relative to B.

Example 1.7.2. ([Laz17]) Extension of two n-regular sheaves on projective
space P is still n-regular.
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Example 1.7.3. ([Laz17]) Take a resolution of the coherent sheaf G on P by
long exact sequence

. . . ! G2 ! G1 ! G0 ! G ! 0

of coherent sheaves on the projective space P. When Gj’s are (n+ j)-regular
for all j � 0, then G is n-regular. Additionally, the map H0(P,G0(n)) !

H0(P,G(n)) is a surjective map.

Partial converse of the above example gives an useful characterization of
the n-regularity. Now the following proposition gives an equivalent criterion
for n-regularity of a coherent sheaf G on P.

Proposition 1.7.1. ([Laz17]) G is n-regular if and only if G can be resolved
by long exact sequence

. . . ! � OP(�n� 2) ! � OP(�n� 1) ! � OP(�n) ! G ! 0

the terms are the direct sums of indicated line bundles.

Now we are able to define the Regularity of a coherent sheaf G on projec-
tive space.

Definition 1.7.3. ([Laz17]) Castelnuovo–Mumford regularity, denoted by
reg(G) of G is defined to be least n 2 Z such that G is n-regular.

The following example illustrates a notion of regularity relative to a vector
bundle V on an irreducible projective k-dimensional variety A.

Example 1.7.4. (Regularity with respect to a Vector Bundle.) Sup-
pose V is vector bundle on A with property - for each points a 2 A, there
exists section of V with zero locus being finite set which contains a. (For
example, take: V = W � · · ·�W (k times), where W is globally generated
ample line bundle on A.) If G is coherent sheaf on A with

H i(A,^iV ⇤
⌦ G) = 0 for i > 0,

then the sheaf G is globally generated.

The regularity property helps us to determine amplitude of a line bundle
in the following way.

Proposition 1.7.2. ([Laz17]) Suppose V is line bundle on A which is 0-
regular relative to globally generated ample line bundle W . Then product
bundle V ⌦W is a very ample line bundle.
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Now, we define the regularity relative to a proper surjective map, g of
schemes A to B.

Example 1.7.5. (Regularity with respect to a mapping.) For given
fixed line bundle V on A which satisfies:

1. the bundle V is an ample bundle for the map g,

2. Canonical map g⇤g⇤V ! V is a surjective map.

For given fixed coherent sheaf G on A, define G is n-regular relative to V and
g when

Rig⇤(G ⌦ V ⌦(n�i)) = 0 for i > 0.

When G is n-regular relative to V and g . For each l � 0:

1. Homomorphism

g⇤g⇤(G ⌦ V ⌦(n+l)) ! G ⌦ V ⌦(n+l)

is a surjective homomorphism.

2. Also the following map

g⇤(G ⌦ V ⌦n)⌦ g⇤(V
⌦l) ! g⇤(G ⌦ V ⌦(n+l))

is a surjective map.

3. G is (n+ l)-regular relative to V and g .

In the following example, we introduce the notion of regularity on some
projective bundle.

Example 1.7.6. ([Laz17]) Suppose V is vector bundle on a scheme or variety
A, having projectivization � : P(V ) ! A. Coherent sheaf G on P(V ) is n-
regular relative to the map � when

Ri�⇤(G ⌦OP(V )(n� i)) = 0

for i > 0. When the condition holds, we have:

1. �⇤�⇤(G ⌦OP(V )(n)) maps surjectively to G ⌦OP(V )(n)).

2. Map

�⇤(G ⌦OP(V )(n))⌦ �⇤OP(V )(l)) ! �⇤(G ⌦OP(V )(n+ l))

is a surjective map, for l � 0.

3. The sheaf G is (n+ 1)-regular for the map �.
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2 Linear Series

In the final chapter of this report, we illustrate linear series on projective
variety P , using theory developed in previous sections to analyze complete
linear series |nA| associated to divisor A on P that need not be an ample
divisor or a nef divisor. We first focus on the asymptotic theory in the
following.

2.1 Asymptotic Theory

Consider V , a line bundle on projective variety P . Here we discuss asymp-
totic behavior of linear series |V ⌦n

| as n ! 1. Here P will always denote
irreducible projective variety over C, unless otherwise specified. To start
with we give some of the basic definitions.

2.1.1 Basic Definitions

We define the exponent and Semigroup for a line bundle V on P .

Definition 2.1.1. ([Laz17]) By definition, Semigroup of the bundle V has
those non-negative powers of V which have non-zero section, precisely:

N(V ) = N(P, V ) = {n � 0 | H0(P, V ⌦n) 6= 0}.

Consider N(V ) 6= (0), then all su�ciently large elements in N(P, V ) are the
multiples of largest e = e(V ) � 1, e 2 N, defined as exponent of the bundle
V , each su�ciently large multiples of exponent, e(V ) comes in N(P, V ).
Semigroup N(P,E), exponent e = e(E) of Cartier divisor E are constructed
similarly after passing it to the line bundle V = OP (E).

The following gives an example in a particular case for the above defined
semi-group and exponents.

Example 2.1.1. ([Laz17]) Consider A, d � 1 dimensional projective variety
with non-trivial torsion line bundle ⇣, having order f in the picard group
Pic(A). S, another l- dimensional projective variety, V , very ample line
bundle on S. Say

W = S ⇥ A,Z = p⇤1(V )⌦ p⇤2(⇣).

Then we have e(Z) = f , N(V ) = Nf. Here, V ⌦n is a globally generated
bundle if n 2 N(V ), again by definition H0(P, V ⌦n) = 0 otherwise.
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For given element n 2 N(P, V ), consider rational map

 n =  |V ⌦n| : P 99K PH0(P, V ⌦n)

which is associated to complete linear series |V ⌦n
|. Denote

Zn =  n(P ) ✓ PH0(P, V ⌦n)

is closure of image of graph of the map  n. Our aim is to understand asymp-
totic birational nature of such maps when n ! 1.

In the following, we define some birational invariants of a variety or
scheme.

Definition 2.1.2. ([Laz17]) Consider P is a normal scheme. Iitaka dimen-
sion of line bundle V is defined as

(V ) = (P, V ) = max
n2N(V )

{dim n(P )},

given that N(P, V ) 6= 0. When H0(P, V ⌦n) = 0 for each n > 0, we say
(P, V ) = �1. When P is a non-normal scheme, we pass it to normalization
µ : P 0

! P , set
(P, V ) = (P 0, µ⇤V ).

For given Cartier divisor E, take (P,E) = (P,OP (E)).

Hence, either (P, V ) = �1 or 0  (P, V )  dimP .

Example 2.1.2. ([Laz17]) Consider canonical divisor KP on P which is
smooth projective variety. (P ) = (P,KP ) is defined as Kodaira dimension
of variety P : which is most basic birational invariant of varieties. Kodaira
dimension of singular variety is defined as Kodaira dimension of any smooth
model.

In the following example we introduce Kodaira dimension in case of sin-
gular varieties.

Example 2.1.3. ([Laz17]) When the variety P is a smooth variety,OP (KP ) =
!P is dualizing line bundle on P . But when P is singular, it may happen
dualizing sheaf !P exists as line bundle on P , but (P,!P ) > (P ). (It
happens for example when P ✓ P3 is cone over smooth plane curve with
large degree.) Impact of the singularities on the Kodaira dimension, other
birational invariants play important role in minimal model program.

In the following example we see that Iitaka dimension of line bundles does
not behave consistently after restriction to some sub-variety.
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Example 2.1.4. ([Laz17]) Consider S = BlQ(P2) is blowing up projective
plane P2 at point Q, say F and J are exceptional divisor and pullback of
hyperplane divisor, respectively. Now, OS(J), OS(J + F ) are with maximal
Iitaka dimension, but after restrictions of them to F Iitaka dimensions goes to
0, �1 respectively. Thus we see, Iitaka dimension decreases after restriction.
In contrary, say T = P1

⇥ P1, V = p⇤1OP1(�1)⌦ p⇤2OP1(1), so that (T, V ) =
�1. If Z = {point}⇥ P1, the Iitaka dimension (Z, V |Z) = 1, hence Iitaka
dimension is increased after restriction.

We now discuss the nature of Iitaka dimension of a line bundle after
deformation. We see that it is not a invariant after deformation.

Example 2.1.5. ([Laz17]) If line bundle V 2 Pic0(P ), then (P, V ) = 0
when V is torsion or trivial, (P, V ) = �1 in other cases. By taking product
like the Example 2.1.1 we get similar examples where  is arbitrarily large.

We want to see when the induced homomorphism from a morphism be-
tween to irreducible projective varieties to their Picard group is a injective
homomorphism. For this we define the notion of Algebraic fibre space.

Definition 2.1.3. ([Laz17]) We define algebraic fibre space to be surjective
projective map of irreducible, reduced varieties g : A ! B with the property
that g⇤OA = OB.

The following example illustrates the relation between the fibre spaces
and the function fields of the corresponding varieties.

Example 2.1.6. ([Laz17]) Suppose A,B are normal varieties. g : A ! B is
projective surjective morphism,

C(B) ✓ C(A)

are corresponding finitely generated extension of function fields. Now, g
is fibre space if and only if C(B) is an algebraically closed in field C(A).
Therefore algebraic fibre spaces make sense in birational category: a domi-
nant rational map A 99K B induces algebraically closed extension of function
fields.

By the following lemma, we get an way to determine the Iitaka dimension
of pull back of a line bundle for algebraic fibre space.

Lemma 2.1.1. ([Laz17]) Consider g : A ! B, algebraic fibre space, V is
line bundle on B. We have

H0(A, g⇤V ⌦n) = H0(B, V ⌦n) for each n � 0.

Particularly, (B, V ) = (A, g⇤V ).
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Now we are ready to discuss the injectivity of the picard groups of pro-
jective irreducible varieties induced from algebraic fibre space.

Example 2.1.7. ([Laz17]) Say g : A ! B be algebraic fibre space. Then
induced homomorphism

g⇤ : PicB ! PicA

is an injective homomorphism. Say V is line bundle on V with g⇤V ⇠= OA.
We have H0(B, V ) = H0(A, g⇤V ) 6= 0 by previous lemma, and similarly
H0(B, V ⇤) = H0(A, g⇤V ⇤) 6= 0. Therefore V = OB.

The algebraic fibre space carry forwards Normality of varieties as in the
following example.

Example 2.1.8. ([Laz17]) Let g : A ! B algebraic fibre space. If A is a
normal variety, then B is also normal. (µ : B0

! B is normalization of B.
So g factors through µ, as g is fibre space this makes µ an isomorphism.)

We define the Section ring associated to given line bundle V on prpjective
variety A.

Definition 2.1.4. ([Laz17]) The graded ring or the section ring associated
to the line bundle V is graded C-algebra

R(V ) = R(A, V ) =
M

n�0

H0(A, V ⌦n).

For a projective space the section ring associated to the line bundle
OPm(1) is as follows.

Example 2.1.9. ([Laz17]) Say V = OPm(1), then we haveR(V ) = C[Z0, . . . , Zm]
is homogeneous coordinate ring of the projective space Pm.

We now define finitely generated line bundle or divisors using the section
ring.

Definition 2.1.5. ([Laz17]) V is a line bundle on projective variety A is said
to be finitely generated when the section ring R(A, V ) is finitely generated
as C-algebra. Divisor E is said to be finitely generated when corresponding
line bundle OA(E) is same.

Definition 2.1.6. ([Laz17]) Stable base locus of a divisor E is algebraic set

B(E) =
\

n�1

Bs(|nE|).

Stable base locus is defined only as closed subset of A: we do not view right
side as intersection of schemes.
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Proposition 2.1.1. Stable base locus B(E) as defined above, is unique
minimal element of family of the algebraic sets {Bs(|nE|)}n�1. There is n0 2

Z with
B(E) = Bs(|ln0E|) for each l >> 0.

2.1.2 Semiample Line Bundles

Now we analyze asymptotic behavior of the maps  m determined by |V ⌦m
|

for a large value ofm 2 N(A, V ). To start with we define Semi-ample bundles
or divisors.

Definition 2.1.7. ([Laz17]) V , a line bundle on complete scheme is defined
to be semi-ample when V ⌦n is globally generated for a n > 0. Divisor E is
said to be semi-ample if corresponding line bundle to it is also so.

For given semi-ample line bundle V , say M(A, V ) ✓ N(A, V ) is sub-
semigroup

M(A, V ) = {n 2 N | V ⌦n is free}.

Denote by h = h(V ) the “exponent” of the sub-semigroup M(A, V ), that is
largest positive integer for which each elements in M(A, V ) is multiple of the
exponent h.

Given an element n 2 M(A, V ), we write Zn =  n(A) for image of
morphism

 n =  |V ⌦n| : A ! Zn ✓ PH0(A, V ⌦n)

constructed by complete linear series |V ⌦n
|. By an abuse of the notation, we

say  n as map from A to Zm rather than to the projective space P.
Now we have the theorem about semi-ample fibrations for a semi-ample

bundle on a projective normal variety A.

Theorem 2.1.1. ([Laz17]) Say V is semi-ample bundle on A. There exists
algebraic fibre space  : B ! A with property - for each su�ciently large
n 2 M(A, V ) 2 Z,

Zn = Z and  n =  .

Moreover, there exists ample line bundle E on Z with  ⇤E = V ⌦h where
h = g(V ) is exponent of M(A, V ).

Now we develop some lemma and theorems required for proving the Iitaka
Fibration theorem.

Lemma 2.1.2. ([Laz17]) Given n 2 M(A, V ), for each su�ciently large
l >> 0, k 2 Z, composition map

A
 ln
��! Zln

µl
�! Zn
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where µl : Zln ! Zn is finite map and  n = µl �  ln, this gives Stein factor-
ization of the map  n, that is  ln is algebraic fibre space. Particularly, Zln,
 ln are not dependent on l for l >> 0.

The following example illustrates the surjectivity of the multiplication
maps for a line bundle V on some projective normal variety A.

Example 2.1.10. ([Laz17]) Suppose V is generated by its global sections.
There is n0 = n0(V ) 2 Z for which the maps

H0(A, V ⌦p)⌦H0(A, V ⌦q) ! H0(A, V ⌦(p+q))

those are determined by the multiplications are surjective maps when p, q �
n0. Generally, for given coherent sheaf G on A,

H0(A,G ⌦ V ⌦p)⌦H0(A,G ⌦ V ⌦q) ! H0(A,G ⌦ V ⌦(p+q))

is a surjective map for p, q >> 0.

For a semi-ample line bundle V on projective normal algebraic variety,
we have the following theorem.

Theorem 2.1.2. ([Laz17]) Line bundle V is finitely generated, that is by
definition the section ring R(A, V ) of V , is finitely generated as C-algebra.

If the base locus of the complete linear series of a line bundle is finite,
then the theorem by Zariski and Fujita concludes about the semi-ampleness
of the line bundle (as in the set up of the previous theorem).

Theorem 2.1.3. ([Laz17]) If the base locus Bs |V | is finite. The bundle V
is semi-ample, that is V ⌦n is free for a n > 0.

2.1.3 Iitaka Fibration

We now state one of the most important theorems of the current section. It
is known as the Iitaka Fibrations. We take a line bundle V on a projective
normal variety A as always.

Theorem 2.1.4. ([Laz17]) If the bundle V satisfies (A, V ) > 0. Then,
for each su�ciently large l 2 N(A, V ), rational maps  l : A 99K Zl are
birationally equivalent to fixed algebraic fibre space

 1 : A1 ! Z1

of normal varieties, restriction of the bundle V to general fibre of  1 has its
Iitaka dimension = 0. Specifically, for a large l 2 N(A, V ) the diagram of
rational maps and morphisms commutes.
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A A1

Zl Z1

 l

v1

 1

µl

Here horizontal maps are birational, v1 is morphism. We get dimZ1 =
(A, V ). Also, when V1 = v⇤

1
V , G ✓ A1 is very general fibre of  1 , then

(G, V1|G) = 0.

Now we define Iitaka fibrations associated to given line bundle, and that
of a variety.

Definition 2.1.8. ([Laz17]) Say  infty : A1 ! Z1 is Iitaka fibration asso-
ciated to V . Then the fibration is unique up to birational equivalence. This
fibration of divisor E is defined by passing it to the line bundle OA(E).

Definition 2.1.9. (Iitaka fibration of a variety.) Iitaka fibration of an
irreducible variety A is defined to be Iitaka fibration which is associated to
canonical bundle on any non-singular model of variety A. A very general
fibre G of Iitaka fibration satisfies its Iitaka dimension (G) = 0.

2.2 Big Line Bundles and Divisors

Here we discuss about an important class of line bundles in the positivity
theory, those of maximal Iitaka dimension.

2.2.1 Basic Properties and definition of Big Divisors

Definition 2.2.1. ([Laz17]) Line bundle V on projective variety A is said
to be big if the Iitaka dimension (A, V ) = dimA. Cartier divisor E on A is
said to be big if OA(E) is also so.

As an example, pullback of ample line bundle by generically finite mor-
phism is a big line bundle. For a normal variety A, Iitaka fibration theorem
implies - V is big if and only if map  n : A 99K PH0(A, V ⌦n constructed by
V ⌦n is surjective and birational to its image for a n > 0.

Example 2.2.1. ([Laz17]) Smooth projective variety A is defined to be of
general type if and only if the canonical divisor KA is a big divisor.

For big line bundles the following lemma gives an estimation of the di-
mension of the 0-th sheaf cohomology group of a divisor on r-dimensional
projective variety.
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Lemma 2.2.1. ([Laz17]) Divisor E on A is a big divisor if and only if there
exists constant Q > 0 with

h0(A,OA(nE)) � Q · nr

for each su�ciently large n 2 N(A,E).

Now we discuss some examples of Big divisors as follows. First we look
at blow-ups of a projective space at finitely may points.

Example 2.2.2. ([Laz17]) Say Z ✓ Pk is finite set, we view it as reduced
scheme,

⌫ : P = BlZ(Pk) ! Pk

is blowing up of Pn along the points in Z. Say F = FZ , J = JZ are excep-
tional divisor, pullback of hyperplane class respectively, put K = pJ � qF .
Also,

⌫⇤OA(nK) = OPk(nK)⌦ I
nq,

I = IZ/P is ideal sheaf of Z in Pk , so H0(P,OP (nK) can be identfied with
space of hypersurfaces with degree np which vanishes to order � nq at every
point in Z. Suppose #Z = z. Then B is a big divisor provided pk > z · qk.
Also, it is evident that B is not nef: if p < 2q then proper transform of line
through 2 points of Z have negative intersection with the divisor B.

We have the following lemma useful for characterising big divisors on
irreducible projective variety A. It is known as the Kodaira’s lemma.

Proposition 2.2.1. ([Laz17]) Consider B is big Cartier divisor and E, be
another e↵ective Cartier divisor on A. Then

H0(A,OA(nB � E)) 6= 0

for each su�ciently large n 2 N(A,B).

As a corollary of the theorem, the following characterizes big divisors on
A as above.

Corollary 2.2.1. ([Laz17]) The following statements are equivalent:

1. B is a big divisor.

2. For each ample integral divisor E on A, there is n 2 N, e↵ective divisor
M on A with nB ⌘lin E +M .

3. Same statement as in 2nd, replaced by for some against for each ample
divisor E.
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4. There is ample divisor E, n 2 N, e↵ective divisor M with nB ⌘num

E +M .

Therefore, bigness of the divisor B depends on only the numerical equiv-
alence class. Next we discuss some cohomological characterization for big
divisors on projective variety A.

Example 2.2.3. ([Laz17]) Divisor B is big divisor if and only if following
holds: For coherent sheaf G on A, there is n = n(G) 2 N with G ⌦OA(nB)
is generically generated by global sections, that is such that natural map

H0(A,G ⌦OA(nB))⌦C OA ! G ⌦OA(nB)

is a generically surjective map.

Therefore, when B is a big divisor then the exponent f(B) = 1, that is
each su�ciently large multiples of the divisor B are e↵ective divisors. In the
following corollary we discuss the behaviour of big divisors after restrictions
to sub-variety.

Corollary 2.2.2. ([Laz17]) Consider B, which is big line bundle on projec-
tive variety A. There exists proper Zariski-closed subset U ✓ A satisfying if
U ✓ A is sub-variety of A which is not contained inside U , then restriction
BU = B|U is big line bundle on the sub-variety U . Particularly, take D, a
general member of very ample linear series, then the restriction BD is big.

The following example shows that arbitrary restriction to a sub-variety
of big divisor is not necessarily a big divisor.

Example 2.2.4. ([Laz17]) Consider S = BlQ P2 is blowing up projective
plane at point Q, let F , J denote exceptional divisor, pullback of line, re-
spectively. Then, OS(J +F ) is a big line bundle, but OF (J +F ) = OP1(�1)
is not a big line bundle.

The following example shows that the analogue of openness property for
ample and nef divisors is not true for big divisors.

Example 2.2.5. ([Laz17]) We can find family of the line bundles Vp on
varieties Ap, parameterized by curve Z , with (Ap, Vp) = �1 for a general
p 2 Z, but V0 is big for a fixed point 0 2 Z . To give example, we start with
finite set W ⇢ P2 consisting of points in projective plane, consider blow-up

AW = BlW (P2) ! P2
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of P2 along the points in W , we put EW = 2JW � FW . After taking W
consisting su�ciently general points in large number, we assume there does
not exist any curves with degree 2n in P2 with multiplicity � n at all points
of W . Which is

H0(AW ,OAW (nEW )) = 0 for each n > 0.

Also, if points of W are co-linear, then the divisor EW � JW is an e↵ective
divisor, so EW is a big divisor. Now the family (Ap, Vp) can be obtained
by varying the set W in suitable one-parameter family Wp. Note, on fixed
variety, bigness is an invariant under any deformation.

B, which is integral divisor, is big if and only if every positive multiple of
it is a big divisor. Hence we define the following:

Definition 2.2.2. ([Laz17]) Q-divisor B is a big divisor if there exists n 2 N
with nB is big integral divisor.

Bigness is numerical property of the Q-divisors. Now we extend this
definition to the R-divisors and describe the corresponding cone in the group
N1(A)R. The following theorem gives a numerical criterion to determine
bigness.

Theorem 2.2.1. ([Laz17]) Consider P and Q are nef Q-divisors on a d-
dimensional projective variety A. Let,

(P d) > d · (P d�1
·Q),

then the divisor P �Q is a big divisor.

We end this subsection by a theorem determining the bigness of nef divi-
sors.

Theorem 2.2.2. ([Laz17]) Consider N is nef divisor on some d-dimensional
irreducible projective variety A. Then the divisor N is a big divisor if and
only if the top self-intersection is a strictly positive number, that is (Nd) > 0.

2.2.2 Pseudoe↵ective and Big Cones

We start the subsection with defining big R-divisors. Like in previous sec-
tions, A is d-dimensional projective variety.

Definition 2.2.3. ([Laz17]) A R-divisorR 2 DivR(A) is said to be big divisor
if it could be written of the form

R =
X

ri ·Ri

where all Ri’s are big integral divisors, ri > 0, ri 2 R for each i.
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The following proposition guarantees that bigness depend on numerical
equivalence class.

Proposition 2.2.2. ([Laz17]) Consider R, R0 are R-divisors on A.

1. When R ⌘num R0, then R is big if and only if R0 is a big divisor.

2. R is a big divisor if and only if R ⌘num E+M where E is ample divisor,
M is e↵ective R-divisor.

The following example gives a relation between ample R-divisors and R-
divisors which are nef and big.

Example 2.2.6. ([Laz17]) Consider N is nef and big R-divisor. There is
e↵ective R-divisor E with N �

1
lE is ample R-divisor for each su�ciently

large l 2 N.

Corollary 2.2.3. ([Laz17]) Assume B 2 DivR(A) is big R-divisor, suppose
F1, . . . , Fp 2 DivR(A) are arbitrary R-divisors. Then

B + ↵1F1 + · · ·+ ↵pFp

is big for each su�ciently small 0  |↵i| << 1,↵i 2 R, for each i.

Now we are ready to define the big and pseudoe↵ective cones.

Definition 2.2.4. ([Laz17]) The big cone is defined as

Big(A) ✓ N1(A)R

convex cone consisting of every big R-divisor classes on A. The pseudo-
e↵ective cone is defined as

E↵(A) ✓ N1(A)R

closure of convex cone spanned by classes of every e↵ective R-divisors. Di-
visor E 2 DivR(A) is pseudo-e↵ective if the class of E lies in the pseudo-
e↵ective cone.

The following theorem gives a relation between big cone and pseudo-
e↵ective cone.

Theorem 2.2.3. ([Laz17]) Big cone is interior of pseudo-e↵ective cone, also,
pseudo-e↵ective cone is closure of big cone.
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2.2.3 Volume of a Big Divisor

One of the most useful things in the study of positivity of line bundles, is the
concept of volume of a divisor or line bundle. So we start this subsection by
defining volume for line bundles. Again A is d-dimensional projective variety.

Definition 2.2.5. ([Laz17]) Take V , a line bundle on A. Volume of the
bundle V is defined as

volA(V ) = lim sup
n!1

h0(A, V ⌦n)

nd/d!
.

Note, vol(V ) > 0 if and only if the line bundle V is a big line bundle.
If V is a nef line bundle, then from asymptotic Riemann–Roch theorem, it
follows -

vol(V ) =

Z

A

c1(V )d

is top self-intersection of V .
The following example gives an estimate of volume on blow-up of a pro-

jective space.

Example 2.2.7. ([Laz17]) Consider S = BlQ(Pn) and #Q = q. Say E =
aJ � bF , where F and J are exceptional divisor and pullback of hyperplane
divisor, respectively. Then the volume

vol(E) � ad � s · bd.

Volume of big line bundle may also be an irrational number as shown in a
later example. The following proposition gives some formula for calculating
volume.

Proposition 2.2.3. ([Laz17]) Say B is big divisor on XA.

1. For fixed t 2 N, the volume,

vol(tB) = td vol(B).

2. For given fixed divisor M on X, given ↵ > 0 there is q0 = q0(M,↵) 2 Z
with

1

qd
· | vol(qB �M)� vol(qB)| < ↵

for each q > q0.

The following lemma ensures that volume is invariant in a complete linear
series.
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Lemma 2.2.2. ([Laz17]) Suppose V is big line bundle, E is very ample
divisor on A. If R,R0

2 |E| are two very general divisors, then the volume

volR(V |R) = volR0(V |R0).

Lemma 2.2.3. ([Laz17]) Suppose E is divisor on A, t 2 N is a fixed number.
Then

lim sup
n

h0(A,OA(nE))

nd/d!
= lim sup

l

h0(A,OA(tlE))

(tl)d/d!
.

For finitely generated divisor E on normal projective variety A, the vol-
ume vol(E) 2 Q.

Proposition 2.2.4. ([Laz17]) Take two numerically equivalent divisorsD1, D2

on A, then
vol(D1) = vol(D2).

This tells about numerical nature of volume.

Lemma 2.2.4. ([Laz17]) For each numerically trivial divisor T , there is fixed
divisor F with property:

H0(A,OA(F + T )) 6= 0.

Particularly, if the divisor T0 is numerically trivial divisor, then we have for
each n 2 Z, F ± nT0 divisor is linearly equivalent to some e↵ective divisor.

The following proposition illustrates birational invariance of the volume
function. Suppose A,A0 are n-dimensional irreducible varieties.

Proposition 2.2.5. ([Laz17]) Take a birational projective mapping µ : A0
!

A. Given integral or a Q-divisor E on A, put E 0 = µ⇤E. Then the volume
of the pullback

volA0(E 0) = volA(E).

In the following theorem we view volume as a continuous function on finite
dimensional vector space N (A)R, after inducing usual topology by fixing a
norm.

Theorem 2.2.4. ([Laz17]) We fix norm k k on N1(A)R which induces usual
topology on finite-dimensional vector space. Then there exists constant K >
0 which satisfies

| vol(⇣)� vol(⇣ 0)|  K · (max(k⇣k, k⇣ 0k))d�1·k⇣�⇣0k

for any arbitrary two classes ⇣, ⇣ 0 2 N1(A)Q.
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Corollary 2.2.4. Since the constant K is independent of the elements in
N1(A)Q, the volume function is infact uniformly continuous. Since Q is
dense R in usual topology, the function sending ⇣ ! vol(⇣) on N1(A)Q can
be extended uniquely to continuous function

vol : N1(A)R ! R

The following example shows volume after blow-up of a projective space
at a point.

Example 2.2.8. ([Laz17]) Say S = BlQ(Pk), denote f, j 2 N1(S)R = R2

classes of exceptional divisor F , pullback J of hyperplane, respectively. Nef
cone of A is then generated by the classes j and j� f . In the plane spanned
by them, volume is:

vol(p · j � q · f) = ((p · j � q · f)k) = pk � qk.

Now, if a, b � 0, linear series of |aJ + bF | contains the divisor bF as fixed
component. Hence in region spanned by the classes j and f - corresponding
to e↵ective divisors which are not nef, volume is given by

vol(p · j � q · f) = ((p · j)k) = pk.

Otherwise, volume is 0.

The following example illustrates the volume of the di↵erence of two nef
divisors.

Example 2.2.9. ([Laz17]) Consider ⇣,� 2 Nef(A)R are two real nef classes
on projective variety A with dimension d. Then, the volume

vol(⇣ � �) � (⇣d)� d · (⇣d�1
· �).

Example 2.2.10. ([Laz17]) In this example we show that the volume in-
creases towards the direction of e↵ective divisors. Take ⇣ 2 N1(A)R is a big
divisor class and f 2 N1(A)R is an e↵ective class then

vol(⇣)  vol(⇣ + f).

Example 2.2.11. ([Laz17]) In this example we describe the birational in-
variance of volume in real case. Take µ : A0

! A is birational morphism.
Then the volume,

volA(⇣) = volA0(µ⇤⇣)

for each classes ⇣ 2 N1(A)R.
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2.3 Examples and Complements

Now we go through some actual examples and results related to linear series.

2.3.1 Cutkosky’s Construction

Consider Z is irreducible projective variety, with its dimension dimZ = z,
we fix k integral (Cartier) divisors B0, B1, . . . , Bk on the variety Z. Say

F = OZ(B0)� . . .�OZ(Bk),

such that F is a vector bundle which has rank k + 1 on Z . We say

A = P(F) and V = OP(F)(1).

Hence A is irreducible n = z + k-dimensional projective variety. Cutkosky’s
idea was that after careful choices of the Bi’s, we lead to some interesting
behaviors of linear series associated to the line bundle V .

Lemma 2.3.1. ([Laz17]) Say A = P(F), and by abuse of notation we write
OA(l) for denoting the bundle OP(F)(l) on A.

1.
H0(A,OA(l)) =

M

p0+...+pk=l

H0(Z,OZ(p0B0 + . . .+ pkBk)).

2. OA(1) is an ample bundle if and only if all divisors Bi are ample divisors
on Z.

3. OA(1) is a nef bundle if and only if all divisors Bi are nef divisors on
Z.

4. OA(1) is a big line bundle if only only if non-negative Z-linear combi-
nation of Bi’s is big divisor on Z.

5. Given n 2 N, OA(n) is free line bundle if and only if nBj follows its
path in free linear series on Z for every 0  j  k

In the following example we construct an explicit example where a line
bundle has irrational volume.

Example 2.3.1. ([Laz17]) Say S = C ⇥ C is product of elliptic curve with
itself. We have already seen: Nef(S) is circular cone N , which consists of
classes which have non-negative self-intersection (also, non-negative intersec-
tion with ample divisor). We choose two integral divisors which are ample

E1, E2 2 Div(S) with two classes e1, e2 2 N1(S)R
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so that ray in N1(S)R emerging from e1 in direction of �e2 meets boundary
of N at some irrational point. Equivalently,

⇣ =def max{x | e1 � x · e2 is a nef class} 62 Q.

Precisely, ⇣ is smallest root of quadratic polynomial

p(t) = ((e1 � x · e2)
2).

hence “most” of the choices of E1 and E2 will lead to choice of irrational ⇣.
Now we apply the Cutkosky’s construction with

B0 = E1, B1 = �E2

Then we have

h0(A,OA(l)) =
X

p+q=l

h0(S,OS(aE1 � bE2)).

Now divisor aE1 � bE2 which appears in sum is a nef divisor, precisely if
b
a < ⇣, and doesn’t have sections when b

a > ⇣. Applying Riemann-Roch on S
, we get: for a, b � 0

h0(S,OS(aE1 � bE2)) =

(
1
2((ae1 � be2)2) when b

a < ⇣,

0 when b
a > ⇣

Now after combining the both results, we substitute (l � a) for b, and after
dividing by l3

3! we have,

h0(A,OA(l))

l3/3!
=

3!

2
·

lX

a� l
1+⇣

✓⇣a
l
e1 �

⇣
1�

a

l

⌘
e2
⌘2
◆
·
1

l
.

Now, right-hand side of the equation is Riemann sum for integral of quadratic
function:

h(t) =
�
(te1 � (1� t)e2)

2
�
.

Now as l ! 1 we get

volA(OA(1)) =
3!

2
·

Z

1
1+�

1

h(t)dt.

Now let
E1 = G1 +G2, E2 = 3 · (G2 +�)

where G1, G2,� ✓ S are the fibres of projections S = C ⇥ C ! C, and
diagonal respectively. Then ⇣ = 3�

p
5

6 is an irrational number. We get
h(t) = 38t2 � 54t + 18, and by calculating integral we get an irrational
volume.
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2.3.2 Base Loci of Nef and Big Linear Series

The following theorem is known as Wilson’s theorem. Also in this subsection
A is d-dimensional projective variety.

Theorem 2.3.1. ([Laz17]) Take E which is nef and big divisor on A. There
is n0 2 N with e↵ective divisor M so that

|nE �M |

is a free linear series for each n � n0.

Now we define multiplicity of linear series at some given point on A

Definition 2.3.1. ([Laz17]) Take a 2 A a fixed point. Given the divisor E
on A and the linear series |W | ✓ |E|, we denote multa|W | multiplicity at
point a of general divisor in linear series |W |. In other words,

multa|W | = min
E02|W |

{multaE
0
}.

This integer is defined as multiplicity of the linear series |W | at point a.

The following result gives us a bound on the multiplicity of linear series.

Corollary 2.3.1. ([Laz17]) With the hypothesis of Wilson’s Theorem, there
is constant K > 0 independent of n and a so that multa|nE|  K for each
a 2 A.

Theorem 2.3.2. ([Laz17]) If A is normal, E a big nef divisor on A. Then
the section ring R(A,E) is finitely generated if and only if the divisor E is
semi-ample, that is |kE| is a free linear series for a k > 0.

The following is counter example for a divisor which is not big.

Example 2.3.2. ([Laz17]) Consider C is smooth curve with genus � 2, we
run Cutkosky’s construction by taking B0 = 0, B1 = Q where Q is divisor
having degree 0, which is non-torsion in Pic0(C). Then, OS(1) is a nef bundle
on S = P(OC �OC(Q)), but the divisor at the infinity P(OC(Q)) ✓ S comes
with multiplicity n in the base locus of OA(n).

2.3.3 Theorem by Campana and Peternell

In the following we have the Nakai’s criterion for the R-divisors. We denote
A for projective scheme.

Theorem 2.3.3. ([Laz17]) Take d 2 N1(A)R, a class which has positive
intersection with all irreducible subvarieties of A. Equivalently,

�
ddimW

·W
�
> 0

for each W ✓ A with dimW > 0. Then the class d is ample class.
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2.3.4 Zariski Decompositions

We end this report by discussion of Zariski decomposition of a pseudoe↵ec-
tive integral divisor. It is useful since the volume of such divisors can be
determined by only looking at positive part of the decomposition.

Theorem 2.3.4. ([Laz17]) Consider A, smooth projective surface, E is
pseudoe↵ective integral divisor on A. Then the divisor E could be written
uniquely as a sum of a positive part and negative part

E = P +N

of Q-divisors which satisfies the following properties:

1. the positive divisor part P is nef divisor.

2. the negative divisor part N =
kP

j=1
cjFj is e↵ective divisor, if N 6= 0

intersection matrix
k(Fi · Fj)k

determined by the components of the negative divisor part N is a neg-
ative definite matrix.

3. P part is orthogonal with every components of N , that is (P · Fj) = 0
for each 1  j  k.

The following corollaries gives the desired formula for calculating volume
and to determine whether the section ring is finitely generated.

Corollary 2.3.2. ([Laz17]) Volume of a integral divisor on some surface is
rational number. In particular,

vol(E) = (P 2).

Corollary 2.3.3. ([Laz17]) Consider B is big divisor on smooth surface A,
section ring R(A,B) is then finitely generated if and only if the positive
divisor part P of B is a semiample divisor.

It has been shown by Cutkosky and Srinivas that for non-singular pro-
jective surface A over some algebraic closure of a finite field, E, which is
e↵ective on A, its section ring R(A,E) is finitely generated.
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