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1 Introduction

This thesis consists of a study of some topics in Riemann surfaces. Starting with a quick
overview of definitions and properties of maps between Riemann surfaces, we move to a
proof of the Uniformization theorem for Riemann surfaces. We give a brief overview of the
properties of Green’s functions on Riemann surfaces needed to prove the Uniformization
theorem. We then describe the correspondence between divisors and line bundles on
Riemann surfaces. The final section deals with some consequences of the Behnke-Stein
Runge theorem and shows how the @̄ - equation on an open Riemann surface can always
be solved. We also use this result to show that every holomorphic line bundle on an open
Riemann surface is trivial.
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2 Riemann Surfaces

2.1 Definition and examples

Definition 2.1. Let X be a connected, second-countable, Hausdor↵ topological space.
The pair (X,A) is said to be a Riemann surface where A = {(U↵,'↵)}↵2A is a maximal
atlas for X i.e.,
(i) {U↵}↵2A is an open cover for X
(ii) Each '↵ : U↵ ! '↵(U↵) ⇢ C is a homeomorphism.
(iii) Whenever U↵\U� 6= �, the map '↵�'

�1

�
: '�(U↵\U�) ! '↵(U↵\U�) is holomorphic.

Remark 2.1. 1) Since every holomorphic map is smooth when treated as a map from
a subset of R2 to a subset of R2 we immediately obtain that every Riemann surface is a
2-dimensional real manifold.
2) Every Riemann surface as a real manifold is oriented because if we express the transition
map '↵ � '

�1

�
= u+ iv and compute the real Jacobian we get uxvy � uyvx. However, as a

result of the Cauchy-Riemann equations we can see that this is the same as u2

x
+u2

y
which

is always positive.

We now mention some examples of Riemann surfaces.

Example 2.1. Any domain D ⇢ C can be treated as a Riemann surface. In this case,
the atlas consists of only one chart (D,') where ' is the identity map.

Example 2.2. The extended complex plane C1 := C [ {1} can be given the structure
of a Riemann surface. We cover C1 with two charts namely (U0,'0) and (U1,'1) where
U0 = C, '0(⇣) = ⇣ and U1 = C1 \ {0}, '1(⇣) = 1/⇣.

Example 2.3. The projective space CP1 is a Riemann surface. In this case CP1 is covered
by two open sets U0 = {[z0, z1] : z0 6= 0} and U1 = {[z0, z1] : z1 6= 0}. The coordinates are
given by the maps '0 : U0 ! C,'0([z0, z1]) = z1/z0 and '0 : U0 ! C,'1([z0, z1]) = z0/z1.

Definition 2.2. A complex-valued function F : V ⇢ X ! C is said to be holomorphic
(repectively meromorphic) on V if for every coordinate chart U↵ that non-trivially in-
tersects V, F � '�1

↵
: '↵(V \ U↵) ! C is holomorphic (respectively meromorphic). We

say two Riemann surfaces X and Y are conformally equivalent if there exists a bijective
holomorphic map F : X ! Y, with F�1 also holomorphic. (We will soon see that we get
the holomorphicity of F�1 for free.)

We now list out some important properties of maps between Riemann surfaces and
provide a sketch of their proofs.

Theorem 2.1 (Open Mapping Theorem). Let f : X ! Y be a non-constant holo-
morphic map between Riemann surfaces. Then f is an open map.
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Proof. Let O be any open subset of X. We claim that f(O) must be open in Y. It su�ces
to show that every point f(x) 2 f(O) is an interior point of f(O). We fix charts (U,')
and (V, ) around x and f(x) respectively.
Consider the map  �f �'�1 on '(U \f�1(V )). We push an open neighbourhood of '(x)
under  � f � '�1 to get A ⇢ C, which is open as a consequence of the open mapping
theorem for holomorphic functions between open subsets of C. It is easy to check that
 �1(A) gives the required neighborhood of f(x).

Theorem 2.2 (Maximum Principle). Let X be a Riemann surface and f : X ! C be
a non-constant holomorphic function. Then |f | does not attain its maximum.

Proof. Suppose there exists a 2 X such that

R = f(a) = max{|f(x)| : x 2 X}

Consequently, f(X) ⇢ B[0, R], where B[0, R] denotes the closed ball centered at 0 with
radius R. However, the open mapping theorem guarantees that f(X) is open and hence
f(a) must be an interior point of f(X). This contradicts the fact that f(a) 2 @B[0, R].

We have the following corollaries which shall be of use in the subsequent sections.

Corollary 2.1. Let f : X ! Y be a non-constant holomorphic map between Riemann
surfaces. Additionally, assume the X is compact. Then f is onto and Y is compact.

Proof. Using Theorem 2.1 we know that f(X) must be open. Compactness of X implies
that f(X) is compact and hence closed. Since Y is connected and f(X) is a non-empty
clopen set, we conclude that f(X) = Y , and hence f is surjective and Y is compact.

Corollary 2.2. Every holomorphic map f : X ! C on a compact Riemann surface X is
constant.

Proof. Suppose f is non-constant. Then by the previous corollary we obtain that f(X) =
C. But this is absurd since f(X) is supposed to be a compact subset of C. Hence, f must
be constant.

2.1.1 Harmonic functions on Riemann surfaces

Definition 2.3. Let X be a Riemann surface and f be a real-valued smooth function on
X. We say that f is harmonic at p 2 X if for some chart (U, z = x+ iy) containing p, we
have �(f � z�1)(z(p)) = 0.

Remark 2.2. One can check that the above definition is independent of the choice of chart
i.e., if p 2 U↵\U� with local coordinates z↵ and z� respectively, then �(f �z�1

↵
)(z↵(p)) = 0

implies �(f � z�1

�
)(z�(p)) = 0. We refer the reader to the calculation for the same given

on page 57 of [6].
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2.2 Properties of holomorphic maps between Riemann surfaces

We now prove some important properties of holomorphic maps between Riemann surfaces
which shall be handy when we introduce the notion of divisors Riemann surfaces.

The next result on the local normal form shows that every non-constant holomorphic
map ‘looks like’ a power map. We make this idea precise in the next result.

Theorem 2.3 (Local Normal Form). Let F : X ! Y be a non-constant holomorphic
map. Then for each p 2 X, there is a unique integer m � 1 such that for every chart
'2 : U2 ! V2 on Y centered around F (p), there exists a chart '1 : U1 ! V1 on X centered
at p such that '2(F ('�1

1
(z))) = zm.

A proof of the above result can be found in [5]. The unique integer m guaranteed by
the theorem above is referred to as the multiplicity of F at p, denoted as multp(F ).

We now provide a technique to compute multp(F ), without having to explicitly find
the charts around p and F (p) which put F in the local normal form. If we fix any
local coordinates around p and F (p), then in terms of these local coordinates, F can be
written as w = h(z) where h is a holomorphic map. With the above notation multp(F ) =
1 + ordz0(dh/dz), where ordz0(dh/dz) denotes the order of zero of dh/dz at z0.

As a result of the above observation and the bijective correspondence between holo-
morphic maps from X to the Riemann sphere and meromorphic maps on a Riemann
surface we obtain the following lemma.

Lemma 2.1. Let f be a meromorphic function on a Riemann surface X, with associated
holomorphic map F : X ! C1.
1. If p is a zero of f, then multp(F ) = ordp(f).
2. If p is a pole of f, then multp(F ) = � ordp(f).
3. If p is neither a zero nor a pole of f, then multp(F ) = ordp(f � f(p)).

We now prove the main result of this section which shows that for any non-constant
holomorphic map between compact Riemann surfaces F : X ! Y, the number of preim-
ages of any point in Y counted with multiplicities is always constant.

Theorem 2.4. Let F : X ! Y be a non-constant holomorphic function between compact
Riemann surfaces. Let g : Y ! Z be given by g(y) = ⌃p2F�1(y) multp(F ), then g is
constant. This constant value of g is called the degree of F and is denoted by deg(F ).

Proof. It su�ces to show that g is a locally constant function. Fix y 2 Y. Let {x1, . . . , xn}

be the inverse images of y. Fix a local coordinate w on Y around y. By Local normal
form, we are guaranteed the existence of local coordinates zi on X centered at xi such
that w = zmi

i
.
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We show that the map g is constant on the chart around y with local coordinate w.
It su�ces to show that for points near y, all the preimages are captured in the charts
around xi, guaranteed by the Local Normal Form. Suppose this is not the case, we now
get a sequence of points (yn) converging to y and a sequence of points (tn) in X such that
F (tn) = yn for all n and (tn) lies outside the neighbourhoods around xi guaranteed by
the Local Normal Form.

Since X is compact, we extract a convergent subsequence of (tn) say (pn) such that
pn ! p. It is clear that p also lies outside the neighbourhoods around xi guaranteed by
the Local Normal Form. However, the continuity of F implies that F (p) = y which is
absurd. Thus, our initial assumption was false and g is indeed locally constant.

As an immediate consequence of the above result we have the following proposition
which says that for a non-constant meromorphic function f on a compact Riemann surface
X, the sum of the order of its poles and zeroes is 0.

Proposition 2.1. Let f be a non-constant meromorphic function on a compact Riemann
surface X. Then

⌃ ordp(f) = 0.

Proof. Let F : X ! C1 denote the holomorphic map associated to f, {xi} denote the
zeroes of f and {yj} denote the poles of f.

⌃ ordp(f) = ⌃i ordxi(f) + ⌃i ordyj(f)

= ⌃i multxi(F ) + ⌃i multyj(F )

= deg(F )� deg(F )

= 0.
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3 Uniformization Theorem

In this section, we give a proof of the uniformization theorem which characterizes simply
connected Riemann surfaces up to conformal equivalence. We first go over some prelimi-
naries regarding Green’s functions on Riemann surfaces. These results are crucial in the
proof of the Uniformization theorem which is proved later in this section. We shall state
the results regarding Green’s functions here without proof. The interested reader may
refer to [2] for a proof of these results.

Lemma 3.1 (Harnack’s estimate). Let X be a Riemann surface. For every compact subset
F ⇢ X, there exists a constant K > 0 such that

1

K


v(p)

v(q)
 K

for all p, q 2 F and every positive harmonic function v on X.

Definition 3.1 (Subharmonic functions on a Riemann surface). Let X be a Riemann
surface and U ⇢ X be open. An upper semicontinuous function v : U ! [�1,1) is
said to be subharmonic on U, if for every p 2 U, there is a coordinate patch with local
coordinate z around p such that v � z�1 is subharmonic at z(p).

Theorem 3.1 (Maximum Principle for subharmonic functions). Let X be a Riemann
surface and u be a subharmonic function on X. Suppose u attains its maximum at some
point on X, then u must be constant on X.

Corollary 3.1. Let X be a Riemann surface and let F ⇢ X be compact. If v is a
subharmonic function on X satisfying v(z)  c for every z 2 R \ F, then v(z)  c, for
each z 2 X.

Definition 3.2 (Perron families of subharmonic functions). Let F be a non-empty col-
lection of subharmonic functions defined on an open subset U of a Riemann surface X.
We say that F is a Perron family if
(i) If f, g 2 F , then max{f, g} 2 F .
(ii)If f 2 F , then for every coordinate disk D contained in W such that f is finite on @D,
the function defined to be f on W \D, and the harmonic extension of f |@D on D is in F .

We now explain the definition of Green’s function for a Riemann surface.
Let X be a Riemann surface and q 2 X. Let z be a local coordinate around q such that
z(q) = 0. We look at the collection Fq given by

Fq := {u : u is subharmonic on X \ {q} and u vanishes outside some compact subset of X}

13



One checks that Fq is a Perron family of subharmonic functions. We say that the Green’s
function for X with a pole at q exists if the upper envelope of the above family is finite,
this is denoted by

g(p, q) := sup{u(p) : u 2 Fq}, p 2 X \ {q}

Otherwise, the upper envelope of Fq is +1 for all points of X \ {q} and we say that
the Green’s function for X with a pole at q does not exist.
The next theorem characterizes Green’s function in terms of positive harmonic functions

on the Riemann surface X.

Theorem 3.2. Let X be a Riemann surface with q 2 X such that the Green’s function
for X with a pole at q exists. Let z be a local coordinate around q with z(q)=0 then
g is positive harmonic on X \ {q} and g + log |z| extends to a harmonic function at q.
Moreover, if f is any harmonic function on X \ {q} such that f + log |z| extends to a
harmonic function at q, then g  h on X \ {q}.

Theorem 3.3. Let X be a Riemann surface such that g(p, q0) exists for some q0 2 X,
then g(p, q) exists for every q 2 X.

Theorem 3.4 (Symmetry of Green’s function). Let X be a Riemann surface for which
the Green’s function exists. Then

g(p, q) = g(q, p), p, q 2 X, p 6= q

Since not every Riemann surface has a Green’s function, we define the notion of a
Bipolar Green’s function. It is known that every Riemann surface has a Bipolar Green’s
function.

Let X be a Riemann surface and a, b be two distinct points on X. We fix centered
coordinate disks (D1, z1) around a and (D2, z2) around b. A bipolar Green’s function with
poles at a, b is defined as any harmonic function G(p, a, b) on X \ {a, b} such that

• G+ log |z1| extends to a harmonic function at a.

• G� log |z2| extends to a harmonic function at b.

• G is bounded on X \ (D1 [D2).

A Bipolar Green’s function for X is not uniquely determined. It is however unique up
to adding a bounded harmonic function.

Theorem 3.5. Let X be Riemann surface and a, b be any two distinct points on X, Then
a Bipolar Green’s function for X with poles at a, b always exists.

14



Theorem 3.6 (Uniformization theorem). Every simply connected Riemann surface
X is conformally equivalent to either D,C or C1.

Proof. We split this proof into two cases. We know that of the three Riemann surfaces
mentioned above, D is the only one that has a Green’s function. Hence in the case when
the Green’s function for X exists, we shall use it to conformally map X onto D. If the
Green’s function for X does not exist, the results from the last section guarantee the ex-
istence of a Bipolar Green’s function. In this case, we shall use Biploar Green’s function
to map X onto C or C1.

Case 1: Green’s function for X exists.
Fix q0 2 X and consider the green’s function g(p, q0). We know that g(p, q0) has a loga-
rithmic pole at q0. The following lemma guarantees the existence of an analytic function
' which shall be crucial in the construction of the conformal map from X to D.

Lemma 3.2. There exists an analytic function ' : X ! C such that |'(p)| = e�g(p,q0).

Proof. Let A = {(�↵,'↵) : ↵ 2 A} be an atlas of coordinate disks for X. We first define
the required function on each coordinate disc �↵.
Suppose�↵ is a coordinate disk such that q0 /2 �↵. Since g(p, q0) is harmonic in�↵, g�'�1

↵

is a real-valued harmonic function on D. Define G↵ : D ! C such that,

Re(G↵) = g � '�1

↵
.

Let H↵ : �↵ ! C be given by H↵ = G↵ � '↵. Thus we have,

Re(H↵) = Re(G↵ � '↵) = Re(G↵) � '↵ = g

Now if we consider the function F↵ : �↵ ! C, given by F↵(p) = e�H↵(p), we can check
that |F↵(p)| = e�g(p,q0).
We now consider charts of the form (�↵,'↵) such that q0 2 �↵. In this case, the function
f given by f(p) = g(p) + log |'↵(p)� '↵(q)| is real harmonic in �↵. We repeat the same
procedure as in the previous case to obtain a functionH↵ : �↵ ! C such that Re(H↵) = f.
One can check that in this case if we define F↵ : �↵ ! C as F↵(p) = ('↵(p)�'↵(q))e�H↵(p),
then |F↵| = e�g as required.

Thus, we have constructed the required function at least locally on every coordinate
chart. We further observe that if �↵ \ �� 6= � then |F↵| = |F�| on �↵ \ �� and as
a result F↵ = ei✓F� and F↵ works as an analytic continuation of F� from �↵ \ �� to
�↵ [ (�↵ \��). We now use the monodromy theorem to get the desired function defined
on all of X and the proof for the lemma is complete.
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We now wish to show that the map ' guaranteed by the above lemma is injective.
It su�ces to show that for each q1 2 X,'(q1) is attained only once at q1. Let A be an
automorphism of the unit disc which exchanges 0 and '(q1) and  = A � ' i.e.,

 (p) =
'(p)� '(q1)

1� '(q1)'(p)

Clearly,  is analytic on X with  (q1) = 0. It su�ces to show that  has no zeroes on
X \ {q1}. We will show that for each p in X \ {q1}, log | (p)| = �g(p, q) and as a result
| (p)| = e�g(p.q1) which is never zero.
Consider any u 2 Fq1 . We know that u + log | | is subharmonic on X. Since u vanishes
outside a compact subset of X and | (p)| < 1, we obtain that u + log | | < 0 outside a
compact subset of X.
By maximum principle, for every p 2 X,

u(p) + log | (p)| < 0

We now take supremum over u 2 Fq to obtain,

g(p, q1) + log | (p)|  0

We would like to obtain equality in the previous inequality. If we show equality at any
one point, we are done by maximum principle. We check at the point q0 2 X.

g(q0, q1) + log | (q0)| = g(q0, q1)� log |� '(q1)|

= g(q0, q1)� g(q1, q0)

= 0.

Thus, log | (p)| = �g(p, q1) for all p, and our proof for the injectivity of ' is complete.
As a result, 'mapsX conformally into D. The Riemann mapping theorem guarantees that
this region can be mapped into all of D conformally and we obtain that X is conformally
equivalent to D.

Case 2: Green’s function for X does not exist.

We first prove a lemma which will be of use in this case.

Lemma 3.3. If the Green’s function for a Riemann surface X does not exist, then every
bounded analytic function on X is constant.

Proof. We prove the contrapositive of the above statement. Let f be a non-constant
bounded analytic function on X. We show that for every q 2 X, g(p, q) exists.
Consider any q 2 X. After composing with a suitable biholomorphic map, we may assume

16



f : X ! D with f(q) = 0.
Consider any u 2 Fq, We know that u(p)+log |f(p)| is subharmonic on X and u(p) +
log |f(p)| < 0 outside some compact subset of X.
By Maximum Principle, u(p)+log |f(p)| < 0 on X, and as a consequence u(p) < ln |f(p)|.
This gives an upper bound on members of the Perron family Fq. Thus g(p, q) exists.

We now return to the main proof where we use the Biploar Green’s function on X to
construct a suitable conformal map.
Fix any q1, q2 2 X with q1 6= q2. Similar to the construction in Case 1, we find a mero-
morphic function ' on X such that for all p 2 X, '(p) = e�G(p.q1,q2), where G(p.q1, q2) is
the Bipolar Green’s function with poles at q1 and q2. This function ' has a simple zero at
q1 and a simple pole at q2. Furthermore, since G is bounded outside disks B1, B2 centered
around q1, q2 we obtain a C > 0 such that,

1

C
 |'(p)|  C, for every p 2 X \ (B1 [B2)

We now claim that the map ' constructed above is injective. Consider any q0 2 X. We
show that '(q0) is attained only once at q0.
Let G(p, q0, q2) be the Bipolar Green’s function with poles at q0 and q2 and '0 be a
meromorphic function such that |'0(p)| = e�G(p,q0,q2). Consider the function  is given
by,

 (p) =
'(p)� '(q0)

'0(p)

The poles at q2 cancel and  is a bounded analytic function. By the previous lemma, it
must be constant. Since  does not vanish at q2, we conclude that ' attains the value
'(q0) only once at q0. As a result, ' maps X conformally onto a simply connected region
of C1.
If '(X) is all of C1, we conclude that X is conformally equivalent to C1. If C1 \ '(X)
consists of one point, we use a fractional linear transformation to map it to the complex
plane conformally. We note that C1 \'(X) cannot consist of more than one point, since
if that were the case, we could map '(X) conformally to D and then the existence of
the Green’s function on D would imply the existence of Green’s function for X, which is
absurd.

This completes the proof for this case too.
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4 Complex Line Bundles

Definition 4.1. Let M be a manifold. A line bundle L is a manifold together with a
smooth map ⇡ : L ! M such that
(i) For each p 2 M, ⇡�1(p) has a C- vector space structure.
(ii) There exists an open cover {U↵}↵2A and di↵eomorphisms �↵ : ⇡�1(U↵) ! U↵ ⇥ C

such that the following diagram commutes

⇡�1(U↵) U↵ ⇥ C

U↵

�↵

⇡ p1

Remark 4.1. 1. Thus, for each p 2 U↵ we have a map

�↵,p : ⇡�1(p) �! {p}⇥ C

which is a C-linear isomorphism.
2. Whenever U↵ \ U� 6= � we have maps

g↵� : U↵ \ U� �! C
⇤

p 7! �↵,p � �
�1

�,p
(1)

which are called transition functions.
3. In light of (ii) in Definition 1.1, every line bundle is locally trivial.
4. We observe that g↵↵ = 1 on U↵ and g↵� · g�� = g↵� on U↵ \U� \U�. These are referred
to as cocycle conditions. In fact, a line bundle is completely determined by the following
data - an open cover {U↵}↵2A, a collection of transition functions g↵� : U↵ \ U� ! C

⇤.

Definition 4.2. Let ⇡ : L ! M be a line bundle. A section is a smooth map s : M ! L
such that ⇡ � s = IdM . The vector space of all sections of L, is denoted by �(L).

As a result, every section carries a point p on the manifold to a member of its fiber.
Furthermore, every section being injective provides a copy of M inside L. In fact, every
line bundle admits a section, namely the zero section. The zero section carries each point
p 2 M to the 0 of ⇡�1(p). It is easy to check that the map so defined is a smooth map
from M to L, and hence a smooth section.
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4.1 Local frames.

We now introduce the notions of local sections and local frames and then use them to get
a necessary and su�cient condition for a line bundle to be trivial.

If L ! M is a complex line bundle and U 2 M is an open set, then ⇡�1(U) ! M is
itself a line bundle, denoted by L|U . A frame for L over U is a member of �(L|U) having
no zeroes.

Theorem 4.1. A line bundle is trivial i↵ it has a global frame.

Proof. We make the following observation: If L has a frame over U say ⇣, then the map

v 7! (⇡(v),
v

⇣(⇡(v)
)

yields an isomorphism L|U ! U ⇥ C. and establishes the triviality of L|U . In particular,
if L has a global frame over M, we get that L is the trivial bundle.
Conversely, if L is the trivial line bundle over M, we have a map � : L ! M ⇥C. we use
this map to construct a global frame for L. Consider the section given by ⇣(p) = ��1(p, 1).
Since �p : ⇡�1(p) ! {p}⇥C is a linear isomorphism, we obtain that ⇣ is nowhere vanishing
and hence a frame.

Remark 4.2. It is now clear that every section can be locally expressed as some smooth
function times the frame on every trivializing chart i.e., s = s|U⇣U , where sU is smooth.

Definition 4.3. Let L and X be complex manifolds and ⇡ : L ! X be a complex
line bundle. We say L is a holomorphic line bundle if ⇡ is holomorphic and the local
trivialization maps are all holomorphic.

Note that given line bundles L,L0 on M, we can construct new line bundles on M
given by L⌦L0 and L⇤. The reader may refer to [4] for an explicit description of these line
bundles. However, we note that the operation of taking tensor products of line bundles
gives a group structure to the set of all holomorphic line bundles onM.We shall henceforth
refer to this group at the Picard group of M, denoted by Pic(M). We fix some notation
here before moving on to examples of line bundles.

Definition 4.4. A section of a holomorphic line bundle is said to be holomorphic if it
is holomorphic as a map from M to L. The collection of all holomorphic sections of L is
denoted by �O(L).

One can similarly define the notion of meromorphic sections of a line bundle, denoted
by �M(L).
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4.2 Examples of line bundles

4.2.1 Complex tangent bundle of a Riemann surface

The complex tangent bundle of a Riemann surface X, is denoted by TX = tp2XTpX.
Here TpX refers to the space of all derivations on smooth functions around p. We have a
natural map ⇡ : TX ! X. Suppose f is a smooth function around p and (U, z) is a chart
around p, the derivation @

@z
|p 2 TpX. Here n @

@z
|pf = @

@w
|p(f � z�1) where w = x+ iy and

@

@w
is the first Wirtingler operator.
TX admits local trivializations over any atlas of X. Let {U↵, z↵}↵2A be an atlas for

X. The maps �↵ : ⇡�1(U↵) : U↵ ⇥C given by �↵(v) = (⇡(v), v(z↵)) endow TX with a line
bundle structure over X.

4.2.2 Cotangent bundle of a Riemann surface

The dual of the tangent bundle over a Riemann surface is referred to as the cotangent
bundle. This line bundle is also referred to as the canonical bundle and is denoted by KX .

4.2.3 Tautological bundle over P
n

Consider the set given by

E = {(z, l) 2 C
n+1

⇥ P
n : z 2 l}

We have a natural map ⇡ : E ! P
n which is the restriction of the usual projection map

p2 : Cn+1
⇥ P

n
! P

n. For each l 2 P
n, ⇡�1(l) is the set of points that lie on l and can

be naturally given a vector space structure. We give E the structure of a complex line
bundle over Pn. E admits local trivializations over the canonical atlas of Pn, where Pn has
an open cover given by {Ui : 1  i  n+ 1} with Ui = {[x0 : · · · : xn + 1] : xi 6= 0}. These
local trivializations are given by

'i : ⇡
�1(Ui) ! Ui ⇥ C

(z, l) 7! (l, zi)

where z = (z1, . . . , zn+1).
This line bundle is commonly referred to as the Tautological line bundle over Pn.

4.2.4 Hyperplane bundle

The hyperplane bundle, denoted by H is defined as the dual of the Tautological bundle
i.e., H = E

⇤. In particular, we are interested in the space of sections of the hyperplane
bundle.
Let ⌧ : H ! P

n denote the projection map. It is clear that for each l 2 P
n, ⌧�1(l) consists
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of linear functionals on the one-dimensional subspace of Cn+1 represented by the line l.
Any linear functional on C

n+1, yields a section of H.
In fact, any global section of H comes from a linear functional on C

n+1. A proof of the
same can be found in [6]. As a result we have

C
n+1 ⇠= �O(H).
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5 Divisors

We now introduce the notion of divisors on a Riemann surface which attempt to at least
locally capture the information regarding zeroes and poles of a meromorphic function or
1-form on a Riemann surface. A formal definition of divisors is as under.

Definition 5.1. A divisor on X is a map D : X ! Z which vanishes outside a discrete
subset of X. The set of points of X where D is non-zero is referred to as the support of
F. We shall henceforth use the formal notation for a divisor given by

D = ⌃p2XD(p)p.

Definition 5.2. Let X be a compact Riemann surface and D be a divisor on X, then
the support of D is a finite subset of X and we define the degree of D, denoted by
deg(D) := ⌃p2XD(p).

We observe that the set of all divisors on X, denoted by Div(X) forms an abelian
group under pointwise addition. As a result, we obtain a group homomorphism given by

' : Div(X) ! Z

D 7! deg(D)

5.1 Examples of Divisors

5.1.1 Principal Divisors

Let f be a non-zero meromorphic function on X. Then we have the following divisor on
X given by div(f)

div(f) = ⌃p2X ordp(f)p.

Any divisor of this form is called a Principal divisor on X. We denote the collection
of all principal divisors on X as PDiv(X).

It is easy to verify the following properties of principal divisors on X.
Let f, g be non-zero meromorphic functions on X. Then,
1. div(fg) = div(f) + div(g).
2. div(f/g) = div(f)� div(g).

Proposition 3.1 can now be rephrased as - For any non-zero meromorphic function f
on a Riemann surface X, we have deg(div(f)) = 0.
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5.1.2 Canonical Divisors

Let ! be a non-zero meromorphic 1-form on X. Then we have the following divisor on X
given by

div(!) = ⌃p2X ordp(!)p

Any divisor of this form is called a canonical divisor on X and we denote the collection
of canonical divisors on X by KDiv(X).

Remark 5.1. If f is a meromorphic function and ! is a meromorphic 1-form, then f! is
a meromorphic 1-form. Moreover, div(f!) = div(f) + div(!). This shows that the sum
of a canonical divisor with a principal divisor is again a canonical divisor. This leads us
to the question if the di↵erence of two canonical divisors is always principal. The answer
is in the a�rmative. The reader may refer to [5] for a proof of the same. In the next
section we shall introduce the notion of linear equivalence of divisors and return back to
this observation.

5.1.3 Inverse Image Divisors

Let F : X ! Y be a non-constant holomorphic map between Riemann surfaces. Let
q 2 Y. Then F ⇤(q) is a divisor on X given by

F ⇤(q) = ⌃p2F�1(q) multp(F )p

We observe that if X, Y are compact then deg(F ⇤(q)) is independent of q and is the same
as deg(F ).

We can in fact generalize this construction further to pullback any divisor on Y to
obtain a new divisor on X. Let D = ⌃q2YD(q)q be a divisor on Y, then F ⇤(D) is the
divisor on X given by

F ⇤(D) = ⌃q2YD(q)F ⇤(q).

If we think of divisors as functions, we can rewrite this as

F ⇤D(p) = multp(F )D(F (p)).

Proposition 5.1. Let F : X ! Y be a non-constant holomorphic function between
Riemann surfaces. Then
1. F ⇤ : Div(Y ) ! Div(X) is a group homomorphism.
2. Principal divisors pull back to principal divisors i.e.,

F ⇤(div(f) = div(f � F ))
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Proof. 1. Consider any p 2 X

F ⇤(D +D0)(p) = multp(F )(D(p) +D0(p))

= multp(F )D(p) + multp(F )D0(p)

= F ⇤D(p) + F ⇤D0(p).

Thus F ⇤(D +D0) = F ⇤D + F ⇤D0, which proves 1.

2. Consider any p 2 X

F ⇤(div f)(p) = multp(F ) div f(F (p))

= multp(F ) ordF (p)(f)

= ordp(f � F )

= div(f � F )(p)

5.2 Linear Equivalence of Divisors

Definition 5.3. Let D1, D2 be divisors on X. We say that D1 is linearly equivalent to
D2 if D1 �D2 2 PDiv(X).

Remark 5.2. • 1. It is easy to see that linear equivalence is an equivalence relation
on Div(X). In the next section, we try to identify the collection of divisors on X,
modulo linear equivalence.

• D ⇠ 0 if and only if D is a Principal Divisor.

• As a consequence of Proposition 3.1, on a compact Riemann surface X,D1 ⇠ D2

implies that deg(D1) = deg(D2).

5.3 Examples of linearly equivalent divisors

Example 5.1. Let f be a non-zero meromorphic function on X. Then we can look at the
divisors of zeroes and poles of f , denoted by div0(f) and div1(f), respectively. It is easy
to see that these two divisors are linearly equivalent since their di↵erence is the Principal
Divisor given by div(f).

Example 5.2. Remark 4.1 says that any two canonical divisors on X are linearly equiva-
lent. In fact, any divisor linearly equivalent to a canonical divisor must itself be canonical.
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Example 5.3. Any two point divisors on C1 are linearly equivalent. (Here by a point
divisor we mean the divisor which associates the integer 1 to a fixed point and 0 to every
other point on the Riemann surface.) We give a quick justification for this - Let D1, D2 be
point divisors corresponding to the points �1 and �2. Suppose neither of them is equal to
1, then f(z) = (z��1)/(z��2) is a meromorphic function such that div(f) = D1�D2.
If one of the points, say �1 is 1, we use f(z) = z � �2.

Example 5.4. Let F : X ! Y be a holomorphic map. Then F pulls back linearly
equivalent divisors on Y, to linearly equivalent divisors on X i.e., if D1 ⇠ D2 on Y, then
F ⇤D1 ⇠ F ⇤D2 on X. This is immediate since if D1 �D2 = div(f), for some meromorphic
function f on Y, then F ⇤(D1)� F ⇤(D2) = F ⇤(D1 �D2) = F ⇤(div(f)) = div(f � F ).

5.4 Line Bundle - Divisor correspondence

In this section, we shall explore the links between Line Bundles and Divisors on a Riemann
surface. The main result of this section will be to identify the collection of divisors on X
modulo linear equivalence.

5.4.1 Line bundle associated to divisor.

Let D 2 Div(X). We fix an atlas {(U↵, z↵)}↵2A such that U↵ ⇢⇢ X, for each ↵ 2 A. Now,
for each ↵ we can fix a meromorphic function f↵ 2 M(U↵) such that

Ord(f↵) = D|U↵ = ⌃p2U↵D(p) · p

For instance we could take f↵ =
Q

p2U↵
(z � p)D(p).

Thus we get a collection of functions {f↵}↵2A such that for each ↵, � 2 A with U↵ \

U� 6= � we obtain a holomorphic function g↵� 2 O(U↵ \U�) given by g↵� = f↵

f�
. (Here the

notation O(V ) denotes the collection of all holomorphic functions on V.) It is easy to see
that g↵� satisfy the cocycle condition. By (4) in Remark 2.1 we know that there exists
a line bundle LD admitting local trivializations over {U↵}↵2A. with transition functions
given by g↵�.
Moreover, since g↵�f� = f↵, we can use the functions {f↵}↵2A to obtain a meromorphic
section of LD, say sD 2 �M(LD). We define sD = f↵⇣↵ on each U↵, where ⇣↵ is the local
frame over U↵. It is easy to see that ord(sD) = D. Thus, every divisor on a Riemann
surface X is a canonical divisor with respect to some line bundle on X. We summarize
the discussion here in the form of the following lemma.

Lemma 5.1. Let D 2 Div(X), then there exists LD 2 Pic(X) and sD 2 �M(LD) such
that D = ord(sD).
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5.4.2 Divisor associated to a line bundle with a meromorphic section

Let L be now a line bundle that admits a non-zero meromorphic section s. We have a
divisor given by Ord(s). We now ask a question motivated from the discussion in the
previous section. If we construct LOrd(s), is it the same as L? The answer is in the
a�rmative. The interested reader can find a proof of this in [6]. We also have a relation
between s and sOrd(s). We summarize the same in the following lemma.

Lemma 5.2. Let X be a Riemann surface and L ! X be a line bundle over X with a
non-zero meromorphic section s 2 �M(L), then LOrd(s) = L and sOrd(s) is a nowhere zero
multiple of s.

The discussion from above shows that we have a map

 : Div(X) �! Pic(X)

D 7�! LD

It is easy to check that LD+D0 = LD ⌦ L0

D
and L�D = L⇤

D
which shows that  is a

group homomorphism.
We now investigate the kernel of  .

ker( ) = {D 2 Div(X) : LD
⇠= X ⇥ C.}

The triviality of LD implies that D = Ord(f) for f 2 M(X). A proof of this can be
found in [6]. This shows that the kernel of  is exactly the group of Principal Divisors ofX.

We now check if the map  is surjective. In the light of Lemma 4.2, it su�ces to know
if every line bundle on X admits a non-zero meromorphic section. The answer to this
question is in the a�rmative, although its proof is beyond the scope of this report.

The first isomorphism theorem for groups now yields that

Div(X)

PDiv(X)
⇠= Pic(X).

Theorem 5.1. On a Riemann surface X, the set of holomorphic line bundles is in bijec-
tive correspondence with the set of divisors modulo linear equivalence.

26



6 Projective maps

In this section, we define projective maps. For the rest of this section let H ! X be a
holomorphic line bundle over a Riemann surface X, and let W be a finite-dimensional
subspace of �O(H). The collection of basepoints of W is defined as under

Bs(W ) := {p 2 X : s(p) = 0, 8s 2 W}

For every x 2 X \ Bs(W ), we have a proper subspace of W given by

'W (x) := {s 2 W : s(x) = 0}

In fact, 'W (x) is a hyperplane in W . One can show this by establishing 'W (x) as the
kernel of non-trivial functional on W. In particular, if we fix f 2 H⇤

x
\ {0}, the map given

by
s 7! f(s(x))

shows that 'W (x) is a hyperplane in W. There is a bijective correspondence between
hyperplanes in W and members of P(W ⇤), where P(V ) is the notation for the projec-
tivization of a vector space V. The reader may refer to [6] for an elaborate description of
this bijective correspondence. As a result, we obtain a map

'W : X \ Bs(W ) ! P(W ⇤)

We refer to such maps as projective maps.

6.1 Describing projective maps using a basis of W

We now fix a basis for W , say s0, . . . , sn and we use it to give a better description of
the map 'W . We recall that for any finite-dimensional vector space V, if we fix a basis
f1, . . . , fm of V ⇤, we can use it to give coordinates on V. via the map

v 7! (f(v1), . . . , f(vn))

So now if we treat si as members of W ⇤⇤, we have coordinates on W ⇤ and we can use
them to identify P(W ⇤) with P

n. If we fix ⇣ 2 Hx \{0}, we obtain the following functional
on W.

Ev : W ! C

s 7! s(x)/⇣

It is easy to see that the kernel of Ev is the same as the subspace 'W described above.
By our earlier observation on the induced coordinates on W ⇤, the map Ev has coordinates
given by [s0(x)/⇣, . . . , sn(x)/⇣]. Hence, it is customary to use the notation

'W (x) = [s0(x), . . . , sn(x)]
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We now make an important observation about projective maps, namely that every
holomorphic map from X to P

n can be thought of as a projective map.

Theorem 6.1. Let  : X ! P
n be a holomorphic map. Then  = 'W for some W ⇢

�O(H), where H is a holomorphic line bundle over X.

Proof. Let H :=  ⇤
H, where H denotes the hyperplane bundle over P

n as described in
section 4. Let sj :=  ⇤(zj) where zj denotes the homogeneous coordinates on Pn. Let
W =span{s0, . . . , sn}. One can check that  = [s0, . . . , sn] = 'W .
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7 Solving @̄ for smooth data

In this section, we wish to show that every (0, 1) form on an open Riemann surface X
is always of the form @̄f for some smooth function f on X. We shall then see some
consequences of this result. The reader is suggested to go through Appendix II which
reviews notation regarding complex di↵erential forms. A local version of this result,
stated below can be proved using Green’s functions. We refer the reader to Theorem
7.1.18 of [6] for a proof of the same.

Theorem 7.1. Let X be a Riemann surface and Y ⇢⇢ X be an open, proper subset of
X. Then for every (0, 1) form ! on X, there exists a smooth function g on X such that
@̄g = ! on Y.

In order to prove a global version of the above result, we need to develop some ma-
chinery regarding holomorphic hulls and Runge domains. We devote the initial part of
this section to doing the same.

7.1 Regular Exhaustion on open Riemann surfaces

Definition 7.1. Let Y ⇢ X. The holomorphic hull of Y in X, denoted by ŶO(X) is defined
as under

ŶO(X) = Y [C2C C

where C is the collection of connected components of X \ Y which are precompact in X.

Remark 7.1. It is crucial to note that the holomorphic hull depends on the choice of
the ambient Riemann surface that Y lives in, For instance if we take Y = S1

⇢ C, then
ŶO(C) = D, where D denotes the open unit disk. On the other hand, ŶO(C\{0}) = S1. If an
open set Y equals its holomorphic hull in X, we say Y is Runge in X. The main result
of this section is to prove that an open Riemann surface can be ‘exhausted’ by relatively
compact, open, Runge sets. To prove this result, we first look at some properties of
holomorphic hulls.

Theorem 7.2. If Y ⇢ X is closed (respectively compact), then so is ŶO(X).

Proof. We first prove the assertion about closedness. If Y is closed, X \ Y, being an open
subset of a manifold, admits a manifold structure. Hence X \ Y is locally connected,
which implies that each of its connected components is open. The complement of ŶO(X)

consists of those components of X \Y which are not precompact in X. Since each of these
components is open, the complement of ŶO(X) is open, and consequently, ŶO(X) is closed.

We now prove the assertion about compactness. By the previous argument for any
compact set Y ⇢ X, we already know that ŶO(X) is closed. In order to show that ŶO(X)
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is compact, it su�ces to show that it is a subset of some precompact set.

We fix a precompact neighborhood V of Y and let Vj denote the components of X \Y.
We first claim that each Vj intersects V non-trivially. Suppose this were not the case.
Then for some Vj,

Vj ⇢ X \ V ⇢ X \ V

We take closure in X on both sides to obtain that V̄j ⇢ X \ V ⇢ X \ Y. But since Vj

is a connected component we obtain V̄j = Vj and Vj is closed in X. On the other hand,
Vj is also open in X since it is a component of X \ Y, which is locally connected. This
is not possible since X is connected and hence our initial claim that each Vj meets V is
justified.

Now, since @V is compact and all of the V 0

j
s are disjoint, we conclude that only

finitely many of them cover @V, while the remaining must be contained in V, since they
must anyway meet V by our earlier observation.

Let I0 now be the set of all those i 2 I for which Vi is precompact. We now know that
there exists a finite set F ⇢ I0 such that for all k 2 F , Vk \@V 6= �, and for all k 2 I0 \F,
Vk ⇢ V. Consequently,

ŶO(X) ⇢ V [k2F Vk

Since the set on the right side is precompact, the proof is complete.

We know that every manifold, by virtue of being a second-countable topological space,
admits a compact exhaustion. We use this compact exhaustion, coupled with the above
properties to move a step closer towards the promised result of exhaustion by means of
precompact Runge open sets.

Theorem 7.3. On any open Riemann surface X, there exists a sequence Mk ⇢ X of
compact subsets such that M̂kO(X) = Mk for all k, Mi ⇢ Interior(Mi+1) for all i and
X = [iMi.

Proof. Let {Fi : i 2 N} be the collection that provides a compact exhaustion for X. We
use this collection to construct the required collection Mi inductively. Set M0 = � and
M1 = F̂1O(X). Now suppose M2, . . . ,Mk having desired properties have been chosen. Let

Jk+1 be a compact set that contains Mk [Fk in its interior. We set Mk+1 = Ĵk+1O(X) and
that completes the proof.

In order to achieve an exhaustion of X by means of open Runge, precompact sets we
would like to ‘refine’ the exhaustion obtained by the above theorem. The next lemma
provides us with the necessary tools for the same.
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Lemma 7.1. Let M1,M2 be compacts subsets of X withM1 ⇢ Interior(M2), and M̂iO(X) =

Mi for i = 1, 2. Then there exists an open subset U ⇢ X such that ÛO(X) = U with
M1 ⇢ U ⇢ M2 and U has a smooth boundary.

Proof. We lay out a rough sketch of this proof. The reader may refer to ?? for complete
details. We cover @M2 by finitely many closed disks D1, . . . , DN which are chosen in such
a way that Di\M1 = � for all i. We choose U = M2\(D1[· · ·[DN). Since the disks cover
@M2, it is easy to see that U = Int(M2) \ (D1 [ · · · [DN), and consequently U is open.
We leave it to the reader to check that U satisfies the requirements of the lemma.

As an immediate consequence, we obtain the following exhaustion of open Riemann
surfaces promised at this section’s start.

Corollary 7.1. Let X be an open Riemann surface. Then there exist relatively compact,
open Runge subsets U1 ⇢⇢ U2 ⇢⇢ . . . such that each Ui has a smooth boundary and
[iUi = X.

7.2 Consequences of Behnke-Stein Runge Theorem

In this section, we first state the Behnke-Stein Runge Theorem. A proof of this result is
beyond the scope of this project and we shall not see a proof of it. Nevertheless, we shall
see some consequences of this result.

Theorem 7.4 (Behnke-Stein Runge theorem). For any open Riemann surface X and
any Y ⇢⇢ X where Y is a Runge open set, O(X)|Y is dense in O(Y ), where O(Y ) is
given the compact-open topology.

As a first consequence of this theorem, we use it to give a function-theoretic description
of the holomorphic hulls described in the previous section.

Proposition 7.1. Let F be a compact subset of an open Riemann surface X. Then

F̂O(X) = {x 2 X : |f(x)|  sup
K
|f |, 8f 2 O(X)} := B

Proof. We show mutual containment for the two sets described above. Let x 2 F̂O(X). If
x 2 F we are done. If not, x 2 U where U is a relatively compact component of X \ F.
Consequently @U ⇢ F. We now use the Maximum Principle to conclude that for each
f 2 O(X), we have |f(x)|  sup

@U
|f |  sup

K
|f |. This shows one-way containment.

For the other way containment, we show that (F̂O(X))C ⇢ BC , (where AC denotes the

complement of a set A). Let x /2 F̂O(X). Let U be a component of X \ F which contains
x and is not precompact in X. We now choose a coordinate disk D centered at x which

31



is contained in V. We leave it to the reader to check that K̂O(X) [ D is Runge with

K̂O(X) \D = �. Now consider the function g, given by

g(x) =

(
0, if x 2 K̂O(X)

1, if x 2 D

The Behnke-Stein Runge theorem allows us to approximate g by means of globally defined
holomorphic functions. Consequently, there exists G 2 O(X) such that,

|G(x)| > 1/2 > sup
K

|G|

This shows that x /2 B and our proof is complete.

The Behnke-Stein Runge theorem also allows us to strengthen Theorem 7.1. We state
and give a proof of the same here.

Theorem 7.5. Let X be an open Riemann surface and ! be a (0, 1) form on X. Then
there exists a smooth function f : X ! C such that ! = @̄f.

Proof. We fix a normal exhaustion of X given by {Ui}i2N[{0}. Theorem 7.1 guarantees
us the existence of functions {hi}i2N[{0} such that @̄g

i
= w on each Ui. We use these

functions to construct a sequence {fi : Ui ! C}N [ {0} such that

@̄fi = ! on Ui�1 and sup
Ui�1

|fi+1 � fi| <
1

2i
.

We take f0 = 0 and f1 : U1 ! C to be any smooth function such that @̄f1 = ! on
Y0. Now suppose functions f2, . . . , fn having the desired properties have been chosen, we
make a choice for fn+1.

We observe that fn � hn 2 O(Ui), since @̄(fi � hi) = @̄(fn) � @̄(hn) = ! � ! = 0.
By Behnke-Stein Runge theorem, there exists a global holomorphic function h 2 O(X)
such that sup

Ui
|fn � hn � h| < 1

2n
. We now choose fn+1 = hn � h. It is easy to see that

@̄(fn+1) = ! on Un and fn satisfies the required estimate with fn+1.
We now claim that for each member Ui of the normal exhaustion, {fn} is a uniformly

Cauchy sequence with respect to the C1-norm. We now write fn = f0 + ⌃n

j=0
fj � fj+1.

However, by Behnke-Stein Runge theorem, since on Yk�1 for k < n, fn = fk + hk,n where
hk,n 2 O(X), we obtain that the sup norm of hk,n on Yk�1 must be at most 1

2k�1 . This
gives us that {fn} is uniformly Cauchy with respect to the C1 norm for each member Ui

in the normal exhaustion. Consequently, there exists an f 2 O(X) such that fn ! f in
C1 norm on each member of the normal exhaustion. It is easy to now see that,

@̄f = @̄ lim fn = lim @̄fn = !

This completes the proof.
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The above theorem has some interesting consequences, some of which we shall discuss
here.

Theorem 7.6. Let X be an open Riemann surface and L ! X be a holomorphic line
bundle. Then L must be trivial.

Proof. In order to show that L is trivial we produce a section of L that has no zeroes. We
fix an open cover {Ui}i2I of X such that each Ui, Uj \ Uk is simply connected and L|Ui

is trivial. For every i, let ei 2 �O(L|Ui) be a nowhere vanishing section. Thus, on every
intersection Ui \ Uj, we obtain the holomorphic functions given by

hij := ei/ej

Clearly, hij is nowhere zero. Since its domain is simply connected, we obtain gij 2

O(Ui \ Uj) such that egij = hij.
We now fix a partition of unity subordinate to the open cover {Ui}i2I , given by { i}i2I .

We use this partition of unity to define new functions on each member of the open cover,

pi := ⌃j2J jgij on Ui

These functions defined on each Ui provide us with locally defined (0, 1) forms given by
@̄pi on Ui. We claim that these actually provide us with a globally defined (0, 1) form. To
this end, it su�ces to show @̄pi = @̄pj on Ui\Uj. We now show that pi�pj is holomorphic.
This is clear since

pi � pj = ⌃k k(gik � gjk) = gij

Thus, we have a (0, 1) form on X given by ! such that @̄pi = ! on each Ui. Now let
h be any smooth function satisfying @̄h = !, and we set

qi := pi � h

It is easy to see that for each Ui, qi 2 O(Ui) and qi�qj = gij. We now define local sections
of L given by

si = e�qiei on Ui

Clearly, si has no zeroes. We claim that these si’s provide us with a global section s such
that s = si on each Ui. This is immediate since on Ui \ Uj,

si = e�qiei = e�gije�qjei = e�qjej = sj

Since, s 2 �O(L) is nowhere zero, we conclude that L must be trivial.

As an immediate fallout of the triviality of holomorphic line bundles on open Riemann
surfaces, we obtain two important consequences which we state below.
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Theorem 7.7 (Weierstrass Product Theorem). Every divisor on an open Riemann sur-
face is principal.

Proof. Let D be a divisor on an open Riemann surface X. Let LD and sD be its corre-
sponding line bundle and meromorphic section of LD respectively, where

Ord(sD) = D

Theorem 7.6 guarantees the existence of s 2 �O(L) such that s has no zeroes. Consider
the meromorphic section given by f = sD/s. We have,

Ord(f) = Ord(sD)�Ord(s) = Ord(sD) = D

Theorem 7.8. Let X be an open Riemann surface and f be a meromorphic function on
X. Then there exist g, h 2 O(X) such that f = g/h on X.

Proof. Consider the divisor of poles of f given by D := (f)1. Let L and s be the line
bundle and section corresponding to this divisor i.e., Ord(s) = D. Since D � 0, s must be
holomorphic.
Theorem 7.6 guarantees the existence of t 2 �O(L) such that t has no zeroes. Now
consider the holomorphic function given by h = s/t. We observe that,

Ord(fh) = Ord(f) + Ord(s) = (f)0 � (f)1 + (f)1 = (f)0

Since Ord(fh) � 0, fh = g must be holomorphic. Thus f = g/h.
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8 Appendix

This appendix specifies the notation regarding complex di↵erential forms used in this
thesis. We record some important line bundles which were introduced in section 3.

8.1 Canonical bundle KX

Refer to examples in section 3.2 for the definition of the canonical bundle. The sections
of this bundle are referred to as (1, 0) forms. An important method of constructing (1, 0)
forms from smooth functions on a Riemann surface is as under.

Let f : X ! C be a smooth function and {(U↵, z↵) : ↵ 2 A} be an atlas for X. Let

! =
@f

@z↵
dz↵ on U↵

One can check that this gives a well-defined (1, 0) form on all of X, which shall be
referred to as @f

8.2 Conjugate of the canonical bundle

Given any vector space V , it is possible to construct a new vector space V such that for
any vector space W, linear maps from V to W correspond to conjugate-linear maps from
V to W. If (V,+, ·) is the original vector space, V has the same underlying set as that of
V. The ‘+’ operation of V is also the same as that of V. It is however given a new scalar
multiplication structure using the operation ‘*’, where z ⇤ v = z · v.

It can be checked that if L =
F

p2X
Lp is a line bundle overX, then L =

F
p2X

Lp can be

given the structure of a line bundle over X. With this notation in place we now look at KX

The smooth sections of this bundle are referred to as (0, 1) forms. As in the previous
subsection, we go over the method to construct (0, 1) forms from smooth functions on the
Riemann surface.
Let g : X ! C be a smooth map on a Riemann surface with an atlas given by {(U↵, z↵) :
↵ 2 A}. Let

↵ =
@f

@z̄↵
dz̄↵ on U↵

One can check that this gives a well-defined (0, 1) form on X. We refer to this (0, 1)
form as @̄f.
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8.3 1-forms

1-forms are elements of �(KX) � �(KX). Thus, locally every 1-form can be represented
as under,

! = f↵dz↵ + g↵dz̄↵ on U↵

If f : X ! C is a function we define the exterior derivative of f , given by the 1 form
df as under

df := @f + @̄f

If the local coordinate z↵ = x↵ + iy↵, then one can check that

df =
@f

@x
dx+

@f

@y
dy
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