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Nomenclature

C Chern Group

C1 Group generated by the total Chern Class of line bundles

G(B) Unit group of H∗(B,Z) with constant term 1

Pk k-element ordered subsets

W Stiefel-Whitney Group

Ω Loop Space

πn n-th homotopy group

Σ Reduced Suspension

BG Classifying Space for G

c Total Chern Class

H∗
even

∏
n

H2n

K(G, n) Eilenberg-Maclane Spaces

Sn n-sphere

T n n-torus : S1 × · · · × S1, n times

w Total Stiefel-Whitney Class

K̃O Reduced real K-group

K̃ Reduced complex K-group
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Introduction

We start with a manifold B. In this project, we are interested to figure out
the multiplicative group generated by the total Chern Classes of all com-
plex vector bundles over B. We call it the “Chern Group” of B and de-
note it by C(B). It is a subgroup of H∗

even(B,Z)×, the multiplicative group
of the even part of the integral cohomology ring of B. When we restrict
H∗

even(B,Z)× to have 1 as the constant term, we denote that group by
G(B). We describe these groups for familiar spaces, for example, spheres
and tori.

We will also inspect the analogous subgroup W(B), generated by the total
Stiefel-Whitney Classes.

The key results of the thesis are:

Theorem 0.0.1. The Chern Groups of the even dimensional spheres are
cyclic groups generated by 1+(n−1)!α where α is a generator of H2n(S2n,Z).
The index of C(S2n) in G(S2n) is (n− 1)!.

Theorem 0.0.2. The Chern Groups of odd dimensional spheres are trivial.

Theorem 0.0.3. C(T n) = G(T n) for n ≤ 5.

Theorem 0.0.4. The Stiefel-Whitney groups of the n-spheres are given by:

W(Sn) =


Z/2Z n = 1

1 +Hn(Sn,Z/2Z) n = 2, 4

1 n = 3, 5, 6, 7 and n ≥ 9

For n = 1, 2 and 4, W(Sn) is the multiplicative group of H∗(Sn,Z/2Z)
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Structure of the Thesis

This thesis predominantly focuses on the group generated by the total
characteristic classes of vector bundles over a particular base space. The
purpose is mainly three-folds : introducing some of the techniques for the
classification of vector bundles in the first chapter and then computing a
few Chern Groups and Stiefel-Whitney Groups in the remaining chapters.
The classification problem requires several tools. As a consequence, Chap-
ter 1 plays a pivotal role in the thesis, introducing Characteristic Classes,
Classifying Spaces and K-theory Groups. For a more detailed treatment of
these, one may refer to [Hat17], [Hat00], [MS74] and [Bre13].

Original Contributions

The computational results in Chapter 2 and 4 are new in the sense that,
the results used to conclude them are pretty much familiar and easily found
in literature, however the particular consequences we mentioned were not
earlier discussed. The algebraic approach adopted in Chapter 3 and the
results in section 3.4 and 3.5 are original.
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Chapter 1

Preliminary Notions

1.1 Isomorphism Class of Vector Bundles

Let X be a topological space. Consider all vector bundles over X of rank
k. We denote their isomorphism class by V ectn(X). For real vector bun-
dles we use V ectnR(X) and for complex we write V ectnC(X). We have the
following correspondence (cf. [Hat17]){

Complex Vector Bundles of rank k

over paracompact base space X

}
←→

{
Homotopy Class of maps

from X to Grassk(C
∞)

}

In other words, V ectkC(X) ∼= [X,Grassk(C
∞)]•, where the • at the end

denotes that these are based homotopy classes. When X = Sn, [Hat17]
gives the following correspondence:

V ectkC(S
n) ∼= [Sn−1, GL(k,C)]•

Note that [Sn−1, GL(k,C)]• := πn−1(GL(k,C)). U(k) being a maximal,
compact subgroup of GL(k,C). Hence we can write:

V ectCk(Sn)
∼= πn−1(U(k))

For n > 2, we can write this as

V ectCk(Sn) ∼= πn−1(SU(k))

Here is a table that compiles first few homotopy groups of some Special
Unitary Groups. We know that V ectkC(S

n) ∼= πn−1(SU(k)) [Wei13]
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Homotopy Groups of Special Unitary Groups
k π1 π2 π3 π4 π5

SU(1) 0 0 0 0 0
SU(2) 0 0 Z Z/2Z Z/2Z
SU(3) 0 0 Z 0 Z
SU(4) 0 0 Z 0 Z
SU(5) 0 0 Z 0 Z
SU(6) 0 0 Z 0 Z
SU(7) 0 0 Z 0 Z

In fact a more general statement on this correspondence says that

V ectkC(ΣX) ∼= [X,U(k)]•

Where ΣX denotes the suspension of X.

Remark. From the above correspondences, one can actually realize that
V ectnC as a functor is representable by Grassn(C

∞).

Similar results hold for real vector bundles:

V ectkR(S
n) ∼= πn−1(O(k))

1.2 Characteristic Classes

Characteristic Classes are certain cohomological invariants which can dis-
tinguish vector bundles.

Definition 1.2.1. Characterestics Classes are natural transformations
from V ectn to H∗( , A) for an Abelian group A.

Four impotant Characteristic Classes are Stiefel-Whitney Classes, Chern
Classes, Euler Class and Pontryagin Classes. We will be interested in the
first two. Axiomatic definitions and properties of them can be found in
[MS74] or [Hat17].

Remark. When our base space is paracompact, characteristic classes are
elements from H∗(Grassn(K

∞), A). (K = R,C)

Proposition 1.2.2. If X has the homotopy type of a CW complex then
Hn(X,G) ≈ [X,K(G, n)]

Proposition 1.2.3. Complex Line Bundles over X are in one-one corre-
spondence with H2(X,Z). This isomorphism is known as the first Chern
Class c1(X).
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1.3 Chern Characters

We want to get a natural ring homomorphism from the K theory to the
(singular) cohomology theory. Total Chern Classes are not additive, in the
sense that, it takes direct sum of two vector bundles to a cup product. We
will be rather interested to send a ⊕ to + and ⊗ to ⌣. Chern Character
perfectly solves this purpose. It is defined in the level of line bundles, from
which one can consider it for arbitrary vector bundles using direct sum and
tensor products.

Definition 1.3.1. For a complex line bundle L → B, the Chern Character

ch(E) is defined as ec1(L) =
∞∑
k=0

(c1(L))k

k!
∈ Heven(B,Q)

Remark. ch(L⊗ L′) = ec1(L⊗L′) = ec1(L)+c1(L′) = ch(L)ch(L′).

ch(E) will turn out to be inside the rational cohomology ring Heven(B,Q).
But we will be interested in the case when it lands inside Heven(B,Z), for
example in 2.3.1.

1.4 Classifying Spaces and Eilenberg MacLane

Spaces

Here by a topological space X or a topological group G, we always mean
that it has the homotopy type of a CW-complex. For different construc-
tions of Classifying spaces one can look at [May99], [Ste68] or [Seg68].

Definition 1.4.1. A “universal” G-bundle is a principal G-bundle whose
total space EG is weakly contractible1, and with the property that any prin-
cipal G-bundle over an arbitrary topological space B is a pullback of it by
some “classifying map” f : B → BG. BG is then called the “classifying
space” of the topological group G2.

E EG

B BG

f ′

p′ p

f

1A topological space is “weakly contractible” if all of its homotopy groups are triv-
ial. The notions weakly contractible and contractible are equivalent for CW complexes,
thanks to Whitehead’s Theorem

2Or more appropiately Classifying space for principal G-bundles

12



In other words BG is the quotient of the weakly contractible total space
EG by a free action of G.

Example 1.4.1. Some Examples of Classifying Spaces are: BZ = S1, BS1 =
CP∞, BS3 = HP∞, BZn = T n

Remark. Which spaces can arise as classifying spaces? This can be an-
swered upto homotopy equivalence, since ΩBG is homotopy equivalent to
G. (cf. [Hat00], [tD08]). Ω is the “loopspace” of BG.

Definition 1.4.2. A connected topological space X is an “Eilenberg-MacLane
Space of type K(G, n)” for n > 1 if

πk(X) =

{
G k = n

0 k ̸= n

Example 1.4.2. Some examples of Eilenberg-MacLane Spaces are:

• S1 is a K(Z, 1)

• RP∞ is a K(Z/2Z, 1)

• CP∞ is a K(Z, 2)

Remark. K(G, n) behaves as “representing space” for the n-th singular
cohomology with coefficients in G. Thus for any based CW complex X, the
set [X,K(G, n)] is in bijection with Hn(X,G), naturally.

Proposition 1.4.3. For a discrete group G, BG is an Eilenberg-MacLane
Space of type K(G, 1).

Proof. Consider the long exact sequence in homotopy:

· · · → ������:0
πn+1(EG) → πn+1(BG)→ πn(G)→ �����:0

πn(EG) → · · ·

We have πn(EG) = 0 ∀n since EG is contractible. Therefore πn+1(BG) =
πn(G) ∀n. In other words, G being discrete πn(BG) = 0 for n ̸= 1 and
π1(BG) = G. Consequently BG is K(G, 1).

Remark. The homotopy groups of BG and G are equal, upto a shift.
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1.5 K-theory Groups

In the last section, we considered complex vector bundles of a particular
rank over a base space and stated a bijection to the homotopy class of
clutching functions. If we consider all complex vector bundles (without fix-
ing the rank) over a given base X, then it is not a group with respect to ⊕.
It is a semiring and denoted by K(X) or V ectC(X). The second notation
is consistent to what we used in the previous sections. For all definition
below we restrict X to compact Hausdorff topological spaces.

Definition 1.5.1. Two vector bundles ξ and η are called to be “stably iso-
morphic” if there exists m,n ∈ Z≥0 such that ξ ⊕ εmC

∼= η ⊕ εnC, where εk

denotes trivial complex vector bundle of rank k. We denote ξ ∼ η

We state Bott Periodicity and one of its corollaries. cf. [Hat17] for proof.

Proposition 1.5.2. The homomorphism θ : K̃(X) → K̃(Σ2X) given by
the external product θ(a) = (H − 1) ∗ a is an isomorphism, where H is the
canonical line bundle over CP1 ∼= S2.

Corollary 1.5.3. The reduced K-groups K̃(S2n+1) = 0 and K̃(S2n) ∼= Z,
which is generated by (H − 1)∗n, the n- fold reduced external product.

Now we switch to the real K− theory groups which are denoted by KO3.
In fact, real K− theory is more complicated than the complex K− theory.
One of the most striking difference is in Bott Periodicity. The period for
the K̃O groups are 8, under K̃ groups, where the period was 2. In the in-
troductory section of [Hat17], the first few K̃ groups of Sn are given:

Real K theory Groups of the Spheres
S1 S2 S3 S4 S5 S6 S7 S8

Z/2Z Z/2Z 0 Z 0 0 0 Z

1.6 Shuffles and Permutations

In the game of cards, a riffle is a standard method to shuffle the cards.
One divides the whole deck of cards into two smaller decks and interleaves
them. A riffle shuffle permutation is a particular permutation of the entire
deck of cards that can be achieved by a single riffle shuffle. A (p, q)-shuffle
is a special case of the riffle shuffle permutation where the two smaller
decks have cardinality p and q (cf. [Mac12], [May92]).

3The notation subsumes the O of Orthogonal groups. Ideally complex K theory
should be written KU , for the corresponding unitary groups.
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Definition 1.6.1. A (p, q) shuffle is an element σ ∈ Sp+q with

σ(1) < · · · < σ(p) and σ(p+ 1) < · · · < σ(p+ q)

Remark. Signature of the shuffle is defined to be the sign of σ.

Let X,X ′ be two disjoint subsets of {1, . . . , n} with |X| = p and |X ′| = q.
Write (X | X ′) for the permutation of X ∪X ′ given by listing the members
of X in order, and then listing the members of X ′ in order. When X∪X ′ =
{1, . . . , n} it is a (p, q)-shuffle.

Example 1.6.1. Let X = {1, 3} and X ′ = {2, 5}. The permutation is then
(1325), and with one swap we get to (1235). Therefore

sgn({1, 3} | {2, 5}) = −1.

Example 1.6.2. Let X = {2, 4} and X ′ = {1, 3, 5, 6}. The permutation
is (241356). We can use the following sequence of swaps to get the identity
permuatation.

(241356)
2 swaps to move 1−−−−−−−−−−→ (124356)

1 swap to move 4−−−−−−−−−→ (123456)

The total number of swaps is 3. Therefore

sgn({2, 4} | {1, 3, 5, 6}) = −1.

We will use sgn(X | X ′) in Chapter 3 for the tori.
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Chapter 2

Chern Groups for Spheres

2.1 Cohomology Ring of Sphere

The integral cohomology ring for the spheres are given by H∗(Sn,Z) = Z[a]
(a2)

,

where a is of degree n. The units are of the form {±1± aZ}. We will often
use the notation G(S2n) for the units of the form {1 + aZ}.

We start inspecting the cases with first few spheres of lower dimensions.

2.2 n-Spheres for n=1,2,3

Proposition 2.2.1. The Chern Group C(S1) is trivial

Proof. H2k(S1,Z) = 0 ∀ k ∈ Z =⇒ ck(ξ) = 0 for all bundles ξ over S1

=⇒ C(S1) is trivial.

Proposition 2.2.2. The Chern Group C(S2) is the entire unit group G(S2)

Proof. Given a ∈ H2(S2,Z), by the correspondence result 1.2.3, there is a
complex line bundle Xa over S2 such that c1(X

a) = a. Hence C(S2) is the
entire unit group.

Proposition 2.2.3. The Chern Group C(S3) is trivial

Proof. Since π2(G) = 0 for any Lie Group G, π2(SU(k)) = 0 cf. [BTD13],
and hence C(S3) is trivial.
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2.3 4-Sphere

We first state the following two statements from [Hat17]. For a proof cf.
chapter 4 of [Hat17] or section 9, chapter 20 of [Hus66].

Proposition 2.3.1. The map ch : K̃(S2n) → H2n(S2n,Q) is injective with
image equal to the subgroup H2n(S2n,Z) ⊂ H2n(S2n,Q).

Now it follows from the definition of Chern Characters that:

Corollary 2.3.2. A class in H2n(S2n,Z) occurs as a Chern Class if it is
divisible by (n− 1)!

Proof. Since Hk(S2n,Z) = 0 for k ̸= 2n, we have c1(ξ) = · · · = cn−1(ξ) = 0
for a complex vector bundle ξ over S2n. Hence

ch(ξ) = dim(ξ) +
sn(c1, · · · , cn)

n!

Now by the recursion formula for sn (cf. section 2.3 of [Hat17]), we have
sn = σ1sn−1 − σ@sn−2 + · · ·+ (−1)n−1nσn, so

sn(c1, · · · , cn)
n!

=
ncn(ξ)

n!
=

cn(ξ)

(n− 1)!

Combining this with the previous proposition, we get the corollary.

Remark. We used the crucial fact (again, cf. [Hat17]) that for any symmet-
ric polynomial1 of degree k in the variables x1, · · · , xn can be expressed as
a unique polynomial sk in σ1, · · · , σk. In other words, there is a polynomial
such that

sk(σ1, · · · , σk) =
n∑

i=1

xk
i

From the last corollary, we can deduce that the analogous maps

π2n(BSU(n),Z)→ H2n(S2n,Z)

are maps given by multiplication by (n − 1)!. Hence for n = 2 the map is
an isomorphism.

1Symmetric Polynomial in n variables is a polynomial such that if one of the vari-
ables is interchanged, then one obtains the exact same polynomial. For example x+ y is
symmetric, however x− y is not a symmetric polynomial.

17



Proposition 2.3.3. C(S4) = G(S4).

Proof. We focus on the rank 2 bundles ξ : E → S4. We have V ect2C(S
4) ∼=

π3(SU(2)). The second Chern class c2(ξ) ∈ H4(S4,Z). It can also be
viewed as an element of H4(BSU(2),Z) ∼= [BSU(2), K(Z, 4)]•. Now:

H4(S4,Z) ∼= [S4, K(Z, 4)]• and [S4, BSU(2)]• ∼= π4(BSU(2))

Consider the map BSU(2) → K(Z, 4) which classifies c2. But we showed
that it induces isomorphisms at the homotopy group level. Note that

π4(BSU(2)) ∼= π3(SU(2)) ∼= V ect2C(S
4)

Thus vector bundles of rank 2 are indeed classified2 by c2(ξ).

Note that for n > 2, 2.3.2 is not isomorphism anymore. However, we still
get an injection. For the other even dimensional spheres the ch map is in-
jective. Thus we can classify rank n complex vector bundles over S2n are
classified by cn, in other words, the Chern Group is non-trivial and is given
by 1 + (n− 1)! H2n(S2n,Z).

Thus we are done with all even dimensional spheres. Now the odd dimen-
sional spheres are left, except S1 and S3 whose Chern Groups were found
to be trivial. We first produce a specific kind of vector bundle over S5.

2.4 5-Sphere

Before going to prove a lemma about S5, we recall that An Euler Section
of τCn is a vector field of the form

∑
xi(p)

∂
∂xi
|p, where p ∈ C3 and xi are

the coordinate functions for i = 1, · · · , n. If we consider the Euler sec-

tion for the tangent bundle τC3, then it is given by
3∑

i=1

xi(p)
∂
∂xi
|p, which is

nowhere vansihing on S5.

Lemma 2.4.1. There exists a complex vector bundle E over S5 of rank 2
which is stably trivial but non-trivial.

Proof. Consider the restriction of the tangent bundle of C3 to S5 : τC3|S5 .
Take the trivial complex line subbundle of τC3|S5 , spanned by the Euler
section σ, which is non-vanishing on S5. Now one can take the orthogonal

2This method is applicable to S4. For the remaining cases Corollary 2.3.2 is needed.
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complement of ε1C using the Hermitian metric of C3 and construct a total
space. Then there exists a stably trivial vector bundle E → S5 of rank 2.

τC3|S5 = E ⊕ ε1C

Recall that S5 is not parallelizable. Regarding E → S5 as a R-vector sub-
bundle of τS5 of rank 4, one can write

τS5 = E ⊕ ε1R

Where the trivial line bundle ε1R is spanned by iσ, σ is the previous Euler
section3. Had E been trivial, one would have had τS5 is trivial, a contra-
diction.

Remark. In the similar manner, one can construct such stably trivial, but
non-trivial vector bundles over S2n+1, except the case of 7-sphere, which is
parallelizable.

Corollary 2.4.2. There exists a non-trivial complex vector bundle E → S5

whose Chern classes are trivial.

Proof. Because E is stably trivial, we can realte the total Chern Classes as:

c(τC|S5) = c(E) ⌣ c(ε1C)

Hence the total Chern class of E is trivial and ci(E) = 0 for i = 1, 2.

Recall the fact that V ectnC(S
5) ∼= π4(SU(n)). Now, π4(SU(n)) = 0 for

n ̸= 2 and π4(SU(2)) ∼= Z/2Z. Consequently, there are only one non-trivial
complex vector bundle of rank 2 over S5, upto bundle isomorphism. Now
combining this with 2.4.2, we conclude that C(S5) is trivial.

One can use the same procedure to produce complex vector bundles over
odd dimensional spheres as 2.4.2, except the case of S7, whose tangent
bundle is trivial. Also the corresponding homotopy group is not always
Z/2Z, so the same approach often fails. However, thanks to complex K−
theory, we can state a general result for all odd dimensional spheres.

3This is multiplication by the complex number i. For example if σ is the vector field

given by

[
x

y

]
, then iσ will be the vector field

[
−y
x

]
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Proposition 2.4.3. All complex vector bundles over odd dimensional spheres
are stably trvial.

Proof. 1.5.3 says that K̃(S2n+1) = 0. In other words, there is only one sta-
ble isomorphism class. A non-trivial vector bundle ξ is stably isomorphic
to the trivial vector bundle εℓ implies that there are integers m,n such that
ξ ⊕ εm = εℓ ⊕ εn. Thus ξ ⊕ εm = εℓ+n and ξ is stably trivial.

Now stably trivial bundle implies its total Chern Class is trivial. The last
proposition then says C(S2n+1) is trivial.

We summarize the outcome of this chapter in the following theorem.

Theorem 2.4.4. The Chern Group of every odd dimensional spheres are
trivial. For even dimensional spheres, C(S2n) is the cyclic group generated
by the element 1 + (n− 1)!α where α is a generator of H2n(S2n,Z).

Remark. One can take a fundamental class of S2n, say µS2n and dualize it
to get a generator of the top cohomology, in other words, Hom(µS2n ,Z)
will be a generator of H2n(S2n,Z).

One can also note that the index of C(S2n) in G(S2n) is in fact (n − 1)!.
Therefore only for S2 and S4, the Chern Group exhausts the unit group G.
For the other even dimensional spheres, the Chern Group will be cyclic of
even index in G(S2n).
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Chapter 3

Chern Groups for Tori

3.1 Cohomology Ring of Tori

Denote T n = S1 × · · · × S1 (n times). First, we will consider T 2. It is
well-known ([Hat00]) that:

Hk(T 2,Z) =


Z k = 0, 2

Z⊕ Z k = 1

0 k > 2

In particular Hk(T n,Z) = Z(
n
k). The cohomology ring for T n is the exterior

algebra ΛZ[v1, · · · , vn] with each vi having degree 1 and vivj = −vjvi ∀i ̸= j

We write down a general algebraic setup to take care of the Chern Groups
of T 4 onwards. Let R be the integral cohomology ring ΛZ[v1, · · · , vn] with
each |vi| = 1 with vivj = −vjvi and Ri is the homogeneous ith degree
terms. Suppose

G(T n) := 1 +
∑
i even

Ri

Finally we define two subgroups of G, namely,

C1(T n) := ⟨1 +R2⟩

and K ⊆ G generated by the elements {1 + vivj}, with 1 ≤ i ̸= j ≤ n.

Remark. Note that the Chern Group C(T n) lies between G(T n) and C1(T n).

An immediate consequence is the following:
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Proposition 3.1.1. The subgroup K is a free Abelian group of rank
(
n
2

)
.

Proof. Essentially, we show that {1 + vivj}1≤i ̸=j≤n is a basis of K. The
spanning part is clear from the definition of K. Now suppose we have∏

1≤i ̸=j≤n

(1 + vivj)
aij = 1.

Indeed if some aij ̸= 0 the corresponding 1 + vivj element will end up being
in the final product. Hence each aij has to be zero.

3.2 Torus for n=2,3

Proposition 3.2.1. C(T 2) = {1 + α;α ∈ H2(T 2)}

Proof. Start with the correspondence between the isomorphism class of
complex line bundles over X and H2(X,Z). H2(T 2,Z) = Z gives existence
of non-trivial line bundles over the Torus. Now, combine the facts that ci ∈
H2i(T 2) and Hk(T 2) vanishes for k > 2.

Proposition 3.2.2. C(T 3) = {1 + α;α ∈ H2(T 3)}

Proof. Existence of non-trivial complex line bundle over T 3 follows by non-
triviality of second cohomology. Hk(T 3,Z) = 0 for k > 3, shows that there
is no c2.

3.3 4-Torus

We attempt to solve this algebraically. Here R is ΛZ[v1, v2, v3, v4] with each
|vi| = 1 for i = 1, 2, 3, 4 and Ri is the homogeneous ith degree terms.
The subgroups of G(T 4), which were discussed in the general setup are
C1(T 4) := ⟨1 +R2⟩ and K ⊆ G1 generated by {1 + vivj}, with 1 ≤ i ̸= j ≤ 4

Remark. The subgroup K ⊊ C1(T 4)

To see that, consider the element 1 + v1v2 + v2v3 + v3v4 ∈ C1(T 4). If it were
also in K, then it must have been of the form (1+ v1v2)(1+ v2v3)(1+ v3v4).
So there must be the product term v1v2v3v4.

We can write an element y of G is the form 1 + av1v2 + bv2v3 + cv3v4 +

dv4v1 + ev1v3 + fv2v4 + x
4∏

i=1

vi (a, b, c, d, e, f, x ∈ Z).

1Often we will just write G for G(Tn), if it is clear from the context.
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Proposition 3.3.1. An element y ∈ K if and only if x = ac− bd− ef .

Proof. The proposition follows from the factorization below:

(1 + av1v2) (1 + bv2v3) (1 + cv3v4) (1 + dv4v1) (1 + ev1v3) (1 + fv2v4)

= 1 + av1v2 + bv2v3 + cv3v4 + dv4v1 + ev1v3 + fv2v4 + (ac− bd− ef)
4∏

i=1

vi

Thus, we can consider the map θ : G −→ (Z,+), given by sending

y 7→ x− ac+ bd+ ef

Proposition 3.3.2. The map θ is a group homomorphism

Proof. Consider two elements from G and their product:

y = 1 + av1v2 + bv2v3 + cv3v4 + dv4v1 + ev1v3 + fv2v4 + x
4∏

i=1

vi and

y′ = 1 + a′v1v2 + b′v2v3 + c′v3v4 + d′v4v1 + e′v1v3 + f ′v2v4 + x′
4∏

i=1

vi

Then we can write their product as yy′ = 1 + (a+ a′)v1v2 + ...+ (f + f ′)v2v4

+(ac′ − bd′ + a′c− b′d− ef ′ − e′f + x+ x′)
∏

vi

Applying θ to yy′ we get θ(yy′) = (ac′ − bd′ + a′c− b′d− ef ′ − e′f + x+ x′)

−(ac+ a′c+ a′c′ + ac′ + ...− ef − e′f − ef ′ − e′f ′)

= x+ x′ + ac+ a′c′ + bd+ b′d′ + ef + e′f ′ = x− (ac+ bd+ ef)

+x′ − (a′c′ + b′d′ + e′f ′) = θ(y) + θ(y′)

Hence θ is indeed a group homomorphism.

By Proposition 3.3.1 the kernel of θ is the subgroup K. Now we will check
surjectivity of the map. Observe that, θ(1 + v1v2 + v3v4) = −1 and θ(1 +
v2v3 + v4v1) = 1. One can now increase the coefficients and obtain any
integer as the value of θ. Therefore, we get the following exact sequence,
where K is free abelian group of rank

(
4
2

)
= 6

1→ K → G → Z→ 0

This exact sequence in fact splits and hence G ∼= K ⊕ Z. Consequently, G
is free abelian group of rank 7. By correspondence theorem subgroups of G
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containing K are in one-one correspondence with subgroups of G/K ∼= Z.

Since, z = 1 + v2v3 + v4v1 is an element of C1(T 4) such that θ(z) = 1, we

must have the entire Z as the image of C1(T 4) and hence G = C1(T 4) in

this case.

The conclusion of the section is the following

Theorem 3.3.3. Chern Group of 4-Torus is generated by the total Chern
Classes of Line Bundles and it is free abelian group of rank 7.

3.4 5-Torus

In this case K is free of rank
(
5
2

)
= 10. Also K ⊊ C1(T 5) because of the

element 1 + v1v2 + v3v4. An arbitrary element of G can be written as:

y = 1 +
∑
i<j

aijvivj +
∑

i<j<k<l

bijklvivjvkvl

Using the ordered subset notation, we can write this as (regarding v{ij} :=
vivj and v{ijkl} := vivjvkvl )

y = 1 +
∑
σ∈P2

aσvσ +
∑
τ∈P4

bτvτ

To clarify the notation we expand the two sums for this case:∑
σ∈P2

aσvσ = a1v1v2 + a2v2v3 + a3v3v4 + a4v4v5 + ...+ a9v2v4 + a10v4v1∑
τ∈P4

bτvτ = b1v1v2v3v4 + b2v2v3v4v5 + b3v3v4v5v1 + b4v4v5v1v2 + b5v5v1v2v3

We define a map θ : G → Maps(P4,Z) as follows:

y 7→ (τ 7→ θτ (y))

For τ ∈ P4 we define θτ as follows:

y 7→ bτ −
∑

σ ̸=σ′∈P2,σσ′=τ

sgn(σ | σ′)aσaσ′

Where σσ′ denotes the union of σ and σ′. Since Maps(P4,Z) is a group
under pointwise addition and it is isomorphic to Z5, we can actually take
the co-domain to be Z5 and get a surjective group homomorphism.
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Proposition 3.4.1. θ is a Group Homomorphism and its kernel is K

Proof. In each component, the given map behaves like the θ in the T 4

case. The second statement holds because one can use the expansion of
(1 + a1v1v2)(1 + a2v2v3)...(1 + a10v4v1), similar to the proof of 3.3.1

Let us denote the basis of Z5 by {ei}, which is a 5-tuple, with 1 at the i-th
position and rest all zero.

• e1 = θ(1 + v2v3 + v4v1) = θ(1 + v1v3 + v2v4)

• e2 = θ(1 + v3v4 + v5v2) = θ(1 + v3v5 + v2v4)

• e3 = θ(1 + v4v5 + v1v3) = θ(1 + v3v5 + v4v1)

• e4 = θ(1 + v5v2 + v4v1) = θ(1 + v5v1 + v2v4)

• e5 = θ(1 + v5v2 + v1v3) = θ(1 + v1v2 + v3v5)

Evidently, θ is surjective and K being its kernel, we obtain G ∼= Z5 ⊕K.

Since K is free of rank 10, G is free of rank 15. Now again by correspon-
dence theorem and the observation that in the above list, each ei are writ-

ten as image of an element of C1(T 5), we conclude that G = C1(T 5) in this
case.

The conclusion of the section is the following:

Theorem 3.4.2. Chern Group of 5-Torus is generated by the total Chern
Classes of Line Bundles and it is free abelian group of rank 15.

3.5 6-Torus

Here K is free of rank
(
6
2

)
= 15. Also K ⊊ C1(T 6) because of the element

1 + v1v2 + v3v4 + v5v6. An element of G will look like

y = 1 +
∑
σ∈P2

aσvσ +
∑
τ∈P4

bτvτ + x
6∏

i=1

vi

Consider the group homomorphism θ4 : G → H4(T 6) ∼= Z15 given by :

y 7→ (θ4,1(y), ..., θ4,15(y)) where
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θ4,i : y 7→ bτi −
∑

σ ̸=σ′∈P2,σσ′=τi

sgn(σ | σ′)aσaσ′

Note that K ⊊ Ker(θ4). Denote K4 := Ker(θ4)

We define the map θ6 : K4 → H6(T 6,Z) ∼= (Z,+) as follows:

y 7→ x−
∑

σσ′σ′′=[n]σ,σ′,σ′′∈P2

sgn(σ | σ′ | σ′′)aσaσ′aσ′′

Proposition 3.5.1. The map θ6 : K4 → Z is a group homomorphism.

Proof. Consider two elements from G and their product:

y = 1 +
∑
σ∈P2

aσvσ +
∑
τ∈P4

bτvτ + x
6∏

i=1

vi

y′ = 1 +
∑
σ∈P2

a′σvσ +
∑
τ∈P4

b′τvτ + x′
6∏

i=1

vi

their product yy′ = 1 +
∑
σ∈P2

(aσ + a′σ)vσ +
∑
τ∈P4

bτvτ + x
6∏

i=1

vi

where bτ = bτ + b′τ +
∑

σσ′=τ,σ,σ′∈P2

sgn(σ | σ′)(aσa
′
σ′ + aσ′a′σ)

and x = x+ x′ +
∑

στ=[n]σ∈P2,τ∈P4

sgn(σ | τ) (a′σbτ + aσb
′
τ )

θ(yy′) = x+ x′ +
∑

στ=[n]σ∈P2,τ∈P4

sgn(σ | τ)(a′σbτ + aσb
′
τ )−∑

σσ′σ′′=[n]σ,σ′,σ′′∈P2

sgn(σ | σ′ | σ′′)(aσ + a′σ)(aσ′ + a′σ′)(aσ′′ + a′σ′′)

Since the domain of θ6 is K4, we have∑
σσ′σ′′=[n]σ,σ′,σ′′∈P2

sgn(σ | σ′ | σ′′)(aσ + a′σ)(aσ′ + a′σ′)(aσ′′ + a′σ′′)

=
∑

sgn(σ | σ′ | σ′′)
(
aσaσ′aσ′′ + a′σa

′
σ′a′σ′′ + aσ

∑
(a′σ′a′σ′′) + a′σ

∑
(aσ′aσ′′)

)
=

∑
sgn(σ | σ′ | σ′′) (aσaσ′aσ′′ + a′σa

′
σ′a′σ′′ + aσb

′
τ + a′σbτ )

In other words, θ(yy′) = θ(y) + θ(y′) ∀ y, y′ ∈ K4.
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However, the approach for the 4-torus did not work here since the map θ
is no longer a group homomorphism when its domain is G. It is interesting
question to ask about the surjectivity of the map θ6 and whether C1(T 6) is
equal to the Chern Group. This has not been resolved yet.

We note down the conclusion of the chapter as follows:

Theorem 3.5.2. For n ≤ 5 the Chern Group C(T n) equals G(T n).
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Chapter 4

Stiefel-Whitney Groups

Just like Chern Classes a similar analysis can be done on Stiefel Whitney
Classes, for real vector bundles. In fact, analogous subgroups were men-
tioned in [MS23] for representations, which turned out to be cyclic for
SL(2, q).

Definition 4.0.1. Given a base space X, the Stiefel Whitney Group W(X)
is defined to be the subgroup of of H•(B,Z/2Z)× generated by the total
Stiefel Whitney Classes of all real vector bundles over X.

To begin with we consider B = Sn. The following results will make their
appearances frequently ( See [Hat17] or [Wei13] for proof):

Proposition 4.0.2. Real Vector Bundles of rank k over ΣX are in bijec-
tive correspondence with the based homotopy class [X,O(k)]

Corollary 4.0.3. Real Vector Bundles of rank k over Sn are in bijection
with πn−1(O(k)) ∼= πn−1(SO(k)) for n > 2

V ectkR(S
n) ∼= πn−1(SO(k))

Here is a table that compiles first few homotopy groups of some Special
Orthogonal Groups.

Homotopy Groups of Special Orthogonal Groups
k π1 π2 π3 π4 π5

SO(2) Z 0 0 0 0
SO(3) Z/2Z 0 Z Z/2Z Z/2Z

SO(4) Z/2Z 0 Z2 (Z/2Z)2 (Z/2Z)2

SO(5) Z/2Z 0 Z Z/2Z Z/2Z
SO(6) Z/2Z 0 Z 0 Z
SO(7) Z/2Z 0 Z 0 0
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Proposition 4.0.4. Real Line bundles over X are in one one correspon-
dence with H1(X,Z/2Z). This assignment is essentially the first Stiefel-
Whiteny Class w1(X).

4.1 Spheres of Dimension 1,2 and 3

We digress a bit about the singular cohomology groups and cohomology
ring of n-sphere.

Hk(Sn,Z) =

{
Z k = 0, n

0 k ̸= 0, n

The cohomology ring of of sphere H∗(Sn,Z) = Z[x]
(x2)

, with |x| = n One can

now re-write these with Z/2Z coefficients.

Hk(Sn,Z/2Z) =

{
Z/2Z k = 0, n

0 k ̸= 0, n

H∗(Sn,Z/2Z) = Z/2Z[a]
(a2)

, with |a| = n

Proposition 4.1.1. Stiefel Whitney Group of S1 is cyclic of order 2.

Proof. H∗(S1,Z/2Z) = Z/2Z[a]
(a2)

= {0, 1, a, 1 + a} with a ∈ H1(S1,Z/2Z)

Now
(

Z/2Z[a]
(a2)

)×
= {1, 1 + a} ∼= Z/2Z.

Therefore W(S1) = H∗(S1,Z/2Z)× ∼= Z/2Z

Proposition 4.1.2. Stiefel Whitney Group of S2 exhausts the entire unit
group H•(S2,Z/2Z)×

Proof. Consider the map induced by the coefficient map Z→ Z/2Z

κ : H2(X,Z)→ H2(X,Z/2Z)

1.2.3 says, given a ∈ H2(S2,Z), there exists a complex line bundle Xa over
S2, such that the first Chern Class c1(X

a) = a.
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By Prop 3.8 of [Hat17] one has κc1(X
a) = w2(X

a
R), where ξR denotes the

Realization of a complex vector bundle ξ. Consequently, w2 is non-trivial.
Hence the SW group W(S2) exhausts the entire unit group H•(S2,Z/2Z)×.

Proposition 4.1.3. Stiefel Whitney Group of S3 is trivial.

Proof. For any Lie Group G, the second homotopy group is always trivial
(cf.[BTD13]). In particular π2(SO(k)) = 0. Now 4.0.3 says that there is no
non-trivial vector bundles over S3. Consequently, W(S3) is trivial.

4.2 Spheres of Dimension ≥ 9

We will refer to the following result from the celebrated paper [AH61].

Proposition 4.2.1. Let Y be a finite CW complex, not necessarily con-
nected. Then the total Stiefel Whitney Class w(ξ) = 1 for any real vector
bundle ξ over the 9-fold suspension of Y .

The previous proposition gives the Stiefel Whitney groups of S9 and higher.

Proposition 4.2.2. W(Sn) are trivial for n ≥ 9.

Proof. Since Sn+1 = ΣSn, 4.2.1 says that the Stiefel Whitney classes of ξ
vanish for any ξ over Sn for n ≥ 9. Hence W(Sn) is trivial for n ≥ 9

4.3 Remaining Cases

Recall that, C(S4) turned out to be 1 + H4(S4,Z). Composing the multi-
plication by (n − 1)! map by the coefficient induced homomorphism κ, we
associate an element of H4(S4,Z/2Z) with a complex vector bundle.

K̃(S4)
×(2−1)!−−−−→ H4(S4,Z)

κ−→ H4(S4,Z/2Z)

By Prop 3.8 of [Hat17], it turns out that κ(c2) = w4. Therefore, W(S4) is
non trivial and equals 1 +H4(S4,Z/2Z)

Now one cannot use the same κ map for the other spheres, as for n > 2, we
start getting even values for (n − 1)!. Consequently that becomes zero un-
der the coefficient map Z→ Z/2Z. To resolve this impasse, we take help of

the real K− theory groups. Recall that K̃O(Sn) is trivial for n = 3, 5, 6, 7.
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Proposition 4.3.1. Every real vector bundle over Sn is stably trivial for
n ≡ 3, 5, 6, 7( mod 8)

Proof. As K̃O(Sn) is trivial for n ≡ 3, 5, 6, 7( mod 8), there is only one sta-
ble isomorphism class of real vector bundles over these Sn. Consequently,
every vector bundle is stably trivial.

Just like Chern Classes, Stiefel Whitney classes also satisfy the Whitney
product axiom. In other words:

w(ξ ⊕ η) = w(ξ) ⌣ w(η)

It follows that, stably trivial vector bundles have Stiefel Whitney Classes
trivial. Consequently W(Sn) is trivial for n = 3, 5, 6, 7

Remark. The case for S8 has not been resolved in this thesis.
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