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Abstract

In this thesis, we consider two problems in extremal and probabilistic combinatorics.

The first question relates to the so-called Edge-Statistics conjecture of Alon, Hefetz,

Krivelevich and Tyomkyn, stated as follows: given integers k ≥ 1 and 0 < ℓ <
(
k
2

)
, when

a uniformly random k-vertex subset is sampled from a large graph, the probability of it

inducing precisely ℓ edges is at most 1/e + ok(1). Independent recent studies have proven

this conjecture in different parametrised regimes of k and ℓ, yielding a complete proof overall.

We begin by briefly discussing some of the methods used in these papers and then shift our

focus to the generalisation of the conjecture to uniform hypergraphs, a direction of research

suggested by Alon et al.. We detail our attempts to extend the techniques used in the

aforementioned papers to the hypergraph framework and conclude with a discussion on the

limitations of our approaches and potential ways to address them.

The second problem we tackle addresses the notion of quasirandom tournaments. A

sequence of tournaments {Tn}n≥1 is said to be quasirandom if and only if every tournament on

k vertices appears as a subtournament in Tn with a density that is 1+o(1) times its expected

density in a random tournament. A tournament H is said to be quasirandom-forcing if it

has the following property: if the density of H in Tn is 1 + o(1) times the expected density

of H in a random tournament, then this is true for every subtournament of Tn, i.e., {Tn}n≥1

is quasirandom. Recent papers have proven that the only quasirandom-forcing tournaments

are transitive tournaments on at least four vertices and one particular tournament on five

vertices. We generalise this notion of forcing quasirandomness to pairs of tournaments and

make partial progress towards characterising all non-transitive quasirandom-forcing pairs.

We then state the methods we intend to use to handle the remaining pairs and finish with

some open problems regarding pairs containing a transitive tournament.
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Chapter 1

Edge-Statistics in Uniform

Hypergraphs: Introduction

1.1 Introduction

The notion of graph inducibility was introduced by Pippenger and Golumbic in 1975 [40].

Roughly speaking, the inducibility of a graph H measures the maximum number of induced

copies of H a large graph can have. Determining the inducibility of different graphs is a

longstanding question that has enjoyed a recent surge in popularity (see [3, 28, 49, 25]).

Motivated by its ties to graph inducibility, Alon, Hefetz, Krivelevich and Tyomkyn [1]

initiated the study of the following question: given integers k ≥ 1 and 0 ≤ ℓ ≤
(
k
2

)
, what

is the maximum probability that a uniformly random k-vertex subset of a very large graph

induces exactly ℓ edges? In order to make this precise, we will first recall some of their

notation. Given a graph G and any subset of its vertex set U ⊆ V (G), let G[U ] denote

the subgraph induced by U and e(G[U ]) be the number of edges it contains. Let A be

a uniformly random k-vertex subset of V (G) and set XG,k := e (G[A]) to be the random

variable corresponding to the number of edges induced by the random set A. Then define

I(n, k, ℓ) := max {P [XG,k = ℓ] : |V (G)| = n} ,

the maximum probability of XG,k = ℓ across all n-vertex graphs G. Note that I(n, k, ℓ) may
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also be interpreted as the maximum density of k-vertex ℓ-edge induced subgraphs among all

n-vertex graphs. Standard averaging arguments show that I(n, k, ℓ) monotonically decreases

in n (see, for instance, [40, Proposition 1]). Hence, one can define the edge-inducibility of k

and ℓ as the limit

ind(k, ℓ) := lim
n→∞

I(n, k, ℓ).

Note that by taking complements, we have

ind(k, ℓ) = ind

(
k,

(
k

2

)
− ℓ

)
By considering an empty or a complete graph respectively, it is easy to see that ind(k, 0) =

ind
(
k,
(
k
2

))
= 1. However, Ramsey’s theorem states that if n is large enough, then any graph

on n vertices must have either a clique or an independent set on k vertices, meaning that

I(n, k, ℓ) < 1 for ℓ /∈
{

0,
(
k
2

)}
, and hence ind(k, ℓ) < 1 as I(n, k, ℓ) monotonically decreases

in n. Consequently, Alon et al. [1] put forth the Edge-Statistics conjecture, which states that

ind(k, ℓ) ≤ 1/e + ok(1) whenever 0 < ℓ <
(
k
2

)
.

They provide two examples to motivate this conjecture and show its tightness. Firstly,

by considering the random graph G
(
n, 1/

(
k
2

))
and computing the expected density of k-

vertex subsets that induce only one edge, one can easily see that ind(k, 1) ≥ 1/e + ok(1).

Additionally, by looking at the complete bipartite graph on n vertices with parts of size

n/k and (k − 1)n/k and computing the asymptotic density of copies of K1,k−1 inside it, one

obtains ind(k, k − 1) ≥ 1/e + ok(1).

As noted previously, since the edge-inducibility is invariant under complements, it suffices

to focus on the setting where 1 ≤ ℓ ≤ 1
2

(
k
2

)
. Kwan, Sudakov and Tran [30] proved the Edge-

Statistics conjecture when c · k ≤ ℓ ≤
(
k
2

)
− c · k for some sufficiently large constant c.

Subsequently, Fox and Sauermann [16] proved it when 1 ≤ ℓ ≤ c · k for any constant c > 0,

and Martinsson, Mousset, Noever and Trujić [34] proved it in the regime 1 ≤ ℓ ≤ ok(k6/5).

The first result along with either of the latter two yields a complete proof of the conjecture,

and hence, we may formally state it as a theorem as below:

Theorem 1.1.1 (Edge-Statistics for Graphs). For all k, ℓ ∈ N satisfying 0 < ℓ <
(
k
2

)
, we

have

ind(k, ℓ) ≤ 1/e + ok(1).
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Furthermore, Kwan et al. [30] initiated the study of the edge-inducibility in the setting

of uniform hypergraphs, a line of investigation originally proposed by Alon et al. [1]. Given

integers r ≥ 2, k ≥ 1 and 0 ≤ ℓ ≤
(
k
r

)
, for any r-uniform hypergraph G on at least k vertices,

let Ir(G, k, ℓ) be the probability that a uniformly random k-vertex subset of G induces

precisely ℓ edges. Analogous to the graph scenario, we set Ir(n, k, ℓ) to be the maximum of

Ir(G, k, ℓ) over all r-uniform hypergraphs G on n vertices. Again, as Ir(n, k, ℓ) monotonically

decreases with n, the limit indr(k, ℓ) := limn→∞ Ir(n, k, ℓ) is well defined. With this notation,

we see that ind(k, ℓ) = ind2(k, ℓ). As before, the edge-inducibility for ℓ ∈ {0,
(
k
r

)
} is exactly

equal to 1 and is strictly smaller than 1 otherwise.

Thus, Alon et al. [1] suggested the following natural extension of the Edge-Statistics

conjecture:

Conjecture 1.1.2 (Edge-Statistics for Uniform Hypergraphs). For all r ≥ 2, k ≥ 1 and

0 < ℓ <
(
k
r

)
, we have

indr(k, ℓ) ≤ 1/e + ok(1).

This hypergraph generalisation of the Edge-Statistics conjecture has been settled only in

very few cases (note that there is now a much wider regime for ℓ in terms of k). For r = 3,

Kwan et al. [30] resolved it for very dense hypergraphs, where ℓ = Ωk(k3). In the sublinear

setting, Fox et al. [16] proved the conjecture for all r ≥ 2 and 1 ≤ ℓ ≤ ok(k).

Our aim in this project is to study this extension of the Edge-Statistics conjecture to

the edge-inducibility of uniform hypergraphs. Primarily, we have attempted to generalise

the approaches of [30] and [34]. After introducing some preliminary notation and definitions

in the next section, we then proceed to Chapters 2 and 3 where we discuss the proofs used

by these two papers in the graph case for specific regimes of ℓ and k, mention our progress

to date in extending these ideas, and the further improvements and alternative approaches

that could overcome the issues we faced and complete the proofs.

1.2 Preliminaries

As discussed in Chapter 1, we have mainly attempted to extend the techniques of [30]

and [34] to the r-uniform hypergraph generalisation of the Edge-Statistics conjecture 1.1.2.
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The approaches of these two papers are vastly different, so specialised notation is introduced

individually in Chapters 2 and 3. However, we shall still introduce some basic notation that

shall be common throughout.

Our (hyper)graph theoretic notation is standard. A hypergraph G = (V (G), E(G)) con-

sists of a pair of sets, where E(G) is a family of subsets of V (G). The elements of V (G) are

called the vertices of G, and those of E(G) are called its egdes or hyperedges. The number

of edges is denoted e(G) = |E(G)|. If {v1, v2, . . . , vr} ∈ E(G) is an edge, we sometimes write

v1v2 . . . vr ∈ E(G). If every edge consists of exactly r vertices, we say that G is an r-uniform

hypergraph or an r-graph for short. A graph is simply a 2-uniform hypergraph. In a graph,

two vertices u and v are said to be neighbours or are adjacent if they constitute an edge,

and we write u ∈ N(v) and v ∈ N(u).

For any vertex v ∈ V (G), the degree of v in G, denoted dG(v) is the number of edges

containing v. More generally, given a set of i vertices {v1, v2, . . . , vi} ∈ V (G), we define the

co-degree of v1, v2, . . . , vi, denoted dG(v1, v2, . . . , vi), to be the number of edges containing the

set {v1, v2, . . . , vi}. Often, in case there is no risk of ambiguity, we may drop the subscript

G. For any subset U ⊆ V (G) of the vertex set, we let G[U ] denote the hypergraph induced

by U . For any vertex u ∈ U , we may write dU(u) in place of dG[U ](u). For short, we may

also write e(U) for e(G[U ]).

For a positive integer n, we write [n] to denote the set {1, 2, . . . , n}. For a set S, we use(
S
k

)
to denote all k-vertex subsets of S, and

(
S
≤k

)
to denote all subsets of S of size at most k.

We use standard asymptotic notation. Given any two functions f(n) and g(n), we say

f = O(g) if there is some positive constant C such that |f(n)| ≤ C|g(n)| for all sufficiently

large n, we say f = Ω(g) if there is some positive constant c such that |f(n)| ≥ c|g(n)| for

all sufficiently large n, we say f = Θ(G) if f = O(g) and f = Ω(g), and finally we say

f = o(g) or g = ω(f) if there exists a sequence of reals cn decreasing to zero such that

|f(n)| ≤ cn|g(n)| for sufficiently large n (if g(n) is nonzero for all n, this is equivalent to

saying f/g → 0 as n → ∞). If there are multiple parameters, we may use a subscript to

denote which one is going to infinity (such as ok or On, for instance) in case there is a chance

for confusion.
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Chapter 2

The Superlinear Regime

2.1 Main Results

As indicated in Chapter 1, Kwan et al. [30] proved the graph version of the conjecture for

Ωk(k) ≤ ℓ ≤
(
k
2

)
−Ωk(k) and the 3-uniform extension for ℓ ≥ Ωk(k3). Specifically, they prove

the following two stronger results which imply the above.

Theorem 2.1.1. For all 0 ≤ ℓ ≤
(
k
2

)
, let ℓ∗ = min{ℓ,

(
k
2

)
− ℓ}. We have

ind(k, ℓ) ≤ logO(1)(ℓ∗/k)
√

k/ℓ∗.

Theorem 2.1.2. For all k, ℓ satisfying ℓ∗ = min{ℓ,
(
k
3

)
− ℓ} = Ωk(k3), we have

ind3(k, ℓ) ≤ logO(1)(k)/
√
k.

This chapter presents a description of their approach and a brief sketch of their proof.

We conclude with a discussion of our attempts to extend their ideas to the general r-uniform

framework.

5



2.2 Notation

Throughout Chapter 2, all asymptotics will be in the limit n → ∞ unless otherwise stated.

For a sequence x = (x1, x2, . . . , xn) of zeroes and ones, we write |x| to denote the number

of ones in x. For any S ⊆ [n], we use xS to denote the monomial
∏
i∈S

xi.

2.3 Broad Outline of the Proofs

Given a graph G, let AG = (axy)x,y denote its adjacency matrix, i.e., axy = 1 if xy ∈ E(G)

and axy = 0 otherwise. Observe that we can express XG,k as a homogenous quadratic

polynomial

XG,k =
∑

1≤x<y≤n

axyξxξy =
1

2
ξAGξ

T , (2.1)

where ξ = (ξ1, . . . , ξn) is a uniformly random length-n zero-one vector with exactly k ones.

Proving Theorem 2.1.1 now essentially boils down to bounding the probability P
[
1
2
ξAGξ

T = ℓ
]
.

This suggests the usage of qudaratic anticoncentration inequalities for the random variable

ξ. Clearly, as the number of ones in ξ is constrained to be exactly equal to k, it is not

a sequence of independent random variables. However, several papers [14, 36, 41, 38] have

studied probabilities of the form P
[
xAxT = ℓ

]
where x is a sequence of independent zero-one

random variables, and we wish to use these ideas.

For any 0 ≤ k ≤ n, let BL(n, k) be the uniform distribution on binary strings x ∈ {0, 1}n

with |x| = k. This is precisely the distribution of ξ described above and is sometimes called

the uniform distribution “on the slice” of the Boolean hypercube or the limiting distribution

of the Bernoulli-Laplace model of diffusion. When n = 2k, a coupling argument realises ξ

as a function of a uniform random permutation σ of [n] and a sequence of n/2 i.i.d. random

variables γ. Conditioning on σ, the random variable XG,k may now be expressed as a

quadratic multilinear polynomial fσ(γ), to which one applies a polynomial anticoncentration

inequality [36, Theorem 1.6] to bound the probability P[fσ(γ) = ℓ]. The bound given by this

inequality depends on the nonzero coefficients of maximum degree, i.e., the nonzero degree-2

coefficients – the more such coefficients, the stronger the bound. These coefficients can be

shown to correspond to certain substructures in G. Specifically, alternating 3-paths in G will
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lead to nonzero degree-2 coefficients in fσ(γ). If we can prove there are many such subgraphs

in G, it will yield the desired result. This is done by first concentrating the number of edges

of G – we argue XG,k is tightly concentrated around its expectation, and so if e(G) is too big

or too small, then P[XG,k = ℓ] will be very small. Then, using a random greedy algorithm,

we can deduce that G contains many alternating 3-paths with high probability.

The hypergraph setting, however, is much more complicated. For any r-uniform hyper-

graph, using the same ideas as above, it is clear that we can write XG,k as a homogeneous

degree-r polynomial in ξ,

XG,k =
∑

S∈([n]
r )

aSξ
S. (2.2)

Once again, the same coupling argument can be used to express XG,k as some fσ(γ). However,

even in the 3-uniform case with ℓ = Ωk(k3), there could end up being very few nonzero degree-

3 coefficients, which is why the same inequality as last time cannot be used directly. This is

why Theorem 2.1.2 is much weaker than Theorem 2.1.1. In this case, we provide a structural

characterisation of 3-graphs where fσ(γ) has very few nonzero degree-3 coefficients. Then

we proceed via a modified version of the aforementioned anticoncentration inequality [36,

Theorem 1.6] that accounts for nonzero degree-2 coefficients but provides a weaker bound

than the original.

We now proceed to provide a brief sketch of the details of the proofs. Note that we will

not be presenting the proofs in entirety or replicating the paper. We will sometimes only

state key results and explain their usage in the proof.

2.4 Probabilistic Techniques and Results

We first present the probabilistic arguments that play important roles in the proof.

First, we state the coupling result to write ξ ∈ BL(n, n/2) as a function of σ, a uniformly

random permutation of [n], and γ ∈ Radn/2, a sequence of n/2 i.i.d. random variables

from the Rademacher distribution (the uniform distribution on {−1, 1}). As mentioned

previously, expressing ξ in terms of a sequence of i.i.d. random variables will allow us to

use well-established anticoncentration inequalities. The following result appears in the proof

of [31, Proposition 4.10].

7



Fact 2.4.1. If σ is a uniformly random permutation of [n] and γ ∈ Radn/2 is a sequence of

n/2 i.i.d. Rademacher random variables, then the distribution ξ can be obtained as follows.

Set ξσ(i) = 1 for all i such that γi = 1, set ξσ(i+n/2) = 1 for all i such that γi = −1, and set

ξj = 0 for all other indices j.

Now, to actually utilise Fact 2.4.1, we need to see how it translates polynomials of

ξ ∈ BL(n, n/2) into polynomials of γ ∈ Radn/2.

Lemma 2.4.2. Suppose ξ ∈ BL(n, n/2) and X is a random variable that is a degree-d

polynomial in ξ of the form

X =
∑

S∈([n]
d )

aSξ
S.

We use Fact 2.4.1 to express X as a function of γ, σ. If we condition on any outcome of σ,

then X is a multilinear polynomial in the γi of degree at most d. For any subset I ⊆ [n/2]

with |I| ≥ d− 1, say I = {i1, . . . , iq}, the coefficient gI of γI is

1

2d

∑
b∈{0,1}q

(−1)|b|a
({

σ
(
ij + bj

n

2

)
: 1 ≤ j ≤ q

})
,

where for any R ⊆ [n], a(R) denotes the sum over all aS with S ⊇ R.

In the context of our problem, the result above implies the following. Suppose G is a

graph on n = 2k vertices with adjacency matrix AG = (aij)i,j. Then, by Equation 2.1 and

Lemma 2.4.2, if we condition on any outcome of σ, then XG,k is a quadratic polynomial in

{γ1, . . . , γk}, and the coefficient of γiγj is

1

4

(
aσ(i)σ(j) − aσ(i+k)σ(j) − aσ(i)σ(j+k) + aσ(i+k)σ(j+k)

)
. (2.3)

Similarly, in the 3 -graph scenario, if G is a 3-graph on n = 2k vertices, by Equation 2.2

and Lemma 2.4.2, if we condition on any outcome of σ, then XG,k is a cubic polynomial in

{γ1, . . . , γk}, and the coefficient of γiγjγq is

1

8

(
aσ(i)aσ(j)aσ(q) − aσ(i+k)aσ(j)aσ(q) − aσ(i)aσ(j+k)aσ(q) − aσ(i)aσ(j)aσ(q+k) + aσ(i+k)aσ(j+k)aσ(q)

+aσ(i+k)aσ(j)aσ(q+k) + aσ(i)aσ(j+k)aσ(q+k) − aσ(i+k)aσ(j+k)aσ(q+k)

)
. (2.4)
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Next, we present the anticoncentration inequalities used for functions of a sequence of

i.i.d. Rademacher random variables. For x = (x1, . . . , xn), suppose we have a degree-d

polynomial in x of the form

f(x) =
∑

S∈([n]
d )

fSx
S.

Construct an auxiliary d-uniform hypergraph H on the vertex set [n] with any S ∈
(
[n]
d

)
an

edge if and only if the coefficient fS is nonzero. The rank of the polynomial f is the size of

the largest matching in H. The following result follows directly from [36, Theorem 1.6].

Theorem 2.4.3. Fix d ∈ N and let γ ∈ Radn. Suppose f is a degree-d polynomial of rank

r. Then for any ℓ ∈ R,

P [f(γ) = ℓ] ≤ logO(1)(r)√
r

.

The above theorem will be useful in proving Theorem 2.1.1 (and it is easy to see how

it alludes to the form of the inequality we see there). However, as discussed before, in the

3-graph case, we will need to able to account for low degree coefficients as well. The trouble

with Theorem 2.4.3 is that it only looks at maximum degree coefficients. Hence, we need

the following result to prove Theorem 2.1.2.

Theorem 2.4.4. Fix d ∈ N and let γ ∈ Radn. Consider a degree-d polynomial

f(x) =
∑

S∈([n]
≤d)

fSx
S.

Let md = max {|fS| : |S| = d} be the maximum modulus degree-d coefficient. Let H ′ be the

(d− 1)-uniform hypergraph with vertex set [n] and edge set {S : |S| = d− 1, |fS| ≥ rmd}. If
H ′ has a matching of size r, then for any ℓ ∈ R,

P [f(γ) = ℓ] ≤ logO(1)(r)√
r

.

Finally, we state the exponential concentration inequality we will use to concentrate

XG,k around its expected value to give bounds on e(G), which will come in handy when

showing that fσ(γ) has many nonzero coefficients of maximum degree (see the discussion in

Section 2.3).
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Lemma 2.4.5. Consider a function f : {0, 1}n → R such that

|f(x1, . . . , xi−1, 0, xi+1, xn) − f(x1, . . . , xi−1, 1, xi+1, xn)| ≤ ci

for all x = (x1, . . . , xn) ∈ {0, 1}n and all i ∈ [n]. Let ξ ∈ BL(n, k). Then

P [f(ξ) − Ef(ξ) ≥ t] ≤ exp

− t2

8
n∑

i=1

c2i

 .

Proof Idea. We consider the Doob martingale Zi = E [Ef(ξ) | ξ1, . . . , ξn]. We argue that

|Zi − Zi−1| ≤ 2ci, and then the result follows from the Azuma-Hoeffding inequality.

2.5 Proof of Theorem 2.1.1

In this section, we provide a description of how the results from Section 2.4 are used to

prove Theorem 2.1.1. Again, we will focus more on the chief ideas and approaches instead

of replicating the details of the proofs in [30].

Take a graph G on the vertex set [n] where n = 2k. Observe that it suffices to prove

that P [XG,k = ℓ] ≤ logO(1)(ℓ∗/k)/
√

ℓ∗/k for all such graphs G, as I(n, k, ℓ) monotonically

decreases with n. We may assume that e(G) ≤
(
n
2

)
/2 by taking the complement of G if

necessary. Set X = XG,k. As usual, if the adjacency matrix of G is AG = (axy)x,y and

ξ ∈ BL(n, k) = BL(n, n/2), we can express X = X(ξ) using Equation 2.1.

Note that EX = e(G)(k(k − 1)/n(n − 1)) ≈ e(G)/4. We first use Lemma 2.4.5 to show

that if e(G) is not of the same order as ℓ, then P [X = ℓ] must be quite small.

Proposition 2.5.1. For any constant ε > 0, if ℓ ≥ (1 + ε)EX or ℓ ≤ (1 − ε)EX, then

P [X = ℓ] ≤ exp

(
−Ω

(
ε2ℓ

k

))
.

Proof Sketch. Observe that X satisfies the conditions required to apply Lemma 2.4.5 with

cx = dG(x) = d(x) for all x ∈ [n]. Maximise
∑

c2x =
∑

d(x)2 by setting d(x) = n for as many
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x as possible, namely for 2e(G)/n vertices x (as
∑

d(x) = 2e(G)). Using that EX = O(e(G))

and applying Lemma 2.4.5 will complete the proof.

This allows us to assume from now on that e(G) = Ω(ℓ) and also ℓ = Θ(ℓ∗). Now, let

σ be a uniformly random permutation of [n] and condition on its outcome. Let H be the

graph on the vertex set [k] with ij ∈ E(H) if and only if

aσ(i)σ(j) − aσ(i+k)σ(j) − aσ(i)σ(j+k) + aσ(i+k)σ(j+k) ̸= 0

From Lemma 2.4.2 and the discussion immediately after, we know that X is a quadratic

polynomial in γ ∈ Radn/2 and that the rank of X is precisely the size of the maximum

matching in H (see Equation 2.3). Hence, we now wish to show that H has a matching of

size Ω(ℓ/k) with high probability. Then substituting this in Theorem 2.4.3 will complete the

proof of Theorem 2.1.1.

The crucial observation we use is that if four vertices in G, say {x, y, x′, y′}, form an

alternating 3-path (that is, the sequence xy, yx′, x′y′ alternates between edges and nonedges),

then axy = ax′y′ ̸= ax′y, and hence axy − ax′y − axy′ + ax′y′ ̸= 0. Hence, edges in H arise

from alternating 3-paths in G. So our aim is to show that G has a lot of such alternating

3-paths as this will imply that H has a large matching. To do this, we use a random greedy

algorithm. Set U := {v ∈ V (G) : d(v) ≥ 0.9n} to be the set of all high-degree vertices in G.

We will consider two cases.

First, suppose that at least half the edges of G meet U . This means that 2k|U | ≥
e(G)/2 = Ω(ℓ), and hence |U | ≥ Ω(ℓ/k) is large. We iteratively build a matching M in

H as follows. Pick any two vertices u,w ∈ U that have not yet been revealed/picked, and

reveal i = σ−1(u) and j = σ−1(w). If i, j ≤ k and σ(i + k) and σ(j + k) have not yet been

revealed, reveal them. If we now find that ij ∈ E(H), then we add it to M . We then argue

that this procedure can run for Ω(ℓ/k) steps, with probability Ω(1) of adding an edge to M

each time, providing a matching of size Ω(ℓ/k) in H with large probability. The intuition

is that since d(u) = |N(u)| and d(w) = |N(w)| are large, the number of unrevealed pairs

(u′, w′) ∈ N(w)×N(u) is larger than
(
n
2

)
/2 ≥ e(G). Hence, many such pairs u′w′ constitute

a nonedge, which means uw′u′w is an alternating 3-path, so we get an edge in H.

Next, suppose at least e(G)/2 = Ω(ℓ) edges are induced by U = [n] \ U . Then, we can

greedily find a matching S of size Ω(ℓ/n) = Ω(ℓ/k) in U . Again, we iteratively build a
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matching M in H. Pick an edge uw ∈ S such that u and w have not yet been revealed, and

reveal i = σ−1(u) and j = σ−1(w). If i, j ≤ k and σ(i + k) and σ(j + k) have not yet been

revealed, reveal them. If we now find that ij ∈ E(H), then we add it to M . Yet again, we

wish to argue that this procedure can run for Ω(ℓ/k) steps, with probability Ω(1) of adding

an edge to M each time. The idea is that since d(u) = |N(u)| and d(w) = |N(w)| are small,

there are many unrevealed pairs (u′, w′) ∈ V (G)\N(u)×V (G)\N(w), which means u′uww′

forms an alternating 3-path, leading to an edge in H.

2.6 Proof of Theorem 2.1.2

The overall theme of the proof of Theorem 2.1.2 is similar to that of Theorem 2.1.1, except

that certain particularly difficult cases need some extra care.

Let G be a 3-graph on the vertex set [n], with n = 2k. As in Section 2.5, it is enough

to prove that P [XG,k = ℓ] ≤ logO(1)(k)/
√
k for all such 3-graphs G. Also, with the same

arguments as in Proposition 2.5.1, we may assume that min
{
e(G),

(
n
3

)}
= Ω(n3). As per

usual, we may write X = XG,k as

X =
∑

1≤x<y<z≤n

axyzξxξyξz,

where axyz = 1 if xyz ∈ E(G) and axyz = 0 otherwise, and ξ ∈ BL(n, k) = BL(n, n/2). Given

this setup, it would appear that a 3-graph generalisation of the proof of Theorem 2.1.1 could

be plausible to achieve. Indeed, it would suffice to show that V (G) has Ω(n6) “good” 6-tuples

of vertices (x, x′, y, y′, z, z′) such that

axyz − ax′yz − axy′z − axyz′ + ax′y′z + ax′yz′ + axy′z′ − ax′y′z′ ̸= 0. (2.5)

However, in the 3-graph setting, there exist examples of G such that min
{
e(G),

(
n
3

)}
=

Ω(n3), but V (G) does not contain any such good 6-tuples. We instead proceed by structurally

characterising all such 3-graph G, and handle cases where there are o(n6) good 6-tuples

separately.

Fix a set of six vertices x, x′, y, y′, z, z′. Let F be the set of 3-graphs on this vertex set

such that the expression on the left-hand side of Equation 2.5 is nonzero. A 3-graph G is said

12



to be F-free if it contains no induced subgraph from F . Clearly, a 3-graph is F -free if and

only if its complement is as well. Now, we consider the following family of F -free 3-graphs.

For two disjoint vertex sets A and B and a set of disjoint pairs M ⊆ A× B (imagine M as

a matching in a bipartite graph with parts A and B), let GA,B,M be the 3-graph with vertex

set A⊔B, whose edges consist of all triplets of vertices that intersect both A and B, except

those triplets that contain a pair from M . It is not hard to see that GA,B,M is F -free – for

any 6-tuple of vertices, the expression of the left-hand side of Equation 2.5 will be zero. We

claim that any F -free 3-graph with min
{
e(G),

(
n
3

)}
= Ω(n3) must have this structure.

Lemma 2.6.1. Suppose G is an F-free 3-graph on n vertices such that min
{
e(G),

(
n
3

)}
=

Ω(n3). For sufficiently large n, either G or its complement must be of the form GA,B,M for

some partition A ⊔B of V (G) and some set of disjoint pairs M ⊆ A×B.

The proof of Lemma 2.6.1 is highly complicated and requires tedious case-by-case analy-

sis; hence, we omit it. The key is to first use a theorem of Fox and Sudakov on unavoidable

patterns in large hypergraphs with bounded density [17, Theorem 18] to argue that either G

or its complement contains a copy of the complete bipartite 3-graph K
(3)
5,5 , and then induct

on |V (G)| to show that G or its complement must be of the form GA,B,M .

Now we need to see how to use Lemma 2.6.1 to complete the proof of Theorem 2.1.2.

Under the coupling Fact 2.4.1, we know that X is a function of a uniformly random permu-

tation of [n], say σ, and the i.i.d. sequence γ ∈ Radn/2. Using Lemma 2.4.2, we know that if

we condition on any outcome of σ, then X is a polynomial in {γ1, . . . , γk} of degree at most

three. The coefficient gijq of γiγjγq is∑
b∈{0,1}3

(−1)|b|aσ(i+kb1)σ(j+kb2)σ(q+kb3)

(note that |gijq| ≤ 4). The coefficient gij of γiγj is

dG(σ(i)σ(j)) − dG(σ(i + k)σ(j)) − dG(σ(i)σ(j + k)) + dG(σ(i + k)σ(j + k)).

Let H be the (random) 3-graph on the vertex set [n/2] = [k] with an edge ijq whenever

gijq ̸= 0. First, suppose that G contains Ω(n6) induced subgraphs from F . Consequently, we

argue that Ee(H) = Θ(n3). Using a McDiarmid-type concentration inequality for random
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permutation σ (see [35, Section 3.2]), we get

P [e(H) ≤ Ee(H)/2] ≤ e−Ω(n).

So with high probability, e(H) ≥ Ee(H)/2 = Ω(n3). Hence, we can greedily find a matching

of size Ω(n) in H, and then Theorem 2.4.3 provides the required result.

Now it remains to consider what happens if G has o(n6) induced subgraphs from F . Then,

using the induced hypergraph removal lemma (see [45, Theorem 6]), we can add and remove

at o(n3) edges of G to obtain an F -free 3-graph. By Lemma 2.6.1, we may assume that it

is of the form GA,B,M . As min
{
e(G),

(
n
3

)}
= Ω(n3), and since we’ve added and removed at

most o(n3) edges, we deduce that |A|, |B| ≥ Ω(n). Also note that O(|M |n) = o(n3) triplets

across A and B can involve a pair from M . Hence, by looking at the value of

dG′(xy) − dG′(x′y) − dG′(xy′) + dG′(x′y′),

for G′ = GA,B,∅ and x, y′ ∈ A and x′, y ∈ B, and using the fact that very few edges across

A and B can contain a pair from M , we conclude that there Ω(n4) choices for a 4-tuple

(x, x′, y, y′) such that

dG(xy) − dG(x′y) − dG(xy′) + dG(x′y′) ≥ n/2.

Now, set H ′ to be the (random) graph with vertex set [n/2] = [k] with ij ∈ E(H ′) if and

only if gij ≥ n/2. Similar to the previous case, we argue that Ee(H ′) = Θ(n2) and use a

concentration inequality to say that e(H ′) = Ω(n2) with probability 1 − e−Ω(n), and hence

H ′ must have a matching of size Ω(n). The desired result then follows from Theorem 2.4.4

with d = 3 and r = min{m,n/8}.

2.7 Attempts to Generalise to r-graphs

We first attempted to extend the methods of Section 2.5 to obtain an analogous result for

uniformities 3 and higher. As noted, the key observation we used was that alternating 3-

paths in the graph G led to edges in the auxiliary graph H, which provided us with a large

matching in H. The major difficulty in extending to 3-uniform hypergraphs is that when
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X is expressed as a polynomial in γ ∈ Radn/2, the leading coefficients are now given by

Equation 2.4 instead of Equation 2.3. The increase in complexity in this expression makes it

difficult to find a simple substructure in 3-graphs that leads to edges in H, unlike alternating

3-paths in the graph scenario. So, precisely what subgraphs we would need to search for in

the 3-graph setting is unclear.

We then attempted to generalise the proof of Theorem 2.1.2 in Section 2.6 to dense r-

graph for r ≥ 4 (i.e., with min{e(G),
(
n
r

)
− e(G)} = Ω(nr)). As discussed, the principal

result used in Section 2.6 is a structural characterisation of 3-uniform hypergraphs for which

X = X(γ) has no nonzero degree-3 coefficients. However, it is not clear whether an anal-

ogous characterisation is even true in the 4-uniform setting. Additionally, the proof of the

characterisation for 3-graphs strongly uses Kőnig’s theorem, whose generalisation to higher

uniformities is Ryser’s conjecture, which has stood open for over 50 years now. Hence, this

approach likely cannot be extended to large uniformities at present.
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Chapter 3

The Sparse Regime

3.1 Main Results

We now move on to the results of Martinsson et al. [34], who proved the following:

Theorem 3.1.1. For every ℓ such that 1 ≤ ℓ ≤ ok(k6/5), we have

ind(k, ℓ) ≤ 1/e + ok(1).

The paper first provides a short proof for the ℓ ≤ ok(k) case and then proceeds to handle

the remaining part separately. We have been able to extend the former result to the r-graph

setting in general.

Theorem 3.1.2. For every uniformity r ≥ 2 and for all sufficiently large k, ℓ ∈ N such that

1 ≤ ℓ ≤ ok(k), we have

indr(k, ℓ) ≤ 1/e + ok(1).

The proof of the general ok(k6/5) case is significantly more involved. Fortunately, we

have successfully generalised some of its key results to the general r-uniform framework. In

the following sections, we first present the proof of Theorem 3.1.2. We then discuss a broad

outline of the approach used in [34] for Theorem 3.1.1, detail what we have been able to

prove for r-graphs, and what would be needed to complete this proof.
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3.2 Notation

In this chapter, we shall always interpret asymptotic statements in the limit as k → ∞
(unless otherwise stated) and will drop the corresponding subscript in asymptotic notation.

All results shall be proved only in this asymptotic limit, and henceforth, we shall forgo the

preface that k is sufficiently large. We shall also assume n = n(k) is always as large as

desired to support our arguments as necessary.

We borrow notation and terminology from [34]. We say that an event holds with high

probability (w.h.p. for short) if the probability of its occurrence approaches 1 as k → ∞.

For any two events E = E(k) and F = F(k) (which could also potentially depend on ℓ, n

and G), we say that E is essentially contained in F , and write E ⊂∼ F , if

P (E \ F) = o(1).

Note that E ⊂∼ F is equivalent to E ⊂∼ E ∩ F .

3.3 Proof of Theorem 3.1.2

We first present a simple, self-contained proof of the Edge-Statistics conjecture generalised to

higher uniformities when we restrict ourselves to the regime ℓ = o(k). This is a straightfor-

ward extension of the proof of the same statement for graphs as presented in [34, Proposition

2.1].

Proof of Theorem 3.1.2. Fix any uniformity r ≥ 2. Choose k and ℓ as in the theorem

statement and assume n = n(k) is sufficiently large. Let G = (V,E) be an r-uniform

hypergraph on n vertices and let v = (v1, v2, . . . ) be an infinite sequence of vertices of G

picked uniformly at random from V N. We sequentially colour the vertices in v with two

colours as follows:

(i) Colour v1 black;

(ii) colour vi green if and only if the subgraph of G induced by vi and all the black vertices

vj with j < i contains at least ℓ edges; otherwise colour vi black.
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Set

L = L (v) := min {i ≥ 1 : there are k − 1 black vertices among v1, . . . , vi}

and L := ∞ if there fewer than k − 1 black vertices in v. Define the random variable

YG,k = YG,k (v) to be the number of green vertices in the set {vi : 1 ≤ i < L}.

Henceforth, the overall structure of the proof is as follows. As usual, set X = XG,k

to be the random variable corresponding to the number of edges induced by a uniformly

random k-subset of V (G). First, we show P[X = ℓ] is bounded above by P[YG,k = 1] plus

a small error term. The idea behind this is that since n is so much larger than k, the first

k vertices of v are likely to be distinct and hence constitute a uniform random element of

V (k). Then, since k is much larger than ℓ, we argue that the probability that the first k

vertices of v inducing ℓ edges cannot be too much bigger than the probability that the first

k − 1 vertices of v induce ℓ edges as well (i.e., randomly changing vk−1 isn’t very likely to

change the fact that e(G[v1, . . . , vk]) = ℓ). We consequently deduce that this would imply

that YG,k is 1. Finally, we observe that upon conditioning on the first k − 1 black vertices

of v, the distribution of YG,k can be expressed as a sum of independent geometric random

variables, and then show that the maximum possible value of this sum (as a function of the

parameters of the geometric random variables) is 1/e.

Let us formalise this. We begin by first showing that

P[X = ℓ] ≤ P[YG,k = 1] + o(1). (3.1)

Let X̃k = e(G[v1, . . . , vk]), and let A be the event that v1, . . . , vk are all distinct. Assuming

that n is sufficiently large as a function of k (i.e., n ≥ ω(k2)), we have P[A] = 1−n ·Θ( k2

n2 ) =

1 − o(1). Thus, we see that

P[X = ℓ] = P[X̃k = ℓ | A] ≤ P[X̃k = ℓ]

P[A]
≤ P[X̃k = ℓ] + o(1). (3.2)

Next, we note that if e(G[v1, . . . , vk] = ℓ) and vk−1 is an isolated vertex in G[v1, . . . , vk], then

that would imply that e(G[v1, . . . , vk−1] = ℓ) as well. Since ℓ edges can span at most rℓ

vertices in G, and since every possible ordering of the k vertices that constitute v1, . . . , vk is

equally likely, it follows by symmetry that

P[X̃k = X̃k−1 = ℓ] ≥ P[X̃k = ℓ] · k − rℓ

k
≥ P[X̃k = ℓ] − o(1), (3.3)
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where the final inequality uses ℓ = o(k) (this is the only place where this assumption is

used).

Now, we observe that X̃k = X̃k−1 = ℓ implies that YG,k = 1. Indeed, X̃k = X̃k−1 ≥ ℓ

means that at least one green vertex appears in {v1, . . . , vk−1}. And if there is more than

one green vertex in {v1, . . . , vk}, then X̃k > ℓ. So this means that L = k and YG,k = 1.

This, along with 3.2 and 3.3, implies that P[X = ℓ] ≤ P[YG,k = 1] + o(1) as desired. Thus,

it suffices now to show that P[YG,k = 1] ≤ 1/e.

Let u = (u1, . . . , uk−1) be a sequence of k − 1 (not necessarily distinct) vertices of G.

Let U(u) be the event that u1, . . . , uk−1 are the first k − 1 black vertices in v. Define

Ai = {v ∈ V : e(G[{u1, . . . , ui, v}]) ≥ ℓ} and pi = 1
n
|Ai| for all 1 ≤ i ≤ k − 2. Now, observe

that if P[U(u)] is nonzero, then the conditional distribution of YG,k given U(u) is given by

the sum

Geom(p1) + Geom(p2) + · · · + Geom(pk−2)

of independent geometric distributions. Indeed, suppose that we have chosen the first t

vertices of v, say v1, . . . , vt = ui, up to ui, so we have selected up to the ith black vertex. We

proceed to pick the vertices of v sequentially. The probability that vt+1 (the next vertex in

the sequence v) is in Ai is exactly equal to pi, and in this case, vt+1 would be coloured green

by the definition of Ai. Furthermore, as long as we continue to pick vertices only from Ai,

they are always going to be green, and the probability of picking a vertex from Ai remains pi

each time. As we have conditioned on U(u), the first vertex we pick outside Ai must be the

next black vertex ui+1, and the probability of this event is 1 − pi. Since pi is a function of

|Ai|, which depends only on the black vertices chosen up to ui, the number of green vertices

picked after ui until ui+1 is independent of the number of green vertices between any two

consecutive black vertices of u up to ui. So for any j ≥ 0, the probability of picking j green

vertices between ui and ui+1 is pji (1 − pi).

Thus, it follows that

P[YG,k = 1 | U(u)] =
k−2∑
i=1

pi

k−2∏
j=1

(1 − pj) ≤
k−2∑
i=1

pie
−

k−2∑
j=1

pj
≤ 1/e,

where we use that 1 − x ≤ e−x for all real x and that f(x) = xe−x is maximised at x = 1.

Since this is true for every relevant choice of u (otherwise P[YG,k = 1] = P[YG,k = 1 |
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U(u)] · P[U(u)] = 0), we also have P[YG,k = 1] ≤ 1/e unconditionally, which, along with 3.1,

completes the proof.

3.4 Probabilistic Results

We first state a purely probabilistic result that will be utilised in the proof of Theorem 3.1.1.

This appears as [34, Lemma 3.1]. It tells us when we can approximate a hypergeometric

random variable with a binomial distribution and how it converges in probability to a Poisson

distribution. It also states that if the variance of certain hypergeometric random variables

goes to infinity, then the probability of taking any single value goes to zero.

Lemma 3.4.1. Let X be a hypergeometric random variable counting the number of suc-

cesses obtained when sampling m elements without replacement from a population of size N

containing Np successes. Assume m2/N → 0 and m → ∞. If mp → λ < ∞, then

max
i

∣∣∣∣Pr[X = i] − λie−λ

i!

∣∣∣∣→ 0,

where the maximum is taken over all nonnegative integers. On the other hand, if mp(1−p) →
∞, then max

i
Pr[X = i] → 0.

3.5 Proof of Theorem 3.1.1

Before we get into the details of the proof, we first introduce some definitions. We will let

G be an r-graph on n vertices for some uniformity r ≥ 2 and will specify when we consider

G to be just a graph (r = 2). Assume 1 ≤ ℓ ≤ o(k6/5). Let A denote a uniformly random

k-vertex subset from V (G)(k). Throughout our discussion, we will use E to denote the event

that e(G[A]) = X = ℓ. Let (wk)k≥1 be a sequence of positive real number that diverges to

infinity. We will always assume that the rate of divergence of this sequence is slow enough

for all our arguments to hold. At the very least, we will require wk

√
ℓ = o(k). Now, for

every integer d ≥ 0, define the event

Dd := {all but at most wk

√
ℓ vertices in A have degree d in G[A]}.
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With this setup in mind, we discuss the broad outline of the proof. Observe that to

prove Theorem 3.1.1, it suffices to show that E is essentially contained in some event F of

probability at most 1/e+ o(1). Our objective is to show that there exists some deterministic

d = d(G, k, ℓ) such that E ∩ Dd is the desired event F . There are three major components

to this.

First, we show that P[E ∩ Dd] ≤ 1/e + o(1) for all integers d ≥ 0, which means it now

suffices to show that E ⊂∼ E∩Dd for some d. Next, we argue that if A induces exactly ℓ edges,

it is very likely that almost all the k vertices have the same degree in the induced subgraph

G[A]. The final part of the proof is dedicated to proving concentration-type results on this

most common degree to show that it can take at most one deterministic value depending

on G, k and ℓ, and does not depend on A. The latter two parts together will allow us to

conclude that E ⊂∼ E ∩ Dd for some fixed d.

We have successfully extended the first two parts of the proof to r-graphs in general and

will present these proofs in detail. We have not yet found a way to generalise the final part

of the proof regarding concentration bounds on the most common degree. Hence, for the last

part, we will only sketch the idea behind the proof used in the graph case [34]. We conclude

with our attempts to concentrate the random variable corresponding to the most common

degree in G[A] and explanations for the limitations of these approaches.

3.5.1 Bounding the Probability of E ∩ Dd

Proposition 3.5.1. For all integers d ≥ 0, we have

P [E ∩ Dd] ≤ 1/e + o(1).

We do not present the proof for r = 2 (for graphs), as those details are [34, Claim 3.2],

and will only present our proof for when r ≥ 3. We will quickly describe the proof for graphs

afterwards.

We first sketch the rationale behind the proof. When d = 0, we proceed in a very

similar fashion to Theorem 3.1.2. We use the same ideas to show that if most vertices of

A are isolated in G[A] (which is what D0 implies), then if A induces ℓ edges, A minus
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one randomly picked vertex is likely to as well. For the case where d ≥ 1, we first argue

the distribution of dA(v) for any vertex v ∈ A is the same as that of the random variable

corresponding to the number of (r − 1)-edges present in a uniformly random (k − 1)-vertex

subset of an (r−1)-graph with (n−1) vertices and dG(v) edges. Then we show that d ≤ o(k),

and consequently Theorem 3.1.2 will provide the desired bound.

Proof of Proposition 3.5.1. Assume G is an r-graph on n vertices for some r ≥ 3. Suppose

first that d = 0. Consider the same process described in Theorem 3.1.2, and define YG,k, X̃k

and A in the same way. If we can show that

P [E ∩ D0] ≤ P [YG,k = 1] + o(1),

then proceeding in the same manner as in Theorem 3.1.2 to show that P [YG,k = 1] ≤ 1/e

yields the desired result. Define D̃0 be the event that all but most wk

√
ℓ of the vertices

v1, . . . , vk are isolated in G [{v1, . . . , vk}]. We thus have

P[E ∩ D0] = P[D̃0 ∩ X̃k = ℓ | A]

≤ P[D̃0 ∩ X̃k = ℓ]/P[A]

≤ P[D̃0 ∩ X̃k = ℓ] + o(1) (where again we use that P[A] = 1 − o(1)).

Like last time, since every permutation of v1, . . . , vk is equally likely, we further see that

P[X̃k = X̃k−1 = ℓ] ≥ P[D̃0 ∩ X̃k = ℓ] − wk

√
ℓ

k
.

Provided that wk diverges slow enough, since
√
ℓ = o(k2/3) = o(k), we will have wk

√
ℓ/k =

o(1). And as we have seen, X̃k = X̃k−1 = ℓ deterministically implies that YG,k = 1, we obtain

the desired bound on P[E ∩ D0].

Next, suppose that d ≥ 1. Let v be a vertex chosen uniformly random from A. Then

P[dA(v) = d | Dd] = 1 − wk

√
ℓ

k

= 1 − o(1),
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assuming wk goes to infinity slowly enough. Thus, we have

P[E ∩ Dd] ≤ P[Dd]

= P[Dd ∩ dA(v) = d]/P[dA(v) = d | Dd]

≤ P[Dd ∩ dA(v) = d](1 + o(1))

≤ P[Dd ∩ dA(v) = d] + o(1)

≤ P[dA(v) = d] + o(1)

So, it now suffices to prove that

P[dA(v) = d] ≤ 1/e + o(1)

By looking sum of the degrees of vertices in G[A], observe that E ∩ Dd implies that (k −
wk

√
ℓ)d ≤ rℓ, and hence that P[E ∩ Dd] = 0 unless kd ≤ (r + 1)ℓ. And since ℓ = o(k6/5), we

may assume d = o(k1/5).

Next, we note that the pair (v, A) can equivalently be generated by first uniformly ran-

domly picking a vertex v from V (G) and then choosing the remaining (k − 1) vertices of

A uniformly randomly from the set of all (k − 1)-vertex subsets of V (G) \ {v}. Now we

will fix the choice of v ∈ A and study the distribution of the random variable dA(v). To

this end, we construct an auxiliary (r − 1)-graph Hv with V (Hv) = V (G) \ {v} such that

for any set of r − 1 vertices {x1, . . . , xr−1} ∈ V (Hv), we have x1 . . . xr−1 ∈ E(Hv) if and

only if vx1 . . . xr−1 ∈ E(G). Clearly |V (Hv)| = n− 1 and e(Hv) = dG(v). Crucially, we now

interpret dA(v) as exactly the number of edges induced by a uniformly random (k−1)-vertex

set of an (n− 1)-vertex dG(v)-edge (r − 1)-graph. Then, by Theorem 3.1.2, we know that

P[dA(v) = ℓ] ≤ 1/e + o(1)

for all 1 ≤ ℓ ≤ o(k). As 1 ≤ d ≤ o(k1/5) ≤ o(k), the above inequality provides the required

upper bound on P[dA(v) = d], completing the proof.

Remark 3.5.1. For the case r = 2 (as proved in [34, Claim 3.2]), the proof for when d = 0 is

the same. Suppose d ≥ 1. Observe that the random variable dA(v) follows a hypergeometric

distribution with population size n−1, sample size k−1, and dG(v) successes. As d = o(k1/5),

we argue that dG(v) can’t be too large, because that would make EdA(v) too large and hence

dA(v) can be shown to be too large using Markov’s inequality. Then, since the sample size is
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much smaller than the population size, we use Lemma 3.4.1 to say that the hypergeometric

distribution can be approximated by a binomial distribution, which converges to a Poisson

distribution in probability. Using that d ≥ 1 and optimising the Poisson parameter yields

the upper bound of 1/e + o(1).

3.5.2 Approximate Regularity in G[A]

Next, we wish to show that if X = ℓ, then it is very likely that almost all vertices in G[A]

have the same degree. To begin with, we define the event

D∗ =
⋃
d≥0

Dd

= {all but at most wk

√
ℓ vertices in A have the same degree in G[A]}

We will show that E is essentially contained in this event.

Proposition 3.5.2. Suppose ℓ = ω(1). Then we have E ⊂∼ D∗.

Proof. Set m = k/(w
1/3
k

√
ℓ). Since k = ω(

√
ℓ), provided that wk increases slowly enough,

we may assume that m ≥ wk. We generate A by first choosing a uniformly random (k−m)-

vertex subset S of V (G), and then a uniformly random m-vertex subset Q of V (G) \ S. In

the context of this procedure, we show that E is essentially contained in the following four

events:

• E1 := {there are no edges with at least 2 vertices in Q},

• E2 := {e(S) +
∑
v∈Q

e(v, S) = ℓ}, where e(v, S) is the number of edges in G containing v

along with r − 1 vertices in S.

• E3 := {all but at most w
1/3
k vertices v ∈ Q have the same value of e(v, S)},

• E4 := {all but at most w
1/3
k vertices v ∈ Q have the same degree in G[A]}.

The idea behind the first one (which will directly imply the second) is that since |Q| = m

is much smaller than k, and since, under E , we know that G[A] contains only ℓ = o(k6/5)
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edges, most of them have at most one vertex in Q. To get E3 (and consequently E4), we look

at the statistics of e(v, S) over all v /∈ S. In particular, if this quantity varies too much with

v, then we show that the probability of e(A) remaining exactly ℓ when one vertex in A \ S
is randomly replaced by another is small. Finally, to get D∗, we will use the fact that while

|Q| = m = o(k), it is still large enough that the “randomness” in the degree distribution of

vertices in A is reflected in that of vertices in Q.

We now begin by proving that E ⊂∼ E1. Let e (Q≥2) denote the number of edges with at

least two vertices from Q. We generate Q by first choosing A and then picking a uniformly

random m-vertex subset Q ⊆ A. Hence, we have

E[e(Q≥2) | X = ℓ] ≤ O

(
ℓ ·
(
m
2

)(
k
2

) ) = O
(

1/(w
2/3
k )
)

= o(1),

where the second equality follows from the definition of m, and the last is a consequence of

wk = ω(1). Therefore, using Markov’s inequality, we have

P[E \ E1] = P[e(Q≥2) ≥ 1 ∩X = ℓ]

= P[e(Q≥2) ≥ 1 | X = ℓ] · P[X = ℓ]

≤ E[e(Q≥2) | X = ℓ]

= o(1),

and so E ⊂∼ E1.

Once we have obtained this, it follows directly from the definitions that E ⊂∼ E ∩E1 ⊆ E2.

Next, we prove that E2 ⊂∼ E3, which then implies that E ⊂∼ E3. Pick S as a uniformly

random (k−m)-vertex subset of V (G), and reveal it. Let dmed be the median value of e(v, S)

over all vertices v ∈ V (G) \ S.

CASE 1: All but at most w
1/4
k n/m vertices v ∈ V (G) \ S satisfy e(v, S) = dmed.

In this case, the expected number of vertices v ∈ Q for which e(v, S) ̸= dmed is at most

|Q| · w
1/4
k n/m

|V (G) \ S|
= m · w

1/4
k n/m

n− k + m
= O(w

1/4
k ) = o(w

1/3
k ).
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So, by Markov’s inequality, we have

P[E3] ≤
o(w

1/3
k )

w
1/3
k

= o(1),

and therefore E2 ⊂∼ E3 (trivially).

CASE 2: At least w
1/4
k n/m vertices v ∈ V (G) \ S satisfy e(v, S) ̸= dmed.

We will show that in this case, P[E2] = o(1), and so trivially E2 ⊂∼ E3. We may suppose

that at least w
1/4
k n/(2m) vertices of V (G) \ S satisfy e(v, S) > dmed (the other case can be

treated analogously). Call this set of vertices P , and denote |P | by t, so t ≥ w
1/4
k n/(2m). Let

P ′ be the complement of P in V (G)\S. Set N := |V (G)\S| = n−k+m, and hence we have

|P ′| = N − t. Now, we think of Q in the following manner. Let I be the random variable

corresponding to the number of vertices v ∈ Q picked from P ′ (and so the number of vertices

v ∈ Q that come from P is m−I). Then I is precisely a hypergeometric random variable with

a population of size N containing N − t successes such that we sample m elements from the

population without replacement. Thus, Q consists of I uniformly randomly chosen vertices

of P ′ and m− I uniformly randomly chosen vertices of P . Formally, we let v′1, . . . , v
′
N−t be

a random permutation of P ′ and v′′1 , . . . , v
′′
t be a random permutation of P . Ultimately, we

produce Q as

Q = {v′1, . . . , v′I , v′′1 , . . . , v′′m−I}.

By this process, Q is nothing but a uniformly random m-vertex subset of V (G) \ S.

For E2 to hold, we require ∑
v∈Q

e(v, S) = ℓ− e(S).

As the value of e(v, S) for any vertex v ∈ P is strictly larger than the corresponding value

for any v ∈ P ′, we conclude that for every fixed choice of the permutations of P and P ′,

there is at most one value of I such that this equation holds. However, we know that I is a

hypergeometric random variable with population size N , sample size m, and N − t successes

in the population. We see that m ≥ wk = ω(1), and

m2

N
≤ k2

n− k + m
= o(1)

assuming n = ω(k2). Furthermore, t ≥ w
1/4
k n/(2m) = ω(N/m) and t ≤ N/2 (as dmed is a
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median by definition) imply

m

(
1 − t

N

)(
t

N

)
≥
(m

2

)(
ω

(
1

m

))
= ω(1).

So it follows from Lemma 3.4.1 that P[I = i] = o(1) for all i ≥ 0. Thus, we have P[E3] = o(1)

as claimed.

Finally, as E ⊂∼ E1 and E ⊂∼ E3, it follows directly from definitions that E ⊂∼ E1 ∩ E3 ⊆ E4.

Lastly, we show that E4 ⊂∼ D∗, which finishes the proof. Suppose A is such that D∗ does

not occur. Condition on this event D∗ while leaving Q as a uniformly random m-vertex

subset of A. Set d to be the median degree of a vertex in G[A]. The event D∗ implies that

there exists a set of at least wk

√
ℓ/2 vertices in A such that either every vertex in this set

has degree larger than d in G[A] or smaller than d in G[A]. We may suppose that the former

case holds as the latter may be handled similarly. Let t denote the size of this set, and so

t ≥ wk

√
ℓ/2. Let Xt be the random variable corresponding to the number of vertices of

this set that get chosen in Q. Observe that Xt is a hypergeometric random variable with

population size k and sample size m such that there are t successes in the population. Hence,

we have

E[Xt] = t · m
k

≥ wk

√
ℓ

2
· k

w
1/3
k

√
ℓ
· 1

k
=

w
2/3
k

2
= ω(1).

Further, as Xt is hypergeometric, we know that its standard deviation satisfies σ(Xt) =

O(
√
tm/k) = O(w

1/3
k ). Therefore, Chebyshev’s inequality implies that w.h.p. Xt > w

1/3
k

must hold. Conversely, as t ≤ k/2 (since d is defined to be a median), it also implies that

w.h.p. Xt ≤ (1/2 + o(1))m (using the fact that m ≥ wk = ω(w
1/3
k )). Therefore, we may say

w.h.p. that

w
1/3
k < Xt ≤ (1/2 + o(1))m < m− w

1/3
k ,

where the final inequality again utilises m = ω(w
1/3
k ). So the number of vertices v ∈ Q with

dA(v) > d is strictly less than m− w
1/3
k , and the number of remaining vertices v ∈ Q (with

dA(v) ≤ d) is m−Xt < m− w
1/3
k as well. These two inequalities imply that there is no set

of m− w
1/3
k vertices in Q with the same degree in A. Consequently,

P[E4 \ D∗] ≤ P[E4 | D∗] = o(1),

as desired.
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3.5.3 Concentrating the Common Degree

Due to Proposition 3.5.2, we know that E ⊂∼ D∗, which means that almost all vertices in A

have the same degree in G[A], but the value of this most common degree could depend on

A. As noted previously, we wish to use the control over the edge-statistics of A afforded by

this knowledge of the degree distribution of G[A] to conclude that the most frequent degree

can take only one possible value d(G, k, ℓ), which does not depend on A.

In the r-graph setting, we have not been able to find the right method to concentrate

the common degree. Hence, we will instead present the techniques and proofs used in [34]

for graphs, and will henceforth assume r = 2 (so G is a graph). As with Chapter 2, we will

not replicate the paper [34] but will focus on key ideas and provide sketches of proofs.

To begin with, we partition the vertices of G into two parts depending on their degree:

• Vlight = {v ∈ V (G) : dG(v) < n
k
ℓ1/3}, the set of light vertices ;

• Vheavy = {v ∈ V (G) : dG(v) ≥ n
k
ℓ1/3}, the set of heavy vertices.

We first argue that there can’t be too many heavy vertices.

Proposition 3.5.3. Suppose ℓ = ω(1) and G contains more than 5ℓ2/3n/k heavy vertices.

Then P [E ] = o(1).

Proof Sketch. Generate A by first picking a random set A1 ∈ V (G) of size k/2 and then

another random set A2 ∈ V (G) \ A1 of size k/2, and finally set A = A1 ⊔ A2. The number

of heavy vertices in A1 is a hypergeometric random variable with population size n, sample

size k/2, and with |Vheavy| successes in the population. Consequently, Chernoff bounds for

hypergeometric random variables (see [2, Appendix A] for a reference) allow us to say that

|A1 ∩ Vheavy| is concentrated around its expected value w.h.p., and this expected value will

be large by our assumption. Then, for every vertex v ∈ A1 ∩ Vheavy, it is easy to see that

e(v,A2) is hypergeometric as well (see Remark 3.5.1), and hence is concentrated around its

expectation, which will be large as v is heavy. As Chernoff bounds provide an exponentially

decaying tail bound, using a union bound, one can argue that all heavy vertices in A1 have a

large degree in A2 simultaneously w.h.p.. We use that to show that w.h.p we have X > ℓ.
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Next, we bound the variance of the following random variable.

Proposition 3.5.4. Assume that ℓ = ω(1). Let Z :=
∑

v∈A∩Vlight

dA(v). Then either P [E ] =

o(1) or Var [X − Z] ≤ 30ℓ5/3.

Proof Sketch. Set H = e(A ∩ Vheavy) and L = e(A ∩ Vlight). Then, it is easy to see that

X − Z = H − L. Using (a− b)2 ≤ 2a2 + 2b2, we have

Var[X − Z] = Var[H − L] ≤ 2Var[H] + 2Var[L].

For any edge e ∈ E(G), we write Xe to denote the indicator random variable for the event

that both ends of e are picked in A. So we have

H =
∑

e∈G[Vheavy]

Xe

and

L =
∑

e∈G[Vlight]

Xe.

We may express the variance of each of these random variables as a sum of covariances. The

largest covariance terms arise from pairs of edges with one endvertex in common. As there

are not too many heavy vertices (otherwise P [E ] = o(1)), and as the degree of a light vertex

is bounded, the number of such terms is not too large. Consequently, this will lead to the

desired bound on Var[X − Z].

Finally, we use this to concentrate the most common degree in G[A].

Proposition 3.5.5. Assume that ℓ = ω(log3 k). Then there exists some determinisic d =

d(G, k, ℓ) such that E ⊂∼ Dd.

Proof Sketch. Let D denote the random variable corresponding to the most common degree

in G[A]. We first show that E is essentially contained in the following four events:

• F1 = {every light vertex in A has degree at most 2ℓ1/3 in G[A]},

• F2 = {every heavy vertex in A has degree at least ℓ1/3/2 in G[A]},
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• F3 = {X = Z + µ± wkℓ
5/6}, where µ = E[X − Z],

• F4 = {Z = kD ± 3wkℓ
5/6}.

The first two follow from Chernoff bounds and a union bound, and Chebyshev’s inequality

implies the third. Further, by Proposition 3.5.2, we know E ⊂∼ D∗. Thus, we have E ⊂∼
E ∩ D∗ ∩ F1 ∩ F2. To prove E ⊂∼ F4, it suffice to show E ∩ D∗ ∩ F1 ∩ F2 ⊆ F4.

Assume E ∩ D∗ ∩ F1 ∩ F2 holds. Under D∗, we know that at least k − wk

√
ℓ vertices in

G[A] have dA(v) = D. We use D∗ similar to how we did in Theorem 3.5.1 to argue that

D ≤ 3ℓ/k. By F2, we know that all heavy vertices in A have degree at least ℓ1/3/2 ≥ ω(ℓ/k),

so all the at least k − wk

√
ℓ vertices in A of degree D must be light. Thus, we have

(k − wk

√
ℓ)D ≤ Z ≤ (k − wk

√
ℓ)D + wk

√
ℓ · 2ℓ1/3,

where the upper bound comes from F1. Using D ≤ 3ℓ/k yields F4.

Finally, E ∩ F3 ∩ F4 gives

D =
ℓ− µ

k
± wk

k
·O(ℓ5/6).

Assuming wk goes to infinity slowly enough, for large enough k, we see that there is (at

most) on possible integer value of D satisfying this equation, which completes the proof.

Remark 3.5.2. Observe that Propositions 3.5.2 and 3.5.5 prove that P[X = ℓ] ≤ 1/e+ o(1)

for ω(log3 k) ≤ ℓ ≤ o(k6/5). This, along with Theorem 3.1.2, proves Theorem 3.1.1.

3.6 Extension to r-graphs and Further Discussion

As discussed, the only part of the proof of Theorem 3.1.1 that we have yet to successfully

generalise to r-graphs is Section 3.5.3 – concentrating the most common degree of G[A] to

one deterministic value. In this section, we discuss some of the attempts we made to achieve

this and the limitations of each approach.

The key point to note is that in the graph case, for any v ∈ A, the random variable

dA(v) follows a hypergeometric distribution, and this fact is used quite strongly throughout

31



Section 3.5.3. However, as seen in Proposition 3.5.1 for instance, we know that dA(v) is not

hypergeometric in the general r-graph setting. In order to generalise the arguments from

graphs to uniform hypergraphs, we require two concentration bounds:

• Firstly, given any v ∈ A, we would require a bound on Var [dA(v)] to argue that it

is tightly concentrated around its expectation. Furthermore, we would ideally like to

have an exponentially decaying tail beyond the standard deviation to use union bounds

to simultaneously bound the degrees of all (light/heavy) vertices in A as this is useful

when proving Proposition 3.5.5.

• Secondly, we need a bound on Var[X] or on something such as Var[X − Z].

We now briefly list some of the techniques we attempted and the issues we faced.

• Direct calculations: Both the above random variables (dA(v) and X) can be written

as a sum of indicators, and one can upper bound the variance similar to the approach

used in Proposition 3.5.4 by writing it out as a sum of covariances. However, the bounds

obtained using this approach are too large since we cannot use Chernoff bounds like

they were utilised in Proposition 3.5.4.

• Fourier analysis of Boolean functions: Instead of picking A as a uniformly random

k-vertex subset from V (G)(k), we pick each vertex independently with probability k/n

and use the set of picked vertices to approximate A (so the number of picked vertices

follows a Bin(n, k/n) distribution, which means the expected number of vertices picked

is k). Yet again, we may write dA(v) and X as sums of indicators and compute their

variances as sums of covariances. The variance computed in this binomial approxima-

tion upper bounds the true variance (as the vertices are picked independently now,

there are no negative covariance terms, unlike earlier). For instance, consider the case

where G is a clique. In the original setting, it is clear that X will be exactly equal to(
k
r

)
and dA(v) will be

(
k−1
r−1

)
and the variance will be zero. However, in the binomial

approximation, the precise value of X and dA(v) will vary depending on the number of

vertices picked, and hence these random variables will have nonzero variance. Hence,

an upper bound on the variance of X and dA(v) in the binomial version of the problem

will automatically provide an upper bound for the true variance.
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Fourier analysis proves to be a powerful tool for calculating the variance of functions of

binomial random variables (for an excellent reference, see [39]). Broadly speaking, the

idea is to view the set of all Boolean functions (functions of the form f : {0, 1}n → R))

as a real vector space with point-wise addition, define the inner product of two functions

as the expectation of their product over a Bin(n, 1/2) binary string, and argue that this

space has an orthonormal basis consisting of multilinear polynomials in x ∈ {0, 1}n.

Since any function can be expressed as a linear combination of these basis functions,

the orthonormality of the basis and the definition of the inner product allow us to

conveniently compute the expectation and the variance of the function in terms of the

coefficients of this expansion, where the input to the function is a random binary string

sampled from x ∈ Bin(n, 1/2).

In our case, we sample from a Bin(n, k/n) distribution, where we have assumed n ≫ k.

Fortunately, we can still easily use the same method, the only difference being that we

end up with an orthogonal basis in place of an orthonormal one. We then compute the

variance exactly as described in [39, Proposition 1.13]. However, the variance bound

obtained by this approach is too large to use second moment methods and Chebyshevs’s

inequality, which require Var[X] = o(E[X]2) (see [2, Chapter 4]), and hence is not good

enough to concentrate X and dA(v) around their respective expectations.

• Hypercontractivity: Using the ideas of Chapter 2, it is easy to see that X can be

expressed as a polynomial of degree r in ξ ∈ BL(n, k), and dA(v) can similarly be

written as a polynomial of degree r− 1. We then use a hypercontractive inequality for

random variables Y that are functions of ξ. In particular, we use [30, Proposition 2.5]

and utilise it by replicating the proof methodology of [30, Corollary 2.6]. The broad

idea is to use this in conjunction with Markov’s inequality as follows. For any q > 0,

we have

P[|Y | ≥ t] = P[|Y |q ≥ tq] ≤ E|Y |q

tq
≤ f(q, k, n)

(E [|Y |2])q/2

tq
,

for some function f , where the final inequality follows from the hypercontractive in-

equality. The aim is to optimise the value of q to get the best possible bound. In our

case, as n ≫ k, it is easy to see that the proof used in [30, Corollary 2.6] applies only

when q = 2, and the above hypercontractivity bound reduces to Chebyshev’s inequal-

ity (which can be seen by substituting X − EX or dA(v) − EdA(v) in place of Y ). As

discussed previously, we have been unable to find a good enough variance bound for

X and dA(v) to use Chebyshev’s inequality effectively.
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• McDiarmid-type inequalities: The first inequality we tried using is Lemma 2.4.5.

As explained in Proposition 2.5.1, when trying to concentrate X, the constants cx

are precisely equal to the degrees of the corresponding vertices dG(x). Once again,

we maximise
∑

c2x by considering a hypergraph G where the degree distribution is

as unbalanced as possible. Yet again, the bound obtained is too weak to obtain a

meaningful concentration bound on |X−EX| w.h.p. (the only high probability bounds

we get are trivial). This is not too hard to see because the denominator of the power

of the exponential term in the bound will increase with n, which, as usual, is much

larger than k, leading to a weak bound.

We then tried using [21, Corollary 2.2], which, at least on the surface, appears better

suited to our purpose (and does not involve n). However, it only provides a useful high

probability bound when e(G) ≫ nr/k1/2 – it allows us to say that in this case, we must

have P[X ≫ ℓ] = 1−o(1) and hence P[X = ℓ] = o(1) (similar to what Propostion 2.5.1

does). So, it only allows us to rule out extremely dense hypergraphs. In other cases,

the concentration bound it provides allows us to say that X lies in some interval w.h.p.,

but as ℓ ≤ o(k6/5) is quite small in terms of k, the interval is far too large to conclude

any reasonably strong result.

Similar issues persist when trying to concentrate dA(v) as well – n is too large for the

first technique, and the second one is only useful for vertices of extremely high degree.

When it comes to bounding the variance of X, it would appear that dense hypergraphs

that are highly irregular (where some vertices have very large degrees and the rest have

very small degrees) are the “bad” cases that lead to poor variance bounds. This will be

evident from the direct calculation approach of the first method (because it is the same

Proposition 3.5.4, where we saw that the largest covariance terms occur due to pairs of edges

with precisely one vertex in common, so many vertices of large degree can lead to very big

upper bounds on the covariance). The Fourier analytic method also points to the same

conclusion. So perhaps a good idea would be to see if such dense, irregular hypergraphs can

be handled in a different manner and then use the approach described in this chapter for

more regular hypergraphs.

Bounding the variance of dA(v) and getting the desired exponential tails to use a union

bound appears to be more challenging, and it is not clear what the right way to concentrate

these random variables is.
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Chapter 4

Quasirandom-Forcing Pairs of

Tournaments: Introduction and

Preliminaries

4.1 Introduction

A combinatorial structure is said to be quasirandom if it satisfies certain properties that

hold asymptotically almost surely in a random structure. The study of quasirandomness

was initiated by Chung, Graham and Wilson [7], Thomason [47, 48] and Rödl [44], who

investigated the notion of quasirandomness in terms of different graph properties. One of

the key takeaways from these studies is that several different graph properties all lead to

the same notion of quasirandomness and can be equivalently used to characterise quasir-

andom graphs (for instance, see [2, Theorem 9.3.1]). Since then, quasirandom properties

have been investigated in several different types of discrete structures, such as groups [20],

hypergraphs [6, 8, 18, 19, 24, 27, 37, 46], permutations [5, 10, 29] and integers [9].

We are interested in tournament quasirandomness, a topic introduced by Chung and

Graham [8], who showed that, as with graphs, a wide range of natural tournament properties

can be used equivalently to describe quasirandomness. This idea, as with the previous ones,

has drawn widespread attention [4, 11, 12, 13, 22, 23, 26], and the primary aim has typically
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been finding ways to characterise quasirandom tournaments.

We will define tournament quasirandomness in terms of the homomorphism density of

subtournaments. A homomorphism from a directed graph D to a tournament T is a map

f : V (D) → V (T ) such that f(u)f(v) ∈ A(T ) whenever uv ∈ A(D), where A(F ) denotes

the set of arcs of a directed graph F . Let hom(D,T ) denote the number of homomorphisms

from D to T and define the homomorphism density of D in T to be

t(D,T ) :=
hom(D,T )

v(T )v(D)

where v(H) denotes the number of vertices in a digraph H.

We’ll now see how to use this to define tournament quasirandomness. Suppose T is

a random tournament on n vertices, i.e., each arc is directed randomly in one of the two

possible directions independent of the directions of all other arcs and is equally likely to be

oriented in either direction. Let H be a tournament on k vertices, where n ≥ k. Then, the

expected homomorphism density of H in T is

E(t(H,T )) =
(1/2)(

k
2)n(n− 1) · · · (n− k + 1)

nk
= (1 − o(1))(1/2)(

k
2).

Note that we have only accounted for injective homomorphism in the numerator hom(H,T ),

but that is because the number of non-injective homomorphisms is clearly o(nk), and so this

is all taken care of by the o(1) term. This also tells that injective homomorphisms account

for most homomorphisms from V (H) to V (T ), which is what, in some sense, allows us to say

we’re approximately counting copies of H in T and looking at their density (up to constant

factors). Simple concentration inequalities tell us that the random variable t(H,T ) is tightly

concentrated around this expected value, and we use this observation to justify the following

definition. A sequence {Tn}n≥1 is said to be quasirandom if, for every k ≥ 1 and every

k-vertex tournament H,

lim
n→∞

t(H,Tn) = (1/2)(
k
2).

In other words, it is quasirandom if every finite subtournament appears with roughly the

same density one would expect it to appear within a random tournament. A key feature

of quasirandomness is that it can be completely characterised only by the density of a few

substructures, and determining these substructures is a popular theme of investigation. We

say that a tournament H on k vertices is quasirandom-forcing if any sequence of tournaments
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{Tn}n≥1 satisfying v(Tn) → ∞ and

lim
n→∞

t(H,Tn) = (1/2)(
k
2)

is quasirandom. That is to say, if the density of H is approaches its density in a random

tournament, then that is true for all subtournaments.

The set of all quasirandom-forcing tournaments has only been determined recently. Let

TTk denote the transitive tournament on k vertices, obtained by listing all the vertices in a

line and directing all possible arcs forward. Proving that TTk is quasirandom forcing for all

k ≥ 4 is a small extension of [32, Exercise 10.44], and was reproved in [13] independently

using flag algebras (see Section 5.3.2 for a brief introduction to the intuition and ideas

behind this technique). Coregliano, Parente and Sato [11] also used flag algebras to obtain

an example of a 5-vertex non-transitive quasirandom-forcing tournament TT
↕
4 ; see Figure 4.1.

Subsequently, Bucić, Long and Shapira [4] proved that any quasirandom-forcing tournament

on at least 7 vertices must be transitive. Finally, Hancock et al. [23] ruled out all other

tournaments on at most 6 vertices. This completed the characterisation of all quasirandom-

forcing tournaments, showing that the only ones are TTk for k ≥ 4 and TT
↕
4 .

Figure 4.1: The tournament TT
↕
4

The class of quasirandom-forcing tournaments is rather small, and consequently trying

to find more quasirandom-forcing structures motivates the following definition (analogous to

one that was introduced in the context of quasirandom permutations in [5])

Definition 4.1.1. Let k ≥ 1 and let S be a set of pairwise non-isomorphic tournaments on

k vertices. We say that S is Σ-forcing if any sequence {Tn}n≥1 of tournaments satisfying

v(Tn) → ∞ and

lim
n→∞

∑
H∈S

t(H,Tn) = |S| · 2−(k
2)

is quasirandom.
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With this definition, it is clear that a tournament H is quasirandom-forcing if and only

if {H} is Σ-forcing.

Our goal is to extend the aforementioned studies on quasirandom-forcing tournaments

to Σ-forcing pairs of tournaments, taking the first step towards understanding Σ-forcing sets

in general. In particular, we will focus on non-transitive pairs of tournaments. It would also

be interesting to study Σ-forcing sets that contain transitive tournaments, but the situation

for such sets seems to be quite different, and we discuss it in Section 5.4.

In the next section, we introduce some preliminary notation and definitions that will

come in handy. In Chapter 5, we first introduce tournament limits. We then describe in

detail how we use these tools to show that most pairs of non-transitive k-vertex tournaments

are not Σ-forcing. We proceed to discuss potential approaches to tackle the problem of

classifying the remaining tournament pairs and finally conclude with some open problems.

4.2 Preliminaries

A lot of notation we use henceforth (such as notation regarding induced (di)graphs, asymp-

totic notation, etc) is shared with previous chapters and has been introduced in Section 1.2.

We only present definitions and notations specific to digraphs and tournaments that we have

not previously introduced.

We use standard notation for directed graphs and tournaments. A directed graph (or

digraph) D is a pair (V (D), A(D)) such that A(D) ⊆ V (D) × V (D) consists of ordered

pairs. The elements of V (D) are vertices, and the elements of A(D) are arcs or directed

edges. In case there is no potential ambiguity, we sometimes denote V (D) by V and A(D)

by A. An arc (u, v) ∈ A(D) is often written uv for short. We let v(D) = |V (D)| and

a(D) = |A(D)|.

Given a vertex v ∈ V (D), define its out-neighbourhood N+(v) := {u : vu ∈ A(D)} and

its out-degree d+(v) := |N+(v)|. Similarly, define the in-neighbourhood N−(v) := {u : uv ∈
A(D)} and in-degree d−(v) := |N−(v)|.

A tournament T is a directed complete graph, i.e., for all distinct u, v ∈ V (T ), exactly

one of the arcs uv or vu is in A(T ). The transitive tournament on k vertices, denoted TTk,
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consists of the vertex set {v1, . . . , vk} with an arc from vi to vj if and only if i < j.

As stated previously, a homomorphism from a digraph D to a digraph G is a map

φ : V (D) → V (G) such that if uv ∈ A(D), then φ(u)φ(v) ∈ A(G). The set of all homo-

morphisms from D to G is written Hom(D,G) and the number of such homomorphisms is

hom(D,G) := |Hom(D,G)|. The homomorphism density of D in G, denoted t(D,G), is

defined as

t(D,G) =
hom(D,G)

v(G)v(D)
.

Intuitively, t(D,G) is the proportion of all functions from V (D) to V (G) which are homo-

morphisms. Equivalently, it is the probability that a randomly chosen function from V (D)

to V (G) is a homomorphism. An isomorphism is a bijective homomorphism, and an auto-

morphism is an isomorphism from a digraph to itself. We let Aut(D) denote the group of

automorphisms of D and set aut(D) := |Aut(D)|.
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Chapter 5

Classifying Pairs of Tournaments

The major portion of this chapter is dedicated to showing that all pairs of non-transitive

tournaments on at least seven vertices are not Σ-forcing. Following this, we briefly dis-

cuss future directions of research and potential approaches to characterise the remaining

pairs. Finally, we conclude with some conjectures regarding pairs containing a transitive

tournament.

5.1 Tournament Limits

In order to rule out pairs of tournaments, we first introduce tournament limits or tourna-

mentons and translate notions such as homomorphism densities and quasirandomness into

this framework. This will allow us to prove certain necessary conditions for a pair of tour-

naments to be Σ-forcing and hence rule out most pairs. Our discussion will be brief; for a

more detailed treatment of combinatorial limits, see [33]. While most of its description is for

graph limits, this theory quite easily extends to tournaments, which is what we shall present.

A tournamenton or a tournament limit is a (Lebesgue) measurable function W : [0, 1]2 →
[0, 1] satisfying W (x, y) + W (y, x) = 1 for all x, y ∈ [0, 1]. The idea behind this definition

is to think of a tournamenton as the continuous generalisation of the adjacency matrix of a

tournament. Intuitively (and very loosely), we can think of a tournamenton W as giving the

“arc” xy the “weight” W (x, y) and the arc yx the weight W (y, x) = 1−W (x, y), or directing
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the arc from x to y with probability W (x, y). We can easily convert a tournament to a

tournamenton. Given a tournament T on n vertices labeled {v1, . . . , vn}, define the associated

tournamenton WT : [0, 1]2 → [0, 1] obtained by partitioning [0, 1] = I1 ∪ I2 · · · ∪ In, where

Ij = [(j − 1)/n, j/n) for 1 ≤ j ≤ n− 1 and In = [(n− 1)/n, 1], such that if (x, y) ∈ Ii × Ij,

then WT (x, y) = 1 if vivj ∈ A(T ) and is 0 otherwise. This definition becomes easy to visualise

by viewing the adjacency matrix of T as a “pixel picture” by placing a black square wherever

there is a 1 and a white square for a 0.


0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0

 −→

Figure 5.1: The adjacency matrix of TT4 and the corresponding tournamenton. It takes the
value 1 on the black region and 0 on the white region.

Given a digraph D with vertex set V (D) = {v1, . . . , vk} and a tournamenton W , the

homomorphism density of D in W is defined as

t(D,W ) :=

∫ 1

0

· · ·
∫ 1

0

∏
vivj∈A(D)

W (xi, xj)dx1 · · · dxk. (5.1)

It is fairly easy to see that t(D,T ) = t(D,WT ) for any tournament T . Another way to

view t(D,W ) that ties into the intuition we previously described is as follows. Pick k points

x1, . . . , xk independently from [0, 1] uniformly randomly. For each vivj ∈ A(D), add an arc

from xi to xj with probability W (xi, xj). Then t(D,W ) is precisely the probability that all

edges of D are added during this procedure.

A sequence {Tn}n≥1 of tournaments with v(Tn) → ∞ is said to be convergent if limn→∞ t(H,Tn)

exists for every tournament H. A tournamenton W is the limit of a sequence {Tn}n≥1 of

tournaments if limn→∞ t(H,Tn) = t(H,W ) for every tournament H. A well-known result

from the theory of graph limits that can be adapted to tournaments is that every convergent

sequence of tournaments has a limit tournamenton (see, for instance, [22, 23]). Moreover,

this limit can be shown to be unique up to reordering the vertices of the tournaments in

the sequence, but this will not be necessary for us. Also, for every tournamenton W , there

is a sequence of finite tournaments whose limit is W . The aforementioned pixel pictures

42



often provide a simple mechanism to visualise the limiting tournamenton of a sequence of

tournaments. For instance, the limit of the sequence {TTn}n≥1 can be visualised as

Figure 5.2: The limit of an increasing sequence of transitive tournamentons.

Formally, the limiting transitive tournamenton is

WTT (x, y) :=


1 if x < y,

1/2 if x = y,

0 otherwise.

. (5.2)

Note that tournamentons are Lebesgue measurable functions and hence are defined up to

equality almost everywhere, so we can set any arbitrary value for WTT along the “diagonal”

{(x, x) : x ∈ [0, 1]}.

The language of tournamentons allows us to formulate a new, equivalent definition of

quasirandomness (see [22, 23]).

Proposition 5.1.1. A sequence of tournaments {Tn}n≥1 is quasirandom if and only if its

limit is the tournamenton W such that W (x, y) = 1/2 for all x, y ∈ [0, 1].

One can think of the constant-1/2 tournamenton as the limit of a sequence of random

tournaments of increasing order. Related to the proposition above, by modifying standard

arguments from graph limits, we also obtain a new definition for a Σ-forcing set of tourna-

ments.

Proposition 5.1.2. Let k ≥ 1 and let S be a set of k-vertex tournaments. Then S is

Σ-forcing if every tournamenton satisfying∑
H∈S

t(H,W ) = |S| · (1/2)(
k
2),
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is equal to 1/2 almost everywhere, that is, W (x, y) = 1/2 for almost all (x, y) ∈ [0, 1]2.

5.2 Finding Tournamentons

By the proposition above, in order to show that a set S is not Σ-forcing, it is enough to

find a tournamenton that is not almost everywhere equal to the constant-1/2 tournamenton

but still satisfies the condition above. Our goal in this section is to find examples of such

tournamentons that can be used to rule out all pairs of tournaments on at least seven vertices.

First, we simplify the problem to show that we only need to find a tournamenton with

a high density of tournaments in S. This will follow using a standard intermediate value

theorem argument, such as [23, Proposition 2].

Lemma 5.2.1. Let k ≥ 1 and let S be a set of k-vertex non-transitive tournaments. If there

exists a tournamenton W such that W is not equal to 1/2 almost everywhere and∑
H∈S

t(H,W ) ≥ |S| · (1/2)(
k
2),

then S is not Σ-forcing.

Proof. Let W be the tournamenton given in the statement of the lemma, and let WTT be

the transitive tournamenton as described in Equation 5.2. For any α ∈ [0, 1], define the

tournamenton

Wα =

W (x, y) if (x, y) ∈ [0, α]2,

WTT (x, y) otherwise.

From the definitions of W and WTT , we note that Wα is not equal to 1/2 almost everywhere

for all α ∈ [0, 1]. By assumption, we know that∑
H∈S

t(H,W1) =
∑
H∈S

t(H,W ) ≥ |S| · (1/2)(
k
2).

On the other hand, since no tournament H ∈ S is transitive, we will have t(H,WTT ) =

t(H,W0) = 0 for all H ∈ S. Indeed, consider any H ∈ S with vertices labelled {v1, . . . , vk}.

It is an easy exercise to show that a tournament is transitive if and only if it does not
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have any directed cycles. Hence, H must have a directed cycle, which, without loss of

generality, we may assume is v1 . . . vℓ. Referencing Equation 5.1 and using the definition of

WTT from Equation 5.2, it is clear that WTT (x1x2) . . .WTT (xℓ−1xℓ)WTT (xℓx1) = 0 for almost

all x1, . . . , xℓ ∈ [0, 1], and hence t(H,WTT ) = t(H,W0) = 0. As this holds for all H ∈ S, we

have ∑
H∈S

t(H,W0) = 0.

Since
∑

H∈S t(H,Wα) is a continuous function of α, by the intermediate value theorem,

there exists some α ∈ (0, 1] such that∑
H∈S

t(H,Wα) = |S| · (1/2)(
k
2).

This, along with the fact that Wα is not equal to 1/2 almost everywhere and Proposition 5.1.2,

completes the proof.

One standard idea for constructing a tournamenton W that has a high density of tour-

naments in S, used in [4, Proof of Proposition 1.2], is to consider a “blow up” of one

of the tournaments in S. Let H be a tournament on k vertices labelled {v1, . . . , vk}.

For n ≥ k, construct the n-vertex blow-up tournament of H, denoted W ∗
H(n) as follows.

Let V (W ∗
H(n)) = V = {u1, . . . , un} and let V =

⊔
i∈[k] Vi be a partition of V such that

|Vi| = ⌊n/h⌋ or ⌈n/h⌉ for all i ∈ [k]. For every arc vivj of H, direct all arcs from Vi to

Vj in W ∗
H(n) and direct the remaining arcs arbitrarily. In terms of adjacency matrices, we

obtain W ∗
H(n) from H by replacing the ones and zeroes in the adjacency matrix of H with

appropriately sized blocks of ones and zeroes, respectively (and the remaining entries of the

matrix can be decided arbitrarily). Set W ∗
H to be the limiting tournamenton of the sequence

of blow-ups {W ∗
H(n)}n≥1.


0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0

 −→ −→

Figure 5.3: Blow-up of TT4 on 8 vertices.
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The key observation we make here is that any map f : V (H) → V with f(vi) ∈ Vi for all

i ∈ [k] constitutes a homomorphism, and hence we see that

hom (H,W ∗
H(n)) ≥ (1 − o(1))nk/kk,

for all n ≥ k. This implies that

t (H,W ∗
H) ≥ (1 − o(1))k−k.

We will utilise this to prove the following lemma, which can then be used to rule out all 7

vertex pairs.

Lemma 5.2.2. If S is a Σ-forcing set of non-transitive k-vertex tournaments, then

|S| ≥ 2(k
2)k−k.

Proof. We will prove the lemma by showing the contrapositive. Suppose |S| < 2(k
2)k−k. Fix

any tournament H0 ∈ S and set W = W ∗
H0

to be the blow-up tournamenton. From the

preceding discussion, we know that∑
H∈S

t(H,W ) ≥ t(H0,W ) ≥ (1 − o(1))k−k ≥ |S| · 2−(k
2),

where the final inequality holds for sufficiently large n by assumption. Then Lemma 5.2.1

completes the proof.

Using that k−k > 21−(k
2) for k ≥ 7, we immediately obtain the following result.

Corollary 5.2.3. For all k ≥ 7, there is no Σ-forcing pair of non-transitive k-vertex tour-

naments.

Henceforth, we focus our efforts on non-transitive pairs of tournaments on at most 6

vertices. For k = 2, 3, any pair of k-vertex tournaments must contain at least one transitive

tournament, and hence we only need to look at k = 4, 5, 6, which we discuss next.

46



5.3 Further Directions of Research: Characterising the

Remaining Pairs

In this section, we intend to briefly explain some of the methods we aim to use to classify

the remaining tournament pairs. As discussed at the end of Section 5.2, we only need to

consider non-transitive pairs of tournaments on k = 4, 5, 6 vertices. We split this section

into two parts – finding pairs that are Σ-forcing and ruling out the rest.

5.3.1 Eliminating Pairs on At Most Six Vertices

We first detail some of the strategies we wish to consider to classify non-Σ-forcing pairs. As

usual, we aim to do this by employing Lemma 5.2.1 – given a pair of non-transitive k-vertex

tournaments S, we wish to find a “high density” tournamenton that is not equal to 1/2

almost everywhere.

• Perturbing the 1/2-tournamenton: The approach here is similar to [23, Section

4.2]. We consider the following tournament matrix T (x) which is a slight “perturba-

tion” of the constant 1/2 tournamenton

T (x) =

(
1/2 1/2 + x

1/2 − x 1/2

)
.

Consider any H ∈ S, and then compute t (H,T (x)) using 5.1 as a function of x ∈
[−1/2, 1/2]. If we can show there exists some x ̸= 0 such that t (H,T (x)) is much

larger than the (1/2)(
k
2), then it is likely that the pair S satisfies the conditions of

Lemma 5.2.1. One way to do this would be to check the first and second derivatives

of t (H,T (x)) at x = 0 to see if a local minimum because, in that case, it is possible

that some small nonzero x will do the trick. This can also be extended to multiple

variables, for instance, by considering

T (x, y, z) =

 1/2 1/2 + x 1/2 + y

1/2 − x 1/2 1/2 + z

1/2 − y 1/2 − z 1/2

 .
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Again, the aim is to find some x, y, z ∈ [−1/2, 1/2] satisfying (x, y, z) ̸= (0, 0, 0) and

t (H,T (x, y, z)) > (1/2)(
k
2). In this case, we can look at the gradient and the Hessian

of t (H,T (x, y, z)) at (0, 0, 0) to determine whether it is a local minimum.

• Monte Carlo methods: Let M be an n× n matrix (for some fixed n) such that all

entries in M are non-negative and M + MT is the all-ones matrix. Viewing M as a

tournamenton, we compute the sum of densities
∑

H∈S t(H,M). In order to find some

M such that this sum is greater than |S| · (1/2)(
k
2), we execute the following iterative

procedure. We pick a random row i and a random column j and increase mij by some

pre-determined positive value ε and also decrease mji by ε so that mij + mji = 1 still

holds. We then calculate the change in the sum of densities. If the change is positive,

we accept it with high probability, and if it is negative, we accept it with low probability

(we don’t reject these changes outright to avoid getting stuck in a local minimum). We

repeat this process until we get a tournamenton with the desired property or until we

cross some fixed number of steps.

There are a lot of initial conditions here that we can vary to see what works best – the

value of n, the initial matrix M , the perturbation ε – so some trials are likely required

to determine the best possible values of these parameters.

• Blow-ups of small tournaments: The idea here is similar to that of Lemma 5.2.2.

However, instead of taking a blow-up of a tournament in S, we consider blow-ups of

all possible tournaments on k, k+ 1, k+ 2, . . . vertices. As k ∈ {4, 5, 6} is quite small,

it is fairly easy to use a computer to run through all tournament blow-ups on a few

more vertices and make the homomorphism density calculations.

5.3.2 Finding Σ-Forcing Pairs

The key tool we use to figure out whether a pair S is Σ-forcing is the theory of flag algebras in-

troduced by Razborov [42]. We will briefly outline the broad ideas underlying this technique

and refer the reader to [42, 43, 15, 11] for more detailed discourse. Flag algebras provide a

computational method to tackle graph-theoretic problems regarding homomorphism densi-

ties and related topics. Loosely speaking, they provide a formal setup to address the notions

of adding and multiplying homomorphism densities, and they help solve problems regarding

homomorphism density inequalities using techniques from sum-of-squares optimisation.
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Suppose we wish to find the asymptotic maximum density of a particular tournament in

a given family of tournaments (where the asymptotics are in terms of the size of the host

tournament). Instead of considering every possible host tournament (or, more precisely, every

possible increasing sequence of host tournaments), flag algebras allow us to concentrate only

on certain specific host tournament sequences where determining the asymptotic density is

computationally tractable, thus providing an upper bound on the maximum density, with

the bounds provided often tight.

Given a particular member of the above family H, we consider the subfamily of all

tournaments that contain a labelled embedding of H, which we shall call H-flags. We define

an algebra over this subfamily by first considering all formal linear combinations of the

tournaments over R. When considering the density of one tournament of this subfamily

in another, we will do so in a manner that preserves the labelled embedding of H. One

can then show that this asymptotic density function is a linear function over this space.

Furthermore, one can define a bilinear product in this space, where the product of T1 and

T2 is a linear combination of all D in the subfamily with the coefficients corresponding to

the asymptotic joint density of T1 and T2 in D. The space equipped with this product will

form a commutative associative algebra over R, which we call a flag algebra denoted A.

A crucial outcome of these definitions will be that the density of a tournament T in the

product of two tournaments will simply be the product of the density T in each individual

tournament, allowing us to think of this density function as an algebra homomorphism from

A to R. Furthermore, one can show that the set of density functions (each corresponding

to the density of a particular tournament) is exactly equal to the set of all non-negative

homomorphisms from A to R.

When computing the density of a particular tournament, a common method is to express

it in terms of the densities of other tournaments using double counting arguments by counting

copies of a particular structure in different ways. For instance, given any tournament T on

n vertices, a simple observation is

hom(TT3, T ) +
1

3
hom(C3, T ) =

(
n

3

)
,

where C3 is the directed cycle on 3 vertices. Indeed, the right-hand side counts the number

of 3-vertex subsets in V (T ). As TT3 and C3 are the only two tournaments on 3 vertices (up

to isomorphism), every set of three vertices in T induces one of these two tournaments. As
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aut(TT3) = 1 and aut(C3) = 3, we divide the number of homomorphisms by the number

of automorphisms to ensure that the left-hand side also counts each 3-vertex set only once.

This lets us express the density of C3 in terms of the density of TT3. Consequently, providing

a bound on the density of one yields a bound on that of the other.

The flag algebra framework allows us to formally write the density of one tournament in

terms of sums and products of the densities of other tournaments. The goal is to find an ex-

pression that is easy to bound. In particular, it is possible to adapt ideas from sum-of-squares

optimisation for polynomials to flag algebras. These techniques introduce a constraint that

typically forces certain parameters to satisfy a polynomial equation which can be written

as a sum of squares of other polynomials and hence must be non-negative. Hence, instead

of optimising over the entire parameter space, we now have a restricted space where there

are well-developed optimisation methods. For instance, if a particular linear combination

of tournament densities can be bounded below by a sum of squares of densities of other

tournaments, then this linear combination must be non-negative. Tools from semidefinite

programming can be utilised to automate this process almost entirely, and this will directly

provide bounds on homomorphism densities.

These algorithms can often provide more than just the final bounds on the densities; they

can also determine conditions that must be satisfied by any homomorphism that attains these

bounds, which can then be used to find the extremal constructions. This feature, along with

characterisations of Σ-forcing sets like Proposition 5.1.2, can identify sets that are indeed

Σ-forcing (for instance, see [11, Sections 5 and 6] for such an approach).

5.4 Open Problems

So far, we have considered Σ-forcing sets consisting of a pair of non-transitive tournaments.

In contrast, from flag algebra calculations, it seems that if k is large enough, then every pair

comprised of the k-vertex transitive tournament any other k-vertex tournament should be

Σ-forcing.

Conjecture 5.4.1. There exists k0 such that if k ≥ k0 and H is any k-vertex tournament,

then S = {H,TTk} is Σ-forcing.
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Furthermore, it may even be true that any linear expression of homomorphism densities of

k-vertex tournaments containing a “large enough coefficient” on the density of the transitive

tournament forces quasirandomness.

Conjecture 5.4.2. For any α > 0 there exists k0(α) such that if k ≥ k0(α) and c(H)

is a real number for each tournament H on k vertices such that
∑

H:v(H)=k c(H) = 1 and

c(TTk) ≥ α, then a sequence T1, T2, . . . with v(Tn) → ∞ is quasirandom if and only if

lim
n→∞

∑
H:v(H)=k

c(H) · t(H,Tn) = (1/2)(
k
2).
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