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Abstract

Imparting electrical conductivity into metal-organic frameworks (MOF) having a
significantly high porous nature, and large surface area but extremely poor electrical
conductivity opens doors for numerous applications of MOFs in electronics,
optoelectronics, and supercapacitors. Using molecular iodine as a guest in the MOFs is
an effective strategy for enhancing electrical conductivity. Herein, we demonstrate for the
first-time fabrication of Cu-NDC thin film using an electrochemical deposition approach
and thereby intercalation of molecular iodine into MOF thin film. The iodine-doped thin
film resulted in nearly ~102 orders of increased electrical Conductance than the pristine
thin film. The increased electrical performance can be attributed to the formation of I3
species due to the partial oxidation of the framework. Consequences as mentioned earlier
make the molecular iodine doping strategy, a promising candidate for modulating the

electrical conductivity of MOFs.

Introduction

Metal-organic frameworks (MOFs) are a special category of materials that have metal ion
centers coordinated by multitopic organic ligands, nanoporous and crystalline in nature’.
MOFs have been enormously explored for a diverse collection of applications including
catalysis, gas sensing, separation, adsorption, and many others.? The porosity inhered
by MOFs can be engineered with dopant molecules resulting in numerous applications.
It has been almost a decade since Talin et al. demonstrated the tunable electrical
conductivity = where a  small-molecule  organic  semiconductor, 7,7,8,8-
tetracyanoquinodimethane (TCNQ) has guided the way to innovatively strategize, design,
and tune the conductivity of a Cu-MOF (HKUST-1) by several orders of magnitude®. The
doped TCNQ host infiltrated in the pore makes a continuous path by bridging four copper
octahedra, ultimately giving rise to enhanced electrical conductivity. Recently, a report on
the enhanced thermoelectric properties of Cus(HHTP)2 via loading of molecular iodine into
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the pores of MOF have been published*. Cus(HHTP)2 thin film was made using a dip-
coating method. The synthesized film was dipped in iodine solution in dichloromethane
for a variable time to infiltrate iodine. Host-guest interactions between doped iodine and
the framework resulted in the formation of I3 species due to the partial oxidation of the
framework, enhancing the thermoelectric performance of the material. Two-dimensional
(2D) 1-d conjugated Ni(ll) tetraaza[14]annulene doped with iodine showed enhanced
electrical conductivity and paramagnetism due to partial oxidation®. The pristine MOF was
ascertained to be electrically insulating in nature having 0<10'® S/cm. However, the

iodine-dopped MOF pallet showed an incredibly high electrical conductivity of 0.01 S/cm.

However, apart from applications specifically related to porosity, MOFs lag in the field of
electronics as their application in devices is concerted, majorly due to their intrinsic
insulating nature.® The ineffective orbital overlap between inorganic metal nodes and
organic linkers precludes the generation of an effective charge transport pathway in
MOFs. However, efforts are being made to modulate the electrical conductivity in MOFs
using both intrinsic and extrinsic approaches by various design strategies®®, which
constitute hybridizing MOFs with other conductive media, linking metal sites with redox-
active linkers, doping of redox-active guest molecules, and composite formation. One of
the most popular choices among the strategies for imparting conductivity in a non-
conducting MOF is the introduction of redox-active guest molecules, as the intrinsic pores

serve as a platform for modulating the electrical transfer properties.

Through post-synthetic modification for enhancing electrical conductivity, iodine is
commonly doped into the pores of MOFs as a redox-active molecule. This process leads
to the refined electrical performance of the system due to the oxidative doping of MOFs
by the guest iodine molecules®''. Mainly, the MOF system's oxidative doping occurs due
to metal ions' oxidation within the framework °. In systems where the oxidation of metal
ions is not thermodynamically feasible, the oxidative doping of MOF could result from the
interaction between guest |2 and ligand 11 electron density. However, this phenomenon is

often not observed.’®. A report on the enhanced electrical performance by ~108
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magnitudes as a consequence of iodine loading into the MOF has been previously
published?.

Motivated by the host-guest interactions of iodine-doped MOF systems and their
accompanying enhancement in the electrical conductivity, herein, we report the first-time
electrodeposition of Cu-NDC thin film on FTO substrate to the best of our knowledge and
thereby iodine doping into the pores of the MOF thin film which results in a two-fold
increase in the electrical conductance in the iodine doped than the pristine thin film. The
increased conductance in the doped thin film can be attributed to the oxidative doping of
iodine in the pristine thin film'®. To comment on the bonding motif and host-guest
interactions in the system, both the pristine and iodine-doped thin films were thoroughly

characterized using microscopic as well as various spectroscopic techniques.

Materials and Methods

N,N-dimethylformamide, @ copper nitrate  trihydrate = [Cu(NOs3)2:3H20], and
tetraethylammonium tetrafluoroborate (TEAFB) were purchased from Sigma-Aldrich Co.
LLC. 2,6-naphthalenedicarboxylic acid was purchased from Thermo Fisher Scientific Inc.
Fluorine-dopped tin oxide (FTO) glass substrates were purchased from Sigma-Aldrich
Co. LLC. Dimensions of FTO glass used was 1x3 cm?. The thickness of the FTO used
was 2.3mm.

All reagents and starting materials were commercially obtained and used without any

further purification.

Firstly, the FTO sheet (10cm*10cm) was cut down into small pieces of dimensions 1x3
cm? and to remove surface impurities it was kept in 1M HCI for an hour, then sonicated

with water for 15 minutes followed by acetone, ethanol, water, and isopropyl alcohol
respectively for 15 minutes each. FTOs were dried in the air and used as working

electrodes for electrochemical deposition (ECD).
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A solution containing 10mM Cu(NO3)2-:3H20 as the metal node, 15mM 2,6-
napthalenedicarboxylic acid as the linker, 10mM EtsNHCI as a probase source, and
20mM tetraethylammonium tetrafluoroborate (TEAFB) as the supporting electrolyte in
DMF was used in the ECD process. A classic three-electrode system was utilized. An
FTO (1*3 cm?) as a working electrode, a pure platinum (Pt) rod as a counter electrode,
and Ag/AgCl as a reference electrode were used. A constant potential of -1.4V vs Ag/AgCl
(8M KCI) was applied for 300 seconds. A uniform thin film of Cu-NDC was formed on the
FTO surface.

The as-synthesized electrodeposited Cu-NDC thin film was then submerged in iodine
vapor chamber for 2 hours so that iodine could enter into the pores of MOF. After 2 hours
the iodine-doped Cu-NDC thin film (l2@Cu-NDC) was taken out, dried in air, and used for

further characterizations.

Characterization

The surface morphological analysis and uniformity of pristine Cu-NDC as well as iodine-
doped Cu-NDC thin films were characterized with FESEM. Out-of-plane XRD data were
recorded on a Bruker D8 Advanced diffractometer using Cu Ka radiation (A = 1.5406 A)
at room temperature. Raman spectra were recorded using a Raman microscope -
LabRAM HR, HorbiaJobinYvon. Electrical conductivity (/-V) measurements were carried
out by the Keithley 4200 SCS Parameter Analyzer system with EGaln as a top electrode

for all the thin film samples.
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Results and Discussion
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Figure 1. A graphical depiction of the electrochemical synthesis along with optical

images of pristine Cu-NDC thin film on FTO substrate. Molecular iodine doping was

performed by keeping Cu-NDC thin film in iodine chamber for 2 hours

In this work, electrodeposited Cu-NDC thin films were fabricated using an electrochemical
cell. As depicted in the schematic (Figure 1) the pristine Cu-NDC and iodine-doped Cu-
NDC thin films were fabricated using the reaction scheme (mentioned in Figure 2) and

used for further characterizations.

|()
u .

2,6 naphthalene dicarboxylic acid

Figure 2. Reaction scheme for fabrication of Cu-NDC thin film. (image reproduced
from Ref. 13, copyright 2021 Elsevier Ltd.)
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The as-synthesized electrodeposited Cu-NDC and iodine-doped thin films were probed
with Field Emission Scanning Electron Microscopy (FESEM) to evaluate their uniformity
and coverage over the substrate. FESEM images (Figure 3a, 3b) display a continuous,
uniform, and even distribution of Cu-NDC thin film spread over the FTO substrate surface.
FESEM images of the iodine-doped thin film (Figure 3c, 3d) show a similar surface
morphology as the pristine sample with small bulges at some spots. This probably can be

due to the infiltration of iodine in the pores of MOF.

Figure 3. FE-SEM images of pristine Cu-NDC thin film (a and b) and iodine-doped
Cu-NDC thin film (c and d) at different magnifications

The energy-dispersive X-ray spectroscopy (EDXS) of both the thin films were recorded.
The EDXS spectra of Cu-NDC (Figure 4c) and I2@Cu-NDC (Figure 4d) show the

respective elemental composition. Elemental analysis of the iodine-doped thin film

showed the uniform distribution of iodine over the surface of the thin film (Figure 4b).
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Figure 4. Surface elemental analysis of (a) Cu-NDC and (b) I2@Cu-NDC thin film by
EDXS analysis showing uniformly spread of iodine over the surface of l2@Cu-
NDC. EDXS spectra of Cu-NDC (c) and I2@Cu-NDC (d) thin films

To confirm the successful fabrication of Cu-NDC thin film, out-of-plane powder X-ray
diffraction (PXRD) patterns of pristine Cu-NDC, and l2@Cu-NDC were recorded (Figure
5a) and compared with the previously reported '. The PXRD data confirms the successful
fabrication of Cu-NDC using the electrodeposition technique. PXRD pattern remains
unchanged even after the incorporation of iodine. This finding aligns with the similar
surface morphological analysis of pristine as well as doped thin films suggested using
FESEM images. Interestingly, in PXRD patterns of Cu-NDC thin film after |2 loading, a
new very intense peak at 20 ~12.5° appears which possibly arises due to the I2

incorporation within Cu-NDC MOF pores.
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Figure 5. PXRD patterns of Cu-NDC (blue) and l2@Cu-NDC (red) thin films (a), and
Cu-NDC (blue) thin film and NDC ligand (green) (b)

Furthermore, the PXRD patterns of 2,6-naphthalene dicarboxylic acid (linker) and the Cu-
NDC thin films were compared (Figure 5b). The data reveals that no unreacted NDC
linker is present in the framework. This demonstrates the successful fabrication of Cu-

NDC thin film without any unreacted precursors left in the system.

Cu-NDC
l,@Cu-NDC
Cu NDC
80 100 120 140 115;.' 180 200 500 1000 1600 2000
Raman shift (cm™") Raman Shift (cm™")

Figure 6. Raman analysis of Cu-NDC (blue) and 12@Cu-NDC (red) thin films
indicating incorporation of iodine (a), and Cu-NDC (blue) thin film and NDC ligand
(green) (b)
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To determine the nature of iodine species absorbed in the pores of Cu-NDC thin film after
being immersed in iodine vapors for 2 hours, Raman spectroscopy was conducted. The
pristine electrodeposited Cu-NDC thin film showed no Raman stretching band in the field
of interest between 70-130 and 130-200 cm™' caused by the absence of I2in the structure
(Figure 6a). After iodine loading into the pristine thin film, a Raman stretching band
peaking at ~108 cm-! appears which is assigned to the asymmetric stretching mode of
linear symmetric triiodide anion s within the pores*'*. Presumably, the charge transfer
between the highly conjugated Cu-NDC framework and iodine results in the partial
oxidation of iodine, forming the triiodide anion species®. In addition to this, neutral Iz is not
found in the iodine-dopped thin film as proposed by the absence of the band in the 130-

200 cm™" region in the Raman spectra (Figure 6b)*.

(a) 1E-6 (b)1E-6
I,@Cu-NDC
1E-7 2@ 1E-7
1E-8 ] 1E-8
g 1E-9 I 1E-94
Tt 1E-104 £ 1E-10
o o
E 1E-11] 5 1E-114
O o
1E-12 4 1E-12
1E-131J_|;— 1E139 0]
1E-14 : . : 1E-14 N
2 - 0 2 -2 0 2
Voltage (V) Voltage (V)

Figure 7. I-V characteristics (a) in-plane and (b) cross-plane of pristine (blue) and

iodine-doped (red) thin films.

The in-plane I-V characteristics (Figure 7a) of iodine-doped and pristine thin films show
that the iodine-doped thin film possesses a two-fold greater conductance value than the
undoped Cu-NDC thin film, parallel to the plane of the film. The cause behind this
enhanced electrical performance is the formation of the triiodide anion (I3 ) within the
framework The cross-plane /-V characteristics (Figure 7b) of both the thin films showed

a similar trend as that of the in-plane /-V characteristics. This demonstrates both films
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show similar trends in all directions. The direction parallel to the plane of the film and the
direction perpendicular to the plane of the film show similar electrical behavior. Enhanced

electrical conductance in cross-plane is an indication of the incorporation of iodine
throughout the film uniformly.

£)
8
5 lo@Cu-NDC
2
-
(@]
(7]
o]
<
300 350 400 450 500

Wavelength (nm)

Figure 8. Solid-state UV-visible spectra of pristine (blue) and iodine-doped (red)
thin films

The solid-state UV-visible absorption spectra (Figure 8) of Cu-NDC and 12@Cu-NDC
films were conducted to comment on the interconnection between the framework and
absorbed l2. In the solid-state UV-visible absorption spectra, the absorption peak at about
~480 nm appears that can be attributed to the ligand-to-metal charge-transfer transitions
in the MOFs. An additional peak appearing at ~420 nm in the [2@Cu-NDC thin film is a
consequence of iodine absorption by the pristine thin film*. This explains the iodine

capture without deforming the solid framework.
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Figure 9. XPS analysis of Cu 2p (a) before and (b) after iodine doping in Cu-NDC
thin film (l2.@Cu-NDC)

To investigate the bonding motif of and the host-guest interactions between the iodine
and the framework by probing the valence state for each element, X-ray photoelectron
spectroscopy (XPS) was conducted. As shown in Figure 9, the Cu 2s XPS spectrum of
the Cu-NDC is divided into two doublets of Cu 2p1/2 and Cu 2ps/2 and the corresponding
peaks are at 954.04eV and 934.4 eV respectively, showing mixed valence states in both
the films. Peaks at 954.04 eV and 934.8 eV are assigned to the Cu?* state and peaks at
953.17 eV and 933.1 eV are assigned to the Cu™ state of the Cu in the framework. The
Cu?*: Cu* ratio before iodine doping was ~3.6: 1 changed to ~5.4: 1 after doping,
indicating partial oxidation of Cu* to Cu?*, which is a consequence of the redox reaction

between molecular iodine and MOF?>.
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Figure 10. XPS spectra of O 1s (a) before and (b) after iodine doping in Cu-NDC thin
film (l2@Cu-NDC)

Similar observations were found in the XPS spectra of O 1s, wherein the C=0: C-O ratio
before iodine doping was ~3.6: 1 changed to ~4.5: 1 after iodine doping. This implies

oxygen is also involved in the host-guest interactions between iodine and the framework.

640 635 630 625 620 615
Binding energy (eV)

Figure 11. XPS spectra of | 3d after iodine doping in Cu-NDC thin film (I2@Cu-NDC)
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For 2@Cu-NDC (Figure 11), the signal for | 3d demonstrates that the iodine molecules
were successively infiltrated into the pores of Cu-NDC. The | 3d spectrum (it needs to be
reproduced) is composed of | 3ds2 and | 3ds2. The peaks at 619.40 and 630.87 eV are
indications of iodine anion (I"), whereas peaks at 620.83 and 632.25 are attributed to the
presence of molecular iodine (I2). A combination of I"and Iz in the iodine doping MOFs
gives rise to the I3 ions which effectively affirms redox reactions between |2 molecules
and Cu-NDC framework.

Conclusion

We demonstrated the successful fabrication of Cu-NDC thin film on an FTO-coated glass
substrate for the first time by implementing the electrodeposition strategy. The as-
synthesized thin film showed uniform coverage all over the substrate. Pristine thin film
was then subjected to molecular doping using iodine as the guest molecule. For that, the
electrodeposited Cu-NDC thin film was kept in iodine chamber (vapor phase of iodine) for
2 hours. Both the pristine and doped films were characterized by FESEM, EDXS
elemental mapping, PXRD, X-ray photoelectron spectroscopy, UV-visible spectroscopy,
and Raman spectroscopy. The electrical conductance quantification showed a two-fold
times (~102 orders of magnitude) increase in the electrical conductance (in-plane and
cross-plane) in the doped thin film than the pristine, as a consequence of partial-oxidation
induced formation of I3 anion species in the pores of the framework. Thus, molecular

iodine doping is a novel strategy for imparting electrical conductivity in MOF systems.
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