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Abstract
Proteins are essential for numerous biological activities, with their functions often

modulated by the binding of small molecules. Understanding protein-ligand

interactions is thus vital for gaining insights into protein function and designing novel

therapeutic agents. Small molecules bind to specific pockets within target proteins

based on their physicochemical properties. The limited diversity of protein shapes

allows for identifying analogous binding pockets in other proteins.

This project aims to develop a ligand-based tool for predicting binding sites in

proteins. The project focuses on characterising the binding sites of proteins

interacting with phosphoinositides, a family of phospholipids essential for cellular

signalling. These phospholipids vary by the number and location of phosphate

groups on the inositol head, recruiting specific proteins to perform distinct functions.

The project commences with a comprehensive curation of Protein Data Bank (PDB)

files, ensuring a robust foundation for constructing a library identifying interacting

residues within the protein binding sites. The relative positioning of these interacting

residues is determined through ligand and binding site superimposition.

Subsequently, an algorithm is developed to identify binding sites exhibiting similar

interacting partner localisation, predicting the specific phosphoinositide likely to bind

an unknown site.

This study aims to predict potential binding sites in proteins, with the aim of offering a

versatile approach for identifying binding sites for various other ligands, ultimately

contributing to drug design and enhancing our understanding of biological

processes.
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Chapter 1 Introduction

1.1 Background

1.1.1 Ligand-Protein Interactions

Proteins serve as essential components of living organisms, playing critical roles in

cellular functions and processes. However, proteins cannot function alone and

require the binding of other molecules or ions called ligands (Chen et al., 2011).

These ligands span a wide array of biomolecules like hormones, neurotransmitters,

and metabolites, as well as signalling molecules, substrates, inhibitors, cofactors,

coenzymes, and metal ions.

The interaction between proteins and ligands is crucial for their proper functionality.

Proteins and ligands interact at specific amino acid residues located in pocket-like

regions. These residues enable ligands to bind based on their matching shapes,

charges, and chemical properties and constitute the ligand binding sites (LBSs) (Heo

et al., 2014). Proteins can have one or more binding sites for multiple ligands, and

their binding is usually reversible.

The binding between proteins and ligands is highly specific and relies on a variety of

non-covalent interactions. These interactions include hydrogen bonds, electrostatic

interactions, hydrophobic interactions, and van der Waals forces (Ferreira de Freitas

and Schapira, 2017). While each interaction is individually weak, their combined

effect significantly impacts binding strength and selectivity. Specific interactions

dominate depending on the chemical functionalities in the protein and ligand. These

interactions can sometimes overlap and act together.

Understanding the diverse forces governing ligand-protein binding is essential for

predicting binding sites and comprehending the functional consequences of these

interactions. Ligand-protein binding can have various effects, such as regulating

protein activity, modifying its structure, inducing signalling pathways, or targeting it

for degradation. Dysfunctional ligand-protein interactions can cause severe disorders

such as uncontrolled cell growth and cancer. Therefore, it is crucial to comprehend
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these interactions to understand important molecular recognition mechanisms and

develop therapeutic strategies.

1.1.2 Ligand Binding Site Prediction

Predicting where ligands bind to proteins is essential for understanding protein

function (Altschul et al., 1990). This intricate process, known as LBS prediction,

involves analysing protein structures and pinpointing the regions where ligand

attachment is most likely. Accurately identifying these binding sites offers multiple

benefits, including designing drugs that target specific proteins and gaining deeper

insights into how proteins interact with their biological partners.

Computational methods for predicting LBSs offer a significant advantage over

traditional biological experiments, which can be time-consuming and

resource-intensive. These methods can efficiently predict LBSs using protein

sequence and structure information without requiring laborious functional annotation

of interacting residues (Marrone et al., 1997; Vajda and Guarnieri, 2006).

Furthermore, combining multiple computational and experimental approaches

ensures even greater precision and effectiveness in this field.

Over the past two decades, considerable advancements have been achieved in the

prediction of LBSs, driven by projects such as Critical Assessment of Protein

Structure Prediction (CASP) (Moult et al., 1995), Critical Assessment of Function

Annotation (CAFA) (Radivojac et al., 2013), Continuous Automated Model

EvaluatiOn (CAMEO) (Haas et al., 2013), and databases such as Protein Data Bank

(PDB) (Bernstein et al., 1977) and BioLip (Yang et al., 2013a). Numerous prediction

techniques have been produced based on structure and sequence templates and 3D

structures. Several computational techniques are used in these methods, such as

machine learning algorithms, sequence and structural similarity comparisons,

geometric and energetic feature searching, and more.

Table 1.1 offers a glimpse into some of the previously published ligand binding site

(LBS) prediction methods.
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Table 1.1 Published LBS prediction methods. (Zhao et al., 2020)

Method Prediction Approach Key Technique

POCKET
(Levitt and
Banaszak, 1992)

Spatial Geometry
Measurement

Sphere placement between atoms
to model pocket surfaces

SURFNET
(Laskowski, 1995)

Spatial Geometry
Measurement

Sphere placement at protein atom
gaps

LIGSITE
(Hendlich et al.,
1997; Huang and
Schroeder, 2006)

Spatial Geometry
Measurement

3D meshes are used to cover the
target protein

QSiteFinder
(Laurie and
Jackson, 2005)

Probe energy-based van der Waals probe is used to find
interaction energy with the protein

FINDSITE
(Brylinski and
Skolnick, 2008)

Structure
template-based

Sequence threading and structural
similarity scores are used

SITEHOUND
(Ghersi and
Sanchez, 2009;
Hernandez et al.,
2009)

Probe energy-based Use of interaction energy between
phosphate and carbon probes and
the protein

ATPint
(Chauhan et al.,
2009)

Machine learning Support Vector Machine (SVM) is
used

ConCavity
(Capra et al.,
2009)

Machine learning K-means clustering is used

3DLigandSite
(Wass et al., 2010;
McGreig et al.,
2022)

Structure
template-based

Identification of similar structural
motifs

firestar
(Lopez et al.,
2011)

Structure
template-based

Cluster identification and residue
selection methods are used

FunFOLD
(Roche et al.,
2011, 2013)

Structure
template-based

Cluster identification and residue
selection methods are used
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MetaDBSite
(Si et al., 2011)

Machine learning SVM is used

FTSite
(Ngan et al., 2012)

Probe energy-based Free energy calculations using
multiple probes are used

NsitePred
(Chen et al., 2012)

Machine learning SVM is used

COFACTOR (Roy
and Zhang, 2012)

Structure and
sequence
template-based

Global-to-local sequence algorithm
and structural comparison algorithm
are used

S-SITE
(Yang et al.,
2013b)

Sequence
template-based

Global sequence alignment is used

TM-SITE
(Yang et al.,
2013b)

Structure and
sequence
template-based

Both structure and sequence
templates are used

COACH
(Yang et al.,
2013b; Wu et al.,
2018)

Machine learning SVM is used

DEEPSite
(Jiménez et al.,
2017)

Deep learning Convolutional Neural Networks
(CNNs) are used

DeepCSeqSite
(Cui et al., 2019)

Deep learning CNNs are used

DeepConv-DTI
(Lee et al., 2019)

Deep learning CNNs are used

DeepDrug3D
(Pu et al., 2019)

Deep learning CNNs are used

1.1.3 3D Structure-Based Prediction
Binding of small molecules typically occurs in cavities or pockets on the surface of

proteins. This phenomenon is driven by the need for a sufficiently large interface to

achieve high affinity between the protein and the ligand (Sotriffer and Klebe, 2002).

Many in-depth analyses of protein-ligand interactions have revealed this

characteristic in their spatial structures (Rose et al., 2015). Therefore, one of the
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most widely used approaches involves identifying LBSs by examining specific

geometric or energetic properties within the structures of proteins.

Methods such as FINDSITE, 3DLigandSite, firestar, FunFOLD2, and COACH-D use

information from existing protein structures with known binding sites. They combine

protein structural modelling with the search for homologous proteins in the PDB that

have bound ligands. These approaches can anticipate probable binding sites in the

query protein by aligning the known binding sites with it (McGreig et al., 2022).

This study presents a novel 3D structure-based computational LBS prediction and

systematically introduces its principles, algorithm, and performance. The method

explicitly predicts LBSs based on the similarity in 3D structures and interactions at

the binding sites. The primary goal of the work is to improve our knowledge of the

landscape of interactions between a class of lipids- Phosphatidylinositols and their

binding proteins.

1.2 Ligand of Interest: Phosphatidylinositols

Phosphatidylinositols (PtdIns or PIs) are essential phospholipids that constitute a

small percentage of the overall lipid content in cell membranes. Despite their

relatively low abundance, they hold significant importance to almost all cellular

processes. They are found exclusively on the cytoplasmic leaflet of membranes in

eukaryotic cells. Phosphorylated derivatives of PIs are known as

polyphosphoinositides that modify the lipid substrates within cell membranes. These

phosphates give them a negative charge under physiological conditions, making

them the most acidic phospholipids (Dickson and Hille, 2019). The interaction

between phosphoinositides and various proteins is critical to their remarkable

contributions to the cell.

Due to their structural and functional features, phosphoinositides have become

essential regulators of eukaryotic cellular functions over evolution. Their ability to be

phosphorylated at multiple sites on the inositol ring allows them to recruit cytosolic

proteins to the membrane and membrane proteins to interact with phosphoinositides,

enabling them to perform specific functions (Posor et al., 2022). They mark different
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membranes in the cell, with specific phosphoinositides identifying the plasma

membrane, early endosomes, Golgi, late endosomes, and ER.

Figure 1.1 Functions and locations of different phosphoinositides in a cell.
Phosphoinositides are signalling lipids that serve as markers for different cell membranes.
The plasma membrane contains PI(4,5)P2, while late endosomes include PI(3,5)P2, early
endosomes contain PI(3)P, the Golgi apparatus has PI(4)P, and the endoplasmic reticulum
contains PI. Additionally, PI(3,4,5)P3 is found in the basolateral region of the plasma
membrane but not in the apical part. They also function as second messengers, precursors
to other signalling molecules, docking sites for membrane proteins, and regulators of cellular
processes (Olivença et al., 2018).

PIs play crucial roles in cellular signalling and regulation, influencing cell growth,

proliferation, differentiation, and intracellular trafficking (Figure 1.1). These lipids also

provide docking sites in cellular membranes. For instance, PI(3,4,5)P3 provides a

docking site for a protein kinase AKT for proper cell growth and survival and for

epithelial sodium channel (ENaC) in the case of PI(4,5)P2 for regulating salt-water

balance. They also act as precursors for other signalling molecules. For example,

PI(4,5)P2 can be converted into diacylglycerol (DAG) and inositol triphosphate (IP3)

by the enzyme phospholipase C (PLC) (Olivença et al., 2018).
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The specific phosphoinositide-protein interactions are diverse and

context-dependent. Their binding to specific domains on a protein may induce

conformational changes or expose binding sites, activating or inhibiting the protein's

function. Dysregulation of phosphoinositides is implicated in various pathological

conditions, including immunological disorders, viral replication, malaria,

tumorigenesis, Alzheimer's disease, and diabetes (Vicinanza et al., 2008). Hence,

studying these interactions is crucial for understanding various cellular processes

and can provide insights into developing therapeutic interventions targeting PI

signalling pathways.

1.2.1 Structural Features

Phosphoinositides possess a unique structure with polar and non-polar regions,

making them amphiphilic molecules capable of anchoring onto cellular membranes.

The lipid's polar head group is substituted with an inositol ring, which is attached to a

diacylglycerol (DAG) backbone by a phosphodiester bond at O1. The acyl chains

remain embedded within the membrane lipid bilayers. The inositol group takes a

chair conformation, with five of its six -OH groups positioned equatorially, while the

-OH group at position -2 is oriented axially. (Figure 1.2).

Figure 1.2 Structure of a phosphatidylinositol molecule. It is a phospholipid comprising
a glycerol backbone, two non-polar fatty acid chains, and a phosphate group attached to an
inositol polar head group.
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Agranoff (1978) proposed a widely adopted analogy for visualising the myo-inositol

structure and its numbering system, likening the inositol ring to a turtle (Figure 1.3)

(Agranoff, 1978). According to this analogy, numbering begins at the right-hand side

and proceeds counterclockwise, encompassing the head and other appendages.

The diacylglycerol (DAG) backbone enters from the right side, and the head is

regarded as the -2 position. Although five hydroxyl groups are available for

phosphorylation, current understanding indicates that only three positions (-3, -4, and

-5) are naturally phosphorylated in PIs. These phosphorylation combinations

generate the seven known polyphosphoinositide species.

Figure 1.3 Agranoff's turtle for numbering myoinositol in PIs. It demonstrates the
analogy in the orientation of the turtle and the hydroxyl groups of myo-inositol and
Phosphatidylinositol (Agranoff, 1978).

1.2.2 Phosphorylated Variants

One of the critical features of PIs is their ability to be phosphorylated at different

positions on the inositol group, creating distinct species. This phosphorylation pattern

is regulated by a complex network of enzymes, including specific kinases and

phosphatases, which act upon their lipid substrates that are also bound to

membranes. Each species has a unique distribution across different membranes,

indicating the cell's ability to modulate PI metabolism to achieve membrane diversity

(Dickson and Hille, 2019). Table 1.2 enlists the different forms in which PIs are

found, their relative abundance, location and significant roles in the eukaryotic cells.
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Table 1.2 Abundance, location, cellular roles and crystal structures of different

phosphoinositides. (Balla, 2013)

Lipid Abund
–ance
(% of
total
cellular
PIs) 

Distribution Cellular role Crystal Structure

PI 80
mol% 

All
membranes ,
mainly in the
ER

Acts as a
precursor to other
phosphoinositides.
Regulates cell
signalling and
membrane
trafficking.

PI(3)P 0.2–0.5
mol%  

Early
endosomes 

Involved in
membrane
trafficking,
endosomal
sorting, and
autophagy.

PI(4)P 2–5
mol% 

PM,
endosomes
and Golgi 

Involved in Golgi
trafficking,
membrane
transport, and
signalling.
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PI(5)P 0.01
mol%  

PM,
endosomes
and nuclear
envelope 

Regulates cell
death, stress
signalling, Akt/
mTOR signalling 
and actin
cytoskeleton
dynamics.

PI(3,4)P 2 <0.1mol
% 

PM and
early
endosomes 

Involved in
endocytosis, cell
migration, and
cytoskeletal
organisation.

PI(3,5)P 2 <2
mol% 

Lysosomes 
and late
endosomes

Involved in
regulating
membrane
trafficking,
lysosomal
biogenesis, and
autophagy. 

PI(4,5)P 2 2–5
mol% 

PM,
recycling
endosomes
and
lysosomes 

Essential for
important PM
functions like cell
motility,
phagocytosis,
signal
transduction, and
regulating ion
channels.
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PI(3,4,5)P 3 <0.05% PM and
some
endocytic
compartmen
ts 

Essential for
cytoskeletal
dynamics, cell
signalling, cell
proliferation, cell
survival and
membrane
trafficking.

1.2.3 Interactions with Proteins

Numerous proteins have specialised domains that exhibit a high affinity for

phosphoinositide binding. These domains recognise the distinctive head groups of

phosphoinositides, facilitating the interaction between the lipid and the protein.

Common protein domains known to bind to phosphoinositides include pleckstrin

homology (PH), FYVE, and PX domains (Balla, 2013).

Phosphoinositides can engage in interactions with proteins through various

mechanisms, including hydrogen bonds, ionic interactions, van der Waals forces, salt

bridges, hydrophobic interactions, and water bridges. Given that different

phosphoinositide types are located at distinct sites within cellular membranes and

display high specificity in their protein binding for executing specific functions, it is

imperative to pinpoint these specific binding sites associated with each

phosphoinositide type to differentiate them from one another. Therefore, this study

will primarily concentrate on interactions that are highly directional, contributing to

the specificity of the ligand binding sites.
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1.3 Objectives

1. Identify proteins interacting with phosphoinositides: Investigate proteins

interacting with phosphoinositides to elucidate their roles in cellular processes.

2. Construct a comprehensive library of ligand binding sites: Develop a detailed

library of known ligand binding sites to identify critical residues crucial for

phosphoinositide binding.

3. Elucidate unique features of binding sites for different phosphoinositide
variants: Analyse and compare the geometrical and chemical properties of binding

sites specific to different phosphoinositide types, providing insights into their binding

mechanisms.

4. Develop an algorithm for identifying phosphoinositide binding sites: Create

a computational tool capable of accurately predicting phosphoinositide binding sites

in proteins.

5. Evaluate the efficacy of the prediction algorithm: Validate the performance of

the computational tool using known structures to predict specific binding sites

accurately.
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Chapter 2 Materials and Methods
Solved crystal structures in the PDB were used to develop a 3D structure-based LBS

prediction method, focusing on the specific features of the LBSs and the

identification of interaction patterns. The project was segmented into three key

stages. The initial stage involved data curation, encompassing the collection and

refinement of structural data essential for the study. The subsequent stage focused

on analysing the binding pockets to identify interacting residues and conserved

regions. The final stage comprised the development of an LBS prediction algorithm

to identify analogous binding sites in other proteins.

2.1 Data Curation

2.1.1 Database Search

The project began with a thorough search of the RCSB Protein Data Bank (PDB)

(Berman et al., 2000) to look for protein structures interacting with specific ligands.

The selection criteria for ligands of interest included phosphoinositides or ligands

containing an inositol ring with an attached 1-phosphate group. These criteria were

chosen to target interactions involving the head group of the ligands, which plays a

crucial role in the complementarity and specificity of the binding site structure.

The study utilised the ligand-specific pages on the RCSB PDB website, such as

https://www.rcsb.org/ligand/IPD for Inositol-1-Phosphate, to identify PDB entries

containing specific ligands. These pages enlisted all the PDB entries containing the

ligands of interest. A Python script was then developed to download the

corresponding '.pdb' files for each entry in a compiled list of the PDB IDs.

2.1.2 Data Filtering

After obtaining the PDB files, some PDB IDs had to be removed from the list if their

structures were not in the .pdb format. Subsequently, the data was filtered to ensure

that only high-quality, reliable structures were included in the analysis. This filtration

process was based on two main criteria: resolution and experimental method.
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A. Resolution: The resolutions of the protein structures were used to determine the

level of detail that could be observed in the structures. Lower-resolution structures

were considered to be less detailed and may have contained errors. The resolution

information was extracted from the "REMARK" lines of each PDB file using Python.

A distribution of these resolutions was then plotted using Matplotlib, and a cutoff

resolution was chosen that balanced between including high-resolution structures

and not excluding too many structures. PDB files corresponding to the

high-resolution structures were then filtered.

B. Experimental Method: Various experimental methods, such as X-ray

crystallography, cryo-electron microscopy, and NMR spectroscopy, can produce

structures of varied degrees of detail and precision. Information about the method of

experiment used to solve the structure was also extracted from the PDB files.

Structures determined using NMR spectroscopy were excluded from further analysis

to avoid ambiguity and variability in atom positions.

2.1.3 Ligand Annotation

To ensure consistency and facilitate analysis, the names of the ligands and their

constituent atoms in the filtered PDB files were standardised. This step was

necessary because the original IDs for the ligands and their atoms were neither

logical nor consistent.

First, each ligand was categorised into one of the eight types depending on whether

phosphate groups were present or absent at the 3-, 4-, and 5- positions on the

inositol ring. Next, a Python script was used to replace the original ligand residue

names in each PDB file with some standardised names, ensuring uniform labelling

across the dataset.

Standardising the atom names in the inositol ring required careful consideration.

While the first carbon atom in the ring, always attached to a phosphate group, was

easily identified, the identification of the second carbon atom was more challenging

due to the presence of different stereoisomers (Murthy, 2006) and deviations from

the conventional chair conformation of the ring, with only the 2-C atom being axial. In

cases where the orientation of the second carbon atom was ambiguous, the

orientation assigned by the authors of the structure was adopted.
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A meticulous validation process was undertaken to verify the assigned orientations.

This involved comparing the positions of the inositol atoms by superimposing inositol

carbon atoms on a high-resolution inositol structure and computing the root mean

square deviation (RMSD) values for the carbon atoms and combined carbon-oxygen

pairs. Any discrepancies in the orientations were rectified by reversing the orientation

of the atoms in question.

2.1.4 Binding Site Extraction

Following the data curation and standardisation processes, the next step involved

extracting the binding sites from each protein structure. This crucial step isolated the

specific region of the protein that interacts with the ligand, allowing for detailed

analysis.

The set of residues situated within a 6-angstrom (6Å) radius of any atom in the

ligand's head group was designated as a binding site (Figure 2.1). This 6Å cutoff was

selected to encompass all surrounding residues of the ligand within the binding

pocket, ensuring that any structural changes or flexibility in the protein did not

exclude critical interacting residues in the pockets. A dataset of individual PDB files,

each representing a unique binding site, was created by carving out the binding sites

from the protein structures. This dataset formed the basis for the subsequent stages

of analysis.

Figure 2.1 Binding site of a protein. The figure illustrates a carved region representing the
binding site (purple) in a protein (PDB ID: 1I7E), shown in ribbons, with the ligand shown in
the stick model. The binding site includes all residues within 6Å of each atom in the ligand's
head group.
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2.2 Binding Site Analysis

2.2.1 Interaction Analysis

The next step involved investigating the interactions between the ligands and the

residues within their respective binding sites. Hydrogen bonds (Hubbard and Kamran

Haider, 2010) are the most prevalent, specific, highly directional and most potent

force governing the binding of phosphoinositides to proteins. A 3.5Å bond length

cutoff between the donor and acceptor atoms and a 90°-180° bond angle criterion

between the Donor-Acceptor-Acceptor Antecedent atoms were applied to identify

hydrogen bonds.

Figure 2.2 PI(4)P interactions at a protein binding site. The figure depicts the
interactions of phosphoinositide PI(4)P (shown in the sticks) with a protein binding site
(represented in ribbon in tan) (PDB ID: 4XMP). The primary interaction occurs between the
PI(4)P inositol head and the receptor protein, with hydrogen bonds (light blue lines) being
the primary interaction type. Atoms coloured red, blue, orange, and grey are oxygen,
nitrogen, phosphorus, and carbon. The oxygen atoms not attached to phosphorus act as
hydrogen donors or acceptors, while oxygen atoms attached to phosphorus only act as
hydrogen acceptors.

Oxygen atoms bonded to the carbon ring freely could be either hydrogen donors or

hydrogen acceptors. In contrast, all oxygen atoms attached to the ligand's

phosphates exclusively act as hydrogen acceptors due to high electron densities
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around phosphorus. Hydrogen bonds with water molecules and intramolecular

interactions were excluded from the analysis to focus on interactions with the protein

residues.

Figure 2.2 provides an insight into the molecular interactions between PI(4)P and a

protein, highlighting the role of specific atoms and hydrogen bonding in the

recognition and binding process. All molecular visualisations and parts of structural

analyses were done using UCSF Chimaera version 1.16 (Pettersen et al., 2004).

2.2.2 Structural Comparison

In the next phase of the study, the binding pockets were aligned to a common

reference frame. This alignment process involved superimposing the positions of the

six carbon atoms in the inositol ring of the ligand in a pocket onto the corresponding

atoms of the ligand of a reference structure. The reference structure selected was

the one with the highest resolution. The superimposition technique utilised the "3D

least squares fit" approach, which effectively transformed the position matrices of all

atoms (both ligand and surrounding residues) within a PDB file with respect to the

specified atoms in the reference PDB. This step was crucial in ensuring that all

binding pockets were aligned in a common reference frame, enabling the

comparison and establishment of residue/atom equivalences across different

structures.

3D Least Squares Fit Approach:

Dr. Simon K. Kearsley's algorithm (Kearsley, 1989, 1990) was employed to perform

orthogonal transformations for structural comparisons. This algorithm utilises

predetermined atom equivalences from two structures to achieve the optimal

superimposition. It determines a rotation matrix and a translation vector that

minimises the sum of squared distances between the coordinates of the atom

equivalences. The superimposition is achieved by analytically solving the

least-squares problem using eigenvalues in quaternion parameters. The

superimposition facilitates visual comparisons between the two structures and

quantitatively measures the similarities or differences in their shapes using the root

mean square deviation of distances (RMSD).
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2.2.3 Structural Patterns Search

Once the superimposed structures were successfully obtained, several critical

metrics were evaluated for each pair of binding pockets. The degree of structural

superimposition, RMSD values, and the number of overlapping donor/acceptor

residues between these binding pockets were calculated to find patterns in the

binding sites of specific ligands.

For a pair of superimposed binding pockets, two residues were considered

overlapping if the alpha carbon (CA) atoms of these residues fell within a specified

threshold distance 't'. The percentage of structural superimposition was calculated by

dividing the number of overlapping residues by the total number of residues in the

binding pocket, with fewer residues being compared. This amount was then

multiplied by 100 to get a percentage.

The RMSD value was calculated as the root of the mean of the squared distances of

overlapping CA atoms, which were inevitably within the distance 't'. The number of

overlapping residues explicitly interacting with the ligand was also calculated. Figure

2.3 illustrates the superimposition of binding pockets using a cartoon representation.

To determine the overlapping residues in a pair of superimposed binding pockets A

and B, distances were calculated between each CA atom in A and every CA atom in

B, resulting in a matrix. The overlapping pairs were assigned using the 'linear sum

assignment' function from the SciPy library in Python. This function implements an

algorithm proposed by Kuhn and Munkres to solve the assignment problem, also

known as the "Hungarian algorithm" or the "Kuhn-Munkres algorithm" (Kuhn, 1955;

Munkres, 1957).
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Figure 2.3 A cartoon representation for binding pockets superimposition. The pink
square represents the reference binding pocket, while the blue square represents the
binding pocket that is superimposed on the reference. The ligands are depicted in hexagons
whose atoms serve as equivalences for the superimposition process. The circles represent
the residues surrounding the ligand. If the distances between the representative atoms of the
residues fall within the distance 't', the residues are considered overlapping.

Assignment Method:

The linear sum assignment method is employed to obtain the optimal assignment

between two sets of objects while minimising the total cost associated with the

assignments. In this context, the goal is to assign overlaps between two sets of

points while maximising the number of overlapping residues (CA atoms representing

protein backbones) within distance ‘t’.
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Initially, a distance matrix is created by populating it with the distances between each

pair of CA atoms, one from pocket A and one from pocket B. Then, the distance

matrix is filtered by removing the rows and columns whose minimum element

(representing the closest CA atom in the other pocket) exceeds the distance

threshold. This step ensures that only potential overlaps within the acceptable

distance range are considered for further analysis.

Finally, the Hungarian algorithm is implemented on the distance matrix using a

function called 'linear sum assignment' from the SciPy library in Python. This

algorithm minimises the total cost, i.e. the sum of distances between the assigned

pairs of CA atoms, to find the optimal assignment. The function returns the row and

column indices corresponding to the overlapping residues between the two pockets.
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2.3 Prediction Algorithm Development

The tool was initially developed using the existing binding sites from the dataset. Its

accuracy was calculated through various metrics. Subsequently, the tool was applied

to predict binding sites in unknown proteins. Figure 2.4 provides an outline of the

method used for developing the prediction algorithm using the existing binding sites.

Figure 2.4 Flowchart representing the outline of the algorithm development process.
It lists the sequential steps followed for predicting binding sites in the training set using the
testing set from the segregated dataset.

The algorithm development process began with the identification of Donor and

Acceptor atoms in the binding sites. Initially, identical binding pockets were used to

predict and establish a baseline. Subsequently, the complexity gradually increased

by reducing the similarities between the structures that were superimposed. It was

ensured that the initial test cases based on Donors and Acceptors succeeded before

proceeding.
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2.3.1 Atom Equivalences Annotation

In the training set, donor atoms in the binding site participating in hydrogen bonding

were labelled as D, and acceptor atoms were labelled as A by repeating the whole

atom line and replacing the atom name in the PDB files. CA atoms in all these

structures were labelled as CAA or CAD if they belonged to a residue having a D or

A atom. Similarly, CB atoms were labelled as CBD or CBA in both sets.

For structures in the testing set, all potential donors and acceptors, along with CA

and CB atoms, were labelled, as the exact atoms that would be involved in

interactions with the ligand could not be explicitly determined. It was assumed that

the ligand was not present in those sites.

Figure 2.5 Annotated binding sites for prediction. The two structures represent identical
binding sites. The blue structure annotated with all donor atoms interacting with the ligand
(within mesh) represents a known binding site. In contrast, the tan structure represents an
unknown binding site, annotated with all potential donor and acceptor atoms, as the ligand is
assumed to be absent from the site.

2.3.2 Alignment Algorithm

The structures were fitted using 4 points (‘D’ or ‘A’ atoms), and structures with fewer

than four interacting atoms were removed from the dataset. This choice was made

because four points were the minimum number required for precise superimposition
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of very similar (~99% sequence similar) structures. The superimposition process

involved several steps:

1. Cliques of 3 points were generated by combining 3 ‘D’ or ‘A’ labelled atoms in
the unknown site.

2. Similarly, cliques of 3 points were generated by permuting 3 ‘D’ or ‘A’ atoms in
the known structure.

3. To avoid unnecessary superimposition, clique pairs (clique A and B) were
filtered based on the sum of distances between the 3 points of clique B being
within a 3Å range of that of clique A.

4. Further filtering of clique pairs was done by finding the minimum and
maximum distances between 2 points in clique A, ensuring that all distances
between any 2 points in clique B were within that range plus some extra
distance.

5. The points were superimposed with one-to-one correspondence using 3D
least squares fit.

6. The RMSD of the 3-point equivalences from cliques A and B was calculated,
and further filtering was applied by using a threshold of 0.5Å to retain good
equivalences.

7. If the RMSD was within 0.5Å, a point from the remaining points was added to
both cliques and the superimposition was performed again using Kearsley's
algorithm.

8. The RMSD of the 4-point equivalences was calculated, a threshold of 1Å was
applied, and all clique pairs within this threshold were reported.

Additional points could be added to improve superimpositions.

This method of generating cliques of points and superimposing was adapted from

the CLICK software (Nguyen and Madhusudhan, 2011; Nguyen et al., 2011).

However, some modifications were made since CLICK skips permutations once a

superimposition within a threshold RMSD is found. It is an optimised algorithm that

reduces time and yields an approximate fit rather than aiming for the best possible

fit.

Figure 2.6 provides a summary of the superimposition logic used in the algorithm.
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Figure 2.6 Flowchart summarising key steps followed to superimpose binding site for
prediction. It lists the sequential steps followed for generating and superimposing cliques of
points to predict binding sites in the testing set from the ones in the training set.

2.3.2 Structural Superimposition Calculations for Finding Overlaps

Once the superimpositions were completed, the overlaps between ‘D’ and ‘A’ atoms

were found by uniquely matching them (D-D and A-A) using linear sum assignment,

determining which ‘D’ atoms in the known site overlapped with which ‘D’ atoms in the

unknown site, and similarly for ‘A’ atoms. The structural overlap distance threshold

was kept at 2Å, and the RMSD was calculated between all the matched atom pairs.

Additionally, overlaps and RMSD values were calculated for the labelled CA and CB

atoms with a structural overlap limit of 3.5Å for both.

The RMSD between XC1, XC2,...XC6 was calculated to assess the accuracy of the

ligand positioning. It's important to note that this value could not be calculated if the

search was conducted across an utterly unknown site.
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2.3.3 Finding Best Fits and Assessing Prediction Accuracy

The RMSD of overlapped points was used to identify the best-fitting structures in the

training set that corresponded to each structure in the test set. Based on these best

fits, the specific ligands that bind to the binding sites in the testing set were

anticipated.

The accuracy of the predictions was assessed using both qualitative and quantitative

measures. Qualitatively, the predicted ligand types were compared to the actual

ligand types bound to the binding sites in the test set. Quantitatively, the RMSD

between the atoms of the predicted ligands and the actual ligands was calculated.

Finally, the method was utilised to determine the binding sites of unknown proteins.

Alphafold structures (Jumper et al., 2021) were obtained using UniProt IDs (The

UniProt Consortium, 2023). Already developed algorithm in the lab, called Depth

(Tan et al., 2013), was utilised to find cavity like regions in proteins. Atoms were

annotated inthese regions, and the same algorithm was used to identify potential

binding.

2.3.4 Algorithm Optimisation for Reducing False Positives

In some cases, even the best superimposition of the ‘D’ and ‘A’ atoms resulted in a

large ligand RMSD value, emphasising the importance of accurately determining the

location of the cavity to avoid false results. To address this concern, several

additional steps were incorporated into the algorithm to optimise it and ensure that

the ligands were positioned correctly within the hollow cavity.

Clashes:

The algorithm was programmed to check for any residue bulges that might hinder

ligand placement and could signify inaccuracies in the predicted binding sites.

Clashes of atoms were calculated using their van der Waals radii. The atomic

overlap was then calculated by finding the distance between the centres of each pair

of atoms, one atom from the residues of the predicted site and one from the ligand of

the known site. If this distance was less than the sum of their van der Waals radii, the
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atoms were considered to be in a clash. A threshold value for the acceptable overlap

distance was defined, typically a small value relative to the sum of the van der Waals

radii. If the calculated overlap distance was less than this threshold, the atoms were

considered to be in a clash. This approach provided a simplified assessment of steric

clashes in the molecular structures analysed.

Redundancy Check:

During the evaluation of the method's accuracy, precautions were taken to ensure

that the algorithm did not predict binding sites with a sequence similarity of over

40%. This was achieved using a software tool called CD-HIT, which relies on

clustering based on sequence similarity to identify redundancy in protein sequences

(Li and Godzik, 2006).

These measures helped to mitigate the risk of false positives.

38

https://www.zotero.org/google-docs/?lwdOiR


Chapter 3 Results

3.1 Data Analysis

3.1.1 Compiled PDB Structures and Binding Sites

A number of different ligand IDs were identified corresponding to the ligands of

interest from RCSB PDB. Table 3.1 shows the different IDs found for each of the

eight categories. A total of 48 unique lDs were identified.

Table 3.1 Required ligand IDs in RCSB PDB.

P Position Ligand IDs

1 6ES, 85R, 81J, 810, 9Y5, B7N, EIJ, IPD, LIP, LPY, P3H, PIE, PII, T7X, XJ7, YBG

1,3 0J1, ITP, PIB, PWE

1,4 21P, 2Y5, DB4, J40, PIF, T7M

1,5 5P5

1,3,4 3PT,52N, 13S

1,3,5 3PI, EUJ, HZ7, I35

1,4,5 I3P, IBS, IEP, KXP, KYG, PBU, PIK, PIO, PT5

1,3,4,5 41P,4PT, IP9, PIZ, WES

PDB entries corresponding to each ligand ID were searched in the RCSB PDB. The

PDB files were enlisted and downloaded, and then the resolution and experimental

method data were extracted. Histograms were plotted to show the distributions of

resolutions within 5Å for both electron microscopy (Figure 3.1 a) and X-ray diffraction

(Figure 3.1 b) methods. This analysis aimed to determine an optimal resolution

cutoff.
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(a)

(b)

Figure 3.1 Histogram plots showing resolution distribution in PDB structures. (a) The
crimson graph represents the resolution distribution for structures solved using the X-ray
diffraction method, while (b) the violet graph represents those solved using electron
microscopy.
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Since a considerable number of PDB entries fell above 2Å and even 3Å, a resolution

cutoff of 3.5Å was sensibly chosen to filter the dataset. After applying this cutoff, the

dataset consists of 254 PDB files. Among these, 106 structures are determined

using electron microscopy, while 148 structures using X-ray diffraction.

Table 3.2 presents the types of ligands corresponding to each ligand ID and lists all

filtered PDB entries. The table includes details on the position of phosphates, the

presence or absence of glycerol and acyl chains, and the associated PDB entries for

each ligand ID. Notably, a single PDB entry can correspond to more than one ligand

ID, as seen in the example of PDB ID 3W68, which includes both 4PT and PBU.

Table 3.2 Details of ligands in RCSB PDB structures. [Source: (RCSB PDB)]

Ligand ID P Position DAG Presence PDB IDs Count

0J1 1, 3 Glycerol +
2 acyl chains

“7JM6”, “7JM7” 2

2IP 1, 4 ----- “1I9Z”, “7KIR” 2

2Y5 1, 4 Glycerol +
2 acyl chains

“4PH7”, “6ROJ”, “7OH4”, “7OH5”, “7OH6”,
“7PEM”

6

3PI 1, 3, 5 Glycerol +
2 acyl chains

“1ZVR” 1

3PT 1, 3, 4 Glycerol +
2 acyl chains

“3W67”, “4FYG” 2

4IP 1, 3, 4, 5 ----- “1B55”, “1BWN”, “1FAO”, “1FGY”, “1FHX”,
“1H10”, “1U27”, “1UNQ”, “1UPR”, “1W1D”,
“1W2D”, “2R09”, “2R0D”, “2UZS”, “3AJM”,
“4KAX”, “4WTY”, “4WU3”, “5D3X”, “5D3Y”,
“7KJZ”, “7SDD”

22

4PT 1, 3, 4, 5 Glycerol +
2 acyl chains

“1W1G”, “2Z0P”, “3W68”, “6FJC”, “7YIS” 5

52N 1, 3, 4 Glycerol +
2 acyl chains

“4CML” 1

5P5 1, 5 Glycerol +
2 acyl chains

“3RGQ” 1

6ES 1 Glycerol +
2 acyl chains

“5IRZ” 1

85R 1 Glycerol +
2 acyl chains

“7X2U” 1

8IJ 1 Glycerol +
2 acyl chains

“8GF8”, “8GF9” 2
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8IO 1 Glycerol +
2 acyl chains

“7VKT” 1

9YF 1 Glycerol +
2 acyl chains

“6ADQ”, “7E1V”, “7E1W”, “7E1X”, “7Q21”,
“7QHM”, “7QHO”, “7RH5”, “7RH6”, “7RH7”

10

B7N 1 Glycerol +
2 acyl chains

“3B7N”, “4J7Q”, “6SLD”, “7WVT”, “7WWG” 5

DB4 1, 4 Glycerol +
2 acyl chains

“4MXP” 1

EIJ 1 Glycerol +
2 acyl chains

“7SHE”, “7SHF” 2

EUJ 1, 3, 5 Glycerol +
2 acyl chains

“6C9A”, “6NQ2”, “7M5V”, “7M5X”, “7M5Y”,
“7SQ7”, “7SQ9”

7

HZ7 1, 3, 5 Glycerol +
2 acyl chains

“6E7P” 1

I35 1, 3, 5 Glycerol +
2 acyl chains

“6KOJ” 1

I3P 1, 4, 5 ----- “1BTN”, “1DJX”, “1GC6”, “1H0A”, “1MAI”,
“1N4K”, “1OQN”, “1U29”, “1W2C”, “2A98”,
“2P0D”, “3C5N”, “3V0H”, “3W9F”, “4NP9”,
“4O4D”, “4QJ4”, “4QJ5”, “5HJQ”, “5J67”,
“5W2H”, “5W2I”, “5X1O”, “7F1X”, “7JXA”,
“7Z3J”, “8EAR”

27

I3S 1, 3, 4 ----- “1Z2P”, “2P0H” 2

IBS 1, 4, 5 Glycerol “1I7E” 1

IEP 1, 4, 5 Glycerol +
2 acyl chains

“5ZM6”, “5ZM8”, “6W8C” 3

IP9 1, 3, 4, 5 Glycerol +
2 acyl chains

“3LJU”, “3MDB”, “7A17” 3

IPD 1 ----- “1AWB”, “1G0H”, “1IMA”, “1LBX”, “2ORK”,
“3IKP”, “4RW3”, “5F24”, “5J16”, “6LFJ”, “7JS5”,
“7JS7”

12

ITP 1, 3 ----- “1JOC”, “4AVX” 2

J40 1, 4 Glycerol +
2 acyl chains

“7E2X”, “7E2Y”, “7E2Z” 3

KXP 1, 4, 5 Glycerol +
2 acyl chains

“6NR3” 1

KYG 1, 4, 5 Glycerol “6NR7” 1

LIP 1 ----- “1IMB”, “3C4V”, “6WMV” 3

LPY 1 Glycerol +
1 acyl chain

“4XPJ” 1
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P3H 1 Glycerol +
2 acyl chains

“6SL5” 1

PBU 1, 4, 5 Glycerol +
2 acyl chains

“3W68”, “4OVV”, “5C79”, “6FJD” 4

PIB 1, 3 Glycerol +
2 acyl chains

“1H6H”, “1OCU”, “1ZSQ”, “2RAK” 4

PIE 1 Glycerol +
2 acyl chains

“1KB9”, “1UW5”, “2XSR”, “2XSU”, “2XSV”,
“6GYO”, “6LUM”, “8DV3”, “8DV4”

9

PIF 1, 4 Glycerol +
2 acyl chains

“3MTC”, “4INQ”, “7DEI” 3

PII 1 Glycerol +
2 acyl chains

“1GZQ”, “3QI9” 2

PIK 1, 4, 5 Glycerol +
2 acyl chains

“4QK4”, “6PW5” 2

PIO 1, 4, 5 Glycerol +
2 acyl chains

“1HFA”, “3SPG”, “3SPH”, “3SPI”, “3SYA”,
“3SYQ”, “4CQK”, “4KFM”, “4NS0”, “4PR9”,
“5KUM”, “5L0C”, “5L0D”, “5L0G”, “5L0H”,
“5LO8”, “5ON7”, “5VYP”, “6CDS”, “6CS9”,
“6HUG”, “6HUJ”, “6HUO”, “6I53”, “6M84”,
“6MFS”, “6PW5”, “6W7E”, “6XEU”, “6XEV”,
“6XIT”, “7QNE”, “7SKU”, “7T6M”, “7T6Q”,
“7UZ3”, “7V07”, “7V19”, “7XNL”, “7XNN”,
“8CRQ”, “8CRR”, “8CT3”, “8CTE”, “8DDS”,
“8DDT”, “8DDU”, “8DDV”, “8E4L”, “8E4M”,
“8E4N”, “8E4O”, “8ED8”, “8ED9”, “8T1O”
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PIZ 1, 3, 4, 5 Glycerol +
2 acyl chains

“4QJR”, “4RWV” 2

PT5 1, 4, 5 Glycerol +
2 acyl chains

“3GPE”, “5EGI”, “5EIK”, “7BYL”, “7BYM”,
“7BYN”, “7MIX”, “7MIY”, “7VFS”, “7VFU”,
“7VFV”, “7VFW”, “7VNP”, “8EPL”

14

PWE 1, 3 Glycerol +
2 acyl chains

“6WHG” 1

T7M 1, 4 Glycerol +
2 acyl chains

“3SPW” 1

T7X 1 Glycerol +
2 acyl chains

“5HYM”, “6RFQ”, “6RFR”, “6Y79”, “7AQQ”,
“7ARB”, “7BGI”, “7BLZ”, “7LP9”, “7LPC”,
“7O6Y”, “7O71”, “7ZKP”

13

WES 1, 3, 4, 5 Glycerol +
2 acyl chains

“7KHT” 1

XJ7 1 Glycerol +
2 acyl chains

“7L2H”, “7L2P”, “7L2R”, “7L2S”, “7L2T”,
“7L2U”, “7MZ6”, “7MZ9”, “7MZA”, “7MZE”

10

YBG 1 Glycerol +
2 acyl chains

“7LQY” 1
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In this dataset of 254 PDB structures, a total of 595 binding sites were identified for

the eight types of phosphoinositides. The distribution of the number of PDB

structures and binding sites for each type of phosphoinositide, categorised based on

the phosphate group positions, in the dataset is given in Table 3.3 and Figures 3.2 a

and b. These figures provide a clear depiction of the frequency of occurrence of

different ligand types across the dataset. Notably, structures related to PI and

PI(4,5)P2 are more abundant, indicating their influence in the dataset and somewhat

prevalence in the cell.

Table 3.3 Number of PDB structures and ligands for each ligand type.

(a)
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P Position Number of PDB Structures Total Number of Ligands
1 74 195

1,3 9 16
1,4 16 21
1,5 1 1

1,3,4 5 8
1,3,5 10 22
1,4,5 107 279

1,3,4,5 32 53
Total 254 595



(b)

Figure 3.2 Distribution of each ligand type in the dataset. (a) The graph visually
represents the frequency of occurrence of different ligand types across the dataset, showing
the diversity and abundance of each ligand type in the PDB structures. (b) The graph
provides insight into the distribution of binding sites across different ligand types.

3.1.2 Binding Site Characteristics
The characteristics of the binding sites vary for the different ligand types. Generally,

the binding sites for PI tend to be more neutral, but the positively charged regions at

the sites increase with the number of phosphates in the ligand. Some sites may

contain water molecules, and some may have metal ions present. Specifically, 22 out

of the 254 PDB entries in the dataset have one or two divalent metal atoms, typically

Mg2+ or Ca2+ ions, at the binding sites. The presence of metal ions often results in

negatively charged regions at the sites. Figure 3.3 depicts the binding sites for the

different ligands used in the study.

(a) (b)
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(c) (d)

(e) (f)

(g) (h)
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Figure 3.3 Charged surface images for different phosphoinositide binding sites. The
figures show protein structures (represented in surface representation) bound to ligands.
Coulombic surface colouring is used in UCSF Chimaera to depict charge distribution: blue
surfaces represent positively charged regions, red surfaces represent negatively charged
regions, and white surfaces represent neutral regions. Ligands are shown in stick form.
Additionally, green spheres represent metal ions, and red spheres represent water
molecules. The red atoms in the ligand indicate oxygen, while the orange atoms represent
phosphorus. Binding sites for the following ligands are shown: (a) PI, (b) PI(3)P, (c)
Ins(1,4)P2, (d) PI(5)P, (e) Ins(1,3,4)P3, (f) Ins(1,3,5)P3, (g) Ins(1,4,5)P3 (h) PI(3,4,5)P3.

The identified ligands exhibit a broad distribution across different protein structures,

ranging from small proteins to large complexes such as dimers, tetramers, octamers

and even larger assemblies. This variability results in some PDB files containing

multiple ligands, with the high observed counts being 14 ligands(PDB:4CQK) and 24

ligands (PDB: 5VYP) ligands in large protein complexes. Figure 3.4 visually

represents this distribution, showcasing the varying number of ligands per PDB entry

in the dataset. The graph shows that the majority of PDB entries contain only one,

two or four ligands.

Figure 3.4 Distribution of the number of ligands per PDB file. The x-axis shows the
number of ligands contained in each PDB entry, while the y-axis shows the frequency of
PDB entries with that number of ligands. The binding sites for these ligands may be
composed of a single peptide chain or may be formed from residues contributed by multiple
chains within a protein complex.

These ligand-bound proteins are associated with a range of functions. Figure 3.5

depicts the distribution of protein types that are phosphoinositide-bound. Notably,

most of these proteins are membrane proteins or transport proteins, demonstrating
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the significance of phosphoinositides in cellular membranes and transport

processes.

Figure 3.5 Distribution of the number of types of proteins in the dataset. This
distribution provides insights into the diversity of proteins present in the dataset and
highlights the prevalence of membrane proteins and transport proteins, indicating the
significance of phosphoinositides in cellular membranes and transport processes.

In the ligand standardisation process, all ligands and atoms within their head groups

were systematically renamed. A logical 3-letter code, outlined in Table 3.4, was

assigned to each ligand and replaced the original ligand IDs. Subsequently, the

ligand atoms were renamed, as represented in Figure 3.6. The six carbon atoms

comprising the inositol ring were identified and relabelled as XC1 to XC6,

respectively. The oxygen atoms attached to each carbon were named based on their

proximity, designated as XO1 to XO6. Similarly, phosphorus atoms within the

phosphate groups were renamed according to their positions: XP1 for the 1-position,

XP3 for the 3-position, XP4 for the 4-position, and XP5 for the 5-position. Oxygen

atoms attached to these phosphorus atoms were named accordingly: UO1, UO2,

UO3 for the 3-phosphate; VO1, VO2, VO3 for the 4-phosphate; and WO1, WO2,

WO3 for the 5-phosphate. It is noteworthy that all three oxygen atoms attached to a

particular phosphate group were considered equivalent and were named differently

only to keep track of the individual atoms.
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Table 3.4 Standardised residue names for the ligands.

Ligand Type Standardised residue names

PI OOO

PI(3)P POO

PI(4)P OPO

PI(5)P OOP

PI(3,4)P 2 PPO

PI(3,5)P 2 POP

PI(4,5)P 2 OPP

PI(3,4,5)P 3 PPP

Figure 3.6 Renamed atoms in the head group of PIP3. This figure illustrates the
systematic renaming scheme used to standardise atom names within the head group of the
PIP3 molecule in the 4RWV, facilitating consistent analysis and comparison across different
ligands. Atoms in red and orange represent oxygen and phosphorus, respectively.
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All the binding sites were extracted from the proteins, resulting in 595 PDB files,

each uniquely named with the ligand's PDB ID and residue ID (chain ID + residue

number). Each PDB file contains one ligand and all residues within 6Å of any atom of

the ligand's inositol ring and its phosphates. Figure 3.7 shows a typical carved-out

binding pocket surrounded by different amino acids from almost all sides.

Figure 3.7 Carved binding pocket of PI(4)P. The figure depicts a binding pocket from PDB-
7E2Y and consists of the ligand molecule (grey) surrounded by residues (tan) within a 6Å
radius of the ligand's head group. Carbon, oxygen, nitrogen, phosphorus, and sulfur atoms
are coloured in grey, red, blue, orange, and yellow, respectively. Residues are labelled in
name+specifier format. The ligand is labelled as 'OPO 502.R', indicating a PI(4)P ligand with
residue number 502 from chain R. The corresponding PDB file for this binding pocket is
labelled as '7E2Y_502_R_OPO.pdb'.

The ligands themselves can exhibit varying degrees of interaction with the protein

structure. They may be deeply embedded within the protein structure or loosely

attached to the protein surface. Hence, the binding pockets exhibit varying numbers

of residues, from as low as only one residue to as high as 30 residues, with an

average of approximately 15 residues within the defined size of the binding pocket.
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This is visualised as frequency distributions for each of the ligand types in Figure 3.8.

Figure 3.8 Distribution of number of residues per binding pocket. The graph provides
distributions for the variability in pocket sizes, ranging from pockets with only one residue to
pockets containing up to thirty residues. This highlights the diversity and strengths with
which the ligands get bound in proteins. Note that the y-axes represent the frequency of
binding pockets and are not uniform across the different plots. This is done intentionally to
visualise distributions well for all the types, as the distribution for the different ligands in the
dataset is not uniform.
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3.1.3 Conformations and Orientations

Ligands in the crystal structures exist in a range of stereoisomeric forms. To ensure

that the orientations of the atoms assigned were correct, i.e. 2- and 3- positions in

the inositol rings were not confused with 6- and 5- positions, respectively, each

binding pocket was superimposed on the highest resolution structure.

Reference Structure:

The PDB entry of 1UNQ has a remarkable resolution of 0.98Å. As per Agranoff's

rule, its ligand could be considered a near-perfect structure. 1UNQ is a

“high-resolution crystal structure of the pleckstrin homology domain of protein kinase

B / Akt, bound to Ins(1,3,4,5)-Tetrakisphosphate” (MILBURN et al., 2003). The

inositol ring has a chair conformation with 2- OH being axial and others equatorial.

The six carbon atoms in the inositol ring were taken as equivalences to

superimpose. RMSD values were calculated between:

(A) the six carbon atoms after superimposition of other binding pockets with:

(i) the already labelled orientations (Figure 3.9 a) and

(ii) the reverse orientations, i.e., C2 was labelled as C6 and C3 was labelled

as C5 and so on(Figure 3.9 b).

(B) the six carbon atoms plus six directly bonded oxygen atoms after superimposing

other binding pockets with:

(i) the already labelled orientations (Figure 3.9 c) and

(ii) the reverse orientations (Figure 3.9 d).

(a)
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(b)

(c)

(d)

Figure 3.9 RMSD calculated between ligands for orientation check. RMSD values of
ligands were calculated after superimposing on the reference ligand carbon atoms all inositol
carbon atoms as labelled initially with (a) all carbon atoms in originally assigned numbering
orientation, (b) all carbon atoms in reversed orientation, (c) all carbon and oxygen atoms in
original orientation, (d) all carbon and oxygen atoms in reversed orientation.
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Any outliers that had higher RMSD for labelled cases and lower RMSD for the

reverse cases were reserved with their labelling, i.e. C2 became C4, C3 became C5

and vice-versa, and so were other atoms attached. The cases that always had a

higher RMSD were kept numbered with the initially assigned orientation.

The dihedral angles between the inositol atoms were also calculated to find the

configuration. It was found that both D- and L-configurations exist for these ligands,

with D-configuration being dominant.
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3.2 Binding Site Analysis

3.2.1 Interaction Patterns

After calculating the hydrogen bond interactions at the binding sites using the

specified parameters, a compiled table was generated that describes each hydrogen

bond. Each row in the table provides details about a single hydrogen bond, including

the PDB ID, resolution, phosphate position on the ligand, hydrogen donor and

hydrogen acceptor atom details (chain, residue number, atom name and residue

name), distance between donor and acceptor, and angle between

donor-acceptor-acceptor antecedent atoms. In total, 4909 hydrogen bonds were

identified between the ligands and the amino acids of the proteins across 595

binding pockets. Although highly variable, an average of 5-10 hydrogen bonds are

observed per binding site. A partial view of the table is shown in Table 3.5.

Table 3.5 Compiled interactions. The initial few lines from the hydrogen bond interaction
table are shown below. It includes all interactions within 3.5Å. Each line represents a single
hydrogen bond between a ligand and a protein. It details the PDB ID, resolution, phosphate
position on the ligand, along with donor and acceptor atoms information, donor-acceptor
distance and angle.

This table was analysed to identify the interactions between amino acids and atoms

belonging to different types of ligands. Eight blocks (Figure 3.10 a-h) of graphs

corresponding to each ligand type were generated. Within each block, two columns
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were formed. The first column represented interactions where the oxygen atoms of

the ligand acted as donors, and the second column represented interactions where

the oxygen atoms acted as acceptors. Each row in the columns represented the

interactions with the oxygen atom of the inositol involved in the interaction, denoted

as XO1, XO2, ..., XO6, and the oxygen atoms of the phosphates, denoted as XOU,

XOV and XOW, each representing all the other three oxygen atoms attached to XP3,

XP4 and XP5.

A single graph belonging to a specific row and a column of a particular block

represents the frequency of interactions of each of the 20 amino acids (in the x-axis)

with a particular oxygen of the ligand.

(a)
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(b)

(c)
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(d)

(e)
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(f)

(g)
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(h)

Figure 3.10 Hydrogen bond interaction distributions. Each block (a-h) of graphs
represents the interaction patterns of a specific type of ligand. The columns in the blocks
represent the ligand's role as either a donor (1st column) or an acceptor (2nd column). Each
row in the block represents interactions with a specific atom of the ligand (XO1 to XO6 and
the oxygen atoms of the phosphates XOU, XOV, and XOW attached to XP3, XP4, and XP5,
respectively). Each graph illustrates the distribution of frequencies of interactions of a
particular ligand atom with the 20 amino acid residues. It's important to note that the y-axis,
representing frequencies, is not uniform across the graphs due to the high variation in
frequencies in different blocks, and the maximum is set to the maximum of each block.

These graphs serve as representations of binding sites, illustrating the preferences

of amino acids for interactions near specific atoms of the ligand. For example, in

Figure 3.10-g, arginines and lysines prominently engage in hydrogen bond donation

due to the presence of phosphate groups in PI(4,5)P2. Similar interactions with

residues such as serine and histidine are also observed. Atom XO2 demonstrates

versatility, functioning as both a donor and an acceptor, as indicated by interactions

in both columns of the graph. Moreover, interactions with phosphate oxygen atoms

are more common than those with inositol oxygen atoms. It's noteworthy that graphs
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representing oxygen atoms not present in the ligand, such as XOU, are blank due to

the absence of 3-phosphate in this ligand.

Importantly, oxygen atoms attached to phosphates never act as donors, resulting in

empty rows in column 1 corresponding to XO1, XOA, XOU, XOV, and XOW atoms in

each block. As the number of phosphates in the different ligands increases, relative

interactions with lysine and arginine residues also increase. These interactions are

assessed from both the main chain and side chains of the amino acids. For residues

like alanine and valine, interactions occur solely via their main chain atoms. Infact,

one-fourth of the total hydrogen bond interactions come from main-chain residues,

indicating that these interactions are of very of origin and have been conserved over

evolutionary time.

3.2.2 Structural Overlaps

All ligands within the binding pockets were aligned to a common reference ligand,

PDB-1UNQ, ensuring that each binding pocket was in the same reference frame.

This alignment facilitated structural analysis by providing a consistent basis for

comparing and understanding the spatial arrangement of the ligands within the

binding pockets.

Figure 3.11 demonstrates this alignment process, showing how two binding pockets

from different PDB structures are transformed into the common reference frame. The

transformation highlights how the surrounding residues overlap when the binding

pockets are aligned. The degree of overlap was quantified by considering the CA

atom of each residue as its representative point, providing a measure of the

structural similarity between the two binding pockets.
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Figure 3.11 Superimposed binding pockets. Alignment of the inositol rings of 3SYA (blue)
and 1W2C(tan). Ligands are represented in the ball and stick model where, whereas
surrounding residues in the binding pockets are represented in the stick model. Red, blue
and orange atoms are used to represent oxygen, nitrogen and phosphorus. Green and
yellow atoms in the superimposed pockets represent CA atoms that show any overlap in the
surrounding residues. Additionally, a purple sphere is used to represent a Mn4+ ion present
in the vicinity, although it does not directly interact with the ligand.

All transformed binding pockets were systematically compared using CA

superimposition, allowing for the calculation of structural overlaps and RMSD values

with a threshold distance of 3.5Å. The results were tabulated, with a portion shown in

Table 3.6. Each row in the table details the superimposition of a pair of binding

pockets, providing information about the reference and transformed binding pockets.

This includes the PDB ID, ligand’s chain, residue number and residue name, and the
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number of residues in the binding pockets, along with the number of residues that

overlapped, the structural overlap percentage, and the RMSD value between

overlapped CA atoms.

For example, the first entry in the table indicates that the comparison of the

transformed 1AWB_A_281_OOO binding pocket, consisting of 27 residues, and the

transformed 1OQN_B_1602_OPP binding pocket, consisting of 14 residues, resulted

in the overlap of 4 residues within 3.5Å. The structural overlap is calculated as

(4/14)*100 = 28.57%. Notably, the RMSD value of 2.5 is below the set threshold.

There were a total of 595*595 = 310025 superimposition rows in the table.

Table 3.6 Binding site superimposition. The initial few lines from the superimposition
analysis table are shown below. It includes all pairs of binding pockets and calculates the
structural overlap of residues using CA atoms within 3.5Å. Each line represents a single pair
of superimposed binding pockets. It details the information of two binding pockets with their
overlap details.

The superimposition table was analysed further to identify structural similarities in the

binding pockets. A grid of 8x8 graphs (Figure 3.12) was generated, with each row

and column representing the binding pockets of each ligand type. Each graph

provided a histogram of structural similarities, where the x-axis represents structural

overlap (%) and the y-axis represents the frequency of the structural overlap. It's

important to note that the y-axis range varies across all the graphs due to differences

in the number of binding pockets for each ligand type.
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For example, the graph in the 5th row and 3rd column represents the distribution of

structural overlap when binding pockets of PI(3,4)P are compared with those of

PI(4)P. In such superimpositions, the structural overlap mainly falls in the 20-50%

range. Similarly, the graphs along the diagonal (from top left to bottom right)

represent the structural similarities within each binding pocket type. It's interesting to

note the occurrences of high structural overlaps (>80%) in these cases, which may

partially be the result of redundancy in the data.

Structural Overlap Threshold = 3.5Å

Figure 3.12 Structural overlap (within 3.5Å) distribution of superimposed binding
pockets. Each binding pocket was compared against all others to identify structural
similarities. The rows and columns represent binding pockets from each ligand type, and
each graph shows the distribution of structural overlap (%) within 3.5Å for each pair of
comparisons. It is to be noted that the y-axis range varies across all the graphs due to
differences in the number of binding pockets for each ligand type.
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A matrix table (Figure 3.13) corresponding to the above graphs was generated,

representing only the average structural overlaps observed for each combination of

binding pockets. The matrix was heatmaped, with yellow being the lightest, indicating

high average structural similarity, and violet showing low structural similarity. The

lighter colours along the diagonal indicate comparisons with similar binding pockets.

The yellow-coloured cell for PI(5)P is due to the presence of a single binding pocket

in the data. It overlaps only on itself, which results in a 100% structural overlap.

Some higher average structural overlaps were also observed, such as when

comparing binding pockets of PI(5)P with PI(3)P.

Figure 3.13 Heatmap of average structural overlaps (within 3.5Å) between
superimposed binding pockets. The matrix table represents the average structural
overlaps observed for each combination of binding pockets, with lighter colours indicating
higher average structural similarity and darker colours indicating lower similarity.

Initially, the threshold for structural overlap distance at 3.5Å was maintained for all

assessments, but the graphs did not yield significant insights. Subsequently, to

ensure a more stringent assessment and to avoid unnecessary overlaps, the

threshold was adjusted to 2Å. A similar table, such as Table 3.6, the corresponding

grid (Figure 3.14), and the matrix (Figure 3.15) were regenerated.
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Structural Overlap Threshold = 2Å

Figure 3.14 Structural overlap (within 2Å) distribution of superimposed binding
pockets. Each binding pocket was compared against all others to identify structural
similarities. The rows and columns represent binding pockets from each ligand type, and
each graph shows the distribution of structural overlap (%) within 2Å for each pair of
comparisons. It is to be noted that the y-axis range varies across all the graphs due to
differences in the number of binding pockets for each ligand type.
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Figure 3.15 Heatmap of average structural overlaps (within 2Å) between
superimposed binding pockets. The matrix table represents the average structural
overlaps observed for each combination of binding sites, with lighter colours indicating
higher average structural similarity and darker colours indicating lower similarity.

Note the leftward shift of all histograms in Figure 3.14, indicating reduced structural

overlaps with the adjusted threshold of 2Å. This adjustment allows for easier

identification of any high structural similarities. However, higher similarities are

primarily observed in binding pockets for the same type. The average structural

overlap has also significantly decreased in Figure 3.15. For PI and PI(4,5)P, which

have a substantial number of corresponding binding pockets in the dataset, the

average structural overlap even within themselves is as low as 13% and 10%,

respectively. This suggests that considering the structural overlap of all residues

within a 6Å size binding pocket does not offer specific insights. Therefore, overlaps

were identified only with the interacting residues in the binding pockets, combining

information from the interactions table and the superimposed binding pockets.
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3.2.3 Residue Preference Analysis

Upon determining that a 2Å structural overlap threshold for CA atoms yielded more

precise results, the interacting residues were identified when one binding pocket

overlapped with that in another binding pocket. In this analysis, donor residues

overlapping with donor residues were distinguished from acceptor residues

overlapping with acceptor residues to understand the nature of these interactions.

All the donor-donor and acceptor-acceptor overlaps were tabulated, providing details

about the nature of the overlap and the specific pair of residues involved, along with

information about the binding pockets to which they belong. A portion of the table is

shown below in Table 3.7. Each row in the table represents an overlap between two

interacting residues from any two binding pockets.

Table 3.7 Superimposed interacting residues. The initial few lines from the superimposed
interacting residues table are shown below. It presents the overlaps between interacting
residues from different binding pockets. Each row represents a specific overlap between two
residues, indicating the nature of the overlap (donor-donor or acceptor-acceptor) and
providing details of the residues (chain, residue number and residue name) and the binding
pockets(name and type) they belong to.

This table was analysed further to identify preferences of residues in the binding
pockets. A matrix of 20X20 amino acid overlaps was generated for donor residue
overlaps (Figure 3.16 a) and acceptor residue overlaps (Figure 3.16 b) for all binding
pockets combined. Each cell in the matrix represented the number of times a
particular residue overlapped with another residue of each ligand type.
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a) Donor Overlapping Residues

(b) Acceptor Overlapping Residues
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Figure 3.16 Matrices representing the frequency of overlap for residue pairs (within
2Å). The matrices represent the number of times (a) a pair of donor residue overlaps and (b)
a pair of acceptor residue overlaps. Lighter shades indicate higher frequencies, while darker
shades indicate lower frequencies. Both matrices are diagonally symmetrical due to
all-against-all superimpositions, and the scales for each matrix differ due to the varying
numbers of donor and acceptor residues.

The matrix of donor overlapping residues highlights the high frequencies of lysine,

arginine, and serine residues, indicating their conservation in the binding sites.

Additionally, residues such as histidine, leucine, isoleucine, and tryptophan also

exhibit considerable overlap frequencies. The frequent overlaps between arginine

and lysine residues are notable, likely due to their similar side chain features.

Conversely, the matrix of acceptor overlapping residues demonstrates high

frequencies for negatively charged residues, specifically aspartic acid and glutamic

acid.

Similar matrices for the binding sites for each ligand type were generated to

understand the variations in the residue preferences across different binding site

types. Figure 3.17 a-h represents donor overlapping residues for the different LBS.

(a)
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(b)

(c)
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(d)

(e)
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(f)

(g)
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(h)

Figure 3.17 Matrices representing the frequency of overlap for donor residues for
different binding pockets (within 2Å). Each of the cells in the matrices represent the
number of times a pair of donor residue overlap in the binding pockets of the ligands: (a) PI,
(b) PI(3)P, (c) PI(4)P, (d) PI(5)P, (e) PI(3,4)P2, (f) PI(3,5)P2, (g) PI(4,5)P2,(h) PI(3,4,5)P3.
Darker shades indicate higher frequencies, while lighter shades indicate lower frequencies.
Scales for each matrix differ due to the varying numbers of binding sites and their residues.

It is clear from the matrices that the preferences for donor residue types differ for

each phosphoinositide binding site. For example, arginine, serine, and glutamine

residues are more prominent in PI binding sites, while arginine, histidine, and lysine

are more common in PI(4)P binding sites. For PI(4,5)P2, arginine, lysine, histidine,

isoleucine, leucine, and serine residues are prominent, and for PI(3,4,5)P3, arginine,

lysine, and tyrosine residues are prevalent. These differences suggest unique

interaction patterns and preferences for each type of phosphoinositide.

Similarly, matrices for acceptor residue overlaps were also obtained as shown in

Figure 3.18 a-h.

74



(a)

(b)
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(c)

(d)
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(e)

(f)
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(g)

(h)

Figure 3.18 Matrices representing the frequency of overlap for acceptor residues for
different binding pockets (within 2Å). The each cell of the matrices represent the number
of times a pair of donor residue overlap in the binding pockets of the ligands: (a) PI, (b)
PI(3)P, (c) PI(4)P, (d) PI(5)P, (e) PI(3,4)P2, (f) PI(3,5)P2, (g) PI(4,5)P2,(h) PI(3,4,5)P3.
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3.3 Binding Site Predictions

A total of 462 out of 595 binding pockets that contained more than three donor or

acceptor atoms were identified, indicating the potential to be predicted using the

developed algorithm within these binding sites (Figure 3.19). These pockets were

segregated into 380 training and 82 testing pockets.

Figure 3.19 A bar graph showing the number of donors or acceptors in binding sites.
The graph displays a bar graph illustrating the distribution of donor and acceptor atoms
across 595 binding sites involved in ligand binding. The x-axis represents the number of
donor or acceptor atoms present in the binding sites, while the y-axis shows the frequency of
occurrence for each category. The graph provides a visual representation of the diversity in
the number of donor and acceptor atoms across the analysed binding sites, highlighting the
variability in ligand-protein interactions.

After superimposing all test binding sites against the training set, a total of 31,160

outputs were expected (82 test sites * 380 training sites). For each pair of binding

sites, a compiled TSV (tab-separated values) file was generated, detailing the

superimposition caused by unique clique formation. The table included the number

of marked donors or acceptors, the number of D/A atoms that overlapped within 2Å,

and the number of CA or CB atoms that overlapped within 3.5Å. RMSD values were

provided for each case, as well as the RMSD between the ligand rings. Clashes
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between the known ligand and the residues of unknown sites were avoided within 2Å

of their atoms.

An example of one of the accurate superimpositions comes from PDB:7QHO and

PDB:7LP9. 7QHO is a cytochrome bcc-aa3 supercomplex which is an

oxidoreductase (represented in green in Figure 3.20), whereas 7LP9 is a full-length

TRPV1- Ca2+ permeable cation channel (represented in tan in Figure 3.20). The

proteins were non-homologous. Both proteins have four binding sites each for PI.

We kept the 7QHO_A_503_OOO site in our training set and the 7LP9_D_904_OOO

in our testing set. We used the former site to predict the binding site for PI in the

latter.

Figure 3.20 Two non-homologous proteins used for predictions. The protein
represented in green is cytochrome bcc-aa3 supercomplex, an oxidoreductase [PDB:7QHO].
The protein represented in peach is a full-length TRPV1- Ca2+ permeable cation channel
[PDB:7LP9]. One binding site from both proteins was used to carry out the prediction.

A few of the superimpositions observed for the above-mentioned pair of binding sites

(7QHO_A_503_OOO_known site on 7LP9_D_904_OOO_unknown site) are shown

in Table 3.8. A total of 25 fits were obtained using the specified parameters.

The tables were ranked based on the coverage of D/A atoms and then the

corresponding RMSD values. The superimposition mentioned as rank 1

demonstrated a highly accurate fit for the binding sites, with an RMSD of 1.02Å

between the 6 C atoms of the inositol ring. All six D or A atoms of the known site

overlapped with six in the unknown site, resulting in an RMSD of 1.12Å between all

D or A atoms. The superimposition of this case is shown in Figure 3.21.
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Table 3.8 Output TSV file for a prediction. All possible superimpositions between a known
and an unknown binding site. This table presents the superimposition details for the binding
sites 7QHO_A_503_OOO (known) and 7LP9_D_904_OOO (unknown), showcasing the
number of marked donors or acceptors, the overlapped D/A atoms within 2Å, RMSD value of
overlapped D/A atoms and the RMSD between ligand rings.

Figure 3.21 An accurate prediction case. The figures illustrate the two different sides of
the superimposition in the rank 1 case from Table 3.8, showcasing the accurate fit between
the binding sites. The figure visually represents the alignment of the binding pockets (known
in green and unknown in peach), highlighting the overlapped atoms in spheres and the
accurate positioning of the correct ligand (represented in the ball and stick model, occupied
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within mesh volume). The dotted lines represent the possibility of hydrogen bonding between
the predicted ligand (from the known site) and the D/A atoms from the unknown site. The
thread representation shows the lipid tails of both sites.

Table 3.9 Overlapped D/A residues from two sites. Details of all the donor and acceptor
atoms that got overlapped in the best fit for 7QHO_A_503_OOO (known) and
7LP9_D_904_OOO (unknown) sites. The table gives details about the chains and residues
to which they belonged, as well as their original atom names.

In the above example, in 5 out of 6 overlaps, overlapped atoms belong to dissimilar

residues. Even main chain atoms overlap with side chain atoms in some instances.

Also, a binding pocket composed of one polypeptide chain has overlapped with the

one composed of two chains.

Many such examples of predictions have been obtained, a majority of which belong

to homologous structures getting overlapped.
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Overlapping Atoms

7LP9_D_904_OOO_unknown 7QHO_A_503_OOO_known

Atom Type Chain Res Num Res Atom Chain Res Num Res Atom

Donors D 409 ARG NH2 O 94 ARG N

Acceptors D 508 VAL O A 183 GLY O

Acceptors D 509 ASP OD1 A 184 GLY O

Acceptors D 509 ASP O A 186 ILE O

Donors D 512 SER N A 188 ASN N

Donors D 557 ARG NH1 A 191 ASN ND2



Chapter 4 Discussion
Through this project, we have developed a tool that can predict binding sites in

proteins specific to phosphoinositides, utilising structural data from the Protein Data

Bank (PDB). The tool leverages 3-dimensional structures of ligand binding sites to

identify interaction patterns and subsequently predict binding sites in

uncharacterised proteins. The study focused on proteins bound to

phosphoinositides, essential phospholipids in eukaryotic cellular membranes that

play crucial roles in cellular signalling and membrane trafficking. These molecules

are vital as they control various cellular functions, impacting cell growth, survival, and

communication.

We intentionally maintained a lower resolution cutoff for our dataset, prioritising a

larger sample size to ensure robustness in our analysis. This approach introduced

some ambiguity, particularly in ligand orientations, but allowed us to work with a

more diverse set of structures, enhancing the breadth of our study. We noted a

significant abundance of PI and PI(4,5)P structures within our dataset. To mitigate

any potential bias from this dominance, we carefully delineated clear boundaries

between data categories at each stage of our analysis. This meticulous approach

enabled us to examine each category independently, reducing the risk of

confounding effects and ensuring the reliability of our conclusions.

Hydrogen bonds are a critical type of interaction between protein structures and

phosphoinositides. In proteins, hydrogen bonds can form between various parts of

the protein, including the side chains and the main chain atoms (the backbone of the

protein structure). The fact that a substantial portion of these hydrogen bonds (24%)

involve main chain atoms suggests that the interaction between phosphoinositides

and proteins is deeply rooted in evolutionary history. These main chain atoms are

more conserved across different proteins and species because they form the

backbone of the protein's structure, as opposed to side chains, which can vary more

widely. This conservation indicates that the ability of proteins to interact with

phosphoinositides is an ancient feature preserved through millions of years of

evolution.
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Our analysis revealed different patterns for different binding pockets with the

prevalence of specific amino acid residues, such as arginine, serine, and lysine, as

hydrogen bond donors, along with aspartic acid and glutamic acid as hydrogen bond

acceptors. This conservation of residues across diverse binding pockets suggests

their crucial roles in ligand-protein interactions and structural stability within the

binding sites. The negatively charged phosphate groups of phosphoinositides were

observed to act as anchors, attracting positively charged regions on proteins and

facilitating the initial binding and tethering of proteins to specific phosphoinositides in

the membrane. This electrostatic interaction was found to be essential for the

formation and stability of protein-ligand complexes.

Interestingly, our analysis indicated that some binding sites could accommodate

more than one type of phosphoinositide. For example, in the case of 1ZSQ and

1ZVR, both PI(3)P and PI(3,5)P bind to the -3 side of the ligand, with the 5-position

exposed. This observation suggests that the binding of phosphoinositides to proteins

does not always follow a one-to-one correlation, highlighting the complexity of these

interactions. We provided our tool with some flexibility, keeping in mind that biological

molecules are dynamic in nature. We focused on finding correct interacting partners,

hydrogen donors and acceptors in this case and providing the ligand with enough

space to fit. This further underscores the importance of understanding the structural

and chemical features of binding sites to predict binding sites accurately. This helped

us in identifying binding sites using non-homologous structures.

Moving forward, we plan to extend our model to predict binding sites in unknown

proteins. We aim to validate our predictions through experimental verification,

enhancing the credibility of our findings. Additionally, we envision developing a

versatile and generalised software package that can predict binding sites for a wide

range of ligands. This software will serve as a valuable tool for various research and

practical applications in structural biology, offering efficient and reliable predictions.

This project has revealed important patterns in protein-phosphoinositide interactions,

primarily the significant role of hydrogen bonds and the evolutionary conservation of

binding mechanisms. The high accuracy of our tool underscores the importance of

3D structural compatibility in molecular recognition, challenging traditional

sequence-based methods. Our results suggest that structural analysis provides a

more comprehensive view of molecular interactions, capturing the complexity of
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binding mechanisms and offering new insights into the evolutionary history of these

interactions.

While some exceptions were noted, particularly in cases with ambiguous ligand

orientations or atypical binding mechanisms, the overall consistency of our results

supports the reliability of our tool. The flexibility observed in some binding sites

further highlights the adaptability and complexity of protein-ligand interactions,

suggesting that a one-size-fits-all approach may not always be applicable. Instead,

our findings emphasise the need for tailored analyses that account for the unique

features of each binding site.

The implications of our results extend beyond the immediate scope of this project,

offering potential applications in drug discovery and molecular biology. By providing a

reliable tool for predicting protein-ligand interactions, we can accelerate the

identification of potential drug targets and enhance our understanding of molecular

recognition. This advancement has broad implications for biomedical research,

particularly in the fields of drug discovery and structural biology.

In conclusion, this study presents a significant advancement in the field of

computational biology, offering a robust tool for predicting protein-ligand interactions

based on 3D structural analysis. The tool's success underscores the value of

structural compatibility in molecular recognition and provides a strong foundation for

future research in understanding and manipulating protein-ligand interactions.
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Appendix

Study Limitations

The study posed various challenges precisely due to the ligand-phosphoinositides.

Atomic Position Ambiguity

While we selected a resolution of 3.5 Å to filter the data meticulously and avoid

losing significant amounts of data, lower resolutions presented specific challenges.

The lower resolution may have led to the analysis of highly ambiguous positions of

atoms, potentially impacting the accuracy and reliability of our findings.

Also, missing atoms during structure determination, especially those at the ligand

binding sites, can significantly impact the accurate prediction of binding sites. This

may have resulted in an incomplete or distorted representation of the ligand-binding

pocket, affecting the calculation of interactions with surrounding residues.

Limited Data

The limited amount of PDB entries available for the different ligand types poses a

significant challenge in capturing all possible types of binding sites for training the

model. The training set does not encompass the full diversity of binding site

configurations, potentially leading to biased or incomplete evaluations of the

prediction method. As a result, these algorithms may not perform as well when

encountering new or unrepresented binding site configurations. This limitation

highlights the importance of continuously expanding and diversifying the datasets

used for training to ensure the robustness and generalizability of this algorithm.

Orientation Challenges

In our analysis, we encountered challenges with the orientation of ligands,

particularly regarding the positioning of the O2 atom, which is crucial for

nomenclature. Even after superimposing ligands and calculating RMSD values, the

orientation of the O2 atom remained unclear or ambiguous in some cases, primarily

due to the presence of different conformational states of the ligand in the crystal

structures.

92



This uncertainty in orientation could lead to incorrect nomenclature and subsequently

affect the analysis of binding site preferences and the calculation of ligand RMSD

values during the prediction of binding sites. Such ambiguities might also result in

the prediction of reversed ligands, e.g. PI(3)P binding sites might be predicted as

PI(5)P sites, and other similar discrepancies.

Data Redundancy

We observed that approximately 200 of the 254 PDB files contained binding pockets

consisting of only a single chain. In contrast, others had binding pockets composed

of residues from more than one chain. Our initial approach to address redundancy

within single-chain binding pockets involved the use of CD-HIT. We observed that

identical sequences didn't guarantee the exact ligand positioning.

A more detailed examination, including sequence alignment and superimposition

based on amino acid sequences using UCSF Chimera, led to a crucial realisation. It

became evident that even when there was 100% sequence similarity between two

sequences, ligands could bind to the protein in distinct orientations, giving rise to

entirely different types of binding sites. This happened even within dimeric and

tetrameric structures. This finding emphasised that clustering or removing binding

pockets based solely on sequence similarity was not a suitable approach.

Furthermore, we discovered that removing redundancy based on higher structural

superimposition was not a viable solution either. This was due to the fact that the

residues composing the binding pocket could exhibit significant variations, even

when structural superimposition appeared to be high. Consequently, we determined

that this method was also not effective in addressing redundancy within our dataset.

As a result, we made the decision to proceed with our analysis without removing

redundancy, as it was clear that both sequence similarity and structural

superimposition alone could not adequately capture the diversity and complexity of

binding pocket configurations.

This decision led to the potential overrepresentation of residues from redundant

pockets in our analysis, affecting the accuracy of our findings regarding preferred

residues.
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Predict Sites with Fewer Binding Partners

Even with further optimisation of prediction algorithms, predicting a binding site with

this method will only be able to predict a binding site if there are at least four

interacting residues. Such cases include scenarios with ligands loosely bound at the

surface of proteins or scenarios of ligands with multiple hydrogen bonds with the

same residue, hydrogen bonding with an acyl chain oxygen, and other interactions

such as water bridges, salt bridges, van der Waals, or hydrophobic interactions with

lipids. These interactions do not provide a clear and consistent pattern that can be

reliably detected by prediction algorithms, making it difficult to identify those binding

sites confidently.

Crystal State Influence

3D structure-based prediction approaches are strongly dependent on the

conformation of the protein crystal structure provided. They may ignore binding sites

that are not visible in the protein's unbound (apo) state but are induced by ligand

binding in the bound (holo) state. These methods fail to identify LBSs in scenarios

where the crystal structures of proteins in the holo state are unavailable.
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