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Abstract

In this thesis, we study the entanglement phase transition from volume-law to area-law

entanglement in a hard-core boson chain model under continuous measurement of

local occupation number. We are specifically interested in observing the effects of

spatially random measurement strengths on this phase transition. We have used

the quantum trajectory approach to model the measurement process. The random

measurement strengths case is compared with the constant strengths case. Quantities

like von Neumann Entanglement Entropy, particle densities, bipartite and tripartite

mutual information, probability distribution of single site von Neumann entropy

and connected correlation function of number operators are studied to get a more

comprehensive look at the system under measurement. Finally, we perform the finite

size scaling analysis to study scaling behaviours of entanglement entropy, bipartite

mutual information and connected correlation function at the entanglement transitions.

For random measurements on a purely hard-core boson chain, which can be mapped to

a non-interacting model of fermions, we see entanglement entropy increasing linearly

with system size for small mean values of the random strengths. The increase is

suppressed for larger mean values. This suggests a possible entanglement transition,

which also shows a maximum at the transition point in bipartite mutual information.

We also observe significant changes in some quantities with increasing the variance

of the distribution from which strengths are chosen. For interacting boson chain with

the available results, we observe an increase in entanglement entropy with system size.

From scaling analysis of the random case, we obtain exponents that are different from

the constant case.
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1
Introduction

The physics of quantum systems interacting with the external environment [9] [24]

plays an important role in the foundational understanding of quantum mechanics[3].

The environment behaves as a measurement apparatus, conducting measurements on

the quantum systems.

Measurement Induced Phase Transition (MIPT) is one of the fascinating phenomena

present in the quantum realm. It occurs when a drastic discontinuous change takes place

in the entanglement properties of a quantum system because of repeated measurements.

The competition of scrambling unitary dynamics and continuous local measurements

gives rise to this measurement induced phase transition in entanglement from volume

law to area law as measurement strength increases.

As found in some experimental work [13] [8] [2], when we try to realize the

measurement dynamics physically, there will be spatially random noise in some aspects

of the device. This noise appears as a static disorder in measurement strength for

monitored quantum systems, which can significantly affect critical points and associated

phases.

Previous works have studied MIPTs in real systems[10] and systems with unitary

time evolution generated by random unitary circuits [5] [16] with constant measurement

strengths. In the work done in [10], signatures of measurement induced criticality

are found in hard-core boson chain undergoing continuous monitoring with constant

measurement strength. In the paper [23], to study the noise in monitored systems,

1



2

random quantum circuits with spatially varying measurement rates (some qubits getting

preferentially measured over others) have been studied. In this study it was found

that under such varying measurements, the transition and phases change drastically,

flowing to an infinite-randomness fixed point at the critical measurement strength. The

nature of the critical point in this scenario is very different from the case of the constant

measurement rate. The entanglement structures here behave unusually. At the critical

measurement rate, the entanglement of the subsystem scales as 𝑆 ∼
√
𝑙 instead of 𝑙𝑜𝑔𝑙 as

observed usually for homogeneous measurements where 𝑙 is the size of the subsystem

and the dynamical critical exponent becomes 𝑧 = ∞. Griffiths phases where rare-region

effects dominate certain quantities are present around the critical point. More details

are provided in the chapter on random measurements.

Considering the above cases a natural question arises as to whether a measurement

induced criticality occurs in quantum many-body systems that are relevant to realistic

physical setups with random noise in some aspect of measurement. If such a transition

even happens will there be any difference in the nature of its critical point as found in

the random circuits? Motivated by this in the thesis, we have studied the hard-core

boson chain Hamiltonian with randomness in the value of measurement strengths at

each site.

The thesis has the following structure:

Chapter 2 discusses the Measurement Induced Phase Transition (MIPT) model

in detail. We introduce quantum entanglement, quantum measurements and how

continuous measurements are obtained. Further, we talk about quantum dynamics

under continuous measurements and also present the numerical methodology to

implement this dynamics. In the appendix of Chapter 2, we show the Runge-Kutta

fourth-order method to perform the time evolution.

In chapter 3, we introduce the hard-core boson chain model on which we study

the dynamics under continuous measurement of local occupation number. Here,

we perform measurements with constant measurement strengths at all sites. We

also introduce quantities like von Neumann Entanglement Entropy, particle densities,

bipartite and tripartite mutual information, probability distribution of single site von

Neumann entropy and connected correlation function of number operators to study

the behaviour of the system under measurement in more detail. In the appendix of
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this chapter, we discuss how to construct a Hamiltonian matrix and calculate bipartite

mutual information using Python coding.

In Chapter 4, we study the effect of measurements with random strengths at each

site, selected from two different distributions on the hard-core boson chain and compare

them with the constant strengths case in Chapter 3. We also use the quantities described

in Chapter 3 to study this case. For one of the distributions, we study the interacting

chain under measurement.

In Chapter 5, the finite scaling size for the results of Chapters 3 and 4 is done and

compared to get a better picture of the measurement induced phase transition.

Finally, in Chapter 6 we give an outlook and discuss future research possibilities

that we can address further.



2
Measurement Induced Phase

Transition

To understand measurement induced phase transition we have to first get familiarised

with the concepts of quantum entanglement and entanglement entropy.

2.1. Quantum Entanglement
Quantum entanglement is a phenomenon that takes place when many-body quantum

state is such that each particle’s quantum state cannot be described independently of

the state of the other, even when a large distance separates the particles.

Suppose there are two quantum systems 𝑄 and 𝑅 with states |𝜓⟩𝑄 and |𝜓⟩𝑅
respectively. A quantum state |𝜓⟩ of a system including both 𝑄 and 𝑅 is called

entangled when it can not be expressed as a direct product of states |𝜓⟩𝑄 and |𝜓⟩𝑅 i.e.,

|𝜓⟩ ≠ |𝜓⟩𝑄 ⊗ |𝜓⟩𝑅 (2.1)

For example, take the Bell-pair state

|𝜓⟩ = 1√
2

(|↑⟩𝑄 |↓⟩𝑅 − |↓⟩𝑄 |↑⟩𝑅) (2.2)

This state can not be represented as a direct product of |↑⟩ (spin up) and |↓⟩ (spin

down). Measuring the spin of𝑄 will immediately collapse the spin state of its entangled

4



2.2. Entanglement entropy 5

partner 𝑅.

Quantum Entanglement captures true quantum correlations that lack any classical

counterpart. Entanglement can also be used to characterize various quantum phases

and their transitions. Quantum entanglement has been studied theoretically as well as

measured experimentally.

2.2. Entanglement entropy
We focus on entanglement probes as the measurement induced transition is present in

the averaged quantities that are nonlinear in the reduced density matrix conditional on

measurement outcomes [23].

Entanglement entropy is a measure of uncertainty in determining the state of a

subsystem of a system in a pure state |𝜓⟩. To calculate entanglement entropy we divide

the system into two parts, subsystem 𝐴 and subsystem 𝐵, as shown in the Fig. 2.1.

Figure 2.1: Bi-partition of a physical system in real space. Here, it is shown in 2D.

For a subsystem A, the von Neumann entanglement entropy is given by,

𝑆𝐴 = −𝑇𝑟𝐴(𝜌𝐴𝑙𝑜𝑔𝜌𝐴) (2.3)

where,

The density matrix is,

𝜌 = |𝜓⟩ ⟨𝜓 | (2.4)

and reduced density matrix for subsystems A is,
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𝜌𝐴 = 𝑇𝑟𝐵𝜌 (2.5)

where 𝐵 is the rest of the system excluding 𝐴.

Below we describe the volume and area law of entanglement entropy.

Volume Law

For isolated systems exhibiting thermalization, bipartite entanglement entropy of

an initially low entangled state, like a product state, grows linearly in time and after

a long time saturates to a steady-state value. This value is in general, proportional to

the volume of the subregion. This is called as the volume law of the entanglement

entropy [10]. In systems obeying volume-law entanglement, extensively many degrees

of freedom proportional to the volume of subsystem A are entangled with the exterior

region.

Area law

In the systems following Area law, the entanglement entropy is proportional to the

boundary or the surface area of the subsystem.

As shown in Fig. 2.2, showing area law, only the shaded boundary region propor-

tional to 𝜕𝐴 contribute to the entanglement.

Figure 2.2: Area law entanglement entropy in one and two spatial dimensions. The figure is taken from

ref. (2s)

2.3. MIPT
Entanglement is an important tool for understanding dynamics, nontrivial topology

and critical phenomena of many-body quantum systems. Starting with an initial state

with low entanglement, more entanglement is generated by unitary time evolutions
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( determined by Hamiltonian or quantum gates) between two distant subregions of

the system. On the other hand, the measurement of a local operator disentangles the

measured local state from the rest of the system. As we do these measurements more

and more it results in the decrease of entanglement entropy.

This competition between unitary dynamics and local quantum measurements

gives rise to quantum phase transition in entanglement from volume law to area law

as measurement strength is increased. The transition occurs at a particular critical

value of measurement strength (𝑝𝑐). MIPTs can also take place in the presence of

measurement-only dynamics because of the competition between two non-commuting

measurements as shown in the paper [11].

Figure 2.3: Measurement Induced Phase Transition from entangling volume law phase to disentangling

area law phase as measurement strength p increases. The critical measurement strength is 𝑝𝑐 . Figure

taken from [19]

Unitary dynamics and measurements can be simulated using different models. We

can use random unitary circuits and projective measurements as shown in Fig. 2.4. We

can also use real physical systems with continuous quantum measurements.

As shown in Fig. 2.5, in the region with 𝑝 < 𝑝𝑐 i.e., the entangling phase (upper

curve), the entanglement growth is ballistic with time. Normally logarithmic growth is

seen at the critical point 𝑝𝑐 (middle curve). This is because of the scale invariance which

also gives power-law correlations in connected correlation functions. In the 𝑝 > 𝑝𝑐

disentangling region (lower curve), the entanglement saturates to a finite value.

2.4. Constructing Continuous Measurements
We are introduced to quantum measurement, which takes place without considering

the time involved. The measurement just appears to happen instantaneously. However,

this understanding of quantum measurements is incomplete.

Suppose we are continuously monitoring some observable of the system. Here,
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Figure 2.4: Circuits for the evolution of the quantum system. Unitary operators are shown by bricks and

measurements can take place at dots showing spacetime locations. Figure taken from [19]

Figure 2.5: Bipartite entanglement entropy growth of an infinite chain for different values of

measurement strengths. Figure taken from [19]
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information is obtained at a finite rate and continuously so we need to understand what

is happening to the system while the measurement is being done over it. Another point

to consider is that nothing happens instantaneously. If the time of dynamics of the

system is shorter or comparable to that of the measurement time then it is necessary to

understand both the effect of measurement on the system and the dynamics of the flow

of information to the observer[12]. Continuous quantum measurement describe such

situations.

To understand Continuous Measurements we first need to understand projective,

POVM and weak measurements.

POVMs and Weak measurements

We know von Neumann measurements. If the state of the system is |𝜓⟩ = ∑
𝑛 𝑐𝑛 |𝑛⟩

where |𝑛⟩ with n=1,....𝑛𝑚𝑎𝑥 are the eigenstates, then the probability that system will be

projected on |𝑛⟩ is |𝑐𝑛 |2.

Complete information i.e. the exact value of the observable after the measurement

is done is provided by von Neumann measurement.

There are measurements that give only partial information about the observable,

meaning while it reduces the uncertainty of the observable, it is not completely removed.

The set of projection operators given below describes von Neumann measurements,

𝑃𝑛 = |𝑛⟩ ⟨𝑛 | (2.6)

The initial state of the system can be given by the density operator 𝜌 = |𝜓⟩ ⟨𝜓 |. The

final state’s 𝑛th possible outcome is then,

𝜌 𝑓 = |𝑛⟩ ⟨𝑛 | =
𝑃𝑛𝜌𝑃𝑛

𝑇𝑟[𝑃𝑛𝜌𝑃𝑛]
(2.7)

the probability of getting this result is,

𝑃(𝑛) = 𝑇𝑟[𝑃𝑛𝜌𝑃𝑛] = 𝑐𝑛 (2.8)

Using the same fashion we can make every possible measurement with N possible

outcomes by generalizing the set of operators Ω𝑘 with

∑𝑘𝑚𝑎𝑥
𝑘=1

Ω†
𝑘
Ω𝑘 = 𝐼. 𝐼 is the identity

operator.
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𝜌 𝑓 =
Ω𝑘𝜌Ω†

𝑘

𝑇𝑟[Ω𝑘𝜌Ω†
𝑘
]

(2.9)

with,

𝑃(𝑘) = 𝑇𝑟[Ω𝑘𝜌Ω
†
𝑘
] (2.10)

is the probability of obtaining the 𝑘𝑡ℎ outcome.

These generalised measurements are called POVMs (positive operator-valued mea-

sure). Thus the operater 𝐾 =
∑𝑏
𝑘=𝑎Ω

†
𝑘
Ω𝑘 gives the probability that 𝑘 lies in the range

[𝑎, 𝑏].
For measurements giving partial information, we choose Ω𝑘 to be the weighted sum

of projectors on the eigenstates instead of just simply projecting on a single eigenstate.

Ω𝑘 =
1

N

∑
𝑛

𝑒𝑥𝑝[−𝑚(𝑛 − 𝑘)2/4] |𝑛⟩ ⟨𝑛 | (2.11)

Here N is the normalization constant.The final state after such a measurement is

performed is,

𝜌 𝑓 =
Ω𝑘𝜌Ω†

𝑘

𝑇𝑟[Ω𝑘𝜌Ω†
𝑘
]
=

1

N

∑
𝑛

𝑒𝑥𝑝[−𝑚(𝑛 − 𝑘)2/2] |𝑛⟩ ⟨𝑛 | (2.12)

Here the final state is peaked at eigenvalue k and it has a width of 1/𝑚2
. As the value

of 𝑚 grows, the final uncertainty regarding the observable’s value decreases. ’Strong

measurements’ are those which have a large value of 𝑚. ’Weak measurements’ are

conversely the measurements with small𝑚. For constructing continuous measurements

we will use these weak measurements.

Continuous Measurements

A measurement in which information is continually extracted from a system is called

a continuous measurement [12]. This means that as the measurement duration goes to

zero, the amount of information obtained will go to zero.

To construct continuous measurement, first divide time into a sequence of Δ𝑡 length

of intervals. In each interval consider a weak measurement. Next, we make the strength

of each measurement proportional to the time interval and then take the limit in which

the time intervals become infinitesimally small as Δ𝑡 → 0 (or similarly, Δ𝑡 → 𝑑𝑡).
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In this limit, in any finite time interval more and more measurements are done but

each being increasingly weak. We choose the variance of the measurement result to

scale to Δ𝑡, ensuring that a sensible continuum limit is obtained. Due to this random

nature of the measurements we obtain a stochastic equation of motion. (A variable

fluctuating randomly over time is a stochastic variable).

2.5. Quantum Dynamics Under Measurement
When a quantum system interacts with an external environment, the environment

acts as a measurement apparatus, conducting measurements on the quantum system

[21]. The environment provides random measurements, which are basically classical

stochastic outcomes giving rise to stochastic quantum dynamics in quantum systems.

[7]

Various methods are used to model the measurement process in quantum dynamical

systems such as;

1) Quantum state diffusion (QSD): it is a continuous measurement protocol

2) Quantum jump process: here occasional abrupt measurement of the quantum

system is done [17]

In this stochastic process, we obtain various quantum trajectories over which we can

take averages later.

Quantum trajectory: A single quantum trajectory in a stochastic process is a specific

sequence of measurements and their outcomes with the time evolutions between

adjacent measurements. It can be shown as |𝜓(𝑡 , 𝜉𝑡)⟩, where 𝜉𝑡 represents stochastic

outcomes in the trajectory.

The averaged density matrix obtained from these quantum trajectories is,

𝜌̄(𝑡)𝑏 = |𝜓(𝑡 , 𝜉𝑡)⟩ ⟨𝜓(𝑡 , 𝜉𝑡)| (2.13)

here, (...) is the average over an ensemble of stochastic trajectories.

The 𝜌̄(𝑡) follows Lindblad dynamics given by the Markovian master equation which

describes unconditional, dissipative dynamics [6],

𝑑𝜌̄(𝑡)
𝑑𝑡

= −𝑖[𝐻, 𝜌̄(𝑡)] +
∑
𝑗

𝛾𝑗(𝐿 𝑗 𝜌̄(𝑡)𝐿†𝑗 −
1

2

𝐿†𝑗 𝐿 𝑗 𝜌̄(𝑡) −
1

2

𝜌̄(𝑡)𝐿†𝑗 𝐿 𝑗) (2.14)
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Here, 𝐻 is the Hamiltonian of the system, 𝐿 𝑗 is the Lindblad operators (or jump

operators) which shows the quantum measurement done on the system and 𝛾𝑗 is the

strength of these measurements.

We can express this equation in the alternative form,

𝑑𝜌̄(𝑡)
𝑑𝑡

= −𝑖(𝐻𝑒 𝑓 𝑓 𝜌̄(𝑡) − 𝜌̄(𝑡)𝐻†
𝑒 𝑓 𝑓

) +
∑
𝑗

𝛾𝑗𝐿 𝑗 𝜌̄(𝑡)𝐿†𝑗 (2.15)

Where,

𝐻𝑒 𝑓 𝑓 = 𝐻 − 𝑖

2

∑
𝑗

𝛾𝑗𝐿
†
𝑗 𝐿 𝑗 (2.16)

𝐻𝑒 𝑓 𝑓 is called the effective Hamiltonian.

The Lindblad dynamics can be achieved by both QSD and quantum jump dynamics

[6].

2.6. Quantum jump measurement process
In the quantum trajectory approach, measurements happen as quantum jumps associ-

ated with the non-Hermitian Hamiltonian’s nonunitary time evolution.

We use the stochastic Schrodinger equation obeying the discrete stochastic process

called as the marked point process for this modelling of quantum jump, [4] [10]

𝑑 |𝜓(𝑡)⟩ = −𝑖 ©­«𝐻𝑒 𝑓 𝑓 +
𝑖

2

𝐿∑
𝑗=1

𝛾𝑗 | |𝐿 𝑗 |𝜓(𝑡)⟩ | |2ª®¬ |𝜓(𝑡)⟩ 𝑑𝑡 +
𝐿∑
𝑗=1

(
𝐿 𝑗 |𝜓(𝑡)⟩

| |𝐿 𝑗 |𝜓(𝑡)⟩ | |
− |𝜓(𝑡)⟩

)
𝑑𝜉𝑗(𝑡)

(2.17)

𝑑𝜉𝑗(𝑡) are discrete random variables with the mean values,

𝐸[𝑑𝜉𝑗(𝑡)] = 𝛾𝑗 | |𝐿 𝑗 |𝜓(𝑡)⟩ | |2𝑑𝑡 (2.18)

here, 𝐸[...] represents the average over the stochastic process. The stochastic calculus

followed here is,

𝑑𝜉𝑗(𝑡)𝑑𝜉𝑘(𝑡) = 𝛿 𝑗𝑘𝑑𝜉𝑗(𝑡) (2.19)

Thus now we can evolve the quantum system but the effective non-Hermitian

Hamiltonian given by,
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𝐻𝑒 𝑓 𝑓 = 𝐻 − 𝑖

2

𝐿∑
𝑗=1

𝛾𝑗𝐿
†
𝑗 𝐿 𝑗 (2.20)

The time evolution by this non-Hermitian Hamiltonian is non-unitary. Let the time

evolved state at time t be |𝜓(𝑡)⟩ = 𝑒−𝑖𝐻𝑒 𝑓 𝑓 𝑡 |𝜓0⟩, where |𝜓0⟩ is the normalised initial state.

Then |𝜓(𝑡)⟩ is not normalised state meaning, ⟨𝜓(𝑡)|𝜓(𝑡)⟩ ≠ 1.

The normalised state will be given by,

��𝜓̄(𝑡)〉 = 𝑒−𝑖𝐻𝑒 𝑓 𝑓 𝑡 |𝜓0⟩
| |𝑒−𝑖𝐻𝑒 𝑓 𝑓 𝑡 |𝜓0⟩ | |

(2.21)

𝑒−𝑖𝐻𝑒 𝑓 𝑓 𝑡 |𝜓0⟩ is the operator norm.

In the quantum jump techniques, the master equation is rewritten as a stochastic

average over individual trajectories, which can be further evolved numerically in time

as pure states. Using these techniques, the numerically heavy need to propagate a

full-density matrix in time is avoided and this complex procedure is replaced with

stochastic sampling. This stochastic sampling of states is beneficial as it requires the

propagation of state vectors with size 𝑁𝐻 only, where 𝑁𝐻 is the dimension of Hilbert

space. On the other hand, propagating the density matrix would have required us to

deal with an object of size 𝑁2

𝐻
. This makes it numerical efficient, though the downside

is that we must collect many samples for small statistical errors. Also to maintain the

efficiency in numerical calculations it is necessary that the number of samples needed

remains smaller than the size of the Hilbert space. [6] Thus in the further analysis

we will focus on the quantum trajectory approach to directly access the entanglement

dynamics conditioned on measurement outcomes rather than the density matrices’

unconditional dynamics by the Lindblad master equation.

2.7. Numerical Methodology
Here we describe the way to numerically simulate the measurement process i.e the

update algorithm to simulate stochastic Schrodinger equation [10] [4]:

(1) First evolve the initial state |𝜓(0)⟩ starting from 𝑡 = 0, by the Schrodinger equation

with the non-Hermitian Hamiltonian 𝐻𝑒 𝑓 𝑓

𝑑 |𝜓(𝑡)⟩
𝑑𝑡

= −𝑖𝐻𝑒 𝑓 𝑓 |𝜓(𝑡)⟩ (2.22)
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till waiting time t= 𝜏 selected by the following equation,

| |𝑒−𝑖𝐻𝑒 𝑓 𝑓 𝜏 |𝜓(𝑡)⟩ | |2 = 𝜂 (2.23)

where 𝜂 is a random number chosen from a uniform distribution in [0, 1]
(2) At 𝑡 = 𝜏, make a quantum jump by the Lindblad operator 𝐿 𝑗 with the probability

𝑝 𝑗 given by,

𝑝 𝑗 =
𝛾𝑗 | |𝐿 𝑗 |𝜓(𝜏)⟩ | |2∑
𝑘 𝛾𝑘 | |𝐿𝑘 |𝜓(𝜏)⟩ | |2

(2.24)

(3) Finally the state gets replaced as

|𝜓(𝜏)⟩ →
𝐿 𝑗 |𝜓(𝜏)⟩

| |𝐿 𝑗 |𝜓(𝜏)⟩ | |
(2.25)

(4) We again start with step 1, now by replacing the initial state |𝜓(0)⟩ by Eq. 2.25.

We keep repeating this process by choosing new random numbers till the maximum

time chosen for calculations.

In this method, instead of performing the evolution for a fixed time length, the

jumps occur at a certain point in time. Thus, both the time evolution under the effective

Hamiltonian between the jumps and the times of these jumps can be solved numerically

with arbitrary precision.

To perform this time evolution we have used the Runge-Kutta method which is

explained in more detail in the appendix.

2.7.1. Choosing when to do measurement
We have Eq. 2.23 to decide the waiting time 𝜏. To implement this in practical numerical

calculations, the following way is used,

At the start of each iteration, we choose a random number 𝜂. Further in our calcula-

tion, we do the time propagation while the quantity, let’s call it 𝑄 = | |𝑒−𝑖𝐻𝑒 𝑓 𝑓 𝜏 |𝜓(𝑡)⟩ | |2

is greater than that of 𝜂. When 𝑄 goes below 𝜂 we stop and use the last propagated

wave-function for further calculations i.e. for performing a quantum jump.

However, we have to improve this method more to get 𝑄 closer to that of 𝜂. Suppose

the random number in one of the iterations is 𝜂=0.50. The wavefunction starts with

giving the value of | |𝑒−𝑖𝐻𝑒 𝑓 𝑓 𝜏 |𝜓(𝑡)⟩ | |2 as 1 at t=0 and with each step 𝑑𝑡 this value keeps
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decreasing. Let’s say at 𝑛𝑑𝑡 the value is 0.56 and at (𝑛 + 1)𝑑𝑡 it becomes 0.45, where n is

some integer. If we used the wavefunctions at 𝑛𝑑𝑡 or (𝑛 + 1)𝑑𝑡 for measurement this can

add error because of the significant difference between their corresponding 𝑄 and 𝜂.

Solution used:

Approximate what will be the time for the value to be 𝜂 if at time𝑛𝑑𝑡 and (𝑛 + 1)𝑑𝑡
its values are 0.56 and 0.45 resp. Do this by linear interpolation. Say the time is 𝑇𝑟 .

Now select 𝑑𝑡2 = (𝑇𝑟 − 𝑛𝑑𝑡)/𝑑 where, choose
′𝑑′ as required. The lesser the value of

𝑑𝑡2, the more the precision but also the running time will be more. Use this new 𝑑𝑡2

to now perform Runge-Kutta from ndt to 𝑇𝑟 . This will give you a wavefunction at the

end whose corresponding 𝑄 is closer to 𝑟. After the measurement of this wavefunction,

from 𝑇𝑟 repeat the unitary evolution with the original 𝑑𝑡 selecting new random number

and repeat the above procedure with new 𝑑𝑡2 according to need.

2.7.2. Choosing where to do measurement
For performing step (2) given in the numerical Methodology we must select a particular

Lindbland operator 𝐿 𝑗 to apply. This is done as explained below [6];

1) We have probabilities 𝑝 𝑗 between 0 and 1 such that

∑
𝑗 𝑝 𝑗 = 1. Using this we make

a list such as, 𝑘1 = 𝑝1, 𝑘2 = 𝑝1 + 𝑝2, 𝑘3 = 𝑝1 + 𝑝2 + 𝑝3 and so on.

2)Next, we choose a second random number 𝑟2, also from a uniform distribution in

[0, 1]. We choose the first 𝑘 𝑗 which is greater than 𝑟2 and thus the associated operator

𝐿 𝑗 is chosen to be applied.



A
Appendix

A.1. Numerical method for Time Evolution
The exact evolution of a wavefunction by a Hermitian Hamiltonian H is,

|𝜓(𝑡)⟩ = 𝑒−𝑖𝐻𝑡 |𝜓(0)⟩ (A.1)

If a non-Hermitian Hamiltonian is taken and we want to evolve in discrete time we

can not use exact evolution. As a solution to this, we have used the Rungge-Kutta order

4 (RK4) evolution method.

The Runge-Kutta evolution is [14],

𝑦𝑛+1 = 𝑦𝑛 +
1

6

(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) (A.2)

where,

𝑘1 = ℎ 𝑓 (𝑥𝑛 , 𝑦𝑛)

𝑘2 = ℎ 𝑓 (𝑥𝑛 +
ℎ

2

, 𝑦𝑛 +
1

2

𝑘1)

𝑘3 = ℎ 𝑓 (𝑥𝑛 +
ℎ

2

, 𝑦𝑛 +
1

2

𝑘2)

𝑘4 = ℎ 𝑓 (𝑥𝑛 + ℎ, 𝑦𝑛 + 𝑘3)

16
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First, we performed the unitary evolution dynamics without any measurement of

the hard-core Bosons chain by evolving the Neel state by exact time evolution and

runge-kutta evolution (RK4) of the Schrodinger equation in occupation number basis.

This is done to benchmark RK4 method in further use while considering measurement.

In the Fig. A.1, we compared the RK4 evolution of Von Neumann entanglement

entropy with the exact evolution Eq.A.1. We consider the initial state |𝜓(0)⟩ as |10...10⟩.

By comparing Fig. A.2a and Fig. A.2b we can see how entropy calculated by RK4

method gets closer to exact as the time step decreases. But alongside this, the lower the

value of dt, the more time will be taken in numerical evolution. Thus, for our analysis

in this thesis, we have chosen the time-step to be 𝑑𝑡 = 0.01.

(a) V=0 (b) V=2

Figure A.1: Evolution of entanglement entropy in hard core boson chain with 𝐿 = 8, 𝐽′ = 1, 𝐽 = 1 at half

filling with only unitary evolution done by Exact evolution and RK4. Subsystem : (4,4), time-step=𝑑𝑡=0.1

(a) time-step=0.5 (b) time-step=0.01

Figure A.2: Evolution of entanglement entropy in hard core boson chain with 𝐿 = 4, 𝐽′ = 1, 𝐽 = 1, 𝑉 = 1

at half filling with only unitary evolution . Subsystem : (2,2); As 𝑑𝑡 decrease the resemblance with exact

evolution is more.



3
Measurement on hard-core boson

chain

3.1. Model
We choose to study the behaviour of hard-core boson chain under continuous measure-

ment of local particle numbers.

3.1.1. Hamiltonian of hard-core boson chain
The Hamiltonian of this model is,

𝐻 =

𝐿∑
𝑗=1

[ 𝐽
2

(𝑏†𝑗 𝑏 𝑗+1 + 𝑏†𝑗+1
𝑏 𝑗) +𝑉𝑛 𝑗𝑛 𝑗+1 +

𝐽′

2

(𝑏†𝑗 𝑏 𝑗+2 + 𝑏†𝑗+2
𝑏 𝑗)] (3.1)

Figure 3.1: A hard-core boson chain with continuous measurement. Occupied sites are shown with blue

circles and j is the label of the site. 𝐽(𝐽′) is (next) nearest-neighbour hopping. 𝑉 is interaction strength.

Figure taken from [10]

18
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𝐿 is the size of the system i.e. number of sites. 𝐽 is the nearest neighbour hopping

term and 𝐽′ is the next nearest neighbour hopping term. 𝑉 is the interaction strength.

In all further analyses, we will keep 𝐽 = 1 constant. 𝑏 𝑗 is the bosonic annihilation

operator while 𝑏†
𝑗

is the bosonic creation operator acting on site 𝑗. 𝑛 𝑗 = 𝑏†
𝑗
𝑏 𝑗 is the

number operator. We place a hard-core constraint (𝑏 𝑗)2 = 0, meaning each site can only

be occupied by 0 or 1 boson. Throughout the thesis, we will consider periodic boundary

conditions (𝑏𝐿+𝑗 = 𝑏 𝑗).

3.1.2. Dynamics under Continuous Measurement of local occupation

number
We will now see the non-unitary dynamics of this 1D hard-core boson chain under

continuous measurement using the quantum trajectory approach described in the

previous chapter.

We choose to do the continuous measurement of local particle numbers in this

model and thus can take the Lindblad operators to be,

𝐿 𝑗 = 𝑛 𝑗 (3.2)

We have, 𝑛 𝑗 |𝑁⟩ = 𝑁 |𝑁⟩ with hard core constraint (N=0 or 1 only). Thus for the

number operator, we have the relation 𝑛2

𝑗
= 𝑛 𝑗 .

The dynamics of this model is then studied conditioned on measurement outcomes

without averaging by focusing on the quantum trajectory of the pure state |𝜓(𝑡)⟩. We

use the stochastic Schrodinger equation obeying the discrete stochastic process called

as the marked point process as described in Eq. 2.17

𝑑 |𝜓(𝑡)⟩ = −𝑖 ©­«𝐻𝑒 𝑓 𝑓 +
𝑖

2

𝐿∑
𝑗=1

𝛾𝑗 | |𝑛 𝑗 |𝜓(𝑡)⟩ | |2ª®¬ |𝜓(𝑡)⟩ 𝑑𝑡 +
𝐿∑
𝑗=1

(
𝑛 𝑗 |𝜓(𝑡)⟩

| |𝑛 𝑗 |𝜓(𝑡)⟩ | |
− |𝜓(𝑡)⟩

)
𝑑𝜉𝑗(𝑡)

(3.3)

where 𝐻𝑒 𝑓 𝑓 is a non-Hermitian Hamiltonian,

𝐻𝑒 𝑓 𝑓 = 𝐻 − 𝑖

2

𝐿∑
𝑗=1

𝛾𝑗𝑛 𝑗𝑛
†
𝑗 (3.4)
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We will use the numerical procedure described in Chapter 2 to simulate the stochastic

Schrodinger equation. By use of random number generators, we choose a time until

which an initial state is evolved and then make a quantum jump at a site with a

probability again chosen by random numbers [6].

We have the Eq. 2.23 to decide the waiting time to do the measurement. From this

we get,

𝑒−𝑖𝐻𝑒 𝑓 𝑓 𝜏𝑒
𝑖𝐻†

𝑒 𝑓 𝑓
𝜏
= 𝜂

𝑒−𝑖𝐻𝜏𝑒
𝑖2𝜏
2

∑𝐿
𝑗=1

𝛾𝑗𝐿𝑗𝐿†𝑗 𝑒 𝑖𝐻𝜏𝑒
𝑖2𝜏
2

∑𝐿
𝑗=1

𝛾𝑗𝐿 𝑗𝐿†𝑗 = 𝜂

𝑒
−𝜏∑𝐿

𝑗=1
𝛾𝑗𝐿 𝑗𝐿†𝑗 = 𝜂

Thus,

𝜏 =
−𝑙𝑛𝜂∑𝐿

𝑗=1
𝛾𝑗𝑛 𝑗𝑛†𝑗

(3.5)

with the relation 𝑛2

𝑗
= 𝑛 𝑗 and 𝑛†

𝑗
= 𝑛 𝑗 , 𝜏 becomes,

𝜏 =
−𝑙𝑛𝜂∑𝐿
𝑗=1

𝛾𝑗𝑛 𝑗
(3.6)

3.2. Measurement with Constant measurement strengths
Here, let’s consider a special case where the value of measurement strength at each site

is the same,𝛾𝑗 = 𝛾 for all 𝑗. The non-Hermitian Hamiltonian with hard-core constraint

then becomes,

𝐻𝑒 𝑓 𝑓 = 𝐻 − 𝛾
𝑖

2

𝐿∑
𝑗=1

𝑛 𝑗 (3.7)

= 𝐻 − 𝑖𝐿𝛾D

2

(3.8)

where D =< 𝑛𝑡𝑜𝑡 > /𝐿 is the filling of the initial state of the system. The total particle

number

∑𝐿
𝑗=1
𝑛 𝑗 is conserved under time evolution by 𝐻𝑒 𝑓 𝑓 and measurements of 𝑛 𝑗 .
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In all further analysis, we will consider a half-filled system, the initial state with fixed

filling D = 1/2 is then,

|𝜓(0)⟩ = |0101...01⟩ (3.9)

In this special case of constant measurement strengths on all lattice sites, the 𝜏 given

by Eq. 3.6 becomes,

𝜏 =
−𝑙𝑛𝜂
𝛾𝐿D

(3.10)

Thus, because of the presence of constant measurement strengths and particle-

number conservation, the non-Hermitian part of the Hamiltonian just becomes a

constant and makes the frequency of observing quantum jumps to be the same.

We will now look into the system’s entanglement probes described below. Along

with this some other quantities are also given. In this chapter, the results of these

quantities with only the constant measurement strengths are given. We will use the

same quantities in further chapters to analyse measurement dynamics with random

measurement strengths.

Note:

1. The RK4 method is used to perform the non-unitary time evolution, using a

discrete-time 𝑑𝑡. In our calculations, we majorly use 𝑑𝑡 = 0.01. We chose this value, as

lower values of 𝑑𝑡 than this also gave the same convergence, but the process took more

time.

2. As the trajectory proceeds we can calculate the quantities given below at each

time step 𝑑𝑡. To save time, but still get enough data set to take averages we calculate the

quantities at each 50th step.

Any changes in the value of 𝑑𝑡 or step will be mentioned.

3.3. von Neumann Entanglement Entropy
To study entanglement properties and associated MIPTs in the steady state, we calculate

the von Neumann Entanglement Entropy for subsystem 𝐴. For that, we first divide

the system into two parts, subsystem 𝐴 and subsystem 𝐵. The bi-partition of the

Hilbert space of an N-body quantum system is 𝐻𝐴𝐵 = 𝐻𝐴 ⊗ 𝐻𝐵, where H is the Hilbert
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space, 𝐻𝐴(𝐻𝐵) describes all the states in subsystems 𝐴 and 𝐵 respectively. In practical

numerical calculations, we have obtained this Entropy by using the Singular Value

Decomposition (SVD) method as follows.

Matrix decomposition means describing a given matrix by its constituent elements.

All matrices have SVD.

𝐴𝑚×𝑛 = 𝑈𝑚×𝑚𝜎𝑚×𝑛𝑉
𝑇
𝑛×𝑛 (3.11)

Where 𝜎 is a diagonal matrix, the diagonal values of this matrix are singular values

of 𝐴.

Schmidt Decomposition of a state is given by;

|𝜓⟩ =
∑
𝑗

𝜆 𝑗 | 𝑗⟩𝐴 | 𝑗⟩𝐵 (3.12)

where 𝜆 𝑗 ∈ [0, 1], ∑𝑗 𝜆
2

𝑗
= 1, | 𝑗⟩𝐴 and | 𝑗⟩𝐵 are orthonormal basis of the subspaces

𝐻𝐴 and 𝐻𝐵 respectively.

The density matrix is,

𝜌 = |𝜓⟩ ⟨𝜓 |

=
∑
𝑗

∑
𝑘

𝜆 𝑗𝜆𝑘 | 𝑗⟩𝐴 | 𝑗⟩𝐵 ⟨𝑘 |𝐴 ⟨𝑘 |𝐵

Reduced density matrix for subsystems 𝐴 and 𝐵,

𝜌𝐴 = 𝑇𝑟𝐵𝜌 =
∑
𝑗

𝜆2

𝑗 | 𝑗⟩𝐴 ⟨𝑗 |𝐴 (3.13)

𝜌𝐵 = 𝑇𝑟𝐴𝜌 =
∑
𝑗

𝜆2

𝑗 | 𝑗⟩𝐵 ⟨𝑗 |𝐵 (3.14)

Thus,

𝑆𝐴 = −𝑇𝑟𝐴(𝜌𝐴𝑙𝑜𝑔𝜌𝐴) = −
∑
𝑗

𝜆2

𝑗 𝑙𝑜𝑔𝜆
2

𝑗 (3.15)

Entanglement Entropy is used to characterize the true quantum nature of various

states. To characterize different phases or states, the system size scaling of this entropy

is employed.
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Figure 3.2: Entanglement Entropies of hard-core boson chain with 𝐿 = 8, 𝐽′ = 1, 𝐽 = 1, 𝑉 = 0 with

half-filling averaged over 200 quantum trajectories for different values of 𝛾. Here time step, 𝑑𝑡 = 0.01.

The size of subsystem 𝐴 is 𝐿/2.

3.4. Particle Densities
The particle density for a single quantum trajectory |𝜓(𝑡)⟩ is,

< 𝑛 𝑗(𝑡) >= ⟨𝜓(𝑡)| 𝑛 𝑗 |𝜓(𝑡)⟩ (3.16)

As time progresses the particle density relaxes to the filling of about 𝜈 = 1/2 , Fig.

3.3b.

As shown in Fig. 3.3a, for a large value of measurement strength ( 𝛾 = 5) more

diffusive behaviour is observed in the density profile compared to a smaller value of

strength ( 𝛾 = 0.5).

This happens because of the competition between measurements and unitary time

evolutions between successive measurements. The more the strength of measurement,

the more the competition and more will be the diffusive behaviour.

We observe that the local occupation numbers quickly relax to a constant value in

the interested timescale regime, thus making the probability distributions for measured

positions of particles effectively uniform.
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Figure 3.3: Local Particle densities of hard-core boson chain with 𝐿 = 8, 𝐽′ = 1, 𝐽 = 1, 𝑉 = 0 with

half-filling
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The particle-number fluctuation can be measured experimentally by site-resolved

detection techniques which became possible due to quantum gas microscopy. [10]

3.5. Bipartite Mutual Information
Finding critical measurement strength 𝛾𝑐 by only fitting forms of small system sizes data

of entanglement entropy is difficult. So, to quantify 𝛾𝑐 in a more convenient manner we

study bipartite mutual information.

Quantum Mutual Information measures the correlation between subsystems of the

quantum state.

Von-Neumann mutual information is defined as [10]

𝐼𝐴𝐵(𝑡) = 𝑆𝐴(𝑡) + 𝑆𝐵(𝑡) − 𝑆𝐴∪𝐵(𝑡) (3.17)

where 𝑆𝐴 and 𝑆𝐵 are the von Neumann entanglement entropies of subsystems A

and B embedded in the whole system, while 𝑆𝐴∪𝐵 is the entropy of their disjoint union.

We will take sub-regions A and B to be single sites which are separated by the

distance 𝑟𝐴𝐵 on a ring of the length L. For all further analysis, the following values are

used:

𝐴 = {1}
𝐵 = {𝑟𝐴𝐵 + 1}
𝐴 ∪ 𝐵 = {1, 𝑟𝐴𝐵 + 1}

here 𝑟𝐴𝐵 = 𝐿/2

Mutual information in a steady-state regime has been observed to make a peak

at the measurement-induced entanglement transition critical point with respect to

measurement rate in some systems [10] [15] [22]. Different behaviours can be observed

in different systems.

From Fig. 3.4a we can say that the critical strength of measurement-induced

transition is near the vicinity of 𝛾 = 1.4. A more precise value of critical point can be

obtained by considering higher system sizes.
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(a) Bipartite mutual information for L=8 and L=10 system sizes of hard-core boson chain with

𝐽′ = 1, 𝐽 = 1, 𝑉 = 0 with half-filling (averages taken over time 𝑡 = 40 to 𝑡 = 80).

3.6. Tripartite Mutual Information
Tripartite Mutual information is defined as,

𝐼𝐴𝐵𝐶(𝑡) = 𝑆𝐴(𝑡) + 𝑆𝐵(𝑡) + 𝑆𝐶(𝑡) − 𝑆𝐴∪𝐵(𝑡) − 𝑆𝐵∪𝐶(𝑡) − 𝑆𝐴∪𝐶(𝑡) + 𝑆𝐴∪𝐵∪𝐶(𝑡) (3.18)

where A, B and C are sub-regions of the whole system.

In the paper [20], tripartite mutual information has extensive (negative) values in the

volume-law phase. It is supposed to be finite at critical points with increasing system

size and vanishing in the area law entangled states. The results can become more finer

with increasing system size.

Thus, it is useful for determining the location of critical points as when we use its

values for different system sizes it gives crossings with minimal finite-size drift.

Note that the result may not be the same for all kinds of systems.

In Fig. 3.5a we have shown the comparison of the values of tripartite mutual

information with the same measurement strengths but considering different sub-

regions A, B and C of single sites, but the distance between them varies. We can observe

that as the measurement strength increases the difference between these two cases starts
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decreasing.

In Fig. 3.5b the tripartite mutual information for two different system sizes is shown.

As the strength of measurement increases, (typically in the area law regime) we observe

that the value starts approaching zero. Also as the system size increases it is observed

that in volume law region (smaller 𝛾 values) the values of tripartite mutual information

become more negative.
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(a) Tripartite mutual information for different subregions of L=8 system.
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(b) Tripartite mutual information for system sizes L=8 and L=10.
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3.7. Connected Correlation function
| < 𝑛1𝑛𝐿/2+1

>𝑐 |2 = | < 𝑛1𝑛𝐿/2+1
> − < 𝑛1 >< 𝑛𝐿/2+1

> |2 (3.19)

Here the first term is the expectation value of the product of operators and the

second term is the product of their averages.

The expectation value of product factorises i.e. < 𝐴𝐵 >=< 𝐴 >< 𝐵 > if A and B

are statistically independent. Thus, < ... >𝑐= 0 if the degrees of freedom of 𝑋 and

𝑋′
are completely uncorrelated. Thus the 𝛾 at which this correlation function starts

approaching zero we can say the system is becoming uncorrelated, its entanglement is

getting lowered meaning it is the start of the Area-Law phase.

More precise values of 𝛾𝑐 will be obtained by taking larger system sizes.
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(a) Plot of | < 𝑛1𝑛𝐿/2+1
>𝑐 |2 for constant measurement strengths with J1=1, V=0 at L=8 and L=10

(averages taken over time t=40 to t=80).

3.8. Probability distribution of Single site Von Neumann

entropy
Single-site Von Neumann entropy can be used as another indicator of the volume-to-area

law transition in MIPTs. Site with j=1 is used to calculate this entropy, though all single
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sites are equivalent as periodic boundary conditions are used.

Here in Fig. 3.7 and Fig. 3.8 we have plotted the probability distribution of Single-site

Von Neumann entropy for different measurement strengths with 𝐿 = 8 and constant

measurement strength. The distributions are different in area and volume law phases.

In the volume-law phase with 𝛾 = 0.5 and 1 as shown in Fig.3.7b and 3.7c corre-

spondingly, the single-site entropy distribution is seen to have two peaks. One is at

𝑆 = 0 and the other at the end 𝑆 > 0. If we consider pure unitary dynamics without

any measurements, the local information should spread into the whole space, making

the single site entanglement strong and thus only one peak should appear in the 𝑆 > 0

side. But as measurements are present, they stabilize the quantum information, thus

forming a peak near vanishing entropy [20].

As the area-law phase starts approaching with the increased strength of the mea-

surement as in Fig. 3.8b and 3.8c, the peak at 𝑆 > 0 starts disappearing and the peak

at 𝑆 = 0 starts becoming sharper. Deep in area law phase 𝛾 = 5 the sharpness is very

prominent. The area law phase is a low entanglement phase.
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Appendix

B.1. Constructing Hamiltonian
Considering periodic boundary conditions for 𝑁 = 4 sites and 3 particles, the model

becomes,

𝐻 =
𝐽

2

(𝑏†
1
𝑏2+𝑏1𝑏

†
2
)+𝑉𝑛1𝑛2+

𝐽

2

(𝑏†
2
𝑏3+𝑏2𝑏

†
3
)+𝑉𝑛2𝑛3+

𝐽

2

(𝑏†
3
𝑏4+𝑏3𝑏

†
4
)+𝑉𝑛3𝑛1+

𝐽

2

(𝑏†
4
𝑏1+𝑏4𝑏

†
1
)+𝑉𝑛4𝑛1

(B.1)

The basis states are |0111⟩, |1011⟩, |1101⟩ and |1110⟩.
𝐻 |0111⟩ = 𝐽

2
(|1011⟩ + |1110⟩) + 2𝑉 |0111⟩ similarly, others can be found.

Thus, the Matrix becomes, 

2𝑉
𝐽
2

0
𝐽
2

𝐽
2

2𝑉
𝐽
2

0

0
𝐽
2

2𝑉
𝐽
2

𝐽
2

0
𝐽
2

2𝑉


Using such particle number conservation, we choose a basis such that the Hamilto-

nian (with all allowed particle numbers) becomes block-diagonal. Here, we use one

such block, which can be diagonalized individually. This helps in doing more quicker

numerical calculations of larger system sizes.

The simplest way is to enumerate the states and construct the Hamiltonian matrix

using bits. We construct H by examining/flipping the bits. [1]
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B.2. Calculating Bipartite Mutual Information (b-MI)
To calculate b-MI, we need to calculate entanglement entropy at site 1, site (𝐿/2+ 1) and

their disjoint union. This is done in the following way,

Suppose we want to calculate 𝑆𝐴 where A is the subsystem consisting of site 1, A={1}.

Let the total system size be 8.

Usually in Python codes using SVD, the subsystem is partitioned at the end. Thus,

we need to permute the site numbered 1 and 7. Sites are numbered as [0,7]. Only after

this step can we perform the SVD.

The permutation is done as explained in the following example:

Let there be a system with 4 sites and 2 particles with a state,

|𝜓1⟩ = 0.5 |1001⟩ + 0.5 |0110⟩ (B.2)

this is (0, 0, 0.5, 0.5, 0, 0, 0)

now, if we want to calculate 𝑆𝐴 with A={2} we have to exchange site 2 and the last

site 3, transforming the basis and thus the state as,

|𝜓1⟩ = 0.5 |1010⟩ + 0.5 |0101⟩ (B.3)

this is (0, 0.5, 0, 0, 0.5, 0)



4
Hard-core Bosons under Random

Measurement

In the previous chapter, we saw the behaviour of hard-core boson chain with spatially

uniform measurement strengths at each site. From there we saw that there is a critical

measurement strength below which the volume law phase of entanglement is present

and above it, the area law phase is there. One can ask the question as to what happens if

we take a random distribution of measurement strengths at each site. For example, will

there be a sharp measurement-induced phase transition (MIPT)? If so, does the nature of

the transition remain the same as the constant measurement case? Thus in this chapter,

we will study the hard-core boson chain with continuous measurement of varying

strength at each site of the chain. These varying strengths can be randomly chosen from

a distribution and we will compare the mean values of measurement strength 𝛾𝑚𝑒𝑎𝑛

obtained from these distributions with the values of 𝛾 from the previous chapter. Here

we have studied two such distributions with varying means and variances.

As these distributions will contain values of 𝛾 both lower (for which previously

volume-law phase was there) and higher (with the previous area-law phase), it is

expected to show some different behaviour than that of the constant measurement

strengths case. We expect to obtain significant changes by increasing the variance of the

distribution for the same 𝛾𝑚𝑒𝑎𝑛 .

Here the non-Hermitian Hamiltonian considered is,

33
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𝐻𝑒 𝑓 𝑓 = 𝐻 − 𝑖

2

𝐿∑
𝑗=1

𝛾𝑗𝑛 𝑗 (4.1)

where 𝐻 is the Hermitian Hamiltonian of hard-core boson chain Eq.3.1 and for one

realization the values of measurement strengths at sites numbered with 𝑗, 𝛾𝑗 are selected

from a particular distribution. The time evolution by this non-Hermitian Hamiltonian

and modelling measurement process of local occupation number by quantum jump is

performed as described in Chapter 2.

In practical numerical calculations first, we select a set of 𝛾𝑗 values from a certain

distribution for 𝑗 = (0, 𝐿) sites. That particular set is kept constant and we run various

quantum trajectories with this set. Further, we keep selecting other sets of 𝛾𝑗 values

and their respective trajectories. Thus, we run (realizations × trajectories) runs in total.

Higher values of the number of trajectories and realization can provide data with less

statistical error.

Along with this, we will use the previously described indicators such as entangle-

ment entropy, number-density, bipartite and tripartite mutual information, connected

correlated function and single site entropy to study the transition from volume to

area-law phase of entanglement.

4.1. Selecting Measurement Strengths from Uniform Dis-

tribution
In first case the values of 𝛾𝑗 at corresponding site 𝑗 are randomly chosen from a uniform

distribution of values between [𝛾𝑚𝑖𝑛 , 𝛾𝑚𝑎𝑥] with mean 𝛾𝑚𝑒𝑎𝑛 = (𝛾𝑚𝑎𝑥 + 𝛾𝑚𝑖𝑛)/2 and

variance Δ𝛾 = (𝛾𝑚𝑎𝑥 − 𝛾𝑚𝑖𝑛)/2. We chose this kind of distribution to check the effect of

increasing variances by keeping the mean constant on the measurement dynamics and

associated transition.

4.1.1. Bench-marking the Random Measurement Strength Code
Here, we have performed the bench-marking of the code used for the random mea-

surement strength case by comparing it with the results of Chapter 3. For performing

bench-marking, in the random measurement strength code instead of generating a list
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of random values of measurement, we have given a list of the same value repeated over

sites for comparison with the previous code of constant measurement strengths. In

the constant measurement case, 𝜏 is analytically obtained from Eq. 3.6, whereas in the

random case, we need to obtain it by discrete evolution. We have compared bipartite

mutual information Fig.4.1a and Connected correlation function Fig.4.1b. Data is taken

for 𝐿 = 8, 𝐽′ = 1, 𝐽 = 1, 𝑉 = 0 with half-filling averaged over 400 quantum trajectories.

Here 𝑑𝑡 = 0.01.
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Figure 4.1: Bench-marking of Random measurement strength code

As the values from the two data sets are nearly similar for the same values of 𝛾𝑚𝑒𝑎𝑛 ,

we can use this random measurement strength code for further calculations. The slight

differences in the data points of the two sets could be because of the different sets of

waiting times 𝜏 (as 𝜏 depends on the random number) that get generated in the time

evolution of measurement dynamics, as described in Chapter 2. Lowering the value 𝑑𝑡

and increasing the number of trajectories can give better results as explained in previous

chapters.

4.1.2. Results
In the following tables is the data obtained for averaged steady-state entanglement

entropy with random measurements with different 𝛾𝑚𝑒𝑎𝑛 chosen from uniform distri-

butions with various Δ𝛾 with 𝐽′ = 𝐽 = 1, 𝑉 = 0 at half filling for different lengths.

From Tables 4.1 and 4.2, we observe that as the variance is increased the values of

the steady state entanglement entropy for respective values of 𝛾 also increase. As seen

in Table 4.3 more increase is observed for lower values of measurement strengths 𝛾 and

it keeps steadily decreasing as the 𝛾𝑚𝑒𝑎𝑛 increases. Also, a similar trend is observed as
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𝛾𝑚𝑒𝑎𝑛 / Δ𝛾 0 0.5 1

0.5 1.4848 1.5380

1.5 0.8909 0.9206 0.9368

2.5 0.6075 0.6247 0.6331

5 0.2899 0.2976 0.2997

𝐿 = 8, 𝑉 = 0, 𝐽′ = 1

Table 4.1: Values of steady state entanglement entropy for 𝐿 = 8 length hard-core boson chain compared

for different values of 𝛾𝑚𝑒𝑎𝑛 and Δ𝛾

𝛾𝑚𝑒𝑎𝑛 / Δ𝛾 0 0.5

0.5 1.7886 1.8883

1.5 0.9707 1.0380

2.5 - 0.6790

5 0.2759 0.3128

𝐿 = 10, 𝑉 = 0, 𝐽′ = 1

Table 4.2: Values of steady state entanglement entropy for 𝐿 = 10 length hard-core boson chain

compared for different values of 𝛾𝑚𝑒𝑎𝑛 and Δ𝛾

𝛾𝑚𝑒𝑎𝑛 difference (𝐿 = 8) difference (𝐿 = 10)
0.5 0.0532 0.0997

1.5 0.0162 0.0673

2.5 0.0084 -

5 0.0021 0.0369

Table 4.3: Difference between the values of steady state entanglement entropy (S) calculated as

S(Δ𝛾 = 0.5) - S(Δ𝛾 = 0) compared for two different lengths (L).
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we increase the length of the system though the values of differences become higher

than their respective counterparts at lower lengths. This could be because the change

due to disorder is effective when the mean and the variance are comparable. For higher

values of measurement strengths, the same variance doesn’t play much significant role.
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Figure 4.2: 𝐿 = 8,Δ𝛾 = 0.5

180 trajectories, 300 realizations, 𝑑𝑡 = 0.01
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Figure 4.3: 𝐿 = 8 , Δ𝛾 = 1

180 trajectories, 300 realizations, 𝑑𝑡 = 0.01

In the figures 4.2, 4.3 and 4.4, we have shown the plots for entanglement entropy

and number density for different values of 𝛾𝑚𝑒𝑎𝑛 . We observe that for different values

of length and variances, the number density settles down to 0.5 in a short amount of

time. It takes a bit longer time to settle down to this density of 0.5 with increasing 𝛾𝑚𝑒𝑎𝑛

values. The values are taken for sites 𝑗 = 4 and 𝑗 = 5 starting with the initial particle

number of 1 and 0 respectively.

Along with this, these plots are smoother than the plots of the same quantities for

constant measurement strengths in Chapter 3 (Fig. 3.2 and 3.3b). This is because these
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Figure 4.4: 𝐿 = 10 , Δ𝛾 = 0.5

400 trajectories, 200 realizations, 𝑑𝑡 = 0.01

values are averaged over more runs (trajectories × realizations) than those of constant

case runs (trajectories).

4.1.3. Problem with constant Distribution of random values of strengths
As we keep increasing the variances Δ𝛾 we can observe that the values of entanglement

entropy are slightly increasing. To observe significant changes, we have to take larger

variances, which will include negative values of the measurement strengths. However,

as we can not take negative values of strengths we have to choose some other distribution

for our analysis of random measurement strengths. If we take negative values of 𝛾 then

the probabilities 𝑝 𝑗 of making quantum jumps as given by Eq. 2.24 can become negative

which is not allowed.

4.2. Selecting Measurement Strengths from 𝛾𝑚𝑎𝑥𝑟𝑛𝑖 dis-

tribution
The paper on infinite-randomness criticality in monitored quantum dynamics with

static disorder [23] uses a model of random quantum circuits with spatially varying

measurement rates. A position-dependent measurement probability 𝑝𝑥 = 𝑟𝑛𝑥 is applied.

Here 𝑟𝑥 is the random variable chosen from a uniform distribution between 0 and 1

and 𝑛 is the tuning parameter. The strength of the measurement rate is parameterized

by disorder averaged value and is 𝑝̄ = 1/(𝑛 + 1). This gives long tails and a columnar

kind of distribution. This model addresses physical situations where some qubits are
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preferentially measured over others.

The circuits described in the paper undergo a MIPT in the entanglement structure,

though the nature of the critical point is very different from that of the constant

measurement rate case. Using such a model the paper claims to obtain an infinite

randomness critical point, where at the critical strength the Entanglement Entropy of a

subsystem with size 𝑙 scales as

√
𝑙 instead of the normal 𝑙𝑜𝑔(𝑙) seen in homogeneous

measurements. The dynamic critical exponent which gives information on how the

characteristic timescale diverges near the critical point in the system is 𝑧 = ∞. The

transition point is surrounded by Griffiths phases with continuously varying dynamical

exponents. Here certain dynamical quantities are dominated by the rare-region effects.

(a) The behaviour of the dynamic exponent 𝑧 shown in the phase diagram of the disordered circuit

model, near the Griffiths phases and the critical point. 𝑝̄ is the average measurement rate. Figure taken

from reference [23].

(a) Average half-cut entanglement entropy. Near the critical point, the entanglement

entropy scales as 𝑆̄ ∼
√
𝐿. Figure taken from reference [23].

We are trying to do a similar analysis on our model and see how the nature of the

critical points and phases is affected.

For this, instead of position-dependent measurement probability, we take mea-

surement strengths 𝑝𝑖 = 𝛾𝑚𝑟𝑛𝑖 where again 𝑟𝑖 is a random number from a uniform
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distribution [0,1]. Here we will take 𝛾𝑚 = 5 and 10 and will scan over the range of 𝑛.

4.2.1. Probability distribution
For random variable 𝑋𝑖 = 𝛾𝑚𝑟𝑛𝑖 ,

𝐹(𝑥) = 𝑃(𝑋 <= 𝑥) (4.2)

= 𝑃(𝛾𝑚𝑟𝑛𝑖 < 𝑥) (4.3)

= (𝑥/𝛾𝑚)1/𝑛 (4.4)

Probability distribution function,

𝑓 (𝑥) = 𝐹′(𝑥) (4.5)

= (𝑥 1

𝑛−1)/(𝑛𝛾
1

𝑛
𝑚) (4.6)

Probability,

𝑃(𝑎 < 𝑥 < 𝑏) =
∫ 𝑏

𝑎

𝑓 (𝑥)𝑑𝑥 (4.7)

= (𝑏 1

𝑛 − 𝑎 1

𝑛 )/𝛾
1

𝑛
𝑚 (4.8)

Mean,

𝑀𝑒𝑎𝑛 =

∫ 𝛾𝑚

0

𝑥 𝑓 (𝑥)𝑑𝑥 (4.9)

= 𝛾𝑚/(𝑛 + 1) (4.10)

Variance,

𝑣𝑎𝑟 =
𝛾2

𝑚

𝑛 + 2

− ( 𝛾𝑚
𝑛 + 1

)2 (4.11)

Below we have plotted the probability distribution and mean and variances for

corresponding values of 𝑛 and 𝛾𝑚𝑎𝑥 .

As shown in Fig.4.8 for same value of 𝛾𝑚𝑒𝑎𝑛 variance increases as the value of 𝛾𝑚𝑎𝑥

is increased. Thus more changes are expected in the dynamics of distribution with

higher 𝛾𝑚𝑎𝑥 when compared with that of the constant measurement strength case.
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(a) 𝑛 = 0.2,𝛾𝑚𝑎𝑥 = 5 (b) 𝑛 = 1,𝛾𝑚𝑎𝑥 = 5 (c) 𝑛 = 2.5714,𝛾𝑚𝑎𝑥 = 5

Figure 4.7: probability distribution

(a) Variance and mean for 𝛾𝑚𝑎𝑥 = 5 (b) Variance and mean for 𝛾𝑚𝑎𝑥 = 10

Figure 4.8: Comparison of mean and variances for different 𝛾𝑚𝑎𝑥 values.
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For scanning over various values of 𝛾𝑚𝑒𝑎𝑛 and variances we adjust over the values

of 𝑛 and 𝛾𝑚𝑎𝑥 accordingly.

4.2.2. Entanglement Profiles of non-interacting bosons chain
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Figure 4.9: Steady-state values of von Neumann entanglement entropies with 𝑉 = 0, 𝐽′ = 1, 𝐽 = 1 values,

for different measurement strengths 𝛾𝑚𝑒𝑎𝑛 for the distribution 𝛾𝑖 = 5𝑟𝑛
𝑖

Purely hard-core bosons with 𝑉 = 0 in 1𝐷 can be mapped to the spin 1/2 non-

interacting fermions. We refer to this case as the non-interacting bosons in this thesis.

The steady-state entanglement entropies are obtained 𝑆(𝑙𝐴 = 𝐿/2) are obtained by

averaging 𝑆(𝑙𝐴 , 𝑡) over time interval [50, 100]. In Fig.4.9 we have shown the system size

dependence of half-chain entanglement entropies in the steady state regime. By this we

observe that, for small 𝛾𝑚𝑒𝑎𝑛 the entanglement entropy appears to increase linearly in

the system, suggesting volume-law entanglement. This increase is suppressed for large

𝛾𝑚𝑒𝑎𝑛 values, suggesting the area-law entanglement caused because of the frequent

applications of the measurements. To see exactly if volume and area law phase are

present, whether phase transition is happening and to check the scaling of entanglement

entropy at entanglement transition (𝑙𝑛𝐿 or

√
𝐿) we need to take larger system sizes and
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more values of 𝛾𝑚𝑒𝑎𝑛 .

4.2.3. Mutual information and correlation function for boson chain

with 𝑉 = 0

First, we study a non-interacting boson chain with 𝑉 =0 with the continuous measure-

ment of the local occupation number with random strengths. Here, 𝐽1 = 𝐽 = 1 with

half-filling.

The following data is for the system with lengths 𝐿 with distributions 5𝑟𝑛 and 10𝑟𝑛 .

It is plotted with comparison to that of the constant distribution case where each site

has the same measurement strength. The data is averaged over 400 trajectories and 200

realizations over time 50-80 and 𝑑𝑡 = 0.01. Entanglement entropy and other values are

calculated at every 50𝑡ℎ step.

For bipartite mutual information, we are using sites 1 and 𝐿/2 + 1 as mentioned in

chapter 2.

For tripartite mutual information, we use sites numbered 1, 3, and 5.
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(a) Bipartite mutual information

Figure 4.10: Comparison of Bipartite Mutual Information for Constant (labelled as uniform) and 5𝑟𝑛

distributions of measurement strengths.

If we observe the Fig. 4.10a, by considering both lengths 𝐿 = 8 and 10 we see that

the peak of bipartite Mutual Information occurs at around 𝛾𝑚𝑒𝑎𝑛 = 1.3 for constant
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measurements strengths and at 𝛾𝑚𝑒𝑎𝑛 = 1.4 for the distribution 5𝑟𝑛 . As we increase

the size of the system the estimation of the exact position of peak gets better. Thus

the critical measurement strength for the distribution 5𝑟𝑛 can be said to be around

𝛾𝑚𝑒𝑎𝑛 = 1.4 if the transition happens in this system.
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Figure 4.11: Comparison of bipartite mutual information for constant and 10𝑟𝑛 distributions of

measurement strengths.

When we observe Fig. 4.11a we find that the peak of bipartite mutual information

is shifted forward for the distribution 10𝑟𝑛 . The value of peak can be estimated to be

around 𝛾𝑚𝑒𝑎𝑛 = 2 which is more than that of 5𝑟𝑛 distribution. This value can change

slightly when we take larger system sizes into consideration. Also, we observe that the

more the 𝛾𝑚𝑎𝑥 of the distribution, the higher the values of bipartite mutual information

will be than the constant case.

For the tripartite mutual information (t-MI) Fig. 4.12a we observe that as the length

increases the absolute values of t-MI decrease. These values are greater than their

constant case counterparts.

For the tripartite mutual information (t-MI) Fig. 4.13a we observe that when we

increase the 𝛾𝑚𝑎𝑥 , the absolute values of t-MI increases. There is a considerably greater

increase from the 5𝑟𝑛 distribution values to 10𝑟𝑛 distribution values than from constant

to 5𝑟𝑛 at least in the 𝐿 = 8 case.
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Figure 4.12: Comparison of t-MI and connected correlation function of constant and 5𝑟𝑛 distributions.
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Figure 4.13: Comparison of t-MI and connected correlation function of constant, 5𝑟𝑛 and 10𝑟𝑛

distributions.
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In the connected correlation function of the number operator, the values for 5𝑟𝑛 and

10𝑟𝑛 distribution are greater than the constant case and the increase is greater with the

value of 𝛾𝑚𝑎𝑥 .

4.2.4. Probability distribution of Single-Site entropy for boson chain

with 𝑉 = 0

Here we study the probability distribution of single-site von Neumann entanglement

entropy for distributions 5𝑟𝑛 and 10𝑟𝑛 . For easy comparison, we have also plotted the

same for the constant case described in Chapter 3 alongside it.
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Figure 4.14: Probability distribution of Single-Site entropy for constant strengths
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(a) Probability distribution of Single-Site entropy for 5𝑟𝑛 , 𝐿 = 8

As previously observed in the constant strength case here also different probability

distributions of single-site entropy are obtained for smaller and larger values of

measurement strengths. We observe that for 𝐿 = 8 and 5𝑟𝑛 distribution Fig. 4.15a,
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(a) Probability distribution of Single-Site entropy for 5𝑟𝑛 , 𝐿 = 10
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Figure 4.17: Probability distribution of Single-Site entropy for 10𝑟𝑛
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almost equal heights of peaks are present in the region near 𝑆 = 0 and 𝑆 > 0 for

𝛾𝑚𝑒𝑎𝑛 = 2. (We have named the far right end of the plot as 𝑆 > 0 region and the far left

end as 𝑆 = 0 region.) Values for 𝛾𝑚𝑒𝑎𝑛 = 4 and 𝛾𝑚𝑒𝑎𝑛 = 3 have sharper peaks around

𝑆 = 0. On the other hand probability distribution for 𝛾𝑚𝑒𝑎𝑛 = 1 has a sharp peak in the

𝑆 > 0 region, which starts decreasing as the value of 𝛾𝑚𝑒𝑎𝑛 increases. Similar trends are

observed for the 𝐿 = 10 case for this distribution Fig. 4.16a.

For 𝐿 = 8 and 10𝑟𝑛 distribution Fig.4.17 the values of peaks at S>0 region are sharper

for 𝛾𝑚𝑒𝑎𝑛 = 1.4, 𝛾𝑚𝑒𝑎𝑛 = 1.8 and 𝛾𝑚𝑒𝑎𝑛 = 2. The peaks for 𝛾𝑚𝑒𝑎𝑛 = 3 and 𝛾𝑚𝑒𝑎𝑛 = 4 are

higher in the 𝑆 = 0 region though the difference between these peaks is lesser than

that of their counterparts in the 5𝑟𝑛 case, meaning they are not as deep in the low

entanglement regime as in the previous case. This matches with our observation from

the peak of bipartite mutual function, that the measurement-induced critical point can

shift forward as the value of 𝛾𝑚𝑎𝑥 is increased.

When compared with the constant strengths case probability distribution of single-

site entropy, the plots for the random strengths are smoother as there was an overall

greater number of single-site entropy values for the random case, as the number of runs

itself was larger than the constant case.

4.2.5. Time evolution of different trajectories and realizations for

boson chain with 𝑉 = 0
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Figure 4.18: Entanglement entropy

In Fig. 4.18 we have shown the evolution of entanglement entropy values and in

fig. 4.19 we have shown time evolution of tripartite mutual information for trajectories
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Figure 4.19: tripartite mutual information

numbered 0 and 8 for the same realization numbered 0. The difference in the fluctuations

is because of the different random numbers chosen in different trajectories.

4.2.6. Steady state entanglement entropy for interacting boson chain
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Figure 4.20: Steady state entanglement entropies plotted against half of the system size 𝐿 for different

strengths 𝛾𝑚𝑒𝑎𝑛 . Averages are taken over the interval 50-80. 𝑉 = 1, 𝐽′ = 0, 𝐽 = 1

An increase in the half-chain entanglement entropy is seen with increasing the

values of the system size.
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4.2.7. Mutual information and correlation function for interacting

boson chain
Here we study the interacting case for the hard-core boson chain with continuous

measurements. For taking the following data we have used 𝑉 = 1, 𝐽 = 1 and 𝐽′ = 0

with half-filling. Again we use two distributions 5𝑟𝑛 and 10𝑟𝑛 and compare them with

the constant measurement strengths case. The data is averaged over time window

50 < 𝑡 < 80 and 𝑑𝑡 = 0.01. Quantities are calculated at every 50th step.
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Figure 4.22: 5𝑟𝑛 and constant comparison for 𝑉 = 1, 𝐽′ = 0

Bipartite mutual information

In the constant measurement strengths case of interacting hard-core boson chain,



4.2. Selecting Measurement Strengths from 𝛾𝑚𝑎𝑥𝑟𝑛𝑖 distribution 51

the peak of the bipartite mutual information for the 𝐿 = 10 system is around the 𝛾𝑚𝑒𝑎𝑛

value of 0.5 (Fig. 4.21a).

The bipartite mutual information for the 5𝑟𝑛 distribution has no clear peak at least

with the amount of data obtained, though values of bipartite mutual information show

an initial increase with 𝛾𝑚𝑒𝑎𝑛 (Fig. 4.21a).

As observed in the non-interacting case, the values of bipartite mutual information

for 5𝑟𝑛 are greater than that of the constant measurement case, though the increase is

higher for 𝐿 = 8 size than that of 𝐿 = 10. Previously in the non-interacting case, the

increase for both system sizes was roughly similar.

We have also plotted these values for the distribution 10𝑟𝑛 distribution, for system

size 𝐿 = 8 in comparison to those with 5𝑟𝑛 and constant strengths case ( 4.23).
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Figure 4.23: 5𝑟𝑛 , 10𝑟𝑛 and constant comparison for 𝑉 = 1, 𝐽′ = 0

Tripartite mutual information
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As in the previous case of the non-interacting chain, the absolute values of tripartite

mutual information for this distribution are greater than that of the case of the constant

strengths. They increase with increasing 𝛾𝑚𝑎𝑥 . The exact values start approaching zero

from the negative end as the 𝛾𝑚𝑒𝑎𝑛 increases. (see Fig. 4.22a and Fig. 4.23b).

Connected correlation function

The values of the connected correlation function are higher than their constant case

counterparts and increase with increasing 𝛾𝑚𝑎𝑥 (see Fig. 4.22b and Fig. 4.23c).

4.2.8. Probability distribution of single site entanglement entropy

for interacting chain
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Figure 4.24: Probability distribution of entanglement entropy for 𝐿 = 8, 𝑉 = 1, 𝐽′ = 0 for constant

measurement strengths.

From the probability distribution of single-site entanglement entropy, we can see

very sharp peaks for 𝛾𝑚𝑒𝑎𝑛 values 0.1 and 0.2 in the 𝑆 > 0 region. In fact, there is no

peak in the 𝑆 = 0 region. (see Fig. 4.24a)

Around 𝛾𝑚𝑒𝑎𝑛 = 0.6 and 𝛾𝑚𝑒𝑎𝑛 = 1 the peaks at 𝑆 > 0 region start decreasing and

peaks near the 𝑆 = 0 region appear. Their heights are also almost the same (more

similar for 𝛾𝑚𝑒𝑎𝑛 = 1). For 𝛾𝑚𝑒𝑎𝑛 = 3 there is only one peak in the S=0 region and no

peak in the S>0 region. (see Fig. 4.24b)

A similar trend is observed for the 𝐿 = 8, 5𝑟𝑛 case. For 𝛾𝑚𝑒𝑎𝑛 values 0.1 and 0.2,

sharp peaks are present in 𝑆 > 0 region and no peak at 𝑆 = 0 region (see Fig. 4.25a).

We have also plotted the values for 𝐿 = 8, 10𝑟𝑛 (Fig.4.25b) case and 𝐿 = 12, 5𝑟𝑛 case

(Fig.4.26). The position of the peaks of probability distribution gives us an idea as to
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whether the 𝛾𝑚𝑒𝑎𝑛 values lie in volume or area law phase if these phases are present.
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Figure 4.26: Probability distribution of entanglement entropy for 𝐿 = 10, 𝑉 = 1, 𝐽′ = 0 for 5𝑟𝑛 .



5
Finite Size Scaling at Entanglement

transitions

We can approximate the value of 𝛾𝑐 where the entanglement transition takes place from

the peak positions of bipartite mutual information if a signature of transition is present

in the entanglement profiles of the system.

5.1. Scaling Behaviours at Entanglement transitions
As per Ref. [10], the von Neumann entanglement entropy under periodic boundary

conditions of a 1D critical system is given by,

𝑆(𝑙𝐴) =
𝑐

3

𝑙𝑛𝑥𝐴 + 𝑐′ (5.1)

where 𝑥𝐴 is called the chord length of subsystem 𝐴, 𝑐 is the central charge and 𝑐′ is

a non-universal constant.

𝑥𝐴 =
𝐿

𝜋
𝑠𝑖𝑛(𝜋𝑙𝐴

𝐿
) (5.2)

Thus, the scaling form at the entanglement transition can be written as,

𝑆(𝑙𝐴) = 𝛼𝑆 𝑙𝑛𝑥𝐴 + 𝛽𝑆 (5.3)

54



5.1. Scaling Behaviours at Entanglement transitions 55

Steady-state values of the entanglement entropies for constant measurement

strengths case with 𝑉 = 0, 𝐽′ = 1, 𝐽 = 1, for different subsystem sizes at entangle-

ment transition are shown in Fig. 5.1a and fitted with this scaling form (Eq. 5.3).
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Figure 5.1: Scaling of Entanglement entropy for non-interacting (𝑉 = 0, 𝐽′ = 1), for constant and 5𝑟𝑛

distributions for 𝛾𝑚𝑒𝑎𝑛 = 1.4.
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Figure 5.2: Scaling of Entanglement entropy for interacting (𝑉 = 1, 𝐽′ = 0), for constant and 5𝑟𝑛

distributions for 𝛾𝑚𝑒𝑎𝑛 = 0.6.

Value of 𝛼𝑆 for 𝑉 = 0, 𝐽′ = 1 case with constant measurement → 0.5298

The value of 𝛼𝑆 for 𝑉 = 0, 𝐽′ = 1 case in the paper [10] with constant measurement

is about 0.526. In that paper they have gone till 𝐿 = 20 system sizes.

Thus the value of the central charge 𝑐 is thus, 1.5894.

Value of 𝛽𝑆 for 𝑉 = 0, 𝐽′ = 1 case with constant measurement → 0.4170

The values of central charge and 𝛼 are summarized in the table no. 5.1 below.
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Collapse

Around the transition 𝛾 ∼ 𝛾𝑐 , the entanglement entropy is proposed to follow the

scaling form,

𝑆(𝛾, 𝐿; 𝑙𝐴 = 𝑎𝐿) − 𝑆(𝛾𝑐 , 𝐿; 𝑙𝐴 = 𝑎𝐿) = 𝐹[(𝛾 − 𝛾𝑐)𝐿1/𝜈] (5.4)

here, we select 𝑎 = 1/2 and 𝐹 is a smooth function.

The divergence of correlation length is 𝜉 ∼ |𝛾 − 𝛾𝑐 |−𝜈 at the MIC.

1. Estimate critical points 𝛾𝑐 from peak structures of the mutual information

2. Perform the scaling analysis for data sets in the range 𝛾 ∈ [𝛾𝑐 − 1, 𝛾𝑐 + 1] and for

𝐿 = 8 to 12.

The entanglement entropy shows finite size dependence near the critical transition

point. We try to find the optimized exponent 𝜈, such that the data for S for all 𝛾 values

in the range and all 𝐿 collapse into a single curve given by the Eq. 5.4. We can do this

by minimizing the 𝜒2
-function in multi-parameter space [18], defined as,

𝜒2({𝑐𝑘}; {𝑑𝑘}) =
∑
𝐿,𝛾

[𝑆(𝛾, 𝐿) − 𝐹[(𝛾 − 𝛾𝑐)𝐿1/𝜈]]2 (5.5)

where 𝑆(𝛾, 𝐿) are the data points at different values of 𝛾 and 𝐿.

We take 𝐹 to be described by 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥
2

where 𝑐0, 𝑐1, 𝑐2 are obtained from the

minimization process. 𝑥 here is equal to (𝛾 − 𝛾𝑐)𝐿1/𝜈
.

We have performed scaling collapse for the constant measurement strengths case

with𝑉 = 0, 𝐽′ = 1 (Fig. 5.4a) with the value of 𝜈 = 1.201395 and for random measurement

strengths case with 𝑉 = 0, 𝐽′ = 1 (Fig. 5.4a) with the value of 𝜈 = 1.201390 obtained by

minimizing 𝜒2
. The minimized value of 𝜒2

is 0.00455 for constant case.

The value of 𝜈 obtained in the paper [10] is 1.22 for constant case.
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(a) 𝑉 = 0, 𝐽′ = 1 for constant measurement strengths case, 𝛾𝑐 = 1.4
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(a) 𝑉 = 0, 𝐽′ = 1 for random measurement strengths case with 𝛾𝑚𝑎𝑥 = 5, 𝛾𝑐 = 1.4.
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5.2. Scaling behaviour of bipartite mutual information
We will study the scaling behaviour of 𝐼𝐴𝐵(𝑟𝐴𝐵) as a function of the distance 𝑟𝐴𝐵 between

two sites at 𝛾 = 𝛾𝑐 . Scaling is done for values in the steady-state regime.

Power-law behaviours 𝐼𝐴𝐵 ∝ 𝑥−2Δ
𝐴𝐵

for large distances are present. [10]

We have plotted 𝑙𝑛(𝑏−𝑀𝐼) against 𝑙𝑛𝑥𝐴𝐵 for various distributions for non-interacting

and interacting cases.
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(b) 5𝑟𝑛 distribution, 𝛾 = 1.4

Figure 5.5: Scaling of bipartite mutual information for non-interacting (𝑉 = 0, 𝐽′ = 1), for constant and

5𝑟𝑛 distributions for 𝛾𝑚𝑒𝑎𝑛 = 1.4.
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Figure 5.6: Scaling of bipartite mutual information for interacting (𝑉 = 1, 𝐽′ = 0), for constant and 5𝑟𝑛

distributions for 𝛾𝑚𝑒𝑎𝑛 = 0.6.

For 𝛾 = 1.4, 𝑉 = 0 constant distribution case, the fit is obtained and the slope value

is -2.4604.

Thus, 𝐼𝐴𝐵 ∝ 𝑥−2.4604

𝐴𝐵
. From this, we obtain the value of Δ = 1.2302

Values of Δ for other distributions are given in the table below.
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values/Model C : (V,J’)= (0,1) R :(V,J’)= (0,1) C :(V,J’)= (1,0) R : (V,J’)= (1,0)

𝛼𝑆 0.5298 0.7043 0.5573 0.9222

𝑐 1.5894 2.1129 1.6719 2.7666

Δ 1.2302 1.1303 1.2323 1.1896

Table 5.1: C represents constant measurement strengths case and R represents random measurement

strengths case with 𝛾𝑚𝑎𝑥 = 5

5.3. Scaling behaviour of correlation function
We will study the scaling behaviour of the correlation function as a function of chord

distance 𝑥𝐴𝐵.

Power law behaviour of the form | < 𝑛1𝑛𝑟𝐴𝐵+1 >𝑐 |2 ∝ 𝑥
−2Δ𝑛
𝐴𝐵

is observed.

We follow the same method as done for the scaling of bipartite mutual information,

but fitting is done only for values with 𝑙𝑛𝑥𝐴𝐵 > 1. [10]
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Thus we obtain the value of Δ𝑛 = 3.8704

2
= 1.9352

The value of Δ𝑛 is larger than those of Δ obtained for the mutual information. This

could be because the functional forms of this nn correlation function in 𝛾 do not follow

that of mutual information.[10]

We have compared the values of the exponents in the table below,
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We need to note that the values of 𝛼, Δ and Δ𝑛 were obtained only considering

system sizes 8, 10 and 12. They can get better by considering more systems with larger

sizes.



6
Conclusion and Outlook

For the non-interacting boson chain under measurement with random strengths selected

from a uniform distribution, we got changes in the values of steady-state entanglement

entropy with increasing variances. Though as these variances are not comparable with

the values of 𝛾𝑚𝑒𝑎𝑛 only a slight increase is observed.

Under the random measurement strengths selected from 𝛾𝑚𝑎𝑥𝑟𝑛𝑖 distribution, for the

non-interacting case with 𝛾𝑚𝑎𝑥 = 5, we observe linear growth in half-chain entanglement

entropy for smaller values of 𝛾𝑚𝑒𝑎𝑛 and the increased is suppressed for larger 𝛾𝑚𝑒𝑎𝑛 .

This suggests a possible entanglement transition, which can be compared with the peak

of bipartite mutual information occurring at the 𝛾𝑚𝑒𝑎𝑛 value 1.4. With increasing 𝛾𝑚𝑎𝑥

to 10 we observe a forward shift in this peak’s position.

More results for higher system sizes and various 𝛾𝑚𝑒𝑎𝑛 values are required for the

interacting boson chain to conclusively observe entanglement transition if it is present.

We have obtained 𝜈 right now only for constant non-interacting case. With more values

of 𝛾𝑚𝑒𝑎𝑛 and lengths, we will also perform scaling collapse for the other cases.

The non-interacting hard-core boson chain Hamiltonian with V=0 can be mapped to

one particle fermionic system Hamiltonian 𝐻 𝑓 and equivalently becomes a spin-1/2

fermionic chain. As the matrix of this 𝐻 𝑓 has fewer entries, it becomes easy to reach

larger system sizes using numerical calculations in a shorter time span than using a

bosonic system. This can be solved by more efficient numerical evolution using QR

decomposition of the time evolution operator. Thus we can check if the transition

61
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happens at larger system sizes in future work.
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