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1 Abstract

“p-adic fields provide rermarkable, easy and natural solutions to problems ,which ap-
parently have no relation to p-adic fields and which otherwise can be resolved, if at all ,
only by deep and arduous methods”.
-J.W.S.CASSELS

p-adic numbers play an important role in modern number theory. They encode impor-
tant information about congruences between integers. From rational number, one con-
struct the smallest complete field that contains rational numbers for this p-adic number
comes.
In this thesis, we study the basic construction of p-adic numbers and p-adic integers.
we saw analytic and algebraic properties of the space of p-adic numbers,Hensel’s Lemma,then
we derive the abstract theory of valuation on number fields and local fields.
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2 Foundations

Absolute values on a Field: A function |.| : K → [0.∞) is called an absolute value
on a field K ,if for all x, y ∈ K, it satisfies
1) Definiteness, i.e., |x| = 0 iff x = 0.
2) Multiplicativity |xy| = |x|.|y|.
3)Triangle inequality, i.e., |x+ y| ≤ |x|+ |y|.

Examples: i) Trivial absolute value on K.

|x| =

{
1 if x ∈ K∗

0 if x = 0

ii) The usual absolute value on Q.

|x| =

{
x if x ≥ 0

−x if x ≤ 0

Non-Archimedian Absolute Value
An absolute value on K is called non-archimedian if |x+ y| ≤ max{|x|, |y|}∀x, y ∈ K.
e.g.,: i) Trivial absolute value.
ii) p-adic absolute value. (It will be defined later.)

Proposition: The only absolute value on a finite field K is a trivial absolute value.

Proof. Suppose,
| · | is an absolute value on K

.
Then, by definition, |0| = 0.
Now,

1 = 1.1 =⇒ |1| = |1|.|1| =⇒ |1|(|1| − 1) = 0

Since |1| > 0,

|1| = 1

Take any nonzero element x ∈ K,
As K is a finite field,there must exist an integer Q, such that q = |K|, then

xq = x

for all x ∈ K.
Taking absolute value on both sides,

|xq| = |x| =⇒ |x|q = |x|

As |x| > 0 and real

=⇒ |x| = 1

∴ |x| =

{
1 if x ∈ k∗

0 if x = 0
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Therefore,
| · | is a trivial absolute value.

p-adic valuation
For a fixed prime number p,the p-adic valuation on Z is a surjective map vp : Z →
Z ∪∞ such that vp(0) = ∞ and for n ∈ Z, n ̸= 0,the p-adic valuation of n is defined by
vp(n) such that

n = pvp(n).n
′
where p ̸ |n′

, n
′ ∈ Z− {0}

If n = a
b
∈ Q∗, then n = pvp(n).a

′

b
′ , p ̸ |a′

b
′

Or, vp(n) = vp(a)− vp(b).

Remark: The valuation of any rational number is not affected by its representation as
quotient of integers.
Examples: v5(35) = 1 ,v3(

126
12
) = 1

Lemma: For all x, y ∈ Q
i)vp(xy) = vp(x) + vp(y)
ii)vp(x+ y) ≥ min{vp(x), vp(y)}

Proof. Let x = pvp(x).a such that p ̸ |a

y = pvp(y).b such that p ̸ |b

∴ xy = pvp(x)+vp(y).ab,

=⇒ vp(xy) = vp(x) + vp(y)

ii)Without loss of generality,
Assume vp(x) ≤ vp(y).

x+ y = pvp(x)a+ pvp(y)b

= pvp(x)(a+ pvp(y)−vp(x)b)

=⇒ vp(x+ y) ≥ vp(x)

p-adic absolute value
For a nonzero x ∈ Q we can define the p-adic absolute value of x by

|x|p = p−vp(x)

and |0|p = 0.

e.g.,: |35|7 = 7−v7(35) = 1
7
.

Lemma: |.|p is a non-archimedean Absolute value on Q.
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Proof. Definiteness and multiplication follows from the definition.
We need to show that ,

|x+ y|p ≤ max{|x|p, |y|p} ∀x, y ∈ Q

Let, x = pm.a
b
, y = pn.a

′

b′

Where a,b,a’,b’ are coprime to p,
WLOG, m < n

x+ y = pm(
a

b
+ pn−ma′

b′
) = pm

ab′ + pn−ma′b

bb′

If |x|p ̸= |y|p
Then n−m > 0 implies ab′ + pn−ma′b is coprime to p

|x+ y|p = p−m = max|x|p, |y|p
If |x|p = |y|p
Then,

ab′ + pn−ma′b = ab′ + a′b = plk

for some l ≥ 0 and K is prime to p

=⇒ |x+ y|p = |pm+l.
k

bb′
|p

= p−m−l ≤ max|x|p, |y|p

Theorem: Let K be any field with absolute value |.| and ∃ a map i : Z → K , If |.| is
bounded on i(Z) then |.| is a non archimedean absolute value.

Proof. Lets assume |.| is bounded on i(Z).
which implies |n| < l∀n ∈ Z and l ∈ R>0.
Choose x, y ∈ k∗

We need to prove that,
|x+ y| ≤ max{|x|, |y|}

|x+ y|t = |
t∑

i=0

(
t

i

)
xiyt−i|

≤ l
t∑
0

|xi| · |yt−i|

WLOG,
|x| ≤ |y|

Then,

|x+ y|t ≤ l
t∑
0

|yi| · |yt−i| = l
t∑
0

|y|t

≤ l(t+ 1)|y|t
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∴ |x+ y| ≤ (l(t+ 1))
1
t .|y|

As t → ∞

|x+ y| ≤ |y|

2.1 p-Adic Topology

We can now define a topology on a field K by giving a metric.

Lemma: Let | · | be an absolute value on a field K, and define a metric d(x, y) = |x −
y|,then | · | is a non archimedean absolute value iff for any x, y, z ∈ K, We have,

d(x, y) ≤ max{d(x, y), d(z, y)}

This inequality is called an Ultrametric inequality.
A space which satisfies this inequality is called ultrametric space.

Corollary: Every triangle in this ultrametric space is isosceles.

Proof. Let x, y, and z be the vertices of a triangle in an ultrametric space.
∴ Length of each sides are,

d(x, y) = |x− y|, d(y, z) = |y − z|, d(x, z) = |x− z|

Since,
(x− y) + (y − z) = (x− z)

If |x− y| ≠ |y − z|
Then, by ultrametric inequality,

|(x− y) + (y − z)| = max{|x− y|, |y − z|} = |x− z|

i.e., |x− z| is equal to the bigger one of |x− y| and∥y − z|.
=⇒ At least two of the sides are always equal.

So, in this context, we can see that p-adic absolute values give a topology on Q, and
with this p-adic topology Q, becomes an ultrametric space.
In ultrametric space, open balls and closed balls behave differently than in the usual
metric. In ultrametric space the following holds,

1) Every point of an open (resp.closed) ball is the center of that ball.

2) Any two open(resp. closed) balls are totally disjoint,or one is contained in the other.
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2.2 Algebra of Non-Archimedean Absolute Value

Now we will see the algebraic point of view of a field K through its absolute value.

Definition: Suppose |.| is a non-archimedean absolute value on a field K. Then,we
will get the valuation ring defined by

O = B(0, 1) = {x ∈ K : |x| ≤ 1} ⊂ K

and valuation ideal defined by,

℘ = B(0, 1) = {x ∈ K : |x| < 1} ⊂ O

,which is the unique maximal ideal of O.
and

k =
O

℘

is called residue field of K w.r.t |.|.

Proof. Here, 0, 1 ∈ O. If x, y ∈ O then,
|x+ y| ≤ max {|x|, |y|} ≤ 1
∴ x+ y ∈ O.
Since

|xy| = |x|.|y| =⇒ |xy| ≤ 1

Hence, xy ∈ O.
And for all x in K either x ∈ O or x−1 ∈ O.
Therefore O is a valuation ring.
To show ℘ is an ideal, let x ∈ O and y ∈ ℘
i.e |x| ≤ 1 and |y| < 1
then,

|xy| = |x|.|y| < 1 =⇒ xy ∈ ℘

∴ ℘ is an ideal of O.
Now, if x ∈ O but x ̸∈ ℘ i.e |x| = 1 then |1/x| = 1 =⇒ 1/x ∈ O i.e x ∈
O/℘ then x−1 ∈ O
let, a ̸= 0 is an ideal of O such that,

℘ ⊂ a ⊆ O

then a will contain such x whuch is an invertible element of O .
1 ∈ a
Hence a = O
Therefore, ℘ is unique maximal ideal of O.

For the case K = Q with p-adic absolute value
i)O = Z(p) = { a

b
∈ Q : p ̸ |b}

ii)℘ = pZ(p)

iii)k =
Z(p)

pZ(p)
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2.3 Equivalence condition for Absolute values

Let ,|.|1 and |.|2 are two absolute values on K, Then they are equivalent if ∀ x ∈ K ∃ a
positive real number α such that,

|x|1 = |x|α2
There are some equivalent conditions for equivalent absolute values like
For any x ∈ K we have |x|1 < 1 iff |x|2 < 1

Theorem: Two absolute values are equivalent iff they induce same topology.

Proof. Forward implication is pretty easy i.e., if |.|1 ≈ |.|2 . Then,

|x|1 = |x|α2
=⇒ |x|1 → 0 ⇔ |x|2 → 0

⇒ Two topologies define same open sets.
⇒ Two topologies are same.
Conversely,Suppose |.|1 and |.|2 induces same topology on K,
Let x ∈ K∗,such that |x|1 > 1
⇒ |x−1|1 < 1
Let,x−1 = y

∴ |yn|1 = |y|n1 → 0

as n → ∞ =⇒ |y|2 < 1
=⇒ |x|2 > 1
=⇒ {x ∈ K : |x|1 > 1} ⊂ {x ∈ K : |x|2 > 1}
=⇒ |.|1 ≈ |.|2

Corollary: For two different primes p and q , |.|p and |.|q are always non-equivalent
absolute values.

Proof. Let x ∈ Q with |x|p ̸= 1 such that

|x|p = |x|αq

=⇒ p−vp(x) = (q−vq(x))α

=⇒ pvp(x) = (qαvq(x))

But p and q both are primes,
So it contradicts unique prime factorization of x.

Remark Two equivalent absolute value either both are archimedean or both non archimedean.

Now, we can find all absolute values on Q and give a relation between them by follow-
ing theorem given by Ostrowski in 1916.

Theorem 1. Every non-trivial absolute value on Q is equivalent to either Euclidean
absolute value or any p-adic absolute value.
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Product Formula
For every m ∈ Q∗,we have, ∏

p≤∞

|m|p = 1

Product runs over all prime number p and | · |∞,

Proof. By the fundamental theorem of arithmetic, m can be written as,

m = ±pa11 .pa22 ....pakk

where p′is are prime numbers. Then,

|m|q = 1 for q ̸= pi

|m|∞ = pa11 .pa22 ....pakk

|m|pi = p−ai
i

Therefore ∏
p≤∞

|m|p = (
k∏

j=1

p−ai).pa11 .pa22 ....pakk = 1

2.4 Completion of Q

To see the completion of Q,first go to a cauchy sequence

xn = 1 +
1

2!
+ ...+

1

n!

We saw in real analysis that this sequence {xn} converges to e which is a irrational .
So, Q is not complete with its usual absolute value.

In the usual absolute value case, lim
n→∞

|xn+1 − xn| = 0 does not imply {xn} is cauchy.

For example ,take

xn = 1 +
1

2
+ ...+

1

n

in R
see,
lim
n→∞

|xn+1 − xn| = | 1
n+1

| → 0

But ,
{xn} is not a cauchy sequence. Let’s see why.
Let, m ∈ N, then,

|xn+m − xn| =
1

n+ 1
+

1

n+ 2
+ ...+

1

n+m

Choose, n = m.

∴ |x2n − xn| =
1

n+ 1
+

1

n+ 2
+ ...+

1

2n
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>
1

2n
+

1

2n
+ ...+

1

2n
=

1

2

So, for ϵ = 1
2
∄ any k ∈ N such that,

|xn+m − xn| < ϵ ∀n ≥ k,m ∈ N

Therefore , xn does not satisfy the cauchy criterion.
So, xn is not cauchy.

But in non-archimedean absolute value case, it is enough to show that , lim
n→∞

|xn+1 −
xn| = 0 to prove {xn} is cauchy in k.
Let’s see why.
If {xn} is cauchy sequence in K then by definition of Cauchy sequence ,for each ϵ > 0
∃ K ∈ N such that

|xm − xn| < ϵ for m,n ≥ K.

taking m = n+ 1,
|xn+1 − xn| → 0 as n → ∞

Conversely, if , lim
n→∞

|xn+1 − xn| = 0

place m = n+ p

|xm − xn| = |xn+p − xn|

= |xn+p − xn+p−1 + xn+p−1 − xn+p−2 + ...+ xn+1 − xn|

≤ max {|xn+p − xn+p−1|, |xn+p−1 − xn+p−2|, ...|xn+1 − xn|}

But each |xn+p−i − xn+p−(i−1)| < ϵj for each 0 ≤ i ≤ p− 1.
Take ϵ as max, {ϵi}

∴ |xm − xn| < ϵ ∀ m,n ≥ n

∴ {xn} is a cauchy sequence in K.

In the above,we saw that Q is not a complete field with reference to usual absolute
value .
Ostrowski said that ,every nonzero absolute value in Q is either equivalent to the usual
absolute value or any nonzero p-adic absolute value.

Ergo, to show that Q is not complete w.r.t any of its non-trivial absolute values it’s
enough to prove for p-adic absolute value.

For the non-completeness of Q with respect to p-adic absolute value,Let give a coun-
terexample, i.e., a sequence in Q that is cauchy but does not converge in Q. w.r.t the
p-adiq absolute value.

Counter Example
Take a sequence {xn} in Q such that xn = rp

n
. where 1 < r < p− 1

|xn+1 − xn| = |rpn+1 − rp
n| = rp

n

(rp
n(p−1) − 1)

14



By Fermet’s theorem,
rp

n(p−1) − 1 ≡ 0(mod pn)

So,
|xn+1 − xn| ≤ p−n → 0 as n → ∞

∴ {xn} is a cauchy sequence in Q w.r.t |.|p.
Now , for the contradiction, suppose {xn} converges to x in Q .

x = lim
n→∞

xn

=⇒ lim|xn|p = |x|p
∴ ∀n, p ̸ | rpn =⇒ |xn|p = 1 =⇒ |x|p = 1
It shows that x ̸= 0
Now using the definition of convergence of a sequence,

x = lim
n→∞

xn

= lim
n→∞

xn+1

= lim
n→∞

(xn)
p

= ( lim
n→∞

xn)
p

= xp

∴ xp = x =⇒ xp−1 = 1.( since x ̸= 0)
But x = 1 or x = −1 are the only solutions in Q.
So,

0 < a− x < p =⇒ p ̸ |a− x =⇒ |a− x|p = 1

Since,
{xn} → as n → ∞

∴ ∃ n ∈ N such that

|xn − x|p < |x− a|p∀n > N

|apn − x|p < |x− a|p
Now,

|x− a|p = |x− ap
n

+ ap
n − a|p

≤ max{|x− ap
n|p, |ap

n − a|p}
But,

|x− ap
n|P < |x− a|p

∴ |x− a| = |apn − a|

15



∴ |x− a|p = |a|p|ap
n − 1| = |apn−1 − 1| < 1

This contradicts |x− a|p = 1.
∴ {xn} does not converge in Q w.r.t |.|p.

2.5 Analytical Way to Construct Qp

From now on, we will try to find the completion of Q. For that, collect all the cauchy
sequences in Q w.r.t |.|p and denote as c i.e.,,

c = cp(Q) = {(xn) : (xn) is cauchy seqence in Q w.r.t|.|p}
(c,+, .) forms a commutative ring with unity as (1, 1, ...1) with operation defined as,

(xn) + (yn) = (xn + yn)

(xn).(yn) = (xn.yn)

Theorem 2. Let, a cauchy sequence (gn) and an arbitrary sequence (hn) in Q such
that, lim

n→∞
|gn − hn|p = 0 then hn is also a cauchy sequence . Further if (gn) → a then

(hn) → a.

Proof.
|hn − hm| = |hn − gn + gn − gm + gm − hm|

≤ max {|hn − gn|, |gn − gm|, |gm − hm|

Since (gn) is cauchy sequence.
Then,for every ϵ ∃ a N ∈ N such that,

|(gn)− (gm)| < ϵ∀m,n ≥ N

and lim
n→∞

|(gn)− (hn)| = 0

hence,
|hn − hm| < ϵ∀m,n > N

∴ yn is a cauchy sequence.
Now, for the next part,

Given (gn) → a as n → ∞

|hn − a| = |hn − gn + gn − a|

≤ {hn − gn|, |gn − a|}

by similar way, we can find N and ϵ for which

|hn − a| < ϵ∀n > N

∴ {hn} → a

16



Remark: There exists an injective ring homomorphism for Q in C via x → (x, x, x, ....).

Maximal ideal of C: Let us collect all sequences in C that are tend to zero in Q with
respect to |.|p and denoted as M, defined by,

N = (xn) : xn → 0

Lemma: M is a maximal ideal of C.
I am giving an outline for the proof.

Proof. 1st step: Take a sequence (gn) ∈ C such that (gn) ̸∈ M and Create an ideal
G,generated by (gn), in C.

Claim: G = C.
Enough to show the identity element 1̃ = (1, 1, 1, , , ) of C contains G.

2nd step: Since (gn) ̸→ 0 and (gn) is a cauchy sequence,then ∃c > 0, N ∈ N such that
|gn| ≥ c > 0 when n ≥ N
∴ We can define a new sequence by,

hn =

{
1
gn

for n ≥ N

0 for n < N

3rd step: check hn is cauchy sequence.
so,

hn ∈ C

4th step: see,

gn.hn =

{
0 if n < N

1 if n ≥ N

So in this sequence {gn.hn} only finite terms are 0 and the rest are 1’s.
If we substruct {gn}.{hn} from the constant sequence 1̃,then it will go to 0 , it means,

1̃− gnhn → 0

=⇒ 1̃− gnhn ∈ N

∴ 1̃ can be written as multiple of gn with the sum of an element of M.
=⇒ 1̃ ∈ G
Hence, =⇒ G = C ∴ M is a maximal ideal of C.

Now ,if we quotient out the ring C by its maximal ideal M,then it gives a field,this field
is known as Qp, or field of p-adic numbers. i.e.,,

Qp =
C

M

We can define absolute value in Qp by,

|| · || : Qp 7→ R>0

if λ ∈ Qp, where λ = an, where an ∈ Q such that,

||λ||p = lim
n→∞

|an|p

17



∃ an inclusion of Q to QP via,

i : Q 7→ Qp

such that,

a 7→ (a, a, a, ....)

Theorem 3. Image of Q under the map i, i.e., i(Q) is dense in Qp.

Proof. We have to prove that ,every open ball around λ ∈ Qp contains a element of
i(Q).
Let us choose an open ball around λ with radius ϵ i.e., B(λ, ϵ).
Let, λ = {xn} then by definition of cauchy sequence ∃N ∈ N,
So, ∃ ϵ′ with ,0 < ϵ′ < ϵ such that,

|xn − xm|p < ϵ′

for all n,m ≥ N
Let, y = xn and i(y) = ỹ = (xN , xN , ...)

Claim: ỹ ∈ B(λ, ϵ)
Here, λ− ỹ is represented by (xn − y).
∴ |xn − y|p = lim

n→∞
|xn − y|p

But, when n ≥ N ,

|(xn − y)|p = |xn − xN |p < ϵ′

So by taking limit ,

lim
n→∞

|(xn − y)|p ≤ ϵ′ < ϵ

∴ (y) = ỹ ∈ B(λ, ϵ).

Theorem 4. Qp is a complete field with respect to |.|p.

Proof. Suppose,λ1, λ2, ..., λn be a cauchy sequence of elements of QP.
where, λi = (xi

k) cauchy sequence in Q up to equivalence,
Since Q is dense in Qp,
∴ for each i, yi ∈ Q.
The constant sequence ỹi = (yi, yi, , , ) close to λi

i.e.,,
|λi − ỹi|p < ϵ

lim
n→∞

|λn − yn|p = 0

Now, by the previous Theorem 1, since λn is a cauchy sequence ,
∴ yn is also a cauchy sequence in Q.
say, λ represent yn
∴ λ = (yn) is a cauchy sequence,

=⇒ |yn − ym| < ϵ ∀n,m ≥ N

18



Now,
λ− ỹn = ym − yn

|λ− ỹn|p = lim
n→∞

|ym − yn|P < ϵ

∴ λ− (ỹn) converge to 0 in QP.
∴ (ỹn) −→ (yn)
Now, |λn − ỹn| −→ 0
Since, ỹn → λ
Again , by Theorem 1,

∴ λn → λ

Hence, every cauchy sequence converges in Qp.
Therefore,Qp is complete field w.r.t |.|p.

2.6 p-adic integrs

The ring of p-adic integers is the subring of p-adic numbers Qp defined by,

Zp = {x ∈ Qp : |x|p ≤ 1}

Since, Zp is a closed unit ball ,i.e., a closed set , each convergent sequence in Zp has
limit in Zp. As, Qp is a complete ring and Zp is its subring ,
So, every cauchy sequence in Zp converges.
Hence, Zp is a complete metric space as well as open set.

Theorem 5. Zp is the closure of Z with respect to |.|p in Qp.

Proof. Let choose a cauchy sequence {xn} in Z which converges to x. i.e.,,

lim
n→∞

{xn} = x

If, |xn| ≤ 1 =⇒ |x| ≤ 1 ∴ x ∈ Zp.
Conversely, let x ∈ Zp with,

lim
n→∞

{xn} = x

where {xn} is cauchy sequence in Q.
Then ∃ a n0 ∈ N such that,

|x|p = |xn|p ∀ n ≥ n0

which means, xn = rn
mn

with rn,mn ∈ Z, (mn, p) = 1
Now , for each n ≥ n0 choose a solution an ∈ Z of the congruence mnan ≡ rnmodpn

Then, |xn − an| ≤ 1
pn

Hence, x = lim
n→∞

an

Therefore, x belongs to the closure of Z.
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Units of Zp are,

Zp
∗ = {x ∈ Zp : |x|p = 1}

Every element of Qp
∗ can be written as uniquely as x = pn.u with n ∈ Z and u is a

unit element of Z∗
p.

Proposition: In the ring Zp nonzero ideals are pnZ = {x ∈ Qp : vp(x) ≥ n} where
n ∈ N and also

Zp

pnZp

∼=
Z

pnZ

Proof. Let choose a nonzero ideal of Zp ,say a and an element x from a
Since ,
|x|p ≤ 1 then there must exist a m ≥ 0 such that m = min {vp(x) : x ∈ α and x ̸= 0},
then,
x = pm.u where u ∈ Zp

∗

Claim: a = pmZp

If there exists another element y of a with,
y = pn.u

′
where u ∈ Zp

∗

=⇒ y = (pn−m.u
′
)pm

since n ≥ m
=⇒ y ∈ pmZp

Therefore, a = pmZp

For further part, use the homomorphism,

ϕ : Z 7−→ Zp

pnZp

a 7−→ a mod pnZp

∴ ker(ϕ) = pnZp

for surjectivity, since Z is dense in Zp.
Then, for x ∈ Zp there exists an a ∈ Z such that,

|x− a|p ≤
1

pn

=⇒ vp(x− a) ≥ n

=⇒ x− a ∈ pnZp

∴ x ≡ a mod pnZp

So, ϕ is a surjective homomorphism with kernel pnZp,

∴
Zp

pnZp

∼=
Z

pnZ

Remark: Qp is totally disconnected Hausdorff topological space.
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3 Hensel’s Lemma

Theorem 6. Suppose F (x) be a polynomial in Zp[x], If there exists a α1 ∈ Zp of F (x)
such that,

F (α1) ≡ 0 mod (pZp)

and,
F ′(α1) ̸≡ 0 mod ((pZp)

Then there exists a unique α ∈ Zp such that,

α ≡ α1 mod (pZp)

with F (α) = 0.

Proof. To prove this theorem , we will create a sequence of p-adic integers α1, α2, ...αn, ...
such that

F (αn) ≡ 0 mod pn

for every n ∈ N
and

αn+1 ≡ αn mod pn

Then this sequence is cauchy and it will coverges to α such that, α ≡ α1 (modp) and
F (α) = 0
So, let α1 exists, we need to show α2 exists in such way,

α2 = α1 + b1p

for a b1 ∈ Zp

put this value α2 in F (x)

∴ F (α2) = F (α1 + b1p)

expanding this,

F (α2) = F (α1) + F ′(α1).b1p+ terms of pn

≡ F (α1) + F ′(α1).b1p mod p2

To prove the existence of α2 it is enough to find b1 such that,

F (α1) + F ′(α1).b1p ≡ 0 mod p2

Using
F (α1) ≡ 0 mod p

=⇒ F (α1) = px

for an x.

∴ px+ F ′(α1).b1p ≡ 0 mod p2
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=⇒ x+ F ′(α1).b1 ≡ 0 mod p

Since, p ̸ |F ′(α1), it has a inverse in Zp

∴ b1 ≡ −x(F ′(α1))
−1

For such unique b1 in Z with 0 ≤ b1 ≤ p− 1 we can set α2 = α1 + b1p

In a similar way, we can construct αn+1 from αn,which gives me the whole sequence
converging to α, which proved the theorem.

[Con15] Example: Let,

f(x) = x2 + 1, then f(2) ≡ 0(mod5)

But,
f ′(2) ̸≡ 0(mod5)

It means, f(x) has a root in Z
5Z

then, by Hensel’s lemma,it has a lift, i.e., a root in Zp.

The Hensel lemma is similar to what we did to find a root in real analysis by Newton
Raphson method.
There is another version of Hensel’s lemma, which says,
Suppose, f(x) = a0 + a1x+ ...+ anx

n, where a′is ∈ Zp

If there exists a α1 ∈ Zp then for each n ≥ 1 ,

αn+1 = αn −
f(αn)

f ′(αn)

define a convergent sequence which converges to a unique α1 ∈ ZP such that |α− α1| <
1 and f(α) = 0.

Remark: Without the condition f ′(α) ≡ 0 (mod p) this theorem does not hold.
See an example,

f(x) ≡ x2 − 3(mod 2)

here,
f(1) ≡ 0(mod 2)

but f ′(1) ≡ 0(mod 2)
so,

x2 − 3

does not have any roots in Q2.

Advanced version of Hensel’s lemma
Let f(x) ∈ Zp[x] and ∃ α1 ∈ Zp such that,

|f(α1)| < |f ′(α1)|2

then ∃ a unique α ∈ Zp such that f(α) = 0.
I will give the outlines for this proof,
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Proof. we will use the iteration,

αn+1 = αn −
f(αn

f ′(αn)

For n = 1 take b1 = − f(α1)
f ′(α1)

Since,

|b1| =
|f(α1)|
|f ′(α1|

< |f ′(α1)| ≤ 1

∴ b1 ∈ Zp

Now, using Taylor expansion,∃ m ∈ Zp such that,

f(α1 + b1) = f(α1) + f ′(α1)b1 +mb21

but our b1 gives ,
f(α1) + b1f

′(α) = 0

∴ |f(α1 + b1) ≤ |b1|2 < |f(α1)|
and,

|f ′(α1 + b1)− f ′(α1)| ≤ b1 < |f ′(α1)|
using ultrametric inequality,

|f ′(α1 + b1)| = |f ′(α1)|
Now, set

α2 = α1 + b1 = α1 −
f(α1)

f ′(α1

=⇒ f(α2) < f(α1)

but,
|f ′(α2)| = |f(α1)|

=⇒ f(αn) going to smaller, but f ′(αn) will remain unchanged.

=⇒ |α− α1| ≤
f(α)

f ′(α1)

This α will be the unique root of f(x) satisfying those conditions.

Example: let,

f(x) = x2 − 17

see,
f(1) ≡ 0(mod 2)

f ′(x) = 2x(mod 2)

=⇒ f ′(x) = 0(mod 2)
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So, here we can’t use Hensel’s lemma,
If we choose α1 = 1 then,

|f(α1)| = 2−4, |f ′(α1)| = 2−1

=⇒ |f(α1)| ≤ |f ′(α1)|2

Now, we can use the advanced version of Hensel’s lemma,
and say x2 − 17 = 0 has a root in Q2.

Polynomial version of Hensel’s Lemma:
If for a polynomial F (x) ∈ Zp[x] there exists two polynomials G1[x] and H1[x] co-
effiecients from Zp[x] such that,

i) G1(x) is a monic polynomial.
ii)G1(x) and H1(x) are relatively prime modulo p.
iii) F1(x) ≡ G1(x).H1(x) (mod p).
Then, there must exist two polynomials G(x), H(x) ∈ Zp[x] such that,
i) G(x) is a monic polynomial.
ii)G(x) ≡ G1(x)(mod p) and H(x) ≡ H1 ≡ (x)(mod p)
iii)F (x) = G(x)H(x)

3.1 Application of Hensel’s Lemma

In this section, we try to find roots of unity and square elements in Qp.

Theorem 7. For a prime p and a number r such that p ̸ |r, then there exists an integer
α such that αr ≡ 1(mod p) but α ̸≡ 1(mod p) iff (r, p− 1) > 1 and also for every such α
the least positive integer r such that αk ≡ 1 must divide p− 1.

Proof. Let, there exist a α such that,

αr ≡ 1(mod p)

then the image of α in Z
pZ

is an element with order dividing r in the cyclic group ( Z
pZ
)∗

of order p-1.

=⇒ g.c.d(r, p− 1) ̸= 1

unless α ≡ 1(modp).
Further, the least k with this property must divide the g.c.d., which means p− 1
for converse part, in a cyclic group of order p − 1, if m|p − 1 and a generator x , then

x
p−1
m is of order m,The set of elements of order m is a cyclic group generated by x

p−1
m .

Lemma: For a prime p and a positive inte.g.,er m not divisible by p,there exists m-th
root of unity in Qp iff m divides p− 1.

Proof. Now using previous lemma, for each m dividing p− 1 we can find m incongruent
roots of

xm − 1 ≡ 0(mod p)

24



and then Hensel’s lemma gives ∃m different roots of xm − 1, which are mth roots of
unity.
The only part is that remaining there are no other roots of unity,

claim:if γk ≡ 1 and p ̸ |k
then γm ≡ 1 for some m|p− 1
Suppose,

γk = 1

=⇒ γk ≡ 1(mod p)

where p ̸ |k
Then, by theorem 6, there is a m|p− 1 such that,

γm ≡ 1(mod p)

by Hensel’s Lemma,
There is a unique γ1 such that,

γ1 ≡ γ(mod p)

and,
γ1 = 1

but since m|k

=⇒ γ1 is a root of xk − 1 as well

.
and its congruent mod p to γ then by the uniqueness of Hensel’s lemma forces, γ1 = γ.

4 Local and Global principal

Theorem 8. A rational number m ∈ Q is a square in Q iff it is a square element in all
Qp. where p ≤ ∞

Proof. We know, for a rational number m ∈ Q,

m = ±
∏
p<∞

pvp(m)

if it is square in Q, then , m is positive,

m = x2

for a x ∈ Q
=⇒ each prime factor has even power.
So , each p-adic valuation will be even.

for converse part,
let m is squared at p, then valuation of m, i.e., vp(x) is even.
Now if m is square in Qp for all primes p < ∞, then vp(x) is even for all p.
Then using prime factorization, this m is square in Q.
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Theorem 9. The existence or non-existence of (global) solutions of diophantine equa-
tions in Q can be concluded by looking for (local) solutions of that equation in Qp, for
every prime p ≤ ∞.

One implication is easy to understand that if solution exists for an equation in Q then
solution exists in Qp.

But converse is not true, let’s see by a counter example,

Counterexample Let,

g(x) = (x2 − 2)(x2 − 17)(x2 − 34)

then g(x) has roots in Qp for all primes p, but does not have any root Q.

Proof. Here, g(x) has solutions in R but 2, 17, 34 they are not squares of any rational
number, so it does not have any root in Q.
Now, for the solutions in Qp,

case 1: If p ̸= 2, 17 , then
if x2 ≡ 2(mod p) and x2 ≡ 17(mod p)
equations does not have any solution ,then since ( Z

pZ
)∗ is cyclic group of order p− 1,

Then an element x ∈ ( Z
pZ
)∗ will be a square element if it is an even power of a genera-

tor of ( Z
pZ
)∗ .

This implies, 2, 17 are the elements equal to odd power of a generator of the group,
The product of two odd power elements will be even power element,
=⇒ product of 2, 17, i.e., 34 is a square element of ( Z

pZ
)∗

=⇒ x2 ≡ 34 has a root in ( Z
pZ
),

Now, by Hensel’s lemma, it has a root in Qp.

case 2 for p = 17
f(x) = x2 = 2 has a root in Q17

62 ≡ 0(mod 17)

=⇒ f(x) ≡ 0(mod 17)

and
f ′(6) ≡ 12(mod 17)

f ′(x) ̸≡ 0(mod 17)

∴ by Hensel Lemma, f(x) has a root in Q17.
case 3: If p = 2
then,

x2 ≡ 17(mod 2)

has a root in Q2

For p = ∞ it has six distinct roots.
Therefore, g(x) has roots in Qp for all p.

To solve this problem, Mathematicians Hasse and Minkowski give a result for which
polynomials this principal successfully holds.
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Theorem 10. The Hasse-Minkowski Theorem:
Let, h(x1, x2, ...xn) be a homogeneous polynomial of degree 2 in Q[x1, x2, ...xn] , then

h(x1, x2, ...xn) = 0

has non-trivial solutions in Q if and only if it has non-trivial solutions in Qp for every
p ≤ ∞.

5 Power series in p-adic numbers

In this section we are going to knowregion of convergence of power series in Qp and
also defines range and domains for logarithmic and exponential functions by using power
series in Qp.
Similar to real analysis, for finding a radius of convergence, I am giving a proposition in
below.

Proposition 1. [GG97] Suppose,
g(x) =

∑∞
n=0 bnx

n and define,

r =
1

lim
n→∞

sup(|bn|)
1
n

then we have followings,
i) If r = 0 then g(x) will converge only when x = 0.
ii) If r = ∞ then, g(x) will converge for all x ∈ Qp.
iii) If 0 < r < ∞ and lim

n→∞
|bn|rn = 0 for this g(x) will converge iff |x| ≤ r.

iv) If 0 < r < ∞ and lim
n→∞

|bn|rn ̸= 0 for this g(x) will converges iff |x| < r.

Now, using this proposition, let’s define Logarithmic and exponential functions.

5.1 Logarithm Function

Let’s start with our usual power series of the logarithm function.
Let,

g(x) =
∞∑

m=1

(−1)m
xm

m

where, x ∈ Qp

So, here

bm =
(−1)m

m

|bm|
1
m = |(−1)m

m
| = p

vp(m)

m

Now, vp(m) is the largest n for which pn|m.

∴ n = vp(m) ≤ log(m)

logp

=⇒ vp(m)

m
≤ log(m)

mlogp
−→ 0 as n −→ ∞
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Hence,
|bm|

1
m −→ 1 as m −→ ∞

∴ In this case, r = 1.
Now , let’s see what happens at |x| = 1

|bm|rm = | 1
m
|.1m = | 1

m
| ̸−→ 0

Since, for any nonzero m, when p does not divide m ,it will be equal to 1.
Now, using the previous proposition ,
The series

g(x) = x− x2

2
+

x3

3
+ ...

converges only for |x| < 1.

Definition 1. Let U1 = x ∈ Zp : |x− 1| < 1 . For this domain, we can define p-adic
logarithm by,

logp(x) = log(1 + (x− 1)) =
∞∑

m=1

(−1)m+1 (x− 1)m

m

for all x ∈ U1.

We can check that , This p-adic logarithm satisfies functional equations,
i.e., for m,n ∈ U1 ,

logp(m.n) = logp(m) + logp(n)

.

5.2 Exponential Function

First, we will find the radius of convergence of the function,

h(x) =
∞∑

m=0

xm

m!

where x ∈ Qp.
for this, lets prove a lemma,
Lemma
For a prime number p,

vp(m!) =
∞∑

m=1

⌊m
p!
⌋ < m

p− 1

Where ⌊.⌋ is called greatest integer function.

Proof.
m! = m.(m− 1)...1

Number of elements that are multiples of p(i.e.,, p,2p,3p,... = ⌊m
p
⌋

similarly,
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Number of elements which are multiple of p2(i.e., , p2, 2p2, 3p2, ...) = ⌊m
p2
⌋

continuing this,
We get, Number of elements which are multiples of pi(i.e., , pi, 2pi, 3pi, ...) = ⌊m

pi
⌋

∴ vp(m!) =
∞∑

m=1

⌊m
p!
⌋

Now, we know ,

⌊x⌋ ≤ x

=⇒
∞∑

m=1

⌊m
p!
⌋ ≤

∞∑
m=1

m

p!
=

m

p− 1

Radius of convergence for h(x)
Now, for the function h(x) (defined above),

|bm| = | 1
m!

| = pvp(m!) < p
m

p−1

r =
1

lim
n→∞

sup(|bn|)
1
n

≤ 1
1

p−1

=⇒ r ≥ −1

p− 1

Therefore the series converges for |x| < p
−1
p−1 .

Now, for |x| = p
−1
p−1 .

assume m = pn for a n ∈ Z

vp(m!) = vp(p
n!) = 1 + p+ p2 + ...+ pn−1 =

pn − 1

p− 1

As vp(x) =
1

p−1

=⇒ vp(
xm

m!
) = vp(

xpm

pm!
) = pmvp(x)− vp(p

m!) = pm.
1

p− 1
− pm − 1

p− 1
=

1

p− 1

which does not depend on n,

∴
xm

m!
̸−→ 0 asm −→ ∞

Hence, h(x) does not converge for |x| = p
−1
p−1 .

Since,region of convergence is always a disk, h(x) does not converge out side of disk

|x| < p
−1
p−1 .

Definition 2. Let, B = {x ∈ Zp : |x| < p
−1
p−1} in this domain , we can defined p-adic

exponential function by expp : B 7−→ QP by,

expp(x) =
∞∑

m=0

xm

m!
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Relation between p-adic Logarithm and p-adic Exponential [GG97] For x ∈ Zp

such that |x| < p
−1
p−1 then,

|expp(x)− 1| < 1

so, range of expp(x) sits inside domain of logp and

logp(expp(x)) = x

Conversely, for |x| < p
−1
p−1 ,

|logp(1 + x)| < p
−1
p−1

then range of logp(x) sits inside the domain of expp and

expp(logp(1 + x) = 1 + x

6 Valuation Theory for Field

Earlier, we defined valuation for an arbitrary field K. In this section, we will prove
some theorem related to fields with non-archimedean absolute values.In non archimedean
absolute value associate valuation is called exponential valuation.

Let’s define some important structures,
Let K be a field with an exponential valuation. Then
The subset,

O = {x ∈ K : v(x) ≥ 0}

is form a ring and

O∗ = {x ∈ K : v(x) = 0}

is a group of units of O.
and there exists a unique maximal ideal

γ = {x ∈ K : v(x) > 0}

Discrete Valuation:
If exponential valuation has a smallest positive value , then it is called Discrete Valua-
tion.
An element ρ ∈ O is called prime element , if

v(ρ) = 1

Proposition 2. [Neu13] For discrete valuation v on K , the ring O is a Principal Ideal
Domain. If the smallest positive value of v is 1 then

γm = ρmO = {x ∈ K : v(x) ≥ m}

where m ≥ 0 and ρ is prime element
are nonzero ideals of O.Further,
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γm

γm+1
∼=

O

γ

Proof. Let, take an ideal b ̸= 0 of O and a nonzero element x from b with the smallest
possible valuation v(x) = m.
Then,

x = ρm.u1 where u1 ∈ O∗

=⇒ ρm ⊆ b

Now, choose another arbitrary element y ̸= 0 from b such that,

y = ρn.u2 where u2 ∈ O∗

Since, n = v(y) ≥ m

=⇒ y = (ρn−m.u2).ρ
m ⊆ ρmO

=⇒ b = ρmO

For the next part,
Take a map

γm 7−→ O

γ

via,
aρm 7−→ a mod γ

Which is a surjective map with kernel ρm+1,

Therefore, the result follows from first isomorphism theorem.

For a discrete valued field,we have a filtration of ideals,

...ρ3 ⊆ ρ2 ⊆ ρ1 ⊆ O

Unit Group:
Define,

U (m) = 1 + γm = {x ∈ K∗ : |1− x| < 1

qm − 1
}

Where, | · | = q−v, q > 1 and v is the exponential valuation , which admits the lowest
value 1.
U (m) is a subgroup of O∗.

Proof. (1 + γm) is closed under multiplication.
let, x ∈ Um

∴ |1− x−1| = |x|−1|x− 1| = |1− x| < 1

qm−1

=⇒ x−1 ∈ Um
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The group U (1) is called the group of principal units.

Theorem 11. O∗

U(m)
∼= ( O

γm )∗ and U(m)

U(m+1)
∼= O

γ

Proof. For proving the first isomorphism,
Let’s take a map,

ϕ : O∗ 7−→ (
O

γm
)∗

u 7−→ u modγm

This is a canonical homomorphism. Which is obviously surjective.

claim: kerϕ = U (m)

One sided containment is easy, i.e.,

1 + γm ∈ kerϕ

=⇒ U (m) ⊆ kerϕ

On the other side,
let, U ∈ kerϕ

∴ U mod γm = 1 mod γm

=⇒ U = 1 + γm

=⇒ kerϕ ⊆ U (m)

∴ kerϕ = U (m)

Hence, O∗

U(m)
∼= ( O

γm )∗

For the 2nd isomorphism,
Take the surjective homomorphism,

ϕ1 : U
(m) 7−→ O

γ

defined by

1 + ρma 7−→ a mod γ

By similar way we can prove kerϕ1 = Um+1

Then by Isomorphism Theorem,

U (m)

U (m+1)
∼=

O

γ
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Ostrowski’s Theorem for Complete Field:[Neu13]
Let, k be a complete field with an archimedean valuation | · |. Then there exists an
isomorphism ϕ from k to R or C satisfying

|a| = |ϕa|s

where s ∈ (0, 1] is a fixed number.

6.1 Extension of valuation

In this section we will see , for an algebraic extension, how a valuation from the base
field can be extended to the above field.

Lemma 11.1. Suppose K is a complete field with respect to non-archimedean valuation
| · |.
Let g(x) = b0 + b1x+ ...+ bnx

n ∈ K[x] be a irreducible polynomial of degree n, such that
b0.bn ̸= 0 Then,

|g| = max {|b0|, |bn|}

When, bn = 1 and b0 ∈ O then g ∈ O[x].

Theorem 12. Suppose K be a complete field with respect to an archimedean valuation
| · |. Let M|K be a finite degree algebraic extension . Then we can extend the valuation
| · | uniquely to L by,

|α| = n

√
|NM|K(α)|

Where,[L : K] = n

Proof. If | · | is archimedean valuation, then from Ostrowski’s theorem we can say,
K = R or C
Then,

2

√
|NC|R(z)| = 2

√
z.z̄ = 2

√
|z|2 = |z|

so, valuation is the same.
Now, if | · | is non archimedean.
Existence of Extended Valuation: Let ,
O = The valuation ring of K and
OM = integralclosure of O in M.
Then,(∗)

OM = {α ∈ M : NM|K(α) ∈ O}

If α ∈ OM =⇒ NM|K(α) ∈ O this part is evident.
for converse part,
let α ∈ L∗ and NM|K(α) ∈ O
Let, g(x) be the minimal polynomial of α over K such that’

g(x) = xm + am−1x
m−1 + ...+ a0 ∈ K[x]

Then,
NM|K(α) ∈ O = ±am0 ∈ O
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=⇒ |am0 | ≤ 1

=⇒ |a0| ≤ 1 =⇒ a0 ∈ O

Then, by Lemma10.1, g(x) ∈ O[x] =⇒ α ∈ OM

Now, the function |α| = n
√

|NM|K(α)| satisfies definiteness and multiplicativity trivially,
for strong inequality,

|α + β| ≤ max{|α|, |β|}

dividing by β it reduces to

|α| ≤ 1 =⇒ |α + 1| ≤ 1

then, by (∗) If
α ∈ OM =⇒ α ∈ OM+1

Thus, the function |α| = n
√
|NM|K(α)| defines a valuation of M whose restriction to K

gives the valuation of K and OM is the valuation ring of L.

Uniqueness Let, there exist another extension | · |′ with valuation O′
M .

Suppose Γ, and Γ′ are the maximal ideals of OM and O′
M respectively.

Let, α ∈ OM but α ̸∈ O′
M and

g(x) = xm + am−1x
m−1 + ...+ a0

be the minimal polynomial of α over K.
Then, , a0a1, a2, ...an ∈ O and α−1Γ′

1 = −am−1α
−1 − ...− a0(α

−1)m ∈ Γ′

which contradicts the maximality of Γ′.
It implies OM ⊆ O′

M

∴ |α| ≤ 1 =⇒ |α|′ ≤ 1

It means the valuations | · | and | · |′ are equivalent.
Since when we restrict them on K, they will give same value so |.| and | · |′ are equal
valuation.

Remark: In this case, M will be a complete field.

6.2 Local fields

Definition 3. A field K is called local field if it is complete with respect to discrete
valuation and its residue field is finite.

Proposition 3. A local field is locally compact and its valuation ring is compact.
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Remark: A local field is finite extensions of Qp and Fp((t)).
Decomposition of K∗:
For a local field K, its multiplicative group is decomposed as,

K∗ = (ρ)× µq−1 × U (1)

.
Where, ρ is defined as prime element, (ρ) = {ρk : k ∈ Z} , q is the cardinality of the
residue field and U (1) is the group of principal units.
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[GG97] Fernando Q Gouvêa and Fernando Q Gouvêa. p-adic Numbers. Springer, 1997.

[Neu13] Jürgen Neukirch. Algebraic number theory, volume 322. Springer Science &
Business Media, 2013.

36



Acknowledgement

I would like to extend my heartfelt gratitude to my thesis supervisor, Dr.Chandrasheel
Bhagwat. His guidance and Encouragement helped me to stay on this project and
Thank you for patiently clearifying my doubts.

37


	Abstract
	Foundations
	p-Adic Topology
	Algebra of Non-Archimedean Absolute Value
	Equivalence condition for Absolute values
	Completion of Q
	Analytical Way to Construct Qp
	p-adic integrs

	Hensel's Lemma
	Application of Hensel's Lemma

	Local and Global principal
	Power series in p-adic numbers
	Logarithm Function
	Exponential Function

	Valuation Theory for Field
	Extension of valuation
	Local fields


