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Abstract

The elliptic curve discrete logarithm problem(ECDLP) is one of the most

widely used primitives in various public key cryptosystems. Hardness of

ECDLP is an absolute security necessity, but not sufficient, for these cryp-

tosystems and the actual security depends on the elliptic curve Diffie-Hellman

problem(ECDHP). Hence, it is imperative to study hardness of ECDLP as

well as of ECDHP on the elliptic curve parameters recommended for practi-

cal implementations. Our work contributes in both the directions. We have

given the tightest lower bound for ECDHP on the elliptic curve parameters

most widely used in practical applications. These lower bounds ensure the

security of all those protocols which rely on ECDHP for their security. We

also present a novel generic algorithm which uses the multiplicative group

of a finite field as auxiliary group probably for the first time. Our algorithm

also indicates some security issues in NIST curves which are used for USA

federal government for extremely secure communications.
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Chapter 1

Introduction

1.1 Cryptography

Word cryptography comes from the Greek root words kryptos, meaning hid-

den, and graphikos, meaning writing. So, cryptography was referred to as

the methodology of concealing the content of messages before the computer

age which started around mid-1970s. However, in the present digital age,

this is just one of the goals of modern cryptography. Objectives of modern

cryptography can be broadly divided into following four:

1. Confidentiality: This is to keep the content of data secret from all but

those authorized. Encryption schemes are the cryptographic tools that

are used for confidentiality(secrecy).

2. Data integrity: This is to address the unauthorized alteration of data

and hash functions are used to achieve this.

3. Authentication: This is related to authenticate the source of the mes-

sage as well as the message itself. Digital signatures ensure the in-

tegrity(authenticity) of the source and the message.

4. Non-repudiation: It prevents a party from denying previous commit-

1



2 CHAPTER 1. INTRODUCTION

ments or actions. Hash functions along with digital signatures enable

us to deal with such situations.

Therefore, the overall goal of modern cryptography can be described as

adequately addressing these four areas in both theory and practice.

Given the astronomical scale of web communications happening per sec-

ond all over the world, it would not be wrong to say that we are living in an

‘online’ world where everyone is connected with one another via an insecure

channel of communication. From secure exchange of personal messages to

extremely sensitive communications between the governments of two coun-

tries, from online grocery purchase to safety of financial transactions worth

thousands of billions of dollars, from our basic cellphone’s password to the

password designed to launch a nuclear weapon etc., are just some of the ex-

amples where cryptography is at the very core of their existence. In fact, the

online world we are living in at present would not have been possible without

the invention of cryptography. Therefore, the role of modern cryptography in

maintaining peace, safety and order of present online world can not possibly

be overstated.

1.2 Private Key Cryptography

Private key cryptography and public key cryptography are the two branches

of cryptography. Until the mid-1970s, there was simply private key cryptog-

raphy and it dates back to even the time of Roman emperor Julius Caesar.

There is some evidence that Caesar employed a simple shift cipher to hide

a secret message from enemy army. Shift cipher, substitution ciphers are

simple examples of private key cryptosystems. Suppose Alice and Bob want

to exchange encrypted messages. In this type of cryptosystems, the sender

and the receiver of the message must agree on a secret key before they start
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communicating. Using that shared secret key, any of the two parties can

encrypt and other party can easily decrypt with the knowledge of the shared

secret key. Thus, both parties have equal(or symmetric) powers and abilities.

That is why private key cryptography is also called symmetric key cryptog-

raphy. To give an idea on how it works, we take the example of a simple

substitution cipher:

• The secret key k is a permutation f of the English alphabet {a, b, c, ..., z}

which is known to both Alice and Bob.

• Encryption: Using the encryption function ek = f , the sender can en-

crypt a message m by computing ek(m) = f(m) = c. c is the encrypted

message or ciphertext.

• Decryption: To decrypt the ciphertext c, the receiver would use the

decrypting function dk = f−1(easily computed from f) to extract the

original message m as follows: dk(c) = f−1(c) = f−1(f(m)) = m.

Modern symmetric key cryptosystems consist of block ciphers(more pop-

ular) and stream ciphers. Popular block ciphers are Data Encryption Stan-

dard (DES), triple-DES and Advanced Encryption Standard (AES). AES

is the current world standard for symmetric key cryptography. At present,

the most common implementations of AES encrypt and decrypt blocks of

128-bits, using keys also of 128-bits. A stream cipher, in its simplest form,

requires that Alice and Bob agree on a pseudo-random bit generator and a

seed. The seed acts as the secret key. A currently popular stream cipher is

RC4[2].
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1.3 Public Key Cryptography

Even though modern symmetric cryptosystems are safe and fast, there is

this inherent problem that Alice and Bob need to agree on the secret key

before they start communicating. What if they never met before or never

had a chance to communicate over a secure channel to agree on the secret

key? These are actual situations that occur all the time in the modern

digital communications. For example, think about the practical situation

where you want to encrypt your credit card details for a web purchase from

a distant vendor. We can easily think of a number of similar circumstances

in our daily lives. So, it might seem that symmetric key cryptography is

of no use here and we are stuck. Fortunately, this problem was solved in

the mid-1970s using public key cryptography by Whitfield Diffie and Mar-

tin Hellman[17]. Their paper, entitled “New Directions in Cryptography”,

formulated the concept of public key cryptosystems and made a number of

groundbreaking contributions to this new area. However, it came to the light

later that the concept of public key cryptosystems was already discovered by

James Ellis in 1969 while working at the British Government Communica-

tions Headquarters (GCHQ) but his discoveries remained classified until his

death in 1997. There is one more interesting thing about this story. It is now

known that Malcolm Williamson, a fellow researcher at GCHQ, discovered

Diffie-Hellman key exchange before it was rediscovered by Diffie and Hellman

while another fellow researcher, Clifford Cocks, invented the RSA public key

cryptosystem before Rivest, Shamir and Adleman did.

The paper[17] of Diffie and Hellman was revolutionary and it aptly begins

with the following sentence:

We stand today on the brink of a revolution in cryptography.

Indeed, their paper formulated the basic definitions and goals of a new

field, public key cryptography, of mathematics and computer science at a
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time when the existence of this new field was dependent on then growing age

of the digital computer.

This problem of not having a shared secret key but still be able to com-

municate can be solved by public key cryptography in two ways:

• Use public key exchange protocol to first get a shared secret key and

then use symmetric key encryption.

• Directly use public key encryption scheme to communicate which does

not require knowledge of a shared key beforehand.

In public key cryptosystems, each party has their own private key kpriv

which they use to create a public key kpub in polynomial time. However, there

is no known polynomial time algorithm to get the private key from the public

key. In fact, one need to solve some computationally hard number-theoretic

problem to get the private key from the public key. Two computationally

hard problems most widely used in public key cryptography are factorization

of large integers(used in RSA) and discrete logarithm problem (DLP) in the

multiplicative group of a finite field or the group of points on an elliptic

curve over a finite field. We now describe the Diffie-Hellman key exchange

protocol[30, Section 2.3] which is based on DLP.

Let G be a cyclic additive group generated by P and its order is n. Given

Q ∈ G, the discrete logarithm problem (DLP) in G is to compute the

integer x (mod n) such that Q = xP . The integer x is called the discrete

logarithm of Q with respect to P . A very closely related problem to DLP

is the Diffie-Hellman problem (DHP) in G which is to compute the

element xyP from given elements xP and yP . Assume that DLP is hard in

the group G. Suppose Alice and Bob want to share a secret key to be used

in a symmetric encryption scheme, but their only means of communication

is insecure. Using the intractability of DLP in the group G, they can solve

this problem as follows:
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• Alice picks a secret integer a and publishes Q = aP . Here, a is her

private key and Q = aP is her public key.

• Similarly, Bob chooses a secret integer b and makes R = bP public.

Thus, b is the private key of Bob and R = bP is his public key.

• Alice uses her private key a and computes aR = abP .

• Bob uses his private key b and computes bQ = abP .

• Thus, S = abP is the shared secret key between Alice and Bob.

Note that how hardness of DLP in G makes sure that no one else except

Alice and Bob can possibly have access to a and b respectively, and thus

provides a way for them to get the secret key. Moreover, there are public key

encryption schemes such as ElGamal public key encryption[19] which can be

used directly for encryption, without requiring a shared secret key. So, we

saw how public key cryptography solved the problem with symmetric key

cryptography, and hence led to the gigantic scale of deployment of modern

cryptography in current digitally connected world. If not for public key cryp-

tography, we would never have been able to reap the extremely rich rewards

modern cryptography is bestowing upon us in a number of ways. In simple

terms, whenever we provide a secret piece of information, something which

is known only to you such as password/ATM pin etc., to be able to start the

various web communications done on a daily basis, this should remind us that

public key cryptography is playing its role there. This is enough to signify

the massive and indispensable role of public key cryptography in modern

cryptography for secure and astronomical web communications performed

on a daily basis all around the globe. Perhaps public key cryptography has

transformed the world in a way that has never happened before and it is fair

to say it is at the root cause of the present online world we are living in.
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1.4 Our contribution

As mentioned above, factorization, used in RSA, and DLP are the two major

primitives used in practical public key cryptography. However, factorization

and DLP in the multiplicative group of a finite field can be solved in sub-

exponential time whereas there are no known attacks that solves DLP in the

group of points on elliptic curves over finite fields faster than exponential

time, barring some special and a very small class of elliptic curves which

can easily be avoided for practical implementations. Thus, DLP in elliptic

curve over finite field require far less input size than RSA or than DLP in

the multiplicative group of a finite field to provide same level of security

assurance. This reduces the cost of implementations significantly, explaining

the widespread employment of elliptic curves in practice.

Hardness of elliptic curve discrete logarithm problem (ECDLP) is a secu-

rity necessity but it might not be sufficient to assure the security of protocols

based on ECDLP. For example, one can easily check that Diffie-Hellman key

exchange protocol described above, as well as ECDSA[33] and many more

protocols are the examples where an attacker just needs to solve elliptic curve

Diffie-Hellman problem (ECDHP), even if ECDLP is hard. Hence, it is im-

perative to study hardness of ECDLP as well as of ECDHP on the elliptic

curve parameters recommended for practical implementations. Our work

contributes in both the directions:

1. We present the first reduction of DLP to DHP that uses F×p as the aux-

iliary group to estimate the lower bound on DHP. Moreover, using our

reduction algorithm, we have given the tightest lower bound for the

ECDHP on the curves in SEC2 standard[52]. These lower bounds en-

sure the security of all those protocols, like ECDSA[33], Diffie-Hellman

key exchange protocol etc, which rely on ECDHP for their security.

To give an idea about the significance of this result, we mention that
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SEC2 standard[52] of elliptic curve parameters is recommended by

Standard of Efficient Cryptography Group (SECG) at Certicom Cor-

poration and the SEC2 standard also include NIST curves[48](used by

USA federal government for extremely secret communications) as well

as most widely used curves from ANSI[1]. Also, digital signature proto-

col ECDSA in bitcoin is done using one of the curves in SEC2 standard,

viz SECP256K1[7].

2. We also present a novel generic algorithm to solve DLP, again using

F×p as the auxiliary group. A remarkable revelation coming out of our

new attack is that it indicates some security lapses in ECDLP on NIST

curves. We are well aware that hardness of ECDLP is an absolute

necessity for the security of protocols like ECDSA[33], Diffie-Hellman

key exchange[30, Section 2.3] etc. Therefore, any new attack indicating

any kind of weakness in ECDLP would have immense cryptographic

importance and this is exactly where this work contributes.

1.5 Overview

We give an overview of the chapters of this thesis. Chapter 2 describes

ECDLP and known attacks which are relevant to our work. In chapter 3, we

present our work in achieving the tightest lower bound on ECDHP for the

important elliptic curves in SEC2 standard. Our new attack on DLP, indi-

cating some weakness in NIST curves is presented in chapter 4. Appendices

and references are provided at the end.

Going over our work described in these chapters, one can say that our

work has contributed towards the development of elliptic curve public key

cryptography.



Chapter 2

Elliptic Curve Discrete

Logarithm Problem and

Attacks

2.1 Introduction

Discrete logarithm problem and factorization of integers are two most widely

used primitives in the public key cryptography as discussed in chapter 1.

However, in this chapter, we will only be interested in the discrete logarithm

problem and various attacks to solve the problem. Let G be a cyclic additive

group generated by P and its order is n. Given Q ∈ G, the discrete loga-

rithm problem (DLP) in G is to compute the integer x (mod n) such that

Q = xP . The integer x is called the discrete logarithm of Q with respect to P .

DLP in certain groups is a computationally hard number theoretic problem,

and therefore it is used as building blocks for various public key protocols

that we come across relentlessly in our daily web communications. Hardness

of DLP assures the desired security of such protocols, signifying the indis-

pensable role of DLP towards the security of modern web communications.

9
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We already described that in detail in chapter 1.

Having said that, we also want to point out that hardness of DLP depends

on the group structure and DLP is not hard in all groups. For example, DLP

in < Zn,+ > is very easy because solving DLP in < Zn,+ > boils down to

finding inverse module n which can be done efficiently using extended Euclid

algorithm[30, Theorem 1.11]. Of course, only those groups where DLP is

hard are used in public key cryptography. The multiplicative group of a

finite field F×q and the group of points on an elliptic curve E(Fq) over a finite

field Fq are two main candidates of such groups for DLP-based protocols.

The DLP on elliptic curves is also known as elliptic curve discrete logarithm

problem (ECDLP). Now, there exists index calculus attack, a non-generic

attack, which solves DLP in F×q and has sub-exponential complexity. On

the other hand, there are only generic attacks known, except some special

classes of elliptic curves which we describe briefly in section 2.2, to solve

ECDLP on E(Fq) and these generic attacks have exponential time complexity,

much slower than sub-exponential. As a result, E(Fq) requires far less input

size than F×q to provide same level of security and thus, reduces the cost of

implementing the protocols. Therefore, E(Fq) is extensively used in practice

for DLP-based protocols and that is why the attacks on ECDLP are studied

extensively.

In this chapter, we discuss baby-step giant-step (BSGS) algorithm and

its improved versions as our work presents a new BSGS-type algorithm. The

overview of this chapter is as follows: basic notations of E(Fq) and special

attacks known for E(Fq) are discussed in section 2. Section 3 deals with

basic BSGS algorithm. In section 4, Pollard’s ‘interleaving’ BSGS is given.

In section 5, we discuss the improvement made in BSGS algorithm using

negation map of E(Fq). Section 6 discusses the best theoretical model of

BSGS-type algorithm, and also the efforts towards such algorithm and some
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open questions.

2.2 Basic Notations on Elliptic Curves and

Special Attacks

Let Fq be a finite field with q elements(q is some prime-power). An elliptic

curve over Fq(char6= 2, 3) in Weierstrass model is given by the solution of the

equation

E : Y 2 = X3 + AX +B

where A,B ∈ Fq such that 4A3 + 27B2 6= 0. This condition makes sure that

the curve is non-singular. We denote it by E(Fq). If P = (x0, y0) is a point

on E(Fq), its inverse is given by −P = (x0,−y0). Note that P and −P both

have same X-coordinate but their Y-coordinate are negative of each other. In

section 5, we will see how this property of negation map on elliptic curve can

be used to make faster attacks on ECDLP. There are other models of elliptic

curves such as Montgomery model [46], twisted Edwards model[4]. These

models are useful for efficient implementation but from the point of view

of the ECDLP, various models do not play such a prominent role because

we can usually switch between them whenever needed. Moreover, we do not

worry too much about elliptic curve models because we are mainly interested

in generic attacks on ECDLP and these generic attacks work just the same

on any model.

For a point P ∈ E(Fq) and a non-negative integer k we define kP to

be P + P + · · · · · · · · · + P (k times). One can extend this definition to all

k ∈ Z using kP = (−k)(−P ). The ECDLP is: Given P,Q ∈ E(Fq), find an

integer x, if it exists, such that Q = xP . As mentioned above, best attacks

to solve ECDLP are, in general, generic attacks such as BSGS and Pollard’s

rho attack[49]. However, there are some special instances of elliptic curves
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where far more efficient attacks are known on ECDLP. We list some of the

important ones below.

• Elliptic curves E(Fp) where p is a prime and |E(Fp)| = p are called

anomalous curves. Anomalous curves are an extremely special case

and ECDLP on such curves can be very easily solved in linear time

using p-adic logarithm map [15].

• When elliptic curve is not anomalous, the Weil and Tate-Lichtenbaum

pairings transform the ECDLP in E(Fq) into an instance of discrete

logarithm problem in the multiplicative group of a finite field Fqk(MOV

attack)[15, 44] where k is the embedding degree of the elliptic curve. For

certain special elliptic curves such as supersingular curves, the finite

field Fqk is small enough, therefore resulting instance of DLP in Fqk

can be solved using index calculus algorithm. However, this attack on

ECDLP may not be practical in general because it is applicable to only

very special class of curves.

• The Xedni calculus algorithm proposed by Silverman is a variant of

index calculus attack and it is based on lifting elliptic curves from

finite fields to number fields. However, this approach is also not likely

to work, see [32].

• There have been many other ideas to give an attack on ECDLP, viz.

[23, 26] by Galbraith et al., [20, 21] by Frey, [31] by Huang and Raskind.

All these approaches to solve ECDLP bring to light deep connections

within number theory, but at present none of them seem to have any

practical impact.

• After Semaev proposed the idea of summation polynomials[53], there

has been tremendous research going on to construct non-generic index
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calculus like attacks on ECDLP using summation polynomials. The

work of Gandry [29] and Diem[16] did propose such attacks but they

have their limitations. Extending the scope of such attacks has been a

very active area of research.

Since the class of elliptic curves where efficient attacks are known is very

small and can easily be avoided for cryptographic purposes, the best attacks

on ECDLP for elliptic curves used in practice are generic attacks. Shank’s

BSGS[54] and Pollard’s rho attack[49] are two most important attacks on

ECDLP. But we focus on BSGS-type attacks in this chapter because we

contribute in that direction.

2.3 Basic Baby-Step Giant-Step Algorithm

If one wants to solve DLP in any group G with order n, then it is enough

to find the discrete logarithm modulo the largest prime divisor of n because

of Pohlig Hellman algorithm [30, section 2.9]. Therefore, one can assume

the order of group G to be a prime p, and hence cyclic, when one wants to

solve DLP in G. Keeping this in mind, we assume that elliptic curve E(Fq)

is cyclic, generated by P and its order is a prime p. Then, given Q ∈ E(Fq),

ECDLP is to find the integer x (mod p) such that Q = xP .

The basic baby-step giant-step (BSGS) introduced by Shank[54] uses the

simple idea of division algorithm to solve ECDLP as follows: let M = d√pe

where d·e is the ceiling function. Then, division algorithm gives us unique

non-negative integers a0, a1 such that x = a1M + a0 with 0 ≤ a0 < M where

a1 is the quotient and a0 is the remainder when x is divided by M . Since

0 ≤ a0 < M , it follows that

0 ≤ a1 = x− a0

M
<

x

M
<

p

M
≤M
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Now, x = a0 + a1M implies that xP = a0P + (a1M)P or equivalently,

Q− (a1M)P = a0P

for 0 ≤ a0, a1 < M . Therefore, we make following two lists:

1. Baby steps: We compute the elements {a0P : a0 = 1, 2, ...,M} and

store them.

2. Giant steps: We compute MP just once and then, we compute giant

steps Q− a1(MP ) for a1 = 1, 2, ...,M and seek a match from the baby

steps. These steps are called ‘giant steps’ because of the big step of

MP .

The above match between two lists is guaranteed to occur because of the

division algorithm. The clever choice of M ≈ √p makes sure that both lists

have equal number of elements. Once we have the match between two lists,

we get a0, a1 which gives us the desired discrete logarithm as x = a1M + a0.

• Space complexity : Since we have to store elements only from the

baby-steps, the space complexity for the basic BSGS is d√pe group

elements.

• Time complexity[14]

– Worst-case: 2d√pe group operations.

– Average-case: 3
2d
√
pe group operations.

– Asymptotic: O(√p) group operations.

Note that the asymptotic time complexity O(√p) of this algorithm is op-

timal due to Shoup’s lower bound [55] on the complexity of any “generic al-

gorithm” that solves DLP. Therefore, one can not possibly develop a generic

algorithm to solve DLP that is faster than O(√p) asymptotically. However,

it does not negate the possibility of having a generic algorithm which has

better average-case complexity than basic BSGS.
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2.4 Pollard’s Interleaving BSGS

Pollard proposed a different way of computing the two list by ‘interleaving’[50,

section 3]. In Pollard’s method, we compute the elements alternatively from

both lists and store them all. The difference from the basic BSGS is that we

compute all the baby steps first and then we start computing giant steps. To

find a match in Pollard’s method, the element computed at the kth step in

one list is compared with all of the already computed elements of the other

list i.e. kP is compared with Q− i(MP ) for i = 1, 2, ..., k−1 and Q−k(MP )

is compared with jP for j = 1, 2, ..., k − 1.

Pollard’s BSGS is slightly faster than basic BSGS, but may require up

to twice the storage. On average, this method would require only 4
3d
√
pe ≈

1.33d√pe group operations which is less than the average-case 1.5d√pe of

basic BSGS[14]. Pollard only indicated the reason behind this slight gain

[50, section 3] and we describe it in detail here. The constant 4
3 arises for

the following fact: If two random numbers y and z are chosen in the interval

[0, 1], then expected value of max(y, z) is 2
3 . We now describe the role of this

fact towards the average-case complexity of this method.

Recall that division algorithm implies that there exists a match between

a0P and Q − a1(MP ) for 0 ≤ a0, a1 < M = d√pe. Since the discrete

logarithm x is random, it implies that a0, a1 are random as well. Different

values of a0, a1 give different values of x = a0 + a1M for the fixed M = d√pe

and we take all possible pairs of (a0, a1) in the basic BSGS to arrive at the

desired, but random, discrete logarithm x = a0 + a1M .

In other words, randomness of x results in the randomness of a0 and

a1. Since a0, a1 are random, a0
M

and a1
M

are also random and this is where

above fact was utilized by Pollard to give slightly faster average-case time

complexity. Taking y = a0
M

and z = a1
M
, we see that y, z belong to [0, 1]. Then
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above fact gives us,

Exp
(
max

(
a0

M
,
a1

M

))
= 2

3
It follows that Exp(a0) ≤ 2

3M and Exp(a1) ≤ 2
3M and thus, we can expect

a collision between the following two lists:

• {a0P : a0 = 1, 2, ..., 2
3M}.

• {Q− a1(MP ) : a1 = 1, 2, ..., 2
3M}.

Therefore, Pollard’s BSGS have average-case time complexity is 4
3M =

4
3d
√
pe ≈ 1.33d√pe group operations.

2.5 Negation Map and Improved BSGS for

ECDLP

Basic BSGS and Pollard’s BSGS work in any group. However, negative

map(P 7→ −P ) in elliptic curves can be used to further improve the BSGS

attack on ECDLP in elliptic curves[24, section 4]. Recall that for P =

(x0, y0), its inverse in the Weierstrass model is given by −P = (x0,−y0).

Thus, −P can be easily computed from P = (x0, y0) and both have same

X-coordinate. This fact can be exploited to further improve Pollard’s BSGS.

The main idea is to divide 0 ≤ a0 < M into two relatively smaller and special

sub-cases, 0 ≤ a0 <
M
2 and −M

2 ≤ a0 < 0. This use of negation map was

mentioned briefly in the article[24, section 4] and we explain this method

step by step below.

Fix any M > 0. Then, x = a0 + a1M with 0 ≤ a0 < M implies that

a1 = x−a0
M
≤ x

M
< p

M
. Such 0 ≤ a0 < M and 0 < a1 <

p
M

are unique and

always exist. We can always break 0 ≤ a0 < M into two equal sub-cases,

either 0 ≤ a0 <
M
2 or M

2 ≤ a0 < M .
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1. If 0 ≤ a0 <
M
2 , then 0 ≤ a1 <

p
M
.

2. If M
2 ≤ a0 < M , then rewrite x = a0+a1M as x = (a0−M)+(a1+1)M .

Now, it follows from M
2 ≤ a0 < M that −M

2 ≤ (a0−M) < 0 and then,

0 ≤ (a1 + 1) = x− (a0 −M)
M

<
x+ M

2
M

<
x

M
+ 1

2 <
p

M
+ 1

2

That is, (a1 + 1) < p
M

in this sub-case as well.

Combining above two sub-cases, we see that for any a0 such that −M
2 ≤

a0 ≤ M
2 , there exists 0 ≤ a1 <

p
M

such that x = a0 + a1M .

The motivation behind changing the interval 0 ≤ a0 < M into −M
2 ≤

a0 <
M
2 comes from the fact that X-coordinate of P and −P are same i.e.

X(P ) = X(−P ). The advantage of doing so is that we just have to compute

a0P for 0 ≤ a0 <
M
2 and compute Q − a1(MP ) for 0 ≤ a1 <

p
M
, and then

look for the match between their X-coordinates, i.e.

X(a0P ) = X(Q− a1(MP ))

where 0 ≤ a0 <
M
2 and 0 ≤ a1 <

p
M
.

Again, we have two lists and to make both sides having equal number of

elements, we need to have M
2 ≈

p
M

which implies that M ≈
√

2p. Therefore,

M = d
√

2pe is necessary to start with in this method. Also, note that
M
2 ≈

√
p
2 . In all, we compute the following two lists:

1. {a0P : a0 = 0, 1, ..., M
2 ≈

√
p
2}(
√
p in basic BSGS).

2. {Q− a1(MP ) : a1 = 0, 1, ..., M
2 ≈

√
p
2} (
√
p in basic BSGS).

And look for a match on X-coordinate of elements in above two lists which

means Q−a1(MP ) = ±a0P . Thus, the worst-case time complexity of solving

ECDLP using negative map is 2 ·
√

p
2 ≈

√
2p ≈ 1.414√p group operations

which was 2√p in the basic BSGS. The average-case time complexity to solve

ECDLP using negation map is 3
2

√
p
2 ≈ 1.061√p group operations which was
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3
2
√
p in the basic BSGS. Therefore, negation map improved the basic BSGS

by a factor of
√

2. Similarly, using negation map property with Pollard’s

BSGS, the average-case time complexity to solve ECDLP would be 4
3

√
p
2 ≈

0.943√p group operations[24], again an improvement over Pollard’s BSGS
4
3
√
p by a factor of

√
2.

Remark 2.1. Note that both intervals 0 ≤ a0 < M and −M
2 ≤ a0 <

M
2 have

same length, M . One can also think about divide 0 ≤ a0 < M into something

like −M
4 ≤ a0 <

3M
4 but then the negation map P 7→ −P would not be of

much help because we have to compute a0P for 0 ≤ a0 <
3M

4 .

2.6 Best Possible BSGS

Shoup [55] already gave the asymptotic lower bound on the number of group

operations for any generic algorithm to solve DLP. A natural question is

what would be the best possible algorithm of BSGS type, i.e. to give a

tight lower bound on the average-case time complexity for any algorithm of

BSGS type. Note that the basic BSGS algorithm is not optimal because

DLP can only be solved when there is a match between baby steps and giant

steps. For example, suppose one has computed a list of k elements in total.

So, k
2 elements are there in baby steps and k

2 elements are in giant steps.

Therefore, at most k
2 ·

k
2 = k2

4 instances of DLP can be solved from the k

elements computed in the basic BSGS algorithm. It follows that the worst-

case complexity of solving the desired DLP is the value of k for which k2

4 = p,

i.e k = 2√p is the worst-case complexity of basic BSGS, as already discussed.

In search of best possible BSGS type algorithm, Chateauneuf, Ling and

Stinson[9] gave an unrealistic model where computing an arbitrary element

aP + bQ is counted as a single operation. The main idea in this unrealistic

computational model is to compute one list of elements like {aiP + biQ}
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such that every collision between two distinct elements aiP + biQ = ajP +

bjQ solves an instance of DLP. Thus, a list of k elements will have
(

k
2

)
≈

k2

2 distinct pairs, or a list of k elements would solve k2

2 instances of DLP.

Note that the number of DLP instances k2

2 solved by this unrealistic model

is twice as compared to the basic BSGS k2

4 . As a result, the worst-case

complexity to solve desired DLP under this “best possible” BSGS model

would be k =
√

2p ≈ 1.414√p which follows from k2

2 = p. To find the average-

case complexity, one looks at the probability of solving a given instance of

DLP under this model which is roughly
k2
2
p

= k2

2p
because there are p instances

of DLP in total, and the expected running time is therefore roughly[22]
√

2p∑
k=1

(
1− k2

2p

)
≈
∫ √2p

0

(
1− x2

2p

)
dx = 2

√
2p

3 ≈ 0.943√p

group operations. For elliptic curves, when using negation map, the lower

bound on average-case would become 2√p

3 group operations. The interesting

thing is that both these lower bounds are better than what could be expected

from any method (for example, Pollard’s rho[49]) based on the birthday

paradox.

To get one step closer towards the “best possible” algorithm, Bernstein

and Lange [5] proposed “two grumpy giants and a baby” which is also a

variant of BSGS algorithm. As the name suggests, they compute three lists

in their method: {a0P : a0 = 0, 1, ...}, {Q+a1(MP ) : a1 = 0, 1, ...} and {2Q−

a2((M + 1)P ) : a2 = 0, 1, 2, ...}, where M ≈
√

p

2 and a match between two

elements from any pair of the lists can lead to a solution to DLP. Therefore

once k elements are computed, we have three lists of size k
3 and we can hope

to solve about 3(k
3 )2 = k2

3 instances of DLP. Since k2

4 < k2

3 < k2

2 , we can

expect this method be better than basic BSGS but not to match the best

“ideal” lower bound of the best possible BSGS. The name comes from that

fact that latter two walks are “giant steps” but in opposite directions.

The worst-case time complexity is
√

3p ≈ 1.732√p group opera-
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Table 2.1: Time complexity of BSGS type attacks
Algorithms Average-case Worst-case
Basic BSGS 3

2
√
p ≈ 1.5√p 2√p

BSGS with negation map 3
2
√

2
√
p ≈ 1.061√p

√
2p ≈ 1.414√p

Pollard’s BSGS 4
3
√
p ≈ 1.333√p 2√p

Pollard’s BSGS with negation map 4
3
√

2
√
p ≈ 0.943√p

√
2p ≈ 1.414√p

Best possible BSGS 2
√

2
3
√
p ≈ 0.943√p

√
2p ≈ 1.414√p

Best possible BSGS with negation map 2
3
√
p ≈ 0.667√p √

p

Two grumpy giants BSGS 2
√

3
3
√
p ≈ 1.155√p

√
3p ≈ 1.732√p

tions. Even though they did not give any precise statement about the

average-case asymptotic performance, the theoretic analysis and experimen-

tal result[5] suggest that the average-case time complexity of this method

is 2
√

3p
3 ≈ 1.155√p group operations which is slightly better than Pollard’s

rho method[49]. Galbraith, Wang and Zhang [27] analyzed the two grumpy

giants method in case of elliptic curves and using negation map. They also

gave efficient ways to perform baby-step giant-steps on elliptic curves by

computing “blocks” of points and sharing inversions using the Montgomery

trick. However, it remains an open question to determine the exact average-

case time complexity of the “two grumpy giants and one baby” algorithm

and to develop algorithms of BSGS type that have time complexity closer to

the best possible theoretical lower bound.

The time complexity of the BSGS type attacks mentioned in this chapter

in the average-case as well as in the worst-case is summarized in the Table

2.1.



Chapter 3

Improved Lower Bound for the

Diffie-Hellman Problem on

Important Elliptic Curves

3.1 Introduction

For public key protocols based on the discrete logarithm problem (DLP),

computational difficulty of solving DLP is a security necessity. The group of

points on an elliptic curve over finite field is one such example because there

is no efficient algorithm, in general, to solve the (elliptic curve)discrete loga-

rithm problem (ECDLP). However, interesting thing about these DLP-based

protocols is that, the security of many such protocols does not exactly rely

on the hardness of DLP. For example, the ElGamal public key cryptosystem

[19] is secure if and only if the Diffie-Hellman problem (DHP) is hard [30,

Proposition 2.10]. Thus, it is enough for an attacker to solve DHP to break

the ElGamal cryptosystem. The Diffie-Hellman key exchange[30, Section

2.3], tripartite Diffie-Hellman key exchange[34], ECDSA[33], pairing-based

cryptosystems [18], identity-based encryption schemes[10], BLS short signa-

21
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ture scheme[6] and many more public key protocols are some other examples

where the security of the protocols depends mainly on hardness on DHP.

Since elliptic curves over finite field are widely used in practice to implement

the above mentioned protocols, along with many others, it is of paramount

importance to investigate the hardness of the elliptic curve Diffie-Hellman

problem (ECDHP) and this is the central idea of this chapter.

A brief outline of the chapter is the following: in section 2, we will see

the traditional methods and known results on the hardness of DHP on any

general group. Section 3 presents some known results on minimum number

of group operations required to solve ECDHP on the elliptic curve groups

over finite fields. In section 4, we discuss some previous results related to

hardness of DHP. In section 5, we present our work which improves the lower

bound on ECDHP for various elliptic curves used in practice. Conclusion is

given in section 6.

3.2 Reduction of DLP to DHP

To study the hardness of DHP the traditional method, and the only method

known so far, involves reduction of DLP to DHP. In such reductions, one

tries to solve DLP efficiently(in polynomial time of the input size), using the

solution of DHP as sub-routine for polynomially many times in the input

size. If there exists such a reduction algorithm, we say that DLP reduces

to DHP in polynomial time. Moreover, it would imply that DHP is at least

as hard as DLP, or equivalently, DLP is no harder than DHP. This is exactly

the motivation behind reducing DLP to DHP in polynomial time. Clearly,

existence of any such reduction algorithm in case of elliptic curve groups

would imply that ECDHP is hard, since ECDLP is hard to solve, in general.

The first, and the only, reduction algorithm known so far which reduces

DLP to DHP was proposed by Maurer in his seminal paper [39]. He intro-
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duced the technique of implicit representation of elements of a finite field

and indicated the use of an auxiliary group in constructing such a reduction

algorithm. Before discussing these concepts, we formally define a DH-oracle.

Definition 3.1. Let G be a cyclic group written additively and generated by

P ∈ G. A DH-oracle is a function that takes xP, yP ∈ G as inputs and

returns xyP ∈ G as output. We write it as DH(xP, yP ) = xyP .

3.2.1 Implicit representation of elements of Fp

Let G be a cyclic group written additively and generated by P ∈ G and p

be a prime that divides |G|. We wish to solve the DLP in this group G,

assuming that we have access to a DH-oracle in the group G. With this in

mind, Maurer and Wolf[42] defined implicit representation of a finite field

element y ∈ Fp as follows:

Let y ∈ Fp. Then, A = y′P ∈ G is called an implicit representation(with

respect to G and P ) of the element y ∈ Fp if y ≡ y′ (mod p). That is, each

element y of Fp can be attached to a subset of the group G,

y ↔ {(y + kp)P |k ∈ Z}

Basically, all elements(A = y′P ) of G whose discrete logarithm(with re-

spect to P ) is congruent to y (mod p) are implicit representation of y ∈ Fp.

We denote this by y  A. It is easy to see that y  A is unique if and only

if |G| = p. Without loss of generality, we can assume that |G| = p as it is

enough to find the discrete logarithm with respect to prime divisors of |G|

because of the Pohlig-Hellman algorithm[30, Section 2.9]. Thus, we assume

that |G| = p from now onwards. As a result, every finite field element y ∈ Fp

is implicitly represented by a group element yP ∈ G uniquely.

Let yP, zP ∈ G be implicit representations of y, z ∈ Fp respectively.

Then basic algebraic operations in Fp can be performed efficiently on implicit

representations, using group operations and a DH-oracle in G and the results
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are also in implicit form:

• Equality testing: y ≡ z (mod p) if and only if yP = zP .

• Addition: y + z  yP + zP (1 group operation in G).

• Subtraction: y − z  yP − zP (O(log p) group operations in G).

• Multiplication: y · z  yzP = DH(yP, zP ) (1 call to DH-oracle).

• Inversion: y−1 = yp−2 = y · · · y︸ ︷︷ ︸  yp−2P (O(log2p) DH-oracle calls

by using binary expansion).

Observe that the DH-oracle is used only for multiplication and inversion in

Fp. Therefore, number of DH-oracle calls required in the reduction algorithm

increases with the increase in number of multiplication and inversions needed

in the algorithm. We will see the importance of this fact in later sections.

We call the above five operations in Fp algebraic operations. Implicit

representations of finite field elements was a novel idea for reducing DLP

to DHP because any efficient computation in Fp can be performed equally

efficiently on implicit representations whenever it makes use only of algebraic

operations. Examples of such efficient computations in Fp are:

1. Quadratic reciprocity of an element y ∈ Fp can be checked by

(y p−1
2 )P = P , since y p−1

2 ≡ 1 (mod p)(the reciprocity condition) if

and only if (y p−1
2 )P = P .

2. Computation of square roots using some standard algorithms which

use only algebraic operations. For example, yP can be computed from

y2P using an implicit version of the Tonelli-Shanks algorithm[14].

In short, whenever we see the term implicit representation in context of a

DLP to DHP reduction algorithm, we can assume that following things are



3.2. REDUCTION OF DLP TO DHP 25

given to us: a prime p and a cyclic group G of order p and a DH-oracle in

G where elements of finite field Fp are implicitly represented by elements of

group G.

3.2.2 Auxiliary Groups over Fp

In addition to implicit representation of finite field elements, Maurer and

Wolf came up with the idea of auxiliary groups over Fp in order to construct

a DLP to DHP reduction algorithm in the group G of order p. As the name

suggests, any group(other than the group G) is called an auxiliary group

if it is used to achieve the targeted goal of an algorithm. Here our goal is

to construct a DLP to DHP reduction algorithm, i.e., to solve DLP, using

implicit representation and with the help of a DH-oracle. To achieve this

goal, auxiliary group H defined by Maurer and Wolf[42] must have some

specific properties which can essentially be summarized into following two

properties:

• Elements of H can be represented as m-tuples of elements of Fp for

some m ≥ 1.

• Group operation in this auxiliary group H can be defined using small

number of algebraic operations in Fp.

For us, any group H that satisfies above two properties is called auxiliary

group over Fp. Maurer and Wolf[42] also mentioned two classes of possible

auxiliary groups, satisfying above requirements: elliptic curves E0(Fp) where

m = 2 and subgroups of F×pn for some n ≥ 1 where m = n. They called

these groups applicable auxiliary groups over Fp. The motivation behind the

essential properties of auxiliary groups over Fp is that any computation in

H(for example, equality testing, exponentiation in H) can also be performed

explicitly in G, via implicitly representation of elements of Fp. We take the
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example of (F×p2 , ·) to illustrate how its multiplication operation and equality

testing can be performed using implicit representations with the help of group

operations and the DH-oracle in G.

Assume that t2 − α is irreducible in Fp[t] for some α ∈ Fp and assume

that θ is some element in its extension field which satisfies θ2 = α. Thus,

Fp(θ) ∼= Fp2 . Therefore, a + bθ represents a general element of F×p2 for some

a, b ∈ Fp with either a 6= 0 or b 6= 0. Hence, after θ is fixed, each non-zero

tuple (a, b) ∈ Fp × Fp can be thought of as an element of F×p2 . Now, the

multiplication operation in F×p2 also gives a non-zero tuple because,

(a+ bθ) · (c+ dθ) = (ac+ bdθ2) + (bc+ ad)θ = (ac+ bdα) + (ad+ bc)θ

That is, above multiplication results in the non-zero tuple (ac+ bdα, ad+

bc). With the above discussion in mind, we consider elements of F×p2 as

non-zero tuples like (a, b). We call the tuple (aP, bP ) ∈ G × G the implicit

representation of (a, b) ∈ F×p2 .

Now, to compute implicit representation of the multiplication of two

elements (a, b) and (c, d) of F×p2 , we only need to compute the tuple

((ac+ bdα)P, (ad+ bc)P ) which can be computed using the tuples (aP, bP ),

(cP, dP ), the group operation in G and the DH-oracle in G. For example,

the DH-oracle gives us acP from aP, cP and bdP from bP, dP . Then, one

computes α(bdP ) because α is known. Lastly, one computes acP + α(bdP )

by using group operations in G which gives us (ac+ bdα)P , the first coordi-

nate of the desired element. Similarly, the second coordinate (ad+ bc)P can

also be computed. This is how the implicit representation of Fp helps us in

computing the implicit representation of the multiplication operation in the

auxiliary group F×p2 .

Moreover, we can also check the equality testing in the auxiliary group

F×p2 by looking at two equalities in G as follows:

a+ bθ = c+ dθ ⇔ a ≡ c (mod p), b ≡ d (mod p)
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⇔ aP = cP, bP = dP

Thus, we have seen that implicit representation of the group operation of the

auxiliary group as well as equality testing in the auxiliary group can very well

be done by working only with the group operation in G and the DH-oracle

in G.

Now, we present the motivation and main idea behind using the concepts

of implicit representation and auxiliary groups for reducing DLP to DHP.

3.2.3 General Idea of Reducing DLP to DHP using

Implicit Representation and Auxiliary Group

Given Q = xP ∈ G and the generator P of G, our aim is to compute the

integer x (mod p) using the DH-oracle in G. Let us try to understand the

motivation behind auxiliary groups over Fp and implicit representations of Fp

in this context of reducing DLP to DHP. With the help of these two, Maurer

and Wolf’s general method[42, Proof of Theorem 2] can be described in the

following four steps:

• Step 1. Choose some suitable cyclic auxiliary group H over Fp that

satisfies the properties mentioned above. Assume that it is generated

by ζ0.

• Step 2. The next step is to embed x implicitly into c ∈ H. This

element c must be related to the discrete logarithm x. The main pur-

pose of embedding x implicitly into c ∈ H is that it should lead to

some implicit equations in H, involving c(thus x) and its generator ζ0.

We call such equations in H implicit because they involve the discrete

logarithm x which is unknown.

• Step 3. Once we have some implicit equations in H involving x, c and

ζo, then we explicitly compute the discrete logarithm of c with respect
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to ζ0 in H. Since each implicit equation in H corresponds to an explicit

equation in G, we use implicit representation computation to write the

explicit equations in G(corresponding to those implicit equations in H)

and those explicit equations helps us to explicitly find the discrete log-

arithm of c with respect to ζ0. Observe that all computations(equality

testing and exponentiation) actually take place in the original group G

and computing implicit representations of finite field elements is exactly

the place where the DH-oracle is needed.

• Step 4. At the end, since x and c are related, we extract the unknown

x from the discrete logarithm of c with respect to ζ0 found in the

previous step.

We put some more light on step 3 above because it contains most of the

computations that take place in the algorithm. To find the discrete logarithm

of c with respect to ζ0 explicitly, we write the explicit equations in G (us-

ing the implicit representation computation) corresponding to those implicit

equations in H. In other words, one can say that the main contribution of

implicit representations is to write explicit equations in the original group

G from the corresponding implicit equations in H while the role of auxiliary

group over Fp can be thought of as giving us those implicit equations in H.

We are calling the equations in G explicit because we can explicitly find both

sides of these equations. Solving the explicit equations(equality testings) thus

obtained in G yields us the discrete logarithm of c with respect to ζ0. The

original group G is the place where any equation solving(equality testing)

takes place and to be able to do equality testing in G, we must have explicit

equations in G. That is exactly what the implicit representation does, to

help us obtain explicit equations in G.

To illustrate these steps, we take the case of an elliptic curve over Fp of

smooth order being used as the auxiliary group:
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1. Suppose we have an elliptic curve E0(Fp) which is given by Y 2 = X3 +

aX + b; a, b ∈ Fp. Assume that it is generated by P0 = (x0, y0).

Moreover, |E0(Fp)| = N with N smooth.

2. The algorithm embeds the unknown discrete logarithm x implicitly

into c = Q0 = (x, y) for some (unknown)y ∈ Fp such that y2 = x3 +

ax+ b i.e. Q0 = (x, y) ∈ E0(Fp).

3. Now, the algorithm computes the discrete logarithm k of Q0 = (x, y)

with respect to P0 = (x0, y0) explicitly. This is done by computing k

modulo each prime power of N first(using Pohlig-Hellman algorithm)

and then, Chinese Remainder Theorem yields us k (mod N). The

interesting thing is that Pohlig-Hellman algorithm is being used in the

auxiliary group E0(Fp) and this is exactly the place where implicit

representation helps us because it transfers an equality in Fp into the

corresponding equality in G.

4. The last step is to extract x from k by computing kP0 because

kP0 = Q0 and the abscissa of the point Q0 gives us the desired dis-

crete logarithm x. Observe that Q0 = (x, y) was not explicitly known

before we computed k. However, once we have computed k, we can

compute Q0 explicitly using P0 and k as Q0 = kP0.

For more detailed information on how the above steps work, one can see

[47].

A natural question one may ask: what is the significance of N being

smooth? Or what does this reduction algorithm(with an elliptic curve over

Fp as auxiliary group) tell us about the hardness of DHP? Maurer and Wolf

showed that the reduction algorithm described above requires only polyno-

mial number of DH-oracle calls as well as only polynomial number of group

operations of G to solve DLP in the group G of prime order p if we can
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construct an elliptic curve over Fp of smooth order, say N [42, Theorem 3].

Since their reduction algorithm has to perform the Pohlig-Hellman reduction

step for each prime factor of N , the smoothness on N is precisely the reason

behind the polynomial sizes of DH-oracle calls and the group operations re-

quired in the algorithm. In other words, DLP reduces to DHP in polynomial

time if we can construct such an elliptic curve or if we know that such an el-

liptic curve exists. Therefore, it implies that DHP is at least as hard as DLP

in the group G, given the existence of such an elliptic curve. In particular, it

would imply that ECDHP is hard because ECDLP is hard, under the same

assumption. This shows us the importance and the motivation behind reduc-

ing DLP to DHP as well as knowing the existence of smooth order elliptic

curve over Fp, since it provides us a tool to study the hardness of DHP.

Unfortunately, existence of smooth order elliptic curve over Fp is yet to

be proved because it depends on some number-theoretic conjecture on the

existence of smooth numbers in an interval[42, Section 4.3.2]. Moreover, it

is extremely hard to construct smooth order elliptic curve over Fp for large

p and the difficulty increases exponentially with the increase in the size of

p. As a result, above reduction algorithm of Maurer and Wolf with elliptic

curve over Fp as auxiliary group fails, in general, to prove the computational

equivalence of DLP and DHP in the group G of order p.

Now, if one fails to prove the computational equivalence of DLP and DHP,

what could be the next best thing to decide how hard DHP is? Muzereau et

al.[47] argued that the next best thing would be to estimate the minimum

number of group operations required to solve DHP and we describe their

approach in the next section.
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3.3 Lower Bound of DHP

Since it is hard to prove computational equivalence of DLP and DHP in

general, Muzereau et al. restricted themselves only to the particular case of

group of points on an elliptic curve over a finite field i.e. G = E(Fq) for some

finite field Fq. Moreover, we assume that |G| = p and q ≈ p. The hardness

of DHP on these elliptic curve groups carries a lot of practical significance

because of their large scale deployment in the industry. This makes the study

of ECDHP more exciting and worthwhile.

To study the hardness of DHP in the particular case of these elliptic curve

groups, Muzereau et al. [47] proposed an interesting idea of estimating the

minimum number of group operations required to solve DHP. To achieve

this, Muzereau et al. re-visited the reduction algorithm of Maurer and Wolf

with elliptic curve as auxiliary group, but impose a condition on number of

group operations required by the reduction algorithm in their model. Their

model assumes that the number of group operations required in the reduc-

tion algorithm is almost insignificant when compared with the cost of DLP.

Then, the model estimates the minimum number of group operations re-

quired to solve DHP as the ratio of the cost of solving DLP and the number

of DH-oracle calls. More precisely, their model for a general group G(not

necessarily E(Fq) as it can be applied to any general group provided the re-

duction algorithm satisfies the requirements of the model) can be described

as follows:

Let CDLP , CDHP be the minimum cost of solving DLP and DHP in G

respectively. Therefore, in the view of a general DLP to DHP reduction

algorithm, we get CDLP = n · CDHP + M where n is the number of calls

to the DH-oracle and M is the number of group operations required in the

reduction algorithm. Now, assuming that M � CDLP , we get,
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CDHP = CDLP −M
n

≈ CDLP

n
Set

TDH = CDLP

n
Then, the number TDH is exactly what gives the minimum number

of group operations needed by any algorithm to solve DHP. This is how

Muzereau et al. [47] estimated the minimum number of group operations

required by any algorithm that solves DHP in any general group G. Note

that the condition M � CDLP is crucial in their model.

Of course, the aim would be to make n as small as possible to make the

value of TDH as large as possible. A large enough value of TDH(of the order

which is assumed to be beyond the reach of modern computation power)

would ensure the security of those protocols which depend on DHP for their

security. This underlines the motivation and strength of their model to study

the hardness of DHP.

It is clear that their model works fine to estimate the lower bound on

DHP in any general group G for which there exists a reduction algorithm

that satisfies M � CDLP . For the specific case of G = E(Fq), |E(Fq)| = p,

Muzereau et al. applied the same reduction algorithm of Maurer and Wolf

we discussed above but showed that there exists (auxiliary) elliptic curve

over Fp of suitable order (≈ 3
√
p) which ensured that M = O

(
3
√
p
)
in the

reduction algorithm. Since we are working with elliptic curve group of prime

order p, we assume that the best algorithm to solve DLP on this group takes

at least √p group operations, i.e. √p ≤ CECDLP . Then, it follows that

M � CECDLP and thus, they used their model to estimate the lower bound

on ECDHP.

More precisely, assuming that the best algorithm to solve DLP on an

elliptic curve of order p takes at least √p group operations, Muzereau et al.
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gave the following estimate on the lower bound on ECDHP [47, Theorem 4]:

Theorem 3.1 (Muzereau et al., 2004). Let p be a prime. Assuming in the

interval [p+ 1−√p, p+ 1 +√p] there is an integer which is product of three

primes of roughly equal size, then there exists a string S which implies that

the best algorithm to solve the ECDHP for an elliptic curve of order p takes

time at least

O
( √

p

(log2p)2

)
group operations.

The string S in above theorem refers to the information regarding the

complete list of divisors of some (nice)integer in the interval [p+ 1−√p, p+

1 +√p] which guarantees the existence of an ECDLP to ECDHP reduction

algorithm.

Recall that TDH represents the minimum number of group operations to

solve DHP, thus the above ratio is equal to TDH for the elliptic curve group

of order p where the numerator √p refers to the CECDLP while denominator

(log2p)2 refers to the number of DH-oracle calls n. Since √p is a constant,

one must minimize the number of DH-oracle calls to achieve a larger and

better value of TDH .

Not only that, Muzereau et al. explicitly constructed suitable auxiliary

elliptic curve E0(Fp) for each elliptic curve E(Fq), |E(Fq)| = p of SEC2

standard[52] and gave exact estimate on TDH for each elliptic curve E(Fq) of

the SEC2 standard [47, Table 1, Table 2]. The parameters of those auxiliary

elliptic curves were explicitly given [47, Appendix].

The cryptographic importance of these elliptic curves in the SEC2

standard[52] is that they are recommended for practical implementation by

Standard for Efficient Cryptography Group at Certicom Corporation and the

standard include all NIST curves[48] and the most used ones in the ANSI

standard[1]. Therefore, the elliptic curves in SEC2 standard carry immense
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practical significance for practical implementation and we will call these

curves SECG curves throughout this chapter.

In 2005, Bentahar[3] applied the ideas similar to Muzereau et al. but con-

structed different auxiliary elliptic curves over Fp[3, Appendix C]. Moreover,

he used projective coordinates, instead of affine coordinate as in the work of

Muzereau et al.. By introducing these changes, he reduced the number of

DH-oracle calls required in the reduction algorithm. As a consequence, Ben-

tahar improved the estimates [3, Table 1, Table 2] on TDH given by Muzereau

et al. for each of the SECG curves.

Of course, if we want to improve the estimates on TDH given by Bentahar,

we must reduce the number of DH-oracle calls further. That is what we did

through a different reduction algorithm. Before we describe that result in

section 5 of this chapter, we mention a couple of related work that motivated

us towards our reduction algorithm.

3.4 Static Diffie-Hellman Problem and DLP-

wAI

Let G be any cyclic group generated by P and of order p. Then, the DHP

is to compute the xyP from the any two random elements xP, yP while

static Diffie-Hellman Problem (SDHP) is to solve a subset of instances

of the Diffie-Hellman Problem(DHP), namely those instances where one of

the input elements is fixed.

Definition 3.2 (SDHP). Given P and fixed Q = xP , and random yP , the

static Diffie-Hellman problem (SDHP) in G is to compute the element xyP .

Definition 3.3 (SDHQ-oracle). SDHQ-oracle in group G is a function that

takes a random element yP ∈ G as input and returns xyP as output where

Q = xP . We denote it as SDHQ(Q, yP ) = xyP .
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Basically, SDHQ-oracle solves the SDHP when the fixed element is Q. It

is easy to see that SDHP in no harder than DHP because SDHP is a special

case of DHP. Therefore, any lower bound on SDHP would also be valid for

DHP as well.

Brown and Gallant presented a novel algorithm[8, Theorem 1] that com-

putes the discrete logarithm x of the (fixed)element Q by using SDHQ-oracle

in the group G of prime order p. They also discussed how their algorithm

can be interpreted as a reduction of the DLP to SDHP and gave a rough es-

timate on the minimum cost of solving the SDHP in the group G under some

assumptions [8, Section 4.1]. The key step in their algorithm is to compute

the element xdP where d is some divisor of p − 1 and that is exactly where

SDHQ-oracle comes into picture because the element xdP is computed by

making d calls to SDHQ-oracle in an iterative fashion, i.e. one needs xn−1P

to compute xnP using the SDHQ-oracle as SDHQ(Q, xn−1P ) = xnP for any

n ≥ 2. Thus, one has to make large number of SDHQ-oracle calls to compute

xdP for large value of d.

Note that Brown and Gallant did mention the work of Muzereau et al.

on the exact lower bound on DHP for various SECG curves but it remains

unclear if their algorithm can be of any help in improving those lower bound

estimate on DHP given by Muzereau et al.. Nevertheless, Brown and Gallant

did give lower bound on SDHP, hence this can also be taken as lower bound

on DHP because SDHP is no harder than DHP. When viewed this way, the

lower bound on DHP given by Brown and Gallant as well as those given

by Muzereau et al. in the case of elliptic curve groups are comparable, and

Brown and Gallant also remarked that.

Morever, one can also consider the reduction algorithm of Brown and

Gallant into the model of Muzereau et al. to estimate the lower bound on

SDHP. In the model of Muzereau et al., the reduction of Brown and Gallant
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must satisfy M � CDLP . It is an easy observation that d must be quite

large to satisfy this condition. Now, for large d, their reduction algorithm

needs a large number of SDHQ-oracle calls to compute the element xdP as

already discussed above. But for the large number of SDHQ-oracle calls, the

lower bound on SDHP thus obtained would be even worse than the one given

by Brown and Gallant [8, Corollary 2]. Therefore, one could conclude that

the reduction algorithm of Brown and Gallant when viewed in the model of

Muzereau et al., does not improve their lower bound on SDHP, and hence

lower bound on DHP. Lastly, it also does not improve the lower bound on

DHP given by Muzereau et al. because lower bound estimate on DHP given

by Muzereau et al. and those given by Brown and Gallant are comparable.

In another related work in 2006 by Cheon[11, Theorem 1], the idea used

was similar to that of Brown and Gallant, but in a different perspective.

Brown and Gallant first computed xdP in their reduction algorithm by using

a SDHQ-oracle and then solved the DLP; and then, they tried to estimate

the hardness of SDHP on the basis of their reduction. On the other hand,

Cheon was interested in solving the DLP when some additional(auxiliary)

input is also given to us. The auxiliary input, in addition to P , Q = xP ,

was the element xdP (d|p − 1) and the problem of computing the secret x

from P , Q = xP and xdP is called the discrete logarithm problem with

auxiliary input (DLPwAI)[12]. Cheon showed that cost of certain instances

of DLPwAI is significantly less than the DLP and thus, analyzed the security

loss in presence of auxiliary inputs which was the main aim of his paper[11].

This leaves us with the following question: is it possible to incorporate

the work of Cheon[11, Theorem 1], and Brown and Gallant[8, Theorem 1] to

improve the lower bound for DHP on elliptic curve groups given by Muzereau

et al.[47, Theorem 4, Table 1, Table 2]. The answer of above question is

affirmative and we were able to discover a way that combines all the work
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discussed so far to achieve a better and tighter lower bound for DHP known

so far on those elliptic curves. We present our work in next section.

3.5 Our Contribution

Reductions of Muzereau et al. and Bentahar were based on Maurer and

Wolf’s general idea of reducing DLP to DHP with elliptic curves as the aux-

iliary group. Using their reduction algorithm, Muzereau et al. presented

exact estimates of lower bound for DHP on SECG curves which was further

improved by Bentahar. Although, algorithms of Brown and Gallant, and

of Cheon both solve DLP (but under different assumptions), it is entirely

unclear if their algorithm can be used to construct such a DLP to DHP re-

duction that can improve Bentahar’s lower bound for DHP on SECG curves.

This is precisely where our work contributes as we have given such a DLP to

DHP reduction algorithm. The contribution of our work can be divided into

two parts:

1. Taking motivation from the work of Brown and Gallant[8, Theorem

1], and Cheon[11, Theorem 1], we have constructed a DLP to DHP

reduction which requires very small number of DH-oracle calls. Small

number of DH-oracle calls is exactly what one aims for to have a tighter

estimate of the lower bound for DHP, in the model of Muzereau et al..

Moreover, we have discovered a wonderful thing about our reduction

algorithm: it fits perfectly well in the general idea of reducing DLP to

DHP using implicit representation and auxiliary groups. The auxiliary

group used in our reduction algorithm is the multiplicative group

of a finite field. Note that previous reduction algorithm of Muzereau

et al. and Bentahar used elliptic curves as the auxiliary group. Hence,

our algorithm is the first DLP to DHP reduction that uses the multi-
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plicative group of a finite field as the auxiliary group to estimate lower

bound for DHP. Under an assumption, our algorithm also improves

the asymptotic lower bound for ECDHP given by Muzereau et al.[47,

Theorem 4].

2. Even though our reduction algorithm is fundamentally different from

the ones in Muzereau et al. and Bentahar, a nice thing about our

reduction algorithm is that it is still applicable to almost all SECG

curves[52]. And the difference between our algorithm and previous

algorithms as well as the change in the auxiliary group from an elliptic

curve over finite field to the multiplicative group of a finite field is

mainly the reason that our reduction algorithm requires very small

number of DH-oracle calls. As a consequence, our reduction algorithm

improves the previous best known estimates of TDH for SECG curves,

given by Bentahar[3, Table 1, Table 2]. Therefore, we have obtained

the tightest estimates of TDH for SECG curves known so far.

We now present our DLP to DHP reduction algorithm which uses F×p as

auxiliary group.

3.5.1 Reduction Using F×p as Auxiliary Group

We first present a lemma that is needed in our reduction algorithm.

Lemma 3.1. Let G be a cyclic additive group of prime order p, generated

by P ∈ G. Suppose we are given another element Q = xP ∈ G(x unknown),

then xdP ∈ G can be computed by making at most 2[log2d] calls to a DH-

oracle for any positive integer d where d.e is the ceiling function.

Proof. We start by observing that if d = 2r, it takes exactly r calls to the

DH-oracle for computing xdP ∈ G.
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x2P = DH(xp, xP )(1 call)

x4P = x22
P = DH(x2P, x2P )(2 calls)

x8P = x23
P = DH(x4P, x4P )(3 calls)

x16P = x24
P = DH(x8P, x8P )(4 calls)

So, we see that continuing the same steps we can compute xdP = x2r
P ∈

G for d = 2r in exactly r calls to the DH-oracle.

Let d be any integer, not necessarily some power of 2. Let k be the unique

integer such that 2k−1 ≤ d < 2k. So, we can write the binary representation

of d as follows:

d = a0 + a121 + a222 + ...+ ak−12k−1

where ai’s are 0 or 1 with ak−1 = 1.

Above remark shows that elements x21
P, x22

P, x23
P, ..., x2k−1

P ∈ G can

be computed by making at most k − 1 calls to the DH-oracle. Using these

elements, it is easy to check that xdP can be computed by making at most

k − 1 additional calls to the DH-oracle as the number of non-zero ai’s can

be at most k − 1 for i = 0, 1, ..., k − 2. Therefore, we need to make at

most 2(k − 1) = 2dlog2de calls to the DH-oracle to compute xdP ∈ G since

k − 1 = dlog2de. This completes the proof of the lemma.

Example 3.1. We illustrate this by an example. Suppose d = 13 = 1 + 22 +

23, then k = 4 . Then,

xdP = x13P = DH(xP, DH(x22
P, x23

P ) )

We have to make at most 3 calls to compute the elements x22
P, x23

P . Since

there are two non-zero coefficients (other than the leading coefficient) in the

binary representation of d = 13, we need exactly 3+2 = 5 calls to DH-oracle

to compute x13P . Note that 5 < 2(k − 1) = 6. However, x15P requires

exactly 2(k − 1) = 6 calls as 15 = 1 + 2 + 22 + 23

x15P = DH(xP, DH(x2P,DH(x22
P, x23

P ) ) ).
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Now, we present our DLP to DHP reduction algorithm using implicit

representations and F×p as the auxiliary group. This reduction algorithm is

motivated by the work of Gallant and Brown[8, Theorem 1] and Cheon [11,

Theorem 1]. The central idea used in both of them is almost the same once

one particular element is known. Gallant and Brown used SDHQ-oracle to

compute that particular element, thus their work yields a reduction algo-

rithm of DLP to SDHP. On the other hand, Cheon assumed the existence of

that particular element, hence it leads us towards solving DLPwAI. Whereas

in our case, Lemma 1 gives us that particular element using a small num-

ber of DH-oracle calls which leads to our DLP to DHP reduction algorithm

presented in Lemma 2.

Much to our surprise, we discovered that our algorithm fits perfectly well

into the general idea of Maurer and Wolf reducing DLP to DHP using implicit

representation but F×p as the auxiliary group.

Lemma 3.2. Let G be an additive cyclic group generated by P ∈ G and the

order of P is a prime number p. Let Q = xP ∈ G. Then, x can be computed

using at most 2log2p
(⌈√

p−1
d

⌉
+
⌈√

d
⌉)

group operations and by making at

most 2dlog2de calls to the DH-oracle. Here d is a positive divisor of p− 1.

Proof. As already mentioned, the proof is based on implicit representation

of elements of Fp using H = F×p as the auxiliary group. Recall the unknown

x will be implicitly represented by Q = xP ∈ G. Furthermore, F×p is a cyclic

group with φ(p− 1) generators, where φ is the Euler totient function. Since

a random element in F×p is a generator with probability
φ(p− 1)
p− 1 >

1
6log(log(p− 1))

which is large enough(see [11]), it is easy to choose a generator of F×p .

Let ζ0 be a generator of H = F×p , then

x = ζ i0
0 (mod p)

for some integer i0 such that 1 ≤ i0 ≤ p− 1.
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We want to compute i0 explicitly and then x can be computed using above

equation. Let ζ = ζd
0 (mod p). Since d|(p − 1), there exists unique cyclic

subgroup, K of H = F×p of order p−1
d
, generated by ζ. Now as (xd)(

p−1
d ) = 1,

it implies that xd ∈ K. Therefore, there exists unique non-negative integer j

with 1 ≤ j ≤
(

p−1
d

)
such that

xd = ζj (mod p) (3.1)

Let d1 =
⌈√

p−1
d

⌉
. Since j is between 1 and p−1

d
, there exist unique non-

negative integers u1, v1 with 0 ≤ u1, v1 ≤ d1 such that j = u1d1−v1. Plugging

this value of j in Equation 3.1, we get

xd = ζu1d1ζ−v1 (mod p)

which implies,

ζv1xd = (ζd1)u1 (mod p) (3.2)

Recall that equality of two field elements can also be checked on their

implicitly represented elements as follows: y = z (in F×p ) is equivalent to

yP = zP in G. Therefore, above implicit equation in F×p is equivalent to

following explicit equation in G:

ζv1(xdP ) = (ζd1)u1P (3.3)

By Lemma 1 above, we can compute implicit representation xdP of xd

by making at most 2dlog2de calls to the DH-oracle. Looking at Equation

3.3, it is clear that the elements on the left-hand side can be computed using

xdP for any value of v1 for 0 ≤ v1 ≤ d1, by repeated addition of previous

terms by ζ-times. Similarly, the elements on the right-hand side can be

computed for any value of u1 for 0 ≤ u1 ≤ d1 using P by repeated addition

of previous terms by ζd1-times. So, we compute ζv1(xdP ) for each v1 with

0 ≤ v1 ≤ d1 and store them. Then, we compare them with each of right-hand

side terms(similar to Baby-Step Giant-Step (BSGS) algorithm [45]) to find

a match and it yields the integer j = u1d1 − v1.

Note that the non-negative integer j = u1d1 − v1 in Equation 3.1 is
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nothing but i0 modulo p−1
d
. Now to compute i0 modulo (p − 1) from this

integer j, we apply division algorithm on i0 with divisor p−1
d

to get a relation

between i0 and j and it gives us, i0 =
(

p−1
d

)
t + j for some non-negative

integer t. Observe that 0 ≤ t < d, otherwise i0 ≥ p − 1, a contradiction.

Therefore, the integer t can be written uniquely as t = u2
⌈√

d
⌉
− v2 for

some 0 ≤ u2, v2 ≤
⌈√

d
⌉
, again by the division algorithm. Thus, we get the

following implicit equation in H = F×p ,

x = ζ0
i0 = ζ0

j+t( p−1
d ) = ζ0

jζ0
( p−1

d )(u2d√de−v2)

Or (
ζ0

p−1
d

)v2
x =

(
ζ0

( p−1
d )d√de

)u2

ζ0
j

The last implicit equation in H = F×p is equivalent to the following

explicit equation in G,

(
ζ0

p−1
d

)v2
(xP ) =

(
ζ0

( p−1
d )d√de

)u2

(ζ0
jP ) (3.4)

As xP and ζ0
jP0 are known, we can solve for u2, v2 by finding a match

between two sides of the Equation 3.4, just as we found u1, v1 above. This

solution for u2, v2 would give us,

i0 =
(
p− 1
d

) (
u2
⌈√

d
⌉
− v2

)
+ j

Thus, we have explicitly computed i0. Lastly, we extract the original

discrete logarithm x from this i0 and the relation x = ζ0
i0 (mod p).

It is easy to see that it takes at most 2log2p
(⌈√

p−1
d

⌉)
group operations to

find the match in Equation 3.3 and at most 2log2p
(⌈√

d
⌉)

group operations

to find the match in Equation 3.4. Therefore, we have computed the discrete

logarithm x using at most 2log2p
(⌈√

p−1
d

⌉
+
⌈√

d
⌉)

group operations and

by making at most 2dlog2de calls to the DH-oracle. This completes the

proof.

Remark 3.1. One can get rid of the factor log2p from the above time com-

plexity using KKM improvement [36]. Then, above time complexity reduces
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to 2
(⌈√

p−1
d

⌉
+
⌈√
d
⌉)
.

Remark 3.2. Observe that xd is unknown in Equation 3.2 because x is

unknown. This makes Equation 3.2 an implicit equation in H = F×p . This

is exactly the place where implicit representation computation comes into

play, to compute implicit representation xdP of xd.

Remark 3.3. Our algorithm follows the general idea of DLP to DHP re-

duction algorithm of Maurer and Wolf with H = F×p as the auxiliary group

where the unknown x is embedded implicitly into itself, i.e. c = x. To the

best of our knowledge, our algorithm is the first DLP to DHP reduction

algorithm that uses H = F×p as auxiliary group but does not use the Chinese

Remainder Theorem to compute the discrete logarithm.

We already saw Theorem 3.1 of Muzereau et al. on the lower bound

for ECDHP, assuming that the best algorithm to solve ECDLP on an elliptic

curve of order p takes at least √p group operations. Under the same assump-

tion as above, our reduction algorithm will prove the following theorem[38,

Theorem 2] which improves the lower bound for ECDHP given by Muzereau

et al..

Theorem 3.2. For a prime p, assume that there exists a divisor d of p− 1

of the size roughly equal to 3
√
p. Then, any algorithm that solves ECDHP for

an elliptic curve (sub-)group of order p requires at least

O
( √

p

log2d

)
group operations.

Proof. Since we are dealing with an elliptic curve of prime order p, we assume

that the best algorithm to solve elliptic curve discrete logarithm problem will

take at least √p group operations. Recall the model of Muzereau et al. to

estimate the minimum number of group operation required to solve DHP,

discussed in section 3.3. We saw that Muzereau et al. proposed that the
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number TDH = CDLP

n
is exactly what gives the minimum number of group

operations needed by any algorithm to solve DHP, assuming M � CDLP

where CDLP denotes the minimum cost of solving DLP and n is the number

of calls to the DH- oracle and M is the number of group operations required

in the reduction algorithm. Clearly, the aim would be to make n as small as

possible to have the value of TDH as large as possible.

In case of an elliptic curve group of prime order p, one can take CECDLP ≈
√
p under our assumption. Since there is a divisor d of p−1 such that d ≈ 3

√
p,

then it is easy to check that

M ≤


√
p− 1
d

+
⌈√
d
⌉ ≈ 3

√
p

satisfying the conditionM � CECDLP because 3
√
p� √p and√p ≈ CECDLP .

Since n ≤ 2d log2de, we finally get,

TDH = O
( √

p

log2d

)
.

This implies that the minimum number group operation to solve ECDHP

on any elliptic curve group of prime order p by any algorithm is asymptoti-

cally O
( √

p

log2d

)
if there exists a divisor d of p − 1 of size approximately 3

√
p.

This completes the proof.

Remark 3.4. If we assume that a divisor d of p − 1 of size approximately
3
√
p exists, then the above result shows that the cost of ECDHP is getting

closer to the cost ECDLP.

Remark 3.5. Note that the total number of group operations, M needed in

the reduction algorithms of Muzereau et al. [47] and Bentahar [3] was also of

the same order i.e. M ≈ 3
√
p. This indicates the importance of such a divisor

d of size approximately 3
√
p in our reduction algorithm.
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3.5.2 Advantage of F×p over E0(Fp) as the auxiliary

group

The difference between algorithms of Muzereau et al., Bentahar and our al-

gorithm as well as the change of auxiliary group from E0(Fp) to F×p both have

their implications on the number of DH-oracle calls, consequently affecting

the value of TDH . Since algorithm used in previous reductions of Muzereau

et al. and Bentahar required several iterations of Pohlig-Hellman algorithm,

one had to compute a large number of implicitly represented elements in

those reduction algorithms. Therefore, a large number of DH-oracle calls

were needed in previous reductions. On the other hand, our reduction al-

gorithm requires only one implicitly represented element xdP of xd ∈ F×p .

This element can be computed by using at most n ≤ 2dlog2de DH-oracle

calls which can further be made really small by taking small value of d.

Recall that the addition operation in E0(Fp) requires many multiplica-

tions in Fp(one multiplication in Fp means one DH-oracle call to compute

implicit representation) and many inversions in Fp (one inversion in Fp means

on average 3
2dlog2pe calls to the DH-oracle to compute implicit representa-

tion). Thus, in terms of DH-oracle calls, computing the sum of elements in

E0(Fp) is much more expensive than multiplying elements in F×p .

Since our main aim through this reduction algorithm is to increase the

value of TDH which is inversely proportional to number of DH-oracle calls n,

it will be nice to reduce the number of DH-oracle calls as much as possible.

That is exactly what our reduction algorithm does by using F×p as auxiliary

group. This shows that the advantage of our reduction algorithm in achieving

the improved value of TDH , over the previous reduction algorithms which used

H = E0(Fp) as the auxiliary group.
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3.5.3 Tightest Value of TDH for SECG Curves

In this section, we study the lower bound for ECDHP on various important

elliptic curves parameters[52] and show the improvement made by our re-

duction algorithm on the lower bound for ECDHP on those curves. These

curves are recommended in SEC 2 by Standard of Efficient Cryptography

Group (SECG) at Certicom Corporation to be used for practical purposes

and we are calling those curves SECG curves. These SECG curves are

divided into two sub-categories: curves over prime fields of large odd charac-

teristic and curves over binary fields. The prime p denotes the order of those

SECG curves defined over prime fields of odd characteristic. For remaining

SECG curves defined over binary fields, p denotes the prime divisor of the

order of the curve, with a very small co-factor of either 2 or 4.

It should also be noted that SECG curves [52] include all curves recom-

mended by NIST [48] and the most used ones in ANSI [1]. These covers the

most commonly used curves in practice. Thus, these are important curves

from the point of view of public key cryptography.

Muzereau et al.[47, Table 1, Table 2] used the value of TDH as the lower

bound for group operations to break DH-protocol and also gave the estimates

for TDH on various SECG curves. Thereafter, Bentahar [3, Table 1, Table

2] improved the previous values of TDH given by Muzereauet al. and his

estimates remained the best estimates till date.

Now, in our algorithm, with F×p as the auxiliary group, we have n ≤

2dlog2de and M ≤ 2
(⌈√

p−1
d

⌉
+
⌈√
d
⌉)

where d is some divisor of p − 1.

As per the discussion above, to achieve a tighter(larger) value of TDH using

our reduction algorithm, one should try to make n ≤ 2dlog2de as small as

possible, which forces d to be small as well. On the other hand, we have to

make sure that M ≈ 3
√
p, so that it does not violate M � CECDLP ≤

√
p. It



3.5. OUR CONTRIBUTION 47

is not hard to see that for really small value of d, M is inversely proportional

to d. Therefore, too small value of d must not be used to avoid the violation

of M � CECDLP ≤
√
p. Also note that d ≈ 3

√
p yields M ≈ 3

√
p in our

reduction algorithm.

Keeping all these in mind, we factored p−1 and found that most of SECG

curves contain divisors d which are between 3
√
p and √p and we have taken

the smallest such d in the range 3
√
p and √p to compute the values in Table 1

and 2 given below. For those curves where such a divisor d does not exist, we

have chosen the largest d less than 3
√
p to compute the values in the tables.

For exact values of the d, see appendix A and appendix B.

For those choices of d, we calculated exact number of the DH-oracle calls,

n ≤ 2dlog2de] using binary expansion of d. The values of n thus achieved

are significantly small as compared with the values of n shown by Bentahar

[3, Table 1,Table 2](and much smaller than those in the work of Muzereau

et al. [47, Theorem 1, Theorem 2]). Consequently, these significantly small

values of n resulted in much tighter(larger)values of TDH for all SECG curves.

Therefore, it implies that we have given the tightest lower bound, known

so far, for ECDHP on these SECG curves[52] (except SECP224K1). In other

words, our results shows the gap between the cost of ECDHP and ECDHP

to be the least(known so far) for these curves and it leads us one step closer

towards the computational equivalence of ECDHP and ECDLP for these

important curves.

Moreover, for curves SECP521R1, SECT409R1, SECT571R1, SECT571K1,

Bentahar was unable to construct the auxiliary elliptic curves. However, we

had no problem applying our algorithm to these curves and the lower bound

estimates of TDH on these curves are also given here. One additional advan-

tage of our algorithm is that the values of M in our algorithm are less than



48 CHAPTER 3. IMPROVED LOWER BOUND FOR ECDHP

Table 3.1: Summary of results for curves of large prime
characteristic

SECP Curve log2

√
|E| log2M log2n log2TDH ADV

SECP112R1 55.89 48.34 4.59 51.30 6.90
SECP112R2 54.90 37.54 5.88 49.01 5.51
SECP128R1 64.00 43.45 6.02 57.98 5.58
SECP128R2 63.00 48.23 5.49 57.51 6.11
SECP160K1 80.00 48.39 6.55 73.45 5.45
SECP160R1 80.00 53.85 6.30 73.70 5.70
SECP160R2 80.00 47.53 6.70 73.30 5.30
SECP192K1 96.00 84.31 5.36 90.64 6.84
SECP192R1 96.00 55.51 6.97 89.03 5.23
SECP224R1 112.00 98.50 5.55 106.45 6.85
SECP224K1 - - - - -
SECP256K1 128.00 86.12 7.00 121.00 5.60
SECP256R1 128.00 86.06 7.00 121.00 5.60
SECP384R1 192.00 141.33 7.33 184.67 5.87
SECP521R1 260.50 196.26 7.67 252.83 6.03

or of almost same order as the ones given by Bentahar[3, Table 1, Table 2]

for most of SECG curves.

Table 3.1 and Table 3.2 present the key values, log2M , log2n and log2TDH

for various SECG curves. The tables also have the value of log2

√
|E| which

refers to the assumed minimum cost of solving DLP in that particular SECG

curve E. The column under ADV shows the number of security bits gained

by the values of TDH in our algorithm over the previous best known values

of TDH given by Bentahar[3]. Moreover, the present algorithm works for

the curves SECP521R1, SECT571R1, SECT571K1 as well which were out of

reach in previous work due to inability to construct auxiliary elliptic curves,

and Table 3.1 and Table 3.2 give the key data for these curves as well.

It should also be remarked that the current algorithm fails for the curve

SECP224K1 as there does not exist any divisor of p− 1 of appropriate size.

Therefore, Bentahar’s result still gives the tightest value of TDH for this
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curve.

To understand the advantage gained by our result over the work

of Bentahar[3], as an example we consider the security of ECDHP for

SECP256R1, see Table 3.1. SECP256R1 is the NIST curve P-256 which

is a randomly chosen elliptic curve defined over a finite field of 256 bit.

Thus, the best known algorithm at present to solve ECDLP on this curve

takes on an average 2128 group operations. Now, our algorithm implies that

ECDHP can not be solved in less than 2121 group operations, in contrast to

2115.4 group operations from the work of Bentahar[3, Table 1]. This shows

that there is a gain factor of 25.6 over the previous best 2115.4 given by Ben-

tahar for the curve SECP256R1. If we assume that today’s computational

power is incapable of performing 2121 group operations(which is considered

to be true by many), then ECDHP on the curve SECP256R1 is secure and

any cryptography protocol which rely on DHP for its security can safely be

implemented on the curve SECP256R1, under the assumption above.

3.6 Conclusion

In this chapter, we presented a DLP to DHP reduction algorithm that uses

implicit representation technique of Maurer and Wolf but uses F×p as the aux-

iliary group. This is the first reduction algorithm which estimates the lower

bound for DHP but uses F×p as the auxiliary group. Previous such reduc-

tions used elliptic curve over finite field as the auxiliary group. Our reduction

algorithm provides us a very important cryptographic tool to study the hard-

ness of DHP because it yields the tightest estimate of the lower bound for

ECDHP for recommended SECG elliptic curves[52] which are widely used

for practical implementation. This shows the practical and cryptographic

significance of our work.
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Table 3.2 : Summary of results for curves of even characteristic

SECT Curve log2

√
|E| log2M log2n log2TDH ADV

SECT113R1 56.00 38.06 5.67 50.33 5.73
SECT113R2 56.00 38.17 5.76 50.25 5.65
SECT131R1 65.00 58.75 4.46 60.54 7.24
SECT131R2 65.00 51.57 5.43 59.57 6.27
SECT163K1 81.00 54.56 6.36 74.64 5.64
SECT163R1 81.00 54.69 6.36 74.64 5.64
SECT163R2 81.00 67.16 5.56 75.45 6.45
SECT193R1 96.00 61.74 6.76 89.25 5.45
SECT193R2 96.00 56.08 6.99 89.01 5.21
SECT233K1 115.50 79.89 6.77 108.73 5.73
SECT233R1 116.00 77.72 6.92 109.08 5.58
SECT239K1 116.00 79.70 6.87 111.63 5.63
SECT283K1 140.50 94.51 7.15 133.35 5.65
SECT283R1 141.00 94.61 7.18 133.82 5.62
SECT409K1 203.50 150.09 7.44 196.07 5.87
SECT409R1 204.00 136.70 7.66 196.34 5.64
SECT571K1 284.50 190.46 8.08 276.41 5.71
SECT571R1 285.00 190.77 8.15 276.85 5.65



Chapter 4

A Probabilistic Baby-Step

Giant-Step Algorithm

4.1 Introduction

The elliptic curve discrete logarithm problem (ECDLP) is one of the most

used primitives in the public key cryptography because there is no efficient

algorithm to solve it, in general. A number of public key protocols such

as ECDSA[33] are based on this problem and hardness of this problem is

an absolute necessity for the security of such protocols. Therefore, any new

algorithm that indicates any kind of weakness in ECDLP would be of huge

cryptographic importance and that is exactly where this chapter contributes.

In this chapter, a new generic algorithm to solve the DLP, and thus

ECDLP as well, is presented which is motivated by implicit representation,

auxiliary groups and the usual baby-step giant-step(hereafter, BSGS) algo-

rithm. Our algorithm is perhaps the first of its kind which uses implicit

representation and auxiliary group to solve DLP. Moreover, using random-

ization with parallelized collision search, our algorithm indicates some weak-

ness in NIST curves over prime fields which are considered to be the most

51
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conservative and safest curves among all NIST curves.

This chapter is organized as follows: section 2 discusses BSGS algorithm

and the motivation behind our algorithm. Section 3 presents our algorithm

to solve DLP. In section 4, we will analyze the security of NIST curve P-256

by applying our algorithm on P-256. We conclude with section 5.

4.2 BSGS and Motivation

Let G be an additive cyclic group of prime order p and generated by P .

Recall that the discrete logarithm problem (DLP) in G is to compute the

integer x from the given element Q = xP ∈ G and if the group is an elliptic

curve, we call this the elliptic curve discrete logarithm problem (ECDLP).

This integer x is called the discrete logarithm of Q with the base P . The

generic algorithms of Shank’s BSGS[54] and Pollard’s rho[49, 50] are the best

known attacks on ECDLP. As discussed in chapter 2, the time complexity

of these attacks are exponential O(√p)(see Table 2.1), thus they are not

efficient.

In this chapter, we develop and study a different version of BSGS al-

gorithm which is much faster than Shank’s BSGS in some specific cases.

Shank’s BSGS in the group G treats the discrete logarithm x as just an in-

teger and exploits the size of x to find it. On the other hand, our algorithm

treats x as an element of the group F×p and exploits the order of x in the

cyclic group F×p . The novelty of our approach comes from implicit repre-

sentation using F×p as the auxiliary group. Maurer and Wolf introduced the

concepts of implicit representation of elements of Fp and auxiliary group over

Fp to reduce DLP to DHP and so far, these concepts have been used for this

purpose only. We have already described them in detail in the section 3.3.

The motivation for our attack on DLP comes from the work of Brown and

Gallant[8, Theorem 1] and Cheon [11], already discussed in the section 3.4.
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However, the context we are interested in is quite different: our algorithm

does solve DLP in G but does not require a static DH-oracle in G or any

auxiliary input from the group G to solve DLP. On the other hand, their

algorithm can solve DLP only when either a static DH-oracle is given(Brown

and Gallant) or some auxiliary input is given(Cheon). Therefore, this is the

first time that implicit representation and auxiliary group are used to solve

DLP but without requiring any help from a DH-oracle in G. Our algorithm

has some similarity with the four steps discussed in section 3.2.3 except that

we no longer need the DH-oracle to do the implicit computations and still,

we can solve DLP. This is a very pleasant situation because our algorithm

can be employed as a practical attack on DLP, unlike DLP to DHP reduction

which is a theoretical model to study the hardness of DHP.

We present our algorithm in the next section. Our approach leads to

a way to reduce the discrete logarithm problem to a problem in F×p . The

advantage of this approach is that F×p has many subgroups and one can

exploit the rich and well understood subgroup structure of F×p .

4.3 Our Contribution

Let G be an additive cyclic group of prime order p and generated by P . Recall

the definition of implicit representation given in section 3.2.1. Basically, for

y ∈ Fp, yP ∈ G is called the implicit representation of y ∈ Fp(with respect

to G and P ). For auxiliary group, see section 3.2.2. The following lemma

comes from the idea of implicit representation of a finite field, proposed by

Maurer and Wolf [42].

Lemma 4.1. Let a, b be any two integers. Then a = b (mod p) if and only

if aP = bP in G.

Proof. Assume that a = b (mod p), then a = tp+ b for some integer t. Then
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aP = tpP + bP = bP . Conversely, assume that aP = bP , then (a− b)P = 0

in G and this means p|(a− b) which implies that a = b (mod p).

The usefulness of this lemma is to be able to decide on the equality in

F×p by looking at the equality in G. The following algorithm to solve the

discrete logarithm problem uses the order of the discrete logarithm in the

multiplicative group of a finite field. This algorithm is different from the

baby-step giant-step [30] as it uses the implicit representation with multi-

plicative group of a finite field as auxiliary group.

Theorem 4.1. Let G be an additive cyclic group generated by P and order

of P is a prime p. Let Q = xP be another given element of G(x is unknown).

For a given divisor d of p − 1, let H be the unique subgroup of F×p of order

d. Then, one can decide whether or not x belongs to H in O(
√
d) steps.

Furthermore, if x belongs to H, the same algorithm will also find the discrete

logarithm x in O(
√
d) steps where each step is an exponentiation in the group

G.

Proof. Since H is a subgroup of the cyclic group F×p , we assume that it is

generated by some element ζ. If the generator of H is not given to us, we can

compute it using a generator of F×p and d. The proof of whether x belongs

to H or not follows from the well-known baby-step giant-step algorithm [30,

Proposition 2.22] to compute the discrete logarithm.

Let n be the smallest integer greater than
√
d. Then x ∈ H if and only

if there exists an integer k with 0 ≤ k ≤ d such that x = ζk (mod p). Note

that any integer k between 0 and d can be written as k = an− b for unique

integers a, b with 0 ≤ a, b ≤ n, by division algorithm. Therefore, x ∈ H if

and only if there exist two integers a, b with 0 ≤ a, b ≤ n such that x = ζan−b

(mod p), or equivalently ζbx = ζna (mod p). Using the lemma above, we see

that x ∈ H if and only if there exist two integers a, b with 0 ≤ a, b ≤ n such

that ζbxP = ζnaP , equivalently ζbQ = (ζn)aP as Q = xP .
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Now, we create a list
{
ζbQ : 0 ≤ b ≤ n

}
. Then we generate elements

of the form (ζn)aP for each integer a in [0, n] and try to find a collision

with the earlier list. When there is a collision, i.e., ζbQ = (ζn)aP for some

0 ≤ a, b ≤ n, it means that x ∈ H. Otherwise, x /∈ H.

Moreover, if x ∈ H then ζbQ = (ζn)aP for some 0 ≤ a, b ≤ n. So,

we use the integers a and b to compute ζan−b (mod p) which is nothing

but the discrete logarithm x. Since the two lists require computation of at

most 2n exponentiations, the worst case time complexity of the algorithm to

check whether or not x ∈ H, as well as to compute x(if x ∈ H) would be

O(n) ≈ O(
√
d) steps. This completes the proof.

Thus, we saw that above theorem can solve the discrete logarithm problem

in some cases while using implicit representation and F×p as auxiliary group.

Two things come out of this theorem:

(A) The theorem can be used to check if the secret key x belongs to some

small (fixed)subgroup of F×p or not. If it does, then the algorithm also

finds the secret key x in far less time than the best generic attacks on

DLP.

(B) If somehow it is known to an attacker that the secret key is in some

subgroup H of F×p , that information can be used to develop a much

faster attack than best known generic attack on DLP, for example,

Pollard’s rho.

Both of these occurrences have their cryptographic relevance which sig-

nifies the importance of above theorem. There is another security issue that

above theorem brings to the fore. We take the example of NIST curves de-

fined over prime fields of different size viz. P-192, P-224, 256, P-384, P-521

and p denotes the respective prime order of the curves. Since the above algo-

rithm depends on d and p− 1 factors into small divisors, the above theorem
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is applicable to each of the five NIST curves[48]. Although, one can say that

probability of randomly chosen secret x being inside a particular subgroup

of F×p can be very small, the availability of so many divisors d of p − 1 of

different sizes itself is not a desirable security feature from the cryptographic

point of view and it is always a sound security practice to exclude any such

probability, however small. Therefore, as a security necessity, it is highly

recommended that p− 1 should be of the form k · p′ for a very small value

of k and some prime p′ so that above algorithm does not provide any faster

attack on DLP than the generic attacks.

Remark 4.1. We already discussed that above algorithm is applicable on

all the five prime order NIST curves [48] viz. P-192, P-224, P-256, P-384,

P-521. Although the probability of a randomly chosen secret key x being

inside a particular subgroup of F×p can be very small, one should always

do a security check on the secret key x for its safety and our algorithm

provides such a security check on the secret key x as follows: check, using

our algorithm for each curve, if the secret key x belongs to any of two (large

enough)subgroups whose orders are mentioned in the appendix C. If it does,

we discard the secret key because our algorithm finds the secret key much

faster that generic attacks.

Suppose that p− 1 has large enough(but a lot smaller than p− 1) divisor

d and H is the unique subgroup of F×p of order d. One can argue that the

drawback of the deterministic algorithm given in Theorem 4.1 is that it might

fail to solve DLP because the probability of x belonging toH is very small. To

deal with such a scenario, one would try to increase the probability. One way

to increase the probability is to increase the size of d, if such d exists. Clearly,

this is not a desirable solution because the computational cost depends on

the size of the subgroup.

In this situation, the question remains, what happens if no information
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about the secret x is known. We develop a probabilistic algorithm (Theorem

4.2) to expand our attack. To understand this probabilistic attack properly,

we study it on the curve P-256. This is an NIST recommended curve over a

prime field and is considered secure. Our study, which we present in details

in section 4.4 indicates some weakness in this curve.

The above algorithm can be parallelized which helps us overcome this

obstacle by increasing the probability. We have randomized the above al-

gorithm where the random inputs will be running on parallel processes or

threads. This parallelization along with collision algorithm (based on birth-

day paradox) [30, Theorem 5.38] yields a randomized probabilistic algorithm

which can solve DLP with a given probability.

Collision Theorem: An urn contains N balls, of which n balls are red and

N − n are blue. One randomly selects a ball from the urn, replaces it in the

urn, randomly selects a second ball, replaces it, and so on. He does this until

he has looked at a total number of m balls. Then, the probability that he

selects at least one red ball is

Pr(at least one red ball) = 1−
(

1− n

N

)m

≥ 1− e−mn
N .

Theorem 4.2. Let G be an additive cyclic group generated by P and the

order of P is a prime p. Let Q = xP be another given element of G(x is

unknown). For a given divisor d of p − 1, let H be the unique subgroup of

F×p of order d. Then, x can be computed in O(
√
d) steps with probability at

least 1− e(
−dm
p−1 ) if one has access to m parallel threads.

Proof. The main idea is to run the algorithm from Theorem 4.1 on each

of m threads as follows. We randomly selects m elements y1, y2, .., ym in F×p
and compute corresponding m elements Q1 = y1Q = (y1x)P ,...,Qm = ymQ =

(ymx)P of G. Now, we run the above algorithm on each ofm parallel threads,

with element Qi = (yix)P running on ith thread. Let zi = yix (mod p) for

i = 1, ..,m. If zi ∈ H for some i, 1 ≤ i ≤ m; then the algorithm on that
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thread returns zi. Once we have zi for some i, we compute zi · yi
−1 (mod p)

which is nothing but the discrete logarithm x.

The collision theorem above tells us about the probability of at least one

zi belonging to H for 1 ≤ i ≤ m. In present case, F×p with p− 1 elements is

the urn, so N = p−1. The elements of H are red balls, so n = d. Since we are

randomly selecting m elements y1, .., ym from F×p , it implies that z1, z2, .., zm

also are random elements of F×p . Therefore, probability that at least one

of zi would belong to H is at least 1 − e(
−dm
p−1 ), by the collision theorem.

In other words, with probability at least 1 − e−
dm
p−1 , one can compute zi for

some i, 1 ≤ i ≤ m if one has access to m threads. Since the number of

steps performed on each thread before we have computed zi for some i is

at max 2
√
d, we conclude that it takes O(

√
d) steps to compute x with the

probability at least 1− e(
−dm
p−1 ) if m threads are available. This completes the

proof.

Remark 4.2. It follows from Theorem 4.2 that if there exist divisors d of

p − 1 of suitable sizes, then DLP can be solved in time much less than the

square root of the group size but with a probability which increases with the

number of parallel threads used. A practical importance of Theorem 4.2 lies

in the fact that such divisors of p − 1 do exist for all NIST curves [48] as

well as most of SEC2 curves [52]. This gives us precise estimates about the

number of group operations and threads needed to solve DLP with a given

probability. We illustrate this by an example in the next section.

Remark 4.3. Note that the probability of solving the DLP in above theorem

is proportional to the product m · d. It follows that if we fix a probability,

this product is constant. Therefore, for a fixed probability of solving the

DLP, there is a trade-off between the number of steps and number of threads

needed in Theorem 4.2. Increasing one of the two would decrease the other

and vice-a-versa.
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4.4 Security analysis of NIST curve P-256

As discussed earlier, our probabilistic algorithm is applicable to NIST curves.

In this section, we will demonstrate the implication of our algorithm on NIST

curves. We will do that only on the NIST curve P-256 but similar conclusions

hold for other four NIST curves over prime field as well, see appendix C.

The NIST curve P-256 is defined over the prime field Fq and the order of

P-256 is a prime p given below.

q = 1157920892103562487626974469494075735300861434152903141955

33631308867097853951

p = 115792089210356248762697446949407573529996955224135760342422

259061068512044369

p− 1 = 24 · 3 · 71 · 131 · 373 · 3407 · 17449 · 38189 · 187019741 · 622491383·

1002328039319 · 2624747550333869278416773953

Since p− 1 factors into many relatively small integers, we have the following

divisors of p− 1 of various sizes.

d1 = 534427449503294145963994143640970973102047412378826412971

9829 ≈ 2201.73.

d2 = 106885489900658829192798828728194194620409482475765282594

39658 ≈ 2202.73.

d3 = 160328234850988243789198243092291291930614223713647923891

59487 ≈ 2203.32.

d4 = 18207943204577231552993280473847881053586755339746615

889955457403 ≈ 2213.47.
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Table 4.1

log2 d1 = 201.73 log2 d2 = 202.73 log2 d3 = 203.32
log2(

√
d1) = 101.86 log2(

√
d2) = 101.36 log2(

√
d3) = 101.66

log2 m = 45 0.00162 0.00324 0.00486
log2 m = 50 0.05064 0.098711 0.14435
log2 m = 52 0.18768 0.34013 0.46398
log2 m = 53 0.34013 0.56458 0.71268
log2 m = 54 0.56458 0.81040 0.91745
log2 m = 55 0.81040 0.96405 0.993184
log2 m = 56 0.96405 0.99871 0.99995

d5 = 238524055979961733344211974207407241801986494950680668158

4164919793 ≈ 2220.50.

For above sizes of subgroups and various number of parallel threads m,

the following three tables give the probability to solve DLP. The second

column of the Table 4.1 shows the probabilities when the subgroup size is

d1 ≈ 2201.73 bits. For example, if we have m = 254 parallel threads, then our

algorithm would solve DLP in 2101.86 steps with probability 0.56458 which is

the intersection of the fifth row(corresponding to m = 254) and the second

column(corresponding to d1 ≈ 2201.73). Other entries(probabilities) of the

tables can be understood similarly.

If we go across a row in the Table 4.1, we see the probabilities getting

increased with the size of subgroup d. If we move along a column, probabili-

ties increase with the number (m) of parallel threads. Table 4.1 also exhibits

the trade-off between d and m for equal probability. For equal probability,

highlighted diagonally in the second and third column, we see that increasing

the subgroup size by 1-bit(d1 and d2 differ by 1-bit) results in a decrease of

1-bit in the number of parallel threads m. As an example, to achieve the

probability 0.56458, the subgroup of order d1 requires 254 parallel threads

while the subgroup of order d2 requires 253.
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log2d4 = 213.47
log2(

√
d4) = 106.78

log2m = 41 0.29234
log2m = 42 0.49921
log2m = 43 0.74921
log2m = 44 0.93710

Table 4.2

log2d5 = 220.50
log2(

√
d5) = 110.25

log2m = 33 0.16218
log2m = 34 0.29805
log2m = 35 0.50727
log2m = 36 0.75721
log2m = 37 0.94106

Table 4.3

Entries of the Table 4.2 and Table 4.3 correspond to d4 and d5 respectively,

and can similarly be understood as Table 4.1. From Table 4.3, we can see that

DLP on the curve P-256 can be solved in 2110.25(with a significant reduction

from 2128) steps with probability greater than 0.5, while using 235 parallel

threads. This indicates a weakness of NIST curve P-256 if one assumes that

235 parallel threads are within the reach of modern distributed computing.

Similar conclusions can be drawn for other NIST curves P-192, P-224, P-384

and P-521.

Moreover, most of the curves in SEC2(version 2) standard [52] which

also include all other ten NIST curves [48]over binary field, p− 1 factors into

small divisors. Therefore, our algorithm for solving DLP on those curves in

SEC2 [52] can similarly be applied.

Lastly, we understand that our result is not as good as parallelized ver-

sion [56] of Pollard’s rho attack, and in practice it may be impractical or

impossible to have 235 parallel threads. However, the most important thing

about our algorithm is the novel approach to attack DLP and it certainly

shows us a way how to use parallelization to increase the probability so that

Theorem 4.1 can then be applied successfully.
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4.5 Conclusion

In this chapter, we presented a novel idea of using the implicit representation

with F×p as auxiliary group to solve the discrete logarithm problem in a group

G of prime order p. We modified the most common generic algorithm, the

baby-step giant-step algorithm for this purpose and studied it further for

NIST curves over prime fields which indicates some security issues in the

NIST curves. Moreover, this algorithm that we developed brings to the

spotlight the structure of the auxiliary group for the security of the discrete

logarithm problem in G of prime order p. Even though our algorithm does

not match the best known attacks using parallelization, it does present a

novel approach to attack DLP and this aspect is probably reported for the

first time. We hope that like most of the new ideas, this would lead to more

useful and efficient attacks on the discrete logarithm problem.
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Appendix A

Elliptic curve domain

parameters over prime field

The following data present several SECG curves[52] which are defined over

some prime field of characteristic not equal to 2 and are used for practical

purposes. For these curves, prime p denotes the order of the elliptic curve

group and d is the suitable divisor of p − 1 which is used by us for various

computation in Table 3.1 of chapter 3.

A.1 SECP112R1

p = 4451685225093714776491891542548933

d = 140876

A.2 SECP112R2

p = 1112921306273428674967732714786891

d = 110852811870
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A.3 SECP128R1

p = 340282366762482138443322565580356624661

d = 9476076960994

A.4 SECP128R2

p = 85070591690620534603955721926813660579

d = 3101689558

A.5 SECP160K1

p = 1461501637330902918203686915170869725397159163571

d = 42918291593381467397

A.6 SECP160R1

p = 1461501637330902918203687197606826779884643492439

d = 22167198845997443

A.7 SECP160R2

p = 1461501637330902918203685083571792140653176136043

d = 142004808588765074419

A.8 SECP192K1

p = 6277101735386680763835789423061264271957123915200845512077

d = 43818996
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A.9 SECP192R1

p = 6277101735386680763835789423176059013767194773182842284081

d = 9564682313913860059195669

A.10 SECP224K1

p = 2695994666715063979466701508701964034651032708312007454899

4958668279

Appropriate size of divisor d of p− 1 not available

A.11 SECP224R1

p = 2695994666715063979466701508701962594045780771442439172168

2722368061

d = 533642580

A.12 SECP256K1

p = 1157920892373161954235709850086879078528375642790749043826

05163141518161494337

d = 65709355417112419152054124

A.13 SECP256R1

p = 115792089210356248762697446949407573529996955224135760

342422259061068512044369

d = 71482998987075857096374359
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A.14 SECP384R1

p = 3940200619639447921227904010014361380507973927046544666794

6905279627659399113263569398956308152294913554433653942643

d = 12895580879789762060783039592702

A.15 SECP521R1

p = 6864797660130609714981900799081393217269435300143305409394463

45918554318339765539424505774633321719753296399637136332111386476

8612440380340372808892707005449

d = 1898873518475180724503002533770555108536
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Elliptic curve domain

parameters over F2m

The following data present several SECG curves[52] which are defined over a

binary field and are used for practical purposes. For these curves, prime p is

the largest divisor of the order of that particular elliptic curve group(with a

very small co-factor of either 2 or 4) and d is the appropriate divisor of p− 1

used by us for various computation in Table 3.2 of chapter 3.

B.1 SECT113R1

p = 5192296858534827689835882578830703

d = 253877289037

B.2 SECT113R2

p = 5192296858534827702972497909952403

d = 215851796187
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B.3 SECT131R1

p = 1361129467683753853893932755685365560653

d = 23348

B.4 SECT131R2

p = 1361129467683753853879535043412812867983

d = 485524729

B.5 SECT163K1

p = 5846006549323611672814741753598448348329118574063

d = 33118034411893094

B.6 SECT163R1

p = 5846006549323611672814738465098798981304420411291

d = 27744064547201903

B.7 SECT163R2

p = 5846006549323611672814742442876390689256843201587

d = 859825042

B.8 SECT193R1

p = 6277101735386680763835789423269548053691575186051040197193

d = 1697589986603916123127
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B.9 SECT193R2

p = 6277101735386680763835789423314955362437298222279840143829

d = 4345632155805272808276901

B.10 SECT233K1

p = 34508731733952818937173779311385127605709409888622521263280

87024741343

d = 11064269030135607689238

B.11 SECT233R1

p = 6901746346790563787434755862277025555839812737345013555379

383634485463

d = 443484653691663066996649

B.12 SECT239K1

p = 22085588309729804119791218759286481494821656132170984888

7480219215362213

d = 912013207122974008798076

B.13 SECT283K1

p = 38853377844514581418389238136470378132848117337930613242

95874997529815829704422603873

d = 19578145037471479248182334822
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B.14 SECT283R1

p = 7770675568902916283677847627294075626569625924376904889

109196526770044277787378692871

d = 34107744933314238426752172695

B.15 SECT409K1

p = 3305279843951242994759576540163855199142023414821406096

42324395022880711289249191050673258457777458014096366590617

731358671

d = 572443222870261113609193333057890

B.16 SECT409R1

p = 6610559687902485989519153080327710398284046829642812192

84648798304157774827374805208143723762179110965979867288366

567526771

d = 133035142307481057108300314154446543724338

B.17 SECT571K1

p = 1932268761508629172347675945465993672149463664853217499

32861762572575957114478021226813397852270671183470671280082

5351461273674974066617311929682421617092503555733685276673

d = 1650836032275210526255468059063336914554249497826676631916



B.18. SECT571R1 73

B.18 SECT571R1

p = 386453752301725834469535189093198734429892732970643499865

7235251451519142289560424536143999389415773083133881121926944

486246872462816813070234528288303332411393191105285703

d = 2160677396588220552651437946338996605699043277407755096919
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Appendix C

NIST Curves Over Prime Field

For each of these five NIST curves of order prime p, two subgroups of F×p
with (large enough)orders d1, d2 are given such that d1 · d2 = p − 1 and

gcd(d1, d2) = 1, see Remark 4.1.

C.1 P-192

p = 6277101735386680763835789423176059013767194773182842284081

p− 1 = 24 · 5 · 2389 · 9564682313913860059195669 · 3433859179316188

682119986911

d1 = 656279166350909980926771898430320 ≈ 2109.02

d2 = 9564682313913860059195669 ≈ 282.98

C.2 P-224

p = 269599466671506397946670150870196259404578077144243917216827

22368061

p− 1 = 22 · 36 · 5 · 2153 · 5052060625887581870

75
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7470860153287666700917696099933389351507

d1 = 50520606258875818707470860153287666700917696099933389351507 ≈

2195.01

d2 = 533642580 ≈ 228.99

C.3 P-256

p = 115792089210356248762697446949407573529996955224135760342422

259061068512044369

p− 1 = 24 · 3 · 71 · 131 · 373 · 3407 · 17449 · 38189 · 187019741 · 622491383·

1002328039319 · 2624747550333869278416773953

d1 = 1489153224408067225170753316415649493584 ≈ 2130.13

d2 = 77757001302792844776776389119582520177 ≈ 2125.87

C.4 P-384

p = 3940200619639447921227904010014361380507973927046544666794

6905279627659399113263569398956308152294913554433653942643

p− 1 = 2 · 32 · 72 · 13 · 1124679999981664229965379347·

3055465788140352002733946906144561090641249606160407884365391979704929

268480326390471

d1 = 1167799024227242535444914507528451248843085599474507893404452814

6432239664131807464380162 ≈ 2292.55

d2 = 1124679999981664229965379347 ≈ 289.86
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C.5 P-521

p = 6864797660130609714981900799081393217269435300143305409394463

45918554318339765539424505774633321719753296399637136332111386476

8612440380340372808892707005449

p− 1 = 23 · 7 · 11 · 1283 · 1458105463 · 1647781915921980690468599·

3615194794881930010216942559103847593050265703173292383701371712350878926821

661243755933835426896058418509759880171943

d1 = 4166083869350854498586791068944823620942931357552596820305098954973

694271292315253349654329419600683157636543108630210814256821981752 ≈

2440.55

d2 = 1647781915921980690468599 ≈ 280.45
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