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Abstract

Let K = Q(
Ô

≠d) where d(> 0) is a square-free integer. Let OK be the ring of integers
of K.

Consider the hyperbolic 3-space H3 ( Upper half space),

H3 := {(z, t) œ C ◊ R | t > 0}.

We define the extended 3- dimensional upper half space to be

H3 := H3 fi K fi {Œ}.

We denote the full Bianchi group SL2(OK) by G and choose � to be a subgroup of
SL2(OK) of finite index with no elements of finite order.

Let Y� = �\H3 be a hyperbolic 3-manifold. Consider the Baily-Borel-Satake com-
pactification of Y�, which is XBB

�
= �\H3, obtained by adding the set of cusps.

The Borel-Serre compactification of Y�, which is XBS
�

obtained by adding a 2-torus
to each cusp ˆXBS

�
(except for K = Q(i) or K = Q(

Ô
≠3) for which we add spheres

instead).
The first result of this thesis is related to the Eisenstein cycle and the Eisenstein

part of homology. We explicitly write down the Eisenstein cycles (or we say Eisen-
stein element) in the first homology groups of quotients of hyperbolic 3-space as linear

1



2 Contents

combinations of Cremona symbols (a generalization of Manin symbols) for imaginary
quadratic fields. These cycles generate the Eisenstein part of the homology groups.

Using Poincaré duality, we can relate cohomology and homology. We also stud-
ied the Eisenstein part of the cohomology groups. The second result of this thesis is
related to the Eisenstein and cuspidal parts of the cohomology groups. We have calcu-
lated the trace of the first and second Eisenstein cohomology groups and the Lefschetz
number. As an application of J.Rohlfs’ result in §8.4.1, we find an asymptotic dimen-
sion formula (in the level aspect) for the cuspidal cohomology groups of congruence
subgroups of the form �1(N) inside the full Bianchi groups.



Statement of originality

The main original research results presented in this thesis, along with their respective
chapters and sections, are as follows:

In Chapter 4, Section 4.3, Proposition 4.3.1, and its Corollary 4.3.2 are discussed.
In Chapter 5, Section 5.3.1, the discussion revolves around Theorem 5.4.3, along

with Propositions 5.4.5 and 5.4.4.
Furthermore, Chapter 6 discusses Proposition 6.1.4.
Additionally, Chapter 7 presents Lemma 7.3.2, Lemma 7.3.3, Lemma 7.3.4, Propo-

sition 7.3.5, and Corollary 7.3.6.
Moreover, Chapter 8 contains Theorem 8.3, Theorem 8.3.2, and Proposition 8.4.2.
The majority of the results presented in this thesis are derived from the research

paper referenced as [4].
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Nomenclature

H2

Ó
z œ C : Im(z) > 0

Ô

H3

Ó
(z, t) œ C ◊ R | z œ C, t œ R, t > 0

Ô

K Imaginary quadratic field

H2 H2 fi Q fi {Œ}

H3 H3 fi K fi {Œ}

SL2(Z)

Y
]

[

S

WU
a b

c d

T

XV : a, b, c, d œ Z, ad ≠ bc = 1

Z
^

\

SL2(OK)

Y
]

[

S

WU
a b

c d

T

XV : a, b, c, d œ OK , ad ≠ bc = 1

Z
^

\

� Congruence Subgroup

�(N) Æ SL2(Z)

Y
]

[

S

WU
a b

c d

T

XV ©

S

WU
1 0

0 1

T

XV ( mod N) œ SL2(Z)

Z
^

\

�0(N) Æ SL2(Z)

Y
]

[

S

WU
a b

c d

T

XV ©

S

WU
ú ú
0 ú

T

XV ( mod N) œ SL2(Z)

Z
^

\
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Nomenclature 5

�1(N) Æ SL2(Z)

Y
]

[

S

WU
a b

c d

T

XV ©

S

WU
1 ú
0 1

T

XV ( mod N) œ SL2(Z)

Z
^

\

�(a) Æ SL2(OK)

Y
]

[

S

WU
a b

c d

T

XV ©

S

WU
1 0

0 1

T

XV ( mod a) œ SL2(OK)

Z
^

\

�1(a) Æ SL2(OK)

Y
]

[

S

WU
a b

c d

T

XV ©

S

WU
1 ú
0 1

T

XV ( mod a) œ SL2(OK)

Z
^

\

�0(a) Æ SL2(OK)

Y
]

[

S

WU
a b

c d

T

XV ©

S

WU
ú ú
0 ú

T

XV ( mod a) œ SL2(OK)

Z
^

\

q = e(·) exp(2fii· )

Y (�) �(N)\H2

X(�) �(N)\H2

Y� �\H3

XBB
�

Bailey-Borel-Satake compactification of �\H3

XBS
�

Borel-Serre compactification of �\H3

L(≠, ≠, ≠) Lefschetz number

tr trace

— (—0 = ≠dz/t, —1 = dt/t, —2 = dz̄/t)



1

Introduction

Eisenstein parts of the homology and cohomology groups for classical modular curves
encode several arithmetic information, such as special values of L-functions. Eisen-
stein ideals were introduced by Mazur, and these ideals found applications in several
important breakthroughs in the last few decades, including Fermat’s last theorem and
the main conjecture of Iwasawa theory.

Merel introduced Eisenstein cycles that are the basis of the integral homology
groups of classical elliptic modular curves (space of modular symbols). Banerjee-
Merel [2] investigated Eisenstein cycles for congruence subgroups of classical modular
groups.

In the classical case for the congruence subgroups of odd level, we can take in-
tersection with the principal congruence subgroup of level two. As a consequence,
we can assume all the cusps are lying above {0, Œ, 1} and cycles can be taken of the
form {g1, g(≠1)} for g œ SL2(Z). In turn, these can be written in terms of loops of the
modular curves.

For any odd integer N , Banerjee-Merel [2] expressed Eisenstein cycles in the first
homology groups of modular curves of level N as linear combinations over Q of
Manin symbols (generators of homology groups of elliptic modular curves). The coef-
ficients are computed in terms of periods (integrals over cycles of complex differential
1 forms associated to the Eisenstein series). These periods can be computed in terms
of Dedekind sums.

6



Chapter 1. Introduction 7

This formulation was extended to subgroups of finite indices (not necessarily con-
gruence subgroups) within the full modular group as detailed in [3] with a more com-
plicated notion of periods. It should be noted that these Eisenstein cycles are not nec-
essarily Q valued for general subgroups of finite index.

John Cremona and his collaborators initiated the study of modular symbols (inte-
gral homology groups of quotients of 3-dimensional hyperbolic space) for imaginary
quadratic fields. They are mostly interested in the cuspidal part of homology groups
of the corresponding topological space. Ito [22] first defines periods in this setting
and shows that the periods are again described by Sczech’s Dedekind sums [32] for
� = SL2(OK).

In Chapter 2, we have provided a short overview of classical modular forms, while
in Chapter 3, we delve into the definition of the fundamental domain, differentials
on H3, and the definitions of scalar-valued Bianchi modular forms and vector-valued
Bianchi modular forms.

In Chapter 4, we discuss Hida’s differential forms and Ito’s differential forms for
the full group. Following that, in Section 4.3, we generalize Ito’s differentials for sub-
groups of SL2(OK).

In Chapter 5, we discuss Cremona symbols, which generalize Manin symbols for
Bianchi groups, and we also present some results on classical modular symbols. Fol-
lowing that, we derive the inner product formula for Bianchi modular forms using
quasi-periods as follows

Proposition 1.0.1.Let F, S œ M2(�) be two Bianchi modular forms, with at least one of them
being a cusp form with F = (F0, F1, F2) and S = (S0, S1, S2). Consider the function

H := iF0S0 +
i

2
F1S1 + iF2S2.

The inner product of these two modular forms is given by < F, S >= I with

I =
1

12[G : �]

ÿ

gœ�\G

gŒ⁄

g0

⁄

ˆFK

H(—0 · —1 · —2)

where ˆFK is the boundary of fundamental domain FK .
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Additionally, in our work, we express the Eisenstein cycles of the homology group
associated with the quotient of hyperbolic 3-space by subgroups of finite index of
Bianchi modular groups in terms of Cremona symbols. These Cremona symbols serve
as a generalization of Manin symbols for Bianchi groups.

Definition 1.0.2. The Eisenstein classes are modular symbols E œ H1(XBB
�

, ˆ(XBB
�

);C)

such that ⁄

E

F · — = 0

for all cusp forms F (see the definition of the cusp forms). The Eisenstein cycles (or we
say Eisenstein element) are paths within the Eisenstein classes.

Cremona [8] demonstrated (see also [7, Theorem 4.3.2]) that the map ÷ is a surjec-
tive mapping from �\SL2(OK) onto H1(XBB

�
, ˆXBB

�
;Q) defined as

÷ : (g)‘≠æ{g0, gŒ}.

We define the generalized 2-periods as follows

FE(g) :=

⁄

ˆFK

ı(E · —)[g],

where E is the Eisenstein series of weight 2.
Now, we state our first result: The Eisenstein cycles generated by these symbols

contribute to the Eisenstein part of the homology groups.

Theorem 1.0.3. For any imaginary field K with class number one that is also an Euclidean
domain, the modular symbol

EE =
ÿ

gœ�\G

FE(g)÷(g)

is the Eisenstein cycle corresponding to the Eisenstein series E œ E2(�).

These Eisenstein cycles are determined in terms of generalized periods (integrals
of two forms over a real surface) that are hard to compute as of now.

In the present setting, results are difficult to obtain because the corresponding
topological spaces do not carry the same algebraic geometric structure as in the cases
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for elliptic or Hilbert modular forms settings. In particular, there is no analogue of
dessin d’enfant.

Until now, we have discussed everything related to the homology groups of
Bianchi 3-folds. Using Poincaré duality, we see that the cohomology and homology
groups are related. Now, we will discuss the Eisenstein and cuspidal cohomology
groups of Bianchi 3-folds.

In Chapter 6, we provide definitions of Eisenstein cohomology and cuspidal co-
homology, and we compute the dimension of Eisenstein cohomology. Following that,
we discuss Szech cocycles and certain expectations.

Till date, there is no nice formula for the dimensions of the space of Bianchi cusps
forms similar to elliptic cases. Note that we can not apply the Riemann-Roch theorem
in this setting to obtain a dimension formula. Sengün and his collaborators [10] stud-
ied the dimensions of the cohomology of Bianchi groups for the principal congruence
subgroups.

Now, we use the result of J.Rohlfs, which gives the asymptotic bounds on cuspidal
cohomology

dim H
1

cusp(�; M) Ø 1

2

----L(fl, �, M) + tr

1
fl1

Eis

2
≠ tr

1
fl2

Eis

2
≠ tr

1
fl0

2----

where L(·) denotes the Lefschetz number, tr(fli
Eis) denotes the trace on the i-th

Eisenstein cohomology group, and fl is an involution.

In Chapter 7, we discuss the definition of the Lefschetz number for the full group
and subgroups of the form �(N) based on the work of Sengün and Türkelli [10]. Sub-
sequently, we calculate the Lefschetz number for subgroups of the form �1(N) in Sec-
tion 7.3.

In Chapter 8, we investigate the trace of Eisenstein cohomology for the full group
and subgroups of the form �(N) based on the work of Sengün and Türkelli [10]. Sub-
sequently, we calculate the trace of Eisenstein cohomology groups for subgroups of
the form �1(N) in Section 8.3.

We explore the Eisenstein part of the cohomology groups. As an application, we
derive an asymptotic dimension formula in the level aspect for the space of cuspidal
cohomology groups.

A natural question arises regarding the generalization of these computations to
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other crucial congruence subgroups such as �1(a) as defined below. To study Dio-
phantine questions like modularity, Bianchi modular 3-fold associated with these sub-
groups are expected to play an important role. As an application of our study of Eisen-
stein part of the cohomology groups of subgroups of Bianchi modular groups, we give
a lower bound on the dimension of corresponding cuspidal cohomology groups for the
congruence subgroups of the form �1(pn

) as n æ Œ in Section 8.4.
The lower bound on the dimension of corresponding cuspidal cohomology groups

for the congruence subgroups of the form �1(pn
) as follows

Proposition 1.0.4. Let p be a rational prime that is unramified in K and let �1 (pn
) denote

the subgroup of level (p)
n of a Bianchi group SL2(OK). Then

1.
dim H

1

cusp
!
�1 (pn

) ; Mk
"

∫ k

as k increases and n is fixed.

2. Assume further that the class number of K is one. We have the following asymptotic
bound.

dim H
1

cusp
!
�1 (pn

) ;C
"

∫ p3n

as n increases.

Note that this part contains corresponding Bianchi cusp forms by the Harder-
Eichler-Shimura isomorphism theorem (generalized Matsushima’s formula). These
results show that at least these many Bianchi cusp forms will be there for the congru-
ence subgroups of the form �1(pn

).



2
Classical Modular Forms

The group SL2(Z) is known as the Modular Group. Let

H2 := {· = x + iy œ C | y > 0}

be the upper half-space in C.

We define an action of SL2(Z) on H2. For · œ H2 and

Q

ca
a b

c d

R

db œ SL2(Z), the action

is given by Q

ca
a b

c d

R

db · · =
a· + b

c· + d
.

Definition 2.0.1. Let k be an integer. A function f : H2 æ C is called weakly modular of

weight k if for all – =

Q

ca
a b

c d

R

db œ SL2(Z), · œ H2 and f(–(·)) = (c· + d)
kf(·).

Considering

Q

ca
1 1

0 1

R

db ,

Q

ca
≠1 0

0 ≠1

R

db ,

Q

ca
0 ≠1

1 0

R

db œ SL2(Z), any weakly modu-

lar function of weight k becomes a periodic function with period 1, and it satisfies
f

1
≠1

·

2
= · kf(·).

Furthermore, since

Q

ca
≠1 0

0 ≠1

R

db œ SL2(Z), if k is an odd integer, then f must be

identically zero.

11
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Consider D =

Ó
· œ C | |· | < 1

Ô
. The upper half-plane H2 is topologically equiva-

lent to the punctured open unit disk DÕ
= D≠{0} under the mapping · ‘æ e(·) = e2fii·

and q = e(·).
Thus, any function f defined on H2 can be represented as g on DÕ, where g(q) =

f
1

log q
2fii

2
. Since

Q

ca
1 1

0 1

R

db œ SL2(Z), the defined function g is well defined even though

log is determined up to 2fiiZ.
If f is a weakly modular function of weight k, we say f is holomorphic at Œ if g

extends analytically to 0 œ C. In such a case, f admits a Fourier expansion f(·) =
q

nØ0

an(f)qn, where q = e(·).

Definition 2.0.2. (Modular form). A function f : H2 æ C is called modular form of
weight k if

(i) f is weakly modular of weight k,

(ii) f is holomorphic on H2,

(iii) f is holomorphic at Œ.

Remark 2.0.3. There are no nonzero modular forms of odd-weight k for the modular group
SL2(Z).

Definition 2.0.4 (Cusp form). A modular form f of weight k is called a cusp form of
weight k if the Fourier expansion of f vanishes at Œ.

For N œ N, let

�(N) =

Y
]

[

Q

ca
a b

c d

R

db œ SL2(Z)

------

Q

ca
a b

c d

R

db ©

Q

ca
1 0

0 1

R

db ( mod N)

Z
^

\.

As the kernel of the natural morphism SL2(Z) æ SL2(Z/NZ), we see �(N) is a normal
subgroup of SL2(Z), called the principal congruence subgroup of level N .

Definition 2.0.5. A subgroup � of SL2(Z) is called a congruence subgroup if ÷ N such
that �(N) µ �, and the least such N is called the level of �.
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Let

�1(N) =

Y
]

[

Q

ca
a b

c d

R

db œ SL2(Z)

------

Q

ca
a b

c d

R

db ©

Q

ca
1 ú
0 1

R

db ( mod N)

Z
^

\

and

�0(N) =

Y
]

[

Q

ca
a b

c d

R

db œ SL2(Z)

------

Q

ca
a b

c d

R

db ©

Q

ca
ú ú
0 ú

R

db ( mod N)

Z
^

\.

The subgroups �1(N) and �0(N) are congruence subgroups of SL2(Z) of level N .
From the definitions, it is evident that �(N) µ �1(N) µ �0(N) µ SL2(Z). Being the

kernel of the natural homomorphism

SL2(Z) ≠æ SL2

A
Z

NZ

B

,

the subgroup �(N) is normal in SL2(Z). In fact, the map is a surjection, inducing an
isomorphism

SL2(Z)

�(N)

≥= SL2

A
Z

NZ

B

,

hence ----SL2

A
Z

NZ

B ---- = N3
Ÿ

p|N

A

1 ≠ 1

p2

B

.

Therefore, any congruence subgroup has a finite index in SL2(Z).

Consider “ =

Q

ca
a b

c d

R

db œ GL
+

2
(Q) and · œ H2. The factor of automorphy at “ is

defined as j(“, ·) = c· + d.
For f : H2 æ C, we define the weight-k operator [“]k such that

(f [“]k)(·) = (det(“))
k≠1j(“, ·)

≠kf(“(·)).

Since the factor of automorphy is neither zero nor infinity, f is meromorphic if and
only if f [“]k is meromorphic.

Definition 2.0.6. We define function f : H2 æ C to be a weakly modular form of weight
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k with respect to � if f [“]k = f for all “ œ �.

Definition 2.0.7. Let � be a congruence subgroup and k be an integer. A function
f : H2 æ C is a modular form of weight k with respect to � if

(i) f is holomorphic,

(ii) it has weight k invariance under �,

(iii) f [“]k is holomorphic at Œ for all “ œ SL2(Z).

Definition 2.0.8. A modular form f of weight k with respect to � is termed a cusp form
of weight k with respect to � if f [“]k vanishes at infinity for all “ œ SL2(Z).

Definition 2.0.9 (Fundamental domain). A fundamental domain for a group � acting
on upper half space H2 is a region in the upper half-plane H2 that contains exactly one
point from each �-orbit.

Proposition 2.0.10. Let D = {· œ C | |· | Ø 1, |Re(·)| Æ 1}. Then, the set D is called a
fundamental domain for SL2(Z).

"Let � be a congruence subgroup. Then the modular curve for �, denoted by Y (�),
is the set {�· | · œ H2} = �\H2.

We define X(�) = {�· | · œ H2}, where H2 = H2 fi Q fi {Œ}.
For the topology on X(�), we define a map „ : H2 æ Y (�) given by · ‘æ �· .

The topology on Y (�) is defined using the quotient topology, where H2 inherits the
subspace topology of the Euclidean topology on C.

We define the topology on X(�) in such a way that Y (�) becomes a dense subset.
Since the action of the congruence subgroup � on H2 is properly discontinuous,

Y (�) is a Hausdorff space.
The subgroup �· = {“ œ � | “(·) = ·} is known as the isotropy subgroup.

Definition 2.0.11. An element · œ H2 is termed an elliptic point if the isotropy sub-
group �· is non-trivial as a group of transformations, that is, if the containment
{±I}�· ∏ {±I} of matrix groups is proper. The corresponding point �· œ Y (�) is
also referred to as an elliptic point.
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Remark 2.0.12. For any congruence subgroup � and any · œ H2, there exists a neighborhood
U µ C of · such that for any “ œ �, if “(U) fl U ”= ÿ, then “ œ �· . Additionally, U contains
no other elliptic points.

Definition 2.0.13. For · œ H2, the period of · , denoted by h· , is defined as |{±I}�·

{±I} |.

Let “ =

Q

ca
a b

c d

R

db œ SL2(Z) (where “ ”= ±I) and · œ H2. Then “(·) = · if and only

if the equation c· 2 ≠ (a ≠ d)· ≠ b = 0 has a solution. The fact that · œ H2 implies that
the characteristic polynomial of the matrix is either x2

+ 1 or x2 ± x + 1.
Furthermore, we observe that “3

= I , “4
= I , or “6

= I . Hence, h· is finite.
Moreover, it can be verified that the isotropy subgroups are cyclic.

Additionally, h· = h“(·) for any “ œ �. It is straightforward to show that the
imaginary part of an elliptic point is strictly less than 2.

Now we can describe the local structure at any point �· œ Y (�) (which is well-

defined). Let h = h· . Consider ” = ”· =

Q

ca
1 ≠·

1 ≠·

R

db œ SL2(C).

It follows that ”(·) = 0 and ”(·) = Œ. Clearly, h”(·) = h. We choose a neighborhood
U of · as in Corollary 2.0.12, and define Â : U æ C by Â = fl ¶ ”, where fl(z) = zh.

Now we define Ï : „(U) æ Â(U) such that Ï(„(z)) = Â(z). This map is a home-
omorphism because fractional linear transformations are homeomorphisms. It can be
verified that if U1 and U2 are two neighbourhoods of · and Ï1, Ï1 are two maps like Ï

above, the map between Ï1(„(U1)fl„(U2)) and Ï2(„(U1)fl„(U2)) is analytic. Thus, this
provides a manifold structure on Y (�).

Remark 2.0.14. Let D = {· œ C | |· | Ø 1, |Re(·)| Æ 1}. Then the map f : D æ Y (SL2(Z))

defined by f(·) = SL2(Z)· is a surjective mapping. "

Remark 2.0.15. The modular curve Y (�) is a connected but non-compact complex manifold
of dimension 1. To render it compact, it is enough to compactify the domain of the map Ï, as
the continuous. Hence, we include Q fi {Œ} in H2. It is evident that H2 = H2 fi Q fi {Œ} is
compact.

Definition 2.0.16. An element in the set �\(Q fi {Œ}) is called as a cusp for the con-
gruence subgroup �.
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Theorem 2.0.17. For any congruence subgroup �, X(�) is a compact, connected, and Haus-
dorff space. Furthermore, X(�) is a complex manifold of dimension 1, making it a Riemann
Surface.

Remark 2.0.18. For the classical case, where X(�) is a Riemann surface, we can utilize the
Riemann-Hurwitz formula, genus, and Riemann-Roch theorem to determine the dimension of
the set of all modular forms, the set of all cusp forms, and the set of all Eisenstein forms.

Definition 2.0.19 (Differential Forms). When k is even, the weight k modular form
f(·) can be interpreted as the differential form f(·)(d·)

k/2.

This form is fixed under the action of every element of �, meaning it transforms
in a way that maintains its overall structure. This invariance under � indicates that
f(·)(d·)

k/2 is a �-invariant differential form.
Let Mk denote the set of all modular forms of weight k, and Sk denote the set of all

cusp forms of weight k. Both sets are vector spaces over C.

Definition 2.0.20 (Petersson inner product). Let f and g be modular forms of weight
k for � Æ SL2(Z), where at least one of them is a cusp form. Let D be a fundamental
domain for �. The function

È, Í : Mk ◊ Sk ≠æ C,

Èf, gÍ =

x

D

f(·)g(·)yk≠2dxdy

is called the Petersson inner product.

Remark 2.0.21. The differential f(·)g(·)yk≠2dxdy is invariant under the action of SL2(Z),
which means that the inner product is independent of the fundamental domain chosen

The set of all Eisenstein series Ek(�) of weight k is the orthogonal complement of
Sk(�) inside Mk(�). In other words, we have the decomposition

Mk(�) = Sk(�) ü Ek(�).

For proofs and more detailed theory of classical modular forms, we refer to [11].



3

Bianchi Modular Forms

A Bianchi modular form, roughly speaking, is a modular form that is defined over
SL2(OK), where OK is the ring of integers of an imaginary quadratic field K.

3.1 Hyperbolic 3-space

Let K be an imaginary quadratic field and OK is the ring of integers of K.
Consider the hyperbolic 3-space H3 (Upper half space)

H3 = {(z, t) œ C ◊ R | z œ C, t œ R, t > 0}.

We can also view H3 as a subspace of the skew field of the quaternions H with the
basis over R being given by 1, i, j, k. The injective map from H3 to H is given by

H3 æ H

(z, t) æ z + tj

where z = x + iy œ C.

We define the extended 3-dimensional upper half space to be

H3 := H3 fi K fi {Œ}.

17
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Sometimes, we also write Œ as jŒ. Here, jŒ indicates the direction we are taking
infinity in the t component.

The points {(k, 0) | k œ K} and the point at infinity, Œ, are called as the "cusps".

The geometry of H3 is hyperbolic. Thus, geodesic lines are vertical half-lines and
semicircles centered on the plane {(z, t) | t = 0}, while geodesic surfaces are vertical
half-planes and hemispheres centered on {(z, t) | t = 0}.

There is a hyperbolic structure defined on H3 (the metric coming from the line
element) by

ds2
=

dx2
+ dy2

+ dt2

t2

with z = x + iy.

Every element

Q

ca
a b

c d

R

db of SL2(C) acts on H3 as an orientation preserving isometry

via the formula
Q

ca
a b

c d

R

db · (z, t) =

Q

a(az + b)(cz + d) + ac̄t2

|cz + d|2 + |c|2t2
,

t

|cz + d|2 + |c|2t2

R

b .

We can also view H3 as a set of matrices. Consider the hyperbolic 3- space H3 as

H3 =

Y
__]

__[

Q

ca
z ≠t

t z̄

R

db

-------
z œ C, t œ R, t > 0

Z
__̂

__\
.

Now, we can see the transitive action of SL2(C) on H3 by generalized fractional
linear transformations, via

“ · u = (fl(a)u + fl(b))(fl(c)u + fl(d))
≠1

where “ =

Q

ca
a b

c d

R

db œ SL2(C), u =

Q

ca
z ≠t

t z̄

R

db œ H3 and fl(t) =

Q

ca
t 0

0 t

R

db.

Fix a point ‘ =

Q

ca
0 ≠1

1 0

R

db œ H3. Then the stabilizer of ‘ is SU2(C) and so we may
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identify the symmetric spaces

SL2(C)/SU2(C) ƒ H3.

For more details, we refer to the work of Ghate [14, §2.2].

We consider the topology (Matrix topology) on SL2(C) that is defined by the fol-
lowing norm

ÎMÎ =

Ò
|a|2 + |b|2 + |c|2 + |d|2

for M =

Q

ca
a b

c d

R

db.

Definition 3.1.1. A Bianchi group is a group of the form SL2(OK) or PSL2(OK), where
OK is the ring of integers of an imaginary quadratic field K.

3.2 Congruence subgroups

Let the full Bianchi group SL2(OK) be denoted by G, and let a be a nonzero ideal of
OK . Then we define the principal congruence subgroup of G, of level a, as follows

�(a) :=

Y
]

[

Q

ca
a b

c d

R

db œ G

------

Q

ca
a b

c d

R

db ©

Q

ca
1 0

0 1

R

db ( mod a)

Z
^

\.

This can be expressed equivalently as

�(a) :=

Y
]

[

Q

ca
a b

c d

R

db œ G

------
a ≠ 1, b, c, d ≠ 1 œ a

Z
^

\.

Thus, �(a) consists of matrices “ œ G such that “ is "congruent to the identity matrix
modulo a". The principal congruence subgroup �(a) is a normal subgroup of G.

The index of �(a) in G is given by

[G : �(a)] = N(a)
3

Ÿ

p|a
(1 ≠ N(p)

≠2
),
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where N(a) represents the norm of the ideal a, and the product is taken over all prime
ideals p of OK that divide a.

Next, we define

�0(a) :=

Y
]

[

Q

ca
a b

c d

R

db œ G

------
c œ a

Z
^

\,

and

�1(a) :=

Y
]

[

Q

ca
a b

c d

R

db œ G

------
a ≠ 1, c, d ≠ 1 œ a

Z
^

\.

The index of �0(a) in G is given by

[G : �0(a)] = N(a)
Ÿ

p|a
(1 + N(p)

≠1
).

The group �0(a) is a subgroup of G that contains �(a) as a normal subgroup. The
index of �(a) in �0(a) is given by

[�0(a) : �(a)] = N(a)
2

Ÿ

p|a
(1 ≠ N(p)

≠1
),

where the product is taken over all prime ideals p dividing a.

Definition 3.2.1. A congruence subgroup � of G is one that contains �(a) for some
nonzero ideal a of OK .

For further information, please see [7, §2.5].
Let OK be the ring of integers of an imaginary quadratic field K of class number

h(K) = 1. Let � Æ SL2(OK) := G be a subgroup of finite index with no elements of
finite order.

Let Y� = �\H3 be a hyperbolic 3-manifold. Consider the Baily-Borel-Satake com-
pactification of Y�, which is XBB

�
= �\H3, obtained by adding the set of cusps [26].

The Borel-Serre compactification XBS
�

of Y� , see [35, appendix], is a compact 3-fold
with boundary ˆXBS

�
and with interior homeomorphic to Y�.

The discriminant of K is less than ≠4, that is, K is neither equal to Q(i) nor
Q(

Ô
≠3).

The Borel-Serre compactification of Y�, which is XBS
�

obtained by adding a 2-torus
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to each cusp ˆXBS
�

(except for K = Q(i) or K = Q(
Ô

≠3) for which we add spheres
instead).

When K is Q(i) or Q(
Ô

≠3), due to the extra units, the cross-sections of the cusps,
which are again parametrized by the class group, are 2-orbifolds whose underlying
manifolds are 2- spheres (torus folded by an involution).

For more details, we refer to the work of D. Rahm and Sengün [28].

3.3 Fundamental domain

We can also view

H3 = {(z, t) | z œ C, t œ R
+} ƒ GL2(C)/Z · SU2(C)

is the hyperbolic 3 space, where Z denotes the diagonal matrices in GL2(C). An in-
variant metric for the action of GL2(C) on H3 is then given by

ds =
dzdz̄ + (dt)2

t2
.

Definition 3.3.1. We say that a subgroup � Æ SL2(C) acts discontinuously on H3 if
every compact subset of H3 meets only finitely many elements of its �-orbit.

Remark 3.3.2. A subgroup � acts discontinuously if and only if it is discrete (in the matrix
topology).

Definition 3.3.3 (Fundamental domain). We define a fundamental domain or region
for the action of � Æ SL2(OK) on H3. That is, a subset FK of H3 with the following
properties [7]

(i) FK is open in H3,

(ii) Every orbit of � Æ SL2(OK) in H3 intersects FK at most once and intersects the
closure of FK at least once.
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0

p3 p1

p2

ø ø ø øjŒ

Figure 3.1: Fundamental domain for full group SL2(Z[i])

For example, we are interested in the case K = Q(i), the ring of integers Z[i], and
the full group G = SL2(Z[i]).

This group is generated by

S =

Q

ca
0 ≠1

1 0

R

db , T =

Q

ca
1 1

0 1

R

db , U =

Q

ca
1 i

0 1

R

db , R =

Q

ca
0 i

i 0

R

db ,

with the relations TU = UT, S2
= R2

= (RS)
2

= (URS)
2

= (TS)
3

= (UR)
3

= 1.
For the full group SL2(OK), the fundamental domain FK is shown in Figure 3.1. For

more details and for different imaginary quadratic fields, the fundamental domain FK

is defined in [7, §2.3].
Consider three points on the unit sphere P1 =

1
1

2
, 0, 1

2

Ô
3

2
, P2 =

1
1

2
, 1

2
, 1

2

Ô
2

2
, and

P3 =

1
0, 1

2
, 1

2

Ô
3

2
. A fundamental domain for the action of G is given by vertices at

0, Œ, and P1, P2, and P3.
Let � be a finite index subgroup of SL2(OK). The fundamental domain FK for � is

obtained by taking a union of fundamental domains for cosets of � within SL2(OK).
The stabilizer of P2 is �P2 = ÈTS, URÍ, which is of order 12 (explanation given in [7,
p.59]).

Choose a fundamental domain FK for the action of � on H3 with {0, jŒ} as one of
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its edges. Let �P be the stabilizer of a vertex P of FK . Form a larger basic polyhedron
by taking the union of the translates of FK by a finite subgroup �P .

Call the union of the 12 translates of FK by �P , the basic polyhedron, denoted B. It
is a hyperbolic octahedron, and its 12 edges are precisely the images of {0, Œ} under
the action of �P .

We refer to [7, page 59] for the diagram depicting the domain FK and the octahe-
dron B. Note that B has a triangular face whose edges are the transforms of {0, Œ}
under I, TS, and (TS)

2, while the images of {0, Œ} under UR, (UR)
2 are {Œ, i} and

{i, 0} respectively.
For more details on the fundamental domain and basic polyhedron, we refer to the

work of Cremona [7, §4.1].
The boundary of the fundamental domain, denoted as ˆFK , is a combination of six

faces given by B1 = {0, P1, Œ}, B2 = {0, P3, Œ}, B3 = {P2, P3, Œ}, B4 = {P1, P2, Œ},
B5 = {0, P1, P2}, and B6 = {0, P2, P3}. Integration over the boundary of the funda-
mental domain is the sum of integrations over each face.

The fundamental domain FK and the boundary of the fundamental domain ˆFK

will be used in calculating the inner product formula given in §5.3.

3.4 Differentials on H3

The space of real 1-differential forms on H3 is given by the basis

— = (—0, —1, —2) = (≠dz

t
,
dt

t
,
dz̄

t
),

and denote the pullback of each —i to GL2(C) by Êi.
Here, — is the standard basis of H3, and we also refer to — as the standard differen-

tial form.
A differential form on GL2(C) is the inverse image of a differential form on H3 if

and only if it can be written as Ï0Ê0 + Ï1Ê1 + Ï2Ê2. Here, � = (Ï0, Ï1, Ï2) satisfies
�(gkz) = �(g)fl(kz) for every g œ GL2(C), k œ SU2(C), z œ Z, and fl is a fixed repre-
sentation of SU2(C).

Remark 3.4.1. The space �
1
(H3;C) is a 3-dimensional CŒ

(H3)-module spanned by the ele-
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ments dz/t, dt/t, and dz̄/t.

3.4.1 The Hodge star operator and harmonicity

Let X be a Riemannian manifold of dimension n. There is a linear operator

ı : �
r
(X;C) ≠æ �

n≠r
(X;C)

on differential forms with the following properties. If – and — are r-forms, then

(i) ı ı – = (≠1)
r(n+1)–,

(ii) – · ı— = — · ı–,

(iii) – · ı– = fdx1 · dx2 · . . . · dxn, where f > 0 and {dx1, . . . , dxn} is a positively
orientated orthogonal basis for �

n
(X;C).

Definition 3.4.2. We define a Hermitian inner product on �
n
(X;C) as

È–, —Í :=

⁄

X
– · ı—.

The standard differentiation operator is defined as

d : �
r
(X;C) ≠æ �

r+1
(X;C),

is called the exterior derivative. Then, we define a map

” : �
r+1

(X;C) ≠æ �
r
(X;C)

by using
” := (≠1)

n(r+1)+1 ı d ı .

It can be verified that ” acts as the adjoint of d with respect to the Hermitian inner
product.

Definition 3.4.3. The Laplace operator is defined to be

� = d” + ”d.
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Definition 3.4.4. A differential form Ê is said to be harmonic if �Ê = 0.

Proposition 3.4.5. A differential form Ê is harmonic if and only if it is closed and co-closed,
that is, if dÊ = d(ıÊ) = 0.

Proof. We know that d and ” are adjoint to each other under the Hermitian inner prod-
uct. We see that

È�Ê, ÊÍ = ÈdÊ, dÊÍ + È”Ê, ”ÊÍ = ÈÊ, �ÊÍ.

This completes the proof as ”Ê = 0 if and only if d(ıÊ) = 0.

Let F = (F0, F1, F2) be a function on H3, and F · — = F0—0 + F1—1 + F2—2 a 1-form
on H3. Recall that ı is the Hodge star operator for differential forms. By definition, we
have

ı(F · —) = ≠1

2
iF̄1(—0 · —2) + iF̄0(—1 · —2) + iF̄2(—0 · —1).

Observe that
d

!
ı(F · —)

"
= iHF —0 · —1 · —2

with HF = t
1

ˆF̄1
ˆz +

1

2

ˆF̄0
ˆt +

ˆF̄2
ˆz̄

2
.

Remark 3.4.6. The differential form F · — is harmonic if and only if F · — and ı(F · —) are
closed forms.

Definition 3.4.7. We say that F is slowly increasing if ÷ N Ø 0 such that

F
3

Q

ca
x 0

0 1

R

db (z, t)
4

= O(|x|N), x œ R

as x æ Œ uniformly over compact sets in H3.

Definition 3.4.8 (Harmonic function). A function F : H3 æ C
3 is said to be harmonic

if

(i) F · — is a harmonic differential form,

(ii) F is slowly increasing.
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3.5 Bianchi modular forms

3.5.1 Scalar valued Bianchi modular forms

We now define scalar-valued Bianchi modular form of weight 2. For, we wish to define a
slashing operator such that F · — is an invariant differential under the action of a finite
index subgroup � of SL2(OK).

The space of left-invariant differential forms is now 3-dimensional, with a basis

— = (—0, —1, —2) =

A

≠dz

t
,
dt

t
,
dz̄

t

B

.

Calculating the Jacobian matrix of the transformation, we find that

d (zÕ, tÕ, z̄Õ
)

d(z, t, z̄)
=

1
!
|r|2 + |s|2

"
2

Q

cccca

r2 ≠2rs s2

rs̄ (rr̄ ≠ ss̄) ≠r̄s

s̄2
2rs r̄2

R

ddddb

where “ =

Q

ca
a b

c d

R

db œ �, r = cz + d and s = ct. In terms of the basis — for differentials,

this becomes

—Õ
=

1
|r|2 + |s|2

2≠1

Q

cccca

r2 ≠2rs s2

rs̄ (rr̄ ≠ ss̄) ≠r̄s

s̄2
2rs r̄2

R

ddddb
—.

The complex modular group SL2(C) acts on the space of differential 1-forms as
—Õ

= J(“; (z, t))— with

J(“; (z, t)) =
1

!
|r|2 + |s|2

"
2

Q

cccca

r2 ≠2rs s2

rs̄ (rr̄ ≠ ss̄) ≠r̄s

s̄2
2rs r̄2

R

ddddb
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where “ =

Q

ca
a b

c d

R

db, r = cz + d and s = c̄t.

Let F : H3 æ C
3 be a harmonic function. Define the slash operator

(F |“)(z, t) = F (“(z, t)) J(“; (z, t)).

Definition 3.5.1 (Bianchi modular form). Let K be an imaginary quadratic field with
class number 1 and the ring of integers OK . Let � be a subgroup of SL2(OK) of finite
index. Then, Bianchi modular form of weight 2 for � is a function F : H3 æ C

3 satisfying

1. F is a harmonic function,

2. F |“= F for all “ œ �.

We denote the set of all Bianchi modular forms of weight 2 for � by M2(�).

Definition 3.5.2 (Bianchi cusp form). If F œ M2(�) satisfies the additional properties
that

s

C/OK

F |“ (z, t)dz = 0 for every “ œ SL2(OK), we call it a Bianchi cusp form.



28 3.5. Bianchi modular forms

3.5.2 Vector valued Bianchi modular forms

For “ =

Q

ca
a b

c d

R

db œ SL2(C) and u = z + jt œ H3, let us define the multiplier system

j(“, u) =

Q

ca
cz + d ≠ct

c̄t cz + t

R

db .

Given a function F : H3 æ C
k+1 and “ œ SL2(C), we define the slash operator

1
F |“

2
(u) := Sym

k
1
j(“, u)

≠1
2

F (“u).

We now define vector-valued Bianchi modular form of weight 2. Let F : H3 æ C
3 be

a harmonic function. Define the slash operator

1
F |“

2
(u) := Sym

2
1
j(“, u)

≠1
2

F (“u),

where

j(“, u) =

Q

ca
cz + d ≠ct

c̄t cz + t

R

db , “ =

Q

ca
a b

c d

R

db ,

and Sym
2 is the 2-nd symmetric power of the standard representation of SL2(C) on C

2.

Denote by S2(�) the space of all Bianchi cusp forms of weight 2 for � and the set of
cusps of � (for both Satake and Bailey-Borel compactification) can be identified with
the orbit space �\P1

(K).

Since we have F : H3 æ C
3 and

Sym
2

1
j(“, u)

≠1
2

=
1

|r|2 + |s|2

Q

cccca

r2
2rs̄ s̄2

≠rs |r|2 ≠ |s|2 r̄s̄

s2 ≠2r̄s r̄2

R

ddddb
,
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it follows that

(F |“)(u) =
1

|r|2 + |s|2

Q

cccca

r2
2rs̄ s̄2

≠rs |r|2 ≠ |s|2 r̄s̄

s2 ≠2r̄s r̄2

R

ddddb
F (“u)

where “ =

Q

ca
a b

c d

R

db, r = cz + d and s = c̄t. The 1-forms —0 := ≠dz
t , —1 :=

dt
t , —2 :=

dz̄
t

form a basis of differential 1-forms on H3.
The modular group SL2(C) acts on the space of differential 1 -forms as

“ · t
(—0, —1, —2) = Sym

2
(j(“, z))

t
(—0, —1, —2) .

Here Sym
2 is the 2-nd symmetric power representation of SL2(C) on C

2 and t
(—0, —1, —2)

is transpose of (—0, —1, —2).
With both the definitions of weights, the differential F · — is � invariant. We can

also generalize vector-valued Bianchi modular form to arbitrary weight k by changing
Sym

2 to Sym
k.

Definition 3.5.3 (Bianchi modular form). Let K be an imaginary quadratic field with
class number 1 and the ring of integers OK . Let � be a subgroup of SL2(OK) of finite
index. Then, Bianchi modular form of weight 2 for � is a function F : H3 æ C

3 satisfying

1. F is a harmonic function,

2. F |“= F for all “ œ �.

We denote the set of all Bianchi modular forms of weight 2 by M2(�).

Combining both the definitions of vector-valued and scalar-valued Bianchi modu-
lar forms, we can say: A Bianchi modular form of weight 2 for a congruence subgroup
� Æ SL2(OK) is a real analytic, �-invariant function F : H3 æ C

3. In other words, the
function F satisfies the invariance property F |“ = F for all “ œ �.

Definition 3.5.4 (Bianchi cusp form). If F œ M2(�) satisfies the additional properties
that

s

C/OK

F |“ (z, t)dz = 0 for every “ œ SL2(OK), we call it a Bianchi cusp form.
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The weights of Bianchi modular forms can be scalar-valued [7] or, more generally,
vector-valued [40] (see also [14]). We can also define Bianchi modular forms using the
Adelic setting (i.e., as Automorphic forms). For the definition of Automorphic forms,
we refer to the work of Ghate [14].

The last condition is equivalent to stating that the constant coefficient in the
Fourier-Bessel expansion of F |“ is equal to zero for every “ œ SL2(OK). The �-
invariance implies that F has a Fourier-Bessel expansion of the form

F (z, t) =
ÿ

–œOK ,– ”=0

c(–)t2K
A

4fi|–|tÔ
dK

B

Â

A
–zÔ
dK

B

,

where Â(z) = e2fi(z+z̄) and K(t) =

1
≠ i

2
K1(t), K0(t),

i
2
K1(t)

2
, with K0 and K1 being the

modified Bessel functions satisfying the differential equation

dKj

dt2
+

1

t

dKj

dt
≠

A

1 +
1

t2j

B

Kj = 0, j = 0, 1,

and decreasing rapidly at infinity.
Let S2(�) be the space of all Bianchi cusp forms of weight 2 for a subgroup � of

SL2(OK). Let F = (F0, F1, F2) and S = (S0, S1, S2) with at least one of them being a
cusp form. According to [25, p. 549], the inner product is given by

ÈF, SÍ =
1

12i[G : �]

⁄

�\H3
F · — · ı(S · —).

The set of all Eisenstein Bianchi modular forms E2(�) is the orthogonal complement
of S2(�) inside M2(�). In other words, we have a decomposition

M2(�) = S2(�) ü E2(�).

If � is a congruence subgroup of the form �1(N), the dimension of E2(�) can be com-
puted using [34, Proposition 4.4].



4
Eisenstein differential forms

Let F be a Bianchi modular form for a subgroup � Æ SL2(OK), i.e., F œ M2(�). We can
attach a differential form to the Bianchi modular form. For example, the differential
form attached to F is denoted as F · —, where — is a standard differential form.

For an explicit exposition of the differential form attached to Bianchi modular
forms, refer to the work of Ghate [14]( also for CM fields in [15]).

A differential form associated with an Eisenstein series E, denoted as E · —, where
— is a standard differential form, can be considered as an Eisenstein differential form.
This product results in a differential form that retains the modular properties of the
original Eisenstein series."

4.1 Eisenstein series of weight 0

Let � Æ SL2(C) be a discrete group and ’ œ P
1
(C) be a cusp of �. If M œ � and

u = z + tj œ H3, then M · u = zM + tMj œ H3.
We have the stabilizer subgroup

�’ := {M œ � : M’ = ’}

and its maximal unipotent subgroup

�
Õ
’ :=

Ó
M œ �’ : tr M = ±2

Ô
.

31
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Let A œ PSL2(C) be such that A’ = Œ. Then

1
A�A≠1

2

Œ
= A�’A≠1,

1
A�A≠1

2Õ

Œ
= A�

Õ
’A≠1.

We consider the series

Eú
A(u, s) :=

ÿ

Mœ(A�A≠1)Œ
\A�A≠1

t1+s
M .

Eisenstein series Eú
A converges absolutely and uniformly on compact subsets of H3 ◊

{s : Re s > 1}, and clearly Eú
A(·, s) is an A�A≠1 -invariant function on H3.

Hence, the Eisenstein series of weight 0 is

EA(u, s) := Eú
A(Au, s) =

ÿ

Mœ�
Õ
’\�

(tAM)
1+s

converges absolutely and uniformly on compact subsets of H3 ◊ {s : Re s > 1} and
is a �≠ invariant function on H3. We call EA the Eisenstein series for cusp ’ ."

4.2 Ito’s differential forms [22] for full group SL2(OK)

Let us denote the elements of H3 as quaternion numbers u = z + jt œ H3, where
j2

= ≠1 and ij = ≠ji. Here, z(u) = z and t(u) = t if u = z + jt. A matrix M =Q

ca
a b

c d

R

db œ SL2(OK) acts on H3 as

Mu := (au + b)(cu + d)
≠1,
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where the right-hand side is taken in the skew field of quaternions. For complex num-

bers (m, n) ”= (0, 0), consider a matrix M =

Q

ca
ú ú
m n

R

db œ SL2(OK) and define

t(m, n; u) = t(Mu),

J(m, n; u) =

A
ˆ

ˆz
,

ˆ

ˆt
,

ˆ

ˆz̄

B

z(Mu).

The Eisenstein series is defined as

E(u; s) :=

Õÿ

m,nœOK

J(m, n; u)t(m, n; u)
s, Re(s) > 1.

It can be analytically continued to the entire s-plane. Here, the prime on the sum-
mation symbol means to omit the meaningless terms, i.e., the term corresponding to
m = n = 0.

Let ÊE be a complex-valued differential form on H3 given by

ÊE = E(u, 0)

Q

cccca

dz

dt

dz̄

R

ddddb
.

According to [22], this differential form is closed and invariant under SL2(OK).

Consider D(OK) := w1w̄2≠w̄1w2 if OK = Zw1+Zw2 with Im
!
w1/w2

"
> 0, and O

Õ
K =

D(OK)
≠1
OK . The indefinite integral of ÊE can be expressed as a Fourier expansion.

These integrals produce periods of the function

ÊH(u) = G2(0)(z ≠ z̄) ≠ 4fi

D(OK)
t

Õÿ

mœOK ,nœO
Õ
K

m̄n

|mn|K1(4fi|mn|t)e(mnz).

For each non-negative integer k, Ito’s Eisenstein series is defined by generalized
Hecke’s summation tricks

Gk(x) :=

Õÿ

wœOK

(w + x)
≠k|w + x|≠s

------
s=0

.
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Here, the value at s = 0 is understood in the sense of analytic continuation. The prime
in the summation symbol omits the terms corresponding to m = n = 0. Furthermore,
e(z) = exp(2fii(z + z̄)) and K1(t) denotes the modified Bessel function of the second
kind.

Recall the following important theorem regarding the periods of the Eisenstein se-
ries in the context of Bianchi modular forms. The function ÊH is harmonic with respect
to the Riemannian structure of H3 given by the SL2(C)-invariant Riemannian metric
1

t2

1
dx2

+ dy2
+ dt2

2
(u = z + jt œ H3, z = x + iy).

Theorem 4.2.1. Define the map � : SL2(OK) æ C as

�

Q

ca
a b

c d

R

db =

Y
__]

__[

G2(0)I(
a+d

c ) ≠ D(a, c), c ”= 0,

G2(0)I
1

b
d

2
, c = 0

with I(z) := z ≠ z̄ and

D(a, c) :=
1

c

ÿ

rœK/cK

G1

3
ar

c

4
G1

3
r

c

4
.

Then
ÊH(Au) = ÊH(u) + �(A)

for every A in SL2(OK).

Let ÊE be the complex-valued differential form defined as

ÊE = E(u, 0)

Q

cccca

dz

dt

dz̄

R

ddddb
.

To compute the ı operator of ÊE , we apply the operator ı as defined in Section 3.4 to
ÊE .

Until now, we have considered Ito’s differential forms for the full group SL2(OK).
Now, we are generalizing Ito’s differential forms for subgroups of SL2(OK).
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4.3 Generalization of Ito’s differential forms [22] for
subgroups of SL2(OK)

Let � be a subgroup of finite index in SL2(OK) and {Ÿ1, . . . , Ÿh} be a complete set of
representatives of the cusps of �. For each i, let �i denote the stabilizer of Ÿi in �, and
�

Õ
i its maximal unipotent subgroup. Also, let Ÿi be a cusp of � such that Ÿi = ‡≠1

i Œ.
Define �i as the stabilizer of Ÿi in �, and �

Õ
i as its maximal unipotent subgroup

�
Õ
i = {M œ � : MŸi = Ÿi, M = I or parabolic}.

We can express ‡i�i‡
≠1

i as

‡i�i‡
≠1

i =

;
±

Q

ca
1 –

0 1

R

db : – œ Li

<
,

where Li is a lattice in C.

Now, we define the weight-zero Eisenstein series for � at the cusp Ÿi as

Ei(u, s) =
ÿ

‡œ�
Õ
i\�

t(‡i‡(u))
1+s.

Here, ‡i œ � such that ‡i(Ÿi) = Œ and t(u) denotes the t component of u = (z, t).
The summation over �

Õ
i\� can be replaced with �i\� by dividing by the finite index

[�
Õ
i : �i]. According to [13], this function satisfies the following properties

1. It is invariant under �, i.e., Ei(“(u), s) = Ei(u, s) for all “ œ �.

2. It satisfies the differential equation �Ei(u, s) = (s2 ≠ 1)Ei(u, s), where � is the
Laplace operator on H3.

For u = z + tj œ H3, and z = x + iy œ C, � represents the Laplace operator on
H3 given by

� = t2

A
ˆ2

ˆx2
+

ˆ2

ˆy2
+

ˆ2

ˆt2

B

≠ t
ˆ

ˆt
.
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3. It has a Fourier expansion of the form

Ei(‡
≠1

j u, s) = ”ija0t
1+s

+ b0t
1≠s

+
ÿ

0 ”=–œLÕ
i

c(–, s)tKs(2fi|–|t)e2fiiÈ–,zÍ,

where LÕ
i denotes the dual lattice of Li and È·, ·Í is the inner product on C. The co-

efficients a0, b0 are independent of i and j, and ”ij is the Kronecker delta function.
Additionally, Ks(t) denotes the modified Bessel function of the second kind.

4. It has a meromorphic continuation to s œ C, without any pole in the half plane
Re(s) > 0 except for possibly finitely many simple poles in (0, 1]. It has a simple
pole at s = 1 with residue equal to |Li|vol(�)

≠1. Here |Li| is the Euclidean area
of a fundamental parallelogram of Li, and vol(�) is the covolume of �.

The last condition can be expressed as

lim
sæ1

(s ≠ 1)Ei(u, s) = C

where C is a constant independent of i.

4.3.1 Eisenstein differential forms of weight 2

Let
J(‡; u) =

3
ˆ
ˆz , ˆ

ˆt ,
ˆ
ˆz̄

4
z(‡(u)), u œ H3, ‡ œ �.

Define Eisenstein series of the weight 2 for � at the cusp Ÿi as

Gi(u, s) =
ÿ

‡œ�
Õ
i\�

J(‡; u)t(‡i‡(u))
1+s,

which converges absolutely for Re(s) large enough. If Ÿj is another cusp of �, the
function u ‘æ Gi(‡ju, s) is invariant under the action of the lattice Lj corresponding to
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‡j�
Õ
j‡

≠1

j . Define the Eisenstein differential to be the complex-valued differential form

Êi(s) = Gi(u, s)

Q

cccca

dz

dt

dz̄

R

ddddb

for Re(s) large enough.

Proposition 4.3.1. The differential form Êi(s) is invariant with respect to �, has meromorphic
continuation to s œ C and is closed at s = 0.

Proof. Let Ï“ be the automorphism u ‘æ “(u) of H3. From the relation

J(‡; “(u))J(“, u) = J(‡“; u), “ œ �,

where J(“, u) denotes the Jacobian matrix

J(“, u) =
ˆ(z(“u), t(“u), z̄(“u))

ˆ(z, t, z̄)
.

It follows that
Gi(“(u), s)J(“, u) = Gi(u, s).

Then

Ïú
“Êi(s) = Gi(“(u), s)—(“(u))

= Gi(u, s)J(“, u)
≠1J(“, u)—(u)

= Êi(s),

where we have used the transformation law, hence Êi(s) is invariant under �.

Writing component-wise Gi = (G(1)

i , G(2)

i , G(3)

i ) and J = (J (1), J (2), J (2)
), for each

1 Æ j Æ 3 we have that

G(j)

i (u, s) =
ÿ

‡œ�
Õ
i\�

J (j)
(‡; u)t(‡i‡(u))

1+s.
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More explicitly, if ‡ = (
ú ú
m n ), then the formulas

t(‡(u)) = (|mz + n|2 + |mt|2)≠1t

J(‡; u) = (|mz + n|2 + |mt|2)≠2
((mz + n)

2, 2(mz + n)m̄t, ≠(m̄t)2
),

imply that

J(‡; u) = t(‡(u))
2

3
(mz + n)

2

t2
,
2(mz + n)m̄

t
, ≠m̄2

4

and so, for t ∫ 0 we have

G(j)

i (u, s) π
ÿ

‡œ�
Õ
i\�

t(‡i‡(u))
3+s

t3≠j
=

1

t3≠j
Ei(u, s + 2)

for each 1 Æ j Æ 3 with the implied constant depending on u. Recall that the right-
hand side is a scalar-valued Eisenstein series of weight zero for � at cusp Ÿi.1 It follows
then from Corollary 3.2.4 of [13] that G(j)

A has polynomial growth at all cusps Ÿn of �

in the sense that
G(j)

i (‡≠1

n u, s) = O(tK
)

for some constant K > 0 uniformly with respect to u. Moreover, by the same argument
as Proposition 3.2.5 of [13] we see that each G(j)

A (u, s) satisfies the differential equation

�G(j)

i (u, s) = (s2 ≠ 1)G(j)

i (u, s)

and are thus real analytic functions of u, holomorphic in s for Re(s) large enough.
Then from the theory of Eisenstein series [13, §6.1] it follows that each G(j)

i has mero-
morphic continuation to s œ C and in particular holomorphic at s = 0, hence so is
Êi(s). Then by a well-known result of Harder the differential form Êi(0) is closed [19,
§4.2] (see also [22, §2]).

Corollary 4.3.2. There exists a function Hi(u, s) such that dHi(u, 0) = Êi(0) for each i. Also,
one has �Hi(u, 0) = 0.

Proof. The existence of Hi(u, s) is clear. The second assertion follows from the Bessel

1This is denoted EA(P, s) in [13].
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differential equation (3.5.2).

Note that 0 = �Hi(u, 0) = ıd ı dHi(u, 0) = ıd ı dÊi(0). If we express the Fourier
expansion of Hi(u, s) as simply

a0t
1+s

+ b0t
1≠s

+
ÿ

0 ”=–œLÕ
c(–, s)tKs(2fi|–|t)e2fiiÈ–,zÍ, u = (z, t)

and for s = 0, the term b0t1≠s must be replaced with b0t log t [13, §3]. Then, by using
the relations

d

dr
rsKs(r) = ≠rsKs≠1(r),

for Re(s) > ≠1

2
, if we set c(–) = c(–, 0), we can express the Fourier coefficients of

Gi(u, 0) as simply

c1(–) = c(–)
ˆ

ˆz
e2fiiÈ–,zÍ

= 2fiic(–)
ˆ

ˆz
È–, zÍ,

c2(–) = c(–)
ˆ

ˆt
tKs(2fi|–|t) = 2fi|–|c(–),

c3(–) = c(–)
ˆ

ˆz̄
e2fiiÈ–,zÍ

= 2fiic(–)
ˆ

ˆz̄
È–, zÍ.

We refer to the recent paper of Miao-Nguyen-Wong [27] about explicit Hi.

We can compute d (ıÊi) using the formula given in § 3.4 and considering the cusp
Ÿi = Œ. In this case

(F0, F1, F2) = (G(1)

i , G(2)

i , G(3)

i ).

We have
d

!
ı(F · —)

"
= iHF —0 · —1 · —2

with the function HF given by

HF = t

Q

ca
ˆG(2)

i

ˆz
+

1

2

ˆG(1)

i

ˆt
+

ˆG(3)

i

ˆz

R

db .

We expect that
s

�\H3

d
!
ı(F · —)

"
can be computed using Rankin-Selberg "unfolding".
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4.4 Hida’s differential forms

Consider Hida’s differential form at the cusp Ÿ = Œ [21, §10]

ÊE := ÊŸ(u; s) =
ÿ

“œ�Œ\�

ts · e1 · fl2(j(“, u)
t
)

≠1

(|cz + d|2 + |ct|2)s
du

where

• e1 = (1, 0, 0) is the unit vector,

• du = (dz, ≠dt, ≠dz̄) is a differential 1 form,

• fl2 = Sym
2
(C

2
) is the second symmetric tensor representation of the standard

representation of SL2(C) on C
2,

• for “ =

Q

ca
a b

c d

R

db œ �›\� and u =

Q

ca
z ≠t

t z̄

R

db œ H3, the modular factor is defined

by

j(“; u) =

Q

ca
cz + d ≠ct

ct cz + d

R

db .

In particular, Hida is using Sym
2
(j(“, u)) rather than Sym

2
(j(“, u)

≠1
). By applying the

Hodge ı operator (cf. § 3.4) to the differential form ÊE , we can compute the ıÊE for
Hida’s Eisenstein differential form at s = 0.

In this chapter, we have discussed Ito’s differential forms of weight 2 for the
full group SL2(OK) and generalized these to Ito’s differential forms for subgroups
of SL2(OK). We have also examined Hida’s differential forms. Both Ito’s and Hida’s
differential forms are examples of Eisenstein differential forms.

In the formula given in §5.4, we are discussing the differential form E · —, denoted
by the differential form ÊE , and we are integrating ıÊE . Thus, we can consider ÊE as
Ito’s and Hida’s differential form.

To compute the ı operator of ÊE , we apply the operator ı as defined in Section 3.4

to ÊE .
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Modular symbols

5.1 Classical modular symbols

"Let � Æ SL2(Z) be a subgroup of finite index. The topological space X(�) = �\H2

has a natural structure of a smooth, compact complex space of topological dimen-
sion 2. Any smooth path from a to b in H2 projects to a closed path in the quotient
space X(�) = �\H2, and its homology class in H1(X(�);Z) solely depends on a and
b, independent of the chosen path due to the simply connectedness of H2. We denote
this homology class by {a, b}�, or simply {a, b} when the group � is evident from the
context.

Suppose that a and b are cusps that are equivalent to mod �. We can use them to
construct a homology class. We take any reasonable oriented path between a and b

on H2, say the geodesic directed from a to b, and then take the image mod �. Since
a and b are equivalent mod �, the image becomes a closed oriented 1-curve on X(�),
i.e. a 1-cycle. Thus we get a class in H1

!
X(�);Z

"
. Let us denote this class by {a, b}.

Note that this notation looks a lot like the set {a, b}, but it is not. It really represents an
ordered pair since if we change the roles of a and b, we reverse the orientation on the
cycle and thus get the opposite class {b, a} = ≠{a, b}. This can be confusing, but the
notation is traditional.

Now consider the pairing S2(�) ◊ H1

!
X(�);Z

"
æ C given by integration

41
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(f, {a, b}) ‘≠æ 2fii
⁄ b

a
f(z)dz := È{a, b}, fÍ

where S2(�) is the space of all classical cusp forms of weight 2.
This is independent of the path between a and b since f is holomorphic (essentially,

this boils down to Cauchy’s theorem from complex analysis). Note also that f has to
be a cusp form for the integral to make sense. If f is nonvanishing at the cusp, say
when f is an Eisenstein series, and the integral diverges. We can extend from integral
homology to real homology to get a pairing

S2(�) ◊ H1

!
X(�);R

"
æ C.

This is done in an obvious way. First choose an integral basis of H1

!
X(�);Z

"
. Any

class in H1

!
X(�);R

"
can be written as a linear combination of this basis with real

coefficients, so we can extend the pairing using linearity.

Definition 5.1.1. The modular symbol attached to the pair of cusps a, b is the real
homology class {a, b} œ H1

!
X(�);R

"
.

Here are some basic properties of modular symbols

1. {a, b} = ≠{b, a}, (2-term relation)

2. {a, b} = {a, c} + {c, b}, (3-term relation)

3. {ga, gb} = {a, b} for all g œ �, ( �-action)

4. {a, ga} œ H1

!
X(�);Z

"
,

5. {a, ga} = {b, gb}.

These are all easy to verify. The 2-term relation just says that reversing the limits of
integration introduces a minus sign. The 3-term relation says that we can divide an
integral into two integrals by introducing a common new endpoint. Perhaps the last
is the most complicated. It can be proved by considering the square in Figure 5.1.

Properties (4) and (5) imply that we have constructed a map

� ≠æ H1

!
X(�);Z

"

g ‘≠æ {a, ga}
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— g—

– g–

Figure 5.1: {–, g–} = {—, g—}

that is independent of a. By the way, our construction of modular symbols means
that all we can say a priori is that {a, b} œ H1

!
X(�);R

"
, i.e., {a, b} is a real homology

class. However, the theorem of Manin-Drinfeld tells us that this class often lies in the
rational homology H1

!
X(�);Q

"
= H1

!
X(�);Z

"
¢ Q.

Now recall that, the map „ : H2 æ X(�) is the natural quotient map.

Proposition 5.1.2 (Manin). Let a œ H2. The map

� æ H1

!
X(�);Z

"

is defined as
g ‘≠æ {a, ga}

is a surjective group homomorphism that does not depend on the choice of a. This kernel of
this homomorphism is generated together by the commutators, the elliptic elements, and the
parabolic elements of the group �. "

Proposition 5.1.3 (Distinguished classes). Let J = �\SL2(Z) be the set of right cosets. We
define the map

› : J æ H1

!
X(�);R

"

as follows: if j œ J and g is any representative of the class j, then

›(j) = {g(0), g(iŒ)}.

Obviously, this class does not depend on the choice of the representative g. We have thereby
defined a finite family of homology classes ›(J), and we shall call its elements distinguished
classes.
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Theorem 5.1.4 (Manin-Drinfeld). If � is a congruence subgroup, and a and b are cusps of
� then {a, b} œ H1(X(�);Q).

Let M2(�) denote the Q-vector space generated by the {a, b}, modulo the 2-term
and 3-term relations and �-action.

Theorem 5.1.5 (Manin). We have an isomorphism

M2(�)
≥≠æ H1

!
X(�), ˆX(�);Q

"
.

Let X0(11) = �0(11)\H2. For example - the modular curve X0(11) has genus one
and has two cusps. Thus X0(11) is topologically a torus, and the usual homology
group H1

!
X0(11);Q

"
has dimension 2.

We claim the relative homology H1

!
X0(11), ˆX0(11);Q

"
is 3-dimensional. Indeed,

we still have the two closed 1-cycles, giving our two dimensions from before, and now
there is an additional class, which can be represented by a path from one cusp to the
other.

Let B2(�) be the Q-vector space generated by the cusps of X(�), equipped with the
obvious �-action. Define

ˆ : M2(�) ≠æ B2(�)”

by
{a, b} ‘≠æ b ≠ a.

Put S2(�) = ker(ˆ). Classes in S2(�) are called cuspidal modular symbols. Manin
proved that cuspidal modular symbols exactly capture the homology of X(�).

Theorem 5.1.6 (Manin). We have an isomorphism

S2(�)
≥≠æ H1

!
X(�);Q

"
.

For more details, we refer to the notes of Paul E. Gunnells [17].
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5.2 Modular symbols over imaginary quadratic fields

The modular symbols over imaginary quadratic fields, defined by John Cremona in
[7], are also called Cremona symbols.

Let � Æ SL2(OK) be a subgroup of finite index. Let a and b represent two points
within the extended upper half-space H3 = H3 fiK fi{Œ}, which are equivalent under
the action of �. This equivalence means there exists “ œ � such that “(a) = b. Con-
sequently, any smooth path from a to b in H3 projects to a closed path in the quotient
space XBB

�
= �\H3, and its homology class in H1(XBB

�
;Z) solely depends on a and

b, independent of the chosen path due to the simply connectedness of H3. We denote
this homology class by {a, b}�, or simply {a, b} when the group � is evident from the
context.

Extending this definition to points a and b not equivalent under �, we denote their
homology class by {a, b} when identifying homology classes with functionals on the
space of differentials.

The real homology class identified with the functional Ê æ
s B

A ÏúÊ, where Ê is a
differential on XBB

�
and Ï : H3 æ XBB

�
is the natural projection.

The modular symbols provide a concrete approach to the group H1(XBB
�

;Z).

Modular symbols {a, b} have the following properties, whose proof is immediate

(i) {a, a} = 0,

(ii) {a, b} + {b, a} = 0,

(iii) {a, b} + {b, c} + {c, a} = 0,

(iv) {“a, “b} = {a, b} if “ œ �,

(v) {a, “a} = {b, “b} if “ œ �, for any a and b in H3.

Proof: {a, “a} = {a, b} + {b, “b} + {“b, “a}

= {a, b} + {b, “b} + {b, a}
= {b, “b}.
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(vi) {a, “a} œ H1

1
XBB

�
;Z

2
if “ œ �.

Any element of H1

1
XBB

�
;Z

2
can in fact be written as {a, “a} for some “ œ �, and

a œ P
1
(K) = K fi {Œ}.

5.3 Inner product formula for Bianchi modular forms

We assume in this section that K is an imaginary quadratic field of class number one
that is also an Euclidean domain. Recall the fundamental domains described in [13,
Chapter 7], [1, Chapter 3], [7].

5.3.1 Quasi-periods

Definition 5.3.1 (Quasi-periods of Bianchi modular forms). Choose an edge of the
Fundamental domain connecting Œ to two different points P1 and P2 of the floor of
the Bianchi domain [1, p. 70]. Now write {Pi, jŒ} as the translate hi{0, Œ} with hi œ �

as in [7]. This is very crucial for our computation and the reason we assume that K

is an Euclidean domain. For a Bianchi modular form F = (F0, F1, F2) : H3 æ C
3 and

u := z + tj œ H3, For example choose the point P1 = (
1

2
, 0,

Ô
3

2
) for K = Q(i). We

integrate over simply connected domain H3. When integrating with respect to dz and
dz̄, we consider the t component as constant. Similarly, when integrating with respect
to dt, we take z component as constant, and then we obtain z =

1

2
, z̄ =

1

2
and t =

Ô
3

2

fiF0(z) :=

⁄ z

1
2

F0(z
Õ, t)

≠dzÕ

t
for arbitrary variable point (zÕ, t) œ H3,

fiF1(t) :=

⁄ t

Ô
3

2

F1(z, tÕ
)
dtÕ

tÕ for arbitrary variable point (z, tÕ
) œ H3,

fiF2(z̄) :=

⁄ z̄

1
2

F2(z
Õ, t)

dz̄Õ

t
for arbitrary variable point (zÕ, t) œ H3,

and
fiF := fiF0(z) + fiF1(t) + fiF2(z̄).
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Then, we have
dfiF = dfiF0(z) + dfiF1(t) + dfiF2(z̄).

The fiFi are the quasi-periods of Bianchi modular forms.
We have chosen zÕ and tÕ arbitrarily. For the sake of better notation, we replace zÕ

with z and tÕ with t, i.e., u = (z, t) œ H3, then

dfiF = F0(u)
≠dz

t
+ F1(u)

dt

t
+ F2(u)

dz̄

t

with P1, P2, and P3 are points in the fundamental domain defined in § 3.3.

Choose functions fiFi such that we have

d(fiFi) = Fi(u)—i.

We prove the following formula that works for any arbitrary subgroup � Æ G :=

SL2(Z[i]) of finite index. This is a generalization of the inner product formula of
Banerjee-Merel [3] for imaginary quadratic fields.

Proposition 5.3.2. Let F, S œ M2(�) be two Bianchi modular forms, with at least one of them
being a cusp form with F = (F0, F1, F2) and S = (S0, S1, S2). Consider the function

H := iF0S0 +
i

2
F1S1 + iF2S2.

The inner product of these two modular forms is given by ÈF, SÍ = I with

I =
1

12[G : �]

ÿ

gœ�\G

gŒ⁄

g0

⁄

ˆFK

H(—0 · —1 · —2)

where ˆFK is the boundary of the fundamental domain FK .

Proof. By § 3.5, the inner product is given by

ÈF, SÍ :=
1

12i[G : �]

⁄

�\H3

F · — · ı(S · —)

=
1

12i[G : �]

ÿ

gœ�\G

⁄

FK

F |g · — · ı(S|g · —).
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In the above equations, FK is the fundamental domain as in [7, diagram 4.2] with
boundary ˆFK . Integration over the boundary of the fundamental domain ˆFK , as
defined in § 3.3. Now write {P1, jŒ} as the translate h{0, Œ} with h œ � as in [1].

Consider the integral ⁄

FK

F |g · — · ı(S|g · —).

Choose a quasi-period such that d(fiF ) = F · —.

Note that d(fiF · (ı(S · —)) = d(fiF ) · ı(S · —) + fiF · d(ı(S · —)). We know that
d(ı(S · —)) = 0 because S is a harmonic function. Observe that

d(fiF · (ı(S.—))) = d(fiF ) · ı(S · —) + fiF · d(ı(S · —)),

d(fiF · (ı(S.—))) = d(fiF ) · ı(S · —) + 0,

d(fiF · (ı(S.—))) = F · — · ı(S · —).

By Stokes theorem, we have
⁄

�\H3

F · — · ı(S · —) =

⁄

�\H3

d
!
fiF · (ı(S · —))

"

=
ÿ

gœ�\G

⁄

FK

d
1
fiF|g

· (ı(S|g · —))

2

=
ÿ

gœ�\G

⁄

ˆFK

fiF|g
· (ı(S|g · —)).

Hence, we deduce that
ÿ

gœ�\G

Q

ca
⁄

ˆFK

fiF|g
· (ı(S|g · —)

R

db .

This is equal to
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ÿ

gœ�\G

Q

a
⁄

ˆFK

fiF|g
·

1
≠ 1

2
iS̄1|g(—0 · —2) + iS̄0|g(—1 · —2) + iS̄2|g(—0 · —1)

2
R

b

=
ÿ

gœ�\G

Q

a
⁄

ˆFK

≠1

2
ifiF1|g

S̄1|g(—0 · —2) + ifiF0|g
S̄0|g(—1 · —2) + ifiF2|g

S̄2|g(—0 · —1)

R

b

=
ÿ

gœ�\G

Q

a ≠ 1

2
i

⁄ Œ
Ô

3
2

F1|g—1

⁄

ˆFK

S̄1|g(—0 · —2) + i

Œ⁄

1
2

F0|g—0

⁄

ˆFK

S̄0|g(—1 · —2)

+ i
⁄ Œ

1
2

F2|g—2

⁄

ˆFK

S̄2|g(—0 · —1)

R

b

=
ÿ

gœ�\G

Q

a ≠ 1

2
i

⁄ Œ

0

F1|gh
—1

⁄

ˆFK

S̄1|g(—0 · —2) + i
⁄ Œ

0

F0|gh
—0

⁄

ˆFK

S̄0|g(—1 · —2)

+ i
⁄ Œ

0

F2|gh
—2

⁄

ˆFK

S̄2|g(—0 · —1)

R

b.

We know that {P1, Œ} is the translation of {0, Œ} with h œ � as in [1], so we can
change the limit of quasi-periods from {P1, Œ} to {0, Œ} using h. After h acts on the
fundamental domain FK , it will only translate, and h ·FK will remain the fundamental
domain; integration on the boundary will remain the same. As a result, we deduce
that

I =
1

12[G : �]

ÿ

gœ�\G

A

≠1

2

⁄ Œ

0

F1|gh
—1

⁄

ˆFK

S̄1|gh
(—0 · —2) +

⁄ Œ

0

F0|gh
—0

⁄

ˆFK

S̄0|gh
(—1 · —2)

B

+
1

12[G : �]

ÿ

gœ�\G

A⁄ Œ

0

F2|gh
—2

⁄

ˆFK

S̄2|gh
(—0 · —1)

B

.

As g varies in �\G so does gh for a fixed h œ GP1 and we get
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I =
1

12[G : �]

ÿ

gœ�\G

A

≠1

2

⁄ gŒ

g0

F1—1

⁄

ˆFK

S̄1(—0 · —2) +

⁄ gŒ

g0

F0—0

⁄

ˆFK

S̄0(—1 · —2)

B

+
1

12[G : �]

ÿ

gœ�\G

⁄ gŒ

g0

F2—2

⁄

ˆFK

S̄2(—0 · —1).

By collecting the terms with respect to the volume form —0 · —1 · —2, we deduce that

I =
1

12[G : �]

ÿ

gœ�\G

⁄ gŒ

g0

⁄

ˆFK

H(—0 · —1 · —2).

The expression for H is provided as follows

H := iF0S0 +
i

2
F1S1 + iF2S2.

5.4 Eisenstein classes related to modular symbols

Theorem 5.4.1 (Cremona). The Cremona symbols g · {0, Œ} for g œ GL2(OK) generate
H1

1
XBB

�
, ˆXBB

�
;Z

2
.

Definition 5.4.2 (Eisenstein classes). The Eisenstein classes are modular symbols, de-
noted by E, belonging to the homology group H1(XBB

�
, ˆXBB

�
;C), and satisfying the

condition ⁄

E

F · — = 0

for all cusp forms F (refer to Definition 3.5.3 for the definition of cusp forms and — is
defined in §3.4). The Eisenstein cycle is also called an Eisenstein element.

These classes are associated with Eisenstein cycles, which are paths within the Eisen-
stein classes; i.e., the Eisenstein cycles are paths in the Eisenstein classes.

We prove that the boundaries of Eisenstein cycles are non-zero under certain as-
sumptions for a restricted class of subgroups. It is expected that Eisenstein classes
will have certain Hecke equivariant properties for congruence subgroups similar to
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classical situation (see also [2, Theorem 2]).

The main objective of this work is to explicitly determine Eisenstein classes that
serve as generators of the Eisenstein part within the Bianchi modular symbols. In
other words, we aim to explicitly construct an Eisenstein cycle EE corresponding to a
given Eisenstein series E.

Cremona [8] demonstrated (see also [7, Theorem 4.3.2]) that the map ÷ is a surjec-
tive mapping from �\SL2(OK) onto H1(XBB

�
, ˆXBB

�
;Q) defined as

÷ : (g)‘≠æ{g0, gŒ}.

The kernel of this map can be computed as described in the referenced work (as in [7,
Theorem 4.3.2]).

Let ı denote the Hodge star operator acting on differential forms, and let FK be the
fundamental domain for the imaginary number field K with boundary ˆFK [1]. We
define the generalized 2-periods as follows

FE(g) :=

⁄

ˆFK

ı(E · —)[g].

Here, E ·— can be considered as Ito’s and Hida’s differential form defined in Chap-
ter 4.

Let E2(�) be the space of all Eisenstein modular forms of weight 2, as defined in
§ 3.5. For the next result, we assume that K = Q(

Ô
≠d) is an Euclidian domain and

has the class number one. In other words, we assume d œ {1, 2, 3, 7, 11}.

The next theorem is a generalization of the result by Banerjee and Merel. In [2],
they calculated Eisenstein cycles as modular symbols for the classical case.

Theorem 5.4.3. For any imaginary field K with class number one that is also an Euclidean
domain, the modular symbol

EE =
ÿ

gœ�\G

FE(g)÷(g)

is the Eisenstein cycle corresponding to the Eisenstein series E œ E2(�).

Here, “corresponding ” means that for every Eisenstein series, we obtain an Eisen-
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stein cycle (or we can say we obtain the Eisenstein element).

Proof. For an Eisenstein series E œ E2(�), define

FE(g) :=

⁄

ˆFK

ı(E · —)[g].

Using [8, theorem 1], consider the modular symbol EE œ H1(XBB
�

, ˆXBB
�

;C) :=

H1(XBB
�

, ˆXBB
�

;Q) ¢ C as in the statement of the theorem

EE :=
ÿ

gœ�\G

FE(g)÷(g).

We compute the integral as follows

I =
1

12[G : �]

⁄

EE

F · — =
1

12[G : �]

ÿ

gœ�\G

FE(g)

⁄

÷(g)

F · —.

Consider two Bianchi modular forms of weight 2, F = (F0, F1, F2) and E =

(E0, E1, E2) in M2(�). Consider the function

H := iF0E0 +
i

2
F1E1 + iF2E2

as in Proposition 5.3.2.

By Proposition 5.3.2, we know that

ÈF, EÍ =
1

12[G : �]

ÿ

gœ�\G

⁄

FK

H|g—0 · —1 · —2.

We have
⁄

EE

F · — =
ÿ

gœ�\G

FE(g)

⁄

÷(g)

F · —

=
ÿ

gœ�\G

⁄

÷(g)

⁄

ˆFK

H|g—0 · —1 · —2.
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By Proposition 5.3.2, the right-hand side is equal to
⁄

EE

F · — = ≠ 12i[G : �]ÈF, EÍ

and we know that
≠12i[G : �]ÈF, EÍ = 0.

Since, by definition, Eisenstein modular forms are defined to be the complement of
cusp forms.

⁄

EE

F · — = 0

for all cusp forms F .

We now compute the integral a bit explicitly under certain assumptions. Recall
that by Corollary 4.3.2, we have

dHE = ÊE

for a function (degree zero differential form) HE .

Proposition 5.4.4. Let ”(HEÊ) be a non-vanishing function on the Riemannian 2-manifold
ˆFK . Then we have FE(I) ”= 0.

Proof. We then have ıÊE = ıdHE . Let Ê be the non-vanishing top form on the Rie-
mannian manifold Y�. By our assumption on HE , we have HEÊ is a top form on the
Riemannian 3-manifold. Observe that

”(HEÊ) = ≠ ı d ı (HEÊ) = ≠ ı dHE = ≠ ı ÊE.

By assumption, we have ”(HEÊ) is a volume form on 2 dimensional submanifold ˆFK .
Hence, we have ⁄

ˆFK

ıÊE = ≠
⁄

ˆFK

”(HEÊ) ”= 0.
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Note that the assumption is reasonable since ÷(z) ”= 0 for all z in the upper half
plane.

5.4.1 Eisenstein elements for �0(p)

Consider the subgroup � = �0(p) for a prime p of OK that is inert. In this case, there are
only two cusps [0] and [Œ] similar to the classical case and the corresponding modular
curve is denoted by Y0(p). There are two Eisenstein series. Define

ˆFK(p) :=

⁄

ˆFK

ıdHE.

We compute the boundary of the Eisenstein element explicitly in this case.

Proposition 5.4.5. Consider the congruence subgroup �0(p) with p as above. Under the
assumption on HE as above, the boundary of the Eisenstein element is non-zero and determined
by ˆFK(p).

Proof. It follows that

”(EE) =
ÿ

gœ�\SL2(OK)

⁄

ˆFK

ıÊE[g]([g0] ≠ [gŒ])

=

Q

ca
ÿ

gœ�\SL2(OK)

⁄

ˆFK

ıÊE[g]

R

db ([0] ≠ [Œ])

=

Q

cca

⁄

Y0(p)

ıÊE

R

ddb ([0] ≠ [Œ])

=

Q

cca

⁄

Y0(p)

ıdHE

R

ddb ([0] ≠ [Œ])

for a function HE as in Corollary 4.3.2. In particular, it shows that ”(EE) ”= 0 if
s

Y0(p)

ıdHE = [SL2(OK) : �0(p)]ˆFK(p) ”= 0 by Proposition 5.4.4.
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5.4.2 Different pairings of homology and cohomology groups

Let � be a torsion-free subgroup such as �1(N) with N sufficiently large. Consider
the compactifications X œ {XBB

�
, XBS

�
} of the Riemannian 3-manifold Y�. We have

isomorphisms
S2(�) ƒ H

1
(X;C) ƒ H1(X;C)

The first isomorphism is obtained by the map F ‘æ F · —. The second isomorphism is
given by the duality induced by the evaluation pairing (Ê, “) ‘æ

s
“ Ê.

We also have a pairing [21, p. 474]

È, Í : H
1

c(Y�;C) ◊ H
2
(Y�;C) æ C.

We also have the following isomorphism (cf. [26, p. 288])

H1(X, ˆX;C) ƒ H
1

c(Y�;C) ƒ H
2
(Y�;C).

With the identification H
1

dR(Y�) ƒ H
1
(Y�;C), we can make this pairing explicit

H
1

c(Y�;C) ◊ H1(X, ˆX;C) æ C.

The map is given again by the same evaluation pairing (Ê, “) ‘æ
s

“ Ê.

Recall the formulation of Poincaré-Lefschetz duality [16, p. 53]. In this case, the
intersection pairing will be given by

¶ : H1(X, ˆX;Z) ◊ H2(Y�;Z) æ Z.

The Eisenstein element EE corresponding to the Eisenstein modular form E of
weight 2, is the unique element such that EE ¶ c =

s
c ı(E · —) for all c œ H2(Y�;Z).

We expect these two definitions of Eisenstein elements to coincide.

Using the Eichler-Shimura-Harder correspondence, we know that S2(�) is isomor-
phic to H

1

cusp(X;C) via the map F to F · —. We know H
1
(X;C) = H

1

cusp(X;C) ü
H

1

Eis(X;C), and if E is an Eisenstein series, then E · — is a differential form belong-
ing to H

1

Eis(X;C).
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For a good description and explicit computation of the Eichler-Shimura-Harder
isomorphism, we refer to the work of Ghate [14, page 20]( also for CM fields in [15]).

5.4.3 Eisenstein elements are retractions

Since we are using the Bailey-Borel-Satake compactification for homology groups, we
have a short exact sequence

0 = H1(ˆXBB
�

;Z) æ H1(X
BB
�

;Z) æ H1(X
BB
�

, ˆXBB
�

;Z)
”≠æ Z[ˆXBB

�
] æ Z æ 0

where the map H1(XBB
�

, ˆXBB
�

;Z)
”≠æ Z[ˆXBB

�
] is obtained from the boundary map

” : H1(XBB
�

, ˆXBB
�

;Z) æ H0(ˆXBB
�

;Z).
The above exact sequence splits over the field C. We have a retraction map

R : H1(X
BB
�

, ˆXBB
�

;C) æ H1(X
BB
�

;C) = HomC(H
1
(XBB

�
;C),C)

given by R(c)(Ê) =
s

c Ê.
Note that this is a section of the inclusion map. Hence, if we tensor with C, we

have ”(x) = 0 if and only if R(x) = x. This is the same as x œ H1(XBB
�

;C).
By the definition of Eisenstein element, we have R(EE) = 0. Note that EE ”= 0 as

FE(I) ”= 0 for I , the identity element, by Proposition 5.4.4 under certain assumptions.
Hence, we deduce that ”(EE) ”= 0 with the same assumptions.
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Eisenstein cohomology

6.1 Definition of Eisenstein cohomology

For the definition of Eisenstein cohomology groups, we are following Sengün and
Türkelli [10]. We compute the Eisenstein cohomology groups of Borel-Serre compact-
ification of Y�. This is a compactifcation obtained by adding a 2 torus to every cusp
(except for Q(i) or Q(

Ô
≠3)).

The Borel-Serre compactification [36, appendix] XBS
�

of Y� is a compact, real 3-
dimensional manifold with boundary ˆXBS

�
whose interior is homeomorphic to Y�.

Given k > 0, let the space of homogeneous polynomials of degree k on the vari-
ables x, y with complex coefficients be denoted by C[x, y]k. The modular group SL2(C)

acts on this space in the obvious way permitted by the two variables. Consider the
SL2(C)-module

Mk := C[x, y]k ¢C C[x, y]k

where the overline on the second factor indicates that the action on this factor is
twisted with complex conjugation, that is, first, we apply complex conjugation to the
coefficients of the matrix and then apply the matrix to the polynomial. Considered as
a module, Mk gives rise to a locally constant sheaf Mk on Y� whose stalks are isomor-
phic to Mk.

In Sengün-Türkelli [10], they use the notation Ek,k instead of Mk and for the sheaf
Ek instead of Mk.

57
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Considered as a module, Mk gives rise to a locally constant sheaf Mk on Y� whose
stalks are isomorphic to Mk. Consider the long exact sequence

. . . æ H
i
c (Y�;Mk)

incli≠≠æ H
i
1
XBS

�
;Mk

2
resi

≠≠æ H
i
1
ˆXBS

�
;Mk

2
æ . . .

where H
i
c denotes compactly supported cohomology and Mk is a certain sheaf on XBS

�

that extends Mk.
The image of the compactly supported cohomology by the inclusion map incl in-

side the cohomology group is called the cuspidal cohomology group. Note that this is
the same as the kernel of the restriction map res.

The kernel of the restriction map gives a subspace of H
i
(Y�;Mk) which is called the

cuspidal cohomology, denoted H
i
cusp(Y�;Mk).

By the Eichler-Shimura-Harder isomorphism [19], this consists of all cohomologi-
cal cuspidal automorphic representations (cusp forms) [34, p. 409].

Note that the long exact sequence associated with the pair
1
XBS

�
, ˆXBS

�

2
as above

is compatible with the action of the involution · from Section 7.1.

Definition 6.1.1 (Eisenstein cohomology groups). The kernel of the restriction map
is known as cuspidal cohomology H

i
cusp. The complement of subspace cuspidal coho-

mology within H
i is the Eisenstein cohomology H

i
Eis. This is isomorphic to the image of

the restriction map inside the cohomology of the boundary.

Let � be a subgroup of the Bianchi group, and let the associated orbifold (or mani-
fold, if � is torsion-free) �\H3 have finite volume. In this case, we say that � has finite
covolume.

If � is torsion-free, then Y� is manifold. The whole point of the Borel-Serre com-
pactification is to show that Y� has the homotopy type of a manifold with a boundary.
Therefore, its cohomology is finitely generated, which is not obvious for an open man-
ifold.

The decomposition H
i

= H
i
cusp ü H

i
Eis respects the Hecke action. By construction,

the embedding Y� Òæ XBS
�

is a homotopy equivalence. We have the following isomor-
phisms

H
i
1
XBS

�
;Mk

2
ƒ H

i
(Y�;Mk) ƒ H

i
(�; Mk) .
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Note that the last one is the group cohomology. Via the above isomorphisms, we de-
fine the cuspidal (respectively Eisenstein parts) of the cohomology groups H

i
(�; Mk).

The cuspidal parts (respectively, the Eisenstein part) consist of elements that are
zero (non-zero) on parabolic elements of �, as they are complements of each other
within the cohomology group, and their direct sum constitutes the entire cohomology
group. In other words, these are in kernel (not in kernel) of res

i.
We denote the Eisenstein part of the cohomology group by H

1

Eis(�; Mk).
The boundary ˆXBS

�
is a disjoint union of 2-tori, each corresponds to a cusp of Y�

(except for Q(i) or Q(
Ô

≠3)). The set of cusps of � can be identified with the orbit
space �\P1

(K). It is well known that when � is the full Bianchi group, the number of
cusps is h(K), the class number of K. Recall that we assumed h(K) = 1.

Let C� be the set of cusps of the congruence subgroups of the form �. We are grate-
ful to Professor Sengün for the outline of the proof (see also [28] for full subgroups).

Proposition 6.1.2. [10, Proposition 4.1. p. 247]. Let � be a congruence subgroup of a Bianchi
group. Then

dim H
0

1
ˆXBS

�
;Mk

2
= dim H

2
1
ˆXBS

�
;Mk

2
= #C�

dim H
1

1
ˆXBS

�
;Mk

2
= 2 · #C�.

It follows from algebraic topology that for k > 0, the image of the restriction map

H
i
1
XBS

�
;Mk

2
æ H

i
1
ˆXBS

�
;Mk

2

is surjective when i = 2 and its image has half the rank of the target space when i = 1.
Hence, we have the following result.

Proposition 6.1.3. Let � be a congruence subgroup as above. Then
if k = 0,

1. dim H
0

Eis

1
XBS

�
;C

2
= 1,

2. dim H
1

Eis

1
XBS

�
;C

2
= #C�,

3. dim H
2

Eis

1
XBS

�
;C

2
= #C� ≠ 1.

If k > 0,
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1. dim H
0

Eis

1
XBS

�
;Mk

2
= 0,

2. dim H
i
Eis

1
XBS

�
;Mk

2
= #C� for i = 1, 2.

Proof. We start by considering the long exact sequence associated with the pair
(XBS

�
, ˆXBS

�
)

. . . æ H
1

c(Y�;Mk)
incl1≠≠æ H

1
(XBS

�
;Mk)

res1
≠≠æ H

1
(ˆXBS

�
;Mk) ≠æ H

2

c(Y�;Mk)

incl2≠≠æ H
2
(XBS

�
;Mk)

res2
≠≠æ H

2
(ˆXBS

�
;Mk) ≠æ H

3

c(Y�;Mk)
incl3≠≠æ H

3
(XBS

�
;Mk) = 0.

The subscript “c” denotes compactly supported cohomology. Using the Poincaré du-
ality [20, p. 133]

H
i
c(Y�;Mk) ◊ H

3≠i
(XBS

�
;Mk) æ C, for i œ {0, 1, 2, 3},

we have H
3

c(Y�;Mk) is isomorphic to H
0
(XBS

�
;Mk).

Consider the map

res2 : H
2
(XBS

�
;Mk) æ H

2
(ˆXBS

�
;Mk),

if k = 0 then Mk = C is a constant sheaf and we get

H
0
(XBS

�
;C) = C.

Using Proposition 6.1.2, we deduce that dimC H
0

Eis(X
BS
�

;C) = 1. By Poincaré duality,
we have H

3

c(Y�;C) ƒ H
0
(XBS

�
;C), this implies H

3

c(Y�;C) ƒ C.
When Mk ƒ C is a trivial sheaf, the image of the restriction map res2 has one

dimensional cokernel by Harder [18, Proposition 4.7.1].
Hence, we have dimC H

2

Eis(X
BS
�

;C) is #C� ≠ 1. We now consider the long exact
sequence associated with (XBS

�
, ˆXBS

�
)

0 æ H
0
(XBS

�
;C)

res0
≠≠æ H

0
(ˆXBS

�
;C)

ˆ0
≠æ H

1

c(Y�;C)
incl1≠≠æ H

1
(XBS

�
;C)

res1
≠≠æ H

1
(ˆXBS

�
;C)

ˆ1
≠æ H

2

c(Y�;C)
incl2≠≠æ H

2
(XBS

�
;C)

res2
≠≠æ H

2
(ˆXBS

�
;C)

ˆ2
≠æ H

3

c(Y�;C)
incl3≠≠æ H

3
(XBS

�
;C) = 0.

By successive applications of the rank-nullity theorem, we obtain the following

1. dimC H
0
(ˆXBS

�
;C) = dim Im res0

+ dim Im ˆ0
=∆ #C� = 1 + dim Im ˆ0,
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2. dimC H
1

c(Y�;C) = dim Im ˆ0
+ dim Im incl1,

3. dimC H
1
(XBS

�
;C) = dim Im incl1

+ dim Im res1,

4. dimC H
1
(ˆXBS

�
;C) = dim Im res1

+ dim Im ˆ1
=∆ 2 · #C� = dim Im res1

+

dim Im ˆ1,

5. dimC H
2

c(Y�;C) = dim Im ˆ1
+ dim Im incl2,

6. dimC H
2
(XBS

�
;C) = dim Im incl2

+ dim Im res2,

7. dimC H
2
(ˆXBS

�
;C) = dim Im res2

+ dim Im ˆ2
=∆ #C� = dim Im res2

+

dim Im ˆ3

=∆ #C� = dim Im res2
+ 1 ( because H

3

c(Y�;C) = C)

=∆ dim Im res2
= #C� ≠ 1.

Using Poincaré duality, we get

H
1

c(Y�;C) ƒ H
2
(XBS

�
;C)

dim Im ˆ0
+ dim Im incl1

= dim Im incl2
+ dim Im res2

#C� ≠ 1 + dim Im incl1
= dim Im incl2

+ #C� ≠ 1

=∆ dim Im incl1
= dim Im incl2

and

H
2

c(Y�;C) ƒ H
1
(XBS

�
;C);

dim Im ˆ1
+ dim Im incl2

= dim Im incl1
+ dim Im res1

;

=∆ dim Im ˆ1
= dim Im res1.

We know that dim H
1
(ˆXBS

�
;C) = dim Im res1

+ dim Im ˆ1

=∆ 2 · #C� = dim Im res1
+ dim Im ˆ1

=∆ 2 · #C� = dim Im res1
+ dim Im res1

=∆ 2 · #C� = 2 · dim Im res1

=∆ dim Im res1
= #C�

=∆ dimC H
1

Eis(X
BS
�

;C) = #C�.
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If k > 0 then Mk is a locally constant sheaf, and we get

H
3

c(Y�;Mk) = H
0
(XBS

�
;Mk), H

0
(XBS

�
;Mk) ƒ H

0
(�; Mk).

We know that H
0
(�; Mk) = 0, which implies H

0
(XBS

�
;Mk) = 0 and H

3

c(Y�;Mk) = 0.

For k > 0, the restriction map is surjective. We analyze the image of the restriction
maps following Harder [18, Proposition 4.7.1] and, the restriction map

H
i
1
XBS

�
;Mk

2
æ H

i
1
ˆXBS

�
;Mk

2

is onto when i = 2 and its image has half the rank of the target space when i = 1. So,
we have

dim H
1

Eis

1
XBS

�
;Mk

2
=

1

2
dim H

1

1
ˆXBS

�
;Mk

2

dim H
2

Eis

1
XBS

�
;Mk

2
= dim H

2

1
ˆXBS

�
;Mk

2
.

We know that dim H
1

1
ˆXBS

�
;Mk

2
= 2 · #C� and dim H

2

1
ˆXBS

�
;Mk

2
= #C�. This

implies that dim H
i
Eis

1
XBS

�
;Mk

2
= #C� for i = 1, 2.

This just shows that the dimension of the Eisenstein cohomology is determined by
the number of cusps.

6.1.1 Computation of number of cusps for �1(N)

By [12, p. 165], the set of cusps for SL2(OK) can be identified with the class group of
K. Recall that we assumed that the class number of the imaginary number field K is
one.

We are interested in congruence subgroups of the form � = �1(a) and denote the
corresponding set of cusps by CN for the ideal a = (N).

Let P :=

Y
_]

_[
±

S

WU
1 j

0 1

T

XV : j œ OK

Z
_̂

_\
be the parabolic subgroup of SL2(OK). Note that

P̄ =

Y
_]

_[
±

S

WU
1 j

0 1

T

XV : j œ OK/NOK

Z
_̂

_\
and P̄+ =

Y
_]

_[

S

WU
1 j

0 1

T

XV : j œ OK/NOK

Z
_̂

_\
is the "posi-

tive" half of P̄ .
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Here, the overbar signifies reduction modulo (N). For N œ N, let CN be the set of
cusps of congruence subgroups of the form �1(N).

Proposition 6.1.4.
#CN = |P̄+\SL2(OK/NOK)/P̄ |

Proof. The group SL2(OK) acts transitively on the set of cusps. Recall that P =

SL2(OK)Œ is the subgroup of SL2(OK) fixing the cusp Œ. The map

�1(N)\SL2(OK)/P ≠æ { cusps of �1(N)}

given by
�1(N)–P ‘æ �1(N)–(Œ)

is a bijection [11] (the proof works for imaginary quadratic fields also since the class
number is one). We know that SL2(OK)/P identifies with K fi {Œ}, so that the double
coset space �1(N)\SL2(OK)/P gets identified with the cusps �1(N)\(K fi {Œ}).

The double coset space �(N)\SL2(OK)/P is naturally viewed as SL2(OK/NOK)/P̄

where P̄ denotes the projected image of P in SL2(OK/NOK), that is,

P̄ =

Y
_]

_[
±

S

WU
1 j

0 1

T

XV : j œ OK/NOK

Z
_̂

_\
.

We have a decomposition �1(N) =
t

j

S

WU
1 j

0 1

T

XV �(N), the double coset space is natu-

rally viewed as P̄+\SL2(OK/NOK)/P̄ where P̄+ =

Y
_]

_[

S

WU
1 j

0 1

T

XV : j œ OK/NOK

Z
_̂

_\
is the

"positive" half of P̄ and again the overbar signifies reduction modulo (N).
We deduce that

|P̄+\SL2(OK/NOK)/P̄ | = #CN .

The cusps of �1 (pn
) are in bijection with the sets {±(x̄, ȳ)} µ

!
O/ (pn

)
"

2 such
that the order of (x̄, ȳ) is pn. The bijection is defined via the map x

y ‘æ (y, ≠x) with
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x modulo gcd(y, N).

Corollary 6.1.5. #Cp = p2 ≠ 1.

Proof. We know that OK/pOK is isomorphic to Z/pZ ü Z/pZ and number of non-zero
choices of y œ Z/pZüZ/pZ is p2 ≠ 1 with gcd(y, p) = 1. Since the possibilities of x and
gcd(y, p) = 1, we get the possibilities of x is x modulo 1. Hence, the number of choices
of x is 1, and the number of choices for (x, y) is p2 ≠ 1.

6.1.2 Szech cocycles and some expectations

The classical Dedekind sums arise from the homomorphism

„ : � æ C

for � = SL2(Z), given by periods of Eisenstein series

„ = „E : “ ‘æ
⁄

[“]

Ê =

⁄ “z0

z0
E(z)dz

where E(z) is the unique Eisenstein series (non-holomorphic modular form) of weight
2 on �.

Mazur’s work uses the analogous Rademacher homomorphism for � = �0(N) and
�(N), while Merel studies the case � = �0(N), where in each case E(z) is replaced by
the holomorphic Eisenstein series of weight 2 on �(N) and �0(N) respectively. These
periods are described by Dedekind sums and, therefore, are seen to be integral. The
work of Banerjee and Merel shows that the Eisenstein cycle can be written as a linear
combination of Manin symbols ›

EE =
ÿ

xœP1(Z/NZ)

FE(x)›(x) =
ÿ

xœ�0(N)\SL2(Z)

FE(x)›(x)

where the coefficients are shown to be a scalar multiple of „E , and therefore can be
given in terms of Dedekind sums, thus Bernoulli numbers and special values of L

functions.
Over an imaginary quadratic field, Ito [22] showed that for � = SL2(OK), the pe-
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riod is again described by elliptic Dedekind sums introduced by Sczech [32] as dis-
cussed above. In the case of congruence subgroups of the form �1(N), however, the
analogue of elliptic Dedekind sums has not yet been defined to the best of our knowl-
edge. The explicit Sczech 1-cocycles [33] (see also Sengn̈-Türkelli [10, §4.2.3, p. 252])
can be used to produce a basis for group cohomology H

1

Eis(�;C) for some subgroup
� Æ SL2(OK).

Szech cocycles are expected to be computed using the cocycle „E associated to the
Bianchi Eisenstein modular form E of weight 2. For a lattice L = OK , consider the
subgroup

�(u, v) = {A œ SL2(OK)|(u, v)A = (u, v)} for (u, v) œ (C/L)
2}.

Note that �1(N) is a subgroup of SL2(OK) of the form �(u, v) for (u, v) = (0, 1) œ1
1

NOK/OK

2
2

. On the other hand, it is easy to see that the congruence subgroup �0(P)

is not a subset of the form �(u, v) for any (u, v) œ (C/L)
2 for a prime ideal P of OK .

We are interested in subgroups of the form �1(N) for the rest of the thesis in the
setting of [33, Theorem 9, p. 101].

We utilize the explicit 1-cocycles defined by Sczech in [33] to construct a basis for
H

1

Eis(�1(N);C). Considering OK as a lattice in C, for k œ {0, 1, 2} and u œ C, we define

Ek(u) = Ek(u,OK) =
ÿ

wœOK
w ”=≠u

(w + u)
≠k|w + u|≠s

---------
s=0

where the notation .. |s=0
means that the corresponding value is determined by ana-

lytic continuation to s = 0. We further define E(u) by setting

2E(u) =

Y
__]

__[

2E2(0), u œ OK

˝(u) ≠ E1(u)
2, u /œ OK

where ˝(u) denotes the Weierstrass ˝-function.
Let N be a positive integer. Given u, v œ 1

NOK , Sczech introduced certain homo-
morphisms

�(u, v) : �1(N) æ C
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that depend solely on the classes of (u, v) œ (
1

NOK/OK)
2. For A =

Q

ca
a b

0 d

R

db œ �1(N),

we have a simple expression

�(u, v)(A) = ≠
Q

a b̄

d

R

b E(u) ≠ b

d
E0(u)E2(v)

where A
t

s

B

= ≠1 + #

Ó
y mod sOK | y2 © t mod sOK

Ô

represents the Legendre symbol. For non-parabolic A œ �1(N), there exists a similar
but more intricate description involving the Eisenstein series Ek’s. This generalizes the
classical Dedekind sums. It’s noteworthy that E(≠u) = E(u) and Ek(≠u) = Ek(u) for
even k, implying �(≠u, ≠v) = �(u, v) on parabolic elements. Indeed, by examining
the definition in [33, Section 4], it becomes evident that �(≠u, ≠v) = �(u, v).

Sczech shows that if the congruence subgroup is of the form �(u, v) for a fixed
(u, v) œ

1
1

NOK/OK

2
2

like �1(N), we can define the collection of homomorphisms

�(u, v) with (u, v) œ
1

1

NOK/OK

2
2

residing in the Eisenstein part of the cohomology.
Remarkably, the number of linearly independent homomorphisms in this set equals
the number of cusps of �. Thus they generate H

1

Eis(�1(N);C). Note that the above
Eisenstein series associated with different cusps are linearly independent because they
are non-vanishing only at their associated cusp. This implies that the cohomology
classes of Sczech cocycles, which are associated with the cusps of �1(N) form a basis
of H

1

Eis(�1(N);C).

We can define the analogue of the Rademacher homomorphism for �

„E : “ ‘æ
⁄

“FK

d (ıÊE)

where E is an Eisenstein series of weight 2 on �. We strongly believe there are connec-
tions with Szech cocycles as discussed in § 6.1.2. These are generalizations of period
functions defined for the full subgroup (cf. § 3.5 Theorem 4.2.1). Our belief comes
from the inner product formula proved in Proposition 5.3.2.

We now list some properties of the Eisenstein series that we believe are connections
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between generalized Dedekind sums and period integrals of the Eisenstein series.

1. Ito [22] showed that (see also Weselmann [39]) up to a coboundary, the cocycles
of Sczech are integrals of closed harmonic differential forms.

2. These differential forms are given by certain Eisenstein series defined on the
hyperbolic space H3.

3. Following Ito, we form an Eisenstein series E(u,v)(·, s) for (·, s) œ H3 ◊ C with
values in C

3 associated to each cusp of �1(N). As a function of s, E(u,v)(·, s) can
be analytically continued to all of C.

4. Harder [18] showed that the differential 1-form on the hyperbolic 3-space in-
duced by E(u,v)(·, s) is closed for s = 0. Ito [22] showed that the cocycle given by
the integral of this closed differential 1-form differs from the cocycle �(u, v) of
Sczech by a coboundary.



7

Lefschetz number

Lefschetz number, denoted by L(f), is a numerical invariant associated with a con-
tinuous map f from a topological space X to itself. It is calculated by summing over
certain traces of the induced linear maps on the homology groups of X. The Lefschetz
number, which connects the topological properties of X to the fixed points of the map
f , is an essential tool in algebraic topology and has applications in numerous other
mathematical fields.

Recall the study of the Lefschetz fixed point theorem as presented by Sengn̈-
Türkelli [10].

Consider G as the Bianchi group SL2(OK), viewed as a lattice inside the real Lie
group SL2(C), thereby being a discrete group of isometries of hyperbolic 3-space, de-
noted H3. Let fl œ Aut(G) be an involution, and g = {1, fl} be a subgroup of the
automorphism group Aut(G) (note that Out(G) is a finite elementary abelian 2-group
explicitly determined by Smillie-Vogtmann [38]). Consider � as a g-stable torsion-free
finite index subgroup of G.

Let Mk be a �-module with a g-action, and Mk be the locally constant sheaf on Y�

induced by Mk. Ensure that the action of g on the module is compatible with the action
on �, i.e., fl

(g · e) =
flg · fle. Then, g acts on the cohomology groups H

i
(Y�;Mk).

Define the Lefschetz number as follows

L(fl, �, Mk) :=
ÿ

i

(≠1)
i
tr

1
fl | H

i
(Y�;Mk)

2
.

68
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Let Y fl
�

be the set of fixed points of the fl-action on Y�. Denote by M
fl
k the restriction of

the sheaf Mk to Y fl
�

. Then, fl acts on the stalk of Mfl
k, and L

1
fl, Y fl

�
,Mfl

k

2
is defined. As

per [31, p.152], it holds that

L(fl, �, Mk) = L
1
fl, Y fl

�
,Mfl

k

2
.

The connected components of Y fl
�

can be parametrized by the first non-abelian (Ga-
lois) cohomology H

1
(g; �). If “ is a cocycle for H

1
(g; �), we have a “-twisted fl-action

on H3 given by x ‘æ flx“≠1. The fixed point set H3(“) of the “-twisted action on H3 is
non-empty, and its image in Y�, denoted F (“), is a locally symmetric subspace of Y fl

�
.

There is also a “-twisted fl-action on � given by g ‘æ “flg“≠1 for g œ �. Let �(“)

denote the set of fixed points of this action. When � is torsion-free, the canonical map

fi“ : �(“)\H3(“) æ Y�

is injective. The image of fi“ is homeomorphic to F (“). There is a twisted fl-action
on Mk as well, given by m ‘æ flm“ for m œ Mk. The trace of this action on Mk does
not depend on the choice of the cocycle “ in its class and can therefore be written as
tr

1
fl“ | Mk

2
.

We can express the Lefschetz trace formula for the torsion-free case in a geometric
manner as follows:

Theorem 7.0.1.(J.Rohlfs). Assuming that � is torsion-free, we have

L(fl, �, Mk) =
ÿ

“œH1(g;�)

‰(F (“)) tr

1
fl“ | Mk

2

where ‰(F (“)) is Euler characteristic of F (“). A more generalized version of the theorem,
accommodating � with possibly torsion elements, is provided by Blume-Nienhaus [6, I.1.6].

"Let ‡ represent the complex conjugation. The action of ‡ on H3 is defined as
(z, t) ‘æ (z̄, t), where z̄ denotes the complex conjugate of z.

It also acts on SL2(C) by operating on the entries of a matrix in an obvious manner.
If A œ SL2(C), then we denote its image under the action of ‡ as ‡A, or simply Ā.

We now introduce the concept of the twisted complex conjugation, denoted by · . The
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action of · on H3 is given by (z, t) ‘æ (≠z̄, t), where z̄ denotes the complex conjugate
of z.

Its action on SL2(C) is defined as

Q

ca
a b

c d

R

db ‘æ

Q

ca
ā ≠b̄

≠c̄ d̄

R

db, where the bar in the

notation denotes the complex conjugation. We can regard · as the composition –¶‡ =

‡ ¶ –, where

–

Q

ca
a b

c d

R

db =

Q

ca
a ≠b

≠c d

R

db = —

Q

ca
a b

c d

R

db —

and — :=

Q

ca
≠1 0

0 1

R

db, for every

Q

ca
a b

c d

R

db œ SL2(C), with –(z, t) = (≠z, t) for every

(z, t) œ H3.
Both ‡ and · are orientation-reversing, and they can be naturally extended to the

Borel-Serre compactification (see [30, section 1.4]). The action of ‡ on Mk can be
described as follows: ‡(P ¢ Q) = Q ¢ P . Similarly, for · , we have ·(P ¢ Q) =Q

ca
≠1 0

0 1

R

db Q ¢

Q

ca
≠1 0

0 1

R

db P . These actions are compatible with those on SL2(C).

We now discuss the Lefschetz numbers for these two involutions. We use the sym-
bol fl to denote these two involutions in the results that apply to both of them. We
begin with a useful lemma (see [6, I.4.3] for proof)."

Lemma 7.0.2. Let “ œ � and x = (“fl)
2. Then tr

!
“fl | Mk

"
= tr

!
x | Mk

"
.

7.1 Lefschetz numbers for full group

Recall that G denotes the full Bianchi group SL2(OK). For k = 0, i.e., when Mk = C,
the Lefschetz numbers for ‡ and · were computed by Krämer [24]. For general Mk,
these numbers were computed by Blume-Nienhaus [6].

"For a rational prime p, which ramifies in K, and an integer a, let (a | p) denote
the corresponding Hilbert symbol. By definition, (a | p) equals 1 if there is an element
in some finite extension of Kp, the completion of K at the unique prime ideal over p,
whose norm is equal to a, and it equals ≠1 otherwise. Equivalently, (a | p) is the value
at a of the quadratic character associated with the local extension Qp(

Ô
d)/Qp. Note
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that if p ”= 2, then (a | p) equals the Legendre symbol
1

a
p

2
."

Theorem 7.1.1. (Blume-Nienhaus, [6]). Let D be the discriminant of K/Q, with D2 being
its 2-part. Let fl represent either · or ‡. Also, let q = 1 or q = ≠1 depending on whether fl = ·

or fl = ‡, respectively. Then

(≠1)
kL (fl, G, Mk) =

≠q

12

Ÿ

p|D
p”=2

Q

ap +

A
q

p

BR

b
Ÿ

p|D
p=2

!
D2 + (q | 2)

"
(k + 1)

+
q

12

Ÿ

p|D
p”=2

Q

a1 +

A
≠q

p

BR

b
Ÿ

p|D
p=2

(4 + (≠q | 2))(≠1)
k
(k + 1)

+
1

2

Ÿ

p|D
p”=2

Q

a1 +

A
≠2q

p

BR

b
A

k + 1

4

B

+
1

3

Q

ccca
Ÿ

p|D
p”=3

(1 + (≠3q | p)) + (≠1)
k

Ÿ

p|D
(1 + (≠q | p))

R

dddb

A
k + 1

3

B

.

Here, products over empty sets are understood to be equal to 1.

7.2 Lefschetz number of ‡ for �(N)

"Let � = �(N) ™ SL2(OK), a congruence subgroup of level N . Its image in PSL2(OK)

is denoted by �̄. For N > 2, both � and �̄ are torsion-free. We employ Theorem 7.0.1
to compute the Lefschetz numbers L

!
‡, �(N), Mk

"
.

Firstly, we analyze the fixed point set Y ‡
�

. Let H(1) be the subset of H
1
(‡; �̄) consist-

ing of cocycles “ œ �̄ with det (“‡“) = 1, and H(2) be the subset with det (“‡“) = ≠1.
We have H

1
(‡; �̄) = H(1) fi H(2). If � is torsion-free, then H

1
(‡; �̄) = H(1).
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Consider the matrices

“1 =

Q

ca
1 0

0 1

R

db , “Õ
1

=

Q

ca
1

Ô
d

0 1

R

db ,

“2 =

Q

ca
0 ≠1

1 0

R

db

and

“Õ
2

=

Y
__________]

__________[

Q

cca
1 +

Ô
d (2 ≠ d)/2

≠2 ≠1 +
Ô

d

R

ddb if d © 2 mod 4,

Q

cca

Ô
d (d ≠ 1)/2

2
Ô

d

R

ddb if d © 1 mod 4.

Note that “1 and “Õ
1

belong to H(1), while “2 and “Õ
2

belong to H(2). The locally
symmetric space F (“) is a surface if “ œ H(1) and is a point if “ œ H(2). J.Rohlfs [29]
provides the count of translations for the surfaces corresponding to “1 and “Õ

1
, and for

the points corresponding to “2 and “Õ
2
."

Theorem 7.2.1. (J.Rohlfs, [29, Theorem 4.1]). Let D be the discriminant of K/Q and t be the
number of distinct prime divisors of D. Let (N) =

r
p|D pjp

p

r
p-D(p)

jp be an ideal with N > 2,
and let � = �(N) be the congruence subgroup of level (N). Let s = #{p prime | p|D, p ”= 2

and jp ”= 0

Ô
.

Then Y ‡
�

consists of translations of surfaces F (“1) and F (“Õ
1
) and the number of transla-
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tions of these surfaces are denoted by A and B respectively in the table below.

d j2 A B

d © 1(4) Ø 0 2
t≠s 0

d © 2(4) 0 2
t≠s

2
t≠s≠1

1 2
t≠s

2
t≠s≠1

2 8 · 2
t≠s 0

Ø 3 8 · 2
t≠s≠1 0

d © 3(4) 0 2
t≠s

2
t≠s≠1

1 2
t≠s 0

2 8 · 2
t≠s 0

j2 = 2n + 1 Ø 3 2
t≠s≠1 0

j2 = 2n Ø 4 8 · 2
t≠s≠1 0

Theorem 7.2.2. (Sëngun- Türkelli [10]). Let �(N), A, B be as in the theorem above. Then

L
!
‡, �(N), Mk

"
=

Y
____]

____[

(A + 2B) · ≠N3

12

r

p|N

1
1 ≠ p≠2

2
· (k + 1) if N is even,

(A + 3B) · ≠N3

12

r

p|N

1
1 ≠ p≠2

2
· (k + 1) if N is odd.

Proof. For the proof, we refer to the work of Sëngun and Türkelli [10, page 7].

7.3 Lefschetz number of ‡ for �1(N)

In this section, we use [10, Theorem 2.1] to calculate the Lefschetz numbers for the
congruence subgroups of the form �1(N) .

Lemma 7.3.1.(J.Rohlfs). Assume that � is torsion-free. Then

(XBS
�

)
‡

=
€

“œH1(‡;�)

F (“)

where (XBS
�

)
‡ the set of fixpoints of ‡ in XBS

�
.
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Let � = �1(N). Then X� = X1(N), and we know that

(XBS
�

)
‡

=
€

“œH1(‡;�)

F (“)

with
(XBS

�
)

‡
= #H

1
(‡;

“1 �) · F (“1) fi #H
1
(‡;

“1Õ
�) · F (“1

Õ
).

Then (XBS
�

)
‡ consists of translations of surfaces F (“1) and F (“Õ

1
) and the number

of translations of these surfaces are denoted by A1(N) and B1(N).
The set of places of K will be denoted by V , and VŒ (resp. Vf ) refers to the set of

archimedean (resp. non-archimedean) places of K.
For the following lemma, we use O instead of OK for convenience.
For all finite places v œ Vf , let pv be the prime ideal corresponding to v and Nv :=

[Kv : Qp] if v|p. Consider the congruence subgroup � = �1(N) µ SL2(O) for an ideal
NO =

r
pjv

v . The completion �v (jv) of �(= �1(N)) in SL2 (Ov) , v œ Vf , is a subgroup of
SL2 (Ov). Then one has pv fl Z = pZ for some prime p, and pOv = pev

v . Define

sv :=

C
ev

p ≠ 1

D

+ 1.

Let M(s) =

Q

ca
a b

c d

R

db, s œ N, denote the set of (2 ◊ 2)-matrices with a, c, d in ps
v and b in

Ov. For all s > sv, the exponential map defines a bijection exp: M(s) ‘æ 1 + M(s).
Then, the map exp induces for any s > sv a bijection

sl2 (Ov) fl M(s)
≥æ �v(s)

where sl2 (Ov) denotes the Ov-Lie algebra of SL2 (Ov).
Now, we are generalizing the results mentioned in the work of J.Rohlfs-Schwarmer [31]

from subgroups of symplectic groups to subgroups of the Bianchi group SL2(O).

Lemma 7.3.2. Local cohomology groups for a subgroup � µ SL2(O) can be computed as
follows:

1. If pv | p and if p > 2 then H
1

!
‡; �v (jv)

"
= {1} for jv = 0, 1, 2, . . .
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2. If pv | 2 and if jv > sv + ev then cardinality of H
1

!
‡; �v (jv)

"
= 2

Nv for some Nv œ N.
The inclusion �v (jv) æ �v (jv ≠ ev) induces the trivial map:

H
1

!
‡; �v (jv)

"
æ H

1
!
‡; �v (jv ≠ ev)

"
.

Proof. (1) First consider the case jv > sv. Let x be a cocycle for È‡Í in �v (jv) i.e.,
x.‡x = 1, thus, ‡x = x̄. So there exists an X in sl2 (Ov) fl M (jv) with exp(X) = x and
exp(≠X) =

‡x. Define y := exp(≠X/2); note that y œ �v (jv) fl ‡
!
�v (jv)

"
= �v (jv). We

have ‡y = exp(≠‡(X)/2) = exp(X/2). Thus, we obtain

y≠1‡y = x

i.e., x is equivalent to 1 , and H
1

!
‡; �v (jv)

"
= {1}.

Next, the quotient group �v (jv) /�v (jv + 1) is a commutative p-group, and since
the order |È‡Í| = 2 is coprime to p, we get H

1
!
‡; �v (jv) /�v (jv + 1)

"
= {1}. Using the

long cohomology sequence attached to the sequence

1 æ �v (jv + 1) æ �v (jv) æ �v (jv) /�v (jv + 1) æ 1

we get H
1

!
‡; �v (jv)

"
= {1} for jv > 1.

For jv = 0, i.e. �v(jv) = SL2(Ov). From [29, Collary 2.7], we get

H
1

!
‡; SL2(Ov)

"
= {1}.

This proves our assertion for all jv.

(2) As in the proof of (1), given a cocycle È‡Í in �v (jv) , jv > sv + ev, there exists an
element X in sl2 (Ov) fl M (jv) with exp(X) = x and exp(≠X) =

‡x.

Define y := exp(≠X/2). Then y œ �v (jv ≠ ev). By using ‡y = exp(X/2) we obtain
ȳ‡y = x, that is, x is equivalent to 1 viewed as an element in H

1
!
‡; �v (jv ≠ ev)

"
. This

proves the second assertion in (2). This fact implies that we have an inclusion (after
shifting the parameter jv by ev )

1 æ H
1

!
‡; �v (jv)

"
æ H

1
!
‡; �v (jv) /�v (jv + ev)

"
.
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The quotient group �v (jv) /�v (jv + ev) can be identified with the abelian group

R := sl2 (Ov) fl M (jv) /sl2 (Ov) fl M (jv + ev) ≥= U(Ov/2Ov)

where U(Ov/2Ov) :=

Y
]

[

Q

ca
a b

c ≠a

R

db œ M2(Ov)

------
a, c œ Ov/2Ov and b œ Ov

Z
^

\.

Note that, for s =

Q

ca
a b

c ≠a

R

db œ U(Ov/2Ov), we get

‡(s) =

Q

ca
ā b̄

c̄ ≠ā

R

db .

Such an element s represents a cocycle for È‡Í in R if and only if s © s̄≠1
mod 2.

Coboundaries for È‡Í in R are represented by elements

s +
‡s =

Q

ca
a + ā b + b̄

c + c̄, ≠(a + ā)

R

db where a, c œ Ov/2Ov and b œ Ov.

Hence H
1
(‡; R) can be identified with the set

� =
)
diag (t, ≠t) | t œ Ov/2Ov

*

of diagonal matrices, and these classes are in the image of H
1

!
‡; �v (jv)

"
under the

map above. Thus, (2) holds.

Lemma 7.3.3. Let ‡ and � be as above. For “ œ {“1, “Õ
1
}, the cohomology groups H

1
(‡;

“
�)

are 2 groups.

Proof. We recall the relation from J.Rohlfs [29, page 201]

H
1
(‡; �) =

Ÿ

v

H
1
(‡; �v(jv)).

Using #H
1

!
‡; �v (jv)

"
= 2

Nv , we get
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#H
1
(‡; �) = #

Ÿ

v

H
1
(‡; �v(jv)) =

Ÿ

v

2
Nv .

The “- twisted ‡ action on � produces the following short exact sequence

0 æ “
� æ � æ �/“

� æ 0.

This induces an exact sequence

. . . æ H
0

!
‡; �/“

�
"

æ H
1

(‡;
“
�)

”≠æ H
1

(‡; �) æ H
1

!
‡; �/“

�
"

æ . . .

From basic group theory, we have

H
1
(‡;

“
�)

Ker”
ƒ Im”.

Since ‡ is an involution, so H
0

!
‡; �/“

�
"

is a 2 group. We also note that Im” µ H
1
(‡; �)

and hence a 2 group. We deduce that that #H
1
(‡;

“
�) = 2

r for some r œ N fi {0}.

We define the following important quantities that we use in our computations

A1(N) := #H
1
(‡;

“1�) = 2
a (7.1)

B1(N) := #H
1
(‡;

“1Õ
�) = 2

b (7.2)

for a, b œ N fi {0}.

Using [10, Theorem 2.1] and proposition 7.3.1, we now calculate the Lefschetz
number for �1(N). Consider the subgroup �(u, v) = {A œ SL2(OK)|(u, v)A = (u, v)}
for u, v œ C/OK . Note that �1(N) is a subgroup of SL2(OK) of the form �(u, v).

Lemma 7.3.4. The congruence subgroup �0(P) is not a subset of �(u, v) for any non-zero
(u, v) œ (C/OK)

2.

Proof. Let A =

Q

ca
a b

c d

R

db œ �0(P) such that a ”= 1, d ”= 1( mod P), and assume that

A œ �(u, v) for some 0 ”= (u, v) œ (C/OK)
2. We then have c © 0 (mod P), and
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(u, v)A = (u, v)

Q

ca
a b

c d

R

db =

3
au + cv, bu + dv

4
,

and
3

au + cv, bu + dv
4

=

3
u, v

4

=∆
3

(a ≠ 1)u + cv, bu + (d ≠ 1)v
4

= (0, 0)

=∆ (a ≠ 1)u + cv = 0, bu + (d ≠ 1)v = 0, and we know that c © 0 (mod P)

=∆ (a ≠ 1)u = 0 and bu + (d ≠ 1)v=0 (mod P)

(a ≠ 1)u = 0 =∆ u = 0 and bu + (d ≠ 1)v = 0 =∆ v = 0

and a ”= 1, d ”= 1(mod P). Hence, we do not get any non-zero solution and deduce
that �0(P) ”µ �(u, v) for all non-zero (u, v) œ (C/OK)

2.

Because of the above Lemma, we are interested in the congruence subgroups of
the form �1(N) in this thesis. It will be really interesting to see similar results for the
congruence subgroups of the form �0(N).

From now on, we use the notation �1(N)
“‡ to denote that we first apply the ‡ action

to �1(N) and then apply the “ action. This action is equivalent to the action obtained
by “- twisted fl-action when fl is ‡. We write this to specify that we are using ‡.

Proposition 7.3.5. Consider the subgroup �1(N) and the quantities A1(N), B1(N) be as
above. Consider the quantity

C1(N) :=
≠N2

12

Ÿ

p|N

1
1 ≠ p≠2

2
· (k + 1).

The Lefschetz number is given by

L
!
‡, �1(N), Mk

"
=

Y
__]

__[

1
A1(N) + (

N+2

2
)B1(N)

2
C1(N) if N is even

1
A1(N) + (

N+1

2
)B1(N)

2
C1(N) if N is odd.

Proof. "For each “ œ H(1), we have tr
!
“‡ | Mk

"
= tr

!1 | Mk
"

= (k + 1) (cf.
Lemma 7.0.2). By [10, Theorem 2.1], we need to calculate the Euler Poincaré char-
acteristics ‰

!
�1(N)

“‡"
with “ œ {“1, “Õ

1
}.

Let �
e
1
(N) be the congruence subgroup of the elliptic modular group SL2(Z) of

level N . An easy calculation shows that �1(N)
“1‡

= �
e
1
(N). Let Y1(N) denotes the
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hyperbolic surface associated to �
e
1
(N). The compactification X1(N) is obtained from

Y1(N) by adding the cusps. It is well-known that Y1(N) has 1

2

q

d|N
„(d) · „

1
N
d

2
cusps.

By [37, 1.6 .4], we have

‰
!
X1(N)

"
= (≠1/12)N2

Ÿ

p|N

1
1 ≠ p≠2

2
+

1

2

ÿ

d|N
„(d) · „

A
N

d

B

.

We deduce that

‰
!
�

e
1
(N)

"
:= ‰

!
Y1(N)

"
= ‰

!
X1(N)

"
≠ # { cusps of Y1(N)

*

= (≠1/12)N2
Ÿ

p|N

1
1 ≠ p≠2

2
.

We now calculate the Euler-Poincaré characteristics ‰
1
�1(N)

“Õ
1‡

2
. For h =

Q

ca
1

Ô
d

0 2

R

db,

we have the following description

�1(N)
“Õ

1‡
=

Y
_]

_[

Q

ca
x + z

Ô
d y +

w≠x
2

Ô
d

2z w ≠ z
Ô

d

R

db œ SL2(OK) |

x ≠ 1 © w ≠ 1 © z © 0 (modN) and w © x (mod 2N)

Z
^

\.

For d © 2 (mod 4), the condition that w © x (mod 2N) directly follows from the
condition that the determinant is 1 for a matrix in SL2(OK). An easy calculation shows
that

h≠1
�1(N)

“Õ
1‡h =

Y
_]

_[

Q

ca
x 2y + zd

z w

R

db œ SL2(Z) | x © w © 1, z © 0 (modN)

Z
_̂

_\
.

Thus, we have a relation

h≠1
�1(N)

“Õ
1‡h = �

e
1
(N) fl �

Õ.
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Here, �
Õ Æ SL2(Z) is the group of matrices that are of type

Y
_]

_[

Q

ca
x 2y

z w

R

db œ SL2(Z)

Z
_̂

_\
. A

small check shows that the index is given by

Ë
�

e
1
(N) : �

e
1
(N) fl �

ÕÈ
=

Y
__]

__[

N+2

2
if N is even,

N+1

2
if N is odd.

If N is odd, then the cosets of the quotient spaces are represented by the matrices

Q

ca
1 0

0 1

R

db ,

Q

ca
1 1

0 1

R

db , .....,

Q

ca
1 N ≠ 4

0 1

R

db ,

Q

ca
1 N ≠ 2

0 1

R

db .

On the other hand, for even N , they are represented by

Q

ca
1 0

0 1

R

db ,

Q

ca
1 1

0 1

R

db , .....,

Q

ca
1 N ≠ 3

0 1

R

db ,

Q

ca
1 N ≠ 1

0 1

R

db .

Similarly for when d © 1, 3 (mod 4), the index
Ë
�

e
1
(N) : h≠1

�1(N)
“Õ

1‡h
È

is N+2

2
if N is

even, and it is N+1

2
if N is odd. This implies that

‰
1
�1(N)

“Õ
1‡

2
=

Y
__]

__[

1
N+2

2

2
‰

!
�

e
1
(N)

"
if N is even,

1
N+1

2

2
‰

!
�

e
1
(N)

"
if N is odd.

This completes the proof of the proposition (using Theorem 7.0.1 and Lemma 7.0.2)."

Corollary 7.3.6. Let p be an odd rational prime that is unramified over K. Let t be the number
of distinct prime divisors of D. Then, for n > 0, we have

L
!
‡, �1 (pn

) , Mk
"

= ≠(2
a

+ (pn
+ 1)2

b≠1
) ·

1
p2n ≠ p2n≠2

2

12
· (k + 1).

Proof. Since p is odd, recall that p is the only prime divisor of the level. Since the prime
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p is unramified, we have
Q

aA1(N) +

A
N + 1

2

B

B1(N)

R

b · ≠N2

12

Ÿ

p|N

1
1 ≠ p≠2

2
· (k + 1)

=

Q

a2
a

+

A
pn

+ 1

2

B

2
b

R

b · ≠p2n

12

1
1 ≠ p≠2

2
· (k + 1)

=

1
2

a
+ (pn

+ 1)2
b≠1

2
· ≠1

12

1
p2n ≠ p2n≠2

2
· (k + 1)

= ≠
1
2

a
+ (pn

+ 1)2
b≠1

2
·

1
p2n ≠ p2n≠2

2

12
· (k + 1).
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Trace on the Eisenstein cohomology

"For any k œ N fi {0}, let C[x, y]k represent the space of homogeneous polynomials of
degree k in variables x and y with complex coefficients. The modular group SL2(C)

acts naturally on this space. Now, define the SL2(C)-module Mk as the tensor product
of C[x, y]k and its complex conjugate. This module, denoted as Mk, induces a locally
constant sheaf Mk on Y�, where the stalks of Mk are isomorphic to Mk, and the action
on the conjugate factor is twisted with complex conjugation."

Let ‡ represent the complex conjugation, and let the twisted complex conjugation be
denoted by · . The actions of both ‡ and · on H3 and SL2(OK) are defined in Section 7.1.

For N œ N, let CN be the set of cusps of the congruence subgroups of the form
�1(N).

8.1 Trace on the Eisenstein cohomology for full group

Recall the following Proposition by Sengün-Türkelli [10].

Proposition 8.1.1. (Sëngun- Türkelli [10]). Let G = SL2(OK). Then, the image of the
restriction map

H
1

1
XBS

G ;C

2
æ H

1
1
ˆXBS

G ;C

2

is inside the ≠1-eigenspace of complex conjugation acting on H
1

1
ˆXBS

G ;C

2
.

82
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Let us note that this result is extended to all maximal orders of M2(K) (with com-
plex conjugation twisted accordingly) by Blume-Nienhaus [6, V.5.7] and by Berger [5,
Section 5.2].

Corollary 8.1.2. (Sëngun- Türkelli [10]). Let ‡i
Eis be the involution on H

i
Eis

!
SL2(OK);C

"

given by complex conjugation. Then

tr

1
‡0

Eis

2
= 1, tr

1
‡1

Eis

2
= ≠h(K), tr

1
‡2

Eis

2
= ≠2

t≠1
+ 1

where t is the number of primes that ramify in K and h(K) is the class number of K.

Proof. "Let us denote X = XBS
SL2(OK)

for convenience.

The claim for ‡0

Eis follows straightforwardly from the fact that H
0

Eis(X;C) =

H
0
(X;C) = C. The action of ‡ on the latter is trivial. It’s a well-known result that

the set of cusps of SL2(OK) is in bijection with the class group of K, and the action
of complex conjugation ‡ on the cusps corresponds to taking the inverse in the class
group. See [36, Theorem 9] for further details.

Thus, an element of the class group is fixed by ‡ if and only if it is of order 2.
Genus Theory tells us that the number of elements of order 2 in the class group is 2

t≠1,
implying that the trace of the involution induced by ‡ on H

0
(ˆX;C) is 2

t≠1.

By Poincaré duality and the orientation-reversing nature of complex conjugation,
we deduce that the trace of the involution induced by ‡ on H

2
(ˆX;C) is ≠2

t≠1.
The long exact sequence associated with the pair (X, ˆX) tells us that H

2
(ˆX;C) ƒ

H
2

Eis(X;C) ü H
3
(X, ˆX;C). Here, the last summand is isomorphic to C, and ‡ acts on

it as ≠1, which follows from the fact that the action of ‡ on H
0
(X;C) is trivial. This

completes the proof for ‡2

Eis."

8.2 Trace formula on the Eisenstein cohomology for �(N)

Theorem 8.2.1.(Sëngun- Türkelli [10]). Assume that the class number of K is one and
let p be a rational prime that is inert in K. Let fl be the complex conjugation acting on the
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cohomology group. Then we have

tr

1
‡ | H

1

Eis

!
� (pn

) ;C
"2

=

Y
__]

__[

≠(p2
+ 1) if n = 1,

≠
1
p2n ≠ p2n≠2

2
if n > 1.

Proof. For a proof, we refer to the work of Sëngun and Türkelli [10, page 15].

Theorem 8.2.2. (Sëngun- Türkelli [10]). Let t be the number of rational primes ramifying
in K and ‡ be a complex conjugation acting on the cohomology group. Let N = pn1

1 . . . pnr
r

be a positive odd number whose prime divisors pi are unramified in K and let �(N) be the
congruence subgroup of the Bianchi group SL2(OK) of level ideal (N). Then

tr

1
‡ | H

2

Eis

!
�(N); Mk

"2
= ≠2

t≠r≠1 ·
rŸ

i=1

1
p2ni

i ≠ p2ni≠2

i

2
+ ”(0, k),

where ” is the Kronecker ”-function.

In particular, the trace of ‡2

Eis on H
2

Eis

!
SL2(OK); Mk

"
is ≠2

t≠1
+ ”(0, k).

Proof. For a proof, we refer to the work of Sëngun and Türkelli [10, page 11].

8.3 Trace on the Eisenstein cohomology for �1(N)

We compute the trace of complex conjugation on the Eisenstein cohomology following
Sengün-Türkelli [10] for the subgroups of the form �1(N) inside the Bianchi modular
groups.

Theorem 8.3.1. Assume that the class number of K is one and let p be a rational prime that
is inert in K. Let ‡ denote involution induced on the Eisenstein cohomology of �1(N) by a
nontrivial an automorphism of K. Then we have

tr

1
‡ | H

1

Eis

!
�1 (pn

) ;C
"2

=

Y
__]

__[

≠2 if n = 1

≠#Cpn ·
1

≠2

p2≠1

2
if n > 1

where #Cpn is the number of cusps of �1(pn
).
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Proof. This proof is motivated by the work of Sengün-Türkelli [10].

"By Ito’s result [23], we establish the following relation

�(0, 0)(Ā) = ≠�(0, 0)(A).

Here, the bar indicates taking the complex conjugates of the entries of the matrix A.
More generally, Ito demonstrates that

�(u, v)(Ā) =
≠1

N2

ÿ

s,tœ 1
N OK/OK

„(sv̄ ≠ tū)�(s, t)(A)

where „(z) := exp(2fii(z ≠ z̄)/D) and D is the discriminant of K. Observe that when
(s, t) = (u, v) or (s, t) = (0, 0), we have „(sv̄ ≠ tū) = 1. Using this, we can rewrite this
summation more suggestively:

�(u, v)(Ā) =
≠1

N2

S

WWWWWWWWWU

�(0, 0)(A) + �(u, v)(A) +

Q

cccccccca

ÿ

s,tœ 1
N OK/OK

(s,t) ”=(u,v)

(s,t) ”=(0,0)

„(sv̄ ≠ tū)�(s, t)(A)

R

ddddddddb

T

XXXXXXXXXV

.

The action of complex conjugation ‡ on the Sczech cocycles is given by

‡(�(u, v))(A) := �(u, v)(Ā).

We observe that ‡(�(u, v)) is expressed as a summation over all the Sczech cocycles.
Let us consider the operator ‡ as a linear operator on the formal space C [�N ], where
the Sczech cocycles serve as a basis.

The pair (0, 0) œ
1

1

NOK/OK

2
2

never corresponds to a cusp of �1(N), so we elimi-
nate the term �(0, 0) from the summation. Applying Ito’s summation formula for the
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case (u, v) = (0, 0), we obtain

�(0, 0)(Ā) =
≠1

N2

S

WWWWWWU
�(0, 0)(A) +

Q

ccccca

ÿ

s,tœ 1
N OK/OK

(s,t) ”=(0,0)

�(s, t)(A)

R

dddddb

T

XXXXXXV
.

Given the relation �(0, 0)(Ā) = ≠�(0, 0)(A), we have

�(0, 0)(A) =
1

N2 ≠ 1

ÿ

s,tœ 1
N OK/OK

(s,t) ”=(0,0)

�(s, t)(A).

Now, for (u, v) ”= (0, 0), we find

�(u, v)(Ā) =
≠1

N2

S

WWWWWWU
�(0, 0)(A) +

Q

ccccca

ÿ

s,tœ 1
N OK/OK

(s,t) ”=(0,0)

„(sv̄ ≠ tū)�(s, t)(A)

R

dddddb

T

XXXXXXV
.

Substituting �(0, 0)(A), we obtain the expression

�(u, v)(Ā) =
≠1

(N2) (N2 ≠ 1)

ÿ

s,tœ 1
N OK/OK

(s,t) ”=(0,0)

�(s, t)(A) +
≠1

N2

ÿ

s,tœ 1
N OK/OK

(s,t) ”=(0,0)

„(sv̄ ≠ tū)�(s, t)(A).

As �(≠u, ≠v) = �(u, v), we define C [�
ú
N ] to be the formal vector space generated by

the basis
Y
]

[�(u, v) | (u, v) œ
A

1

N
OK/OK

B
2

/ ± 1, (u, v) ”= (0, 0) and u modulo gcd(v, N)

Z
^

\ .

Having eliminated �(0, 0) from the above equation, we now regard ‡ as a linear oper-
ator on the formal space C [�

ú
N ].

Recall that �(≠u, ≠v) = �(u, v) and „(≠uv̄ + vū) = „(uv̄ ≠ vū) = 1. We notice that
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the coefficient of the summand �(u, v)(A) on the right-hand side of the equality is

≠1

(N2) (N2 ≠ 1)
+

≠1

N2
=

≠2

N2 ≠ 1
.

This implies that the trace of ‡ on C [�
ú
N ] is (#CN) · ≠2

N2≠1
.

For N = p, we have #Cp = p2≠1. Hence, the trace of ‡ on C

Ë
�

ú
p

È
is

1
p2 ≠ 1

2
· ≠2

p2≠1
= ≠2.

For N = pn with n > 1, we have #Cpn = |P̄+\SL2(OK/pn
OK)/P̄ |. The trace of ‡ on

C

Ë
�

ú
p

È
is

1
#Cpn

2
· ≠2

p2≠1
."

Theorem 8.3.2. Consider an imaginary quadratic field denoted by K, and let t be the
number of distinct prime divisors of the discriminant of K/Q. For a positive odd number
N = pn1

1 . . . pnr
r with prime divisors pi that are unramified in K, let �1(N) be the congruence

subgroup of the Bianchi group SL2(OK) with a level ideal of (N). Let fl be the involutions
induced in the Eisenstein cohomology of �1(N) by non-trivial automorphisms of K. Then

tr

1
‡ | H

2

Eis

!
�1(N); Mk

"2
= – · ≠2

t≠r≠1 ·
rŸ

i=1

1
p2ni

i ≠ p2ni≠2

i

2
+ ”(0, k)

where – = #
!
(�1(N)/�(N))

fl"
and ” is the Kronecker ”-function.

In particular, the trace of fl2

Eis on H
2

Eis

!
SL2(OK); Mk

"
is ≠2

t≠1
+ ”(0, k).

Proof. This proof is motivated by the work of Sengün-Türkelli [10]
"Let us assume that k > 0 and � = �1(N). In this scenario, the restriction map

H
2

1
XBS

�
;Mk

2
æ H

2

1
ˆXBS

�
;Mk

2
is onto. Hence, it suffices to compute the trace of fl2

on H
2

1
ˆXBS

�
;Mk

2
. Using Poincaré duality and considering that fl reverses the orien-

tation, we can reduce the problem to computing the trace of fl0 on H
0

1
ˆXBS

�
;Mk

2
.

The cohomology of the boundary can be seen as a direct sum of the cohomology
of the boundary components Xc, which are 2-tori:

H
0

1
ˆXBS

�
;Mk

2
ƒ

n

cœC�

H
0

1
XBS

c ;Mk

2
ƒ

n

cœC�

H
0

(�c; Mk) .

If c is a cusp, then fl maps �c to �fl(c). If c ”= fl(c), then

H
0

(�c; Mk) ü H
0

1
�fl(c); Mk

2
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forms a fl0-invariant subspace of
m

cœC� H
0

(�c; Mk). Since fl0 takes the basis of the first
summand to the basis of the second summand, the trace of fl0 on this subspace is 0.

If c = fl(c), then fl0 acts on the one-dimensional space H
0

(�c; Mk) and hence has the
trace equal to 1. Therefore,

tr

3
‡ | H

0
1
ˆXBS

�
;Mk

24
= # (C�)

fl

which means that the trace of fl0 equals the number of cusps of � that are invariant
under the action of fl.

Recall that C� =
g

xœCG
�\Gx, where G is SL2(OK). Clearly, a cusp c = gx� œ C� is

fl-invariant only if x œ CG is also invariant under fl. Thus, we have

(C�)
fl

=
h

xœ(CG)
fl

(�\Gx)
fl.

According to [10, Corollary 4.4], we deduce that # (CG)
fl

= 2
t≠1. By [10, Lemma 4.5],

it is enough to compute #
!
�\GŒ

"fl.

Now, let us denote

R := OK/(N), U+
(R) :=

Q

ca
±1 R

0 ±1

R

db , U(R) :=

Q

ca
1 R

0 1

R

db .

Following our discussion on the cusps, we get

#((�/�(N)) · (�(N)\GŒ))
fl

= #

1
(�/�(N))

fl · (�(N)\GŒ)
fl
2

= – · #

1
U+

(R)\SL2(R)

2fl
.

Now, using Sengün-Türkelli [10] and above observation, it is enough to compute
#

1
U+

(R)\SL2(R)

2fl
. Observe that ‡ fixes the ideal (N). Hence, the action of ‡ on OK

descends to an action on R. The action of ‡ and · on SL2(R) are defined as follows

‡

Q

cca

Q

ca
a b

c d

R

db

R

ddb =

Q

ca
‡a ‡b

‡c ‡d

R

db , ·

Q

cca

Q

ca
a b

c d

R

db

R

ddb =

Q

ca
‡a ≠‡b

≠‡c ‡d

R

db ,
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where ‡a is the action of ‡ on a.
Let us first handle the special case when N = pn for a prime p. Consider the

bijections of sets of matrices

U+
(R)\SL2(R) ƒ U+

(R)\B(R) ◊ B(R)\SL2(R)

where B(R) is the subgroup of upper-triangular matrices in SL2(R). There are well-
known bijections

B(R)\SL2(R) ¡ P
1
(R),

S

WU
a b

c d

T

XV ‘æ (a : c)

where P
1
(R) denotes the projective line over R, and

U(R)\B(R) ¡ Rú,

S

WU
a b

0 a≠1

T

XV ‘æ a.

These bijections lead to the identification

U+
(R)\SL2(R) ƒ Rú/{±1} ◊ P

1
(R).

It is straightforward to transfer the action of ‡ and · to the right-hand side. We imme-
diately see that 1

U+
(R)\SL2(R)

2fl
ƒ

!
Rú/{±1}

"fl ◊ P
1
(R)

fl.

We first compute #P
1
(R)

fl. It can be seen that P1
(R‡

) Òæ P
1
(R) and in fact P1

(R‡
) =

P
1
(R)

‡. Note that P1
(R‡

) ƒ P
1

!
Z/pn

Z
"

and thus has the cardinality pn
+ pn≠1. Com-

putation shows that P1
(R)

· has the same number of elements.
Now, let us compute #

!
Rú/{±1}

"fl. The actions of ‡ and · are same on Rú. Clearly,
we have #

!
Rú/{±1}

"fl
= (1/2) · # (Rú

)
fl. We now consider the following cases.

• Let p be a prime that splits in K. We then have

(R)
fl

=
!
OK/pn

OK
"fl

=

1
Z

Ô
≠d/pn

Z

Ô
≠d

2fl
=

1
Z

Ô
≠d

2fl
/

1
pn
Z

Ô
≠d

2fl
.

1. When fl = ‡, the automorphism ‡ acts on Z
Ô

≠d by ‡(a+b
Ô

≠d) = a≠b
Ô

≠d.



90 8.4. Lower bounds for the cohomology via Lefschetz number and trace

Let (a + b
Ô

≠d) œ
1
Z

Ô
≠d

2‡
. Then (a + b

Ô
≠d) = (a ≠ b

Ô
≠d), which implies

b = 0 and a œ Z.

2. On the other hand if fl = · , the automorphism · acts on Z
Ô

≠d by ·(a +

b
Ô

≠d) = ≠a + b
Ô

≠d. Let (a + b
Ô

≠d) œ
1
Z

Ô
≠d

2·
. Then (a + b

Ô
≠d) =

(≠a + b
Ô

≠d), which implies a = 0 and b œ Z. We have R ƒ
!
Z/pn

Z
"

2 and
hence # (Rú

)
fl

= #
!
Z/pn

Z
"ú

= pn ≠ pn≠1.

• When p is inert in K, we can view R as the quadratic extension
!
Z/pn

Z
"
[Ê] of

the ring Z/pn
Z. It follows that Rú

= {a + b · Ê œ
!
Z/pn

Z
"ú

[Ê]}. We now calculate
(R)

fl when p is split in K. We deduce that (Rú
)

fl is given by

{a + b · Ê œ
!
Z/pn

Z
"
[Ê] | p - a, b = 0 for fl = ‡ or p - b, a = 0 for fl = ·}.

The cardinality of this set is pn ≠ pn≠1.

In both inert and split cases, we get the quantity

#

1
U+

(R)\SL2(R)

2fl
=

1

2
·

1
p2n ≠ p2(n≠1)

2
.

To complete the proof, let us assume that N = pn1
1 . . . pnr

r is a positive number
whose prime divisors pi are unramified in K. The result in this general case follows
from the simple fact that

SL2(OK/(N)) ƒ SL2

1
OK/ (p1)

n1
2

◊ · · · ◊ SL2

1
OK/ (pr)

nr
2

.

"

8.4 Lower bounds for the cohomology via Lefschetz
number and trace

Recall the following from Sengün-Türkelli [10, Proposition 5.2].
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Assuming fl is an orientation-reversing involution, we aim to establish a lower
bound for the dimension of the cuspidal cohomology in relation to the Lefschetz num-
ber of fl. Assuming fl extends its action from Y� to XBS

�
, it induces involutions on the

terms of the long exact sequence. Denoting fli as the action of fl on the cohomology
group H

i, we have

tr

1
fli

2
= tr

1
fli

cusp

2
+ tr

1
fli

Eis

2
.

Poincaré duality implies H
1

cusp ƒ H
2

cusp. Since fl is an orientation-reversing involu-
tion, it follows that tr

1
fl1

cusp

2
= ≠ tr

1
fl2

cusp

2
. Hence, we obtain

L(fl, �, Mk) = tr

1
fl0

2
≠ 2 tr

1
fl1

cusp

2
≠ tr

1
fl1

Eis

2
+ tr

1
fl2

Eis

2
(8.1)

This leads to the following proposition:

Proposition 8.4.1 (J.Rohlfs). We have

dim H
1

cusp(�; M) Ø 1

2

----L(fl, �, M) + tr

1
fl1

Eis

2
≠ tr

1
fl2

Eis

2
≠ tr

1
fl0

2---- .

Proof. Since fl is an involution, the eigenvalues of fl1

cusp are ±1, and so

dim H
1
(�; M) Ø

----tr
1
fl1

cusp

2---- .

The result follows from Equation 8.1.

Note that when M = Mk with k > 0, tr

1
fl0

2
= 0 since M is an irreducible �-

representation.

Proposition 8.4.2. Let p be a rational prime that is unramified in K and let �1 (pn
) denote

the subgroup of level (pn
) of a Bianchi group SL2(OK). Then

1.
dim H

1

cusp
!
�1 (pn

) ; Mk
"

∫ k

as k increases and n is fixed.

2. Assume further that the class number of K is one. We have the following asymptotic
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bound:
dim H

1

cusp
!
�1 (pn

) ;C
"

∫ p3n

as n increases.

Proof. From Proposition 8.4.1, we get

dim H
1

cusp (�; Mk) Ø 1

2

3
L(‡, �, k) + tr

1
‡1

Eis, �, k
2

≠ tr

1
‡2

Eis, �, k
24

.

Fix the congruence subgroup �. According to Proposition 6.1.3, the dimension of the
Eisenstein part of the cohomology remains consistent for every weight k > 0. Thus,
the weight-dependent aspect of the asymptotic behavior can be inferred from Corol-
lary 7.3.6 in the preceding section.

The assertion in (2) is a direct consequence of Theorem 8.3.2 and Theorem 8.3.1, in
conjunction with the Lefschetz number formula provided in Corollary 7.3.6.
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Future research plans on the Bianchi modular
forms

In this section, we would like to explore some potential future prospects to pursue.

Problem 9.0.1. Can we find the exact value of the integration by integrating over all the faces
of the imaginary quadratic field using the inner product formula Proposition 5.3.2?

The approach will be to find all the faces of the fundamental domain §3.3 with
exact limits.

Problem 9.0.2. Can we generalize the definition of quasi-periods in Section 5.3.1 for different
imaginary quadratic fields?

The approach in this direction would be to first find the fundamental domain of
that field and carefully choose the limits of integration.

Problem 9.0.3. After solving problem 9.0.2, can we also generalize the inner product formula
Proposition 5.3.2 for different imaginary quadratic fields?

The approach in this direction would be to find the fundamental domain of that
field and identify all the faces of the fundamental domain.

Problem 9.0.4. We know from Section 5.4.2 that EE œ H1(XBB
�

, ˆXBB
�

;C). Can we show
that EE œ H1(XBB

�
, ˆXBB

�
;Q)?
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Problem 9.0.5. Can we find the exact values of a and b given in 2
a and 2

b as defined in §7.1
and §7.2?

Problem 9.0.6. Can we generalize Proposition 6.1.4, Theorem 8.2.1, and Theorem 8.3.1 for
imaginary quadratic fields with class number greater than one?

Problem 9.0.7. In this thesis, we are considering � Æ SL2(OK), as a subgroup of finite index
with no elements of finite order. Can we generalize our work for � Æ SL2(OK) to be a subgroup
of the finite index with elements of finite order (i.e., having some torsion) or a subgroup of the
infinite index?

Problem 9.0.8. Can we determine the upper bound on the dimension of cuspidal cohomology
mentioned in Proposition 8.4.2 and also calculate the dimension of cuspidal cohomology?

One can also attempt to solve the conjecture of cuspidal cohomology in Bianchi
modular forms as proposed in the work of Haluk Sengün [9].

Problem 9.0.9. Can we determine the Eisenstein part of the cohomology groups for sub-
groups of the form �0(N) and generalize the Sczech cocycle technique for subgroups of the
form �0(N)?

Problem 9.0.10. Can we generalize Chapters 7 and 8 for congruence subgroups � of the
symplectic group Sp

2n(OK) (i.e., for Siegel modular forms)?
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[25] P. F. Kurčanov, The cohomology of discrete groups and Dirichlet series that are related
to Jacquet-Langlands cusp forms, Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), no. 3,
588–601.

[26] J. Kwon, Bianchi modular symbols and p-adic L-functions, J. Number Theory 249
(2023) 274–313.

[27] Z. Miao, A. Nguyen, and T. A. Wong, Kronecker’s first limit formula for Kleinian
groups, Funct. Approx. Comment. Math. 69 (2023), no. 1, 7–25.
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