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Abstract

A famous conjecture of Sato and Tate (now a celebrated theorem of Taylor et

al) predicts that the normalised p-th Fourier coefficients of a non-CM Hecke

eigenform follow the Sato-Tate distribution as we vary the primes p. In 1997,

Serre obtained a distribution law for the vertical analogue of the Sato-Tate

family, where one fixes a prime p and considers the family of p-th coefficients

of Hecke eigenforms. In this thesis, we address a situation in which we vary

the primes as well as families of Hecke eigenforms. In the same year, Conrey,

Duke and Farmer obtained distribution measures for Fourier coefficients of

Hecke eigenforms in these families. Later, in 2006, Nagoshi obtained similar

results under weaker conditions. We consider another quantity, namely the

number of primes p for which the p-th Fourier coefficient of a Hecke eigenform

lies in a fixed interval I. On averaging over families of Hecke eigenforms, we

derive an expression for the fluctuations in the distribution of these eigen-

values about the Sato-Tate measure. Further, the fluctuations are shown to

follow a Gaussian distribution. In this way, we obtain a conditional Central

Limit Theorem for the quantity in question. Similar results are also proved

in the setting of Maass forms. This extends a result of Wang (2014), who

proved that the Sato-Tate theorem holds on average in the context of Maass

forms.

In a separate project, we consider a classical result in number theory: Dirich-

let’s theorem on the density of primes in an arithmetic progression. We prove
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a similar result for numbers with exactly k prime factors for k > 1. Building

upon a proof by E.M. Wright in 1954, we compute the asymptotic density

of such numbers where each prime satisfies a congruence condition. As an

application, we obtain the density of squarefree n ≤ x with k prime factors

such that a fixed quadratic equation has exactly 2k solutions modulo n.

ii



Acknowledgements

It makes me nostalgic to look back at my mathematical journey so far and

think about all the people and events that have led to this moment, where

I give thanks. I am grateful to a lot of people and I thank the Almighty

for the blessing to be able to say so. I would like to start with my school

teachers in Dubai, where I spent six years of my schooling. This was where

I first decided I wanted to take up Mathematics. I am grateful to Mrs. K.

C. Usha, who taught me math in my eleventh and twelfth grade in Chennai

and always inspired the class with anecdotes on what it means to work hard.

I am immensely thankful to my teachers in the summer math camps of MTTS

(Mathematics Training and Talent Search) programmes in the years 2008,

2009 and 2011. These programmes inspired me to pursue a research career

in mathematics. I thank Prof. S. Kumaresan, the director of the annual pro-

gramme for allowing me to participate in the programme and learn mathe-

matics in a way that brought out the beauty of proofs and arguments, seldom

taught in the classroom environment of most colleges in India.

IIT Bombay exposed me to a research environment and I thank all my course

instructors, especially Prof. B. V. Limaye for teaching me during my masters

programme there. This brings me to the place I am currently as I write this,

IISER Pune. I am very, very grateful to Dr. Kaneenika Sinha for agreeing to

supervise my thesis and for giving me a very interesting problem to work on.

Thank you for the independence you gave me to come up with my own ideas

and patiently listening to all of them even though many of them eventually

didn’t work out. I never imagined that a PhD supervisor could be a friend at

iii



the same time; thanks for the occassional Friday evening chats that involved

sharing past experiences, giving me counsel and of course, sharing a lot of

laughs. I also thank Prof. A. Raghuram, who always made time if a student

wanted to talk to him. Thank you for your advice and motivating me to aim

higher and to never give up. I am very grateful to Prof. Ram Murty who

came to India regularly and never refused to give me ample time to discuss

my ongoing work or share his valuable insights.

I would like to thank NBHM for the PhD Scholarship throughout the PhD

program. In the same spirit, I am grateful to the National Centre for Mathe-

matics for giving me the opportunity to attend various workshops that helped

me mathematically and gave me the opportunity to meet experts in the area

outside Pune. I thank the organizers of various conferences I attended for

their hospitality and exposing me to current research work of world class

mathematicians. I would like to thank all the friends I’ve made over the last

decade (too many to individually name!) for supporting me throughout my

ups and downs and keeping me in good spirits always. Coming to my family,

I am indebted to Steven, my husband and my best friend for his constant

support, encouragement, love and patience in the last two years. I thank

my parents and sister Nina for their unconditional love, affection and under-

standing. Thank you for always supporting my decisions. The list of family

would be incomplete without the mention of my favourite aunt Vidyakka who

taught me to keep faith and who continues to inspire me everyday. There is

no doubt I wouldn’t have come this far without you.

iv



Statement of Originality

The main results of this thesis which constitute original research are Theo-

rems 1.3.1, 1.3.2, 1.3.3 and 1.3.4.

Propositions 3.5.1, 3.6.1, 4.3.1 and 6.3.1 as well as Theorem 4.3.2 are original

subsidiary results that are required to prove the main results.

Theorems 5.2.1 and 5.2.2 are results that follow using the same techniques

used in the proof of Theorem 1.3.1 and are stated without proof.
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Notation

• N,Z,Q and R denote the set of natural numbers, integers, rational

numbers and real numbers respectively.

• C denotes the field of complex numbers; for z ∈ C, Re(z) will denote

its real part, Im(z) its imaginary part, |z| its absolute value and z its

complex conjugate.

• H denotes the upper-half complex plane.

• For x ∈ R, the quantity π(x) will denote the number of primes not

exceeding x.

• For a ring R, SL2(R) denotes the ring of 2×2 matrices with entries in R

of determinant 1. Similarly, GL2(R) will denote the ring of 2×2 matri-

ces which are invertible. If R is contained in the field of real numbers,

then GL+
2 (R) be the subset of GL2(R) with positive determinant.

• For a finite set S, |S| or #S will denote the cardinality of S.

• For integers a and b, we write a|b to mean that a is a divisor of b and

gcd (a, b) to denote the greatest common divisor of a and b.

• For a positive integer n, we have the Euler-φ function given by

φ(n) = n
∏
p|n

p: prime

(
1− 1

p

)
.
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• For a positive integer n, ψ(n) is given by

ψ(n) = n
∏
p|n

p: prime

(
1 +

1

p

)
.

• Let a and n be a natural numbers. Then a is said to be a quadratic

residue mod n if there exists a non-zero integer x such that

x2 ≡ a mod n.

Else it is called a quadratic non-residue.

• Let p be an odd prime and a be an integer. The Legendre symbol is

defined as

(
a

p

)
=


1 if a is a quadratic residue mod p

−1 if a is a quadratic non-residue mod p

0 if a ≡ 0 mod p.

(1)

• For real valued functions f and g with g 6= 0 we write

f ∼ g

to mean

lim
x→∞

f(x)

g(x)
= 1.

• If g is positive, we write

f = OR(g)

or

f �R g

to mean that there exists a positive constant c = c(R), depending on

some quantity R such that |f(x)| ≤ c(R)|g(x)| for all x; if the constant

c(R) is absolute, then we simply write

f = O(g)
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or

f � g.

• We write

f = o(g)

to mean that

lim
x→∞

f(x)

g(x)
= 0.
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Chapter 1

Introduction

1.1 Preliminaries

In this section, we review some basic properties of modular forms, Maass

forms and Hecke operators. These will form the backbone of the problems

addressed in this thesis. The interested reader may want to look at [9] and

[13] for more details.

1.1.1 Modular forms

The group SL2(R) acts on the upper half plane

H := {x+ iy | x ∈ R, y > 0}.

For γ =

(
a b
c d

)
∈ SL2(R) and z ∈ H, the action is given by

γz =
az + b

cz + d
.

Definition 1.1.1 Let f(z) be a meromorphic function on the upper half

plane H and let k be an even positive integer.

The function f is called a modular form of weight k for Γ = SL2(Z) if the

following conditions are satisfied:

(1)

f(γz) = (cz + d)kf(z) for all γ =

(
a b
c d

)
∈ Γ.
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(2) f(z) is holomorphic at infinity and by (1), we have f(z + 1) = f(z)

therefore we have the following Fourier series expansion:

f(z) =
∑
n∈Z

anq
n, where q = e2πiz

has an = 0 for n < 0.

If further we have a0 = 0, that is, the modular form vanishes at infinity, then

f(z) is called a cusp form of weight k with respect to Γ.

In general, one could consider finite index subgroups of Γ and look at mero-

morphic functions that respect the transformation properties as in (1) above

with respect to these subgroups. Besides Γ = SL2(Z), some of its subgroups

are of special significance. We define them now.

Let N be a positive integer. We define

Γ(N) =

{(
a b
c d

)
∈ SL2(Z) : a ≡ d ≡ 1 mod N, b ≡ c ≡ 0 mod N

}
.

This subgroup is called the principal congruence subgroup of level N .

A subgroup of Γ is called a congruence subgroup of level N if it contains

Γ(N). Given a discrete subgroup Γ′ of GL+
2 (R), an element of Γ′ is called

parabolic if it is conjugate in GL+
2 (R) to a matrix of the form

(
a 1
0 a

)
. A cusp

of Γ′ is an element s ∈ R ∪ {∞} such that s is fixed by a parabolic element

of Γ. In the case of a discrete subgroup Γ′ ⊂ SL2(Z), it can be shown (see

Proposition 3.5 in [12]) that the set of cusps of Γ′ is Q ∪ {∞}.
We now define modular forms for congruence subgroups. For

γ =

(
a b
c d

)
∈ GL+

2 (Z),

it will be convenient to use the following notation. We denote the value of

f
∣∣[γ]k at z by:

f
∣∣[γ]k(z) = (det γ)

k
2 (cz + d)−kf(γz).

Note that this is an action of GL+
2 (Z) on the space of meromorphic func-

tions on H. Let f(z) be a meromorphic function in H and let Γ′ ⊂ Γ be a

2



congruence subgroup of level N . Let k ∈ Z. Let g = f
∣∣[γ0]k for some fixed

γ0 ∈ GL+
2 (Q). If f is invariant under Γ′, that is, if f

∣∣[γ]k = f for γ ∈ Γ′,

then it follows that g is invariant under the group γ−1
0 Γγ0. Also, if γ1 ∈ Γ

and Γ(N) ⊂ Γ′ then γ−1
1 Γ′γ1 also contains Γ(N). Since

(
1 N
0 1

)
∈ Γ(N), we

have g(z + N) = g(z) and so g = f
∣∣[γ0]k has a Fourier expansion in powers

of qN = e2πiz/N , that is, we have

f
∣∣[γ0]k(z) =

∞∑
n=−∞

an(f
∣∣[γ0]k)q

n
N .

We say that f is holomorphic at the cusps if there are no negative powers

of qN in the Fourier expansion of f
∣∣[γ0]k for any γ0 ∈ SL2(Z). We say that f

vanishes at the cusps if only positive powers occur in the above expansion

for all γ0 ∈ SL2(Z).

For the purposes of this thesis, we will be concerned with one kind of con-

gruence subgroup which is defined as follows:

Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 mod N

}
.

This is called the Hecke congruence subgroup.

Definition 1.1.2 A modular form of weight k with respect to Γ0(N) (or

“level N” ) is a function f : H→ C such that

• f is holomorphic on H,

• f
∣∣[γ0]k = f for all γ0 ∈ Γ0(N),

• f is holomorphic at the cusps.

If in addition, f vanishes at the cusps, then f is called a cusp form of weight

k with respect to Γ0(N). We denote the space for modular forms of weight k

and level N by M(N, k) and the space of cusp forms of weight k and level N

by S(N, k). Both these spaces are finite dimensional complex vector spaces.

Henceforth we will focus our attention on the space S(N, k). The theorems

3



proved will be for level 1, that is, Γ(1) = SL2(Z) and we will make some

remarks about the analogous theorems for higher levels.

The space of cusp forms S(N, k) is equipped with an inner product called

the Petersson Inner Product which is defined below:

Definition 1.1.3 Let f, g ∈ S(N, k). The Petersson inner product of f and

g is defined to be

〈f, g〉 =

∫
Γ0(N)\H

f(z)g(z)yk
dxdy

y2
.

We remark that in the above definition, we could have taken f, g ∈M(N, k)

but with at least one of them in S(N, k) in order for the integral to converge.

If N = d1d2 and f ∈ S(d1, k) then it is not hard to see that f ∈ S(N, k)

as well and g(z) = f(d2z) ∈ S(N, k). The subspace of cusp forms spanned

by the forms that are obtained from lower levels are called oldforms. It is

precisely the C-span of ⋃
N′|N
N′ 6=N

⋃
d| N
N′

{f(dz)|f ∈ S(N ′, k)}.

The orthogonal complement to the space of oldforms with respect to the

Petersson inner product is called the space of newforms and we denote it

by S∗(N, k).

1.1.2 Hecke Operators for cusp forms

For each weight k and level N , there exists a family of linear operators that

preserve the spaces S(N, k) and M(N, k), called the Hecke operators and it

is the distribution of the eigenvalues of these operators that will be analyzed

in a major part of this thesis. We define

∆n(N) :=

{(
a b
0 d

)
∈ GL2(Z) : a, b, d ∈ Z, 0 ≤ b ≤ d− 1, ad = n, gcd (a,N) = 1

}
.
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Definition 1.1.4 Let f ∈ M(N, k) and n be a positive integer. Then the

n-th Hecke operator Tn is defined as

Tn(f) := n
k
2
−1

∑
γ∈∆n(N)

f
∣∣[γ]k.

Let f ∈M(N, k) be non-zero. We say f is a Hecke eigenform if, for each

n so that gcd(n,N) = 1, there exists a complex number λn so that

Tnf = λnf.

We record some very useful and important properties of Hecke operators:

• For m,n ∈ N, if gcd(m,n) = 1 then

TmTn = Tmn.

• More generally, if m,n ∈ N such that gcd(mn,N) = 1 then

TmTn =
∑

d| gcd(m,n)

dk−1Tmn
d2

• The Hecke operators Tn for n ∈ N commute with each other and are

self-adjoint with respect to the Petersson inner product.

• There exists a basis of S(N, k) whose elements are eigenforms for all

Tn for which gcd (n,N) = 1. In particular, if N = 1 there exists

a simultaneous eigenbasis for all Tn, n ≥ 1. For higher levels, that

is, N > 1, if we look at the subspace of newforms, then this space

has the advantage of having a basis consisting of newforms that are

simultaneous eigenforms for all Tn.

• If we were to look at normalized eigenforms, i.e., eigenforms so

that the first Fourier coefficient af (1) = 1, then the eigenvalues of Tn

coincide with the n−th Fourier coefficients af (n) for each eigenform f

in the eigenbasis consisting of newforms.

5



1.1.3 Maass forms

The theory of modular forms described earlier is a special case of holomor-

phic automorphic functions. In general, automorphic functions of weight k

for Γ0(N) need not be holomorphic functions of z. We provide the basic

definitions in this theory that will be sufficient to understand the statement

of the result in this thesis pertaining to Maass forms.

Definition 1.1.5 (Moderate growth) A smooth function f : H → C is

said to have moderate growth at a cusp a ∈ Q∪∞ if f(σa(x+ iy)) is bounded

by a power of y, as y → ∞ for any fixed σa ∈ SL2(R) satisfying σa∞ = a.

The function f is said to have moderate growth if it has moderate growth at

every cusp.

Definition 1.1.6 (Automorphic function of integral weight k with

respect to Γ0(N)) Let N, k ∈ Z and N ≥ 1. An automorphic function of

weight k is a smooth function f : H→ C, of moderate growth, which satisfies

f(γz) =

(
cz + d

|cz + d|

)k
f(z)

for all γ ∈ Γ0(N) and z ∈ H. We let Ak(Γ0(N)) denote the complex vector

space of all automorphic functions of weight k with respect to Γ0(N).

Definition 1.1.7 (Laplace operator) For an integer k, we define the weight

k Laplace operator

∆k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

∂

∂x
.

The weight k Laplace operator has the property that it maps the space

Ak(Γ0(N)) to itself. i.e., for f ∈ Ak(Γ0(N)),

∆kf ∈ Ak(Γ0(N)).

We now have all the ingredients to define a Maass form (of trivial nebenty-

pus).

6



Definition 1.1.8 (Maass form) Let N, k ∈ Z with N ≥ 1. Let ν ∈ C. A

Maass form of type ν of weight k with respect to Γ0(N) is a smooth function

f : H→ C satisfying the following conditions:

• f(γz) =

(
cz + d

|cz + d|

)k
f(z) for all γ =

(
a b
c d

)
∈ Γ0(N), z ∈ H

• ∆kf = ν(1− ν)f , where ∆k is the Laplace operator given in Definition

1.1.7

• f is of moderate growth as in Definition 1.1.5

•
∫∫

Γ0(N)\H
|f(z)|2dxdy

y2
<∞.

Finally, a Maass form is said to be of level N if it is a Maass form for Γ0(N)

and it is not a Maass form for Γ0(M) with M < N .

1.1.4 Hecke operators for Maass forms

Let n ∈ N and f ∈ Ak(Γ0(N)). The Hecke operator Tn is defined by

Tnf(z) =
1√
n

∑
ad=n

∑
b mod d

f

(
az + b

d

)
, z ∈ H.

We describe some important properties. Although some of them are the

same as the properties as those of Hecke operators acting on S(N, k), it is

worthwhile to see that they hold in the case of Maass forms, because it will

be relevant later, when we use these facts to generalize the results in the

modular forms setting to Maass forms.

• For m,n ∈ N, the Hecke operators satisfy:

TmTn =
∑

d| gcd(m,n)

Tmn
d2
.

In particular, the Hecke operators commute with one another.

• The Hecke operators Tn commute with ∆k.

7



• For f, g ∈ Ak(Γ0(N)), the Petersson inner product of f and g is defined

to be

〈f, g〉 =

∫∫
Γ0(N)\H

f(z)g(z)
dxdy

y2
.

We write L2(Γ0(N)\H, k) to denote the completion of the space of all

functions f ∈ Ak(Γ0(N)) satisfying the L2 condition∫∫
Γ0(N)\H

|f(z)|2dxdy
y2

<∞,

with respect to the Petersson inner product.

• If we assume gcd(n,N) = 1, then Tn is a normal operator. The prop-

erties so far tell us that we may diagonalize the space L2(Γ0(N)\H, k)

with respect to these operators and ∆k. The Selberg spectral decom-

position states that the Hilbert space L2(Γ0(N)\H, k) decomposes into

Maass cusp forms, Eisenstein series and residues of Eisenstein series.

We will be concerned with the restriction of the Hecke operators and

∆k to the space of Maass cusp forms. For the precise definition of this

space, the reader may consult Chapter 3 of [9].

• We let C(Γ \ H) denote the space of Maass cusp forms with respect to

Γ = SL2(Z). We have an orthonormal basis for C(Γ\H) of simultaneous

eigenforms for the Hecke operators Tn and the Laplace operator ∆k,

which we denote by {fj : j ≥ 0}.

• For an eigenform fj we have

∆kfj =

(
1

4
+ t2j

)
fj, Tnfj = aj(n)fj,

where aj(n) are the eigenvalues of Tn.

• For z = x+ iy ∈ H, each fj has the Fourier expansion

fj(z) =
√
y%j(1)

∞∑
n=1

aj(n)Kitj(2π|n|y)e(nx), (1.1)

8



where aj(n) ∈ R, %j(1) 6= 0 and Kν is the K-Bessel function of order ν.

• We order the fj’s so that 0 < t1 ≤ t2 ≤ t3 ≤ . . . . It is well known that

for level 1,

(Weyl’s law) r(T ) := #{j : 0 < tj ≤ T} =
1

12
T 2 + O(T log T ). (1.2)

Weyl’s Law was obtained by Selberg [31] as a consequence of the Sel-

berg’s Trace Formula, and in particular, it proved that Maass forms

exist.

1.2 History and Motivation of the problem

The statistical distribution of eigenvalues of the Hecke operators acting on

spaces of modular cusp forms and Maass forms has been well investigated in

recent years ([1], [29], [33]). Among the early developments that motivated

this study was a famous conjecture, stated independently by M. Sato and

J. Tate around 1960. This conjecture predicted a distribution law for the

second order terms in the expression for the number of points in a non-CM

elliptic curve modulo a prime p as the primes vary. Serre [32] generalised this

conjecture in 1968 in the language of modular forms. The modular version

of the Sato-Tate conjecture can be understood as follows:

Let k be a positive even integer and N be a positive integer. Let S(N, k)

denote the space of modular cusp forms of weight k with respect to Γ0(N).

For n ≥ 1, let Tn denote the n-th Hecke operator acting on S(N, k). We

denote the set of all newforms in S(N, k) by FN,k. Any f(z) ∈ FN,k has a

Fourier expansion

f(z) =
∞∑
n=1

n
k−1
2 af (n)qn,

where af (1) = 1 and

Tn(f(z))

n
k−1
2

= af (n)f(z), n ≥ 1.

9



A cusp form is said to be a CM form if there is a non-trivial Dirichlet char-

acter φ such that af (p) = φ(p)af (p) for all primes p in a set of primes of

density 1. Otherwise, it is called a non-CM form.

Let p be a prime number such that gcd (p,N) = 1. By a theorem of Deligne

[7], the eigenvalues af (p) lie in the interval [−2, 2]. One can study the distri-

bution of the coefficients af (p) in different ways:

(A) (Sato-Tate family) Let N and k be fixed and let f(z) be a non-CM

newform in FN,k. We consider the sequence {af (p)} as p→∞.

(B) (Vertical Sato-Tate family) For a fixed prime p, we consider the families

{af (p), f ∈ FN,k}, |FN,k| → ∞.

(C) (Average Sato-Tate family) We consider the families

{af (p), p ≤ x, f ∈ FN,k}, |FN,k| → ∞, x→∞.

Serre’s modular version of the Sato-Tate conjecture predicts a distribution

law for the sequence defined in (A). More explicitly, let I be a subinterval of

[−2, 2] and for a positive real number x and f ∈ FN,k, let

NI(f, x) := #{p ≤ x : gcd (p,N) = 1, af (p) ∈ I}.

The Sato-Tate conjecture states that for a fixed non-CM newform f ∈ FN,k,
we have

lim
x→∞

NI(f, x)

π(x)
=

∫
I

µ∞(t)dt,

where π(x) denotes the number of primes less than or equal to x and

µ∞(t) :=

{
1
π

√
1− t2

4
if t ∈ [−2, 2]

0 otherwise.

The measure µ∞(t) is referred to as the Sato-Tate or semicircle measure in

the literature. This conjecture has deep and interesting generalisations and
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has been a central theme in arithmetic geometry over the last few decades.

In 1970, Langlands [16] formulated a general automorphy conjecture which

would imply the Sato-Tate conjecture. This conjecture is still open. How-

ever, using a very special case of the Langlands funtoriality conjecture, M.

R. Murty and V. K. Murty [24] have shown that the general automorphy

conjecture follows.

The Sato-Tate conjecture has now been proved in the highly celebrated work

of Barnet-Lamb, Geraghty, Harris and Taylor [1]. The methods in [1] to ad-

dress the Sato-Tate conjecture are different from the approach of Langlands:

the authors prove that the L-functions Lm(s) associated to symmetric pow-

ers of l-adic representations (l coprime to N) attached to f are potentially

automorphic.

If these L-functions are automorphic, then one can also obtain error terms in

the Sato-Tate distribution. In fact, under the condition that all symmetric

power L-functions are automorphic and satisfy the Generalized Riemann

Hypothesis, V. K. Murty [23] showed that for a non-CM newform f of weight

2 and square free level N, we have

NI(f, x) = π(x)

∫
I

µ∞(t)dt+ O
(
x3/4

√
log Nx

)
.

Building on Murty’s work, Bucur and Kedlaya [5] have obtained, under some

analytic assumptions on motivic L-functions, an extension of the effective

Sato-Tate error term for arbitrary motives. Recently, Rouse and Thorner

[28] have generalised Murty’s explicit result for all squarefree N and even

k ≥ 2, further improving the error term by a factor of
√

log Nx.

In 1984, Sarnak [29] considered a vertical variant of the Sato-Tate conjecture

in the case of primitive Maass cusp forms. For a fixed prime p, he obtained

a distribution measure for the p-th coefficients of Maass Hecke eigenforms

averaged over Laplacian eigenvalues. The Sato-Tate conjecture is still open

in the case of primitive Maass forms. One important factor here is that

11



the Ramanujan-Peterrson conjecture, which states that for all primes p, the

eigenvalues sasisfy |aj(p)| ≤ 2, is open. The best bound known so far is by

Kim and Sarnak [19] who proved that for all primes p,

|aj(p)| ≤ pθ + p−θ

where θ = 7/64.

In 1997, Serre [33] considered a similar vertical question for holomorphic

Hecke eigenforms. For a fixed prime p, let |FN,k| → ∞ such that k is a

positive even integer and N is coprime to p. Let I be a subinterval of [−2, 2]

and

NI(N, k) := #{f ∈ FN,k : af (p) ∈ I}.

Serre showed that

lim
|FN,k|→∞

NI(N, k)

|FN,k|
=

∫
I

µp(t)dt, (1.3)

where

µp(t) =

{
p+1
π

(1−t2/4)1/2

(p1/2+p−1/2)2−t2 if t ∈ [−2, 2]

0 otherwise.

That is,

µp(t) =
(p+ 1)

(p1/2 + p−1/2)2 − t2
µ∞(t).

The measure µp(t) is referred to as the p-adic Plancherel measure in the

literature. This theorem was independently proved by Conrey, Duke and

Farmer [6] for N = 1.

Since averaging over eigenforms provides us with an important tool namely,

the Eichler-Selberg trace formula, the quantity NI(N, k) becomes easier to

approach. Error terms in Serre’s theorem were obtained by M. R. Murty

and Sinha [25]. They prove that for a positive integer N, a prime number p

coprime to N and a subinterval I of [−2, 2],

NI(N, k) = |FN,k|
∫
I

µp(t)dt+ O

(
|FN,k| log p

log kN

)
.

12



In this note, we consider the families described in (C),

{af (p), p ≤ x, f ∈ FN,k}

as |FN,k| → ∞ and x→∞. In other words, this is the Sato-Tate family (A)

averaged over all newforms in FN,k. In fact, in this direction, the following

theorem was proved by Conrey, Duke and Farmer [6]: As x → ∞ and k =

k(x)→∞ with k > ex, for any subinterval I of [−2, 2],

lim
x→∞

1

|F1,k|
∑
f∈F1,k

NI(f, x)

π(x)
=

∫
I

µ∞(t)dt.

Nagoshi [27] obtained the same asymptotic under weaker conditions on the

growth of k, namely, k = k(x) satisfies log k
log x
→ ∞ as x → ∞. An effective

version of Nagoshi’s theorem was proved by Wang [36]. Under the above

mentioned conditions, he proves that

1

|F1,k|
∑
f∈F1,k

NI(f, x)

π(x)
=

∫
I

µ∞(t)dt+ O

(
log x

log k
+

log x log log x

x

)
.

The “average” Sato-Tate theorem tells us that for a fixed interval I, the

expected value of NI(f, x) as we vary f ∈ F1,k,

E[NI(f, x)] :=
1

|F1,k|
∑
f∈F1,k

NI(f, x)

is asymptotic to

π(x)

∫
I

µ∞(t)dt

as x→∞ with log k
log x
→∞.

In this thesis, we delve deeper into the nature of the distribution of Hecke

eigenvalues by posing the following questions:

• What can be said about the variance of this random variable? In

other words, as we vary f ∈ FN,k, what can be concluded about the

fluctuations of NI(f, x) about the expected value?

13



• What about higher moments? Is there a distribution that these fluc-

tuations follow?

Both these questions are answered in the context of holomorphic cusp forms

in detail.

The case of primitive Maass cusp forms admits a similar analysis to the case

of holomorphic modular cusp forms. We therefore make some observations

in this case. Using the notation in Section 1.1.4, for an interval I = [a, b] ⊂ R
and for 1 ≤ j ≤ r(T ), we define

NI(j, x) = #{p ≤ x : aj(p) ∈ I},

with aj(p) defined as in equation (1.1) and ask similar questions regarding

the statistics of NI(j, x).

In the process of studying the Eichler-Selberg Trace formula, a related prob-

lem of counting the number of solutions to a given quadratic equation mod

N as N varies in a certain subset of positive integers was studied. The last

chapter in this thesis records results obtained in this direction.

1.3 Overview of new results.

Theorem 1.3.1 (Distribution results in the case of holomorphic cusp forms)

Let I = [a, b] be a fixed subinterval of [−2, 2]. Suppose that k = k(x) satisfies
log k√
x log x

→ ∞ as x → ∞. Then for any bounded continuous real function h

on R we have

lim
x→∞

1

|F1,k|
∑
f∈F1,k

h

 NI(f, x)− π(x)µ∞(I)√
π(x)

[
µ∞(I)− (µ∞(I))2]

 =
1√
2π

∞∫
−∞

h(t)e−
t2

2 dt.

In other words, for any real numbers A < B,

lim
x→∞

Prob F1,k

A <
NI(f, x)− π(x)µ∞(I)√
π(x)

[
µ∞(I)− (µ∞(I))2] < B

 =
1√
2π

B∫
A

e−t
2/2dt.
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Theorem 1.3.2 (Distribution results in the case of primitive Maass forms)

Suppose that T = T (x) satisfies log T√
x log x

→∞ as x→∞. Let I = [a, b] ⊂ R.
Then for any bounded continuous real function h on R we have

lim
x→∞

1

r(T )

r(T )∑
j=1

h

 NI(j, x)− π(x)µ∞(I)√
π(x)

[
µ∞(I)− (µ∞(I))2]

 =
1√
2π

∞∫
−∞

h(t)e−
t2

2 dt.

In other words, for any real numbers A < B,

lim
x→∞

Prob 1≤j≤r(T )

A <
NI(j, x)− π(x)µ∞(I)√
π(x)

[
µ∞(I)− (µ∞(I))2] < B

 =
1√
2π

B∫
A

e−t
2/2dt.

Theorem 1.3.3 (A generalization of Dirichlet’s density theorem)

Let N, k ∈ N and consider a k-tuple

m[k] = (m1,m2, . . . ,mk)

where each mi ∈ (Z/NZ)×, the multiplicative group of units in Z/NZ. The

mi’s are not necessarily distinct.

Consider positive integers n ≤ x with k prime factors, counted with multi-

plicity. Represent such n as n = p1p2 . . . pk with p1 ≤ p2 ≤ . . . ≤ pk. Let

τk,m[k]
(x) denote the number of positive integers n ≤ x with k prime factors

satisfying pi ≡ mi mod N for each i = 1, . . . , k. If the primes are distinct,

then n is squarefree. Let πk,m[k]
(x) denote the number of such squarefree

n ≤ x. Then,

πk,m[k]
(x) ∼ τk,m[k]

(x) ∼ 1

φ(N)k
x(log log x)k−1

(k − 1)! log x
(k ≥ 2) as x→∞.
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Theorem 1.3.4 (Density of solutions to quadratic congruences)

Let D ∈ Z − {0} and k ∈ N. Fix a k-tuple ε = (ε1, . . . , εk) where each

εi = ±1 for each i = 1, . . . , k. Then, as x→∞,

1

πk(x)
#

{
n ≤ x, n = p1p2 . . . pk with p1 < p2 < . . . < pk :

(
D

pi

)
= εi for each i

}
∼ 1

2k
,

where πk(x) denotes the number of squarefree numbers less than x with k

prime factors.
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Chapter 2

Beurling-Selberg polynomials

The Beurling-Selberg polynomials are trigonometric polynomials which pro-

vide a good approximation to the characteristic functions of intervals on R.

The main strength of this technique is that it reduces estimating counting

functions to evaluating finite exponential sums. Moreover, the Fourier coeffi-

cients can be explicitly calculated, as we shall see in this chapter. Although

the exact formula for these coefficients will not be used, the properties satis-

fied by them allow us to express them as a main term and error term, which

will be used repeatedly in the calculations in the thesis problem. The in-

terested reader may wish to read a detailed exposition by Montgomery (see

[20], Chapter 1) or consult the paper of Vaaler [35].

2.1 Definitions and properties

For a positive integer M , we define ∆M(x) to be Féjer’s kernel as follows:

∆M(x) =
∑
|n|<M

(
1− |n|

M

)
e(nx) =

1

M

(
sin πMx

sin πx

)2

.

These can be easily seen to be polynomials in e(x).

The M -th order Beurling polynomial is defined as:

B∗M(x) =
1

M + 1

M∑
k=1

(
k

M + 1
− 1

2

)
∆M+1

(
x− k

M + 1

)
+

1

2π(M + 1)
sin(2π(M+1)x)
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− 1

2π
∆M+1(x) sin 2πx+

1

2(M + 1)
∆M+1(x). (2.1)

For an interval [a, b], we define the M -th Selberg polynomial as

S+
M(x) = b− a+B∗M(x− b) +B∗M(a− x)

and

S−M(x) = b− a−B∗M(b− x)−B∗M(x− a).

These polynomials in e(x) are of degree at most M and have the following

properties:

1. For a subinterval I = [a, b] of

[
−1

2
,
1

2

]
and x ∈ R,

S−M(x) ≤ χI(x) ≤ S+
M(x).

2. ∫ 1/2

−1/2

S±M(x)dx = b− a± 1

M + 1
.

3. For 0 < |m| ≤M, ∣∣∣Ŝ±M(m)− χ̂I(m)
∣∣∣ ≤ 1

M + 1
, (2.2)

where

χ̂I(m) =
e(−ma)− e(−mb)

2πim
.

4. For n 6= 0,

|χ̂I(n)| ≤ min

(
b− a, 1

π|n|

)
.

Therefore, for non-zero n,

|Ŝ+
M(n)| ≤ 1

M + 1
+ min

(
b− a, 1

π|n|

)
.
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2.2 Fourier coefficients

Although the explicit Fourier coefficients will not be required for the proof

of results in this thesis, we would like to record it for future reference. The

exact formulae for the Fourier coefficients Ŝ±M(m) can be calculated by first

computing the Fourier coefficients B̂∗M(n) for −M ≤ n ≤M .

Extracting the coefficient of e(nx) in equation (2.1), we obtain the following:

1. For |n| > M ,

B̂∗M(n) = B̂∗M(−n) = 0.

2. For −M ≤ n ≤M ,

B̂∗M(n) =
1

M + 1

(
1− |n|

M + 1

)
M∑
k=1

(
k

M + 1
− 1

2

)
e

(
−nk
M + 1

)

+
1

4π

(
|n− 1| − |n+ 1|

M + 1

)
+

1

2(M + 1)

(
1− |n|

M + 1

)
.

In particular,

B̂∗M(0) =
1

M + 1

M∑
k=1

(
k

M + 1
− 1

2

)
+

1

2(M + 1)
=

1

2(M + 1)
.

We observe that the Beurling polynomial is periodic of period 1. i.e.,

B∗M(x) = B∗M(x+ n) for n ∈ Z.

Therefore, we have, when 0 < n ≤M ,

Ŝ+
M(n) = e(−nb)B̂∗M(n) + e(−na)B̂∗M(−n),

Ŝ−M(n) = −e(−nb)B̂∗M(−n)− e(−na)B̂∗M(n),
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and

Ŝ±M(0) = b− a± 1

M + 1
.

We record two properties that can be deduced from these explicit formulae:

1. If the interval is symmetric about zero, that is, if it is of the form [−b, b],
it is easy to see that Ŝ±M(n) = Ŝ±M(−n). To be precise, we have

Ŝ±M(n) = Ŝ±M(−n) = ±e(nb)B̂∗M(−n)± e(−nb)B̂∗M(n).

2. For any interval [a, b] ⊂ [0, 1], the sum

Ŝ+
M(n) + Ŝ+

M(−n)

is always real:

Using the expression above for B̂∗M(n), we have the following:

1. B̂∗M(n)e(−nb) =
1

M + 1

(
1− n

M + 1

)
M∑
k=1

(
k

M + 1
− 1

2

)
e

(
−nk
M + 1

− nb
)

− e(−nb)
2πi(M + 1)

+
e(−nb)

2(M + 1)

(
1− n

M + 1

)

2. B̂∗M(−n)e(nb) =
1

M + 1

(
1− n

M + 1

)
M∑
k=1

(
k

M + 1
− 1

2

)
e

(
nk

M + 1
+ nb

)
− e(nb)

2πi(M + 1)
+

e(nb)

2(M + 1)

(
1− n

M + 1

)

3. B̂∗M(n)e(na) =
1

M + 1

(
1− n

M + 1

)
M∑
k=1

(
k

M + 1
− 1

2

)
e

(
−nk
M + 1

+ na

)
− e(na)

2πi(M + 1)
+

e(na)

2(M + 1)

(
1− n

M + 1

)

4. B̂∗M(−n)e(−na) =
1

M + 1

(
1− n

M + 1

)
M∑
k=1

(
k

M + 1
− 1

2

)
e

(
nk

M + 1
− na

)
− e(−na)

2πi(M + 1)
+

e(−na)

2(M + 1)

(
1− n

M + 1

)
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Summing, we have:

Ŝ+
M(n) + Ŝ+

M(−n) =

1

M + 1

(
1− n

M + 1

) M∑
k=1

(
k

M + 1
− 1

2

){
2 cos

(
2π

∣∣∣∣na− nk

M + 1

∣∣∣∣)
+ 2 cos

(
2π

∣∣∣∣nb+
nk

M + 1

∣∣∣∣)}− 1

π(M + 1)
(sin(2πna)− sin(2πnb))

+
1

M + 1

(
1− n

M + 1

)
(cos(2πna)− cos(2πnb)),

where a, b are real.

Therefore, Ŝ±M(n) + Ŝ±M(−n) ∈ R for all n ∈ N.

2.3 Preliminary results

In this section we prove some results involving the Fourier coefficients of the

Beurling-Selberg polynomials that will be required later.

Henceforth, we will use the following notation: for an interval I = [a, b] ⊆
[−2, 2], we choose a subinterval

I1 = [α, β] ⊆
[
0,

1

2

]
so that

θ ∈ I1 ⇔ 2 cos(2πθ) ∈ I.

For M ≥ 1, let S±M(x) denote the majorant and minorant Beurling-Selberg

polynomials for the interval I1. We denote, for 0 ≤ |m| ≤M,

Ŝ±(m) :=
(

Ŝ±M(m) + Ŝ±M(−m)
)

(2.3)

By equation (2.2), we have, for 1 ≤ |m| ≤M,

Ŝ±M(m) =
e(−mα)− e(−mβ)

2πim
+ O

(
1

M

)
and

Ŝ±M(−m) =
e(mβ)− e(mα)

2πim
+ O

(
1

M

)
.
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Thus,

Ŝ±(m) =
sin(2πmβ)− sin(2πmα)

mπ
+ O

(
1

M

)
. (2.4)

Proposition 2.3.1 For [α, β] ⊆ [0, 1
2
] and an integer M ≥ 1, we have

2
M∑
m=1

Ŝ±(m)2 = 2(β − α)− 4(β − α)2 + O

(
logM

M

)
(2.5)

and for M ≥ 3,

2
M−2∑
m=1

Ŝ±(m) Ŝ±(m+ 2) = − 1

π2
(sin(2πβ)− sin(2πα))2

+
1

2π
(1− 4(β − α))(sin(4πβ)− sin(4πα)) + O

(
logM

M

)
.

(2.6)

Proof. We start by the following observation:

M∑
m=1

∣∣∣∣sin(2πmβ)− sin(2πmα)

mπ

∣∣∣∣ = O(log M).

We have

2
M∑
m=1

Ŝ±(m)2

= 2
M∑
m=1

(
sin(2πmβ)− sin(2πmα)

mπ
+ O

(
1

M

))2

=
2

π2

M∑
m=1

(
sin2(2πmβ)

m2
+

sin2(2πmα)

m2
− 2

sin(2πmβ) sin(2πmα)

m2

)
+O

(
logM

M

)

=
2

π2

(
M∑
m=1

sin2(2πmβ)

m2
+

M∑
m=1

sin2(2πmα)

m2
−

M∑
m=1

cos(2πm(β − α))

m2

+
M∑
m=1

cos(2πm(β + α))

m2

)
+ O

(
logM

M

)

22



=
2

π2

(
∞∑
m=1

sin2(2πmβ)

m2
+
∞∑
m=1

sin2(2πmα)

m2
−
∞∑
m=1

cos(2πm(β − α))

m2

+
∞∑
m=1

cos(2πm(β + α))

m2

)
+ O

(
logM

M

)
.

We now use the trigonometric sum (see [2, p. 360] or Equation (520) of [11]),

∞∑
m=1

sin2(mθ)

m2
=

1

2
θ(π − θ), 0 ≤ θ ≤ π.

We also have (see [2, p. 370] or Equation (573) of [11] ),

∞∑
m=1

cos(2πmθ)

(mπ)2
= θ2 − θ +

1

6
, 0 < θ < 1.

Therefore, we have

2
M∑
m=1

Ŝ±(m)2 = 2β(1− 2β) + 2α(1− 2α)− 2

(
(β − α)2 − (β − α) +

1

6

)
+ 2

(
(β + α)2 − (β + α) +

1

6

)
+ O

(
logM

M

)
= 2β(1− 2β) + 2α(1− 2α) + 8αβ − 4α + O

(
logM

M

)
= 2(β − α)− 4(β − α)2 + O

(
logM

M

)
.

This proves equation (2.5).
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In order to prove equation (2.6), we observe,

2
M−2∑
m=1

Ŝ±(m) Ŝ±(m+ 2)

= 2
M−2∑
m=1

(
sin(2πmβ)− sin(2πmα)

mπ

)(
sin(2π(m+ 2)β)− sin(2π(m+ 2)α)

(m+ 2)π

)
+ O

(
logM

M

)
=

2

π2

M−2∑
m=1

sin(2πmβ) sin(2π(m+ 2)β)

m(m+ 2)
− 2

π2

M−2∑
m=1

sin(2πmβ) sin(2π(m+ 2)α)

m(m+ 2)

− 2

π2

M−2∑
m=1

sin(2πmα) sin(2π(m+ 2)β)

m(m+ 2)
+

2

π2

M−2∑
m=1

sin(2πmα) sin(2π(m+ 2)α)

m(m+ 2)

+ O

(
logM

M

)
.

We write:

2 sin(2πmβ) sin(2π(m+ 2)β) = cos(4πβ)− cos(4π(m+ 1)β),

2 sin(2πmα) sin(2π(m+ 2)α) = cos(4πα)− cos(4π(m+ 1)α).

Next, we combine the right hand sides of

2 sin(2πmβ) sin(2π(m+2)α) = cos(2πm(β−α)−4πα)−cos(2πm(β+α)+4πα)

and

2 sin(2πmα) sin(2π(m+2)β) = cos(2πm(α−β)−4πβ)−cos(2πm(α+β)+4πβ)

to get

cos(2πm(β−α)−4πα)+cos(2πm(α−β)−4πβ) = 2 cos(2π(α+β)) cos(2π(m+1)(β−α))

and

cos(2πm(β+α)+4πα)+cos(2πm(α+β)+4πβ) = 2 cos(2π(β−α)) cos(2π(m+1)(α+β)).
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Therefore we have,

2
M−2∑
m=1

Ŝ±(m) Ŝ±(m+ 2) =

1

π2

M−2∑
m=1

cos(4πβ)

m(m+ 2)
− 1

π2

M−2∑
m=1

cos(4π(m+ 1)β)

m(m+ 2)
+

1

π2

M−2∑
m=1

cos(4πα)

m(m+ 2)

− 1

π2

M−2∑
m=1

cos(4π(m+ 1)α)

m(m+ 2)
− 2 cos(2π(α + β))

π2

M−2∑
m=1

cos(2π(m+ 1)(β − α))

m(m+ 2)

+
2 cos(2π(β − α))

π2

M−2∑
m=1

cos(2π(m+ 1)(β + α))

m(m+ 2)
+ O

(
logM

M

)
.

We use the following trigonometric sum (see [2, p. 368] or Equation (605) of

[11]):

∞∑
m=1

cos((m+ 1)θ)

m(m+ 2)
=

1

2
+

cos(θ)

4
− π − θ

2
sin(θ), 0 < θ < 2π.

Using the above equation and the following identity:

∞∑
m=1

1

m(m+ 2)
=

3

4
,

we deduce the following:

(A)
1

π2

M−2∑
m=1

cos(4πβ)

m(m+ 2)
=

3

4π2
cos(4πβ) + O

(
1

M

)
.

(B)

− 1

π2

M−2∑
m=1

cos(4π(m+ 1)β)

m(m+ 2)
=− 1

π2

(
1

2
+

cos(4πβ)

4
− (π − 4πβ)

2
sin(4πβ)

)
+ O

(
1

M

)
.

(C)
1

π2

M−2∑
m=1

cos(4πα)

m(m+ 2)
=

3

4π2
cos(4πα) + O

(
1

M

)
.
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(D)

− 1

π2

M−2∑
m=1

cos(4π(m+ 1)α)

m(m+ 2)
=− 1

π2

(
1

2
+

cos(4πα)

4
− (π − 4πα)

2
sin(4πα)

)
+ O

(
1

M

)
.

(E) −2 cos(2π(α + β))

π2

M−2∑
m=1

cos(2π(m+ 1)(β − α))

m(m+ 2)

= −2 cos(2π(α + β))

π2

(
1

2
+

cos(2π(β − α))

4
− (π − 2π(β − α))

2
sin(2π(β − α))

)
+ O

(
1

M

)
.

(F)
2 cos(2π(β − α))

π2

M−2∑
m=1

cos(2π(m+ 1)(β + α))

m(m+ 2)

=
2 cos(2π(β − α))

π2

(
1

2
+

cos(2π(α + β))

4
− (π − 2π(α + β))

2
sin(2π(α + β))

)
+ O

(
1

M

)
.

From equations (A)-(D) above, we obtain

1

π2

M−2∑
m=1

cos(4πβ)

m(m+ 2)
− 1

π2

M−2∑
m=1

cos(4π(m+ 1)β)

m(m+ 2)
+

1

π2

M−2∑
m=1

cos(4πα)

m(m+ 2)

− 1

π2

M−2∑
m=1

cos(4π(m+ 1)α)

m(m+ 2)

=
cos(4πβ)− 1

2π2
+

cos(4πα)− 1

2π2
+

1

2π
((1− 4β) sin(4πβ) + (1− 4α) sin(4πα))

+ O

(
1

M

)
.

From equations (E) and (F) above, we get

−2 cos(2π(α + β))

π2

M−2∑
m=1

cos(2π(m+ 1)(β − α)

m(m+ 2)

+
2 cos(2π(β − α))

π2

M−2∑
m=1

cos(2π(m+ 1)(β + α)

m(m+ 2)
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=
1

π2
(cos(2π(β − α))− cos(2π(α + β)))

+
1

π
(1− 2(β − α)) cos(2π(α + β)) sin(2π(β − α))

− 1

π
(1− 2(α + β)) cos(2π(β − α)) sin(2π(β + α)) + O

(
1

M

)

=
2

π2
(sin(2πβ) sin(2πα)) +

(1− 2β)

π
cos(2π(α + β)) sin(2π(β − α))

− (1− 2β)

π
cos(2π(β − α)) sin(2π(β + α)) +

2α

π
cos(2π(α + β)) sin(2π(β − α))

+
2α

π
cos(2π(β − α)) sin(2π(β + α)) + O

(
1

M

)

=
2

π2
(sin(2πβ) sin(2πα))− (1− 2β)

π
sin(4πα) +

2α

π
sin(4πβ) + O

(
1

M

)
.

Therefore, putting all of it together we have

2
M−2∑
m=1

Ŝ±(m) Ŝ±(m+ 2)

=
cos(4πβ)− 1

2π2
+

cos(4πα)− 1

2π2
+

1

2π
((1− 4β) sin(4πβ) + (1− 4α) sin(4πα))

+
2

π2
(sin(2πβ) sin(2πα))− (1− 2β)

π
sin(4πα) +

2α

π
sin(4πβ) + O

(
logM

M

)
.

Simplifying, we get equation (2.6). This proves the proposition.

�

We record the following bound, which is not optimal, but good enough for

our purposes. For M ≥ 3 and 1 ≤ m ≤M, let

Û±M(m) :=

{
Ŝ±(m)− Ŝ±(m+ 2), if 1 ≤ m ≤M − 2

Ŝ±(m), if m = M − 1, M.

where Ŝ±(m) is as defined in equation (2.3).

Lemma 2.3.2 Let I = [α, β] be a fixed interval and mr = (m1, . . . ,mr) be

an r-tuple of positive integers where each 1 ≤ mi ≤ M . Let Û±M(mr) =
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Û±M(m1) · · · Û±M(mr).

(3)∑
mi

| Û±M(mr)| = O(logM)r.

Here, the implied constant depends on r.

Proof. From equation (2.2), we observe that for any 1 ≤ m ≤M,

| Û±M(m)| ≤ 2

π|m|
+

2

M + 1
,

the implied constant being absolute. Thus,

(3)∑
mr

| Û±M(mr)| = O

∑
mr

r∏
j=1

(
1

πmj

+
1

M + 1

)
= O

 r∑
k=0

1

πk
1

(M + 1)r−k

∑
mj1 ,mj2 ,...,mjk

1

mj1mj2 . . .mjk


= O

(
r∑

k=0

(
r

k

)
1

πk
1

(M + 1)r−k
M r−k(logM)k

)

= Or(logM)r.

�
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Chapter 3

The first moment

3.1 Groundwork

Unless otherwise mentioned, henceforth, the level N will be assumed to be

equal to 1. We denote Fk to be the set of normalized eigenforms in S(1, k)

and sk its dimension.

For an interval I = [a, b] ⊆ [−2, 2], we define

NI(f, x) := # {p ≤ x : af (p) ∈ I} .

By a deep result of Deligne [7] that settled the Ramanujan-Petersson con-

jecture for modular forms, we know that the eigenvalues af (p) ∈ [−2, 2].

Therefore, we may write

af (p) = 2 cos θf (p), with θf (p) ∈ [0, π].

In order to ease the calculations later that help with simplifying exponential

sums, we introduce some symmetry and consider the families{
±θf (p)

2π
, f ∈ Fk

}
.

As before, we choose a subinterval

I1 = [α, β] ⊆
[
0,

1

2

]
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so that
θf (p)

2π
∈ I1 ⇐⇒ 2 cos θf (p) ∈ I.

Let I2 = (α, β]. We do so in order to avoid counting zero, if it occurs as an

endpoint, twice. Note that the approximating functions for the characteristic

function of an interval (a, b] or [a, b) or (a, b) are the same as those of [a, b],

because these functions only depend on the length of the interval and the

end points. Now we go back to our quantity of interest and write

NI(f, x) =
∑
p≤x

[
χI1

(
θf (p)

2π

)
+ χI2

(
−θf (p)

2π

)]
,

since

χI2

(
−θf (p)

2π

)
= 0.

Following the notation and properties of the Beurling-Selberg polynomials

from the previous section, we have∑
p≤x

[
S−M

(
θf (p)

2π

)
+ S−M

(
−θf (p)

2π

)]
≤ NI(f, x) ≤

∑
p≤x

[
S+
M

(
θf (p)

2π

)
+ S+

M

(
−θf (p)

2π

)]
(3.1)

We now focus our attention on the quantity

Xf (x) := NI(f, x)− π(x)

∫
I

µ∞(t)dt

and explore the moments

lim
x→∞

1

sk

∑
f∈Fk

NI(f, x)− π(x)

∫
I

µ∞(t)dt

r

as k = k(x) satisfies log k√
x log x

→ ∞. The strategy is to use equation (3.1) to

approximate the above expression by certain trigonometric polynomials and

evaluate the moments of these polynomials.
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3.2 Computing the expected value

Using the Fourier expansion, we have

S±M(x) =
M∑
m=1

Ŝ±M(m)e(mx).

This is where introducing − θf (p) for each θf (p) eases the calculation. Eval-

uating the function S±M at x and −x and adding, we have

S±M(x) + S±M(−x) =
∑
|m|≤M

(
Ŝ±M(m)e(mx) + Ŝ±M(m)e(−mx)

)
=
∑
|m|≤M

Ŝ±M(m)2 cos(|m| θf (p))

= 2Ŝ±M(0) +
M∑
m=1

(
Ŝ±M(m) + Ŝ±M(−m)

)
2 cos(mθf (p)).

This allows us to write

NI(f, x) ≤
∑
p≤x

[
S+
M

(
θf (p)

2π

)
+ S+

M

(
− θf (p)

2π

)]
=
∑
p≤x

∑
|m|≤M

Ŝ+
M(m)2 cos(mθf (p))

=
∑
p≤x

2Ŝ+
M(0) +

M∑
m=1

(Ŝ+
M(m) + Ŝ+

M(−m))
∑
p≤x

2 cos(mθf (p))

= π(x)

(
2(β − α) +

2

M + 1

)
+

M∑
m=1

(Ŝ+
M(m) + Ŝ+

M(−m))
∑
p≤x

2 cos(mθf (p))

= π(x)

(
2(β − α) +

2

M + 1

)
+

M∑
m=1

Ŝ+(m)
∑
p≤x

2 cos(mθf (p)),

(3.2)

using the notation defined in equation (2.4). By a similar argument, we

derive

NI(f, x) ≥ π(x)

(
2(β − α)− 2

M + 1

)
+

M∑
m=1

Ŝ−(m)
∑
p≤x

2 cos(mθf (p)).

(3.3)

31



We know from before that for m = 1, 2 cos(mθf (p)) = af (p). A classical

expression for m > 1, see Serre [33], is described below.

Lemma 3.2.1 For a prime p and f ∈ Fk, let θf (p) be the unique angle in

[0, π] such that af (p) = 2 cos θf (p) . For m ≥ 0,

af (p
m) = Xm(af (p)),

where the m-th Chebyshev polynomial is defined as follows:

Xm(x) =
sin(m+ 1)θ

sin θ
, x = 2 cos θ.

We observe that for m ≥ 2,

2 cosmθ = Xm(2 cos θ)−Xm−2(2 cos θ).

Thus, we have the following corollary to the above lemma.

Corollary 3.2.2 With the same notation as in Lemma 3.2.1, for m ∈ Z, m 6=
0,

2 cos(mθf (p)) =

{
af (p) if |m| = 1

af (p
|m|)− af (p|m|−2) if |m| ≥ 2.

Let us denote

S±(M, f)(x) :=
2∑

m=1

(Ŝ±M(m) + Ŝ±M(−m))
∑
p≤x

af (p
m)

+
M∑
m=3

(Ŝ±M(m) + Ŝ±M(−m))
∑
p≤x

(
af (p

m)− af (pm−2)
)

=
2∑

m=1

Ŝ±(m)
∑
p≤x

af (p
m) +

M∑
m=3

Ŝ±(m)
∑
p≤x

(
af (p

m)− af (pm−2)
)
.

By combining equations (3.2), (3.3) and Corollary 3.2.2, we get

NI(f, x)− π(x)
[
2(β − α)− Ŝ+(2)

]
≤ S+(M, f)(x) + 2

π(x)

M + 1
(3.4)
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and

−2
π(x)

M + 1
+ S−(M, f)(x) ≤ NI(f, x)− π(x)

[
2(β − α)− Ŝ−(2)

]
. (3.5)

We are now ready to calculate the first moment of NI(f, x). Henceforth, for

any function φ : Sk → C, we denote the average

〈φ(f)〉 :=
1

sk

∑
f∈Fk

φ(f).

In order to derive the moments 〈(Xf (x))r〉, we explore the moments of

S±(M, f)(x). In this direction, we state a proposition, which shows that

the Sato-Tate conjecture is true on average as x → ∞. The usefulness of

averaging over the set of eigenforms lies in the fact that it enables us to use

the trace formula. We first give a brief description of this formula.

3.3 Eichler-Selberg Trace Formula and some

estimates

Let n be a positive integer coprime to N. The Eichler-Selberg trace for-

mula describes the trace of Tn acting on S(N, k). Following the presentation

of this formula in ([12], p. 370), for every integer n ≥ 1, Tr Tn(N, k) =∑4
i=1Ai(n,N, k), where Ai’s are as follows :

A1(n,N, k) =
k − 1

12
ψ(N)

{
n(k/2−1) if n is a square,

0 otherwise.

A2(n,N, k) = −1

2

∑
t∈Z, t2<4n

%k−1 − %k−1

%− %
∑
f

hw

(
t2 − 4n

f 2

)
µ(t, f, n).

A3(n,N, k) = −
∑′

d|n,
0<d≤

√
n

dk−1F (N)d,

where F (N)d is a multiplicative function of N defined as

F (N)d =
∑
c|N

gcd (c,Nc )|n
d
−d

φ

(
gcd

(
c,
N

c

))
.
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A4(n,N, k) =

{∑
t|n, t>0 t if k = 2,

0 otherwise.

In the above terms,

• ψ(N) = N
∏

p|N

(
1 + 1

p

)
,

• % and % are the complex zeroes of the polynomial x2 − tx+ n.

• The inner sum in the second term runs over all positive divisors f of

t2 − 4n such that (t2 − 4n)/f 2 ∈ Z is congruent to 0 or 1 mod 4.

• hw(∆) is the class number of the imaginary quadratic order of discrim-

inant ∆ divided by 2 (resp. 3) if the discriminant is −4 (resp. −3).

• We have

µ(t, f, n) =
ψ(N)

ψ
(
N
Nf

)M(t, n,NNf ),

where Nf = gcd (N, f) and M(t, n,NNf ) denotes the number of ele-

ments of (Z/NZ)∗ which lift to solutions of x2− tx+n ≡ 0 mod NNf .

• The dash on top of the summation in the third term of Tr Tn(N, k)

indicates that if there is a contribution from the term d =
√
n, it

should be multiplied by 1/2.

We now state some results involving estimates of the trace formula that will

be used in the calculation of the first moment and later in the chapter on

higher moments.

The following lemma is a direct consequence of the multiplicative relations

satisfied by the Hecke operators Tn, stated in the introduction. Nevertheless,

we state it here since this is the exact form in which it will be used in later

chapters.

Lemma 3.3.1 Let f ∈ Fk. For primes p1, p2 and non-negative integers i, j,

af (p
i
1)af (p

j
2) =

{
af (p

i
1p
j
2) if p1 6= p2∑min (i,j)

l=0 af (p
i+j−2l
1 ) if p1 = p2.
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Proposition 3.3.2 Let k be a positive even integer and n be a positive in-

teger. We have

∑
f∈Fk

af (n) =

{
k−1
12

(
1√
n

)
+ O (nc) if n is a square

O (nc) otherwise,

where the constant c is absolute and 0 < c < 1. The implied constant in the

error term is also absolute.

Proof. This proposition follows from the Eichler-Selberg trace formula for

Hecke operators Tn, n ≥ 1 acting on Sk. The Eichler-Selberg trace formula

(see [25, Sections 7, 8] and [33, Section 4]) states that for every integer n ≥ 1,

∑
f∈Fk

af (n) =
4∑
i=1

Bi(n),

where Bi(n)’s are as follows:

B1(n) =

{
k−1
12

(
1√
n

)
if n is a square

0 otherwise.

B2(n) = −1

2

1

n(k−1)/2

∑
t∈Z, t2<4n

%k−1 − %k−1

%− %
H(4n− t2).

Here, % and % denote the zeroes of the polynomial x2 − tx + n and for a

positive integer l, H(l) denotes the Hurwitz class number.

B3(n) = − 1

n(k−1)/2

(b)∑
d|n

0≤d≤
√
n

dk−1.

The notation (b) on top of the summation denotes that if there is a contri-

bution from d =
√
n, it should be multiplied with 1/2. Finally,

B4(n) =

{
1

n(k−1)/2

∑
d|n d if k = 2,

0 otherwise.

To estimate B2(n), we observe that |%| =
√
n. Thus,∣∣∣∣%k−1 − %k−1

%− %

∣∣∣∣ ≤ 2n(k−1)/2

√
4n− t2

.
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Following a classical estimate of Hurwitz, we have

H(4n− t2)�
√

4n− t2 log2(n),

the implied constant being absolute. Thus,

|B2(n)| �
√
n log2 n.

One can immediately observe that

|B3(n)| �
∑
d|n
d≤
√
n

1

and

|B4(n)| �
√
n
∑
d|n

1.

Combining the above estimates, we prove Proposition 3.3.2. �

In particular, n = 1 in the above proposition gives us

sk =
k − 1

12
+ O(1). (3.6)

We also record the following important estimate:∑
p≤x

1

p
= O(log log x).

Remark 3.3.3 In the calculations that follow, we will encounter sums of the

form ∑
p≤x

1

pn
, n > 1,

which is of course O(1). However, since the power of p will be guaranteed

to be positive and we obtain no improvement with respect to error terms on

separating the case where n = 1 and n > 1, we combine the estimates and

use: ∑
p≤x

1

pn
= O(log log x), n ≥ 1. (3.7)
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We are now ready to state a lemma which will be repeatedly used in the

coming chapters.

Lemma 3.3.4 Suppose k = k(x) runs over positive even integers such that
log k
log x
→∞ as x→∞. Then, for any positive integer m and and positive real

number a, we have

lim
x→∞

1

(π(x))ask

∑
p≤x

∑
f∈Fk

af (p
m) = 0.

More generally, for non-negative integers m1, m2, not both zero,

lim
x→∞

1

(π(x))ask

∑
p1 6=p2≤x

∑
f∈Fk

af (p
m1
1 pm2

2 ) = 0.

Proof. From Proposition 3.3.2, equations (3.6) and (3.7), one deduces, for

m ≥ 1, the following:

1

sk

∑
p≤x

∑
f∈Fk

af (p
m) =

O(log log x) + O
(
x2mπ(x)

sk

)
if m ≥ 2, m is even

O
(
x2mπ(x)

sk

)
if m ≥ 1, m is odd.

(3.8)

Similarly, we have
1

sk

∑
p1 6=p2≤x

∑
f∈Fk

af (p
m1
1 pm2

2 )

=

O(log log x)2 + O
(
x2(m1+m2)π(x)

sk

)
if m1,m2 are both even

O
(
x2(m1+m2)π(x)

sk

)
otherwise.

(3.9)

Since log k
log x
→∞ as x→∞,

lim
x→∞

xr

k
= 0

for any real power r > 0. Moreover,

log log x = o(π(x))a,

for any a > 0. The lemma follows immediately. �
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3.4 The average Sato-Tate theorem

In our attempt to compute the first moment we shall be proving the following

theorem, which we call the average Sato-Tate Theorem.

Theorem 3.4.1 Let k = k(x) be a positive even integer. Then, for any

interval I = [a, b] ⊆ [−2, 2],

〈NI(f, x)〉 = π(x)

∫ b

a

µ∞(t)dt+ O

(
π(x) log x

log k
+ log log x

)
.

Thus, if k = k(x) runs over positive even integers such that log k
log x
→ ∞ as

x→∞, then

lim
x→∞
〈NI(f, x)〉 = π(x)

∫ b

a

µ∞(t)dt.

Remark 3.4.2 Proposition 3.4.1 is essentially due to Y. Wang [36, Theo-

rem 1.1]. He proves an analogous result for primitive Maass forms and in-

dicates that a similar technique works for the average Sato-Tate family. We

provide a brief proof of this proposition as a first step in evaluating moments

of the polynomials S±(M, f)(x).

Proof. We have, by equation (2.4),

(Ŝ±M(2) + Ŝ±M(−2)) =
sin 4πβ − sin 4πα

2π
+ O

(
1

M

)
.

Combining the above with equations (3.4) and (3.5), we can find constants

C and D such that

S−(M, f)(x) + C

(
π(x)

M + 1

)
≤ NI(f, x)− π(x)

(
(2β − 2α)− sin 4πβ − sin 4πα

2π

)
≤ S+(M, f)(x) +D

(
π(x)

M + 1

)
.

(3.10)
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We observe, for [α, β] ∈ [0, 1/2] as chosen before,

(2β − 2α)− sin 4πβ − sin 4πα

2π
= 2

∫ β

α

(1− cos 4πθ)dθ

= 4

∫ β

α

sin2 2πθdθ

=

∫ b

a

µ∞(t)dt.

Thus, for every positive integer M,

S−(M, f)(x)+C

(
π(x)

M + 1

)
≤ NI(f, x)−π(x)

∫ b

a

µ∞(t)dt ≤ S+(M, f)(x)+D

(
π(x)

M + 1

)
.

(3.11)

By equation (3.8), 〈
S±(M, f)(x)

〉
= O

 M∑
m=1

m even

| Ŝ±M(m)|
∑
p≤x

{
1
p
, if m = 2
1

p
m
2 −1 , if m ≥ 4

+ O

(
M∑
m=1

| Ŝ±M(m)|x
2mπ(x)

k

)
.

Since

| Ŝ±M(m)| ≤ 1

M + 1
+ min

{
β − α, 1

π|m|

}
,

we get, for every positive integer M,

〈
S±(M, f)(x)

〉
= O

(∑
p≤x

(
1

p
+
∞∑
m=2

1

pm

)
+

M∑
m=1

| Ŝ±M(m)|x
2mπ(x)

k

)

= O

(
log log x+

x2Mπ(x)

k
+
π(x)

k

M∑
m=1

x2m

m

)
.

That is, for every positive integer M, by equation (3.11), we have〈
NI(f, x)− π(x)

∫ b

a

µ∞(t)dt

〉
= O

(
log log x+

x2Mπ(x)

k
+

π(x)

M + 1

)
.

We now choose

M =

⌊
d log k

2 log x

⌋
for some 0 < d < 1. This proves the proposition. �
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3.5 Second moment

In this section, we will compute

lim
x→∞

1

π(x)

〈
(S±(M, f)(x))2)

〉
for a suitable choice of M = M(x) which grows as a function of x.

Proposition 3.5.1 Let [α, β] be a fixed interval in [0, 1/2]. Suppose k = k(x)

runs over positive even integers such that log k√
x log x

→ ∞ as x → ∞. Let

M = b
√
π(x) log log xc. Then,

lim
x→∞

1

π(x)

〈
(S±(M, f)(x))2

〉
= 2

M∑
m=1

Ŝ±(m)2 − 2
M−2∑
m=1

Ŝ±(m) Ŝ±(m+ 2)− Ŝ±(1)2 − Ŝ±(2)2.

Proof. Recall, for M ≥ 3 and 1 ≤ m ≤M, let

Û±M(m) :=

{
Ŝ±(m)− Ŝ±(m+ 2), if 1 ≤ m ≤M − 2

Ŝ±(m), if m = M − 1, M.

We start by observing that

S±(M, f)(x))2

=

(
2∑

m=1

Ŝ±(m)
∑
p≤x

af (p
m) +

M∑
m=3

Ŝ±(m)
∑
p≤x

(
af (p

m)− af (pm−2)
))2

=

(M−2∑
m=1

(Ŝ±(m)− Ŝ±(m+ 2))
∑
p≤x

af (p
m) + Ŝ±(M − 1)

∑
p≤x

af (p
M−1)

+ Ŝ±(M)
∑
p≤x

af (p
M)

)2

=

(
M∑
m=1

Û±M(m)
∑
p≤x

af (p
m)

)2

=
M∑

m1,m2=1

Û±M(m1) Û±M(m2)
∑

p1,p2≤x

af (p
m1)af (p

m
2 ).

(3.12)
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Applying Lemma 3.3.1 and Proposition 3.3.2 along with equations (3.6) and

(3.7), we deduce that if p1 6= p2 then

1

sk

∑
f∈Fk

∑
p1 6=p2≤x

af (p
m1
1 )af (p

m2
2 ) =

∑
p1 6=p2≤x

[
δ(m1)δ(m2)

(p1)m1/2(p2)m2/2
+ O

(
pcm1

1 pcm2
2

sk

)]

= O

(
π(x)2x(m1+m2)c

sk

)
+ O(log log x)2,

where δ(n) = 1 if n is even and is zero otherwise.

If p1 = p2, then for any m1, m2 ≥ 1,

1

sk

∑
f∈Fk

∑
p1≤x

af (p
m1
1 )af (p

m2
1 ) =

1

sk

∑
f∈Fk

∑
p1≤x

min{m1,m2}∑
i=0

af (p
m1+m2−2i
1 )

=
∑
p≤x

min{m1,m2}∑
i=0

δ(m1 +m2)

p(m1+m2−2i)/2
+ O

(
p(m1+m2−2i)c

sk

)
.

The sum ∑
p≤x

min{m1,m2}∑
i=0

δ(m1 +m2)

p(m1+m2−2i)/2

contributes π(x) when m1 = m2 = i = m. Otherwise, each term in this sum

contributes at most O(log log x). Moreover,

∑
p≤x

min{m1,m2}∑
i=0

(
p(m1+m2−2i)c

sk

)
= O

(
π(x)x(m1+m2)c

k

)
.

Combining the above information with equation (3.12) and bounds for Û±M(m)

from Lemma 2.3.2, we deduce

1

π(x)

〈
(S±(M, f)(x))2)

〉
=

M∑
m=1

Û±M(m)2 + O

(
M∑

m1,m2=1

| Û±M(m1) Û±M(m2)|
(

(log log x)2

π(x)
+
π(x)x2Mc

k

))

=

(
M−2∑
m=1

(
Ŝ±(m)− Ŝ±(m+ 2)

)2

+ Ŝ±(M − 1)2 + Ŝ±(M)2

)

+ O

(
(logM)2(log log x)2

π(x)
+

(logM)2π(x)x2Mc

k

)
.
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We now choose

M = b
√
π(x) log log xc.

If k = k(x) runs over positive even integers such that log k√
x log x

→∞ as x→∞,
then

lim
x→∞

(logM)2π(x)x2Mc

k
= 0.

Thus,

lim
x→∞

1

π(x)

〈
(S±(M, f)(x))2)

〉
=

M−2∑
m=1

(Ŝ±(m)− Ŝ±(m+ 2))2 + Ŝ±(M − 1)2 + Ŝ±(M)2

=
M−2∑
m=1

(Ŝ±(m)2 + Ŝ±(m+ 2)2 − 2 Ŝ±(m) Ŝ±(m+ 2)) + Ŝ±(M − 1)2 + Ŝ±(M)2

= 2
M∑
m=1

Ŝ±(m)2 − 2
M−2∑
m=1

Ŝ±(m) Ŝ±(m+ 2)− Ŝ±(1)2 − Ŝ±(2)2,

(3.13)

proving the proposition. �

Remark 3.5.2 In fact, under the above mentioned growth condition on k,

for M = b
√
π(x) log log xc and for any n ≥ 1 and any constant a

lim
x→∞

(logM)nxaM

k
= 0.

This will prove useful to us when we calculate the asymptotics of higher mo-

ments of S±(M, f)(x) in later sections. The reason behind our choice of M

will become clear in Section 5.1.

3.6 Asymptotic formula for the variance

We compute an asymptotic formula for

V ±M := 2
M∑
m=1

Ŝ±(m)2 − 2
M−2∑
m=1

Ŝ±(m) Ŝ±(m+ 2)− Ŝ±(1)2 − Ŝ±(2)2.
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Proposition 3.6.1 For an interval I = [a, b] ⊂ [−2, 2] and a positive integer

M ≥ 1, we have

V ±M = µ∞(I)− µ∞(I)2 + O

(
logM

M

)
.

Proof. We have, by equation (2.4),

−Ŝ±(1)2 − Ŝ±(2)2 =− 1

π2
(sin(2πβ)− sin(2πα))2 − 1

4π2
(sin(4πβ)− sin(4πα))2

+ O

(
1

M

)
.

(3.14)

Combining equations (2.5) and (2.6), we have, after suitable rearrangement,

2
M∑
m=1

Ŝ±(m)2 − 2
M−2∑
m=1

Ŝ±(m) Ŝ±(m+ 2) =

2(β − α)− 4(β − α)2 +
1

π2
(sin(2πβ)− sin(2πα))2

− 1

2π
(1− 4(β − α))(sin(4πβ)− sin(4πα)) + O

(
logM

M

)
.

(3.15)

Finally, putting equations (3.14) and (3.15) together, we arrive at the follow-

ing:

V ±M = 2(β − α)− (sin(4πβ)− sin(4πα)

2π
− 4(β − α)2 +

2(β − α)

π
(sin(4πβ)− sin(4πα))

− 1

4π2
(sin(4πβ)− sin(4πα))2 + O

(
logM

M

)
= 2(β − α)− (sin(4πβ)− sin(4πα)

2π
−
(

2(β − α)− (sin(4πβ)− sin(4πα)

2π

)2

.

Since

2(β − α)− (sin(4πβ)− sin(4πα)

2π
= µ∞(I),

we conclude,

V ±M = µ∞(I)− µ∞(I)2 + O

(
logM

M

)
. (3.16)

�
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Chapter 4

Higher moments

In the earlier chapters the first and second moments were computed. We

now calculate higher moments, that is, we set

T±M(x) :=
S±(M, f)(x)√

π(x)

and evaluate the moments

1

sk

∑
f∈Fk

(
T±M(x)

)n
(4.1)

for positive integers n ≥ 3.

4.1 Overview of the strategy

By definition, we have (
T±M(x)

)n
=

1

π(x)
n
2

[∑
p≤x

(
Ŝ±(1)af (p) + Ŝ±(2)af (p

2) +
M∑
m=3

Ŝ±(m)(af (p
m)− af (pm−2))

)]n
.

For a prime p, let

Y ±M (p) =
M∑
m=1

Û±M(m)af (p
m),
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where we denote, for M ≥ 1 and 1 ≤ m ≤M,

Û±M(m) :=

{
Ŝ±(m)− Ŝ±(m+ 2), if 1 ≤M − 2

Ŝ±(m), if m = M − 1, M.

Therefore, (
T±M(x)

)n
=

1

π(x)
n
2

(∑
p≤x

Y ±M (p)

)n

.

Using the multinomial formula, we may write the above equation as follows.(
T±M(x)

)n
=

1

π(x)
n
2

n∑
u=1

(1)∑
(r1,r2,...,ru)

n!

r1!r2! · · · ru!
1

u!

(2)∑
(p1,p2,...,pu)

Y ±M (p1)r1Y ±M (p2)r2 · · ·Y ±M (pu)
ru ,

(4.2)

where

• The sum
(1)∑

(r1,r2,...,ru)

is taken over tuples of positive integers r1, r2, . . . , ru

so that

r1 + r2 + · · ·+ ru = n, that is, a partition of n into u positive parts.

• The sum
(2)∑

(p1,p2,...,pu)

is over u-tuples of distinct primes not exceeding x.

We now focus our attention on the terms in the innermost sum, namely the

Y ±M (pi)
ri . The product Y ±M (p1)r1Y ±M (p2)r2 · · ·Y ±M (pu)

ru involves many terms

and so we simplify the notation as much as we can. Following the same goal

as in Proposition 3.5.1, that is, the calculation of the second moment, observe

that what we really need is to identify which terms survive when we use the

trace formula and let x → ∞ in equation (4.1). This is a little harder than

the analogous task in the second moment case, because now we have many

more possibilities coming from the various partitions of n. In other words,

once we fix the number of parts u of a partition of n, we need to see which

terms survive for a given triple (u, (r1, . . . , ru), (p1, . . . , pu)). Given such a
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triple, we first need to extract the coefficients of af (1) from each Y ±M (pi)
ri

and show that the remaining terms converge to zero in the limit. Then we

add up all the surviving terms coming from each triple. Recall that this is

exactly the idea of the proof of Proposition 3.5.1, where we saw that the

non-zero limits come from terms where p1 = p2 and m1 = m2.

Thanks to our growth condition on the weight k and the estimates coming

from using the trace formula, as we shall see, the following happens: For a

given n, there is at most one u and corresponding to it, exactly one partition

(r1, . . . , ru) that will give us something non-trivial! We need to be cautious

while summing, because there are about O(Mn) terms in the numerator and

M grows as a function of x. As we shall see, the terms are weighted nicely

enough to allow for more than just trivial estimation. The final sum is a

quantity that is a power of logM in the numerator and a positive power of

π(x) in the denominator for all but one partition. With our choice of M , such

a sum is asymptotically zero. Since the number of partitions of n doesn’t

depend on x, the limit is legitimate.

We now simplify the notation and proceed to understand how this happens.

To this end, by repeated use of Lemma 3.3.1, we may write, for each 1 ≤ i ≤
u,

Y ±M (pi)
ri =

(3)∑
mi

Û±M(mi)

Dri,mi
(0) +

∑
t∈I(mi)
t≥1

Dri,mi
(t)af (p

t
i)


= C±M(i) +

(3)∑
mi

Û±M(mi)
∑

t∈I(mi)
t≥1

Dri,mi
(t)af (p

t
i),

(4.3)

where

1. mi denotes an ri-tuple (mj1 , . . . ,mjri
).

2.
(3)∑
mi

denotes that the sum is taken over ri-tuples mi where 1 ≤ mjl ≤ M
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for each 1 ≤ l ≤ ri.

3. The term Û±(mi) denotes the product Û±(mj1) · · · Û±(mjri
).

4. For each ri-tuple mi, I(mi) denotes the set of non negative integers

t that occur in the power of pi on using Lemma 3.3.1 and for each t ∈
I(mi), Dri,mi

(t) denotes the coefficient of af (p
t
i) so obtained.

For example, if ri = 4 and mi = (1, 3, 2, 4) then

af (pi)af (p
3
i )af (p

2
i )af (p

4
i ) = af (p

10
i )+3af (p

8
i )+5af (p

6
i )+6af (p

4
i )+5af (p

2
i )+2.

Therfore,in this case, I(mi) = I(1, 3, 2, 4) = {0, 2, 4, 6, 8, 10} and

Dri,mi
(t) = D4,(1,3,2,4)(t) =



2 if t = 0

5 if t = 2

6 if t = 4

5 if t = 6

3 if t = 8

1 if t = 10

0 otherwise.

Note that I(mi) is a finite set for each mi. We observe that Dri,mi
(t) is

independent of the prime pi.

5. C±M(i) is the sum of the coefficients of af (1) = 1, coming from the the

expansion using Lemma 3.3.1. That is,

C±M(i) =

(3)∑
mi

Û±M(mi)Dri,mi
(0).

Observe that C±M(i) is independent of the prime pi and is in fact a polynomial

expression in Ŝ±(m), 1 ≤ m ≤M .
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4.2 Preliminary lemmas

We now prove the following proposition:

Proposition 4.2.1 Let 1 ≤ i ≤ u and mi be an ri-tuple as specified above.

Then, for t ∈ I(mi),

Dri,mi
(t) =



0, if ri = 1, t = 0

1, if ri = 1, t ≥ 1

O(1), if ri = 2, t ≥ 0

O (M ri−2) , if ri ≥ 3, t ≥ 1

O (M ri−3) , if ri ≥ 3, t = 0.

Proof. While focusing on an ri-tuple mi, we may also denote Dri,mi
(t) as

Dri(t) for brevity.

The cases ri = 1, 2 are clear. In fact, for ri = 2, we have

YM(p)2 =
M∑

m1,m2=1

Û±M(m1) Û±M(m2)

min{m1,m2}∑
i=0

af (p
m1+m2−2i)

=
M∑

m1,m2=1

Û±M(m1) Û±M(m2)
∑

t∈I(m1,m2)

af (p
t),

so the coefficient of af (p
t) = 1 if t ∈ I(m1,m2) and zero otherwise.

Remark 4.2.2 In particular, if t = 0,

D2,(m1,m2)(0) =

{
1 if m1 = m2

0 otherwise.

Observe that if m1 +m2 is even, then

I(m1,m2) ⊆ {0, 2, . . . ,m1 +m2}.

On the other hand, if m1 +m2 is odd, then

I(m1,m2) ⊆ {1, 3, . . . ,m1 +m2}.
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In either case,

|I(m1,m2)| ≤
(
m1 +m2

2

)
+ 1 ≤M + 1.

We now address the case ri = 3. Let l ∈ I(m1,m2,m3). The product

af (p
m1)af (p

m2)af (p
m3)

equals

af (p
m3)

min{m1,m2}∑
i=0

af (p
m1+m2−2i).

We observe that in the above product, af (p
l) can occur at most in all possible

expansions

af (p
m3)af (p

j), j ∈ I(m1,m2).

Since D2(t) = 1 for all t ∈ I(m1,m2) and |I(m1,m2)| ≤M + 1, we deduce

D3(l) ≤M + 1 = O(M).

This proves D3(ri) = O(M ri−2) for ri = 3.

We now proceed by induction. Assume that for some k ≥ 3, Dk(l) =

O(Mk−2). We observe that for each k-tuple mi,

|I(mi)| ≤
⌊
m1 +m2 + · · ·+mk

2

⌋
+ 1

≤
⌊
kM

2

⌋
+ 1 = Ok(M).

(4.4)

Now, in the expansion

(af (p
m1)af (p

m2) · · · af (pmk))af (pmk+1)

= af (p
mk+1)

∑
t∈I(m1,m2,...,mk)

Dk(t)af (p
t),

any af (p
l) can occur at most in all possible expansions

af (p
mk+1)af (p

j), j ∈ I(m1,m2, . . . ,mk).
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By the induction hypothesis,

Dk(l) = Ok(M
k−2).

Thus, by equation (4.4), we have

Dk+1(l) ≤ |I(mi)||Dk(l)| = Ok(M
k−1). (4.5)

Therefore, by induction, we have proved that if ri ≥ 3, t ≥ 0,

Dri(t) = O
(
M ri−2

)
.

Note that the implied constant depends on ri. We now use these estimates

to get a better estimate for Dri(0) for ri ≥ 3. We prove

Dri(0) = O
(
M ri−3

)
, ri ≥ 3.

(It is not difficult to show that for ri = 2, Dri(0) ≤ 1.)

For ri = 3, looking again at the expansion

af (p
m1)af (p

m2)af (p
m3) = af (p

m3)
∑

j∈I(m1,m2)

D2(j)af (p
j)

=
∑

j∈I(m1,m2)

min{j,m3}∑
i=0

D2(j)af (p
m3+j−2i),

we observe that m3 + j − 2i = 0 for some i if and only if j = m3. Thus,

D3(0) ≤ D2(m3) = O(1).

In general, for ri ≥ 3,

af (p
m1) · · · af (pmri−1)af (p

mri ) = af (p
mri )

∑
j∈I(m1,...,mri−1)

Dri−1(j)af (p
j)

=
∑

j∈I(m1,...,mri−1)

min{j,mri}∑
i=0

Dri−1(j)af (p
mri+j−2i).
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As before, mri + j − 2i = 0 if and only if i = j = mri . Therefore,

Dri(0) ≤ Dri−1(mri) = O(M ri−1−2) = O(M ri−3).

Here, the implied constant depends on ri. This proves the proposition. �

We record the following Lemma.

Lemma 4.2.3 For ri = 2, C±M(i) = V ±M , where V ±M is as defined in equation

(3.16).

Proof. Observe that for ri = 2, from Remark 4.2.2, it follows that

C±M(2) =
M∑
m=1

Û±M(m)2,

which is exactly the right hand side of equation (3.13), denoted by V ±M . The

claim follows. �

4.3 Gaussian distribution of T±M(x)

Equipped with the results proved in the previous section, we now proceed to

estimate the product

Y ±M (p1)r1 · · ·Y ±M (pi)
ru .

Using the notation from equation (4.3) and taking a product of Y ±M (pi)
ri over

i = 1, . . . , u, we have

(2)∑
(p1,p2,...,pu)

Y ±M (p1)r1 · · ·Y ±M (pi)
ru = (4.6)

(2)∑
(p1,p2,...,pu)

∑
(m1,...,mu)

Û±M(m1, . . . ,mu)

(4)∑
(t1,...,tu)

Dr,m(t)af (p
t1
1 · · · ptuu ).

where
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1.
(4)∑

(t1,...,tu)

denotes that the sum is taken over u-tuples t = (t1, . . . , tu), where

each ti ≥ 0 and ti ∈ I(mi).

2. We abbreviate the notation by setting

Û±M(m1, . . . ,mu) := Û±M(m1) · · · Û±M(mu)

and for a given tuple m = (m1, . . . ,mu),

Dr,m(t) := Dr1,m1
(t1)Dr2,m2

(t2) · · ·Dru,mu
(tu).

We now prove the following proposition:

Proposition 4.3.1 Suppose k = k(x) runs over positive even integers such

that log k√
x log x

→∞ as x→∞. Let M = b
√
π(x) log log xc. For each partition

(r1, r2, . . . , ru) of n,

lim
x→∞

1

π(x)
n
2

1

sk

∑
f∈Fk

(2)∑
(p1,p2,...,pu)

Y ±M (p1)r1Y ±M (p2)r2 · · ·Y ±M (pu)
ru

=

{
(V ±M )u if (r1, r2, . . . , ru) = (2, . . . , 2)

0 otherwise.

Proof. From equation (4.6), we have, for each partition (r1, . . . , ru) of n,

(2)∑
(p1,p2,...,pu)

Y ±M (p1)r1 · · ·Y ±M (pi)
ru =

(2)∑
(p1,p2,...,pu)

∑
(m1,...,mu)

Û±M(m1, . . . ,mu)

(4)∑
(t1,...,tu)

Dr,m(t)af (p
t1
1 · · · ptuu ).

For each tuple (m1, . . . ,mu), on applying Proposition 3.3.2, we have

1

π(x)
n
2

 1

sk

∑
f∈Fk

(2)∑
(p1,p2,...,pu)

(4)∑
(t1,...,tu)

Dr,m(t)af (p
t1
1 · · · ptuu )

 =

1

π(x)
n
2

(2)∑
(p1,p2,...,pu)

(4)∑
(t1,...,tu)

Dr,m(t)

(
δ(t1, . . . , tu)

(pt11 · · · ptuu )
1
2

+ O

(
(pt11 · · · ptuu )c

k

))
,
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where δ(t1, . . . , tu) = 1 if 2|ti for every ti > 0 and δ(t1, . . . , tu) = 0 otherwise.

Observe that for each 1 ≤ i ≤ u, ti is even if and only if the sum of the

components of the corresponding mi is even.

Therefore, the sum

1

sk

∑
f∈Fk

1

π(x)
n
2

(2)∑
(p1,p2,...,pu)

Y ±M (p1)r1 · · ·Y ±M (pi)
ru

=
1

π(x)
n
2

(2)∑
(p1,p2,...,pu)

(?)∑
(m1,...,mu)

Û±M(m1, . . . ,mu)

(4)∑
(t1,...,tu)

Dr,m(t)
1

(pt11 · · · ptuu )
1
2

+ O

 1

π(x)
n
2

(2)∑
(p1,p2,...,pu)

∑
(m1,...,mu)

| Û±M(m1, . . . ,mu)|
(4)∑

(t1,...,tu)

Dr,m(t)
(pt11 · · · ptuu )c

k

 ,

(4.7)

where
(?)∑

(m1,...,mu)

denotes that the sum is over those tuples such that δ(t1, . . . , tu) = 1.

Henceforth, to ease the notation, we will supress writing ti ∈ I(mi) and

assume that when we write ti under the summation sign, we mean ti such

that ti ∈ I(mi).

Now we consider the first term on the right hand side of (4.7) , which is

1

π(x)
n
2

(2)∑
(p1,p2,...,pu)

(?)∑
(m1,...,mu)

Û±M(m1, . . . ,mu)

(4)∑
(t1,...,tu)

Dr,m(t)
1

(pt11 . . . p
tu
u )

1
2

=
1

π(x)
n
2

(2)∑
(p1,p2,...,pu)

 (?)∑
m1

Û±M(m1)
∑
t1≥0

Dr1,m1
(t1)

p
t1/2
1

 · · ·
 (?)∑

mu

Û±M(mu)
∑
tu≥0

Dru,mu
(tu)

p
tu/2
u

 .

We write each  (?)∑
mi

Û±M(mi)
∑
ti≥0

Dri,mi
(ti)

p
ti/2
i


as

(?)∑
mi

Û±M(mi)Dri,mi
(0) +

(?)∑
mi

Û±M(mi)
∑
ti≥2

Dri,mi
(ti)

p
ti/2
i

.
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Therefore, denoting

C±M(i) =

(?)∑
mi

Û±M(mi)Dri,mi
(0),

we have, for a partition (r1, r2, . . . ru) of n,

1

π(x)
n
2

(2)∑
(p1,p2,...,pu)

 (?)∑
m1

Û±M(m1)
∑
t1≥0

Dr1,m1
(t1)

p
t1/2
1

 · · ·
 (?)∑

mu

Û±M(mu)
∑
tu≥0

Dru,mu
(tu)

p
tu/2
u


=

1

π(x)
n
2

(2)∑
(p1,p2,...,pu)

(
u∏
i=1

C±M(i)

)

+
1

π(x)
n
2

(2)∑
(p1,p2,...,pu)

∑
(ε1,...,εu)

u∏
i=1

(
C±M(i)

)1−εi

 (?)∑
mi

Û±M(mi)
∑
ti≥0

Dri,mi
(ti)

p
ti/2
i

εi

.

(4.8)

Here, in the second term on the right hand side, (ε1, ε2, . . . , εu) runs over all

u-tuples such that for each i = 1, . . . , u, εi ∈ {0, 1} and at least one εi is non-

zero. The tuple (0, . . . , 0) is accounted for by the first term. We also follow

the convention that if C±M(i) = 0, then εi is fixed to be 1 and C±M(i)1−εi = 1.

Let

D̃mi
(ri) := max{Dri,mi

(ti) : ti ∈ Imi}.

Then, we have

(?)∑
mi

Û±M(mi)
∑
ti≥2

Dri,mi
(ti)

p
ti/2
i

�
(?)∑
mi

| Û±M(mi)|
D̃mi

(ri)

pi
.

From this, we derive,

1

π(x)
n
2

(2)∑
(p1,p2,...,pu)

 (?)∑
m1

Û±M(m1)
∑
t1≥0

Dr1,m1
(t1)

p
t1/2
1

 · · ·
 (?)∑

mu

Û±M(mu)
∑
tu≥0

Dru,mu
(tu)

p
tu/2
u
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=
1

π(x)
n
2

(2)∑
(p1,p2,...,pu)

(
u∏
i=1

C±M(i)

)

+ O

 1

π(x)
n
2

(2)∑
(p1,p2,...,pu)

∑
(ε1,...,εu)

u∏
i=1

∣∣C±M(i)
∣∣1−εi (?)∑

mi

| Û±M(mi)|
D̃mi

(ri)

pi

εi .

(4.9)

Our goal is to show that the error term goes to zero as x→∞. To this end,

for each tuple (ε1, . . . , εu), observe that we may write

(2)∑
(p1,p2,...,pu)

u∏
i=1

∣∣C±M(i)
∣∣1−εi (?)∑

mi

| Û±M(mi)|
D̃mi

(ri)

pi

εi

as
(2)∑

(p1,p2,...,pu)

 u∏
i=1
εi=0

∣∣C±M(i)
∣∣
 u∏

i=1
εi=1

 (?)∑
mi

| Û±M(mi)|
D̃mi

(ri)

pi

 .

For ε = (ε1, . . . , εu), we define

α(ε) := α(ε1, . . . , εu) := #{1 ≤ i ≤ u : εi = 0}.

We observe that if ri = 1, then C±M(i) = 0. In general, for ri ≥ 2, we have

|C±M(i)| �
(?)∑
mi

| Û±M(mi)||Dri,mi
(0)|.

If ri = 2, then for each mi,

Dri,mi
(0) = O(1).

Thus, by Lemma 2.3.2,

|C±M(i)| �
(?)∑
mi

| Û±M(mi)| � (logM)ri .

On the other hand, if ri ≥ 3, then, by Proposition 4.2.1, for each mi,

Dri,mi
(0) = O(M ri−3).
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Once again, by Lemma 2.3.2,

|C±M(i)| �
(?)∑
mi

| Û±M(mi)||Dri,mi
(0)|

�

{
(logM)ri if ri = 1, 2

M ri−3(logM)ri if ri ≥ 3.

(4.10)

Similarly, by another application of Proposition 4.2.1 and Lemma 2.3.2 , we

have

(?)∑
mi

| Û±M(mi)|
D̃mi

(ri)

pi
�


(logM)

pi
if ri = 1

M ri−2(logM)ri

pi
if ri ≥ 2.

(4.11)

The partition (r1, r2, . . . , ru) can be of two types as described below.

Case 1: The partition (r1, . . . , ru) satisfies the condition ri > 1 for i =

1, . . . , u. Observe that this means u ≤ n
2
.

In this case, by equations (4.10) and (4.11), for each tuple (ε1, . . . , εu), we

have

(2)∑
(p1,p2,...,pu)

 u∏
i=1
εi=0

∣∣C±M(i)
∣∣
 u∏

i=1
εi=1

 (?)∑
mi

| Û±M(mi)|
D̃mi

(ri)

pi



�
(2)∑

(p1,p2,...,pu)

 u∏
i=1
εi=0

M ri−2(logM)ri


 u∏

i=1
εi=1

M ri−2 (logM)ri

pi



�Mn−2α(ε)−2(u−α(ε))(logM)n
(2)∑

(p1,p2,...,pu)

1
u∏
i=1
εi=1

pi

�Mn−2α(ε)−2(u−α(ε))(logM)nπ(x)α(ε)(log log x)u−α(ε)

�Mn−2uπ(x)α(ε)(log log x)u−α(ε)(logM)n.

(4.12)
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We now choose M = b
√
π(x) log log xc. The above error term is

� π(x)
n
2
−uπ(x)u−1(log log x)u(log x)n,

since α(ε) ≤ u− 1. Thus, for each tuple (ε1, . . . , εu),

lim
x→∞

1

π(x)n/2

(2)∑
(p1,p2,...,pu)

 u∏
i=1
εi=0

∣∣C±M(i)
∣∣
 u∏

i=1
εi=1

 (?)∑
mi

| Û±M(mi)|
D̃mi

(ri)

pi


� lim

x→∞

1

π(x)
n
2

π(x)
n
2
−1(log log x)u(log x)n = 0.

Since the number of tuples (ε1, . . . , εu) depends only on u, we conclude that

lim
x→∞

1

π(x)
n
2

(2)∑
(p1,p2,...,pu)

∑
(ε1,...,εu)

u∏
i=1

(
C±M(i)

)1−εi

 (?)∑
mi

Û±M(mi)
∑
ti≥0

Dri,mi
(ti)

p
ti/2
i

εi

= 0.

Case 2: The partition (r1, . . . , ru) has at least one component ri equal to

1. Let l be the number of 1’s in the partition. Without loss of generality,

we may assume that the last l parts are equal to one while r1, . . . , ru−l are

at least 2. By our convention, since C±M(i) = 0 if ri = 1, we have εi = 1

for u − l + 1 ≤ i ≤ u. Also, if ri = 1, D̃mi
(ri) = 1. For ε = (ε1, . . . , εu) =

(ε1, . . . , εu−l, 1, . . . , 1), let

αl(ε) = #{1 ≤ i ≤ u− l : εi = 0}.

Therefore, if the partition in consideration has l components equal to 1, we

have, for each εl = (ε1, . . . , εu−l, 1, . . . , 1),

(2)∑
(p1,p2,...,pu)

u∏
i=1

∣∣C±M(i)
∣∣1−εi (?)∑

mi

| Û±M(mi)|
D̃mi

(ri)

pi

εi

=

(2)∑
(p1,p2,...,pu)

u−l∏
i=1

∣∣C±M(i)
∣∣1−εi (?)∑

mi

| Û±M(mi)|
D̃mi

(ri)

pi

εi u∏
i=u−l+1

 (?)∑
mi

| Û±M(mi)|
1

pi

 .
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Again, using equations (4.10) and (4.11), for each tuple εl = (ε1, . . . , εu−l, 1, . . . , 1)

we have

(2)∑
(p1,p2,...,pu)

 u−l∏
i=1
εi=0

∣∣C±M(i)
∣∣
 u−l∏

i=1
εi=1

 (?)∑
mi

| Û±M(mi)|
D̃mi

(ri)

pi

 u∏
i=u−l+1

 (?)∑
mi

| Û±M(mi)|
D̃mi

(1)

pi



�
(2)∑

(p1,p2,...,pu)

 u−l∏
i=1
εi=0

M ri−2(logM)ri


 u−l∏

i=1
εi=1

M ri−2 (logM)ri

pi

 (logM)l

pu−l+1 · · · pu

�Mn−l−2αl(ε)−2(u−l−αl(ε))(logM)n
(2)∑

(p1,p2,...,pu)

1
u∏
i=1
εi=1

pi

�Mn−2αl(ε)−2(u−l−αl(ε))(logM)nπ(x)α(ε)(log log x)u−αl(ε)

�Mn−l−2(u−l)π(x)αl(ε)(log log x)u−αl(ε)(logM)n.

(4.13)

Substituting our chosen value for M and using the bound αl(ε) ≤ u− l, the

above error term is

� π(x)
n
2
− l

2 (log log x)u(log x)n.

Therefore,

lim
x→∞

1

π(x)
n
2

(2)∑
(p1,p2,...,pu)

∑
εl

u∏
i=1

∣∣C±M(i)
∣∣1−εi (?)∑

mi

| Û±M(mi)|
D̃mi

(ri)

pi

εi

�u lim
x→∞

1

π(x)
n
2

π(x)−
1
2 (log log x)u(log x)n = 0

noting that l ≥ 1.

58



From the analysis in Cases 1 and 2, we deduce that for any partition (r1, r2, . . . , ru)

of n,

lim
x→∞

1

π(x)
n
2

(2)∑
(p1,p2,...,pu)

∑
(ε1,...,εu)

u∏
i=1

(
C±M(i)

)1−εi

 (?)∑
mi

Û±M(mi)
∑
ti≥0

Dri,mi
(ti)

p
ti/2
i

εi

= 0,

(4.14)

where we are summing over all tuples (ε1, ε2, . . . , εu) with at least one εi is

non-zero.

From equations (4.8) and (4.14), we deduce that for a partition (r1, r2, . . . , ru)

of n,

lim
x→∞

1

π(x)
n
2

(2)∑
(p1,p2,...,pu)

 (?)∑
m1

Û±M(m1)
∑
t1≥0

Dr1,m1
(t1)

p
t1/2
1

 · · ·
 (?)∑

mu

Û±M(mu)
∑
tu≥0

Dru,mu
(tu)

p
tu/2
u


= lim

x→∞

1

π(x)
n
2

(2)∑
(p1,p2,...,pu)

(
u∏
i=1

C±M(i)

)
.

(4.15)

We now study the term

1

π(x)
n
2

(2)∑
(p1,p2,...,pu)

(
u∏
i=1

C±M(i)

)
as x→∞.
We know, from Lemma 4.2.3, that for ri = 2,

C±M(i) = V ±M = 2
M∑
m=1

Ŝ±(m)2 − 2
M−2∑
m=1

Ŝ±(m) Ŝ±(m+ 2)− Ŝ±(1)2 − Ŝ±(2)2.

Plugging in our choice of M = b
√
π(x) log log xc into the asymptotic formula

for V ±M calculated in Proposition 3.6.1, we may write

V ±M = µ∞(I)− µ∞(I)2 + O

(
log
√
x√

π(x)

)
.

Once again, the partitions (r1, r2, . . . , ru) are of three different types as de-

scribed in the three cases below.

59



Case 1: If (r1, r2, . . . , ru) = (2, 2, . . . , 2), then u = n/2 and

1

π(x)
n
2

(2)∑
(p1,p2,...,pu)

(
u∏
i=1

C±M(i)

)
=

(
u∏
i=1

C±M(i)

)

= (V ±M )n/2

= (µ∞(I)− µ∞(I)2)
n
2 + On

(
log
√
x√

π(x)

)n
2

.

Case 2: If ri = 1 for some ri in the given partition, then the corresponding

C±M(i) is 0. Thus,

1

π(x)
n
2

(2)∑
(p1,p2,...,pu)

(
u∏
i=1

C±M(i)

)
= 0.

Case 3: Each ri ≥ 2 with at least one ri ≥ 3. Without loss of generality, for

some 1 ≤ l ≤ u, suppose we have r1, r2, . . . , rl ≥ 3 and rl+1 = · · · = ru = 2.

Thus, (r1 + · · ·+ rl) + 2(u− l) = n. By equation (4.10),∣∣∣∣∣
u∏
i=1

C±M(i)

∣∣∣∣∣�M
∑l
i=1(ri−3)(logM)n

�Mn−2(u−l)−3l(logM)n = Mn−l−2u(logM)n.

Choosing M = b
√
π(x) log log xc,

1

π(x)n/2

(2)∑
(p1,p2,...,pu)

∣∣∣∣∣
u∏
i=1

C±M(i)

∣∣∣∣∣
� 1

π(x)n/2
(π(x))

n
2
− l

2
−u+u(log x)n.

Since l ≥ 1,

lim
x→∞

1

π(x)
n
2

(2)∑
(p1,p2,...,pu)

(
u∏
i=1

C±M(i)

)
= 0.
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From the above three cases, we deduce that for M = b
√
π(x) log log xc,

lim
x→∞

1

π(x)
n
2

(2)∑
(p1,p2,...,pu)

(
u∏
i=1

C±M(i)

)

=

{
(µ∞(I)− µ∞(I)2)n/2 if (r1, r2, . . . , ru) = (2, . . . , 2)

0 otherwise.

(4.16)

We now look at the error term on the right hand side of equation (4.7),

O

 1

π(x)
n
2

(2)∑
(p1,p2,...,pu)

∑
(m1,...,mu)

| Û±M(m1, . . . ,mu)|
(4)∑

(t1,...,tu)

Dr,m(t)
(pt11 · · · ptuu )c

k

 .

We observe that for each i,∑
ti≥0

ti∈I(mi)

(pci)
ti � p

c(riM+1)
i ,

since the ti can at most be riM . Thus, by Proposition 4.2.1 and Lemma

2.3.2, the above error term from equation (4.7) becomes

= O

 1

π(x)
n
2

π(x)u(logM)nMn−2u

(2)∑
(p1,p2,...,pu)

p
c(r1M+1)
1 p

c(r2M+1)
2 · · · pc(ruM+1)

u

k


= O

(
1

π(x)
n
2

π(x)u(logM)nMn−2uπ(x)u
xcn(M+1)

k

)
,

since r1 + · · ·+ ru = n. For M = b
√
π(x) log log xc, this is

O

(
1

π(x)
n
2

π(x)u(log x)n(π(x))n/2−uπ(x)u
xcn
√
x

k

)
.

If
log k√
x log x

→∞ as x→∞,

then

lim
x→∞

xA
√
x

k
= 0 for any constant A > 0.
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In particular, given n ≥ 1,

lim
x→∞

1

π(x)
n
2

π(x)u(log x)n(π(x))n/2−uπ(x)u
xcn
√
x

k
= 0.

Combining this information with (4.15) and (4.16), we prove Proposition

4.3.1. �

Using Proposition 4.3.1 in equation (4.2), we deduce, under the same as-

sumptions on M and k as above,

lim
x→∞

1

sk

∑
f∈Fk

(
T±M(x)

)n
= lim

x→∞

1

π(x)
n
2

n∑
u=1

(1)∑
(r1,r2,...,ru)

n!

r1!r2! . . . ru!

1

u!

(2)∑
(p1,p2,...,pu)

Y ±M (p1)r1Y ±M (p2)r2 . . . Y ±M (pu)
ru

=
n∑
u=1

(1)∑
(r1,r2,...,ru)

n!

r1!r2! . . . ru!

1

u!

{
(µ∞(I)− µ∞(I)2)u if (r1, r2, . . . , ru) = (2, 2, 2, . . . , 2)

0 otherwise

=


n!

(n
2
)!2

n
2

(µ∞(I)− µ∞(I)2)
n
2 if n is even

0 otherwise.

(4.17)

We have proved the following theorem:

Theorem 4.3.2 Let I = [a, b] be a fixed interval in [−2, 2]. Let M = b
√
π(x) log log xc

and suppose k = k(x) runs over positive even integers such that log k√
x log x

→∞
as x→∞. Then,

lim
x→∞

〈(
S±(M, f )(x)√

π(x)(µ∞(I)− µ∞(I)2)

)n〉
=

0 if n is odd
n!

(n/2)!2n/2
if n is even.
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Chapter 5

Proofs of the main theorems

In this chapter we bring together the results proved in the chapters so far to

prove theorems 1.3.1 and 1.3.2.

5.1 Proof of Theorem 1.3.1

We recall (3.10) below:

S−(M, f)(x)+C

(
π(x)

M + 1

)
≤ NI(f, x)−π(x)µ∞(I) ≤ S+(M, f)(x)+D

(
π(x)

M + 1

)
.

(5.1)

The above tells us that

〈NI(f, x)− π(x)µ∞(I)− S±(M, f)(x)〉 = O

(
π(x)

M + 1

)
.

Thus, we have 〈∣∣∣∣∣NI(f, x)− π(x)µ∞(I)− S±(M, f)(x)√
π(x)(µ∞(I)− µ∞(I)2)

∣∣∣∣∣
〉

= O

( √
π(x)

(M + 1)
√

(µ∞(I)− µ∞(I)2)

)
.

Remark 5.1.1 Observe that to prove Theorem 4.3.2, it would have sufficed

to take M to be b
√
π(x)c. However, to conclude the convergence in mean,
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looking at the error term in the above equation, we deduce that our choice of

M should be a function of x that grows faster than
√
π(x). This explains the

reason behind our choice of M .

Therefore, choosing M = b
√
π(x) log log xc, we get

Proposition 5.1.2 Let M = b
√
π(x) log log xc. Then, as x→∞,〈∣∣∣∣∣NI(f, x)− π(x)µ∞(I)− S±(M, f)(x)√

π(x)(µ∞(I)− µ∞(I)2)

∣∣∣∣∣
〉
→ 0.

The above proposition tells us that the random variable

NI(f, x)− π(x)µ∞(I)√
π(x)(µ∞(I)− µ∞(I)2)

converges in mean to

S±(M, f)(x)√
π(x)(µ∞(I)− µ∞(I)2)

as x→∞. Observe that Theorem 4.3.2 implies the following:

For M = b
√
π(x) log log xc and log k√

x log x
→∞ as x→∞,〈(

S±(M, f)(x)√
π(x)(µ∞(I)− µ∞(I)2)

)n〉
→

{
0 if n is odd

n!
(n/2)!2n/2

if n is even.

Recall, for n ∈ N,

1√
2π

∞∫
−∞

tne−
t2

2 dt =

{
0 if n is odd

n!
(n/2)!2n/2

if n is even.

Since the Gaussian distribution is uniquely characterized by its moments,

this tells us that
S±(M, f)(x)√

π(x)(µ∞(I)− µ∞(I)2)

follows a Gaussian distribution. Finally, using Proposition 5.1.2 and the fact

that convergence in mean implies convergence in distribution, this proves
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that the quantity we’re interested in also follows a Gaussian distribution un-

der the specified growth conditions on the weight k. More explicitly, we have

proved the following theorem.

Theorem 1.3.1 Let I = [a, b] be a subinterval of [−2, 2]. Suppose that

k = k(x) satisfies log k√
x log x

→∞ as x→∞. Then for any bounded continuous

real function h on R we have

lim
x→∞

1

|Fk|
∑
f∈Fk

h

 NI(f, x)− π(x)µ∞(I)√
π(x)

[
µ∞(I)− (µ∞(I))2]

 =
1√
2π

∞∫
−∞

h(t)e−
t2

2 dt.

In other words, for any real numbers A < B,

lim
x→∞

Prob Fk

A <
NI(f, x)− π(x)µ∞(I)√
π(x)

[
µ∞(I)− (µ∞(I))2] < B

 =
1√
2π

∫ B

A

e−t
2/2dt.

5.2 Variants

Before we present the proof of the analogous theorem for Maass forms, we

state some results that are variants of the theorem proved in the case of

modular forms. These can be proved using the same techniques used in

proving Theorem 1.3.1.

5.2.1 Harmonic averaging

One could consider a weighted variant of Theorem 1.3.1. Instead of uniformly

averaging over cusp forms in Fk, we consider the case of harmonic averaging.

That is, for f ∈ Fk, we denote

ωf :=
Γ(k − 1)

(4π)k−1〈f, f〉
,

where 〈f, g〉 denotes the Petersson inner product of f, g ∈ Sk. We define

hk :=
∑
f∈Fk

ωf .
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For a function φ : Sk → C, we denote its harmonic average as follows:

〈φ(f)〉hk :=
1

hk

∑
f∈Fk

ωfφ(f).

Using the Peterrson trace formula, one can prove the following analogue of

Theorem 1.3.1 with harmonic weights attached to the quantities in consid-

eration.

Theorem 5.2.1 Let I = [a, b] be a fixed interval in [−2, 2]. Suppose that k =

k(x) satisfies log k√
x log x

→ ∞ as x → ∞. Then for any bounded, continuous,

real-valued function g on R, we have

lim
x→∞

1

hk

∑
f∈Fk

g

 ωfNI(f, x)− π(x)µ∞(I)√
π(x)

[
µ∞(I)− (µ∞(I))2]

 =
1√
2π

∞∫
−∞

g(t)e−
t2

2 dt.

5.2.2 Remarks on higher levels.

Now that we have a proof for the case of full level, it is natural to ask if

the theorem extends to higher levels. For higher levels, one could consider

the subspace S∗(N, k) of newforms sitting inside S(N, k). We consider the

subspace of newforms because this subspace has a basis consisting of simulta-

neous eigenforms for all the Hecke operators Tp, including primes p dividing

N . Of course, one would have to consider the estimates of the trace formula

for Tn acting on S∗(N, k) and a formula for the dimension s∗(N, k) in this

case. We state them here.

Let f0(N) be the multiplicative function satisfying

f0(p) = 1− 1

p
,

f0(p2) = 1− 1

p
− 1

p2

and

f0(pm) =

(
1− 1

p

)(
1− 1

p2

)
for m ≥ 3.
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As before, let FN,k denote the basis of S∗(N, k) consisting of normalized

Hecke eigenforms. Then we have

1.

∑
f∈FN,k

af (n) =


k
Nf0(N)

12
+ ON (nc) if n is a square

ON (nc) otherwise,

for some positive integer c.

2.

s∗(N, k) = k

(
Nf0(N)

12

)
+ ON (1) .

These can be found in [26] and [18]. It is not hard to see that Lemma

3.3.4 holds in this case as well, if one replaces sk with s∗(N, k). Proceeding

analogously as presented in the earlier chapters, the following theorem holds:

Theorem 5.2.2 Let I = [a, b] be a subinterval of [−2, 2]. Suppose that k =

k(x) satisfies log k√
x log x

→∞ as x→∞. Then for any real numbers A < B,

lim
x→∞

Prob FN,k

A <
NI(f, x)− π(x)µ∞(I)√
π(x)

[
µ∞(I)− (µ∞(I))2] < B

 =
1√
2π

∫ B

A

e−t
2/2dt.

5.3 Proof of Theorem 1.3.2

We conclude this chapter with a proof of Theorem 1.3.2. The ideas in the

proof are similar to those for the case of holomorphic newforms. However,

one of the main tools used in the study of Maass cusp forms is the unweighted

Kuznetsov trace formula as opposed to the Eichler Selberg trace formula in

previous sections. Additionally, the Ramanujan-Peterrson Conjecture, which

is the assertion that for all primes p,

|aj(p)| ≤ 2
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is still open. This causes a subtle change in the growth conditions under

which Theorems 1.3.1 and 1.3.2 hold true, since we have to account for the

eigenvalues lying outside the interval [−2, 2].

Following the notation of subsection 1.1.3, for an interval I = [a, b] ⊂ R and

for 1 ≤ j ≤ r(T ), let us define

NI(j, x) = #{p ≤ x : aj(p) ∈ I}.

The Sato-Tate conjecture for a primitive Maass form fj (unproved as yet) is

the prediction that for an interval I = [a, b] ⊂ [−2, 2],

lim
x→∞

NI(j, x)

π(x)
=

∫
I

µ∞(t)dt.

In [29], Sarnak considered a vertical analogue of the Sato-Tate conjecture

and showed that if we fix a prime p and let j → ∞, the sequence {aj(p)}
is equidistributed in [−2, 2] with respect to the measure µp(t) defined in

equation (1.3). An effective version of Sarnak’s theorem was derived by Lau

and Wang [17]. Adapting the techniques of [17], Wang [36] also proves an

average version of the Sato-Tate conjecture for primitive Maass forms along

with effective error terms. He shows the following:

Theorem 5.3.1 Suppose T = T (x) satisfies log T
log x
→∞ as x→∞. For any

I = [a, b] ⊂ R,

1

r(T )

r(T )∑
j=1

NI(j, x) = π(x)µ∞(I) + O

(
π(x) log x

log T

)
+ O(log log x).

In order to prove the above theorem, the author uses a modified version of the

Beurling-Selberg polynomials to approximate the counting function NI(j, x)

and then applies an unweighted Kuznetsov trace formula to evaluate the

exponential sums that appear in this case. This unweighted trace formula

had been previously stated and proved by Lau and Wang [17, Lemma 3.3] in

order to derive effective versions of Sarnak’s theorem. We state it below.
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Proposition 5.3.2 Let κ = 11/155, η = 43/620 and m,n be positive inte-

gers. For arbitrarily small ε > 0 we have,∑
tj≤T

aj(m)aj(n) =
1

12
T 2δmn=�

σ(gcd(m,n))√
mn

+ Oε(T
2−κ+ε(mn)η+ε),

where σ(l) =
∑
d|l
d and δl=� = 1 if l is a square and δl=� = 0 otherwise.

The following proposition, analogous to Proposition 3.3.2, follows immedi-

ately from their unweighted trace formula.

Proposition 5.3.3 Let κ = 11/155, η = 43/620 and m be a positive integer.

For ε > 0,

∑
tj≤T

aj(p
m) =

{
T 2

12
1

pm/2
+ Oε (T 2−κ+εpmη+ε) if m is even

Oε (T 2−κ+εpmη+ε) if m is odd.

The techniques presented in the work of Lau and Wang [17] and Wang [36]

take adequate care to treat the exceptional eigenvalues, that is, those eigen-

values aj(p) 6∈ [−2, 2]. For a prime p, we may write for each 1 ≤ j ≤ r(T ),

the eigenvalue

aj(p) = 2 cos(θj(p)),

where θj(p) ∈ [0, π] if aj(p) ∈ [−2, 2] and θj(p) = iϑj(p) or π + iϑj(p), with

ϑj(p) ∈ R if |aj(p)| > 2. In all cases, aj(p) ∈ R. As in the case of holomorphic

Hecke eigenforms, we have, for m ≥ 1,

aj(p
m) =

sin(m+ 1)θj(p)

sin θj(p)
= Xm(2 cos(θj(p))),

and therefore, for m ≥ 2,

2 cos(mθj(p)) = Xm(2 cos(θj(p)))−Xm−2(2 cos(θj(p)))

= aj(p
m)− aj(pm−2).

From Weyl’s law (equation (1.2)) and Proposition 5.3.3, we deduce the fol-

lowing analogue of Lemma 3.3.4:
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Lemma 5.3.4 Suppose T = T (x) satisfies log T√
x log x

→ ∞ as x → ∞. Then,

for any m ≥ 1 and a > 0,

lim
x→∞

1

(π(x))ar(T )

∑
p≤x

∑
1≤j≤r(T )

aj(p
m) = 0.

More generally, for non-negative integers m1, m2, not both zero,

lim
x→∞

1

(π(x))ar(T )

∑
p1 6=p2≤x

∑
1≤j≤r(T )

aj(p
m1
1 pm2

2 ) = 0.

We have, for any I ⊂ R,

NI(j, x) = NI′(j, x) + Ej(x),

where I ′ ⊆ [−2, 2] and Ej(x) = #{p ≤ x : |aj(p)| > 2}. Lau and Wang [17,

Lemma 4.3] show that for a fixed prime p and sufficiently large T,

1

r(T )
#{1 ≤ j ≤ r(T ) : |aj(p)| > 2} = O

(
log p

log T

)2

,

the implied constant being absolute.

So we have

1

r(T )

r(T )∑
j=1

Ej(x) = O

(
π(x)(log x)2

(log T )2

)
.

As in Section 4, considering the Beurling-Selberg polynomials for I ′ and

denoting

S±(M, j)(x) :=
2∑

m=1

(Ŝ±M(m) + Ŝ±M(−m))
∑
p≤x

aj(p
m)

+
M∑
m=3

(Ŝ±M(m) + Ŝ±M(−m))
∑
p≤x

(
aj(p

m)− aj(pm−2)
)
,

we get

NI′(j, x)− π(x)
[
(2β − 2α)− (Ŝ+

M(2) + Ŝ +
M(−2))

]
≤ S+(M, j)(x) + 2

π(x)

M + 1
.
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and

−2
π(x)

M + 1
+S−(M, j)(x) ≤ NI′(j, x)−π(x)

[
(2β − 2α)− (Ŝ−M(2) + Ŝ−M(−2))

]
.

Therefore,

1

r(T )

r(T )∑
j=1

NI(j, x)

=
1

r(T )

r(T )∑
j=1

NI′(j, x) +O

(
π(x)(log x)2

(log T )2

)
≤ π(x)µ∞(I) + S+(M, j)(x) +O

(
π(x)

M + 1
+
π(x)(log x)2

(log T )2

)
and

1

r(T )

r(T )∑
j=1

NI(j, x) ≥ π(x)µ∞(I)+S−(M, j)(x)+O

(
π(x)

M + 1
+
π(x)(log x)2

(log T )2

)
.

Finally, we observe that on averaging over all 1 ≤ j ≤ r(T ),

1

r(T )

∑
1≤j≤r(T )

(NI(j, x)− π(x)µ∞(I)− S±(M, j)(x))

= O

(
π(x)

M + 1
+
π(x)(log x)2

(log T )2

)
.

Following the same sequence of arguments as in Theorem 1.3.1, the moments

1

r(T )

r(T )∑
j=1

(
S±(M, j)(x)√

π(x)(µ∞(I)− µ∞(I)2)

)n

are those of a Gaussian, since the main ingredient was the multiplicative

relations satisfied by the eigenvalues and these relations are the same for

Maass forms and holomorphic cusp forms alike. Thus, we have〈∣∣∣∣∣NI(j, x)− π(x)µ∞(I)− S±(M, j)(x)√
π(x)(µ∞(I)− µ∞(I)2)

∣∣∣∣∣
〉

= O

( √
π(x)

(M + 1)
√

(µ∞(I)− µ∞(I)2)
+

√
π(x)(log x)2

(log T )2
√

(µ∞(I)− µ∞(I)2)

)
.

Choosing M = b
√
π(x) log log xc, we get
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Proposition 5.3.5 Suppose that T = T (x) satisfies log T√
x log x

→∞ as x→∞.

Let M = b
√
π(x) log log xc and I ⊂ R be a fixed interval. Then,〈∣∣∣∣∣NI(j, x)− π(x)µ∞(I)− S±(M, j)(x)√

π(x)(µ∞(I)− µ∞(I)2)

∣∣∣∣∣
〉

1≤j≤r(T )

→ 0.

Following the line of proof in Section 5.1, since convergence in mean implies

convergence in distribution, this proves Theorem 1.3.2.
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Chapter 6

Density of solutions to
quadratic congruences

6.1 Introduction

The theory of solving a quadratic equation modulo p for p prime has been well

studied. Investigating whether a given quadratic equation has solutions, how

many there are and calculating what the solutions are, has led to beautiful

theorems such as the law of quadratic reciprocity. A related question is the

following:

Suppose we fix a quadratic equation f(x) = x2 + bx + c, where b, c ∈ Z and

would like to know how often the equation f(x) = 0 has solutions modulo

N if we vary N in a certain range. Let us first look at the case where we

vary over primes p not exceeding x. Dirichlet, in 1837, showed that solutions

would exist for approximately half the primes. In 1896, this was made precise

by de la Vallée-Poussin. Noting that f(x) has exactly two solutions if and

only if the discriminant D = b2 − 4c is a square mod p, what Dirichlet and

de la Vallée-Poussin showed was essentially the following:

Proposition 6.1.1 For a fixed number D ∈ Z− {0}, as x→∞,

1

π(x)
#

{
p ≤ x, p prime :

(
D

p

)
= 1

}
∼ 1

2
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and
1

π(x)
#

{
p ≤ x, p prime :

(
D

p

)
= −1

}
∼ 1

2
,

where

(
D

·

)
is the Legendre symbol and π(x) denotes the number of primes

not exceeding x.

The main ideas that go into the proof of this result are two classical results:

Gauss’s law of quadratic reciprocity and Dirichlet’s theorem on the infini-

tude of primes in an arithmetic progression. The latter was proved around

1836. Later, de la Vallée-Poussin proved that for positive integers a, q with

gcd(a, q) = 1, the set of primes congruent to a mod q has natural density
1

φ(q)
. In other words, the number of primes p ≤ x such that p ≡ a mod q is

asymptotic to
1

φ(q)
π(x) as x→∞. Since then, there have been analogues of

this theorem in various settings. For example, by applying the Chebotarev

density theorem to the case of cyclotomic extensions Q(ζn) of Q, we obtain

Dirichlet’s theorem. The analogue in the case of function fields was proved

by H. Kornblum and E. Landau in [14]. It is natural to ask if we can extend

the result to numbers with k prime factors, k > 1. In order to do so, we

would first need to talk about the analogue of π(x) for numbers with k prime

factors, which is defined as follows:

τk(x) :=
∑
n≤x

n=p1p2...pk

1,

where n = p1p2 . . . pk is the prime factorization of n, with p1 ≤ p2 ≤ . . . ≤ pk.

If we add an additional condition that the primes dividing n must be distinct,

then we are counting the number of squarefree positive integers not exceeding

x, having exactly k prime factors and this quantity is denoted by πk(x).

In 1900, E. Landau [15] proved that

πk(x) ∼ τk(x) ∼ x(log log x)k−1

(k − 1)! log x
. (6.1)
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In 1954, E. M. Wright gave a simpler proof of this in [37], which appears

as Theorem 437 in [10]. There have been several attempts since then, at

deriving a precise estimate with error terms. An exposition of this can be

found in Section 7.4 of [21].

With this in mind, it is natural to ask if we can say something analogous to

Proposition 6.1.1 when n varies over squarefree numbers. In this chapter, we

prove the following:

Theorem 6.1.2 Let D ∈ Z− {0} and k ∈ N. Fix a k-tuple ε = (ε1, . . . , εk)

where each εi = ±1 for each i = 1, . . . , k. Then

1

πk(x)
#

{
n ≤ x, n = p1p2 . . . pk with p1 < p2 < . . . < pk :

(
D

pi

)
= εi for each i

}
∼ 1

2k
,

where πk(x) denotes the number of squarefree numbers less than x with k

prime factors.

The proof involves an analogous version of Dirichlet’s theorem, which is the

following:

Let us fix N, k ∈ N and consider a k-tuple

m[k] = (m1,m2, . . . ,mk)

where each mi ∈ (Z/NZ)×, the multiplicative group of units in Z/NZ. The

mi’s are not necessarily distinct.

Consider positive integers n ≤ x with k prime factors, counted with multi-

plicity. Represent such n as n = p1p2 . . . pk with p1 ≤ p2 ≤ . . . ≤ pk. Let

τk,m[k]
(x) denote the number of positive integers n ≤ x with k prime factors

satisfying pi ≡ mi mod N for each i = 1, . . . , k. If the primes are distinct,

then n is squarefree. Let πk,m[k]
(x) denote the number of such squarefree

n ≤ x. Then we prove

Theorem 6.1.3

πk,m[k]
(x) ∼ τk,m[k]

(x) ∼ 1

φ(N)k
x(log log x)k−1

(k − 1)! log x
(k ≥ 2).
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Remark 6.1.4 Note that for k = 1, the above theorem is exactly the state-

ment of Dirichlet’s density theorem. The prime number theorem, the non-

vanishing of L(1, χ) and the orthogonality relations satisfied by Dirichlet

characters are the key results that are used in the proof. Similarly, in the proof

of Theorem 6.1.3, Dirichlet’s density theorem and Landau’s result stated in

Equation (6.1) play a significant role. In fact, we essentially use the tech-

nique used by Wright in [37] and an orthogonality relation satisfied by the

Dirichlet characters to obtain the result.

6.2 Preliminaries

The following notation will be used in the proof of Theorem 6.1.3:

1. We write m[k] to denote a k-tuple (m1,m2, . . . ,mk).

2. We use mi
[k−1] to denote the tuple m[k] under consideration, with the

ith coordinate removed.

3. Henceforth, the sum
∑

p1p2...pk≤x
is taken over all sets of primes {p1, p2 . . . pk}

such that p1p2 . . . pk ≤ x, two sets being considered different even if they

differ only in the order of primes.

4. For a fixed m[k], we write

∑
p1p2...pk≤x

χm[k]
:=

∑
p1p2...pk≤x

∑
σ∈S′k

∑
χ

χ(mσ(1))χ(p1)
∑
χ

χ(mσ(2))χ(p2) . . .
∑
χ

χ(mσ(k))χ(pk)

where

1. The set S ′k is the subset of the symmetric group on k symbols

consisting of those permutations that give rise to distinct permutations

of {m1,m2, . . . ,mk},
2. The sum

∑
χ

runs over the Dirichlet characters modulo N .
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Note. We have the following orthogonality relation satisfied by Dirichlet

characters mod N :

∑
χ

χ(m)χ(n) =

{
φ(N) if m ≡ n mod N

0 otherwise.

It is easy to see that, for a fixed n = p1p2 . . . pk and σ ∈ S ′k, the product∑
χ

χ(mσ(1))χ(p1)
∑
χ

χ(mσ(2))χ(p2) . . .
∑
χ

χ(mσ(k))χ(pk)

is non-zero if and only if pi ≡ mσ(i) for all i = 1, . . . , k. The orthogonality

relation tells us that this non-zero quantity is φ(N) for each i. Therefore, for

each n = p1p2 . . . pk, the inner double sum is φ(N)k if, for some σ ∈ S ′k, we

have pi ≡ mσ(i) for every i and zero otherwise. Observe that this can happen

for at most one permutation σ ∈ S ′k.

The following are auxiliary functions that will appear in the proof:

1.Πk,χ,m[k]
(x) =

1

φ(N)k
∑

p1p2...pk≤x
χm[k]

.

2.ϑk,χ,m[k]
(x) =

1

φ(N)k
∑

p1p2...pk≤x
log(p1p2 . . . pk)χm[k]

.

3.Lk,χ,m[k]
(x) =

1

φ(N)k
∑

p1p2...pk≤x

1

(p1p2 . . . pk)
χm[k]

.

By Dirichlet’s theorem, we know that for i 6= j the number of primes

p ≡ mσ(i) mod N is asymptotically the same as the number of primes p ≡
mσ(j) mod N . Thus, if we fix a permutation of {m1,m2, . . . ,mk} , then

the number of ordered sets {p1, p2 . . . pk} so that pi ≡ mi mod N is equal

to
1

M
Πk,χ,m[k]

(x), where M is the number of distinct permutations of the

multiset {m1,m2, . . .mk}.
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6.3 Towards a generalization of Dirichlet’s den-

sity theorem

The proof of Theorem 6.1.3, which is a k prime analogue of Dirichlet’s original

theorem, comes down to proving the following:

Proposition 6.3.1 ϑk,χ,m[k]
(x) ∼ M

φ(N)k
kx(log log x)k−1 (k ≥ 2).

The proof of this proposition will follow after a series of lemmas.

First, we prove a recursive relation for ϑk,χ,m[k]
(x):

Lemma 6.3.2 For k ≥ 1,

kϑk+1,χ,m[k+1]
(x) = (k + 1)

∑
p≤x

1

φ(N)

∑′

i

(∑
χ

χ(mi)χ(p)ϑk,χ,mi
[k]

(
x

p

))
,

where the dash on top of the second summation symbol denotes that only

those i = 1, . . . , k are counted so that the mi
[k+1] are distinct.

Proof.

(k + 1)ϑk+1,χ,m[k+1]
(x)

=
1

φ(N)k+1

∑
p1p2...pk+1≤x

(k + 1) log(p1p2 . . . pk+1)χm[k+1]

=
1

φ(N)k+1

∑
p1p2...pk+1≤x

χm[k+1]
(log p1 + log(p2p3 . . . pk+1) + log p2 + log(p1p3 . . . pk+1)

+ . . .+ log pk+1 + log(p1p2 . . . pk))

=
1

φ(N)k+1

∑
p1p2...pk+1≤x

log(p1p2 . . . pk+1)χm[k+1]

+
1

φ(N)k+1

∑
p1p2...pk+1≤x

(log(p2p3 . . . pk+1) + . . .+ log(p1p2 . . . pk))χm[k+1]

=
1

φ(N)k+1

∑
p1p2...pk+1≤x

log(p1p2 . . . pk+1)χm[k+1]

+
(k + 1)

φ(N)k+1

∑
p1p2...pk+1≤x

log(p2p3 . . . pk+1)χm[k+1]
.
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The first sum is just ϑk+1,χ,m(x) and this reduces the left hand side to

kϑk+1,χ,m(x).

In the second sum, observe that the χm[k+1]
appearing is a (k + 1)-tuple.

Collecting the terms corresponding to p1 in χm[k+1]
, the second term can be

written as follows.

∑
p1p2...pk+1≤x

log(p2p3 . . . pk+1)χm[k+1]
=

∑′

i

∑
p1p2...pk+1≤x

log(p2p3 . . . pk+1)χmi
[k]

(∑
χ

χ(mi)χ(p1)

)
.

Simplifying, we get

kϑk+1,χ,m[k+1]
(x) = (k + 1)

∑
p≤x

1

φ(N)

∑′

i

(∑
χ

χ(mi)χ(p)ϑk,χ,mi
[k]

(
x

p

))
.

�

Similarly, we prove a recursion formula for the function Lk,χ,m[k]
(x):

Lemma 6.3.3 Let L0,χ,m[0]
(x) = 1. Then for k ≥ 1,

Lk,χ,m[k]
(x) =

∑
p≤x

1

p

∑′

i

1

φ(N)

∑
χ

χ(mi)χ(p)Lk−1,χ,mi
[k−1]

(
x

p

)
,

where the dash on top of the second summation symbol is as defined in Lemma

6.3.2.

This follows directly from the definitions.

Let

fk,χ,m[k]
(x) = φ(N)kϑk,χ,m[k]

(x)− xkφ(N)k−1
∑′

i
Lk−1,χ,mi

[k−1]
(x). (6.2)

The idea is to first estimate fk,χ,m[k]
(x) and Lk,χ,m[k]

(x). Plugging in these

estimates into Equation (6.2) would then give an asymptotic formula for

θk,χ,m[k]
(x) thus proving Proposition 6.3.1. With this in mind, we first prove

a recursion formula for fk,χ,m[k]
(x).
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Lemma 6.3.4

kfk+1,χ,m[k+1]
(x) = (k + 1)

∑
p≤x

∑′

i

∑
χ

χ(mi)χ(p)fk,χ,mi
[k]

(
x

p

)
.

Proof.

From the definition of fk,χ,m[k]
(x), we have

kfk+1,χ,m[k+1]
(x) = kφ(N)k+1ϑk+1,χ,m[k+1]

(x)− xk(k + 1)φ(N)k
∑′

iLk,χ,mi
[k]

(x).

We evaluate the two summands using Lemma 6.3.2 and Lemma 6.3.3 proved

above.

By Lemma 6.3.2 we have

kφ(N)k+1ϑk+1,χ,m[k+1]
(x) = φ(N)k+1(k+1)

∑
p≤x

1

φ(N)

∑′

i

(∑
χ

χ(mi)χ(p)ϑk,χ,mi
[k]

(
x

p

))
,

which simplifies to

(k + 1)
∑
p≤x

∑′

i

∑
χ

χ(mi)χ(p)

[
φ(N)kϑk,χ,mi

[k]

(
x

p

)]
.

Also using Lemma 6.3.3,

∑′

i
Lk,χ,mi

[k]
(x) =

k+1∑
i=1

∑
p≤x

1

p

∑′

j

1

φ(N)

∑
χ

χ(mj)χ(p)Lk−1,χ,mi,j
[k−1]

(
x

p

)
,

where mi,j
[k−1] denotes mi

[k] with the j-th coordinate removed and
∑′

j denotes

that only distinct mi,j
[k−1] are counted.

Therefore,

xk(k + 1)φ(N)k
∑′

i
Lk,χ,mi

[k]
(x)

= (k + 1)
∑
p≤x

∑′

i

∑
χ

χ(mi)χ(p)

[
kφ(N)k−1x

p

∑′

j
Lk−1,χ,mi,j

[k−1]

(
x

p

)]
.

Putting the two summands together, we obtain the result. �

Next, we use Lemma 6.3.4 to get an estimate for fk,χ,m[k]
(x).

Lemma 6.3.5 Let k ≥ 1. Then

fk,χ,m[k]
(x) = o{x(log log x)k−1}.
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Proof. We induct on k.

When k = 1, writing m[1] = m,

f1,χ,m(x) = φ(N)ϑ1,χ,m(x)− x.

From Dirichlet’s theorem on the density of primes in an arithmetic progres-

sion, ϑ1,χ,m(x) ∼ 1
φ(N)

x and so

f1,χ,m(x) = o(x).

Suppose the claim were true for k = K, where K > 1. This means for any

ε > 0, there exists x0 = x0(K, ε) such that

|fK,χ,m[K]
(x)| < εx(log log x)K−1 ∀x ≥ x0.

Also, for 1 ≤ x < x0, from the definition of fK,χ,m[K]
, we can find a real

number D depending on K, ε so that

|fK,χ,m[K]
(x)| < D.

Using the above we deduce

1. For p ≤ x
x0

,

∑
p≤ x

x0

∣∣∣∣∣
K+1∑
i=1

∑
χ

χ(mi)χ(p)fK,χ,mi
[K]

(
x

p

)∣∣∣∣∣ < (K + 1)φ(N)ε(log log x)K−1
∑
p≤ x

x0

x

p

< (K + 2)φ(N)εx(log log x)K ,

for x large enough.

2. For x
x0
< p ≤ x,

∑
x
x0
<p≤x

∣∣∣∣∣
K+1∑
i=1

∑
χ

χ(mi)χ(p)fK,χ,mi
[K]

(
x

p

)∣∣∣∣∣ < (K + 1)φ(N)Dπ(x)

< (K + 1)φ(N)Dx.
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Hence, using Lemma 6.3.4 and the simple inequality (K+1) < 2K for K > 1,

we have

K|fK+1,χ,m[K+1]
(x)| < 2Kφ(N)x((K + 2)ε(log log x)k + (K + 1)D).

Thus, for x > x1(D, ε,K) we conclude

|fK+1,χ,m[K+1]
(x)| < 2(K + 2)φ(N)εx(log log x)K .

Since ε was arbitrary, the claim follows for all k ∈ N by induction. �

To complete the proof of Proposition 6.3.1, it suffices to prove:

Lemma 6.3.6

Lk,χ,m[k]
(x) ∼ M

φ(N)k
(log log x)k.

Proof. Recall that

Lk,χ,m[k]
(x) =

1

φ(N)k

∑
p1p2...pk≤x

1

(p1p2 . . . pk)
χm[k]

=
1

φ(N)k

∑
p1p2...pk≤x

1

(p1p2 . . . pk)

∑
σ∈Sk

∑
χ

χ(mσ(1))χ(p1) . . .
∑
χ

χ(mσ(k))χ(pk)

and thatM is the number of permutations of the (possible) multiset {m1,m2, . . . ,mk}.

We observe that the following hold:

Given a squarefree number n with k factors, if each prime p dividing n satisfies

p ≤ x1/k then n ≤ x. This leads us to write

Lk,χ,m[k]
(x) ≥M

k∏
i=1

∑
p≤x1/k

1

p

(
1

φ(N)

∑
χ

χ(mi)χ(p)

)
,

i.e.,

Lk,χ,m[k]
≥M

k∏
i=1

∑
p≤x1/k

p≡mi mod N

1

p
.
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Similarly, if n = p1p2 . . . pk is less than x then each pi ≤ x, which gives us an

upper bound:

Lk,χ,m[k]
(x) ≤M

k∏
i=1

∑
p≤x

1

p

(
1

φ(N)

∑
χ

χ(mi)χ(p)

)
= M

k∏
i=1

∑
p≤x

p≡mi mod N

1

p
.

It is known (see for example [30]) that for any a coprime to N ,∑
p≤x

p≡a mod N

1

p
∼ 1

φ(N)
log log x.

Thus, Lk,χ,m[k]
(x) is bounded below and above by functions that are each

asymptotic to
M

φ(N)k
(log log x)k, implying that

Lk,χ,m[k]
(x) ∼ M

φ(N)k
(log log x)k.

�

Finally, Proposition 6.3.1 follows by using Lemma 6.3.5 and Lemma 6.3.6 in

Equation (6.2).

Remark: Some care needs to be taken while applying Lemma 6.3.6. The

term
k∑
i=1

Lk−1,χ,mi
[k−1]

(x) appearing in Equation (6.2) involves number of dis-

tinct permutations of mi
[k−1], whereas M appearing in Proposition 6.3.1 is

the number of distinct permutations of m[k]. This is resolved by using the

following simple fact:

Let k1 + k2 + . . .+ km = n. Then

n!

k1!k2! . . . km!
=

(n− 1)!

(k1 − 1)!k2! . . . km!
+

(n− 1)!

k1!(k2 − 1)! . . . km!
+. . .+

(n− 1)!

k1!k2! . . . (km − 1)!
.

We are now ready to prove the theorem.
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6.4 Proof of Theorem 6.1.3

By partial summation we have

ϑk,χ,m[k]
(x) = Πk,χ,m[k]

(x) log x−
x∫

2

Πk,χ,m[k]
(t)

t
dt.

Clearly, Πk,χ,m[k]
(t) = O(t) and therefore,

x∫
2

Πk,χ,m[k]
(t)

t
dt = O(x).

Hence, for k ≥ 2, by Proposition 6.3.1,

Πk,χ,m[k]
(x) =

ϑk,χ,m[k]
(x)

log x
+ O

(
x

log x

)
∼ M

φ(N)k
kx(log log x)k−1

log x
. Thus,

1

M
Πk,χ,m[k]

(x) ∼ 1

φ(N)k
kx(log log x)k−1

log x
. (6.3)

We now relate this to the functions πk,m[k]
(x) and τk,m[k]

(x). It is easy to see

that

k!πk,m[k]
(x) ≤ 1

M
Πk,χ,m[k]

(x) ≤ k!τk,m[k]
(x).

We have two cases to consider.

Case 1: The units m1,m2, . . . ,mk are distinct.

Then χm[k]
= 0 unless p1, p2, . . . , pk are all distinct. This forces the following

equality:

k!πk,m[k]
(x) =

1

M
Πk,χ,m[k]

(x) = k!τk,m[k]
(x),

so using Equation (6.3) we are done.

Case 2: At least two of the mi are equal.

Certainly, in this case we include those n = p1 . . . pk so that at least two of

the primes are equal. The number of such n ≤ x is τk,m[k]
(x) − πk,m[k]

(x).

These n can be expressed in the form n = p1 . . . pk with pk−1 = pk and m[k]
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with mk−1 = mk. Therefore, we have

τk,m[k]
(x)− πk,m[k]

(x) ≤ 1

M

∑
p1p2...p2k−1≤x

1

φ(N)k
χm[k]

≤ 1

M

∑
p1p2...pk−1≤x

1

φ(N)k−1
χm[k]

=
1

M
Πk−1,χ,m[k−1]

(x).

Since
1

M
Πk−1,χ,m[k−1]

(x) is o

(
1

M
Πk,χ,m[k]

(x)

)
, from our observation above,

we have

πk,m[k]
(x) ∼ τk,m[k]

(x) ∼ 1

φ(N)k
x(log log x)k−1

(k − 1)! log x
(k ≥ 2)

thus proving the theorem in this case as well.

6.5 Proofs of Proposition 6.1.1 and Theorem

1.3.4

In order to prove Proposition 6.1.1, we note that it suffices to prove the result

for p odd, since 2 is the only even prime and the density of finite sets is zero.

Thus we will assume that p is odd in the proof.

Proof of Proposition 6.1.1.

Let D = ±qa11 q
a2
2 . . . qamm be the decomposition of D. Then, by the multiplica-

tive property of the Legendre symbol, we have(
D

p

)
=

(
±1

p

)(
q1

p

)a1 (q2

p

)a2
. . .

(
qm
p

)am
= ±

(
q1

p

)(
q2

p

)
. . .

(
qm
p

)
.

We have two possibilities:

Case (i): 2 - D
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Then, either p ≡ 1 mod 4 or p ≡ 3 mod 4. If p ≡ 1 mod 4 then by

quadratic reciprocity,

(
qi
p

)
=

(
p

qi

)
. Also,

(
±1

p

)
= 1. If p ≡ 3 mod 4,(

qi
p

)
= ±

(
p

qi

)
, depending on whether qi ≡ 1 or 3 mod 4 and so we can

write (
D

p

)
= ±

(
p

q1

)(
p

q2

)
. . .

(
p

qm

)
.

Since p - q, we know that p is a unit mod q, so it is congruent to one of the

q − 1 units in Z/qZ. We also know that if q is an odd prime, then there

are
q − 1

2
squares in (Z/qZ)×, therefore we conclude that for each qi, the

equations (
p

qi

)
= 1

and (
p

qi

)
= −1

each have
qi − 1

2
solutions for p mod qi.

Let S+
i denote the set of

qi − 1

2
congruences mod qi that solve

(
p

qi

)
= 1 and

S−i denote the set of
qi − 1

2
congruences mod qi that solve

(
p

qi

)
= −1.

Clearly, (
D

p

)
= 1⇔

(
p

q1

)(
p

q2

)
. . .

(
p

qm

)
= 1, (6.4)

Now, the equations

x1x2 . . . xm = 1 and x1x2 . . . xm = −1

each have M = 2m−1 solutions in {−1, 1}m.

Let us enumerate them as
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X1 = (x11, x12, . . . , x1m) Y1 = (y11, y12, . . . , y1m)

X2 = (x21, x22, . . . , x2m) Y2 = (y21, y22, . . . , y2m)

... and
...

XM = (xM1, xM2, . . . , xMm) YM = (yM1, yM2, . . . , yMm)

respectively, where each of the xij, yij are 1 or −1. Depending on whether

we need the product in Equation (6.4) to be 1 or −1, we solve using Xi’s or

Yj’s.

Without loss of generality let us assume that we need the product to be 1.

Then, for each solution Xj, j = 1, . . . ,M we need to solve the following sys-

tem :

p ≡ 1 mod 4(
p

qi

)
= xji, i = 1, . . .m.

For each i, the equation

(
p

qi

)
= xji will involve choosing a congruence

relation among S±i depending on the parity of xji. This gives us a total of
m∏
i=1

qi − 1

2
systems of congruences for each Xj. By the Chinese Remainder

Theorem, each system will give rise to a unique solution. Thus, the total

number of solutions we obtain is

M
m∏
i=1

qi − 1

2
= 2m−1

m∏
i=1

qi − 1

2
=

1

2

m∏
i=1

(qi − 1).

Similarly we get
1

2

m∏
i=1

(qi − 1) solutions coming from the parallel case of p ≡
3 mod 4.

So, in total we have
m∏
i=1

(qi − 1) number of solutions (mod 4q1q2 . . . qm).

If we denote Q = 4q1q2 . . . qm, then

(
D

p

)
= 1 has

1

2
φ(Q) number of solutions
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modQ.

Case (ii):2|D.
Without loss of generality, we may assume that q1 = 2 and qi is odd for

i = 2, . . . , k.

Therefore, we need to find solutions to the equation(
D

p

)
= ±

(
2

p

)(
q2

p

)
. . .

(
qm
p

)

= ±
(

2

p

)(
p

q2

)
. . .

(
p

qm

)
.

The only difference in this case is that instead of considering the congruence

p ≡ 1 or 3 mod 4, we further consider congruences mod 8:

If p ≡ 1 mod 4, we have(
2

p

)
=

{
1 if p ≡ 1 mod 8

−1 if p ≡ 5 mod 8.

Thus in this case, for each i = 2, . . .m, we have
qi − 1

2
number of congruences

mod qi and one congruence mod 8 corresponding to i = 1. Therefore, for

every Xj (or Yj, depending on whether we need the product to be 1 or −1)

we get
m∏
i=2

qi − 1

2
number of solutions. Hence the total number of solutions is

m∏
i=2

(qi − 1).

Similarly, if p ≡ 3 mod 4, then we use(
2

p

)
=

{
1 if p ≡ 7 mod 8

−1 if p ≡ 3 mod 8

and obtain another set of
m∏
i=2

(qi − 1) solutions.

So we have a total of

2
m∏
i=2

(qi − 1) =
1

2
φ(4q1q2 . . . qm) =

1

2
φ(Q)
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solutions, which is the same number as in Case 1.

To summarize, for a fixed number D, the number of odd primes p mod Q so

that

(
D

p

)
= 1 is

1

2
φ(Q). Coming back to our problem, we wish to calculate

#

{
primes p ≤ x :

(
D

p

)
= 1

}
.

By Dirichlet’s density theorem, we know that for any positive integer a which

is coprime to n,

#{p ≤ x, p prime |p ≡ a mod n} ∼ 1

φ(n)
π(x).

Let B(1) := {bi, i = 1, . . . , bφ(Q)
2

} denote the set solutions modQ obtained

from the discussion above and B(−1) := {b′i, i = 1, . . . , b′φ(Q)
2

} denote the

remaining residue classes that correspond to the primes p mod Q so that(
D

p

)
= −1. Then,

(
D
p

)
= 1 if and only if p is congruent to any one of the

elements in the set B(1). So we have

#

{
primes p ≤ x :

(
D

p

)
= 1

}

=

φ(Q)
2∑
i=1

#{p ≤ x, p prime |p ≡ bi mod Q} ∼

φ(Q)
2∑
i=1

1

φ(Q)
π(x) =

1

2
π(x).

Hence, the asymptotic density of primes p for which
(
D
p

)
= 1 is

1

2
.

Using the set B(−1), the same proof can be used to show that

#

{
primes p ≤ x :

(
D

p

)
= −1

}
∼ 1

2
π(x),

implying that the density of primes p for which f(x) has no solution mod p

is
1

2
.

We now use this proposition to prove
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Theorem 6.5.1 Let D ∈ Z− {0} and k ∈ N. Fix a k-tuple ε = (ε1, . . . , εk)

where each εi = ±1 for each i = 1, . . . , k. Then

1

πk(x)
#

{
n ≤ x, n = p1p2 . . . pk with p1 < p2 < . . . < pk :

(
D

pi

)
= εi for each i

}
∼ 1

2k
,

where πk(x) denotes the number of squarefree numbers less than x with k

prime factors.

Remark: From the statement of Proposition 6.1.1 and Theorem 6.5.1, it

is clear that we are counting only those squarefree numbers with k-prime

factors which are coprime to the discriminant D of f(x).

Proof of Theorem 6.5.1. We first prove the statement for n odd.

In this case, using Proposition 6.1.1 we conclude that the condition(
D

pi

)
= εi for each i

will hold if and only if every prime pi dividing n belongs to the set B(εi).

Let us represent the (odd) squarefree number as a tuple (p1, p2, . . . , pk) with

p1 < p2 < . . . < pk and choose any k-tuple (m1,m2, . . . ,mk) where each

mi ∈ B(εi). Since |B(±1)| = φ(Q)

2
, the number of k-tuples such that

(p1, p2, . . . , pk) ≡ (m1,m2, . . . ,mk) mod Q (6.5)

component-wise is

(
φ(Q)

2

)k
. Therefore, appplying Theorem 1.3.3, we have

#

{
Odd n ≤ x, n = p1p2 . . . pk with p1 < p2 < . . . < pk :

(
D

pi

)
= εi for each i

}

∼ 1

φ(Q)k
x(log log x)k−1

(k − 1)! log x

(
φ(Q)

2

)k
,

settling the odd case.

Note: Even n are counted only if D is odd.

The even case follows by counting the number of odd squarefree n ≤ x/2
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with k − 1 prime factors. From the argument for the odd case, we have

#

{
n ≤ x, n = 2p2 . . . pk, with 2 = p1 < p2 < . . . < pk :

(
D

pi

)
= εi for each i

}
∼ 1

φ(Q)k−1
πk−1(x/2)

(
φ(Q)

2

)k−1

.

Noting that
πk−1(x/2)

2k−1
= o

(
πk(x)

2k

)
, the result follows.

Corollary 6.5.2 The density of squarefree numbers n with k prime factors

so that a quadratic equation has exactly 2k solutions mod n is
1

2k
.

Proof. This easily follows from Theorem 1.3.4 by taking D as the discrimi-

nant of the quadratic equation and ε with εi = 1 for each i. �

Note: We may ask what happens when n has k prime factors counted with

multiplicity, i.e., when n = p1p2 . . . pk is not necessarily squarefree. We ob-

serve that in this case, the k-tuple m will neccesarily have mi = mj whenever

pi = pj. Therefore, for such n, the number of k-tuples satisfying Equation

6.5 will be bounded by

(
φ(Q)

2

)k
and equal to it if and only if n is squarefree.

Hence, we deduce the following:

Corollary 6.5.3 Let D ∈ Z − {0} and k ∈ N. For any k-tuple ε =

(ε1, . . . , εk) where each εi = ±1 for each i = 1, . . . , k, we have

#

{
n ≤ x : n = p1p2 . . . pk with p1 ≤ p2 ≤ . . . ≤ pk :

(
D

pi

)
= εi for each prime pi|n

}

= O

(
1

2k
τk(x)

)
,

where τk(x) is the function defined in the introduction.
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