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Abstract

The first-passage time of a stochastic time-series, defined to be the time taken by it to cross a

predefined threshold for the first time, has a wide range of applications across disciplines. How-

ever, if the time-series can only be intermittently observed, then its key features can be missed.

In particular, the instance at which we actually observe the time-series to be above the threshold

for the first time, called the detection time or the gated first-passage time, can be strikingly dif-

ferent from the true first-passage time. In this thesis, we first put forth a general framework for

computing the statistics of the detection time and discuss its connection to a classic problem in

chemical kinetics. Our central result is that the first detection time is related to and is obtainable

from the first-passage time distribution. The applicability of our framework is demonstrated in

several model systems, including the SIS compartmental model of epidemics, logistic models and

birth-death processes with resetting. Following this discussion, we address the inverse problem

of reconstructing the true first-passage time statistics purely from gated observations. We develop

a universal—model free—framework for the inference of first-passage times from the detection

time statistics. Moreover, when the underlying model is known, this framework allows us to in-

fer physically meaningful model parameters. The results are then leveraged to infer the gating

rates via the hitherto overlooked short-time regime of the measured detection time distributions.

Put together, the unified framework of gated first-passage processes opens a novel peephole into

a myriad of systems whose direct observation is limited because of their underlying physics or

imperfect observation conditions. We conclude the thesis with a discussion of three key appli-

cations of the theory – (i) determining the optimal rate of sampling a first-passage process, (ii)

understanding the extreme value statistics of a partially observed-stochastic time-series, and (iii)

inferring missing statistics in real-world time-series data.
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Synopsis

The first-passage time of a stochastic time-series, defined to be the time taken by it to cross a pre-

defined threshold for the first time, has a wide range of applications across disciplines [1]. How

long does it take for a chemical reaction to be triggered? Or what is the time taken for an order to

be executed in the stock market? These disparate examples fall under the purview of first-passage

processes. However, in several realistic scenarios, the time-series of interest can only be intermit-

tently observed. In such cases, key features of the time-series can be missed. In particular, the

instance at which we actually observe the time-series to be above the threshold for the first time,

called the first detection time or the gated first-passage time, can be strikingly different from the

true first-passage time. Despite its ubiquity and practical relevance, a discussion of the statistics

of the first detection time, or more generally, the impact of partial observability in first-passage

processes is missing. This thesis is an attempt towards bridging this gap.

Chapter 1 − Introduction

Chapter 1 contains an introduction and motivation to the study of first-passage processes. After a

brief survey of the literature and some of its key applications, we highlight a number of scenarios

where the underlying stochastic process of interest can only be partially observed and thus the

notion of first-passage times must be generalized. We discuss one such generalization, called the

gated first-passage time or the first detection time, which explicitly takes into account the partial

observability of the underlying process. We conclude this chapter by outlining the general mod-

eling framework that will form the backbone of the rest of the thesis and discuss its connection to

a classic problem in chemical kinetics.

Chapter 2 − First Detection of Threshold Crossing Events under Intermittent Sensing

In Chapter 2, we derive general formulas for computing the statistics of the gated first-passage

times. Using these results, we establish that the first detection time is related to and is obtainable

from the first-passage time distribution. We show that these results hold for Markov processes in
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continuous and discrete space, and also a class of non-Markov process called the renewal process.

The applicability of our results is then demonstrated in several model systems, including the SIS

compartmental model of epidemics, logistic models and birth-death processes with resetting. Fi-

nally, we leverage the framework to extract further insight into the statistics of gated first-passage

times. This chapter details the work which has been published in Refs. [2] and [3].

Chapter 3 − Inference from Gated First-Passage Times

While the central result established in the previous chapter dictates that the statistics of the first

detection time is obtainable from the knowledge of the first-passage time distribution, in most

practically relevant scenarios, only the detection time is measurable and the aim is to uncover

the properties of the underlying process from purely measurable quantities. To address this chal-

lenge, in Chapter 3, we introduce a model-free formalism for the inference of first-passage times

from the detection times of gated first-passage processes. Furthermore, we show that when some

information about the underlying process is known, this framework also provides a way to infer

physically meaningful parameters, e.g., diffusion coefficients. Finally, we show how to infer the

gating rates themselves via the hitherto overlooked short-time regime of the measured detection

times. The robustness of the approach and its insensitivity to underlying details are illustrated in

several settings of physical relevance. The results presented in this chapter have been published

in Ref. [4].

Chapter 4 − Applications

Chapter 4 contains an illustration of three distinct applications of the framework developed in this

thesis. The first application deals with the challenge of optimally sampling a first-passage pro-

cess when there are costs associated with making measurements of the process of interest. Next,

we show how the framework of gated first-passage processes can be used to obtain insight into

the statistics of extremes of partially observed time-series. Finally, we show how our results on

stochastic bridges apply to the practically relevant case of working with real data generated by a

single realization of a sparsely sampled stochastic process.
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Chapter 5 − Summary and Outlook

We conclude this thesis in Chapter 5 by providing a summary of the key results presented in this

thesis. We then outline a number of possible directions in which the modeling framework can be

extended to be able to cater to different scenarios of potential interest. The broadly applicable

and vastly unexplored field of partially observed stochastic processes has a number of interesting

research avenues beyond first-passage phenomena. We conclude by highlighting a few interesting

open directions that an interested reader could potentially think about exploring.
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CHAPTER 1

Introduction

How long does it take for a chemical reaction to be triggered? What is the time taken for an

order to be executed in the stock market? When will the temperature in a given city cross its all-

time-high value? The answer to these disparate questions falls under the purview of first-passage

processes – a theme that lies at the heart of this thesis. The aim of this chapter is two-fold. First,

we give a brief overview of first-passage processes and their applications. Next, we highlight an

important but overlooked class of problems that motivated this thesis and introduce the reader to

the theory of gated first-passage processes.

1.1 What is a First-Passage Process?

In many practically relevant situations, the time taken for an observable of interest to reach a pre-

determined threshold for the first time is of immense interest and carries practical value. We call

this time the first-passage time, and the process in which such a first-passage time is of interest

is termed as a first-passage process. Figure 1.1 is a schematic representation of the first-passage

time of a time-series. The importance of first-passage processes is recognized universally across

scientific disciplines, owing to its ubiquity and wide-ranging applications [1–7]. The study of

first-passage processes has a long history [1–3], and has a large number of applications in areas

of physical sciences [1, 4, 8, 9], engineering [2, 10–12], finance [5, 13, 14] and biology [6, 7, 15].

1.1.1 Applications of First-Passage Processes

The following contains a few interdisciplinary examples of first-passage processes.

Finance

In financial markets, consider the scenario of a stock price reaching a certain threshold level,

triggering a trading decision. The time it takes for the stock price to first cross this threshold can

be modeled using first-passage processes. This concept is particularly relevant in high-frequency

trading, where algorithms are designed to execute trades based on rapid changes in stock prices,

1



Chapter 1

Figure 1.1: Schematic depiction of a stochastic process X(t), starting from x0, evolving in time.
The instance at which X(t) crosses the pre-defined threshold (marked as dashed line) is termed
the first-passage time (Tf ).

and understanding first-passage time statistics can inform the design of efficient trading strategies.

Biology

Imagine a biological cell signaling pathway where a signaling molecule must bind to a receptor

for a specific cellular response to occur. The time it takes for the molecule to first bind to the re-

ceptor is determined by first-passage time [15]. This phenomenon is crucial in drug development,

where researchers aim to design molecules that efficiently bind to receptors within a certain time

frame to elicit a desired therapeutic effect. Other examples in biology include neuronal systems,

in which a neuron fires only when a fluctuating voltage level first crosses a specified threshold

[15, 16].

Physics

Random walks in ordered and disordered media are used to model a wide range of physical

processes [17]. Studies of first-passage statistics of these random walks allow us to obtain in-

formation about the medium – for example, the time taken for a diffusing Brownian particle to

cover a fixed distance can be used to infer the diffusion coefficient. Another direct example of

the application of first-passage ideas in Physics is the classic Kramers’ problem, where we wish

to find the rate at which a diffusing particle escapes from a potential well or crosses a potential

barrier [18].

Computer Science

An imminent example of the application of first-passage times in computer science comes from

randomized search algorithms [19]. In simple words, a randomized search algorithm employs

2
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some form of randomness as part of its logic or procedure to perform a search task. In this case,

the first-passage time provides an invaluable tool to quantify the time taken for the search task to

terminate. Even beyond computer science, search processes are ubiquitous – an animal searching

for food or prey, a reactant diffusing around until it finds its target, or simply humans searching

for their house keys. All of these examples can be cast as first-passage processes.

1.2 Incorporating Imperfect Observations

In the discussion so far, we have put forth the notion of a first-passage process and listed some of

its interdisciplinary applications. However, in the examples listed above and in others discussed

throughout the vast literature on first-passage processes, there is an implicit assumption of perfect

detection conditions – the notional sensor, which monitors the first occurrence of a first-passage

event, is active at all times. This is not always realistic.

In several practical applications, there is an energy cost associated with an always-on sensor,

and the threshold crossing events in processes of interest can thus be only monitored intermit-

tently. A principal example is the wireless sensor networks widely deployed to monitor rare

events at remote locations and operate under tight energy constraints [20, 21]. These sensors

are typically not always active in order to optimize power consumption and reduce the need

for maintenance [22–24]. Intermittent sensing has been extensively deployed in industrial and

military environments [25] to detect events and is even thought to be the future trend for Internet-

of-Things and wireless monitoring technologies [26]. In several bio-chemical processes too, the

sensors make stochastic transitions between active and inactive states [27]. A relevant example

is of the heat shock response in a cell due to environmental stresses [28, 29]. The HSF family

of proteins, which upregulate heat shock proteins when the heat stress crosses a threshold, can

perform this upregulation if it is present in its trimeric state, while in its monomeric state, it is

considered to be inactive.

The precise gap that this thesis wishes to address is the following: the first-passage time

statistics carry invaluable information about a stochastic process of interest, but they are often

inaccessible to direct measurement. The relevant quantity of interest then is the first detection

time, which denotes the first time the time-series is observed above the threshold (as schematically

outlined in Fig. 1.2). While of utmost practical importance, this quantity has not been discussed

3
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Figure 1.2: A stochastic process X(t) being intermittently observed due to imperfect observations
conditions. While imperfect observation conditions are ubiquitous and can arise due to a number
of reasons, an important consequence of such conditions is that key quantities, such as the first-
passage time, can be missed. Then, the relevant quantity is the first detection time Td, which is
the first time when X(t) is observed to be above the threshold. The study of this quantity is a
central component of this thesis.

in the literature so far. In this thesis, we wish to uncover the statistics of the first detection time

and establish exact results through which the statistics of this observable can be computed in a

wide range of stochastic processes of interest. To do so, we build a framework to study the first

detection time, allowing us to make three significant advances.

1. We relate the statistics of the first detection time to the first-passage time statistics and

leverage it to uncover universal properties about the detection times and their connection

with the classic first-passage problems. These results lie at the heart of Chapter 2 of this

thesis and have been presented in Refs. [30] and [31].

2. By building a model-free framework, we demonstrate that the first detection time statistics

of a stochastic process can be used to recover its first-passage time statistics and infer other

physically meaningful quantities and parameters of that stochastic process. These ideas are

discussed in detail in Chapter 3 of this thesis and have been published in Ref. [32].

3. The frameworks developed in Chapters 2 and 3 can be extended to applications beyond

the realm of first-passage processes. In particular, we demonstrate in Chapter 4 how these

frameworks can be used to (a) compute the optimal sampling rate of a first-passage process,

(b) obtain the extreme-value statistics of a partially observed time-series, and (c) compute

statistics of missing events from a single realization of a sparsely sampled time-series.
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1.3 The Modeling Approach: Gated First-Passage Processes

In this section, we introduce the reader to the basic setting and modeling approach that we will

work with to address the central question of studying first-passage processes under conditions of

imperfect observations. Our modeling approach consists of two independent components.

• First, we consider an “underlying process” Xx0(t), initially at x0, modeled as a continuous-

time Markov process in 1-dimension, i.e., in continuous space, we can assume that Xx0(t)

is a fluctuating quantity that can possibly take real values, whereas in discrete space, it can

take integer values. In both cases, we are interested in the time taken for Xx0(t) to cross

a pre-defined threshold x∗ for the first time, called the first-passage time. This random

variable is denoted by Tf (x
∗|x0) and its probability density is written as Ft(x

∗|x0).

• Second, to model imperfect observation conditions, we assume that the stochastic process

of interest is being monitored by a sensor that stochastically switches between on and off

states. We model this sensor by a two-state continuous-time Markov process that intermit-

tently switches between an active (A) state and an inactive (I) state. This sensor switches

from state A to I at rate α, and from I to A at rate β. For σ0, σ ∈ {A, I}, we define

pt(σ|σ0) to be the probability that the sensor is in state σ at time t, given that it was in state

σ0 initially.

The sensor, as described above, acts like a gate – the process of interest can only be observed

when the sensor is on (the gate is “open”) and when the sensor is off (the gate is “closed”), the

process cannot be observed. We thereby term the study of first-passage processes being moni-

tored by such a sensor as gated first-passage processes.

It is possible that when the first-passage event occurs (at time Tf (x
∗|x0)), the sensor is off, and

thus this event is missed. In such a case, the relevant quantity of interest is the first detection

time Td(x0, σ0), which denotes the first time the process is observed to be above the threshold x∗

given that the process was initially at x0 and the initial state of the sensor was σ0. More precisely,

this refers to the first time when the underlying process is in a state x > x∗ while the sensor is

in its active state A. Understandably, the first detection time Td(x0, σ0) is also called the gated

first-passage time, and we denote its probability density by Dt(x0, σ0).
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1.3.1 Analogy with Imperfect Chemical Reactions

The framework outlined above has a close analogy with a class of imperfect chemical reactions

called gated chemical reactions. To illustrate this analogy, we consider a prototypical scenario

where a diffusing reactant can potentially react when it collides with a target. However, we addi-

tionally require the collision to be ‘fertile’. It is known that certain reactants undergo stochastic

transitions between reactive and non-reactive internal states. These transitions act like a gate: a

reaction can only happen when the gate is open, i.e., the reactant collides with the target when it

is in its reactive internal state. This analogy is schematically illustrated in Fig. 1.3.

X(t)

x0

Threshold

x*

Tf
Time

X(t)

Tf

x0

Threshold

x*

Td
Time

Reactive Non-Reactive

α

β

Perfect reactions: the reaction 
is triggered at the moment of 


first-collision.

Imperfect reactions: the reaction 
is triggered when the particle collides  

with its target in its active state.

(a)

(b)

Infertile  
collision

Fertile 
collision:  
reactions 
occurs!

Figure 1.3: The analogy between (a) intermittent sensing of a first-passage process and (b) a
gated reaction. In the case of the first detection of the threshold crossing event under intermittent
sensing, the detection can only take place when the process is above the threshold and the sensor
is on. In a similar vein, a gated reaction is triggered when the reactant collides with its target
while being in its reactive state.

These chemical reactions are termed gated reactions. This term was originally introduced in

the work of Perutz and Mathews on ligand binding by methaemoglobin [33]. The macroscopic

kinetics of these so-called gated reactions has a history spanning over four decades now [9, 10,

34–44], and more recently, the study of single-particle gated reactions has gained interest [31, 32,

45–49].

An important consequence of this close analogy between the problem of detecting threshold

crossing events under intermittent sensing and computing the reaction time statistics of gated
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chemical reactions is that both these problems can be studied using the same formalism. Though

the central theme of the thesis is studying threshold crossing events in stochastic time-series, we

will demonstrate in subsequent chapters how our results can be leveraged to provide solutions to

some outstanding puzzles in the literature of gated chemical reactions.

1.4 Conclusion

Having established the key motivations and setting up the basics of our problem statement and

modeling approach, we are now ready to dive into the more technical aspects of this thesis. To

ensure a smooth reading experience, we have tried to keep the presentation of the subsequent

chapters self-contained to a large extent. This introductory chapter sets the stage for each of the

following chapters to be read independently of each other. Our central objective throughout this

thesis is to uncover new insight into the statistics of gated first-passage processes and to better

understand the cross-disciplinary implications of our results.
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CHAPTER 2

First Detection of Threshold Crossing Events under
Intermittent Sensing

In the previous chapter, we established the motivation for our work and the preliminary setup

of our approach. We now shift our focus towards making those ideas more concrete. In this

chapter, we will aim to establish a connection between the statistics of the first-passage time and

the first detection time of a stochastic process and then leverage it to derive general formulas for

computing the statistics of the first detection times.

2.1 Problem Statement

Our primary objective in this chapter is to extend the standard notion of threshold crossing and

first-passage times to include the concept of intermittent sensing by an independent sensor that

stochastically switches between active and inactive states. The central quantity of interest is the

first detection time distribution of the threshold crossing event by the sensor. This can be thought

of as first detection of an extreme event [50–52] or a general threshold activated process [53–57]

under intermittent sensing.

Concretely, we will assume throughout this chapter that the underlying process Xx0(t), ini-

tially in state x0, follows Markovian evolution. The case of discrete state space and continuous

state space will be treated separately for reasons explained in Sec. 2.3.2. In the case of discrete

states, we will assume that Xx0(t) can take integer values x ∈ Z and transitions take places only

between nearest integers, i.e., the only allowed transitions from state x are to states x+1 or x−1.

Similarly, while considering continuous state space, we will assume that the stochastic process

Xx0(t) can take real values x ∈ R, and is continuous. A stochastic sensor intermittently moni-

tors whether the process of interest has crossed the pre-defined threshold x∗ or not. A threshold

crossing event is detected only if Xx0(t) ≥ x∗ and the sensor is active.
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2.1.1 Dynamics of the Gate: Explicit Formula for pt(σ|σ0)

The sensor is modeled as a two-state continuous-time Markov process that intermittently switches

between an active (A) state and an inactive (I) state. This sensor switches from state A to I at

rate α, and from I to A at β. For σ0, σ ∈ {A, I}, we define pt(σ|σ0) to be the probability that the

gate is in state σ at time t, given that it was in state σ0 initially, and let πA = β/λ and πI = α/λ

denote the equilibrium occupancy probabilities of states A and I respectively, where λ = α + β

is the relaxation rate to equilibrium.

To obtain the sensor dynamics propagator pt(σ|σ0), we note that pt(A|A) is governed by the

following differential equation

dpt(A|A)
dt

= −αpt(A|A) + β (1− pt(A|A)) , (2.1)

and from normalization we have pt(I|A) = 1− pt(A|A). Similarly,

dpt(A|I)
dt

= −αpt(A|I) + β (1− pt(A|I)) , (2.2)

and pt(I|I) = 1− pt(A|I). The solutions for these differential equations are

pt(A | I) = πA(1− e−λt),

pt(I | I) = πI + πAe
−λt,

pt(A | A) = πA + πIe
−λt,

pt(I | A) = πI(1− e−λt).

(2.3)

It is evident that in the long time limit, these probabilities tend to the corresponding equilibrium

occupancy probabilities, i.e., limt→∞ pt(A|A) = limt→∞ pt(A|I) = πA and limt→∞ pt(I|A) =

limt→∞ pt(I|I) = πI .

It is important to note that σ0 need not only be either A or I , but can also be a mixture, where it

is initially in state A with some probability pA and in I with probability pI . One such practically

relevant mixture preparation is the equilibrium initial condition σ0 = E where pA = πA and

pI = πI . This initial condition could especially be important in some cases where the sensor

initialization is not possible, e.g. gated chemical reactions. Thus, the most natural initial condition

is σ0 = E, which is asymptotically reached starting from any other initial condition.
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2.2 Connecting the First-Passage and First Detection Statis-
tics

The first step of our analysis consists of decomposing the first detection time density Dt(x0, σ0)

into two parts as follows

Dt(x0, σ0) = Ft(x
∗|x0)pt(A|σ0) +

Z t

0

Ft′(x
∗|x0)pt′(I|σ0) ·Dt−t′(x

∗, I) dt′. (2.4)

The above equation essentially classifies all possible ways in which a detection event can take

place at time t in two parts.

1. The first term on the RHS accounts for all the events when the first-passage occurs at time

t, and it is immediately detected as the sensor is active.

2. The second term on the RHS represents the weight of all events in which the first-passage

occurs at some time t′ < t, but is missed as the sensor is inactive. But then, starting from

the new initial condition where the process is at x∗ and the sensor is in state I , a detection

event occurs in time t− t′.

Equation (2.4) forms the backbone of our analysis and holds for both types of processes consid-

ered in this thesis – continuous Markov processes or with discrete states and nearest neighbor

transitions. By defining the Laplace transform of a probability density f(t) as

L{f(t)} = ef(s) =
Z ∞

0

e−stf(t) dt, (2.5)

we note that the Laplace transform of Dt(x0, σ0) satisfies

eDs(x0, σ0) = L{Ft(x
∗|x0)pt(A|σ0)}+ L{Ft(x

∗|x0)pt(I|σ0)} · eDs(x
∗, I). (2.6)

Equation (2.6) uses the convolution theorem [17] which can be simply stated as

L
�Z t

0

f(t′)g(t− t′) dt′
�

= ef(s)eg(s). (2.7)

To proceed with our analysis, we shift our focus to the term Dt(x
∗, I), which denotes the prob-

ability density of the first detection of a threshold crossing event occurring at time t, given that

the underlying process starts from the threshold x∗ when the sensor is inactive. The analysis of
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Figure 2.1: (a) An example of a discrete state Markov process – a birth-death process as the
underlying process – with 6 states in total, (b) a sensor, modeled as a two-state Markov process,
switching between active and inactive states. (c) The composite process with threshold x∗ = 4.
The threshold crossing event can be detected in the states marked in yellow.

this term quite sensitively depends on whether the underlying process of interest is a continuous

process or has a discrete state-space.

In the section that follows, we discuss the case of discrete states and illustrate our results. This

will be followed by a discussion of why the formalism fails to generalize to continuous processes

and how this can be remedied.

2.3 Discrete State Markov Processes

To study Markov processes with a discrete state-space, we take the underlying process of interest

to be a Markovian continuous-time birth-death process (BDP), which has previously been used

to study a variety of processes [58–69]. Though in this section, we consider BDPs with a finite

number of states, it is important to note that generalization to discrete state processes with infinite

number of states is straightforward.

The state of the BDP can be interpreted as the stress or damage accumulated over time or

any other physical quantity where threshold crossing is of prime interest. The BDP is defined
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on the state space S = {0, 1, 2, · · · , N} with its dynamics governed by the rates W+(j) and

W−(j) for transitioning from state j to states j + 1 and j − 1 respectively, where j ∈ S , with

W+(N) = W−(0) = 0, while W±(j) > 0 for j /∈ {0, N}. Figure 2.1(a) is an illustration of a

BDP with N = 5. The probability of finding the BDP in state x ∈ S at time t, given that the

system started from state x0 ∈ S initially, is given by the propagator C(x, t|x0), and its Laplace

transform is denoted by eC(x, s|x0). A well studied quantity of the BDP is the first-passage time

distribution, denoted by Ft(x
∗|x0), which is the probability density that the BDP reaches state

x∗ for the first time, at time t, given that it started from state x0. Through the renewal formula

[1], the Laplace transform of the first-passage time density is given by eFs(x
∗|x0) =

eC(x∗,s|x0)
eC(x∗,s|x∗)

, for

x0 ̸= x∗. This analysis assumes perfect detection, i.e., as soon as the threshold x∗ is reached, the

event is detected.

As previously outlined, this BDP is being monitored by a stochastic sensor depicted in Fig. 2.1

(b). The Markov diagram of the composite process, i.e., the underlying process and the sensor

combined, is shown in Fig. 2.1 (c) for the special case of N = 5, and threshold x∗ = 4. The

composite process is another continuous-time Markov process on the state space S = S × Ω.

The key object of interest is the statistics of the first detection time of a threshold crossing event,

defined as the first time when the composite process is found in any of the states (x,A) such that

x ≥ x∗, where x∗ is the pre-defined threshold. The states in which such a detection event can

take place, called “absorbing states”, are denoted in yellow color in Fig. 2.1 (c). The composite

process has a total of N − x∗ + 1 absorbing states.

In the analysis that follows, the knowledge of C(x∗, t|x0) for the BDP is assumed. This

is known exactly for a variety of examples [60, 70, 71]. Furthermore, the propagator can be

obtained, in principle, for any BDP governed by an N × N tridiagonal Markovian transition

matrix W as C(x∗, t|x0) = ⟨x∗| eWt |x0⟩ where ⟨l| = (0 0 0 . . . 0 1 0 . . . 0) denotes a row vector

with 1 as its lth element, with 0 elsewhere.

2.3.1 Results

2.3.1.1 Distribution of the First Detection Time

Equation (2.4) contains the quantity Dt(x
∗, I), which is central to our analysis. In fact, the com-

putation of this quantity requires different approaches in discrete and continuous state-space set-

13



Chapter 2

tings. For the case of discrete states, it can be seen that the quantity Dt(x
∗, I) satisfies the follow-

ing decomposition

Dt(x
∗, I) = βe−βt

Z ∞

t

Ft′(x
∗ − 1|x∗) dt′ +

Z t

0

e−βt′Ft′(x
∗ − 1|x∗) ·Dt−t′(x

∗ − 1, I) dt′. (2.8)

In the above equation, we express the density Dt(x
∗, I) as a sum of two contributions:

1. The first term of the RHS denotes the weight of events where the sensor turns active at time

t, and until then, the underlying process, which is initially at x∗, has not ventured to states

below x∗.

2. The second term of the RHS accounts for the possibilities where the underlying BDP goes

to state x∗ − 1 at some time t′ < t before the sensor has been able to turn active. Starting

from the new initial condition where the BDP is in state x∗ − 1 and the sensor is in state I ,

we now require a detection event to occur in time t− t′.

Compactly, we may express Eqs. (2.4) and (2.8) as

Dt(x0, σ0) = f1(t) +

Z t

0

f2(t
′)Dt−t′(x

∗, I)dt′, (2.9)

Dt(x
∗, I) = f3(t) +

Z t

0

e−βt′Ft′(x
∗ − 1|x∗)Dt−t′(x

∗ − 1, I)dt′ (2.10)

where x0 < x∗ and we define the following functions for brevity:

f1(t) = Ft(x
∗|x0)pt(A|σ0), (2.11)

f2(t) = Ft(x
∗|x0)pt(I|σ0), (2.12)

f3(t) = βe−βt

Z ∞

t

Ft′(x
∗ − 1|x∗)dt′. (2.13)

We obtain Dt(x
∗ − 1, I) from Eq. (2.9) in terms of Dt(x

∗, I), and taking a Laplace transform of

Eqs. (2.9) and (2.10), we can write

eDs(x0, σ0) = ef1(s) +
ef2(s)

�
ef3(s) + ef4(s) eFs+β(x

∗ − 1|x∗)
�

1− ef5(s) eFs+β(x∗ − 1|x∗)
. (2.14)
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where we define:

f4(t) = Ft(x
∗|x∗ − 1)pt(A|I), (2.15)

f5(t) = Ft(x
∗|x∗ − 1)pt(I|I). (2.16)

Equation 2.14 is a central result of this chapter that asserts that the first detection time statistics

can be obtained in terms of the first-passage time distribution. The first term on the RHS, f1(t),

denotes the trajectories where the first-passage time and first detection time coincide, whereas

the second term accounts for all trajectories where the first-passage event goes unnoticed, and

detection happens at a later time. In the limit of α → 0+, then f2(t) → 0, when σ0 = A, and it

leads to Dt(x0, σ0) = Ft(x
∗|x0). This is consistent with the expectation that in the α → 0+ limit,

deactivation of the sensor is extremely unlikely and renders the composite process equivalent to

a simple BDP.

Interpreting the First Detection Time Formula

We noted in Eq. 2.14 that in Laplace space, eDs(x0, σ0) is expressed as

eDs(x0, σ0) = ef1(s)| {z }
First detection
at first-passage

+

ef2(s)
�
ef3(s) + ef4(s) eFs+β(x

∗ − 1|x∗)
�

1− ef5(s) eFs+β(x∗ − 1|x∗)| {z }
First detection happening

strictly after first-passage event

.

The second term on the RHS can be understood intuitively if expressed as the following

ef2(s)| {z }
Factor I:

First-passage
while sensor
is inactive

· 1

1− ef5(s) eFs+β(x∗ − 1|x∗)| {z }
Factor II: Accounts for the

number of undetected threshold
crossings before first detection

·
�
ef3(s) + ef4(s) eFs+β(x

∗ − 1|x∗)
�

| {z }
Factor III: Ensures detection
of threshold crossing event

. (2.17)

Factor II is the sum of the following geometric series in Laplace space, which accounts for the

number of threshold crossings that go undetected before eventual detection:

1

1− ef5(s) eFs+β(x∗ − 1|x∗)
=1 +

�
ef5(s) eFs+β(x

∗ − 1|x∗)
�

+
�
ef5(s) eFs+β(x

∗ − 1|x∗)
�2

+
�
ef5(s) eFs+β(x

∗ − 1|x∗)
�3

+ · · ·

(2.18)
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Figure 2.2: The first detection time distribution for the BDP with stochastic switching (solid
lines), with x0 = 0, N = 20, γ = 0.1 and k = 1, shown for threshold values x∗ = 3, 5, 7
and α = β = 1. The symbols are from simulations. The dashed lines are first detection time
distributions if the sensor is not intermittent and is always on.

Factor III consists of two different terms:

1. ef3(s): since the last undetected threshold crossing, the birth-death process stays above the

threshold, and at time t, the sensor becomes active, and thus the threshold crossing event is

detected.

2. ef4(s) eFs+β(x
∗ − 1|x∗): since the last undetected threshold crossing, the birth-death process

stays above the threshold for some time and remains undetected. It then comes below

the threshold, and finally, the birth-death process reaches the threshold at time t when the

sensor is active.

Both the terms add up to give two different ways of detecting the threshold crossing event. Over-

all, our central result computes the sum of probabilities of all trajectories where the first detection

of the threshold crossing event occurs at time t, and the sum can be expressed completely in terms

of the first-passage probabilities without any imperfect sensing.

To illustrate these results, consider a BDP with transition rates W+(j) = γ(N − j) and

16
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Figure 2.3: (a) Asymptotic first detection time distribution for t >> 1 with x∗ = 5 for (α, β)
= (1, 1), (0.1, 1), (1, 0.1), (10, 1), and (1, 10). Other parameters are the same as in Fig. 2.2. (b)
Mean detection time as a function of β, where along each curve κ = α

β
is held constant.

W−(j) = kj, with j ∈ {0, 1, 2, · · · , N}. These rates were previously used to model threshold

crossing processes [54] in the context of triggering of biochemical reactions [53]. Figure 2.2

shows the first detection time distribution for this process with parameters x0 = 0, N = 20, γ =

0.1 and k = 1, for threshold values x∗ = 3, 5 and 7, and (α, β) = (1, 1), (10, 1) and (1, 10). This

figure shows analytical results (solid lines) for which inverse Laplace transform of Eq. 2.14 has

been numerically performed, and simulations (open triangles) were generated by performing 107

realizations of the stochastic process. An excellent agreement is observed between the analytical

result and the simulations. For comparison, the case of the sensor being always-on is also shown

(as dashed lines), and it effectively corresponds to the first-passage time distribution. If the sensor

is initially active, then for t << 1
α

, the first detection time distribution matches with the first-

passage time distribution. This is because, in this limit, the threshold is crossed earlier than

the typical timescale for the inactivation of the sensor. Starting from around t ≈ 1
α

, the first

detection time distribution deviates from the first-passage time distribution, a feature captured by

the analytical result. For t >> 1
α

, both the first detection time distribution and first-passage time

distribution show an exponential tail with different decay rates.

The Laplace transform obtained in Eq. 2.14 is of utmost importance as it allows us to system-

atically obtain the moments of the first detection time density. The mean first detection time can

be computed as

⟨Td(x0, σ0)⟩ = − d

ds
eDs(x0, σ0)

����
s=0

. (2.19)
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The Laplace transform also contains valuable information about the tail of the first detection

time distribution. For a BDP, with the same parameters as for Fig. 2.2, the first detection time

distribution takes the asymptotic form 1
⟨Td⟩e

−t/⟨Td⟩ for t >> 1. In Fig. 2.3(a) for a threshold of

x∗ = 5, and for several pairs of (α, β), this asymptotic result stands validated. Note that, in

general, the asymptotic tail need not be Poisson-like. A detailed discussion on these asymptotics

is given in Refs. [72–74].

Further, we define κ = α/β, which is the fraction of time the sensor spends in the inactive

state. If κ << 1, then the sensor is active nearly all the time. The mean detection time ⟨Td⟩
is plotted as a function of β for a constant value of κ in Fig. 2.3(b). As this figure reveals, the

⟨Td⟩ ≈ ⟨Tf⟩ for small and large values of α. For intermediate values of α, the mean first-passage

and detection times can differ from one another by several orders of magnitude depending on the

value of κ – larger κ leads to larger ⟨Td⟩. This has a surprising outcome for event detections.

Physically, this implies that even if κ >> 1, where the sensor spends most of its time in the in-

active state, the detection can happen at timescales comparable to ⟨Tf⟩ as long as the time scales

of the sensor switching is much faster than the intrinsic time scale of the underlying process.

This effectively renders the switching to have little effect on the detection times. Though seem-

ingly counterintuitive, a similar result was also noted in a different scenario of diffusing particles

searching for an intermittent target [75].

2.3.1.2 Splitting Probabilities

A key feature in the problem of detecting threshold crossing events under intermittent sensing is

that the detection of the threshold crossing event does not necessarily happen at state x∗ of the

BDP, but can happen at any state ζ ∈ {x∗, x∗ + 1, · · · , N}. This crucial information is contained

in the splitting probabilities Hζ , defined as the probability that the event is detected in state ζ .

For brevity, the following quantities are defined:

h1(t) = Ft(x
∗ − 1|x∗)e−βt, (2.20)

h2(k, x
∗, t) = βe−βt P̂t(k|x∗), (2.21)

for k ∈ {x∗, x∗ + 1, · · · , N}, where P̂t(k|x∗) denotes the probability that the underlying BDP

is found in state k at time t, starting from state x∗ without visiting the state x∗ − 1 during this
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Figure 2.4: Splitting probability for states of the underlying process (lines), for γ = 1, k = 1,
N = 10, x0 = 0, x∗ = 4, and three different pairs of (α, β) = (1, 1), (1, 10), and (10, 1). Symbols
are from simulations. (Inset) Splitting probability density Ht(ζ) with ζ taking values from 4 to
10, as a function of time, for (α, β) = (1, 1).

process. By performing an analysis similar to the computation of the first detection time density,

the density Ht(ζ) of the threshold crossing event being detected at ζ at time t can be obtained.

Summing over the weights of all trajectories that lead to the threshold crossing event at ζ = x∗ at

time t, the Laplace transform of splitting probability density eHs(x
∗) is

eHs(x
∗) = ef1(s) +

ef2(s)
�
eh1(s) ef4(s) + eh2(x

∗, x∗, s)
�

1− eh1(s) ef5(s)
(2.22)

and for ζ = x∗ + r, where r ∈ {1, 2, · · · , N − x∗}, we obtain

eHs(x
∗ + r) =

ef2(s)eh2(x
∗ + r, x∗, s)

1− eh1(s) ef5(s)
. (2.23)

The splitting probability Hζ can thus be obtained as Hζ =
R∞
0

dt Ht(ζ), and is equal to the s → 0

limit of eHs(ζ). Figure 2.4 shows the splitting probabilities Hζ for different values of ζ , for the

parameter values γ = 1, k = 1, N = 10, x0 = 0, x∗ = 4 and three different pairs of (α, β) –

(1, 1), (10, 1) and (1, 10). This demonstrates an excellent agreement between the analytical and

simulation results. Furthermore, the inset in Fig. 2.4 shows the analytically computed splitting

probability density for (α, β) = (1, 1).
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2.3.1.3 First-Passage Time Distribution Conditioned on a Detection Event

If the first detection of a threshold crossing event happens at time Td, what can we say about the

first-passage time Tf? This has practical value as it estimates the first occurrence time for an

event that possibly went undetected. In sensors that detect abnormal voltage fluctuations (with

potential for damage), Tf corresponds to the time until when the device being monitored was

fully functional, and Td denotes the time when the sensor detects the large fluctuation.

We define FTf
(m|n0, σ0, Td) to be the density that the first-passage to the threshold x∗ happens

at time Tf , conditioned on the fact that the first detection of the threshold crossing event happens

at Td, and that the underlying process starts from a state x0 whereas the sensor starts from state

σ0. Clearly, for Tf > Td, FTf
(x∗|x0, σ0, Td) = 0.

For Tf < Td, we are interested in the trajectories that reach the threshold x∗ for the first time at

Tf , but go undetected, and eventually, the threshold crossing event is detected at time Td. We can

break each such trajectory into two parts: the evolution up to time Tf and the evolution up to time

Td, starting from time Tf . The first part of each trajectory is a first-passage trajectory, i.e., one

which reaches the threshold for the first time at time Tf . We can immediately also conclude that

at time t = Tf , the state of the underlying birth-death process must be equal to the threshold, and

the state of the sensor must have been inactive. Furthermore, the second part of each trajectory

is a first detection trajectory, which starts from an initial state such that the birth-death process

is at the threshold and the sensor is inactive, and subsequently, the first detection of the threshold

crossing event happens at time Td. Putting this together, we have

FTf
(x∗|x0, σ0, Td) = FTf

(x∗|x0) · pTf
(I|σ0)

DTd−Tf
(x∗, I)

DTd
(x0, σ0)

(2.24)

where the denominator DTd
(x0, σ0) is due to the fact that we are looking at the subset of trajec-

tories, which are conditioned to undergo the first detection event at time Td. This shows that the

first-passage time distribution conditioned on detection at a specific time FTf
(x∗|x0, σ0, Td) can

be expressed explicitly as the unconditioned first-passage time distribution FTf
(x∗|x0), multiplied

by additional tilting factors which ensure that the threshold crossing event is detected exactly at

Td, after it goes undetected at Tf .

20



2.3 Discrete State Markov Processes

A similar argument enables us to see that for Tf = Td, we have

FTf
(x∗|x0, σ0, Td = Tf ) = FTf

(x∗|x0)
pTf

(A|σ0)

DTf
(x0, σ0)

. (2.25)

We emphasize again that the calculation of FTf
(x∗|x0, σ0, Td) which is the conditioned first-

passage time density is extremely important as it allows us to take in the available information

(the time of first detection of the threshold crossing event) and improve our estimate of when the

first-passage event could have occurred based on that. This calculation falls under the theme of

the study of the statistics of stochastic bridges – where the initial and final states of the process

are known, and we are interested in the computation of the statistics of events in between the

final and initial states. The ideas discussed here and the general notion of stochastic bridges will

appear again in Sec. 4.3 where we will demonstrate how these ideas can be used to infer missing

statistics in real-world time-series data.

2.3.1.4 Applications

These results can be applied to threshold crossing events in processes with other absorbing states.

Important examples are models of population dynamics and compartmental models for disease

propagation. These models can estimate the time taken for the size of a population or the infected

caseload to cross a threshold, and such models contain an absorbing state where the size of the

population or number of infected individuals goes to zero. During a pandemic, while the dynam-

ics of the number of infected individuals follows a continuous time BDP, they are intermittently

reported in specific time windows. Thus, the formalism developed in this work has practical rel-

evance as well. In Fig. 2.5, the analytical first detection time distribution for the SIS model and

the logistic model are shown along with simulation results.

Our work can further be extended to processes with stochastic resetting [76–81], in which

some observable such as the accumulated stress or damage can undergo burst-like relaxations.

Recently, this process has received considerable research attention with extensive applications

that include population dynamics under stochastic catastrophes [82–84] to the dynamics of queues

subject to intermittent failure. In Fig. 2.5, the first detection time density under intermittent

sensing is shown for two cases: a BDP with simple resets, and with resets that include a refractory

period [85]. In both cases, analytical and simulation results are in agreement.
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Figure 2.5: First detection time distributions for various processes – Logistic model (violet), SIS
epidemiological model (green), BDP with stochastic resets (red) and that with a refractory period
(blue) – showing an excellent agreement with numerical simulations of these processes (circles).

Simulation Details for Fig. 2.5

SIS Model

The susceptible-infected-susceptible (SIS) model [86] of disease propagation is a stochastic model

that describes the spread of a disease in a population, which we consider to be well-mixed. The

population consists of two types of individuals: those that are susceptible to the infection and

those that are currently infected. The rate at which the disease is transmitted between individuals

is γ, and the recovery rate for each infected individual is µ. If j represents the number of infected

individuals, there are j(N − j) pairwise contacts between infected and susceptible people in a

well-mixed population. Each of the j infected individuals recovers at rate µ. The rates of increase

and decrease of the number of infected individuals is given by

W+(j) = γj(N − j), W−(j) = µj. (2.26)

The parameter values chosen to obtain the curve for Fig. 2.5 are N = 15, x∗ = 7, x0 = 1, γ = 0.1,

and µ = 0.4.

Extension to SIS models on networks: It is of great interest to go beyond the fully con-

nected graph (well-mixed limit), and study models of epidemics, like the SIS model, on arbitrary

networks – which better describe the heterogeneous connection patterns observed among people

in a society. However, analytical calculations for such processes are difficult. In particular, the

explicit computation of the probability distributions of the time taken for x∗ individuals to be
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infected for the first time in a population of N agents has not yet been possible. A difficulty

associated with analytical calculations for processes on networks is highlighted in Fig. 2.6.

Figure 2.6: A schematic of two scenarios in the SIS model, both of which have 3 infected (red)
individuals. The blue circles denote the agents which are at risk of getting infected. While the
effective rate at which the number of infected individuals will drop from 3 to 2 is 3µ in both the
configurations, the rate for the number of infected people to go from 3 to 4 is different for both
configurations – (a) 6γ and (b) 3γ. Thus, it is difficult to theoretically define a single effective
rate by which the number of infected individuals in the population changes from n to n + 1, as
the rates depend on the specific configuration that the process is in.

In order to build a better theoretical understanding of these problems, an approximate scheme

has been developed [67–69], wherein the dynamics of the number of infected people in a pop-

ulation is mapped to a birth-death process, whose rates are inferred from stochastic simulations

of the exact dynamics on the network of choice. Encoded in these rates is the information of the

epidemic parameters, as well as some information about the network structure. In particular, the

choice of rates for W+(j) was chosen to be

W+(j) = γ

P
q qtq,jP
q tq,j

, 1 ≤ j ≤ N, (2.27)

where tq,j keeps track of how often a state with j infected nodes and q S-I links is visited in

the evolution. As mentioned earlier, the rate W−(j) is already known to be exactly µ · j. Once

these rates are numerically determined through stochastic simulations, the formalism we have

developed for birth-death processes can be used to estimate the first detection time distribution

for the number of infected individuals to cross a threshold.

We note that while the above prescription will allow us to build an approximate scheme for

studying threshold crossing events for observables linked to dynamical processes on networks

under perfect and imperfect (intermittent) sensing, using recent advances in the study of stochastic

processes with memory on networks [87], future works should be dedicated towards obtaining the
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first-passage time distribution and first detection time distribution of such observables exactly.

Logistic Model

The stochastic version of the logistic model describes the dynamics of a population of mortal

agents who can reproduce. A constant rate B is assumed for each agent, which means that in a

small time interval dt, each individual gives birth to a new individual with probability Bdt. For

each agent, there is a constant death rate (set to 1) when the population size is low. However, for

larger population sizes, the death rate increases by an amount that is quadratic in the size of the

population. In the birth-death formulation, the transition rates are

W+(j) = Bj, W−(j) = j +Kj2/N, (2.28)

where K determines the strength of influence of competition towards the death rates. The param-

eter values chosen to obtain the curve for Fig. 2.5 from the main text are N = 15, x∗ = 8, x0 =

4, B = 1.5, K = 0.1, α = β = 1.

Stochastic Resets

In the birth-death process with stochastic resets, apart from the simple birth-death dynamics, with

a rate r, the underlying process can be reset to the state 0. This dynamics is reminiscent of

fluctuating observables that undergo burst-like relaxations. Furthermore, one can also consider

the process, where the reset happens to a dormant state, at rate r. When this reset happens, the

underlying process spends some refractory time in this dormant state and resumes its birth-death

dynamics at a rate y from the state 0. Following similar steps as outlined in the previous sections,

the survival probability for a birth-death process with stochastic resets under intermittent sensing

can be obtained as

eSs(x0, A) = eQ(s) +
eq1(s)eq2(s)eq4(s) + eq1(s)eq6(s)eq8(s) + eq1(s)eq5(s)

1− eq2(s)eq3(s)− eq6(s)eq7(s)
(2.29)
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where the following functions are defined:

Q(t) =

Z ∞

t

dt′F (r)
t′ (x∗|x0) (2.30)

q1(t) = F
(r)
t (x∗|x0) pt(I|A) (2.31)

q2(t) = Ft(x
∗ − 1|x∗) e−(β+r)t (2.32)

q3(t) = F
(r)
t (x∗|x∗ − 1) pt(I|I) (2.33)

q4(t) =

Z ∞

t

dt′F (r)
t′ (x∗|x∗ − 1) (2.34)

q5(t) = e−(β+r)t

Z ∞

t

dt′Ft′(x
∗ − 1|x∗) (2.35)

q6(t) = rq5(t) (2.36)

q7(t) = F
(r)
t (x∗|− 1) pt(I|I) (2.37)

q8(t) =

Z ∞

t

dt′ F (r)
t′ (x∗|− 1) (2.38)

where F (r)
t (x∗|x0) denotes the first-passage time density from x0 to x∗ for the birth-death process

with resets being considered, and the state ‘−1’ denotes the state in which the birth-death pro-

cess spends a refractory period, before resuming its dynamics. The survival probability can be

leveraged to obtain the detection statistics using the relation

eDs(x0, σ0) = 1− seSs(x0, σ0) (2.39)

The parameter values chosen to obtain the curve for Fig. 2.5 from the main text are N = 10, x∗ =

5, x0 = 0, r = α = β = 1 while the birth-death rates were chosen to be the same as the ones for

the curves in Fig. 2. In the case where a refractory period is also considered, we choose y = 1.

2.3.2 Why does this formalism fail to generalize to continuous stochastic
processes?

A quick look at Eq. (2.8) reveals the presence of the term Ft(x
∗−1|x∗). In the case of a continuous

process, e.g., simple diffusion, this term is ill-defined and extremely tricky to deal with. This is

due to the fact that for a continuous process, transitions happen from state a x to states x ± ϵ

where ϵ → 0. Thus, one is often confronted with terms like Ft(x
∗ − ϵ|x∗), which are singular in

the limit ϵ → 0 and thus are tricky to deal with. A diffusing particle starting from x is guaranteed
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to immediately hit x − ϵ. In fact, the particle crosses x − ϵ infinitely many times within an

infinitesimally short time period. Does this mean that the statistics of detection times of gated

first-passage processes cannot be written in terms of the properties of the ungated process? As

we will explain in the next section, this is not true.

2.4 Continuous State Markov Processes

In this section, we discuss the computation of the first detection time statistics for continuous

Markov processes. The presentation in this section differs from the previous section in two ways.

1. In the previous section, we focused on equations that the distributions of the first detection

time and first-passage time satisfied. In this section, however, we will shift our focus to the

relations between the random variables themselves. Despite this change in presentation, we

note that the two approaches are equivalent.

2. Given that we are working with continuous processes now, it allows us to establish more

concrete connections with the gated chemical reactions literature, which has understand-

ably largely focused on continuous processes. Thus, we generalize our analysis (discussed

in Sec. 2.4.1) such that the problem of gated chemical reactions and detecting threshold

crossing events under intermittent sensing emerge as limiting cases of the model. More-

over, the terms “reaction time” and “detection time” are interchangeable, and their use is

context-dependent. Thus, in this chapter, we may often interpret Xx0(t) as the position of

a particle stochastically evolving in time, which may ‘react’ when it is in the target region

in its ‘reactive’ state. The reactive state is akin to the sensor being active, whereas the

non-reactive state is like the sensor being inactive.

2.4.1 A Generalized Setup

Consider a continuous one-dimensional stochastic process Xx0(t) that undergoes Markovian evo-

lution, with Xx0(0) = x0, and a gated interval [a, b], that stochastically switches between active

(A) and inactive (I) states. It is imperative to note that this generalized formalism of detecting

the underlying process in an interval readily yields the limiting cases of gated reactions with

point-like targets (when lim b → a) and threshold crossing under intermittent sensing (when
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lim b → ∞). Thus, this approach provides a unifying framework as illustrated in Fig. 2.7.

X(t)

tTf Td

x0

α
Reactive

Non 
Reactive

Point Target

X(t)

tTf Td

a
b

x0

X(t)

tTf Td

x0

On Off

β

Threshold Crossing  

β
a

a

α

Gated Interval

Figure 2.7: Continuous gated first-passage processes. Two central examples of such processes
are gated chemical reactions (top panel) and the detection of threshold crossing by intermittent
sensing (middle panel). Red represents the molecule being in the reactive state or, respectively,
the sensor being on. Blue represents the molecule being in the non-reactive state or, respectively,
the sensor being off. The corresponding first-passage times of these processes are denoted by Tf ,
while the reaction/detection times are denoted by Td. The point target (top) and threshold crossing
(middle) scenarios can both be seen as special cases of the gated interval problem (bottom).

We define the random variable Td(x0, σ0), with σ0 ∈ {A, I}, to be the detection time starting

from the composite state (x0, σ0). Namely, Td(x0, σ0) is the first time the underlying process

Xx0(t) is in the interval [a, b], while the gate is in its active state A. Let us define the shorthand

notation

ρ =




a, if x0 ≤ a,

b, if x0 ≥ b.

(2.40)
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We can express the random variable Td(x0, σ0) recursively in the following manner

Td(x0, σ0) = Tf (ρ | x0) +




0, if σTf (ρ|x0) = A

Td(ρ, I), otherwise,
(2.41)

where Tf (ρ | x0) is a random variable that denotes the simple ungated first-passage time to ρ,

starting from x0, and σTf (ρ|x0) denotes the state of the gate at this time.

In turn, the recursive relation satisfied by Td(ρ, I) follows a different logic. Instead of analyz-

ing the renewal of the process when the first return to the gated interval happens, we consider the

event where the gate state switches from the state I to A for the first time. This allows us to write

Td(ρ, I) = Wβ +





0, if Xρ(Wβ) ∈ [a, b],

Td(y, A), if Xρ(Wβ) = y ∈ (−∞, a),

Td(y, A), if Xρ(Wβ) = y ∈ (b,∞),

(2.42)

where Wβ is the exponentially distributed random variable that denotes the time taken to switch

from state I to A. The structure of Eq. (2.42) embodies the crucial difference between continuous

and discrete-space gated processes.

To circumvent the ill-defined first-return time, we break the subsequent trajectory in Eq. (2.42)

into two: (i) First, we let the underlying process evolve as if there is no target for the time Wβ

it takes the sensor to become active. The probability of finding the underlying process at some

point y after Wβ is given by the conserved propagator C(y,Wβ | ρ), i.e., the propagator for the

corresponding problem in the absence of any gating or absorbing boundaries. (ii) The process

then continues from position y and state A. If y happens to fall inside the target interval, we are

done. Otherwise, the particle is either above or below the target. The detection time from that

state is respectively given by plugging x0 = y in Eq. (2.41) and the corresponding value of ρ

according to Eq. (2.40).

Two things are immediately apparent. First, for this trick to work, we require Markovianity

of the underlying process – the exact trajectory that the process has taken to reach y in stage (i)

is irrelevant when stage (ii) begins. Second, to know the statistics of the point y, knowledge of

the corresponding conserved propagator is required. In turn, there is no way to express the first

detection time solely in terms of the ungated first-passage time and transition rates α and β, and
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the propagator is carried into this relation. These two realizations are in contrast to the analogue

theory of discrete-space gated processes, which do not require a knowledge of the propagator

and can also be extended beyond Markov processes (to include renewal processes). Nonetheless,

the additional requirements in continuous space are a necessary price to pay for the solution of a

much more complex gated problem.

2.4.2 Results

We now leverage the above set of equations to compute statistics of the gated first-passage time.

2.4.2.1 Mean detection time

Let us assume that the mean detection time is finite, later on we will deal with cases of diverging

mean. Taking expectations of both sides of Eq. (2.41), we obtain

⟨Td(x0, σ0)⟩ = ⟨Tf (ρ | x0)⟩+ ⟨If⟩ ⟨Td(ρ, I)⟩ , (2.43)

where If is an indicator random variable that receives the value 1 if the particle first arrived at

ρ in the inactive state and 0 otherwise. In Eq. (2.43) we have used the independence of If and

Td(ρ, I): ⟨IfTd(ρ, I)⟩ = ⟨If⟩ ⟨Td(ρ, I)⟩. For this, we have noted that Td(ρ, I) is the additional

time it takes the reaction to complete in a scenario where the particle arrived at ρ in the inactive

state, i.e., conditioned on If = 1. Thus, while If determines if an additional time Td(ρ, I) should

be added or not, it is uncorrelated with the duration of this time. The duration of Td(ρ, I) does

not depend on whatever happened prior to arriving at the interval boundary. The expectation of

the indicator function is

⟨If⟩ =


pTf (ρ|x0)(I | σ0)

�
. (2.44)

Recalling Eq. (2.3), when σ0 = I we have

⟨If (σ0 = I)⟩ = πI + πA
eFλ(ρ|x0), (2.45)

where eFλ(ρ|x0) is the Laplace transform of Ft(ρ | x0) evaluated at s = λ. Similarly, when

σ0 = A, we have

⟨If (σ0 = A)⟩ = πI

h
1− eFλ(ρ | x0)

i
. (2.46)
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Equations (2.45) or (2.46) can, in turn, be plugged into Eq. (2.43) in accordance with the initial

condition σ0. Note that if the initial state of the gating dynamics is the equilibrium occupancy

probabilities, denoted here by σ0 = E, we simply have

⟨If (σ0 = E)⟩ = πI. (2.47)

Moving on, taking expectations of both sides of Eq. (2.42) we obtain

⟨Td(ρ, I)⟩ = β−1 +

Z ∞

−∞
eΦρ(β) ⟨Td(y, A)⟩

h
Θ−(y) +Θ+(y)

i
dy (2.48)

where eΦρ(z) := β eC(y, z | ρ), such that eC(y, β | ρ) is the Laplace transform of C(y, t | ρ) eval-

uated at β, and where Θ−(y) is a step function that equals 1 for all y < a and 0 otherwise, and

Θ+(y) equals 1 for all y > b and 0 otherwise. In deriving Eq. (2.48) we have used the indepen-

dence of stages (i) and (ii) that were described below Eq. 2.42, which requires Markovianity of

the propagator. Note that we have also used ⟨C(y,Wβ | ρ)⟩ = β eC(y, β | ρ) = eΦρ(β).

We can now plug Eq. (2.43) into Eq. (2.48) while noting that ⟨Td(ρ, I)⟩ of Eq. (2.43) is

independent of y in the integral of Eq. (2.48), and so can be taken out of the integral. This gives

⟨Td(ρ, I)⟩ = β−1 + τρ + p−ρ ⟨Td(a, I)⟩+ p+ρ ⟨Td(b, I)⟩ (2.49)

where we have defined

τρ =

Z ∞

−∞
eΦρ(β) ⟨Tf (ι± | y)⟩

h
Θ−(y) +Θ+(y)

i
dy, (2.50)

such that ι− = a for y < a and ι+ = b for y > b, and

p±ρ =

Z ∞

−∞
eΦρ(β)



pTf (ι±|y)(I | A)

�
Θ±(y)dy, (2.51)

where


pTf (ι±|y)(I | A)

�
= πI

h
1 − eFλ(ι± | y)

i
. Note that Eq. (2.49) is actually a shorthand

notation for a system of two equations, for the two unknowns ⟨Td(a, I)⟩ and ⟨Td(b, I)⟩, which

one gets by substituting the two possible values of ρ = {a, b}.

Each term on the right-hand side of Eq. (2.49) gives us insight into the different mechanisms

through which a detection event can take place. For instance, the first term β−1 denotes the mean

time taken for the particle to turn active (A), starting from the inactive state (I). It is easy to see
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that the mean detection time ⟨T (ρ, I)⟩ satisfies ⟨T (ρ, I)⟩ ≥ β−1 where the equality holds only in

the extreme cases where the particle is always detected as soon as it turns reactive. However, in

almost all practically relevant scenarios, this will not be the case. Namely, there will be a non-

zero probability for a particle that starts at the boundary of the gated interval to be found outside

the interval when it turns reactive. In this case, the additional time taken for detection is captured

by the other three terms in Eq. (2.49).

If detection did not happen when the particle turned reactive, it can happen later in two differ-

ent ways. Suppose that when the particle turns reactive, it is at y /∈ [a, b]. For a detection event to

take place, the particle now has to reach the boundary nearest to it, starting from position y. If at

the moment when the particle reaches the nearest boundary, it is found reactive, then it is detected

right away. In Eq. (2.49), τρ captures the weighted contribution of such events, starting from

different values of y, to the mean detection time. However, if upon reaching the boundary closest

to it, the particle is non-reactive, the dynamics is renewed, and the mean additional time taken for

detection is either ⟨Td(a, I)⟩ or ⟨Td(b, I)⟩, depending on whether y was closer to boundary point

a or b.

The identification of a renewal moment provides us with the needed closure that allows us

to obtain the exact formula for the mean detection time. In particular, by solving the system of

equations in (2.49) for the two unknowns ⟨Td(a, I)⟩ and ⟨Td(b, I)⟩, we obtain

⟨Td(a, I)⟩ =
(β−1 + τa)(1− p+b ) + p+a (β

−1 + τb)

1− p−a − p+b + p−a p
+
b − p−b p

+
a

, (2.52)

and

⟨Td(b, I)⟩ =
(β−1 + τb)(1− p−a ) + p−b (β

−1 + τa)

1− p−a − p+b + p−a p
+
b − p−b p

+
a

. (2.53)

For the symmetric case in which the dynamics and the boundary conditions to the left and the

right of the target center are the same (e.g., diffusion on the infinite line), Eqs. (2.52) and (2.53)

are equal and simplify considerably. Setting τa = τb := τ and p±a = p±b := p±, we obtain

⟨Td(ρ, I)⟩ =
β−1 + τ

1− p− − p+
. (2.54)

The above exact equation for the mean detection time admits a simple interpretation in the form

of Bernoulli trials. We define each trial as an independent attempt at detection when the particle

is initially non-reactive at one of the target’s boundaries. Each attempt takes on average β−1 +
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τ , where β−1 is the mean time for the particle to turn reactive, and τ denotes the additional

contribution coming from events where the particle is found outside the interval when it turns

reactive, and thus has to return to its nearest boundary. The number of trials until detection

follows a geometric distribution, and the mean number of trials is given by (1− pa − pb)
−1. This

acts as a multiplicative factor to the mean time taken for one trial and altogether yields the mean

detection time.

2.4.2.2 Distribution of the First Detection Time

We now turn to compute the full distribution of the first detection time. This is required to com-

plement the limited information provided by the mean. The calculation of the Laplace transforms

of the distributions of the random variables in Eqs. (2.41) and (2.42) is done along the lines

followed for their respective means (Sec. 2.4.2.1). We have thus delegated the details of this

calculation to Appendix A, and will only quote the results here. The Laplace transform of Eq.

(2.41) is

eDs(x0, σ0) = eFs(ρ | x0)
h
πA + πI

eDs(ρ, I)
i
± (1− πσ0) eFs+λ(ρ | x0)

h
eDs(ρ, I)− 1

i
, (2.55)

where we have a plus sign if σ0 = I , and a minus sign if σ0 = A. For σ0 = E, the second term

vanishes, and we retain only the first term.

The Laplace transform of Eq. (2.42) for the case ρ = a is

eDs(a, I) =
(eϕa + eχa)(1− eψ+

b ) +
eψ+
a (
eϕb + eχb)

1− eψ−
a − eψ+

b + eψ−
a
eψ+
b − eψ−

b
eψ+
a

, (2.56)

and for the case ρ = b is

eDs(b, I) =
(eϕb + eχb)(1− eψ−

a ) +
eψ−
b (
eϕa + eχa)

1− eψ−
a − eψ+

b + eψ−
a
eψ+
b − eψ−

b
eψ+
a

, (2.57)

where we have defined

eϕρ(s) ≡ β

Z b

a

eC(y, s+ β | ρ)dy ≡
Z b

a

eΦρ(s+ β)dy, (2.58)

32



2.4 Continuous State Markov Processes

K
eq

=104;  α=104, β=1

K
eq

=104;  α=102, β=10-2

K
eq

=104;  α=104, β=1

K
eq

=104;  α=104, β=1

K
eq

=104;  α=102, β=10-2

K
eq

=104;  α=102, β=10-2

10 103 105 107

10-11

10-9

10-7

10-5

10-3

10-1

Time

D
e
t
e
c
t
i
o
n
 
D
e
n
s
i
t
y

K
eq

=1;      α=1, β=1

-3/2

-1/2
-3/2

-3/2

a

10 105 107

Time
103

b

K
eq

=1;      α=1, β=1

Single-Point Target

-1/2

-1/2

-3/2

-3/2

-3/2

Interval Target

10 103 105 107

10-11

10-9

10-7

10-5

10-3

10-1

Time

K
eq

=1;      α=1, β=1

-3/2
-3/2-3/2

β/2

c

10-11

10-9

10-7

10-5

10-3

10-1

Threshold Crossing

D
e
t
e
c
t
i
o
n
 
D
e
n
s
i
t
y

D
e
t
e
c
t
i
o
n
 
D
e
n
s
i
t
y

Figure 2.8: A comparison of the detection time distribution and its dependence on the transition
rates between models of (a) a gated interval of length b − a = 1, (b) a gated point, and (c) gated
threshold crossing. In all cases, we set D = 1 for the diffusion coefficient, a non-reactive initial
gate state, and a for the initial position of the particle. In each panel, we plot three color-coded
curves, where each color represents a different choice of values for the transition rates α and β.
For each choice of parameters, the lines represent numerical Laplace inversion of Eq. (2.68),
and the dashed lines are the corresponding transient and asymptotic power laws according to
Eqs. (2.69) and (2.71), and circles come from Monte-Carlo simulations with 105 particles and a
simulation time step ∆t = 10−4.

eχρ(s) ≡
Z ∞

−∞
eΦρ(s+ β)

h
πA
eFs(ι± | y) + πI

eFs+λ(ι± | y)
ih
Θ−(y) +Θ+(y)

i
dy, (2.59)

and

eψ±
ρ (s) ≡

Z ∞

−∞
eΦρ(s+ β)πI

h
eFs(ι± | y)− eFs+λ(ι± | y)

i
Θ±(y)dy, (2.60)

where again ι− = a and ι+ = b. As happened for the formulas for the mean, for the symmetric

case in which the dynamics and the boundary conditions to the left and the right of the target

center are the same Eqs. (2.56) and (2.57) are equal and simplify considerably. Setting ϕa =
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ϕb := ϕ, χa = χb := χ and ψ±
a = ψ±

b := ψ±, we obtain

eDs(ρ, I) =
eϕ+ eχ

1− eψ− − eψ+
. (2.61)

2.4.2.3 Long Time Asymptotics – Inheritance of Power-Laws

For simplicity, let us assume the symmetric case in which both the dynamics and the boundary

conditions to the left and the right of the target are the same. We focus on processes for which

the first-passage time distribution of the underlying ungated process has an asymptotic power-law

behavior of the form

Ft(ρ | y) ≃ θ

Γ(1− θ)

τ θf
t1+θ

, 0 < θ < 1, (2.62)

where τf > 0. Note that in this case, the mean first-passage time diverges. Using the Tauberian

theorem, it can be shown that the small s asymptotics of the Laplace transform of the first-passage

time is given by eFs(ρ | y) ≃ 1− (τfs)
θ (see pp. 43-45 in Ref. [17]). Note that τf is a function of

the distance to the closest boundary of the interval target.

In Appendix B, we show that corresponding gated processes inherit the above asymptotics.

That is to say, the first detection time density also decays as a power law, and the power law

exponent θ remains the same. The asymptotics differ only in the corresponding prefactor, which

is determined exactly

Dt(ρ, I) ≃
θ

Γ(1− θ)

�
π−1
I

B
A

�

t1+θ
, (2.63)

where A and B are given in Appendix B.

We thus see that, for the cases studied here, the gated detection time has a power law behavior

with the same θ of the corresponding ungated process but with a different prefactor, which can be

determined exactly based on descriptors of the corresponding ungated process. In particular, for

a single-point target (b → a), we find

Dt(a, I) ≃
1

t1+θ

θ

Γ(1− θ)
×

R∞
−∞
eΦρ(β)τ

θ
f (y)dy

πA + πI

R∞
−∞
eΦρ(β) eFλ(a | y)dy

, (2.64)

where we recall that πA = β/λ and πI = α/λ. In the converse limit of threshold crossing
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(b → ∞) we obtain

Dt(a, I) ≃
1

t1+θ

θ

Γ(1− θ)
×

R a

−∞
eΦρ(β)τ

θ
f (y)dy

πA + πI

h R∞
a
eΦρ(β)dy +

R a

−∞
eΦρ(β) eFλ(a | y)dy

i .
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Figure 2.9: The first detection time distribution at a gated interval [a, b], for a diffusing particle
restricted to a box [0, L] with reflecting boundaries. The lines are numerical Laplace inversions
of Eq. (2.61), where ϕ, χ and ψ± are calculated using the results of Appendix D. The circles are
the results of Monte-Carlo simulations with 105 particles and a simulation time step ∆t = 10−4.
Here, we take: α = 1, L = 10, D = 1 and l = 1 where a = (L − l)/2 and b = (L + l)/2.
The gate is initially in the non-reactive state, and we set a for the initial position of the particle.
The blue line is drawn for the case β = 1 and Keq = 1, and the orange line is drawn for the case
β = 10−2 and Keq = 102. The dashed lines represent exponential distributions whose means are
taken to be the mean detection times according to Eq. (2.54). While a single exponential is not
expected a priori, it is observed for the case of high-crypticity (orange). It can be appreciated that
the distribution is well described by the dashed line (also see inset).

2.4.2.4 Transient behavior under high crypticity

In the work of Mercado-Vásquez and Boyer [47], a freely diffusing particle in search of a gated

single-point target was considered. The authors showed that when Keq = α
β

≫ 1 an interim

regime of slower power-law decay emerges before the asymptotic regime. In particular, the

asymptotic decay of the first detection time density of t−3/2 that is seen for simple diffusion

is preceded by a long stretch of time where the density decays as t−1/2. A detection process for

which Keq ≫ 1 was termed highly cryptic since it spends most of its time in the non-reactive

(inactive) state.

Yet, there remains a question: Is the condition Keq ≫ 1 sufficient to guarantee a slower

transient regime for any gated process, provided that the underlying ungated process has the
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asymptotic power-law behavior of Eq. (2.62)? In appendix C, we show that the answer to this

question is no. Specifically, we show that whenever there is a possibility to spend some time

in the target region while being in the non-reactive state, an additional condition is required to

guarantee a slower pre-asymptotic power-law decay.

Simply put, the time spent in the non-reactive state before transitioning to the reactive state

must be considerably larger than the time spent on the target upon arrival. For the problem of

a gated interval considered in this work, there is certainly a probability to spend time within the

interval [a, b] while being in the non-reactive state. In appendix C, we show that, in this case, the

additional requirement translates to
b− a

τ θr
≪ βθ−1, (2.65)

with τr set by the small s asymptotics of the propagator eC(y, s | y) ≃ (τrs)
−θ, and where we

have assumed that eC(y, s | a) ≃ s−θH(|y − a|sθ), where H is some function. Simple diffusion

is just one example of a process that belongs to this group. In Appendix C, we also show that for

such processes τf and τr are related by

τr =


 |y − a|d eC(y,s|a)

dy

τ θf




−1/θ

y=a

. (2.66)

Examining Eq. (2.65), it is thus clear that in the limit of a single-point target, b → a, the

left-hand side of Eq. (2.65) is zero. The additional requirement is then fulfilled for every finite

transition rate β. From the qualitative understanding above, this is anticipated. Indeed, when

the target is of measure zero, the particle spends no time on the target and can react with it

only by crossing it while being in the reactive state. Thus, in such cases, we only care about

the equilibrium occupancies of the reactive and non-reactive states. Namely, the rates can be

arbitrarily large as long as the rate to become reactive is much slower than its converse. On the

other hand, Eq. (2.65) will never be satisfied in the case of threshold crossing, where b → ∞.

This means that the cryptic transient regime will never be observed in gated threshold crossing

problems of the type analyzed herein.

In appendix C, we show that when Keq ≫ 1 and the condition in Eq. (2.65) is satisfied, the
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transient regime of the first detection time density scales like

Dt(ρ, I) ≃
1

Γ(θ)

A

B
tθ−1, (2.67)

where A and B are the same as in the previous subsection (definitions can be found in Appendix

B). Thus, under these conditions, we indeed see a transient regime with a different power law

than the asymptotic. Furthermore, we can exactly determine this power-law, and its prefactor.

The findings presented in this subsection call for a refined definition of high-crypticity, which

takes into account the time spent on the target: A process is highly-cryptic if it spends most of its

time in the non-reactive state and the time spent in the non-reactive state before transitioning to

the reactive state is considerably larger than the time spent on the target upon arrival to it.

2.4.2.5 Diffusion to a Gated Interval

In this section, we show how to apply the framework developed above to obtain explicit solutions

for the first detection time of a diffusing particle by a gated interval. We first solve for free

diffusion and then consider the effects of confinement and drift.

Freely diffusing particle

Consider the gated interval problem illustrated in (Fig. 2.1, bottom); and further assume that the

particle, initially at x0 at state σ0 ∈ {A, I}, is not restricted and free to diffuse on the entire

one-dimensional line. The gated target is the interval [a, b].

The free-diffusion conserved propagator is a Gaussian and its Laplace transform is given by

eC(y, s|x0) =
1√
4Ds

e−
√

s
D |y−x0|. Also, the Laplace transform of the first-passage time distribution

from an arbitrary point y to an arbitrary point ρ is eFs(ρ | y) = e−
√

s
D |ρ−y| [1]. In fact, these two

classical results are all we need in order to solve the gated problem, using the renewal formalism

established in Sec. 2.4.1.

For any x0 /∈ [a, b] we can break the trajectory of the gated problem into two parts. A first-

passage trajectory to ρ ∈ {a, b} that is followed, if the particle was not detected upon arrival, by

a first detection process starting from the state (ρ, I). Because the first part of the trajectory is a

first-passage process that is well understood, from now on, we will focus on the second part, i.e.,

a detection process with initial state (ρ, I). It is important to note that accounting for the entire

trajectory by adding its first-passage part is then a simple task that can generally be done via Eqs.
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(2.43) and (2.55).

It can be easily appreciated that in this example, the dynamics and the boundary conditions

to the left and right of the target are the same, and we can use Eq. (2.61) to calculate the Laplace

transform of the first detection time distribution. Plugging eC(y, s | x0) and eFs(ρ | y) into Eq.

(2.61) we obtain

eDs(ρ, I) =

1
ω+
1

− e
−(b−a)

√
s+β
D (λ+ω−

1 )−λ

ω2

2β−1 +

�
1+e−(b−a)

√
s+β
D

�
αω−

1

ω2(
√
β+s+

√
s)(

√
β+s+

√
λ+s)

, (2.68)

where we have defined ω±
1 =

√
s+ β(

√
s ±

√
s+ λ) and ω2 = (s + β)λ. Similarly we can

get the long-time asymptotics by plugging eC(y, s|x0) and eFs(ρ | y) into Eq. (2.63). Noting that

τf = |y−x0|2
D , we obtain

Dt(ρ, I) ≃
1

2
√
π
t−3/2

�
1 + e−(b−a)

√
β
D

�
(
√
β +

√
λ)λ

2αβ +
�
1− e−(b−a)

√
β
D

�
α
√
βλ+ 2

�
β2 +

p
β3λ

� . (2.69)

Finally, in the previous section, we have seen that for a finite-sized target, high-crypticity

requires the condition in Eq. (2.65) as well as Keq =
α
β
≫ 1. For our example here τr = 4D and

so the condition in Eq. (2.65), after squaring both sides of the equation, translates to

(b− a)2

4D ≪ β−1, (2.70)

namely, the time spent in the non-reactive state before transitioning to the reactive state must

be considerably larger than the time it takes the particle to diffuse a distance comparable to the

size of the target. If both Keq ≫ 1 and Eq. (2.70) hold, a transient regime emerges before the

asymptotic regime of Eq. (2.69). In this regime, according to Eq. (2.67), we have

Dt(ρ, I) ≃
1√
π
t−1/2

p
β

 
2

1 + e−(b−a)
√

β
D
− 1

1 +
p

K−1
eq

!
. (2.71)

In Fig. 2.8 there are three panels corresponding to: (a) the gated interval problem, and its

two extreme limits (b) the gated single-point target problem, and (c) the gated threshold crossing

problem, which was illustrated in Fig. 2.1. In each panel, we plot three color-coded curves, where

each color represents a different choice of values for the transition rates α and β. Purple curves

represent α = β = 1 such that Keq = α/β = 1. Green curves represent α = 104 and β = 1
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such that Keq = 104. Orange curves represent α = 102 and β = 10−2 such that again Keq = 104.

The green and orange curves have the same ratio of transition rates (Keq = 104), but the latter

transitions are much slower, and specifically, β is much smaller.

In panel (a), the case of an interval target, we see that the purple and green curves are similar

in shape — an asymptotic ∼ t−3/2 power-law kicks in rather early. In contrast, the orange curve

possesses a prolonged transient regime of ∼ t−1/2 before the asymptotic regime enters. This is

because the orange curve fulfills both conditions for high-crypticity, i.e., Keq ≫ 1 and Eq. (2.70).

In panel (b), the case of a single-point target, the green curve is actually similar in shape to the

orange curve. In this limit, the condition in Eq. (2.70) is always met, and it is sufficient to require

that Keq ≫ 1. Note, however, that while the ratio of the transition rates alone determines whether

a prolonged transient regime exists, the duration of this regime is affected by the magnitude of the

rates through λ = α + β. More specifically, the transition between the transient and asymptotic

regimes occurs at K2
eq/λ [47].

Finally, in panel (c), we present the case of threshold crossing. There, we see that none of

the curves possess a prolonged transient regime, as the condition in Eq. (2.70) is never met.

Furthermore, for short times (up to β−1) the detection probability density is constant with a value

of β/2. This can be easily understood by the following argument: With probability βe−βt ≃ β,

the particle becomes reactive after a short time t. Since the motion is symmetric, upon becoming

reactive, the particle has a probability half to be found above its starting position. Recalling

the particle started on the threshold, it has a probability half of being detected upon becoming

reactive. In total, the first detection probability density at short times is β/2.

Diffusion in confinement

Let us now restrict the particle to diffuse inside a box [0, L] with reflecting boundaries, such that

the gated target is inside the box (0 < a ≤ b < L). The confinement renders the first-passage

asymptotics exponential, so the results derived for heavy-tailed distributions are no longer valid.

However, it also renders the mean first-passage time finite, and so one can use Eq. (2.43) together

with Eqs. (2.52) and (2.53) to obtain the mean detection time.

Furthermore, as we did for the freely diffusing particle, we can, of course, calculate the entire

Laplace transform of the reaction time. Let us again focus on a reaction with initial state (ρ, I),

i.e., assume the particle starts on the boundary in the non-reactive state. For simplicity, let us
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further assume that the center of the gated interval is situated exactly at the center of the confining

box: a = (L − l)/2 and b = (L + l)/2, such that l = b − a. We can thus use Eq. (2.61). All

we require for this calculation is the conserved propagator for diffusion restricted to a box [0, L],

and the first-passage time to a, starting from some x ∈ [0, a] (which in our case is equal to the

first-passage time to b starting from L− x). These quantities are calculated in Appendix D.

In Fig. 2.9, we set α = 1, L = 10, l = 1 and D = 1, and plot the detection time density

for β = 1 (blue line, Keq = 1) and for β = 10−2 (orange line, Keq = 102). For each case, we

also plot an exponential distribution with the mean taken to be the mean detection time calculated

according to Eq. (2.54) (dashed lines of corresponding colors). For β = 1 the distribution is

clearly non-exponential, there are two distinct phases. Therefore, despite having an exponential

tail, the gated distribution cannot be captured by a single exponent, which is to be expected since

multiple time scales are involved in the problem. However, for β = 10−2 high-crypticity condi-

tions are met, and we observe Poisson-like asymptotics [72]. This is to say that the distribution

is well approximated by an exponential distribution whose mean is simply the mean detection

time. This can be understood by noting that the time it takes for the diffusing particle’s position

to equilibrate over the box is much shorter than the time it takes the particle to turn reactive. The

latter then becomes the rate-limiting step, which dominates the distribution of detection times.

This example warrants caution — Poisson kinetics is not guaranteed in the general case but does

emerge in the cryptic regime.

Diffusion with drift

As we discussed above, the mean first-passage time of a freely diffusing particle diverges, and this

property is inherited by the corresponding gated problem. Confinement can regularize the mean

and make it finite. This can also be done by introducing a constant drift velocity v in the target’s

direction. The mean first-passage time of the ungated problem is then simply given by ℓ/v, where

ℓ denotes the distance between the initial position of the particle and the point target. However,

considering the gated counterpart of this problem, we observe that the mean detection time di-

verges despite the constant drift. This fact can be intuitively understood through the following

argument: when the drift drives the particle downhill towards the target, there is a non-zero prob-

ability that the particle will arrive at the target in the non-reactive state. Subsequently, by the time
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it turns reactive again, the particle is likely to be on the other side of the target, and it now has

to travel “uphill” for the detection to occur. This renders the mean detection time infinite. It is

thus clear that the mean detection time under stochastic gating can be remarkably different from

its ungated counterpart.

A slight variation of the drift-diffusion model discussed above can nevertheless render the

gated mean finite. In particular, consider a particle diffusing under a constant drift velocity v

towards the origin, with the origin also being a reflective boundary. For 0 < a < b, we consider a

gated interval [a, b], where the particle can get detected and absorbed in its reactive state. Despite

the constant drift, the reflecting boundary at the origin ensures that the mean first-passage time

to the boundaries of the interval remains finite, irrespective of whether the particle has to travel

uphill or downhill. Consequently, the mean detection time is also finite. A schematic of this setup

is provided in Fig. 2.10a.

The formalism developed in Sec. 2.4.1 asserts that knowing certain ungated observables is

enough in order to obtain the first detection time statistics. In particular, a key quantity is the

conserved propagator for the diffusion equation with drift. This obeys

∂C(x, t|x0)

∂t
= D∂2C(x, t|x0)

∂2x
+ v

∂C(x, t|x0)

∂x
, (2.72)

with the initial condition C(x, t = 0|x0) = δ (x− x0) and boundary conditions dC(x,t|x0)
dr

��
x=0

= 0

and C(x → ∞, t|x0) = 0. The drift is v > 0 and its direction is towards the reflecting boundary

at zero. In appendix E, we obtain eC(x, s|x0) in Eq. (E.2). The Laplace transform of the first-

passage probability eFs(x|x0) and its mean ⟨Tf (x|x0)⟩ can also be obtained and we give them in

Eqs. (E.11) and (E.12). Assuming for simplicity that the particle starts at the boundary b, one

can utilize Eq. (2.53) to obtain the mean detection time ⟨Td(b, I)⟩ by plugging in the ungated

quantities obtained above.

For intermediate values of v > 0, it is clear that drift can speed up detection as it helps avoid

situations where the particle drifts away from the interval. However, if v is sufficiently large, a

significant contribution to the detection time comes from trajectories where the diffusing particle

crosses over to the other side of the interval (with its position somewhere between 0 and a), and

then travels uphill against the drift, for the eventual detection (see Fig. 2.10a and the associated

caption). Thus, one would expect the mean detection time ⟨Td(b, I)⟩ to vary non-monotonically
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as a function of v. This expectation is indeed verified in Fig. 2.10(b), where we fix α = D = 1,

a = 1 and b = 3 and plot ⟨Td(b, I)⟩ vs. v for β = 0.25, 0.5, 1, 2, 4. For small values of v, the

mean detection time decreases linearly as the drift is increased. However, for large v, it increases

rapidly, indicating that detection is much more difficult.
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Figure 2.10: Detecting a particle diffusing with drift by a gated interval. (a) Schematics of the
process where a particle, initially at x0 while the gate is in the non-reactive state, is diffusing on
the positive ray (0,∞) with a drift velocity v towards the origin. The gated interval is [a, b], and
the origin is considered reflective. The two trajectories represent two different types of detection
events. The purple trajectory illustrates a scenario likely to happen when v is large. Namely, if the
particle arrives at the upper boundary b when the gated interval is non-reactive, then the particle
may be able to cross the interval without being detected. It will subsequently need to go against
the drift for a detection event to occur. The green trajectory is representative of low v, where a
particle that arrives at the upper boundary when the interval is non-reactive is unlikely to cross the
interval without being detected. (b) Mean detection time ⟨T (b, I)⟩ vs. v for β = 0.25, 0.5, 1, 2,
and 4, at α = D = 1 . The mean detection time displays a non-monotonic dependence on v,
and achieves a minimum for some v = v∗. Inset shows plots for D = 0.25, 0.5, 1, 2, and 4, at
α = β = 1, showing that v∗ also depends on D.

This naturally leads to the question of finding the optimal drift velocity which minimizes the

mean detection time. From Fig. 2.10(b), it is evident that the value of v∗, which is the value of

v for which ⟨Td(b, I)⟩ achieves its minimum value, increases as β increases. This is expected as

increasing β increases the amount of time the particle spends in the reactive state. This, in turn,

reduces the chance that the particle will cross the interval undetected, which allows for higher
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drift velocities. Naively, one could formulate the following argument to find v∗: the mean time

taken for the particle to turn reactive is β−1, while the particle travels an average distance of v/β

during this time. So, one could give a preliminary estimate of v∗ ≈ (b − a)β. However, as

we show in the inset of Fig. 2.10(b), v∗ also depends on the diffusion coefficient, with smaller

values of D corresponding to higher values of v∗. This highlights the importance of the exact

result obtained in Eq. (2.53), which captures the explicit dependence of the mean detection time

on D, along with other relevant parameters, and allows us to analytically study this optimization

problem.

2.5 Discussion

Gated first-passage processes, which arise in various situations ranging from analysis of time-

series data to several chemical reactions, were the focal point of this chapter. We presented a

novel framework that yields closed-form solutions for the statistics of the detection time density

in terms of the properties of the ungated first-passage process. In particular, our approach allowed

us to obtain the Laplace transform of the detection time density and all its moments.

Crucially, we showed that the exact results derived herein shed light on universal features of

gated first-passage processes. Namely, in situations where the ungated first-passage time density

is characterized by power-law asymptotics, the corresponding detection time density inherits the

same power-law decay, albeit with a different prefactor. The long-time power-law tail may be

preceded by a slower transient power-law decay with a different exponent. Our formalism re-

veals that, in the case of point targets, such a transient power-law decay is a generic feature of

Markovian gated first-passage processes. Yet, an additional condition is required to guarantee its

existence for targets of non-zero volume. In Appendix F, we also discuss the generalization of

our results to higher dimensions.

In this section, we focused on continuous processes. Yet, in fact, our formalism can also

treat processes with discontinuous trajectories (albeit still in continuous space). An interesting

example is stochastic jump processes, which can be treated by our formalism as long as jumps

cannot be made into the gated target itself. Consider, for example, continuous stochastic processes

that undergo stochastic resetting. We note that for the gated point target search and threshold

crossing problems, the formulas derived in this section hold without change, even in the presence
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of resetting. Generalization to the case of a gated interval is also straightforward but requires

careful consideration since restart can teleport the particle from one side of the interval to another

without the need to cross the interval itself.

Finally, an important generalization of the framework considered herein is to the case of

non-Markovian gating. Indeed, it is often the case that the dynamics of molecular gates are gov-

erned by binding and unbinding events of ligands. In turn, these events themselves are governed

by first-passage processes whose first-passage times distributions need not be exponential. This

highlights the importance of understanding the role non-Markovianity plays in determining the

statistics of gated detection times. Non-Markovian gating also plays a central role when consid-

ering periodically sampled time-series, which have been recently shown to have interesting and

distinct behaviors compared to their ungated counterparts. Developing an analytical framework

to address these questions is an important direction for future research.
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Inference from Gated First-Passage Times

First-passage times provide invaluable insight into the fundamental properties of stochastic pro-

cesses. However, as we have discussed throughout the thesis so far, various forms of gating

mask first-passage times and differentiate them from actual detection times. For instance, im-

perfect conditions may intermittently gate our ability to observe a system of interest such that

exact first-passage instances might be missed. In other cases, e.g., certain chemical reactions,

direct observation of the molecules involved is virtually impossible, but the reaction event itself

can be detected. However, this instance need not coincide with the first collision time since some

molecular encounters are infertile and hence, gated.

Motivated by the challenge posed by such real-life situations, in this chapter, we present a

universal — model-free — framework for the inference of first-passage times from the detection

times of gated first-passage processes. Furthermore, when the underlying laws of motions are

known, our framework also provides a way to infer physically meaningful parameters. In this

chapter, we aim to demonstrate the robustness of our approach and its insensitivity to underlying

details through several settings of physical relevance.

3.1 Motivation and Problem Statement

In this thesis thus far, our focus was on uncovering the statistics of the detection times. We did so

by primarily connecting its statistics to the statistics of the first-passage times. In many examples,

however, that may not be feasible as the experimentally accessible quantities are the first detection

times and the prime challenge at hand is to uncover properties about the underlying process from

the gated measurements.

Figure 3.1 exemplifies two instances where gating arises naturally: (a) Single particle tracking

of an intermittently observed particle, which transitions between a visible state and an invisible

state. For example, a wide class of fluorophores undergo photoblinking in single-particle mea-

surement [88–97]. Other reasons for such gating can be the intermittent loss of focus on a moving
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Figure 3.1: Instances highlighting the need for inference in gated first-passage processes. (a)
Detection of threshold crossing under intermittent sensing. Consider single particle tracking of a
photoblinking particle. The first-passage properties of the particle can be mischaracterized as the
particle can cross the threshold while being in its invisible state. (b) Gated chemical reaction or
target search. Imagine a situation where tracking of the particle is not possible, and the only ob-
servable is the reaction time. For such processes, we show how the first-passage time distribution
and further relevant observables can be inferred from the detection time distributions.

particle in 3-dimensions [98] or slow frame acquisition rate [99]; (b) A gated chemical reaction

or target search, where tracking of the particle is not possible, and the reaction time is the only

measurable quantity. Such instances may arise in cellular signalling driven by narrow escape

[100, 101] and among fluorescent probes [102]. In both the examples illustrated in Fig. 3.1, the

first-passage time statistics carry invaluable insight into the process, but are inaccessible to direct

measurement. In such scenarios, a crucial challenge is to reliably infer the first-passage statistics

and other fundamental properties of the system of interest. Our central objective in this chapter

is to solve this challenge.

In this chapter, first, we will present exact results demonstrating how the first-passage time

density can be obtained purely from gated statistics, and illustrate its applications in the infer-

ence of the diffusion coefficient. Second, using the joint knowledge of the gated and ungated

first-passage time densities, we establish that the overlooked short-time regime of the first detec-

tion time distribution can be leveraged to obtain the gating rates. In what follows, we use ⟨Tz⟩
and eZs ≡



e−sTz

�
to denote, respectively, the expectation and Laplace transform of the random

variable Tz, and by Zt we denote its probability density function.
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3.2 The Basic Setup

We recall our setup where a gated process is modeled consisting of two independent compo-

nents. First, an underlying process Xx0(t), initially at x0, modeled as a continuous-time Markov

process. In this chapter, we note that several of our results directly apply to both discrete and

continuous space processes, and can also be extended beyond Markov processes to include re-

newal processes. Second, a gate modeled by a two-state continuous-time Markov process, that

intermittently switches between an ‘open’ active (A) state and a ‘closed’ inactive (I) state. The

gate switches from state A to I at rate α, and from I to A at β. For σ0, σ ∈ {A, I}, we quickly

recall that pt(σ|σ0) denotes the probability that the gate is in state σ at time t, given that it was in

state σ0 initially, and we define πA = β/λ and πI = α/λ which are the equilibrium occupancy

probabilities of states A and I respectively, where λ = α+β is the relaxation rate to equilibrium.

As is the case throughout this thesis, the central quantity of interest is the first-passage time

Tf (x
∗|x0), which is the time taken for Xx0(t) to reach state x∗ for the first time, and we denote

its probability density by Ft(x
∗|x0). In many scenarios the first-passage time is not directly

measurable, and instead we can only measure the detection time Td(x0, σ0), of a reaction or

threshold crossing event. We denote by Dt(x0, σ0) the probability density of Td(x0, σ0), which is

the first time the underlying process is detected in some target-set Q, given that the initial state of

the composite process (underlying + gate) is initially at {x0, σ0}.

In this work, we focus on two widely applicable settings: (i) the detection of threshold cross-

ing events of a 1-dimensional intermittent time-series with nearest-neighbor transitions, where Q
denotes all states above a certain threshold x∗ and Td(x0, σ0) is the first time when Xx0(t) ≥ x∗

while the detector is active (A), and (ii) gated reactions or target search on an arbitrary network in

discrete space or in arbitrary dimension in continuous space. Here, Q is typically a single target

state/point x∗, and Td(x0, σ0) denotes the first time the underlying process Xx0(t) is at x∗, while

the gate is open (A).
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3.3 Results

3.3.1 Inference of first-passage time distribution from gated observations

We begin our analysis by recalling Eq. (2.4) where for x0 ̸∈ Q we have

Dt(x0, σ0) = Ft(x
∗|x0)pt(A|σ0) +

Z t

0

Ft′(x
∗|x0)pt′(I|σ0)Dt−t′(x

∗, I) dt′, (3.1)

where the probability for a detection event occurring at time t has two contributions: (i) the

detection time coinciding with the first-passage time, and (ii) the gate being closed during the

first-passage event (I), and detection happening strictly after this moment in time. The Laplace

transform of Eq. (3.1), can be expressed in compact form as

eDs(x0, σ0) =
h
πA + πI

eDs(x
∗, I)

i
eFs(x

∗|x0) + 1(σ0)(1− πσ0)
h
1− eDs(x

∗, I)
i
eFs+λ(x

∗|x0),

(3.2)

where λ = α + β, and 1(σ0) takes values +1 or −1 when σ0 = A or I , respectively.

Setting σ0 = A in Eq. (3.2) and rearranging, we have

eDs(x0, A) = πA
eFs(x

∗|x0) + πI
eFs+λ(x

∗|x0) + πI

�
eFs(x

∗|x0)− eFs+λ(x
∗|x0)

�
eDs(x

∗, I), (3.3)

or

eDs(x0, A) =
�
πA + πI

eDs(x
∗, I)

�
eFs(x

∗|x0) + πI

�
1− eDs(x

∗, I)
�
eFs+λ(x

∗|x0). (3.4)

Similarly, the corresponding equation for σ0 = I reads

eDs(x0, I) =
�
πA + πI

eDs(x
∗, I)

�
eFs(x

∗|x0)− πA

�
1− eDs(x

∗, I)
�
eFs+λ(x

∗|x0). (3.5)

It is easy to see that Eqs. (3.4) and (3.5) can be written in compact form as

eDs(x0,σ0) =
h
πA + πI

eDs(x
∗, I)

i
eFs(x

∗|x0) + 1(σ0)(1− πσ0)
h
1− eDs(x

∗, I)
i
eFs+λ(x

∗|x0),

(3.6)

where 1(σ0) takes values +1 or −1 when σ0 = A or I , respectively, yielding Eq. (3.2). Further-

more, the term containing eFs+λ(x
∗|x0) can be eliminated from Eqs. (3.4) and (3.5) by multiplying
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them by πA and πI respectively, and adding the two resulting equations. This allows us to write

eFs(x
∗|x0) =

πA
eDs(x0, A) + πI

eDs(x0, I)

πA + πI
eDs(x∗, I)

, (3.7)

which is our first result. Equation (3.7) asserts that the first-passage density can be obtained

exactly in terms of detection time densities and the gating rates. We note that Eq. (3.7) holds

even when the underlying process in not Markovian, and instead is a renewal process. However,

Eq. (3.7) implies that the inference of the first-passage time density Ft(x
∗|x0), requires the detec-

tion statistics with initial conditions {x0, A}, {x0, I}, {x∗, I} and the equilibrium probabilities

πA and πI . Such information may not be accessible in experimentally realizable scenarios where,

e.g., it may not be possible to initialize a gated molecule in a specific internal state σ0 = A or I ,

and the values of πA and πI may also be unknown.
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Figure 3.2: Inference of first-passage time distributions from gated observations. We consider the
three different settings mentioned in the text and legend. Solid and dashed lines denote ungated
first-passage time distributions obtained from theory and simulations, respectively. Circles are
inferred using Eq. (3.8) from histograms of simulated gated detection times.

In such situations, the most practically realizable initial condition is the equilibrium σ0 ≡ E,
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where the gate is in the active state A with probability πA, and in the inactive state I with proba-

bility πI . Note that this initial condition is naturally achieved if the system is simply allowed to

equilibriate. Interestingly, the detection time density starting from the initial condition (x0, E) is

given by Dt(x0, E) = πA · Dt(x0, A) + πI · Dt(x0, I), whose Laplace transform is the numer-

ator standing on the right-hand side of Eq. (3.7). Further noting that the Laplace transform of

Dt(x
∗, E) = πA · δ(t)+πI ·Dt(x

∗, I) gives the denominator on the right-hand side, we obtain an

elegant reinterpretation of Eq. (3.7):

eFs(x
∗|x0) =

eDs(x0, E)

eDs(x∗, E)
. (3.8)

Strikingly, Eq. (3.8) asserts that the first-passage time density can be inferred from the detection

statistics, even without the explicit knowledge of πA and πI , or control over the initial state of the

gate.

The usefulness and validity of Eq. (3.8) is demonstrated in Fig. 3.2, with the help of three

case studies of wide interest and applicability. First, a Markovian birth-death process which has

been extensively used to model threshold activated reactions [53, 54, 56, 57] and the dynamics of

chemical reactions on catalysts [103, 104]. Second, the paradigmatic continuous-space diffusion

in a 1D confinement. Third, a gated chemical reaction/target search modeled by a non-Markovian

continuous-time random walk (CTRW) [17, 105] on a network [106], which is e.g., used to model

the motion of reactants, cells, or organisms in complex environments [49, 106–112]. The details

of the parameters and models for preparing Fig. 3.2 are presented in Sec. H.3. In all of these

settings, we show that the first-passage time distributions inferred from Eq. (3.8) (circles) using

a procedure described in Sec. 3.3.1.2 are in excellent agreement with the true first-passage time

distributions. We stress that this inference was performed solely using detection time histograms

obtained from gated simulations, without assuming knowledge of their analytical expressions or

model specific details (e.g. the network structure and the waiting time distribution in the CTRW

example). However, when analytical expressions are available, like in the case of the birth-death

process [30], one can directly perform the inference through Laplace inversion of Eq. (3.8).

Before moving forward, we note that Eq. (3.8) is reminiscent of the seminal renewal formula

eFs(x
∗|x0) =

eC(x∗,s|x0)
eC(x∗,s|x∗)

which relates, in Laplace space, the first-passage time density and the

probability density C(ni, t|nj) of finding the underlying process in state ni at time t, given its
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initial state nj [1]. Clearly, the right-hand side of this formula and that of Eq. (3.8) are equal. In

fact, we can obtain an even more general relation – considering two different initial states x0 and

x′
0, and after some algebra, we uncover the fundamental relation

eDs(x0, E)

eDs(x′
0, E)

=
eC(x∗, s|x0)

eC(x∗, s|x′
0)
, (3.9)

asserting that the ratio of the detection time densities (in Laplace space), starting from any two

initial states x0 and x′
0, is independent of the gating rates α and β. Note that this is true despite

the fact that the detection time densities themselves depend on the gating rates. We remark that

Eq. (3.9) holds in both settings: when Dt(x0, E) corresponds to gated target search and to the

detection of threshold crossing events under intermittent sensing. In fact, this equality can be

easily extended to give
eDs(x0, E)

eDs(x
′
0, E)

=
eC(x∗, s|x0)

eC(x∗, s|x′
0)

=
eFs(x

∗|x0)

eFs(x∗|x′
0)
, (3.10)

which constitute a novel and elegant set of relations between the propagator, and the first-passage

and first detection time densities.

3.3.1.1 Extension to renewal processes

In the above discussion we assumed that the underlying process is a continuous-time Markov

process. However, this modelling assumption can be relaxed, and our results can be shown to be

valid even when the underlying process is modelled as a renewal process.

To see this, we use as a starting point the following renewal structure [49]

Td(x0, σ0) = Tf (x
∗|x0) +




0, if σTf (x∗|x0) = A

Td(x
∗, I), otherwise,

(3.11)

where Td(x0, σ0), Td(x
∗, I), and Tf (x

∗|x0) denote random variables whose densities have been

denoted by Dt(x0, σ0), Dt(x
∗, I), and Ft(x

∗|x0) in the main text. By σTf (x∗|x0) = A in the

above equation, we mean that the random variable denoting the state of the gate takes value

A at time Tf (x
∗|x0), given that its state initially was σ0. Equation (3.11) is valid even when

the underlying spatial process is an arbitrary renewal process and thus allows us to relax the

Markovian assumption.
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Taking a Laplace transform of Eq. (3.11), and rearranging, we get

eDs(x0, σ0) =
h
πA + πI

eDs(x
∗, I)

i
eFs(x

∗|x0) + 1(σ0)(1− πσ0)
h
1− eDs(x

∗, I)
i
eFs+λ(x

∗|x0),

(3.12)

which is the same as Eq. (3.2).

3.3.1.2 Inference of first-passage time distribution from data

Equation (3.8) allows us to represent the first-passage time distribution purely in terms of the

observable detection time distributions. In this section, we show that this equation can be used

to infer the first-passage time distribution directly from detection times data. This is of utmost

importance, since in many practically relevant scenarios, analytical expressions for the detection

time distributions are not known as we might not know the laws of motion or specific parameter

values of the underlying process. First, we note that in the time domain Eq. (3.8) can be written

as a convolution

Dt(x0, E) =

Z t

0

Ft′(x
∗|x0)Dt−t′(x

∗, E) dt′. (3.13)

This suggests that the problem of inferring the first-passage time distribution from gated detec-

tion times can be viewed as a deconvolution problem. In practice, when detection time data are

obtained from simulations/experiments, we discretize the detection time distributions by binning

the data in histograms. Thus, we discretize Eq. (3.13), and recast it as a matrix equation

D⃗t(x0, E) = Dt(x
∗, E)F⃗t(x

∗|x0), (3.14)

where Dt(x
∗, E) is a matrix, which is interpretted as an operator that acts on the vector F⃗t(x

∗|x0)

by performing a convolution and giving the vector D⃗t(x0, E) as output. More specifically, we
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have 


D0(x0, E)

D∆(x0, E)

D2∆(x0, E)

D3∆(x0, E)
...

DN∆(x0, E)




| {z }
D⃗t(x0, E)

= Dt(x
∗, E)




F0(x
∗|x0)

F∆(x
∗|x0)

F2∆(x
∗|x0)

F3∆(x
∗|x0)

...

FN∆(x
∗|x0)




| {z }
F⃗t(x∗|x0)

, (3.15)

where

Dt(x
∗, E) = ∆




D0(x
∗, E) 0 0 0 . . . 0

D∆(x
∗, E) D0(x

∗, E) 0 0 . . . 0

D2∆(x
∗, E) D∆(x

∗, E) D0(x
∗, E) 0 . . . 0

D3∆(x
∗, E) D2∆(x

∗, E) D∆(x
∗, E) D0(x

∗, E)
...

...
... . . .

DN∆(x
∗, E) D(N−1)∆(x

∗, E) D(N−2)∆(x
∗, E) . . . . . . D0(x

∗, E).




(3.16)

Here, ∆ is the histograms’ bin width and N +1 as the total number of bins. Evidently, Dt(x
∗, E)

is a lower-triangular, Toeplitz, matrix whose entries are densities obtained from the histogram of

Dt(x
∗, E), scaled by a factor of ∆. Thus, we can write

F⃗t(x
∗|x0) = Dt(x

∗, E)−1D⃗t(x0, E), (3.17)

implying that the problem of inferring the first-passage time distribution reduces to a problem

of inverting a lower diagonal Toeplitz matrix with a non-zero determinant. In the main text,

we demonstrated the validity and robustness of this approach using three distinct examples – a

birth-death process, CTRW on network, and 1D confined diffusion, where we performed infer-

ence from detection time histograms generated from 106 detection events. Further expanding

on the diffusion example, in Fig. 3.3, we demonstrate the deconvolution method to infer the

first-passage statistics from gated detection time data. In panel (a), we clearly note that the de-

convoluted first-passage time density shows an excellent agreement with the first-passage time

histogram computed from ungated simulations. A corresponding log-log plot in panel (b) reveals
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some numerical errors in the tail of the inferred first-passage time distribution. In panel (c), we

plot the inferred density after a logarithmic binning and we can see that the full circles (depicting

the mean values of the values in each bin) match the true first-passage time histogram very well.

The logarithmic binning helps in reducing the numerical errors from the tails, however it does not

completely remove them. An alternate method to perform this inference could involve paramet-

ric inference which uses domain-specific knowledge (e.g., exponential tail of first-passage time

distributions in confined systems) to improve upon this inference method.
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Figure 3.3: Illustration of the deconvolution method to infer the first-passage statistics from gated
detection time data, using the example of a diffusing particle confined in a 1D box. (a) The decon-
voluted first-passage time density overlaps almost perfectly with the first-passage time histogram
computed from ungated simulations. (b) A log-log plot shows that there are numerical errors
when estimating very small probabilities (the noisy green tail). However, by taking logarithmic
bins and assigning the mean value of the densities within each bin to be the density for that bin,
we show in panel (c) that the full circles (depicting the mean values of the values in each bin)
match the first-passage time histogram well.

3.3.2 Inferring the mean first-passage time

The Laplace transform in Eq. (3.8) allows us to obtain all moments of the first-passage time in

terms of moments of the detection time. Equation (3.8) further implies that all cumulants of the

first-passage time can be expressed as differences between cumulants of detection times. For

example, the mean first-passage time is given by

⟨Tf (x
∗|x0)⟩ = ⟨Td(x0, E)⟩ − ⟨Td(x

∗, E)⟩. (3.18)
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While simple, Eq. (3.18) carries utmost importance in practical scenarios, where reliably estimat-

ing the full probability distribution is not a viable option, and only the mean can be accurately

measured. Apart from setting an important time-scale for a wide class of chemical reactions in

confinement, where the mean reaction time can be used to infer full reaction time statistics [113],

the mean first-passage time can also shed light on fundamental properties of the system at hand

[114, 115].

3.3.3 Inferring the gating rates α and β

Equation (3.8) states that the first-passage time density can be inferred from its gated counter-

parts, even without any prior knowledge of the gating rates α and β or control over the initial

internal condition. We will now illustrate how the inferred first-passage time distribution can be

used together with the observed detection time distribution to infer the gating rates, thus providing

insight into the dynamics of the gating process.

To proceed, we shift our focus to short-time asymptotics analysis which, despite several recent

applications in stochastic thermodynamics [116–118] and chemical kinetics [119, 120], has not

yet been used to further our knowledge on gated processes.

In the short-time limit, the dominant contribution to Dt(x0, E) comes from trajectories where

the detection occurs upon first arrival. We recall that, for σ0 = E, we have the relation,

Dt(x0, E) = πAFt(x
∗|x0) + πI

Z t

0

Ft′(x
∗|x0)Dt−t′(x

∗, I)dt′, (3.19)

which can be obtained from Eq. (3.2), by noting that Dt(x0, E) = πADt(x0, A) + πIDt(x0, I).

Furthermore, we have Dt(x
∗, E) = πAδ(t) + πIDt(x

∗, I). Evidently, the short-time behaviour of

Dt(x
∗, E) is governed by that of Dt(x

∗, I), which can in turn be expressed as

Dt(x
∗, I) ≃ β(1−∆(t)) (3.20)

where ∆(t) → 0 in the t → 0 limit. For example, in the case of gated chemical reactions where

x∗ denotes a target state, the short-time expression for Dt(x
∗, I) is

Dt(x
∗, I) ≃ βe−βte−γx∗ t (3.21)

where γx∗ denotes the rate at which the reactant escapes the target state x∗. Equation (3.21)
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expresses the fact that the dominant contribution to reaction events in the short-time limit comes

from the events where the gate opens before the reactant leaves the target state x∗. Using the

approximation e−λt ≃ 1 − λt, it is easy to see that ∆(t) = (β + γx∗)t + o(t), and in the t → 0

limit, we have

lim
t→0

Dt(x
∗, I) = β. (3.22)

Equation (3.22) asserts that Dt(x
∗, I) tends to a constant (β) in the short-time limit. Similarly,

the second term of the right-hand side in Eq. (3.19) can be safely ignored in the short-time limit,

yielding

Dt(x0, E) ≃ πAFt(x
∗|x0). (3.23)

From here, we have

πA = lim
t→0

Dt(x0, E)

Ft(x∗|x0)
. (3.24)

In a similar vein, the short-time asymptotics of Dt(x
∗, E) can be expressed as

Dt(x
∗, E) ≃ πIDt(x

∗, I). (3.25)

Using Eq. (3.22), we arrive at

πI = lim
t→0

1

β
Dt(x

∗, E). (3.26)

We are now in the position to derive relations for the inference of α and β from the limiting

representations of πA and πI presented in Eqs. (3.24) and (3.26). To obtain these relations, we

will use two identities: (i) πA+πI = 1, and (ii) πAα = πIβ. While the first identity is trivially the

normalization of occupancy probabilities, the latter can be seen as a statement of detailed balance

for the two-state Markov process which models our gate.

Writing Eq. (3.26) as πI β = limt→0 Dt(x
∗, E), and using πAα = πIβ, we have

πA α = lim
t→0

Dt(x
∗, E), (3.27)

where, πA can be further substituted from Eq. (3.24), to obtain

α = lim
t→0

Dt(x
∗, E)Ft(x

∗|x0)

Dt(x0, E)
. (3.28)
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To obtain the corresponding inference relation for β, we note that Eq. (3.26) gives

β =
1

πI

lim
t→0

Dt(x
∗, E), (3.29)

where πI =
α

α+β
. This gives us

β =
α + β

α
lim
t→0

Dt(x
∗, E), (3.30)

which can be further simplified to obtain

β =

�
1 +

β

α

�
lim
t→0

Dt(x
∗, E). (3.31)

Substituting for α in the above equation from Eq. (3.28), we get

β = lim
t→0

Dt(x
∗, E)Ft(x

∗|x0)

Ft(x∗|x0)−Dt(x0, E)
. (3.32)

Equations (3.28) and (3.32), which constitute the first set of relations that allow the inference of

Figure 3.4: Inference of the gating rates α (panel a) and β (panel b) from the short-time asymp-
totics of Eq. (3.28) and (3.32) respectively. Results are for the birth-death model used in Fig. 3.2,
and various values of α and β. Details of the model and parameter values are in Appendix G.

gating rates in gated chemical reactions, are corroborated in Fig. 3.4, for the birth-death process

with parameters described in Sec. H.3. Below, we show that these relations hold even for an ar-

bitrary (non-equilibrium) initial condition of the gate. We then derive simpler inference relations
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for the gating rates, which are obtained at the cost of perfect control over σ0. Finally, we discuss

the widely applicable case of simple diffusion and derive inference relations for α and β, which

only differ by a factor of 2 from Eqs. (3.28) and (3.32).

3.3.3.1 Inference for arbitrary initial condition of the gate

In this subsection, we demonstrate that Eqs. (3.28) and (3.32) hold more generally, and we can

relax the condition that the gate is initially equilibriated.

Consider a situation where we do not have information about the initial conditions of the

gate. Let us denote by pA and pI the unknown probabilities for the gate to be initially active A

and inactive I respectively, for pA ∈ (0, 1) and pI = 1 − pA. Note that we do not assume that

pA = πA and pI = πI . Following the intuition developed for Eq. (3.24) and Eq. (3.26), we have

the following short-time asymptotic relations,

pA = lim
t→0

Dt(x0)/Ft(x
∗|x0) (3.33)

and

pI =
1

β
lim
t→0

Dt(x
∗), (3.34)

where we have dropped the notation for gate initialization (Dt(x0) denotes the detection time

density given that the initial state of the underlying process is x0, and the initial preparation of the

gate is unknown). The normalization of probabilities dictates that pA+ pI = 1. So, adding up the

above two equations, we get,

1 = lim
t→0

�
1

β
Dt(x

∗) +
Dt(x0)

Ft(x∗|x0)

�
(3.35)

yielding:

β =
Ft(x

∗|x0) Dt(x
∗)

Ft(x∗|x0)−Dt(x0)
(3.36)

which is the same as Eq. (3.32) from the main text. Similarly, Eq. (3.28) can be derived in this

even more general setting.

3.3.3.2 Inference in the presence of control over gate initialization

In this subsection, we discuss the possibility of inferring α and β in the case where we can

control the initial state of the gate σ0. Using the fact that pt(A|A) = πA + πIe
−λt and pt(I|A) =
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Figure 3.5: Inference of the gating rates α and β from short-time asymptotics for the birth-death
process (defined in Sec. H.3) with k+ = 0.1, k1 = 1, and N = 10. (a) A plot demonstrating
that early deviations of the detection time distribution from the first-passage time distribution, as
captured by Eq. (3.38), can be used to infer the numerical value of α. (b) Inference of β through
the short-time asymptotic behaviour of Dt(x

∗, I) given by Eq. (3.39). It is clear that the short-
time asymptotics of the detection time distributions can be leveraged to infer the gating rates in
gated first-passage processes.

πI − πIe
−λt, we have

Dt(x0, A) = Ft(x
∗|x0)(πA + πIe

−λt) +

Z t

0

Ft′(x
∗|x0)

�
πI(1− e−λt′)

�
Dt−t′(x

∗, I)dt′.

In the limit of short-time (t → 0), we can write e−λt ≃ 1− λt, which gives us

Dt(x0,A) ≃ Ft(x
∗|x0)− πIλtFt(x

∗|x0), (3.37)

where we neglect the second term. It is a matter of simple algebra to see that

α = lim
t→0

Ft(x
∗|x0)−Dt(x0, A)

t · Ft(x∗|x0)
. (3.38)

Equation (3.38) asserts that the early deviations of Dt(x0, A) from Ft(x
∗|x0) can be leveraged to

obtain the gating rate α corresponding to deactivation of the gate. On the other hand, Eq. (3.22)

is sufficient to infer β as

β = lim
t→0

Dt(x
∗, I). (3.39)

In Fig. 3.5, we corroborate the validity of Eqs. (3.38) and (3.39) using the birth-death process

described in Sec. H.3.
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3.3.3.3 Inference in the case of diffusion

An important quantity in the inference of α and β from the detection time distributions is the

short-time asymptotics of Dt(x
∗, I). This quantity was derived in Eq. (3.22) using the fact that,

at short-times, the dominant contribution to detection events comes from trajectories where the

gate opens before the underlying process escapes the target-region (i.e., for detection of threshold

crossing events, it means that the time-series has not dropped below the threshold, and for gated

chemical reactions, it corresponds to the particle not escaping the target site before the opening

of the gate). However, in continuous-space Markov processes this underlying assumption does

not hold, since the process can leave and return to the target region multiple times during an

infinitesimally small time interval. This means that the second term on the right-hand side of

Eq. (3.19) can no longer be ignored.

Let us consider the example of a freely diffusing particle in 1-dimension, whose position at

time t we denote by Xx0(t) given that it starts from position x0. We define Td(x0, I) to be the

time taken for the particle to be detected in a location Xx0(t) ≥ x∗, given that initially, the gate

is in state σ0 = I . While Eq. (3.24) is valid even in this setting, Eq. (3.26) is not. Thus, in order

to infer α and β, our goal is to compute the short-time asymptotics of the probability density

Dt(x
∗, I) of the random variable Td(x

∗, I).

We note that the dominant contribution to Dt(x
∗, I) at short-times comes from the events

where detection happens as soon as the gate opens. Note that, in this time, owing to the con-

tinuous nature of the process, Xx∗(t) could have dropped below the threshold x∗ and crossed it

subsequently several times. Thus, instead of looking at the first time when it drops below the

threshold, the more meaningful question to ask in this setting is: what is the probability that

Xx∗(t) ≥ x∗ when the gate opens? Owing to the symmetry of the free diffusion problem, the

answer is clearly 1
2
. This observation allows us to write

lim
t→0

Dt(x
∗, I) =

β

2
, (3.40)

and thus

lim
t→0

Dt(x
∗, E) = πI lim

t→0
Dt(x

∗, I) = πI
β

2
. (3.41)
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Rearranging, we get the analogue of Eq. (3.26) for continuous processes as

πI =
2

β
lim
t→0

Dt(x
∗, E), (3.42)

where we remark that the right-hand side of Eq. (3.42) differs from the right-hand side of Eq. (3.26)

only by a factor of 2. This relation can be utilized along with Eq. (3.24) to obtain

β = lim
t→0

2 Dt(x
∗, E)Ft(x

∗|x0)

Ft(x∗|x0)−Dt(x0, E)
, (3.43)

and following the same steps as in the previous sections, we get

α = lim
t→0

2 Dt(x
∗, E)Ft(x

∗|x0)

Dt(x0, E)
. (3.44)

This completes our derivation of the inference relations for α and β for the case of continuous

Markov processes. It is to be noted that though Eq. (3.40) was derived for the detection of

Xx∗(t) above x∗, we expect it to be valid at short-times for detection in any finite sized interval

[x∗, x∗ + ∆] as well. The reason is that at short times the probability that the process Xx∗(t)

crosses above x∗ + ∆ is negligible. Thus, finite-size effects do not play a role at this level.

Clearly, the threshold crossing problem is recovered in the ∆ → ∞ limit.

3.3.4 Inferring the diffusion coefficient

We now illustrate how one can utilize our framework to infer physically meaningful parameters

like the diffusion coefficient D. Importantly, we show that this can be done even when the actual

motion of the particle cannot be tracked. Imagine a scenario like that depicted in Fig. 3.1(b),

namely we inject an unobservable particle—whose detection is possible only upon reaction—at a

known location x0. Assume that the internal state of the particle is initially equilibrated (σ0 = E);

and further assume that it is freely diffusing inside an effectively one-dimensional box [0, L] with

reflecting boundaries and a gated target located at x0 < x∗ < L. Utilizing Eq. (3.18) we find that

D =
1

2

x∗2 − x2
0

⟨Td(x0, E)⟩ − ⟨Td(x∗, E)⟩ . (3.45)

Equation (3.45) asserts that the diffusion coefficient can be inferred from the difference in the

measurable detection times ⟨Td(x0, E)⟩ and ⟨Td(x
∗, E)⟩.

To corroborate this finding, we simulate the aforementioned scenario and test it for a wide
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Figure 3.6: Inference of the diffusion coefficient. Equation (3.45) is used to infer the diffusion
coefficient of an unobservable particle that is injected at a known location x0 = 0 into a box
[0, 5µm] with reflecting boundaries. The initial internal state is equilibrated σ0 = E, and a gated
point target is located at x∗ = 4µm, with gating rates α = β = 102s−1.

range of possible diffusion coefficients (Fig. 3.6). As implied by Eq. (3.18), the difference in

the detection times is independent of the transition rates, the box size L, and the target size (the

same equation will hold for threshold crossing). It is thus up to the experimentalist to tune these

parameters such that the detection times can be measured with sufficient accuracy. Here we set

α = β = 102s−1 and L = 5µm. For each value of D, the corresponding mean detection times

were estimated from averages of N = 102 and 103 simulations, and the diffusion coefficient was

inferred via Eq. (3.45). The errors bars were estimated by repeating this procedure 102 times and

noting the standard deviation. In Fig. 3.6 we plot the ratio between the inferred values and the

actual ones. We find this estimation procedure robust, even when the number of measurements is

relatively small (N = 102). For the parameters used here, the estimation is especially accurate

for smaller diffusion coefficients, where mean detection times are longer.

3.4 Discussion

Using the unified framework of gated first-passage processes, we demonstrated how the first-

passage time distribution can be inferred from gated measurements, and using these quantities,

key features of the process can be extracted. The exact results obtained in this chapter can help

63



Chapter 3

inform statistical inference frameworks designed to deal with situations pertaining to imperfect

observation conditions, including sparsely sampled time-series or missing data problems. The

asymptotic results presented herein moreover provide a systematic approach to the inference of

gating rates which, depending on the accessible timescales of the problem, can be improved upon

by considering higher-order corrections to the asymptotics.
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Applications

In this thesis thus far, our focus has been two-fold – first, we have derived general formulas to

compute the statistics of the detection time distribution and relate it to the details of the underlying

process; second, we built a model-free framework through which the detection time statistics can

be leveraged to obtain the first-passage time distribution of the underlying process, along with the

inference of several other relevant parameters.

In this chapter, we switch our focus towards exploring how the frameworks developed in this

thesis can be utilized to tackle practically relevant problems that do not appear to fall under the

purview of gated first-passage processes at first glance. In particular, we look at the following

three applications:

1. Optimal sampling of a first-passage process: By extending the formalism developed in

Chapter 2, we solve the problem of finding the optimal rate for sampling a time-series when

the first-passage properties of the time-series are of interest but making measurements is

costly.

2. Extreme value statistics of partially observed stochastic processes: We show how the

framework of gated first-passage processes can be leveraged to obtain insight into the statis-

tics of extremes of partially observed time-series. Using our work on the inverse problem

presented in Chapter 3, we also discuss the inference of the true extreme statistics of the

process through knowledge of the statistics of the partially observed process.

3. Imputation of missing statistics using stochastic bridges: We extend our discussion on

conditioned first-passage processes and show how information about the observed data can

be incorporated to make data-informed estimates of missed first-passage events.

We begin by outlining how the theory of gated first-passage processes can be used to find the

optimal sampling rate of a first-passage process.
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4.1 Optimal sampling of a first-passage process

Suppose we are interested in a time-series which we denote by X(t). This time-series could

denote the temperature of a city over time, the price fluctuations of a stock, or even the number

of infected individuals in a pandemic. As discussed in previous chapters, in all of these disparate

settings, an important question to ask is when does X(t) cross a pre-defined threshold x∗ for

the first time. If we can perfectly observe X(t) at all times, then the answer to this question

relies on the computation of the first-passage time. Unfortunately, measurements are often costly,

and in several practical applications, X(t) can only be intermittently observed – be it due to

energy costs of monitoring, imperfect observation conditions, or the inevitable finite resolution

of measurement devices. In such scenarios, the instance of first-passage can be missed, and the

time when X(t) is observed to be above the threshold for the time, called the first detection time,

is the quantity of interest.

Despite the costs associated with sampling the process of interest, making a reliable esti-

mate of the first-passage time of the underlying process is crucial in several applications, albeit it

requires making a large number of measurements. At the heart of this discussion lies an optimiza-

tion problem: what are the optimal rates for sampling a time-series, so that the difference between

first-passage and first detection times is small, while also keeping the number of measurements

low? Of course, if we can fully observe the process of interest X(t), then the first-passage and

detection times would be identical, and their difference would be 0. However, performing such

continuous measurements is impractical, and in most cases, one needs to reduce the number of

measurements being made, often resorting to sparse sampling. These competing features of the

problem and the trade-off lead to a non-trivial optimization problem. The goal of this section is

to address this optimization problem.

4.1.1 Problem Statement

Suppose Xx0(t) is a 1-dimensional stochastic process that undergoes Markovian evolution, which

is being monitored by a sensor modeled as a two-state Markov process. This is the typical sce-

nario assumed throughout the thesis. We are especially interested in the limit α → ∞, which

corresponds to the case where the sensor switches off immediately after turning on, thus making

only point measurements and effectively sampling the time-series Xx0(t) at rate β.
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⟨𝒩
T d

⟩

(a) (b)

(c)

Figure 4.1: Schematic depiction of a fundamental trade-off arising out of intermittent sensing.
(a) a time-series being monitored at two different sampling rates β. Higher sampling rate (blue)
leads to a smaller gap between the first-passage and detection times. (b) Mean number of samples
needed until detection, ⟨NTd

⟩, and the mean gap between the first-passage and detection times
plotted as a function of the sampling rate β. (c) The cost function C(β), plotted as a function of
β, with a minimum occurring at β = β∗.

To formalize our optimization problem, we postulate a cost function C(β) as follows,

C(β) = ⟨Td(x0, σ0)− Tf (x
∗|x0)⟩ + δ · ⟨NTd(x0,σ0)⟩, (4.1)

where NTd(x0,σ0) is the number of samples taken until detection. In other words, NTd(x0,σ0) cor-

responds to the number of times the sensor switches on until the first threshold crossing event is

detected. We define δ to be a parameter that denotes how much each sample “costs”. It can be

perceived as the penalty (in units of time) that an observer has to pay for each measurement that

it makes. As schematically outlined in Fig. 4.1(a), if β is low, the number of samples collected

is low, but the difference between the first-passage and detection times is high. Conversely, when

β is high, the first detection time is a more accurate estimate of the first-passage time, but this

accuracy comes at the cost of collecting a large number of samples. We aim to find β∗ for which

C(β) is minimized.

4.1.2 Our Approach

To solve this optimization problem, we consider the quantity D(t, n|x0, σ0), which denotes the

joint probability density of, starting from an initial condition of x0 and σ0, a detection event
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occurring at time t and until then, exactly n switching events (which include both – switch from

on to off and from off to on) having occurred. Defining the Laplace transformed generating

function of D(t, n|x0, σ0) as

eD(s, z|x0, σ0) =
∞X

n=0

zn
Z ∞

0

dte−stD(t, n|x0, σ0), (4.2)

we note that the important terms in the cost function defined in Eq. (4.1) can be extracted from

eD(s, z|x0, σ0). For instance,

⟨Td(x0, σ0)⟩ = − lim
s→0

lim
z→1

�
∂ eD(s, z|x0, σ0)

∂s

�
. (4.3)

Similarly, ⟨NTd(x0,σ0)⟩ can be obtained as

⟨NTd(x0,I)⟩ =
1

2

�
lim
z→1

lim
s→0

∂ eD(s, z|x0, σ0)

∂z
+ 1

�
, (4.4)

where we have taken σ0 = I , which is the natural initialization of the sensor for α → ∞. If

σ0 = A, we have

⟨NTd(x0,A)⟩ =
�
1

2
lim
z→1

lim
s→0

∂ eD(s, z|x0, σ0)

∂z

�
+ 1 (4.5)

Finally, we aim to find β∗, for which C(β) is a minimum. That is achieved by solving the

following equation
∂C(β)

∂β
= 0. (4.6)

The main step towards solving this optimization problem is noting that D(t, n|x0, σ0) satisfies

the following equation

D(t, n|x0, σ0) = Ft(x|x0) pt(A, n|σ0)+
∞X

n=0

Z t

0

Ft′(x|x0)pt′(I, n
′|σ0)D(t, n−n′|x, I)dt′, (4.7)

which is analogous to Eq. (2.4) in Chapter 2 for the quantity Dt(x0, σ0). The term pt(σ, n|σ0)

denotes the probability that a sensor that is initially in state σ0 is in state σ at time t and has

switched exactly n times until then. It is a similar generalization of the quantity pt(σ|σ0) used in

Eq. (2.4), which now also tracks the number of transitions that the sensor has had up to time t.

In Appendix H, we show how one can obtain the Laplace transformed generating function of
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pt(σ, n|σ0). We summarize the resulting equations below,

eps(A, z|A) =
s+ β

(s+ α)(s+ β)− z2αβ

eps(I, z|A) =
zα

(s+ α)(s+ β)− z2αβ

eps(A, z|I) =
zβ

(s+ α)(s+ β)− z2αβ

eps(I, z|I) =
s+ α

(s+ α)(s+ β)− z2αβ
. (4.8)

Furthermore, the inverse Laplace transform of the above equations gives

p̂t(I, z|I) = e−(α+β)t/2

�
cosh

t∆

2
+

α− β

∆
sinh

t∆

2

�

p̂t(A, z|A) = e−(α+β)t/2

�
cosh

t∆

2
− α− β

∆
sinh

t∆

2

�

p̂t(A, z|I) =
2zβ

∆
e−(α+β)t/2 sinh

t∆

2

p̂t(I, z|A) =
2zα

∆
e−(α+β)t/2 sinh

t∆

2
(4.9)

where we have defined ∆ =
p
(α− β)2 + 4αβz2 for brevity. Note that we have still not taken

the α → ∞ limit yet. However, one can take the limit right here and the above equations will

greatly simplify. For the time being, we will assume in the following that α > 0, unless explicitly

stated otherwise.

We can now use the above results in Eq. (4.7), and express the Laplace transformed generating

function of D(t, n|x0, σ0) as

eD(s, z|x0, σ0) = L
�
Ft(x|x0) p̂t(A, z|σ0)

	
+ L

�
Ft(x|x0)p̂t(I, z|σ0)

	 eD(s, z|x, I). (4.10)

Similarly, assuming the underlying process to be a continuous-time Markov process in discrete

state-space, we can see that D(t, n|x, I) satisfies the following equation

D(t, n|x, I) = δn,1βe
−βt

Z ∞

t

Ft′(x− 1|x) dt′ +
Z t

0

e−βt′Ft′(x− 1|x) D(t− t′, n|x− 1, I) dt′,

(4.11)

and its Laplace transformed generating function can be expressed as,

eD(s, z|x, I) = zβ
�
1− eFs+β(x− 1|x)

�

s+ β
+ eFs+β(x− 1|x) eD(s, z|x− 1, I). (4.12)
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Figure 4.2: A plot of the cost as a function of the sampling rate β when the underlying process is
modeled as a two-state Markov process with two states low (L) and high (H) for different values
of δ. The circles denote the values of β∗ predicted by Eq. (4.20) and are in excellent agreement
with the minimum of the cost function obtained from simulations. The initial condition is chosen
to be I (inactive) for the sensor and L (low) for the underlying process.

In a calculation closely mimicking that of Chapter 2, we can arrive at the following generalization

of 2.14

eD(s, z|x0, σ0) = ew1(s, z) + ew2(s, z)
zβ

�
1− eFs+β(x− 1|x)

�
+ (s+ β) eFs+β(x− 1|x) ew3(s, z)

(s+ β)
�
1− eFs+β(x− 1|x) ew4(s, z)

� ,

(4.13)

where we have defined

ew1(s, z) = L
�
Ft(x|x0) p̂t(A, z|σ0)

	
(4.14)

ew2(s, z) = L
�
Ft(x|x0)p̂t(I, z|σ0)

	
(4.15)

ew3(s, z) = L
�
Ft(x|x− 1) p̂t(A, z|I)

	
(4.16)

ew4(s, z) = L
�
Ft(x|x− 1)p̂t(I, z|I)

	
. (4.17)

As a toy example, we model the underlying process as a two-state Markov process with two

states, low (L) and high (H). The transition from L to H happens at rate κ, while the transition

from H to L occurs at rate γ. We are interested in the time when the underlying process is

observed to be in the state H for the first time. Choosing the initial condition to be I for the
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sensor and L for the underlying process, in the limit α → ∞, we can get

⟨NTd(L,I)⟩ = 1 +
2(β + γ)

κ
, (4.18)

and

⟨Td(L, I)⟩ =
β + γ + κ

β + κ
, (4.19)

where we use the fact that Ft(H|L) = κe−κt and Ft(L|H) = γe−γt. Then, from Eq. (4.6), it is

easy to see that β∗ the following remarkably simple form,

β∗ =

r
γ + κ

δ
(4.20)

which is further corroborated by simulations in Fig. 4.2. The circles denote the values of β∗

predicted by Eq. (4.20) and are in excellent agreement with the minimum of the cost function ob-

tained from simulations. Obtaining the expressions of β∗ for more realistic underlying processes

and uncovering the universal properties of the optimal sampling rate is an exciting direction for

future research.

4.2 Extreme Value Statistics of Partially Observed Stochastic
Processes

From market crashes and floods to internet breakdowns and power outages – extreme events are a

major cause for concern across disciplines [121]. Thus, developing a better understanding of the

statistics of these extremes is of paramount importance. Not surprisingly, there is an increasing

interest in studying these extreme events using statistical methods. The branch of statistics con-

cerning the properties of such events that deviate significantly from the mean/median behavior is

called Extreme Value Statistics [122, 123].

4.2.1 The Extreme Value Problem

The central problem of interest in the field of Extreme Value Statistics is the following. Suppose

you have a collection of data points that are denoted by the set {x1, x2, x3, . . . , xN}, where N is

large. What are the statistical properties of xmax which is given by

xmax = max
�
{x1, x2, x3, . . . , xN}

�
, (4.21)
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denoting the element with the maximum value in the data set? The theory for the case where

x1, x2, . . . , xN are independent and identically distributed (iid) random variables is well devel-

oped. On the other hand, the scenario where these elements are strongly correlated is an active

area of research [124].

Recently, it has become possible to derive a series of exact results on the extremal statistics

of a class of strongly correlated random variables through the study of Markovian stochastic

processes [124]. The position of a Brownian particle in 1-dimension as a function of time serves

as a paradigmatic example of a set of strongly correlated random variables. It has been shown

that the distribution of the maximum position achieved by such a particle can be linked to the

first-passage statistics of the particle. However, what happens when the time-series can only

be intermittently observed? Just like in the case of first-passage under intermittent sensing, the

statistics of the maximum can also be strikingly different. By leveraging the close connection

between first-passage statistics and extreme value statistics, in what follows, we demonstrate how

the frameworks developed in this thesis can shed insight into the extreme statistics of partially

observed stochastic time-series.

4.2.2 Connection between Extreme Statistics and First-Passage Statistics

Consider a continuous stochastic process Xx0(t) which undergoes Markovian evolution. We

define St(x
∗|x0) to be the probability that, starting from a x0, the underlying process does not

cross the value x∗ until time t. Concretely, St(x
∗|x0), called the survival probability, denotes the

probability that for all 0 ≤ t′ ≤ t, Xx0(t
′) < x∗. At this point, the connection between survival

statistics and the first-passage statistics can be made immediately clear through the following

equation

St(x
∗|x0) =

Z ∞

t

Ft′(x
∗|x0) dt

′. (4.22)

Equation (4.22) essentially equates the survival probability until time t to the probability that the

first-passage to x∗ occurs strictly after time t. In Laplace space, the above integral takes a simpler

form

eSs(x
∗|x0) =

1− eFs(x
∗|x0)

s
. (4.23)

Now, one may ask: what is the relation of Eq. (4.22) and Eq. (4.23) to extreme value statistics?

To answer this question, we point out that the survival probability St(x
∗|x0) is directly related to
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the cumulative probability distribution of the maximum of Xx0(t). In fact,

St(x
∗|x0) = Pt(Xmax < x∗|x0). (4.24)

can also be taken to be an alternative definition of the survival probability for a continuous

stochastic process Xx0(t) – the probability that Xx0(t) does not cross x∗ until time t is equiv-

alent to the probability that the maximum value (also called the extreme value) of Xx0(t) is less

than x∗ until time t.

Xmax

Xobs
max

t

X(t)

Figure 4.3: A schematic illustration of a partially observed time-series generated by a continuous
stochastic process X(t). Evidently, the true maximum Xmax of X(t) may be missed due to
intermittent sensing, and the observed maximum Xobs

max might be quite different from Xmax.

We now move to the case of a partially observed time-series. Following the setup in the previ-

ous chapter, we model the observation process using a two-state Markovian sensor that switches

between active and inactive states. In Fig. 4.3, we illustrate a schematic of such a partially ob-

served time-series. In such a scenario, the true maximum Xmax of the time-series may be missed

due to intermittent sensing, and the observed maximum Xobs
max might be quite different from Xmax.

Though these random variables are constrained to satisfy the inequality Xobs
max ≤ Xmax.

We define Sobs
t (x0, σ0) to be the observed survival probability which denotes the probability

that, starting from an initial condition, the sensor is in state σ0 and the time-series has the value

x0, the time-series is not observed to take a value greater than or equal to x∗ until time t. Note

that Sobs
t (x0, σ0) also depends on x∗ but that is suppressed in our notation. Formally, Sobs

t (x0, σ0)

denotes the probability that the stochastic process Xx0(t
′) < x∗ for time times t′ between 0 and t

when the sensor is in its active state, i.e., while the process is being observed. Alternatively, one
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4.2 Extreme Value Statistics of Partially Observed Stochastic Processes

can also write

Sobs
t (x0, σ0) = Pt(X

obs
max < x∗|x0, σ0), (4.25)

which is a generalization of Eq. (4.24) to the case of intermittent observatons. Using an argument

similar to Eq. (4.22), it is evident that the detection time density Dt(x0, σ0) can be related to the

observed survival probability by the following

Sobs
t (x0, σ0) =

Z ∞

t

Dt′(x0, σ0) dt
′, (4.26)

which in Laplace space gives

eSobs
s (x0, σ0) =

1− eDs(x0, σ0)

s
. (4.27)

Put together, the above set of equations demonstrates that the computation of the first detection

time statistics, which was one of the central objectives of this thesis (especially Chapter 2), can

also be used to shed light on the extreme value statistics of the partially observed time-series. In

the next subsection, we illustrate the consequences of our results from Chapter 3 on the extreme

value problem.

4.2.3 Inference of True Extreme Statistics from Gated Measurements

We recall Eq. (3.8) from Chapter 3

eFs(x
∗|x0) =

eDs(x0, E)

eDs(x∗, E)
, (4.28)

that asserts that the first-passage time distribution (or at least its Laplace transform) can be recon-

structed using solely the knowledge of the first detection time statistics starting from the above

two initial conditions. Using Eq. (4.23), we can write

eSs(x
∗|x0) =

eDs(x
∗, E)− eDs(x0, E)

s eDs(x∗, E)
, (4.29)

which reveals a novel connection between the survival probability under perfect observation con-

ditions and the first detection time density under intermittent observations. Through Eq. (4.27),
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the above equation can be recast as the following

eSs(x
∗|x0) =

eSobs
s (x0, E)− eSobs

s (x∗, E)

1− seSobs
s (x∗, E)

, (4.30)

relating the gated and ungated survival probabilities. It is now immidiately clear from Eq. (4.25)

that the following equation holds

ePs(Xmax < x∗|x0) =
ePs(X

obs
max < x∗|x0, E)− ePs(X

obs
max < x∗|x∗, E)

1− s ePs(Xobs
max < x∗|x∗, E)

, (4.31)

asserting that the true extremal statistics (i.e., extremal statistics under perfect observation condi-

tions) of the stochastic process Xx0(t) can be expressed in terms of the extremal statistics of the

partially observed process starting from two different initial conditions. This intriguing insight in

Eq. (4.31) is obtained as a simple corollary of Eq. (3.8).

4.3 Working with Data: Imputation of Missing Statistics using
Stochastic Bridges

4.3.1 The Key Challenge of Working with Data

Throughout this thesis, we have discussed the computation of the first detection time density

and how we can use it to reconstruct the unconditioned first-passage time density. However, the

knowledge of probability distributions or densities implies the ability to perform a large number

of independent experiments starting from identical initial conditions and histogramming the data.

This is often not feasible, and reality resembles something like the scenario depicted in Fig. 4.4:

one is likely to have access to only one realization of a sparsely sampled stochastic process.

Depending on the threshold of interest, the time of the first observation of a threshold-crossing

event is denoted as the first detection time. The central question, then, is: can we reliably estimate

when the true first-passage event could have occurred? In this section, we aim to provide an

answer to this question, following arguments similar to the ones in Chapter 2, Sec. 2.3.1.3.

4.3.2 The Stochastic Bridge Method

As an appetizer, consider time-series data consisting of only two data-points. At time t1, the un-

derlying process X(t) takes value x1, and at time t2 it takes value x2. This data can be compactly
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Td

When could the first-passage 
event have occurred?

Figure 4.4: One realization of a stochastic process that has been sparsely sampled. The time at
which a threshold crossing event is observed for the first time is termed the first detection time.
The key question at hand: when could the first-passage event have occurred?

represented as x⃗ = {(x1, t1), (x2, t2)}. Let the predefined threshold be x∗. We want to assign

probabilities to the first threshold crossing event occurring at some time t1 ≤ t ≤ t2.

Some comments are in order now. First, we note that if x1 ≥ x∗ then the probability density of

the first threshold crossing time density must be the delta function δ(t−t1) peaked at t1. However,

let us assume that this is not the case and say that x1 < x∗. Then, if x2 ≥ x∗, assuming X(t) to be

a continuous process, we can safely say that the first threshold crossing event must have occurred

at some time between t1 and t2, and the probability density beyond the timestamp t2 would be

identically 0 for all t > t2.

Supposing x1 < x∗, we want to compute Ft(x
∗ |⃗x), denoting the probability that the first-

passage to x∗ occurs at time t between t1 and t2, conditioned on the additional information that

the process starts at x1 at time t1 and is at x2 at time t2 (this additional information is encoded in

x⃗). The approach we adopt is the method of stochastic bridges. In simple words, we consider a

Markovian stochastic process which is conditioned to start at x1 at time t1 and is at x2 at time t2,

thereby creating a “bridge” between the two data points. Now, the missing statistics are estimated

by computing the statistics of this stochastic bridge. It is clear that the choice of the Markovian
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stochastic process is cruicial as it will strongly dictate the statistics of missing events. Making

this choice requires some knowledge about the underlying generating mechanisms of the dataset.

However, the formulas that we describe below will hold for any continuous Markovian process.

Following Sec. 2.3.1.3, we can express Ft(x
∗ |⃗x) as

Ft(x
∗ |⃗x) = Ft−t1(x

∗|x1)C(x2, t2 − t|x∗)

C(x2, t2 − t1|x1)
(4.32)

where C(x, t|x0) is the propagator denoting the probability that starting from x0, the process of

interest takes a value x at time t and Ft(x|x0) is the first-passage time density. The same notation

has been used throughout the thesis to denote the propagator and first-passage densities.

Let us take a moment to unravel the different components of Eq. (4.32). Trajectories which

start from x1 at time t1 and end at x2 at time t2, while the first crossing of the threshold x∗ occurs

at time t can be broken into two parts: (i) A first-passage path from x1 to x∗ which takes time

t−t1. The term Ft−t1(x
∗|x1) in Eq. (4.32) accounts for the weight of this part of the trajectory. (ii)

A path which starts from x∗ and ends at x2 in time t2 − t. The term C(x2, t2 − t|x∗) accounts for

the weight of this second part of the trajectory. The term in the denominator C(x2, t2− t1|x1) acts

as a normalization factor. Now assume that an additional data-point is added to the time-series

dataset x⃗ – at time t3, the process takes value x3. How can we incorporate this new information

into our calculation? First, we note that if x2 ≥ x∗, then as discussed before, Ft(x
∗ |⃗x) = 0 for all

t2 < t ≤ t3. On the other hand, the interesting case is when x2 < x∗. In this case, one may naively

assume that Eq. (4.32) should directly be applicable for all t ∈ (t2, t3]. This is not the case as an

additional consideration is required – one must ensure that a first-passage event has not already

occurred in the previous interval (t1, t2]. To account for that, we define the survival probability

S1 in the time interval (t1, t2] as the probability that the first-passage event does not occur in this

interval. This can also be computed by numerically integrating the probability obtained from

Eq. (4.32) for t ∈ (t1, t2] and subtracting it from 1, i.e., S1 = 1 −
R t2
t1

dtFt(x
∗ |⃗x). Next, for

t ∈ (t2, t3], we have,

Ft(x
∗ |⃗x) = Ft−t2(x

∗|x2)C(x3, t3 − t|x∗)

C(x3, t3 − t2|x2)
· S1. (4.33)

This result can now be generalized to a much bigger dataset x⃗ = {(x1, t1), (x2, t2), . . . , (xN , tN)}.
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(a) (b)

(d)(c)

Figure 4.5: First-passage density conditioned on observed data computed using stochastic
bridges. The stochastic process of interest is chosen to be Brownian motion. Probability den-
sities are shown as a red color gradient. Panels (a) and (b) correspond to the case when the
observed time-series does not cross the threshold. Relatively small diffusion constant D leads
to probability densities, concentrated around the time intervals when the observed time-series is
closest to the threshold. Panels (c) and (d) depict the estimated first-passage probability densities
for the same observed time-series with a lower threshold.

Let us denote the ith interval to be the time interval (ti, ti+1]. Then, for t ∈ (ti, ti+1], we can write

Ft(x
∗ |⃗x) = Ft−ti(x

∗|xi)C(xi+1, ti+1 − t|x∗)

C(xi+1, ti+1 − ti|xi)
·
i−1Y

j=0

Sj, (4.34)

where we define

S0 = 1 (4.35)

and

Sj = 1−
Z tj+1

tj

Ft−tj(x
∗|xj)C(xj+1, tj+1 − t|x∗)

C(xj+1, tj+1 − tj|xj)
dt‘. (4.36)

The term
Qi−1

j=0 Sj ensures that a first-passage has not occurred in the previous intervals.

Figure 4.5 depicts the iterative use of Eq. (4.34) to create a heatmap of probabilities of missed

79



Chapter 4

first-passage events using simple Brownian motion (without drift) as the example of the under-

lying process. Probability densities are shown as a red color gradient heatmap. For the same

dataset, we show how different choices of the threshold and model parameters can lead to differ-

ent estimates for the probability of missed first-passage events.

4.4 Discussion

The main objective of this chapter of the thesis was to illustrate how the framework of gated first-

passage processes developed in the first three chapters of the thesis can be extended and leveraged

to gain insight into practical applications. In particular, we discussed the computation of optimal

sampling rates in situations where measurement costs are involved, explored the statistics of

extremes in partially observed time-series, and outlined how some of our results can be used to

deal with real-world sparsely sampled data. These applications underscore the practical relevance

and utility of the framework of gated first-passage processes in more applicable domains. These

applications will be described in this chapter.
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Summary and Outlook

5.1 Summary

As we come to the end of this thesis, we put forth a brief summary of the work contained in it.

Our main aim in this thesis was to address the problem of dealing with first-passage processes

under imperfect observation conditions. The notion of first-passage time is crucial across various

fields, determining events such as the initiation of chemical reactions or the execution of orders in

financial markets. However, in many practical situations, continuous observation of the process is

not feasible, leading to scenarios where key events may be missed. How can we reliably discuss

the first-passage statistics of such partially observed processes? From our imperfect observations,

what can we learn about the true underlying first-passage process at hand? These issues were at

the heart of this thesis and formed the key motivation behind several of the discussions presented

here.

Throughout, we posited that the framework of gated first-passage processes provides an excel-

lent paradigm for studying scenarios of imperfect observations. The main contributions presented

in this thesis can be summarized in the following three parts.

• Computing the statistics of the observed first-passage time or the first detection time.

We presented in Chapter 2 a framework that allows us to obtain the statistics of the first

detection time from the first-passage time statistics. These results can be found in Eq. (2.14)

(for Markov processes with discrete states) and Eq. (2.61) (for continuous state-space) and

the discussion surrounding these equations. Using these results, one can delve deeper and

gain further insight into the statistics of gated first-passage processes. The results discussed

in this chapter have been presented in Refs. [30] and [31].

• Solving the inverse problem. A major challenge addressed in this thesis is the inference

problem: how to deduce the properties of the underlying process when only the detection

times can be measured. Our approach to this problem was discussed in Chapter 3, where
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we developed a model-free formalism that allowed for the inference of first-passage times (

Equation (3.8) being one of the central results) and other physically meaningful parameters,

such as diffusion coefficients, directly from the measurable first detection time statistics.

We note that our result on the estimation of gating rates by examining the short-time be-

havior of the first detection time distribution using Eqs. (3.28) and (3.32) is the first known

result regarding the inference of gating rates of gated chemical reactions – a field whose

history spans over 4 decades. The ideas presented in this chapter have been published in

Ref. [32].

• Applying these frameworks to practically relevant problems beyond gated first-passage

processes. The frameworks developed in Chapters 2 and 3 can be extended to applications

beyond the realm of first-passage processes. In particular, we illustrated in Chapter 4 how

our results can be extended to compute the optimal sampling rate for a time-series where

the first-passage is of interest but each sample comes with a cost. We then demonstrated a

close relationship between extreme statistics and first-passage problems and discussed how

all of our results can also be viewed in the light of extreme value statistics. Finally, we

discussed the estimation of the statistics of missing first-passage events in real life scenar-

ios, where we do not have access to first detection time distributions but rather only have a

single realization of a sparsely sampled time-series at hand. These applications underscore

the practical relevance and utility of the framework in real-world situations.

5.2 Future Directions

Looking forward, the modeling framework of gated first-passage processes presented here opens

several promising directions for future research. Extending these methods to other types of

stochastic processes and exploring different scenarios of partial observability, as depicted schemat-

ically in Fig.. 5.1 could further improve the current state of understanding of first-passage pro-

cesses under imperfect observation conditions. We have been able to extend the theory to a

certain class of problems where the underlying process is a discontinuous stochastic process or

a non-Markov process (renewal process in discrete state-space). However, dealing with a non-

Markovian sensor has been very challenging. One of the most interesting directions for future
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Figure 5.1: A schematic illustration of some statistical challenges of working with imperfect
observation conditions. This thesis focused on imperfect observations modeled by an intermittent
stochastic sensor, but there are several more opportunities and exciting research directions in this
domain.

research is extending the presented framework to incorporate a sensor which is not necessar-

ily Markovian. Even if the extension to a semi-Markov (renewal process) sensor is possible,

that opens up a lot of interesting directions to explore – crucially, it will allow us to talk about

optimal sampling strategies. Additionally, the broadly applicable nature of the theory of gated

first-passage processes suggests numerous unexplored avenues beyond event detection in time-

series. In particular, all the results derived in this thesis can also be interpreted in the context of

imperfect chemical reactions (as explained in Chapter 1).

Apart from first-passage problems, the broader theme of Statistical Physics of Partially-

Observed Complex Systems is an extremely rich area where there is a lot left unexplored.

Statistical Physics of Partially-Observed Complex Systems

The time evolution of various complex systems can be described by a Markov process, consisting

of a set of states, where the system evolves through transitions between adjacent states according

to prescribed transition rates. However, many real-world systems, e.g., biological systems, exhibit

long-range correlations and highly non-Markov dependencies. These effects often arise from our
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ability to only partially observe the system of interest. This partial observability can manifest

itself in various ways – from viewing a coarse-grained description of the state-space or some

states being completely unobservable to only being able to intermittently monitor or discretely

sample the time-evolution of the system dynamics. These are schematically outlined in the figure

below.

Irrespective of the specific cause behind the imperfect observations, we must aim to harness

the observations and data at our disposal and extract meaningful insights about the true underlying

process. Within this research program, one could immediately begin to investigate the following

directions.

• Estimating irreversibility from partial observations: An important element of the sta-

tistical physics and information theory toolbox is the so-called entropy production of a sys-

tem. Several complex systems, including living organisms, continuously consume energy

to maintain order and function, and their entropy production is a marker of this out-of-

equilibrium behavior. However, differentiating in general between equilibrium and non-

equilibrium steady states at coarse-grained scales is quite difficult, and coarse-graining of

the state-space can lead to a significant underestimation of the entropy production. Lever-

aging recent advances in thermodynamic inference and non-equilibrium statistical physics,

one could potentially look to build principled ways of obtaining improved bounds on the

true entropy production of the system.

• Fundamental limits on inference from incomplete data: Making sense of partial obser-

vations is a central challenge in data analysis and statistical inference. An important ques-

tion to ask is: How much more can we learn about a system if we gain more information
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about it? Crucial to this discussion is the Cramér-Rao bound, which unveils the inherent

limitations on parameter estimation accuracy when dealing with incomplete or limited data

by providing a fundamental lower bound on the variance of parameter estimates. However,

a large part of this discussion assumes that the data being collected are iid samples, which

is often not the case in real experiments. Data drawn from a dynamical process can display

strong correlations. This research area is ripe for developing novel statistical tools to inves-

tigate the trade-offs between accuracy in learning parameters and the amount of available

data in the presence of strong correlations.

5.3 Conclusions

Put together, the aforementioned research directions constitute an actionable roadmap for inves-

tigating and pushing the limits of inference from partial observations. This thesis specifically

tackled first-passage problems, but there is a plethora of other classes of problems where partial

observability is a key challenge, and we need to come up with ways to deal with it. As mentioned

above, most conventional studies in statistical analysis of data are centered around iid samples as

they are generally more tractable and easier to analyze. But one thing I hope to communicate to

the reader is the following: Not only is the presence of strong correlations and memory effects a

ubiquitous feature of data generated from stochastic processes, but in scenarios where we can only

partially observe the system and its time evolution, these features are in fact a valuable resource.

These features, often overlooked in the literature, can be leveraged to compensate for gaps in the

data and build a more complete understanding of the underlying process. Diving deeper into this

direction of research is an exciting prospect for the future.
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Matjaž Perc, Nicola Perra, Marcel Salathé, and Dawei Zhao. Statistical physics of vacci-

nation. Physics Reports, 664:1–113, 2016.
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APPENDIX A

Appendix A

A.1 Computation of Laplace Transform of the First Detection
Time Density

We start from Eq. (2.41). Laplace transforming it we get

eDs(x0, σ0) =


e−sTd(x0,σ0)

�
(A.1)

=

*
e
−s

h
Tf (ρ,x0)+IfTd(ρ,I)

i+
,

which in turn gives

eDs(x0, σ0) =


pTf (ρ|x0)(A | σ0)e

−sTf (ρ|x0)
�

(A.2)

+

*
pTf (ρ|x0)(I | σ0)e

−s

h
Tf (ρ|x0)+Td(ρ,I)

i+

=


pTf (ρ | x0)(A | σ0)e

−sTf (ρ|x0)
�

+


pTf (ρ|x0)(I | σ0)e

−sTf (ρ|x0)
� 


e−sTd(ρ,I)
�
.

102



A.1 Computation of Laplace Transform of the First Detection Time Density

Setting σ0 = A and using Eq. (2.3), we obtain

eDs(x0, A) =


πAe

−sTf (ρ|x0) + πIe
−(s+λ)Tf (ρ|x0)

�
(A.3)

+


πIe

−sTf (ρ|x0) − πIe
−(s+λ)Tf (ρ|x0)

� 

e−sTd(ρ,I)

�

= πA
eFs(ρ | x0) + πI

eFs(ρ | x0) eDs(ρ, I)

+ πI
eFs+λ(ρ | x0)− πI

eDs(ρ, I) eFs+λ(ρ | x0)

= πA
eFs(ρ | x0) + πI

eFs+λ(ρ | x0)

+
h
πI
eFs(ρ | x0)− πI

eFs+λ(ρ | x0)
i
eDs(ρ, I).

After repeating the same calculation for σ0 = I and σ0 = E, we summarize the results in Eq.

(2.55).

Similarly, Laplace transforming Eq. (2.42)

eDs(ρ, I) =

Z b

a



C(y,Wβ | ρ)e−sWβ

�
dy (A.4)

+

Z ∞

−∞



C(y,Wβ | ρ)e−sWβ

� 

e−sTd(y,A)

� h
Θ−(y) +Θ+(y)

i
dy

=

Z b

a

β eC(y, s+ β | ρ)dy

+

Z ∞

−∞
β eC(y, s+ β | ρ) eDs(y, A)

h
Θ−(y) +Θ+(y)

i
dy.

Let us denote the first integral term as

eϕρ(s) ≡ β

Z b

a

eC(y, s+ β | ρ)dy ≡
Z b

a

eΦρ(s+ β)dy. (A.5)

Consider the second term in Eq. (A.4). By plugging eDs(y, A) according to Eq. (A.3) we obtain
Z ∞

−∞
eΦρ(s+ β) eDs(y, A)

h
Θ−(y) +Θ+(y)

i
dy (A.6)

= eχρ(s) + eψ−
ρ
eDs(a, I) + eψ+

ρ
eDs(b, I),
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where

eχρ(s) ≡
Z ∞

−∞
eΦρ(s+ β)× (A.7)

h
πA
eFs(ι± | y) + πI

eFs+λ(ι± | y)
ih
Θ−(y) +Θ+(y)

i
dy,

and

eψ±
ρ (s) ≡

Z ∞

−∞
eΦρ(s+ β)× (A.8)

πI

h
eFs(ι± | y)− eFs+λ(ι± | y)

i
Θ±(y)dy,

where ι− = a and ι+ = b. Overall we have

eDs(ρ, I) = eΦρ(s+ β) + eχρ(s) (A.9)

+ eψ−
ρ
eDs(a, I) + eψ+

ρ
eDs(b, I).

Note that Eq. (A.9) represents a linear system of two equations with the two unknowns eDs(a, I)

and eDs(b, I). Solving we get:

eDs(a, I) =
(eϕa + eχa)(1− eψ+

b ) +
eψ+
a (
eϕb + eχb)

1− eψ−
a − eψ+

b + eψ−
a
eψ+
b − eψ−

b
eψ+
a

, (A.10)

and

eDs(b, I) =
(eϕb + eχb)(1− eψ−

a ) +
eψ−
b (
eϕa + eχa)

1− eψ−
a − eψ+

b + eψ−
a
eψ+
b − eψ−

b
eψ+
a

. (A.11)

For the symmetric case in which the spatial dynamics and the boundary conditions to the left and

the right of the target center are the same (e.g., diffusion on the infinite line) Eqs. (A.10) and

(A.11) are equal and simplify considerably (ϕa = ϕb := ϕ, χa = χb := χ and ψ±
a = ψ±

b := ψ±)

eDs(a, I) = eDs(b, I) =
eϕ+ eχ

1− eψ− − eψ+
. (A.12)
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Appendix B

B.1 Long Time Asymptotics and the Inheritance of Power-
Law Decay

Assume the symmetric case in which the spatial dynamics and the boundary conditions to the left

and the right of the target center are the same. Further assume that the underlying ungated process

has an asymptotic power-law behavior of the form of eFs(ρ | y) ≃ 1− (τfs)
θ (for s ≪ 1), where

0 < θ < 1 and τf > 0. Note that τf is a function of |y − ρ|. Taking the limit s → 0 and plugging

this form into Eq. (2.61) we obtain

eDs(ρ, I) ≃
KeqA− Bsθ

KeqA′ +KeqBsθ
, (B.1)

where Keq = α/β and

A =

Z a

−∞
eΦa(β) eFλ(a | y)dy +

Z ∞

b

eΦa(β) eFλ(b | y)dy+

π−1
A

R b

a
eΦa(β)dy +

R a

−∞
eΦa(β)dy +

R∞
b
eΦa(β)dy

Keq

, (B.2)

B =
R a

−∞
eΦa(β)τ

θ
f (y)dy +

R∞
b
eΦa(β)τ

θ
f (y)dy (B.3)

and

A′ = π−1
I −

Z a

−∞
eΦa(β)dy −

Z ∞

b

eΦa(β)dy (B.4)

+

Z a

−∞
eΦa(β) eFλ(a | y)dy +

Z ∞

b

eΦa(β) eFλ(b | y)dy.
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The numerator of the second row in Eq. (B.2) can be rewritten as

π−1
A

Z b

a

eΦa(β)dy +

Z a

−∞
eΦa(β)dy +

Z ∞

b

eΦa(β)dy

=

Z ∞

−∞
eΦa(β)dy + (π−1

A − 1)

Z b

a

eΦa(β)dy

=

Z ∞

−∞
eΦa(β)dy +Keq

Z b

a

eΦa(β)dy (B.5)

= 1 +Keq

Z b

a

eΦa(β)dy,

where in the last transition we recall that eΦa(β) = β eC(y, β | a) and note that
R∞
−∞

eC(y, β |
a)dy =

R∞
−∞
R∞
0

C(y, t | a)e−βtdtdy =
R∞
0

R∞
−∞ C(y, t | a)e−βtdydt =

R∞
0

e−βtdydt = β−1.

Thus, A in Eq. (B.2) can be rewritten as

A = K−1
eq +

Z b

a

eΦa(β)dy+ (B.6)
Z a

−∞
eΦa(β) eFλ(a | y)dy +

Z ∞

b

eΦa(β) eFλ(b | y)dy.

By noting that π−1
I − 1 = K−1

eq it is easy to see that

A = A′. (B.7)

By algebraic manipulations, and given Eq. (B.7), Eq. (B.1) can be rewritten as

eDs(ρ, I) ≃
KeqA

�
1− Bsθ

KeqA

�

KeqA′
�
1 + Bsθ

A′

� =
1− Bsθ

KeqA

1 + Bsθ

A

, (B.8)

which is equivalent to

eDs(ρ, I) ≃
�
1− Bsθ

KeqA

� 1

1 + Bsθ

A

. (B.9)

Expanding the fraction on the right, we obtain

eDs(ρ, I) ≃
�
1− Bsθ

KeqA

��
1− Bsθ

A

�
. (B.10)

Now by carefully multiplying these terms and neglecting higher order products we get

eDs(ρ, I) ≃ 1− B(1 +Keq)

KeqA
sθ = 1− π−1

I

B

A
sθ. (B.11)
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Lastly, by an indirect application of the Tauberian theorem (see pp. 43-45 in [17]) we obtain

Dt(ρ, I) ≃
θ

Γ(1− θ)

�
π−1
I

B
A

�

t1+θ
. (B.12)
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Appendix C

C.1 Transient Power-Law Decay under High Crypticity

Ungated first-passage distributions with power-law tails

Recall Eq. (B.1) (we keep working under the same assumptions of Appendix B)

eDs(ρ, I) ≃
KeqA− Bsθ

KeqA+KeqBsθ
, (C.1)

where A and B are defined as in the previous section and we recall that A = A′ (Eq. (B.7)). By

taking the limit Keq ≫ 1, we obtain

eDs(ρ, I) ≃
KeqA

KeqA+KeqBsθ
=

1

1 + B
A
sθ
. (C.2)

To obtain a transient pre-asymptotic behaviour, we require the existence of s values such that

β > s ≫ (A
B
)1/θ. In this case, B

A
sθ ≫ 1, and we have

eDs(ρ, I) ≃
1

B
A
sθ
. (C.3)

Applying the Tauberian theorem gives

Dt(ρ, I) ≃
1

Γ(θ)

A

B
tθ−1, (C.4)

which is a transient regime with a different power law than the asymptotic power law. Further-

more, we can exactly determine this power, and the pre-exponential factor. Thus, to guarantee

the existence of the pre-asymptotic behaviour in Eq. (C.4), we require B
A
βθ ≫ 1. We note that if

this requirement is not fulfilled, the transition from Eq. (C.2) to Eq. (C.3) is invalid. Expanding

Eq. (C.2) (in the limit s → 0) we then obtain

eDs(ρ, I) ≃ 1− B

A
sθ, (C.5)
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which, as expected, is the Keq ≫ 1 limit of Eq. (B.11). This means that there is no transient

regime before the asymptotic regime kicks in.

To understand the meaning of the additional requirement B
A
βθ ≫ 1, we focus on propagators

whose Laplace transform has a scaling form

eC(y, s | a) ≃ s−θH(|y − a|sθ), (C.6)

where H is the scaling function. Note that this form generalizes the one displayed by one-

dimensional free-diffusion, eC(x, s|x0) = 1√
4Ds

e−
√

s
D
|x−x0|. It is then easy to show that under

this assumption Bβθ ∼ O(1), i.e., this product does not scale with β. Indeed, the assumed scal-

ing sets a relation between length and time scales in our problem: length ∼ timeθ. This means

that

B =

Z a

−∞
eΦa(β)τ

θ
f (y)dy +

Z ∞

b

eΦa(β)τ
θ
f (y)dy (C.7)

∼
Z a

−∞
eΦa(β)|y − a|dy +

Z ∞

b

eΦa(β)|y − b|dy ∼ β−θ,

where we have noted that β−1 sets the time scale, and hence the typical length scale that is set by

eΦρ(β) = β eC(y, β | ρ) (recall that this function is normalized to unity over space) scales like β−θ.

Hence, Bβθ is order one, which means that to satisfy B
A
βθ ≫ 1, one only needs A ≪ 1.

Equation (B.6) gives A as a sum of four terms. The first term is small since we assumed

Keq ≫ 1. To make the second term small, we require
R b

a
eΦa(β) = β

R b

a
eC(y, β | a)dy ≪ 1,

which can also be written as
R b

a
eC(y, β | a)dy ≪ β−1. We anticipate that this condition can be

fulfilled by taking β to be small. In this limit, we can approximate

β

Z b

a

eC(y, β | a)dy ≃ (b− a)β eC(a, β | a), (C.8)

since the probability of being at different points inside the interval is practically the same at long

times, which corresponds here to the small β limit of the Laplace transform eC(y, β | a). To find

how the expression in Eq. (C.8) scales with β, we utilize a well established relation between
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eC(y, s | a), eC(a, s | a) and eFs(y | a):

eFs(y | a) =
eC(y, s | a)
eC(a, s | a)

(C.9)

≈
eC(a, s | a) + |y − a|d eC(y,s|a)

dy

���
y=a

eC(a, s | a)
.

We thus see that for eFs(ρ | y) ≃ 1− (τfs)
θ , where 0 < θ < 1 and τf > 0, we have

eC(a, s | a) ≃


 |y − a|d eC(y,s|a)

dy

τ θf




y=a

s−θ ≡ (τrs)
−θ. (C.10)

Recalling the scaling form in Eq. (C.6), we see that the derivative with respect to y, evaluated

at y = a, is independent of s. Thus, eC(a, s | a) in Eq. (C.10) scales like s−θ, with a prefactor τr ≡�
|y − a|d eC(y,s|a)

dy
τ−θ
f (|y − a|)

�−1/θ ���
y=a

, where we have explicitly recalled that τf is a function of

|y − a|. Plugging Eq. (C.10) back into Eq. (C.8) we obtain

β

Z b

a

eC(y, β | a)dy ≃ b− a

τ θr
β1−θ, (C.11)

which is indeed small for small enough β since 0 < θ < 1. More precisely, the additional

requirement β
R b

a
eC(y, β | a)dy ≪ 1 translates to

b− a

τ θr
≪ βθ−1, (C.12)

which asserts that the second term in Eq. (B.6) is small.

We are left with the last two terms in Eq. (B.6). To analyze their scaling with β, we once

again observe that the typical length scale that is set by eΦρ(β) = β eC(y, β | ρ) scales like ∼ β−θ.

Hence, for the third term
Z a

−∞
eΦa(β) eFλ(a | y)dy ∼ eFλ(a | ȳ), (C.13)

with ȳ set such that |ȳ − a| ∼ β−θ. We now note that eFλ(a | ȳ) is a Laplace transform, which in

the limit λτf (|ȳ − a|) ≪ 1 can be approximated by eFλ(a | ȳ) ≃ 1 − (τfλ)
θ. In the other limit,

i.e., when

λτf (|ȳ − a|) ≫ 1, (C.14)
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eFλ(a | ȳ) rapidly tends to zero. To see that we are in the limit specified by Eq. (C.14), we simply

observe that

λτf (|ȳ − a|) ∼ λ|ȳ − a|1/θ ∼ λ/β = Keq + 1 ≫ 1, (C.15)

since we started by assuming Keq ≫ 1. As the analysis of the fourth term yields the same

result, we conclude that the additional condition in Eq. (C.12) is sufficient to guarantee the pre-

asymptotic behaviour in Eq. (C.4).

Implications to gated CTRW on networks

We return to Eq. (G.5), where we recall that γ is the rate of escape from the target site, KD = β/γ.

Equation. (G.5) can be rewritten as

eDs(0I) =
KD + πA

� eDs(X⃗1)− eFs+λ(X⃗1)
�

s
γ
+KD + 1− πAKeq

eFs(X⃗1)− πA
eFs+λ(X⃗1)

Taking the limit Keq ≫ 1 (such that πA ≪ 1 and KeqπA ≈ 1), we obtain

eFs(0I) ≃
KD

s
γ
+KD + 1− eFs(X⃗1)

(C.16)

Next we take the limit s → 0, while assuming that in this limit eFs(X⃗1) ≃ 1 − (τfs)
θ. If

KD ≪ 1, which is equivalent to γ−1 ≪ β−1, we obtain

eFs(0I) ≃
KD

(τfs)θ
, (C.17)

By using the Tauberian theorem the inverse Laplace transform gives

Dt(ρ, I) ≃
1

Γ(θ)

KD

τ θf
tθ−1, (C.18)

which is a transient regime with a different power law than the asymptotic power law. Further-

more, we can exactly determine this power, and the pre-exponential factor.

If KD ̸≪ 1, Eq. (C.17) is not valid, and we instead have

eDs(0I) ≃
1

1 +
(τf s)θ

KD

, (C.19)
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which, in the limit s → 0, can be expanded as

eDs(0I) ≃ 1− (τfs)
θ

KD

. (C.20)

Thus, when KD ̸≪ 1, we do not have a transient regime before the asymptotic behavior kicks in.
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Appendix D

D.1 Diffusion in an Interval with Two Reflecting Boundaries

The conserved propagator

The propagator obeys the diffusion equation. The initial condition is C(x, t = 0|x0) = δ (x− x0),

and we require two Neumann boundary conditions ∂C(x,t|x0)
∂x

��
x=0

= 0 and ∂C(x,t|x0)
∂x

��
x=L

= 0.

Laplace transforming the diffusion equation we get

s eC(x, s|x0) = Dd2 eC(x, s|x0)

dx2
, (D.1)

which is a second-order, linear, homogeneous differential equation. It has a general solution

eC(x, s|x0) =





eC< = A1(s)e
α+x + B1(s)e

α−x, x < x0,

eC> = A2(s)e
α+x + B2(s)e

α−x, x > x0,

(D.2)

where α± = ±p s
D .

Similarly, Laplace transforming the boundary conditions we obtain

d eC(x, s|x0)

dx

��
x=0

= 0, (D.3)

and
d eC(x, s|x0)

dx

��
x=L

= 0. (D.4)

Finally, the initial condition is translated to two matching conditions at the initial position of

the particle, one for the continuity of the Laplace transform of the probability density

eC+(x, s|x0) = eC−(x, s|x0), (D.5)

and one for the Laplace transform of the fluxes

−1 = D
hd eC+(x, s|x0)

dx

��
x=0

− d eC−(x, s|x0)

dx

��
x=0

i
, (D.6)
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which is obtained by integrating both sides of the Laplace transformed diffusion equation (Eq. (D.1))

over an infinitesimally small interval surrounding the initial position. Note that the 1 on the left-

hand side comes from the Laplace transform of the delta function initial condition.

Imposing these conditions produces a system of four equations with four unknowns, from

which we obtain 



A1(s) =
csch(L

√
s
D ) cosh(

√
s
D (L−x0))

2
√
Ds

,

B1(s) = A1(s),

A2(s) =
[coth(L

√
s
D )−1] cosh(x0

√
s
D )

2
√
Ds

,

B2(s) =
[coth(L

√
s
D )+1] cosh(x0

√
s
D )

2
√
Ds

.

(D.7)

First passage time to an absorbing boundary at a

We now assume that x0 ∈ [0, a], where 0 < a ≤ b < L, and repeat the exact same procedure but

with different boundary conditions, ∂C(x,t|x0)
∂x

��
x=0

= 0 and C(a|x0) = 0. The Laplace transformed

boundary conditions are

eC>(a, s) = 0, (D.8)

and
d eC<(x, s)

dx

��
x=0

= 0. (D.9)

Solving, we get 



A1(s) =
sech(a

√
s
D ) sinh((a−x0)

√
s
D )

2
√
Ds

,

B1(s) = A1(s),

A2(s) =
[tanh(a

√
s
D )−1] cosh(x0

√
s
D )

2
√
Ds

,

B2(s) =
[tanh(a

√
s
D )+1] cosh(x0

√
s
D )

2
√
Ds

.

(D.10)

The Laplace transform first-passage probability is given by

eTf (x = a, s|x0) =− Dd eC>(x, s)

dx

�����
x=a

(D.11)

= sech
�
a

r
s

D

�
cosh

�
x0

r
s

D

�
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The Laplace transform is a moment generating function, the mean first-passage time is given by

⟨Tf (a|x0)⟩ =− deTf (a, s)

ds
|s=0 (D.12)

=
a2 − x2

0

2D .
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Appendix E

E.1 Diffusion with Drift with a Reflecting Boundary at the
Origin

The conserved propagator

We compute the propagator for the diffusion equation with drift, Eq. (2.72), with the initial

condition C(x, t = 0|x0) = δ (x− x0) and boundary conditions ∂C(x,t|x0)
∂x

��
x=0

= 0 and C(x →
∞, t|x0) = 0. The Drift velocity is v > 0 and its direction is towards the reflecting boundary at

zero.

Laplace transforming the diffusion equation we have

s eC(x, s|x0)− δ (x− x0) = Dd2 eC(x, s|x0)

dx2
+ v

d eC(x, s|x0)

dx
. (E.1)

This is a second-order, linear, non-homogeneous differential equation. It has general spatial

coordinate-dependent solution

eC(x, s|x0) =





eC< = A1(s)e
α+x + B1(s)e

α−x, x < x0,

eC> = A2(s)e
α+x + B2(s)e

α−x, x > x0,

(E.2)

where α± = 1
2D

�
−v ±

√
v2 + 4Ds

�
.

At x0 we impose two matching conditions, one for the propagator

eC>(x0, s) = eC<(x0, s), (E.3)

and one for the fluxes (by integrating both sides of the transformed diffusion equation around an

infinitesimally small interval)

−1 = D
hd eC>

dx

��
x=x0

− d eC<

dx

��
x=x0

i
(E.4)
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where the 1 in the left-hand side comes from the Laplace transform of the delta function initial

condition.

Finally, the transformed boundary conditions are

eC>(x → ∞, s) = 0, (E.5)

and

v eC<(0, s) +Dd eC<(x, s)

dx

��
x=0

= 0. (E.6)

Solving, we get 



A1(s) =
e−x0α+

D(α+−α−)
,

B1(s) =
(v+Dα+)e−x0α+

D(v+Dα−)(α−−α+)
,

A2(s) = 0,

B2(s) = B1(s)− e−x0α−
D(α+−α−)

.

(E.7)

First-Passage Time to an absorbing boundary at a

We now repeat the exact same process but with different boundary conditions, ∂C(x,t|x0)
∂x

��
x=0

= 0

and C(a|x0) = 0. The Laplace transformed boundary conditions are

eC>(a, s) = 0, (E.8)

and
d eC<(x, s)

dx

��
x=0

= 0. (E.9)

Solving, we get




A1(s) =
α−e−x0(α−+α+)(ex0α−+Lα+−eLα−+x0α+)

D(α−−α+)(α+eLα−−α−eLα+)
,

B1(s) =
eLα−(α+e−x0α+−α−e−x0α−)
D(α−−α+)(α+eLα−−α−eLα+)

,

A2(s) =
α+e−x0(α−+α+)(eLα−+x0α+−ex0α−+Lα+)

D(α−−α+)(α+eLα−−α−eLα+)
,

B2(s) =
eLα+(α+e−x0α+−α−e−x0α−)
D(α−−α+)(α+eLα−−α−eLα+)

.

(E.10)
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The Laplace transform first-passage probability is given by

eFs(x = a, eF ) =− Dd eC>(x, s)

dx

�����
x=a

(E.11)

=
e(a−x0)(α−+α+) (α−ex0α+ − α+e

x0α−)

α−eaα+ − α+eaα−
.

The Laplace transform is a moment generating function, the mean first-passage time is given by

⟨Tf (a|x0)⟩ =− d eFs(a|x0)

ds
|s=0 (E.12)

=
D
�
−e−

av
D + e

(x0−2a)v
D

�
+ e

(x0−a)v
D (a− x0)v

v2
.
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Appendix F

F.1 Gating in higher dimensions

In Chapter 2, we developed a general framework to treat one-dimensional gated processes. In

this appendix, we discuss a generalization to higher dimensional underlying processes for cases

where target and underlying dynamics are rotationally symmetric – instead of a gated interval

[a, b] one can consider a gated annulus, or spherical shell, with some inner radius ra and outer

radius rb. Furthermore, one can study a gated disk, or sphere, by taking the limit ra → 0 (The

corresponding sphere in one-dimension would be the interval [0, b], where there is a reflecting

wall at the origin). In this case, the equations for the mean and distribution of the detection time

simplify considerably, since exiting the target through ra is impossible, and so all contributions

associated with such trajectories vanish.

Moreover, the case of d-dimensional free diffusion and a spherically symmetric target, can be

further simplified by utilizing the well-established mapping between the distance from the origin

of d-dimensional free diffusion (Bessel process) and one-dimensional diffusion in a logarithmic

potential. The gated first detection time for the latter can then be is easily attained with the

formalism of Chapter 2, and the solution can be mapped back onto the d-dimensional case.

Next, we take time to explain the mapping by writing the corresponding Fokker-Planck

equations and comparing them. Starting with the equation for a freely diffusing particle in d-

dimensions, we note that the propagator does not depend on the angular part of the Laplacian.

Hence, we are left only with the radial part 1
rd−1

∂
∂r

�
rd−1 ∂

∂r

�
, where the distance from the origin

is denoted by r ≡ |r⃗|. The d-dimensional diffusion equation can thus be written as

∂C(r⃗, t | r⃗0)
∂t

= D
d− 1

r

∂C(r⃗, t | r⃗0)
∂r

+D
∂2C(r⃗, t | r⃗0)

∂r2
. (F.1)

Equation (F.1) is written for the propagator. Here we are interested in C(r, t | r0) = Ωdr
d−1C(r⃗, t |

r⃗0), where Ωd is the surface area of a d-dimensional unit sphere. By plugging this relation into
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Figure F.1: The detection time density where the target is a gated d-dimensional unit sphere
centered at the origin. The particle is freely diffusing, and we have set α = β = 1, D = 1,
r0 = 3 and σ0 = eq. We consider diffusion in d ∈ {1, 2, 3} dimensions. For each d, the lines are
numerical Laplace inversions of Eq. (2.55) to which we have plugged in Eq. (F.3). Circles come
from Monte-Carlo simulations with 105 particles and a simulation time step ∆t = 10−4.

Eq. (F.1) we obtain the Fokker-Planck equation for C(r, t | r0):

∂C(r, t | r0)
∂t

=
∂

∂r

h�
D
1− d

r

�
C(r, t | r0)

i
+D

∂2C(r, t | r0)
∂r2

. (F.2)

We will now show that Eq. (F.2) is similar in form to the Fokker-Planck equation for a particle

diffusing on the semi-infinite line in a logarithmic potential U(x) = U0log|x|, where U0 has units

of energy and x is dimensionless. At x = 0 the wall is completely reflective. Given that the

particle has started at x0, the conserved spatial propagator follows the Smoluchowski diffusion

equation

∂C(x, t | x0)

∂t
=

∂

∂x

h�U0

ζx

�
C(x, t | x0)

i
+D

∂2C(x, t | x0)

∂x2
,

with initial condition C(x, 0 | x0) = δ(x− x0) and boundary conditions
�
D
∂C(x, t|x0)

∂x
+

U0

ζx
C(x, t|x0)

�

x=0

= 0

and

C(x → ∞, t|x0) = 0,

where ζ is the friction coefficient such that D = kBT/ζ .

In the following, we will use the formalism of Chapter 2 to obtain the detection probability
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Figure F.2: Detection probability by a three-dimensional unit sphere. We plot the detection prob-
ability, namely the probability to be detected eventually, vs. the transition rate β. Each curve
represents a different value of the transition rate α. The dashed horizontal line is the ungated
benchmark, where the detection probability is rb/r0. Here, we used D = 1, σ0 = eq and r0 = 3.

for the gated version of the one-dimensional logarithmic potential problem, and then use the

aforementioned mapping to obtain the detection time distribution of diffusion in d-dimensions by

a gated sphere centered at the origin.

Assuming an interval target [0, b], the detection time of a diffusing particle on the semi-infinite

line in logarithmic potential, where x0 = b and σ0 = I , is given by Eq. (2.57). In fact, since

exiting the target through a = 0 is impossible (there is a reflecting wall at x = 0), Eq. (2.57)

simplifies substantially

eDs(b, I) =
eϕb + eχb

1− eψ+
b

, (F.3)

where ϕb, χb and ψ+
b were defined in Eqs. (2.58), (2.59) and (2.60) respectively. These functions

require in turn the conserved spatial propagator and the first-passage time to a point b. Plugging

these results into Eq. (F.3) gives the gated detection time given the initial condition (b, I). To

obtain the detection time for a general initial condition, we plug this result into Eq. (2.55).

Finally, by identifying x with r and d with 1 − U0

Dζ
we obtain the detection time distribution for

diffusion in d-dimensions by a gated sphere of radius rb centered at the origin. In Fig. F.1, we plot

the detection time of a freely diffusing particle by a d-dimensional unit sphere, for d = 1, 2, 3,

with σ0 = E and r0 = 3.

The one and two-dimensional ungated first-passage processes are recurrent, the probability

to eventually arrive at the sphere is one. Thais can be seen by looking at the small s expansion
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of the Laplace transform of the first-passage distribution, and noting that the first term in this

expansion is 1. By definition, this term corresponds to
R∞
0

f(t | x⃗)dt, where f is the first-passage

distribution. However, the three-dimensional process is transient, the probability to eventually

arrive at the sphere is rb/r0 (the ratio between the spherical target radius and the initial distance

from the origin), which can be strictly smaller than one.

Recall that the asymptotic form of the one-dimensional first-passage distribution fits exactly

the form assumed in Sec. 2.4.2.3 for the inheritance of the power-law. The proof can be eas-

ily generalized to include the three-dimensional case, and with more care to account for the

logarithmic corrections of the two-dimensional case as well. The detection probability by the

d-dimensional sphere can also be obtained for the Laplace transform of the detection time. As

expected, in one and two dimensions we find that the particle will eventually be detected with

probability one (regardless of the gating rates). However, intriguingly, while in the ungated three-

dimensional case the detection probability is only dependent on the ratio rb/r0, in the correspond-

ing gated case the detection probability is also a function of the transition rates and the diffusion

coefficient. In particular, taking β → 0, or α → ∞, we find that the detection probability van-

ishes. This finding is illustrated in Fig. (F.2).
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Appendix G

G.1 Models used for Simulations in Chapter 3

The birth-death process

In this section, we describe the birth-death process (BDP) used in this chapter to produce produce

Figs. 3.2 and 3.4.

We considered a BDP on a state space S ∈ {0, 1, 2, · · · , N}, with transition rates

W+(j) = k+(N − j), (G.1)

W−(j) = k−j, (G.2)

which govern the rate of transitioning from state j to states j +1 and j − 1 respectively, with j ∈
{0, 1, 2, · · · , N}. Clearly, states 0 and N act as reflecting boundaries, as W−(0) = W+(N) = 0.

Let us define Ft(x
∗|x0) to be the probability distribution of the time the BDP reaches state

x∗ for the first time, starting from state x0. Ft(x
∗|x0) is called the first-passage time density, and

it is known that Ft(x
∗|x0) obeys a Phase-type distribution whose Laplace transform is easy to

compute.

More explicitly, taking the example of x0 = 0, we note that Ft(x
∗|0) can be simply expressed

as

Ft(x
∗|0) = k+(N −m+ 1)

�
exp(W(x∗)t)

�
x∗,1 . (G.3)

where W(x∗) is the x∗ × x∗ matrix obtained by retaining only the first x∗ columns and x∗ rows of

the N + 1×N + 1 transition matrix W containing all zeros, except where

Wi+1,i = k+(N + 1− i) and Wi,i+1 = k−i,

for i ∈ {1, 2, . . . , N}, and Wi,i are chosen so that the columns of W add up to zero.

Alternatively, one can also use the renewal method to determine the Laplace transformed
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first-passage distribution as

eFs(x
∗|x0) =

eC(x∗, s|x0)

eC(x∗, s|x∗)
, (G.4)

where eC(i, s|j) is the Laplace transform of the propagator C(i, t|j), which denotes the probability

of finding the BDP in state i ∈ S at time t, given that the system started from state j ∈ S initially.

The parameters chosen for the production of Fig. 3.2 are N = 10, x∗ = 9, k+ = 0.5, k− = 1,

α = 2, and β = 0.5. For Fig. 3.4, the parameters are N = 10, and k+ = k− = 1, for various

values of x∗ and gating rates α and β.

In Fig. G.1, we further show that the first-passage time distribution of the BDP using in

Fig. 3.2 inferred from a numerical Laplace inversion of the ratio of the detection time densities on

the right hand side of Eq. (3.8) (yellow circles) agrees with the true first-passage time distribution.

Inv. L.T.

Figure G.1: First-passage time distribution for the birth-death process used in the text for three
different values of the threshold. Solid lines denote the true first-passage time distribution and
symbols (yellow circles) denote the inferred distribution from a numerical Laplace inversion of
the ratio of the detection time densities on the right hand side of Eq. (3.8). The parameter values
chosen for the birth-death process are N = 10 and k+ = k− = 1.
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Diffusing particle in a closed interval with one reflective boundary and one
absorbing boundary

We start by computing the propagator C(x, t | x0), namely, the conditional probability density

function to find the particle at position x at time t, given that the initial position is x0, and given

a reflective boundary at 0 and an absorbing boundary at x∗. The initial condition is C(x, t =

0|x0) = δ (x− x0) by definition, and the boundary conditions we require are a Neumann bound-

ary condition ∂C(x,t|x0)
∂x

��
x=0

= 0 and a Dirichlet boundary condition C(x = x∗, t|x0) = 0.

Laplace transforming the diffusion equation, we obtain

s eC(x, s|x0) = Dd2 eC(x, s|x0)

dx2
, (G.5)

which is a second-order, linear, homogeneous differential equation. It has a general solution

eC(x, s|x0) =





eC−(x, s|x0) = c1(s)e
x
√

s
D + c2(s)e

−x
√

s
D , x < x0

eC+(x, s|x0) = c3(s)e
x
√

s
D + c4(s)e

−x
√

s
D . x > x0

(G.6)

Similarly, Laplace transforming the boundary conditions we obtain

d eC(x, s|x0)

dx

��
x=0

= 0, (G.7)

and

eC(x∗, s|x0) = 0. (G.8)

Finally, the initial condition is translated to two matching conditions at the initial position of the

particle, one for the continuity of the Laplace transform of the probability density

eC+(x0, s|x0) = eC−(x0, s|x0), (G.9)

and one for the Laplace transform of the fluxes

−1 = D
hd eC+(x, s|x0)

dx

��
x=x0

− d eC−(x, s|x0)

dx

��
x=x0

i
, (G.10)

which is obtained by integrating both sides of the Laplace transformed diffusion equation (Eq. (G.5))

over an infinitesimally small interval surrounding the initial position. Note that the 1 on the left-

hand side comes from the Laplace transform of the delta function initial condition.
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Imposing the above conditions produces a system of four equations with four unknowns, from

which we can obtain ci(s) (1 ≤ i ≤ 4)

c1(s) =
sech

�
x∗p s

D
�
sinh

�p
s
D (x∗ − x0)

�

2
√
Ds

, (G.11)

c2(s) =
sech

�
x∗p s

D
�
sinh

�p
s
D (x∗ − x0)

�

2
√
Ds

, (G.12)

c3(s) =

�
tanh

�
x∗p s

D
�
− 1

�
cosh

�
x0

p
s
D
�

2
√
Ds

, (G.13)

c4(s) =
ex

∗√ s
D sech

�
x∗p s

D
�
cosh

�
x0

p
s
D
�

2
√
Ds

. (G.14)

The Laplace transform of the first-passage probability density function is given by

eFs(x
∗|x0) = − Dd eC+(x, s|x0)

dx

�����
x=x∗

= sech

�
x∗
r

s

D

�
cosh

�
x0

r
s

D

�
(G.15)

The Laplace transform is a moment generating function, and so the mean first-passage time is

given by

⟨Tf (x
∗|x0)⟩ = −d eFs(x

∗|x0)

ds

����
s=0

=
x∗2 − x2

0

2D . (G.16)

The parameter values chosen for the production of Fig. 2 in the main text are L = 2, D = 1
2
,

x0 = 0.2, x∗ = 1.6, and gating rates α = β = 0.5.

Figure G.2: The network used for simulations of gated target search by a CTRW, with the red and
green nodes denoting the initial position of the CTRW and the target respectively. For the CTRW
on this network, the waiting time distribution was taken to be uniform on the interval [0, 0.2],
whereas the gating rates were chosen to be α = β = 1.
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Continuous-time random walk (non-Markovian) on a network

A continuous-time random walk (CTRW) on a network is a mathematical framework for model-

ing the random movement of particles or agents on a network over time. CTRWs on networks

have found numerous applications in various fields, including physics, biology, sociology, and

computer science. In this model, a random walker, jumps successively from a node of the net-

work to one of its neighbouring nodes after waiting for a random time, drawn from its waiting

time distribution.

For the production of Fig. 2 in the main text, we simulated a CTRW on the network depicted in

Fig. G.2 – an Erdös-Rényi random network with 40 nodes, where each pair of nodes is connected

with probability of 0.1. For the CTRW on this network, the waiting time distribution was taken

to be uniform on the interval [0, 0.2], whereas the gating rates were chosen to be α = β = 1.
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Appendix H

H.1 Including Statistics of Switches in Sensor Dynamics

To derive the equation that governs the dynamics of pt(σ, n|σ0), we consider the possible events

that can occur in a time ∆t and see that the following are satisfied

pt+∆t(A, n+ 1|A) = (1− α∆t) pt(A, n+ 1|A) + β∆t pt(I, n|A)

pt+∆t(I, n+ 1|A) = (1− β∆t) pt(I, n+ 1|A) + α∆t pt(A, n|A)

pt+∆t(A, n+ 1|I) = (1− α∆t) pt(A, n+ 1|I) + β∆t pt(I, n|I)

pt+∆t(I, n+ 1|I) = (1− β∆t) pt(I, n+ 1|I) + α∆t pt(A, n|I). (H.1)

In the ∆t → 0 limit, we have

dpt(A, n+ 1|A)
dt

= −α pt(A, n+ 1|A) + β pt(I, n|A)
dpt(I, n+ 1|A)

dt
= −β pt(I, n+ 1|A) + α pt(A, n|A)

dpt(A, n+ 1|I)
dt

= −α pt(A, n+ 1|I) + β pt(I, n|I)
dpt(I, n+ 1|I)

dt
= −β pt(I, n+ 1|I) + α pt(A, n|I). (H.2)

The above equations should be solved with the following boundary conditions valid for all t.

pt(A, 0|A) = e−αt

pt(I, 0|A) = 0

pt(A, 0|I) = 0

pt(I, 0|I) = e−βt (H.3)
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We now define the generating function and Laplace transform of pt(σ, n|σ0) as

eps(σ, z|σ0) =
∞X

n=0

zn
Z ∞

0

dt e−st pt(σ, n|σ0). (H.4)

The Laplace transforms of the equations in Eq. (H.2) can be expressed as

sp̂s(A, n+ 1|A) = −α p̂s(A, n+ 1|A) + β p̂s(I, n|A)

sp̂s(I, n+ 1|A) = −β p̂s(I, n+ 1|A) + α p̂s(A, n|A)

sp̂s(A, n+ 1|I) = −α p̂s(A, n+ 1|I) + β p̂s(I, n|I)

sp̂s(I, n+ 1|I) = −β p̂s(I, n+ 1|I) + α p̂s(A, n|I) (H.5)

and the subsequent generating functions are

s

z

�
eps(A, z|A)− ps(A, 0|A)

�
= −α

z

�
eps(A, z|A)− ps(A, 0|A)

�
+ β eps(I, z|A)

s

z
eps(I, z|A) = −β

z
eps(I, z|A) + α eps(A, z|A)

s

z
eps(A, z|I) = −α

z
eps(A, z|I) + β eps(I, z|I)

s

z

�
eps(I, z|I)− eps(I, 0|I)

�
= −β

z

�
eps(I, z|I)− eps(I, 0|I)

�
+ α eps(A, z|I). (H.6)

Using the boundary conditions (and their corresponding Laplace transforms), we have

s

�
eps(A, z|A)−

1

s+ α

�
= −α

�
eps(A, z|A)−

1

s+ α

�
+ zβ eps(I, z|A)

seps(I, z|A) = −β eps(I, z|A) + zα eps(A, z|A)

seps(A, z|I) = −α eps(A, z|I) + zβ eps(I, z|I)

s

�
eps(I, z|I)−

1

s+ β

�
= −β

�
eps(I, z|I)−

1

s+ β

�
+ zα eps(A, z|I). (H.7)

Using the middle two equations in Eq. (H.7), we can write the following relations.

eps(I, z|A) =
zα

s+ β
eps(A, z|A)

eps(A, z|I) =
zβ

s+ α
eps(I, z|I). (H.8)
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Substituting Eq. (H.8) in the remaining two equations of (H.7), we get

eps(A, z|A) =
1

s+ α
+

z2αβ

(s+ β)(s+ α)
eps(A, z|A)

eps(I, z|I) =
1

s+ β
+

z2αβ

(s+ α)(s+ β)
eps(I, z|I). (H.9)

Putting it all together, we obtain the generating function and Laplace transform of the sensor

dynamics

eps(A, z|A) =
s+ β

(s+ α)(s+ β)− z2αβ

eps(I, z|A) =
zα

(s+ α)(s+ β)− z2αβ

eps(A, z|I) =
zβ

(s+ α)(s+ β)− z2αβ

eps(I, z|I) =
s+ α

(s+ α)(s+ β)− z2αβ
. (H.10)
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