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Abstract

In this thesis, we introduce the notion of a strong generalized holomorphic (SGH) fiber

bundle and develop connection and curvature theory for an SGH principal G-bundle over

a regular generalized complex (GC) manifold, where G is a complex Lie group. We also

develop a de Rham cohomology for regular GC manifolds, and a Dolbeault cohomology

for SGH vector bundles. Moreover, we establish a Chern-Weil theory for SGH principal

G-bundles under certain mild assumptions on the leaf space of the GC structure. We

also present a Hodge theory along with associated dualities and vanishing theorems for

SGH vector bundles. Several examples of SGH fiber bundles are given. Additionally, we

describe a family of regular generalized complex structures (GCS) on a principal torus

bundle over a complex manifold with even dimensional fiber and characteristic class of

type (1, 1). The leaves of the associated symplectic foliation are exactly the fibers of the

bundle. The speciality of such principal torus bundles is that they are not always SGH

principal bundles. We show that such a GCS is equivalent to the product of the complex

structure on the base and the symplectic structure on the fiber in a tubular neighborhood

of an arbitrary fiber if and only if the bundle is flat, impacting the generalized Dolbeault

cohomology of the bundle with a Künneth formula. Moreover, if a principal bundle over

a complex manifold with a symplectic structure group admits a GCS with the fibers of

the bundle as leaves of the associated symplectic foliation, and the GCS is equivalent to

a product GCS in a neighborhood of every fiber, then we show that the bundle is flat

and symplectic. This is similar to the behavior of SGH principal bundles over a complex

manifold with symplectic fibers. This thesis is based on the following two articles:

1. Debjit Pal, Mainak Poddar; Generalized complex structure on certain principal

torus bundles [126].

2. Debjit Pal, Mainak Poddar; Strong generalized holomorphic principal bundles [127].

xv



xvi



Chapter 1

Introduction

Generalized complex (GC) geometry presents a unified framework for a range of geometric

structures whose two extreme cases are complex and symplectic structures. The notion

was introduced by Hitchin [81] and developed to a large extent by his doctoral students

Gualtieri [70, 72] and Cavalcanti [36]. Intuitively, GC manifolds can be conceptualized

as objects within a “category” that bridges the gap between symplectic and holomorphic

categories.

A generalized complex structure (GCS) induces a (possibly singular) symplectic foli-

ation. This phenomenon can be observed by the local characterization of a GC manifold;

see [1,10,11,13]. Assuming a well-defined leaf space, one can study the transverse geome-

try (cf. [117,118,145,146]) in the context of regular GC manifolds. Furthermore, by using

blowups in GC geometry, one can obtain numerous non-trivial examples of GC manifolds;

see [14, 39, 41]. There are also well-defined stable GC structures that are equivalent to

complex log symplectic structures (cf. [42–44]). Within the framework of GC manifolds,

there exists a well-developed elliptic deformation theory and a Kuranishi-type moduli

space; see [72, Section 5].

In addition to foliation theory and deformation theory, GC geometry has played a

crucial role in extending classical theories within geometric analysis. In the works of

Gualtieri [71,73], the concept of generalized Kähler structures, and their associated gen-

eralized connection was introduced, thus extending the classical Kähler geometry. Sub-

sequently, researchers delved into the realm of geometric analysis within the framework

of GC geometry, particularly focusing on the Ricci flow direction. Analogous to classical

concepts such as Ricci curvature, Kähler-Ricci flow, and Levi-Civita connection, notions

1
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like generalized Ricci curvature, generalized Kähler-Ricci flow, and generalized connec-

tion have been established in this framework; see [5, 58, 59, 141–143, 151]. Additionally,

investigations into pseudo-Kähler geometry in the context of GC geometry have also been

conducted; see [52]. For further study of generalized Kähler geometry in various fields,

we refer to [33,53,60,61,74,83,92,155–158].

Another aspect of GC geometry involves the study of pseudoholomorphic curves

within its framework. In [128], Paleani introduced the concept of generalized pseudo-

holomorphic curves for exact Courant algebroids, serving as an extension to the classical

theory of pseudoholomorphic curves, revolutionized by Gromov (cf. [69]). Paleani’s work

primarily focuses on characterizing the local behavior and deformation theory of these

curves. This may have significant implications for the extension of Floer homology and

the Fukaya category (cf. [56,57,114,122,123]) to GC geometry.

Moreover, GC geometry finds applications in mathematical physics. Specifically,

generalized Kähler geometry provides an alternative approach to studying certain bi-

Hermitian geometries in supersymmetric sigma models, initially discovered by physicists

(cf. [32]). Additionally, GC geometry aids in understanding the behavior of D-branes

within complex and symplectic manifold settings; see [70, Chapter 7], [100, 101]. Gener-

alized complex geometry provides new insights into phenomena like T -duality (cf. [40,66])

and Mirror Symmetry (cf. [70, Chapter 8]). It also plays an important role in the under-

standing of physical string theory, including supersymmetric flux compactifications that

relate 10-dimensional physics to 4-dimensional worlds (see [35,63–65,104,162]) and sigma

model (cf. [163,164]).

Beyond the aforementioned aspects of GC geometry, another important area of ap-

plication involves exploring GCS within bundles, focusing on vector bundles. These

specialized vector bundles, termed generalized holomorphic (GH) vector bundles, were

introduced by Gualtieri (cf. [70, Definition 4.27]). This generalization of holomor-

phic bundles in complex geometry to GC geometry has received much attention

[62,70,72,82,84,103,154].

Principal bundles are essential in topology, geometry, and mathematical gauge theory,

providing a framework for studying di�erential equations involving connections such as

the Yang-Mills equations and quantum principal bundles; see [79, 137, 138]. Generally,

the study of principal bundles or vector bundles involves the following four fundamental
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di�erential geometric aspects:

1. The exploration of connection and curvature;

2. Chern-Weil theory and characteristic classes;

3. Hodge theory and its associated dualities and vanishing theorems;

4. Deformation theory.

Notably, in the case of holomorphic principal bundles or vector bundles, these four

aspects become even more interesting. Holomorphic structures introduce additional prin-

ciples while also opening up new possibilities to explore, revealing rich geometric prop-

erties specific to the complex analytic setting; see [7, 34, 86, 95, 98, 99, 150]. Hence, given

that GC geometry extends holomorphic geometry, it is only natural to pose the following

question:

Question 1.0.1.

1. What kind of vector or principal bundle theory arises within GC geometry?

2. How are these four classical geometric components represented within the framework

of GC geometry?

In [70, 72], by definition, generalized holomorphic (GH) vector bundles are complex

vector bundles defined over a GC manifold equipped with a Lie algebroid connection.

Wang further extended this in [152,154], introducing GH principal bundles by extending

the structure group action to an exact Courant algebroid. These provide an answer to (1)

in Question 1.0.1. Additionally, in [153], Wang explored the deformation of GH vector

bundles, covering one of the four geometric aspects. However, the absence of a generalized

complex structure (GCS) on the total space of the bundle in these notions is a hindrance

to the investigation of the remaining three components. Recently, in [103], Lang et al.

tried to address this by considering a new concept of GH vector bundles equipped with

a GCS on the total space. Their GCS on the total space is locally a product the GCS on

the base and the fiber. They also introduced the Atiyah sequence of such bundles and

defined its splitting as a generalized holomorphic (GH) connection. This new notion of

GH vector bundle is more rigid than the notion due to Gualtieri [70,72] and Hitchin [82],
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and yields a strict subclass. But, it has the potential of being more amenable to methods

from complex geometry.

In this thesis, motivated by Question 1.0.1, we generalize the work of [103] on vector

bundles to fiber and principal bundles. To distinguish these bundles from the earlier no-

tions due to Gualtieri and Wang [154], we refer to them as strong generalized holomorphic

(or SGH) bundles. A regular GCS induces a regular foliation with symplectic leaves and

a transverse complex structure. The SGH bundles are intuitively characterized by the

fact they are flat along the leaves and transversely holomorphic. However, they form a

bigger category than the category of holomorphic bundles on the leaf space (when the

leaf space is a manifold or an orbifold), see Examples 3.4.5, and 3.4.6.

Both the base and fiber of an SGH fiber bundle are GC manifolds, and the total

space admits a GCS that is locally a product GCS derived from the base and the fiber,

see Definition 3.1.1. In the context of vector bundles, SGH vector bundles correspond

precisely to the GH vector bundles of Lang et al. (cf. [103]). Similarly, in the realm of

principal bundles, they are a subclass of the GH principal bundles analyzed by Wang

(cf. [154, Example 4.2]).

We also examine scenarios distinct from SGH principal bundles, where the general-

ized complex structure (GCS) of the total space of a principal bundle is locally equivalent

(via B-transformations and di�eomorphisms) to a product GCS, though not necessarily

identical to a product GCS as in SGH principal bundles. We provide a characterization

for principal G-bundles over complex manifolds whose total space admits a GCS locally

equivalent (via B-transformations and di�eomorphisms) to a product GCS, with G being

a symplectic manifold. Note that this result applies to SGH principal G-bundles with

G as a symplectic manifold. Furthermore, for torus principal bundles over a complex

manifold M with a characteristic class of type (1, 1), we establish that the flatness prop-

erty is equivalent to the condition of being locally equivalent (via B-transformations and

di�eomorphisms) to a product GCS.

The main contribution of this thesis is twofold. Firstly, adapting the methods of

complex geometry, we introduce a suitable Dolbeault cohomology theory for SGH vector

bundles and in using it to develop suitable generalizations of Chern-Weil theory and

Hodge theory for these bundles. Typically, this requires assuming that the leaf space of

the symplectic foliation is a complex (Kähler) orbifold. Secondly, we describe the local
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characteristics of the GCS on the total space for certain principal bundles that do not fall

under the SGH category. Through this description, we determine their flatness property

in terms of the GCS. Following earlier work of Angella (cf. [4]), we derive a spectral

sequence for the generalized Dolbeault cohomology of the total space, together with a

related Künneth formula. A more detailed outline of the thesis is given in the following

section.

1.1 Structure of the thesis

The thesis is organised as follows.

1.1.1 GC Structures and related notions

In Chapter 2, we review the fundamental concepts regarding generalized complex struc-

tures (GCS) and generalized holomorphic (GH) maps. We commence by exploring linear

GCS in Section 2.1, elucidating their isotropic and spinorial descriptions.

Subsequently, in Section 2.2, we discuss GC linear maps, which serve as the linear

counterparts of GH maps. Here, we provide a comprehensive characterization, particu-

larly when the GCS of the codomain space is induced from a complex structure.

To conclude, in Section 2.3, we revisit the notions of GCS and GH maps for smooth

manifolds, and further explore their implications.

Additionally, we describe the associated cohomology theories, namely, the generalized

Dolbeault cohomology and the corresponding Lie algebroid cohomology in Section 2.4.

1.1.2 Strong GH fiber bundles and Foliations on GC manifolds

Chapter 3 introduces the concept of SGH fiber bundles o�ering several illustrative ex-

amples. Additionally, we establish an analogue of the holomorphic Picard group and

exponential sequence in Section 3.3.

We provide a comprehensive description of GH tangent and GH cotangent bundles

in Section 3.2, which serve as the foundational elements of this thesis.



6 1.1. Structure of the thesis

Furthermore, we discuss the leaf space associated to the regular symplectic foliation

S with a transverse complex structure of a regular GCS. In general, the leaf space M/S

might lack the Hausdor� property, as illustrated in Example 3.4.2. Nonetheless, assuming

M/S is a smooth orbifold, we provide a structured description of S in Theorem 3.4.1.

In Subsection 3.4.1, we give some criteria on the GCS so that the leaf space of the

associated symplectic foliation is a smooth torus, and therefore, satisfies the hypothesis

that the leaf space be an orbifold, used in most of our results. This is a generalization of

a result of Bailey et al. [12, Theorem1.9].

Subsection 3.4.2 presents a complete characterization of the leaf space of a left in-

variant GCS on a simply connected nilpotent Lie group and its associated nilmanifolds.

Finally, examples of nontrivial SGH bundles on the Iwasawa manifolds are constructed,

illustrating that the category of SGH bundles is in general di�erent from the category of

holomorphic bundles on the leaf space; see Examples 3.4.5-3.4.6.

1.1.3 Strong GH principal bundles and GH connections

Chapter 4 is the core of this thesis. We start by describing SGH principal bundles.

Then, we follow Atiyah’s approach to defining a holomorphic connection of a holomorphic

principal bundle [7], to construct the Atiyah sequence of an SGH principal G-bundle P

over a regular GC manifold M , where G is a complex Lie group:

0 Ad(P ) At(P ) GM 0 .

Here, GM is the GH tangent bundle of M , Ad(P ) is the adjoint bundle of P , and At(P )

is the Atiyah bundle of P . A GH connection on P is a GH splitting of the above the short

exact sequence (cf. (4.2.8)), and the Atiyah class is the obstruction to such a splitting;

see Definition 4.2.1 and Theorem 4.2.2.

Furthermore, in Section 4.3, a la Atiyah, we establish that the Atiyah class of an

SGH vector bundle and the Atiyah class of its associated SGH principal bundle agree up

to a sign in Theorem 4.3.1.

Utilizing Theorem 3.4.1, we develop the de Rham cohomology H
•
D(M) for regular

GC manifolds in Proposition 4.4.3, and the Dolbeault cohomology H
•,ı
dL

(M, E) of an

SGH vector bundle E in Corollary 4.4.2.
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This leads to a notion of curvature of a smooth generalized connection (see Defini-

tion 4.2.3) on an SGH principal bundle in Subsection 4.4.2, and also, provides a crucial

relationship between the curvature and the Atiyah class in Theorem 4.4.2.

In Section 4.5, we establish the generalized Chern-Weil homomorphism for SGH prin-

cipal bundles in Definition 4.5.1 using the generalized connection of Theorem 4.4.2, and

define the generalized characteristic classes.

1.1.4 Connections on SGH vector bundles and Hodge theory

In Chapter 5, we develop the theory of smooth generalized connection and its curvature

for an SGH vector bundle. We also introduce a notion of transverse connection and its

curvature in Definition 5.1.5 and present a related Chern-Weil theory for SGH vector

bundles similar to Section 4.5.

Applying Theorem 4.3.1, we demonstrate in Theorem 5.1.3 that the existence of a

GH connection on an SGH bundle is the same as the existence of a GH connection on its

associated SGH principal bundle.

Section 5.2 develops generalized versions of classical results such as Serre duality and

Poincaré duality. Moreover, we introduce a Hodge decomposition for the D-cohomology

and dL-cohomology (see Subsection 4.4.1) of a regular GC manifold in Theorem 5.2.2.

Extending Theorem 5.2.2 for H
•,ı
dL

(M, E) where E is an SGH vector bundle, we es-

tablish a generalized Hodge decomposition in Theorem 5.2.3 and provide a generalized

Serre duality in Theorem 5.2.4, under the assumption of Theorem 5.2.2. Additionally, we

establish analogues of Kodaira and Serre vanishing theorems in Theorem 5.2.5.

1.1.5 GCS on torus principal bundles

In Chapter 6, we study a family of GC structures on an even-dimensional torus principal

bundle over a complex manifold with the characteristic class of type (1, 1).

In Section 6.1, we present a detailed argument regarding the existence of a family

of regular GC structures on the total space of the torus principal bundle in Proposition

6.1.1. Then, in Theorem 6.1.1, we show the existence of such structures on the total
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space of more general principal bundles. Using Theorem 6.1.1, we provide an example

demonstrating this concept (see Example 6.1.1).

In Section 6.2, we establish the following result (Theorem 6.2.1): In a trivializing

neighborhood of a torus fiber, any GCS belonging to the family in Proposition 6.1.1

is equivalent to the product of the symplectic structure on the fiber and the complex

structure on the base up to di�eomorphisms and B-transforms if and only if the principal

bundle is flat.

More generally, in Theorem 6.2.2, we show that if a principal G-bundle, where G is

a Lie group with a symplectic structure, admits a GCS which is locally equivalent to a

product GCS in a neighborhood of every fiber, then the bundle is flat and symplectic.

Using Theorem 6.2.2, we deduce a stronger version of Theorem 6.2.1, namely, Theorem

6.2.3 which says that a principal torus bundle over a complex manifold is symplectic and

flat if and only if it admits a GCS which is equivalent to a product GCS in a neighborhood

of each torus fiber.

In Section 6.3, an application of Theorem 6.2.1 arises when employing the spectral

sequence developed by Angella et al. [4] to describe the generalized Dolbeault cohomology

of the total space of the bundle. This application is discussed within a broader framework

in Theorems 6.3.1-6.3.2 that encompasses symplectic fiber bundles, with certain assump-

tions regarding the GCS, slightly broadening the requirements outlined in [4]. The case

of principal torus bundles is stated in Corollary 6.3.1, and a Künneth formula for the

generalized Dolbeault cohomology of these bundles is given in Corollary 6.3.2.

This thesis relies on the content presented in the following pair of manuscripts:

1. Debjit Pal, Mainak Poddar,

Generalized complex structure on certain principal torus bundles [126],

available at https://arxiv.org/abs/2303.07835.

2. Debjit Pal, Mainak Poddar,

Strong generalized holomorphic principal bundles [127],

available at https://arxiv.org/abs/2404.18113.

————— ¶ —————

https://arxiv.org/abs/2303.07835
https://arxiv.org/abs/2404.18113
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Notations:

• Let M denote a smooth manifold and E denote a smooth fiber bundle over M . For

any open set U ™ M ,

• C
Œ(U) or C

Œ(U, C) denotes the ring of C-valued smooth functions on U and

C
Œ
M denotes the sheaf of C-valued smooth functions over M .

• C
Œ(U, R) denotes the ring of C-valued smooth functions on U and C

Œ
M,R denotes

the sheaf of R-valued smooth functions over M .

• C
Œ(E) denotes the corresponding sheaf of smooth sections of E, and we denote

the set of smooth sections of E over U by C
Œ(U, E) or by C

Œ(E)(U). In

particular, if E is a complex vector bundle, then C
Œ(E) is the sheaf of C-

valued sections. Similarly, if E is only a real vector bundle, then C
Œ(E) is the

sheaf of R-valued sections.

• Let M is a (regular) GC manifold and E denotes an SGH fiber bundle over M .

• OM denotes the sheaf of C-valued GH functions on M

• GM and Gú
M denote the GH tangent bundle and the GH cotangent bundle,

respectively.

• E denotes the corresponding sheaf of GH sections of E, and we denote the set

of GH sections of E over U by �(U, E) or by E(U).

• A
• denotes the sheaf of transverse generalized forms of degree •. Similarly,

A
•,• denotes the sheaf of transverse generalized forms of bi-degree (•, •).

• FM denotes the sheaf of smooth C-valued functions over M which are constant

along the leaves of the symplectic foliation associated with the GCS.

• For any vector bundle E over M whose transition maps are leaf-wise constant,

FM(E) denotes the sheaf of smooth leaf-wise constant sections of E.

• H
•
D(M) denotes the D-cohomology, and H

•,ı
dL

(M, E) denotes the dL-cohomology

with coe�cients in E.

————— ¶ —————
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Chapter 2

An Introduction to Generalized

Complex Structures and related

notions

Generalized Complex Structures (GCS) represent a broader framework encompassing

both complex and symplectic structures. Essentially, both complex and symplectic struc-

tures, aside from their integrability condition, are significantly influenced by the behaviour

of the pointwise cotangent bundle. In simpler terms, the linear version of these struc-

tures provides substantial insight and understanding. So, we first revisit the framework of

generalized geometry in the linear case before progressively delving into GCS on smooth

manifolds. For a comprehensive exploration of linear GCS and GCS on smooth mani-

folds, we refer to [70, 72]. Additionally, we explore the concept of generalized complex

(GC) maps, which align with GCS and play a significant role in defining generalized

holomorphic (GH) maps in subsequent chapters. More details regarding GC maps and

GH maps can be found in [125,149].

When considering a GCS on a smooth manifold, it gives rise to two significant per-

spectives: one in cohomology (cf. [37]) and the other in foliation theory. Cohomologi-

cal aspects play a crucial role in examining the principal bundle viewpoint over a GC

manifold, while foliation theory aids in grasping the transverse structure of a GCS. In

favourable scenarios, such as when the leaf space of the induced foliation forms a smooth

manifold, a wealth of information can be derived. For a detailed study of foliation and

its transverse structures, we refer to [6,117]. In this chapter, we will focus exclusively on

11
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delving into the cohomology theory in detail. The discussion of foliation theory will be

reserved for Chapter 3. This chapter is split into four sections:

1. Linear generalized complex structures (Section 2.1).

2. Generalized complex linear maps (Section 2.2).

3. GC Structures and generalized holomorphic map on manifolds (Section 2.3).

4. Related cohomologies for GC manifolds (Section 2.4).

2.1 Linear generalized complex structures

Understanding generalized complex structures (GCS) on vector spaces is notably simpler

compared to their manifold counterparts. Their classification is more direct, as the type

of a GCS remains constant across the entire space, facilitating a straightforward catego-

rization. In other words, linear GCS presents a simpler scenario, serving as a starting

point in this chapter. In this section, we recall some fundamental notions of linear gen-

eralized complex (in short, GC) geometry. We will primarily refer to [70, 72] and the

references therein, for most of the definitions and results.

Consider a finite dimensional real vector space V . The direct sum of V and its dual

space, denoted as V üV
ú, is endowed with a natural symmetric bilinear form of signature

(n, n)

ÈX + ›, Y + ÷Í := 1
2(›(Y ) + ÷(X)) ’ X + ›, Y + ÷ œ V ü V

ú
. (2.1.1)

Definition 2.1.1. ( [70, Chapter 4]) A generalized complex structure (GCS), denoted by

JV , on V is a linear automorphism of V ü V
ú satisfying the following two conditions

1. (complex condition) J2

V = ≠1;

2. (symplectic condition) Jú
V = ≠JV .

Here (V ü V
ú)ú is identified with V ü V

ú via the bilinear form, as defined in (2.1.1). The

pair (V, JV ) is called GC vector space, and JV is called a linear GCS on V .
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Example 2.1.1. Let V be any 2n-dimensional vector space and consider the following

two linear GCS on V

JV,I :=

Q

ca
≠I 0

0 I
ú

R

db , and JV,Ê :=

Q

ca
0 ≠Ê

≠1

Ê 0

R

db

where I and Ê are the usual complex and symplectic structures, respectively.

Remark 2.1.1. From Example 2.1.1, we can see that any even-dimensional vector space

is a GC vector space. The converse is due to Gualtieri (cf. [72, Proposition 3.3]) that

V is a GC vector space if and only if V is an even-dimensional real vector space. Put

di�erently, a prerequisite for discussing linear GCS on V is that V must be of even

dimension.

Given any GC subspace (V, JV ), we can naturally complexify it, and consider it as an

automorphism of (V ü V
ú) ¢ C . This leads to the following two complex subspaces of

(V ü V
ú) ¢ C

LV := {x œ (V ü V
ú) ¢ C | Jx = ix};

LV := {x œ (V ü V
ú) ¢ C | Jx = ≠ix} ,

(2.1.2)

where LV denotes the complex conjugation of LV . LV and LV are the +i and ≠i

eigenspaces, respectively. Since JV is a real operator on (V üV
ú)¢C (that is, JV x = JV x),

both LV and LV have identical characteristics. Below are some essential properties of

LV .

1. Because JV is orthogonal with respect to the bilinear form, defined as in (2.1.1),

Èx, yÍ = 0 for all x, y œ LV . Here we are identifying È , Í with its complexification.

2. dimC LV = dimR V and LV fl LV = {0}.

Conversely, given any complex subspace L < (V üV
ú)¢C with the preceding properties,

we can define a linear GCS on (V üV
ú)¢C whose +i-eigenspace is L, as defined in (2.1.2).

Therefore, the following proposition is available due to Guatieri (cf. [70, Proposition 4.3]).

Proposition 2.1.1. Any linear GCS on V is equivalent to the specification of a complex

subspace L < (V ü V
ú) ¢ C with the following properties

1. Èx, yÍ = 0 for all x, y œ L where È , Í, as defined in (2.1.1), is identified with its

complexification.
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2. dimC L = dimR V and L fl L = {0}.

The subspace L in Proposition 2.1.1 is known as maximal isotropic subspace of real

index zero (cf. [70, Section 2.2]). In order to gain a deeper understanding of linear gener-

alized complex structure on V , it is necessary to thoroughly examine maximal isotropic

subspaces of (V ü V
ú) ¢ C . In the following section, we will delve into this topic exten-

sively. Before proceeding further, it’s important to address another aspect of linear GCS

known as B-field transformation (cf. [70, Example 2.1]). It can also be seen as a method

for obtaining a new linear GCS from an older one.

Let JV be a linear GCS on V . Let B œ ·2
V

ú and view it as a linear map V ≠æ V
ú

via interior product v ‘æ ivB = B(v, ·). Then, We can deform JV by B and get another

linear GCS,

(JV )B := e
≠BJV e

B where e
B =

Q

ca
1 0

B 1

R

db . (2.1.3)

Definition 2.1.2. (JV )B is called a B-field transformation or B-transformation of JV .

The +i-eigenspace of (JV )B is just

(LV )B = {X + › ≠ B(X, ·) | X + › œ LV }. (2.1.4)

2.1.1 Isotropic viewpoint of a linear GCS

In this subsection, we provide a formal introduction to the concept of a maximal isotropic

subspace and review its properties. We also explore a characterization of these subspaces.

The isotropic viewpoint of a linear GCS will prove highly beneficial in our future endeav-

ours to characterize foliation aspects induced by a GCS on a manifold. Furthermore, it

will provide a thorough understanding of GC maps on a GC manifold at a later stage.

Throughout our discussion, we confine our discussion to real vector subspaces only. How-

ever, we will mainly utilize its complexification version, as we will soon observe.

Definition 2.1.3. ( [70, Section 2.2]) Let V be a real vector space, and let L < V ü V
ú

be a vector subspace.

1. L is called an isotropic subspace if Èx, yÍ = 0 for all x, y œ L where È , Í is defined

as in (2.1.1).
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2. L is called a maximal isotropic subspace if it is isotropic and dimR L = dimR V .

Example 2.1.2. V and V
ú are two natural maximal isotropic subspaces.

Example 2.1.3. Let E be any subspace of V , and let ‡ œ ·2
E

ú be considered as an map

from E to E
ú. Consider the subspace of V ü V

ú

L(E, ‡) := {X + › œ E ü V
ú | ›|E = ‡(X)} . (2.1.5)

By [70, Example 2.5], L(E, ‡) is a maximal isotropic subspace.

The following theorem, due to Gualtieri (cf. [70, Proposition 2.6]), provides a complete

classification of maximal isotropic subspaces of V ü V
ú.

Theorem 2.1.1. Every maximal isotropic subspace of V ü V
ú can be expressed in the

form L(E, ‡), where L(E, ‡) is defined as in (2.1.5).

Note that, the integer k = CodimR(E) = dimR Ann(E) is an invariant associated to

a maximal isotropic subspace L = L(E, ‡) where E is the projection of L onto V .

Definition 2.1.4. The type of a maximal isotropic subspace L of V ü V
ú is the codimen-

sion of the projection of L onto V and it is denoted by Type(L).

Remark 2.1.2. Note that Type(L) œ {0, . . . , dimR V } because dimR E œ {0, . . . , dimR V } .

Let B œ ·2
V

ú. Consider the B-transformation e
B : V ü V

ú ≠æ V ü V
ú, as defined in

(2.1.3). One can see that e
B(X+›) = X+›+B(X, ·) which implies that B-transformation

does not e�ect the V -component. In particular, given any maximal isotropic subspace

L = L(E, ‡) with the inclusion map i : E Òæ V , the maximal isotropic subspace

e
B(L) = L(E, ‡ + i

ú
B) = {X + › + B(X, ·) | X + › œ L} , (2.1.6)

shows that Type(L) is invariant under any B-transformation. Now, the inclusion map

i : E Òæ V induces an onto map i
ú : V

ú ≠æ E
ú, and so, there exists B

Õ œ ·2
V

ú such that

i
ú
B

Õ = ‡ . This implies

L = e
BÕ(L(E, 0)) = e

BÕ(E ü Ann(E)) .

To summarize the preceding discussion, we arrive at the following proposition.
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Proposition 2.1.2. ( [70, Section 2.2]) Any maximal isotropic subspace L = L(E, ‡) is

a B-transformation of L(E, 0) for B chosen such that i
ú
B = ‡, that is

L = e
B(L(E, 0)) .

Remark 2.1.3. Note that, after a B-transformation of a linear GCS JV on V , the

corresponding +i-eigensubspace (LV )B, defined in (2.1.4), is simply (LV )B = e
≠B(LV ) by

(2.1.6) where LV denotes the +i-eigensubspace of the linear GCS.

This subsection primarily discusses the maximal isotropic subspace of V ü V
ú using

linear algebra, mainly focusing on its projection onto V . However, a more sophisticated

algebraic approach involves describing it through Cli�ord algebra of V ü V
ú, specifically

utilizing pure spinors. This refined approach o�ers a deeper understanding of the maximal

isotropic subspace. The subsequent section delves into this with greater elaboration.

2.1.2 Spinorial viewpoint of a linear GCS

Consider a finite dimensional real vector space, denoted as V . The maximal isotropic

subspaces within V üV
ú can alternatively be characterized by their associated pure spinor

lines. Viewing them from a spinorial perspective enables a more nuanced examination

of the linear generalized complex structures. This approach lays the groundwork for de-

scribing GCS on manifolds through di�erential forms, facilitating a di�erential geometric

understanding and capturing cohomological aspects in a more refined manner. Below,

we revisit this connection. For a detailed study of Cli�ord algebras and spinors, we refer

to [49].

Consider the action of V ü V
ú on ·•

V
ú defined by

(X + ›) · Ï = iXÏ + › · Ï .

This action can be extended to the Cli�ord algebra of V ü V
ú corresponding to the

natural pairing (2.1.1). This gives a natural choice for spinors, namely, the elements of

the exterior algebra on V
ú, ·•

V
ú.

Definition 2.1.5. ( [70, Section 2.5]) Let „ œ ·•
V

ú be a nonzero spinor.

1. Null space of „, denoted as L„ < V üV
ú, is defined as L„ := {x œ V üV

ú | x·„ = 0} .
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2. The spinor „ is called pure if L„ is a maximal isotropic subspace.

3. The 1-dimensional subspace in ·•
V

ú, denoted as UL„
, generated by the spinor „, is

called spinor line. UL„
is called a pure spinor line if „ is a pure spinor.

Remark 2.1.4. The null space L„ is by definition a isotropic subspace of V ü V
ú. So, „

is a pure spinor, if dimR L„ = dimR V .

Notice that, if „ is a pure spinor then e
B

„ := e
B · „ is also a pure spinor for any B œ

·2
V

ú. In particular, LeB„ = e
≠B(L) . Therefore, in order to characterize the pure spinor

associated with a maximal isotropic subspace L(E, ‡), it su�ces to describe the pure

spinor associated with L(E, 0) according to Proposition 2.1.2. The following proposition

attributed to Gualtieri (cf. [70, Lemma 2.23]) e�ectively resolves our issue.

Proposition 2.1.3. Given any subspace E Æ V of CodimR(E) = k, the maximal

isotropic subspace L(E, 0) is associated to the pure spinor line det(Ann(E)) < ·k
V

ú
.

This leads to a comprehensive characterization of the relationship between a maximal

isotropic subspace and its corresponding pure spinor line. Put di�erently, it provides

a clear depiction of the pure spinor line associated with any given maximal isotropic

subspace, as outlined below.

Theorem 2.1.2. ( [72, Proposition 1.3]) Let L = L(E, ‡) Æ V ü V
ú be a maximal

isotropic subspace with CodimR(E) = k. Let B œ ·2
V

ú be a 2-form such that i
ú
B = ≠‡

where i : E Òæ V is the inclusion map. Let {◊1, . . . , ◊k} œ V
ú be a basis for Ann(E).

Then, the pure spinor line UL associated with L, is generated by

„ = e
B

◊1 · · · · · ◊k .

Corollary 2.1.1. There is a bijection between the set of maximal isotropic subspaces of

V ü V
ú and the set of pure spinor lines in ·•

V
ú.

Define a linear map – on ·•
V

ú which acts on decomposable forms by

–(a1 · . . . · ai) = ai · . . . · a1 .

Definition 2.1.6. Given two forms of mixed degree ‡i = q
‡

j
i , i = 1, 2, where deg(‡j

i ) =

j, in an n-dimensional vector space, we define their pairing, (‡1 , ‡2) by

(‡1 , ‡2) = (–(‡1) · ‡2)T op, (2.1.7)

where Top indicates the degree n component of the wedge product.
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The forthcoming result will play a pivotal role in establishing the linear GCS in the

subsequent subsection. In simpler terms, this outcome delineates the intersection of

maximal isotropic subspaces in relation to the pure spinor utilizing the pairing defined in

(2.1.7).

Proposition 2.1.4. ( [70, Proposition 2.21]) Given any two maximal isotropic subspace

L1, L2 Æ V ü V
ú, dimR(L1 fl L2) = {0} if and only if („1, „2) ”= 0 where „i is the pure

spinor associated with Li for i = 1, 2, and ( , ) is the pairing as defined in (2.1.7).

2.1.3 Complexification and classification

The inherent bilinear form È , Í, as defined in (2.1.1), extends naturally from V ü V
ú to

(V ü V
ú) ¢ C. By complexifying V ü V

ú, all of the aforementioned results and definitions

regarding maximal isotropic subspaces and spinors for V üV
ú can be naturally broadened

to (V ü V
ú) ¢ C . We consolidate the preceding results within this new framework.

Theorem 2.1.3. ( [70, Proposition 2.25]) Let V denote a real vector space of finite

dimension. A maximal isotropic subspace L of (V ü V
ú) ¢ C, of Type(L) = k œ

{0, . . . , dimR V }, can be characterized equivalently by the following information:

1. A complex subspace E of dimC E = dimR V ≠k within the vector space V ¢C, along

with a complex form ‡ œ ·2
E

ú
.

2. A complex pure spinor line UL is generated by

„ = c
Õ
e

B+iÊ
◊1 · · · · · ◊k ,

where B + iÊ œ ·2
V

ú ¢ C, c
Õ œ C\{0}, and {◊1, . . . , ◊k} œ V

ú ¢ C are linearly

independent complex 1-forms.

3. A complex subspace L < (V üV
ú)¢C with maximal isotopic property with respect to

È , Í such that E = fl(L) with dimC E = dimR V ≠k where fl : (V üV
ú)¢C ≠æ V ¢C

is the natural projection map onto V ¢ C .

The Proposition 2.1.1 demonstrates that the maximal isotropic property alone within

a subspace L < (V ü V
ú) ¢ C does not invariably guarantee the presence of a linear

generalized complex structure (GCS) on V . This is due to the fact that if L is a maximal



Chapter 2. GC Structures and related notions 19

isotropic subspace, then its complex conjugate L also forms a maximal isotropic subspace,

and the intersection LflL may not always be a zero subspace. Specifically, LflL = L̃¢C

for some real subspace L̃ < V ü V
ú

. To illustrate, one can take any maximal isotropic

subspace within V ü V
ú and complexify it, yielding another maximal isotropic subspace

within (V üV
ú)¢C, denoted as L

Õ. Consequently, L
Õ flLÕ represents the complexification

of the initial maximal isotropic subspace. Hence, the complex dimension of LflL assumes

significance in the analysis of linear GCS. Thus, we introduce the following definition.

Definition 2.1.7. ( [70, Definition 2.26]) The real index of a maximal isotopic subspace

L < (V ü V
ú) ¢ C, denoted by r(L), is defined as the complex dimension of L fl L, that

is,

r(L) := dimC L fl L = dimR L̃ ,

where L fl L = L̃ ¢ C for some real subspace L̃ < V ü V
ú

.

According to Proposition 2.1.1, if we have a maximal isotropic subspace L < (V üV
ú)¢

C with real index zero, it will induce a linear generalized complex structure (GCS) on V

such that L becomes the +i-eigenspace of that linear GCS. In simpler terms, if we consider

a GC vector space V , we can decompose (V ü V
ú) ¢ C as (V ü V

ú) ¢ C = L ü L where L

is the maximal isotropic subspace of real index zero, and projecting this decomposition

onto V ¢ C, we obtain V ¢ C = E + E where E = fl(L). Thus, the following relationship

holds.

2 dimC E ≠ dimC(E fl E) = dimC V ¢ C

=∆ 2 dimC V ¢ C ≠ 2 dimC E = dimC V ¢ C ≠ dimC(E fl E)

=∆ 2 CodimC(E) = CodimC(E fl E)

=∆ Type(L) = 1
2 CodimC(E fl E) .

Since CodimC(E fl E) œ {0, . . . , 2n}, Type(L) œ {0, . . . , n} where dimR V = 2n (cf.

Remark 2.1.1).

Definition 2.1.8. Let (V, JV ) be a GC vector space. Then, the type of the linear GCS

JV , denoted by Type(JV ), is defined to be the type of the corresponding +i-eigen space of

JV , that is,

Type(JV ) := Type(LV ) œ
I

0, . . . ,
dimR V

2

J

,
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where LV is the corresponding +i-eigen space (maximal isotropic subspace of real index

zero) of JV as defined in Proposition 2.1.1.

Similar to Theorem 2.1.3, a maximal isotropic subspace of real index zero can be de-

scribed by its projection onto V ¢ C and also its spinorial viewpoint using Theorem 2.1.2

and Proposition 2.1.4, respectively. This characterization not only aids in a deeper under-

standing of GC maps but also illuminates the vector bundle viewpoint and cohomological

perspective of a GCS on smooth manifolds. This characterization, credited to Gualtieri

(cf. [70, Proposition 4.4, Theorem 4.8]), is formalized in the subsequent theorem.

Theorem 2.1.4. Let V real vector space with dimR V = 2n (cf. Remark 2.1.1). Let

L = L(E, ‡) be a maximal isotropic subspace of (V ü V
ú) ¢ C with Type(L) = k . Let UL

be the corresponding complex pure spinor line, generated by

„ = e
B+iÊ� ,

where � = ◊1 · · · · · ◊k and B + iÊ, {◊1, . . . , ◊k} are as in Theorem 2.1.3. Then the real

index of L vanishes, that is, r(L) = 0 if and only if one of the following conditions is

satisfied.

1. E + E = V ¢ C and the real 2-form �� := Im(‡|�¢C) is non-degenerate on � ¢ C

where E fl E = � ¢ C with � Æ V as a real subspace.

2. („, „) = Ê
n≠k · � · � ”= 0 where „ is the generator for the pure spinor line UL . In

other words,

• {◊1, . . . , ◊k , ◊1, . . . , ◊k} are linearly independent, and

• Ê|� is non-degenerate on � where � Æ V is a real (2n ≠ 2k)-dimensional

subspace defined as � ¢ C = ker(� · �) .

Remark 2.1.5. In Theorem 2.1.4, we used the same notation for both ker(� · �) and

E fl E. This is because, according to Theorem 2.1.2, the set {◊1, . . . , ◊k} œ V
ú ¢ C in

Theorem 2.1.4 forms a basis for Ann(E), implying that E flE is a subspace of ker(�·�).

Therefore, the equality of dimensions, that is,

dimC ker(� · �) = dimC E fl E = 2n ≠ 2k ,

indicates that ker(� · �) and E fl E are identical, that is,

ker(� · �) = E fl E .
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Example 2.1.4. ( [70, pp 45-46])

1. Let W be a symplectic dimensional vector with a symplectic structure Ê. Then JW,Ê,

as defined in Example 2.1.1, is a linear GCS of type 0 with the corresponding pure

spinor line generated by e
iÊ

.

2. Let V be a complex n-dimensional vector with a complex structure I. Then JV,I ,

as defined in Example 2.1.1, is a linear GCS of type n with the corresponding pure

spinor line ·n,0
V

ú generated by any nonzero (n, 0)-form �n,0 œ ·n,0
V

ú
.

3. The product linear GCS, denoted by JW ◊V := JW,Ê üJV,I , on (W, JW,Ê)ü (V, JV,I) is

of type n and can be described by the pure spinor line in ·•(W ü V )ú ¢ C generated

by e
iÊ · �n,0

.

Example 2.1.4 The third example in Example 2.1.4 demonstrates that when pro-

vided with any two complex and symplectic vector spaces, it’s possible to obtain a linear

GCS of a type that does not fall into the extremal cases. On the other hand, for an

even-dimensional real vector space, it’s always possible to achieve a linear GCS of both

extremal types. This leads to the question of describing a linear GCS of a type between

these extremal cases. It has been established that such a linear GCS closely resembles

the product linear GCS as outlined in Example 2.1.4. In other words, any linear GCS

of a fixed type can be completely characterized. The following theorem presents this

characterization.

Theorem 2.1.5. ( [70, Theorem 4.13]) A linear GCS of type k over a real vector space

of dimension 2n can be represented as a B-transformation applied to the direct sum of a

symplectic structure, having a real dimension of 2n ≠ 2k, and a complex structure with a

complex dimension of k. In other words, it can be viewed as the B-transformation of the

product linear GCS, JW ◊V , as illustrated in Example 2.1.4 where (V k
, JV,I) represents a

suitable complex vector space of complex dimension k, and (W, JW,Ê) denotes a suitable

symplectic vector space of real dimension 2n ≠ 2k.
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2.2 Generalized complex linear maps

When considering any geometric structure imposed on a smooth manifold, the central

inquiry pertains to the types of mappings that preserve the structure. In the context of

complex manifolds, the natural choice for such mappings is holomorphic maps. However,

in the case of symplectic manifolds, defining analogous mappings is not immediately

evident since the pullback of a symplectic form may not always be a non-degenerate form.

Nevertheless, by regarding a symplectic manifold as a Poisson manifold with the naturally

induced Poisson bivector, we can establish a framework for defining such mappings. For

a detailed study of the geometry of complex and Poisson manifolds, we refer to [50,

86, 148]. Because GC manifolds encompass both complex and symplectic manifolds, the

fundamental requirement for maps on such manifolds must adhere to the criteria set forth

for mappings in complex and Poisson manifolds.

In the context of GC manifolds, such mappings are termed generalized holomorphic

(GH) maps. It will become apparent in subsequent sections that GH maps rely on the

point-wise GC vector space structure of the tangent bundle of GC manifolds. Thus,

before delving into the manifold case, it is imperative to examine such mappings within

the framework of GC vector spaces. This section serves as an introduction to the linear

version of GH maps, also known as generalized complex (GC) maps. We will primarily rely

on [125,149] and the references contained therein for most of the definitions and results.

We might also recommend referring to the article [127, Section 2] for a comprehensive

overview of the topics discussed in this section, conveniently gathered in one place.

Let (V, JV ) be a GC linear space with +i-eigenspace LV . Consider the projection

map

fl : (V ü V
ú) ¢ C ≠æ V ¢ C .

Let fl(LV ) = EV and let EV fl EV = �V ¢ C where �V Æ V is a real subspace. Then by

Theorem 2.1.3 and Theorem 2.1.4, we have

1. LV = L(EV , ‡) for some ‡ œ ·2
E

ú
V ;

2. EV + EV = V ¢ C with a non-degenerate form ��V on �V ¢ C , defined as

��V := Im(‡|�V ¢C) .
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Since ��V is non-degenerate, following [125, Section 3], ÂPV := L(�V ¢ C, ��V ) is called

the associated linear Poisson structure of JV on V ¢ C.

Definition 2.2.1. ( [125]) Let Â : (V, JV ) ≠æ (W, JW ) be a linear map between two GC

linear spaces. Then Â is called a generalized complex (GC) map if

1. Â(EV ) ™ EW ;

2. Âı( ÂPV ) = ÂPW where Âı denotes the pushforward of a Dirac structure, as in [125,

Section 1], namely,

Âı( ÂPV ) = {Â(Y ) + ÷ œ (W ü W
ú) ¢ C | Y + Â

ú(÷) œ ÂPV } .

Remark 2.2.1. Given a B-field transformation of JV , we see that

fl((LV )B) = fl(LV ) ,

where (LV )B is as in (2.1.4). Since the imaginary part of ‡ is also preserved, the associ-

ated linear Poisson structures are the same for both GCS. This shows that the notion of

GC map is insensitive to B-field transformations.

Let (V, JV ) be a generalized complex (GC) linear space. Then JV can be written as

JV =

Q

ca
≠JV —V

BV J
ú
V

R

db

where JV œ End(V ), BV œ HomR(V, V
ú) and —V œ HomR(V ú

, V ) . Using Jú
V = ≠JV (cf.

Definition 2.1.1), we get BV œ ·2
V

ú and —V œ ·2
V .

Lemma 2.2.1. Let Â : V ≠æ W be a GC map between two GC linear spaces. Then

Â(EV fl EV ) = EW fl EW .

Proof. Let w œ �W ¢ C = EW fl EW . Then w + ��W (w) œ ÂPW . Since Âı( ÂPV ) = ÂPW ,

there exist v œ �V ¢ C = EV fl EV and ÷ œ W
ú ¢ C such that

w + ��W (w) = Â(v) + ÷ .

This shows that Â(v) = w and EW fl EW ™ Â(EV fl EV ) .
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For the converse part, let v œ EV flEV be a non-zero element. Let Â(v) = w œ W ¢C ,

and let Â��W : W ¢ C ≠æ �ú
W ¢ C be an extension of ��W : �W ¢ C ≠æ �ú

W ¢ C such

that Â��W œ ·2
W

ú ¢ C . Then, we have Â
ú(Â��W (w)) œ V

ú ¢ C and

�≠1

�V
(Âú(Â��W (w))|�V ¢C) + Â

ú(Â��W (w)) œ ÂPV . (2.2.1)

Denote �≠1

�V
(Âú(Â��W (w))|�V ¢C) œ �V ¢ C by v

Õ. Then,

v
Õ = �≠1

�V
(Âú(Â��W (w))|�V ¢C)

=∆ ��V (vÕ) = Â
ú(Â��W (w))|�V ¢C

=∆ ��V (vÕ)(v) = Â
ú(Â��W (w))(v)

=∆ ��V (vÕ)(v) = Â��W (w)(Â(v))

=∆ ��V (vÕ
, v) = 0 (as Â(v) = w)

=∆ v = kv
Õ (as ��V is non-degenerate on EV fl EV and k œ C\{0})

=∆ v = k �≠1

�V
(Âú(Â��W (w))|�V ¢C) .

Note that Â(�≠1

�V
(Âú(Â��W (w))|�V ¢C) + (Â��W (w)) œ ÂPW by (2.2.1), and also

Â(�≠1

�V
(Âú(Â��W (w))|�V ¢C) = 1

k
Â(v) = 1

k
w .

Thus w œ EW fl EW and Â(EV fl EV ) ™ EW fl EW . This proves the lemma.

Remark 2.2.2. The assertion made in the statement of Lemma 2.2.1 is claimed in the

proof of [125, Proposition 3.2]. However, the argument given there is not very explicit.

Remark 2.2.3. The inclusion Â(EV flEV ) ™ EW flEW can also be understood as follows:

Let v œ EV fl EV be a non-zero element. Note that, Â is a real linear map, that is,

Â(vÕ) = Â(vÕ) ,

for all v
Õ œ V ¢C . Let v = b for some b œ EV . Then, by Definition 2.2.1, Â(v) , Â(b) œ EW

and so, Â(b) œ EW . Since Â is a real map, Â(v) = Â(b) œ EW . Therefore,

Â(v) œ EW fl EW .

The proofs of the next two lemmas are modelled on similar arguments in [103].
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Lemma 2.2.2. Let (V, JV ) and (W, JW ) are GC linear spaces with

JV =

Q

ca
≠JV —V

BV J
ú
V

R

db and JW =

Q

ca
≠JW 0

0 J
ú
W

R

db

where JW is a complex structure on W . Then Â : V ≠æ W is a GC map if and only if

Â ¶ JV = JW ¶ Â , Â ¶ —V = 0 .

Proof. Let dim V = 2n and let the type of JV be k œ N fi {0}. Since the definition of

GC map is invariant under a B-transformation, we can assume without loss of generality

that

(V, JV ) = (V1, J1) ü (V2, J2) ,

where (V1, J1) = (R2k
, JR2k) = Ck and (V2, J2) = (R2n≠2k

, Ê0). Here, JR2k and Ê0 denote

the standard complex and symplectic structures on the corresponding spaces.

It follows that EV = V
0,1

1 ü (V2 ¢ C). Since EV fl EV = V2 ¢ C, the Poisson bivector

on V is

Â—V =

Y
__]

__[

0, on V
ú

1
¢ C ,

Ê
≠1

0 , on V
ú

2
¢ C .

Hence,
ÂPV = L(V2 ¢ C, Ê0) = L(V ú ¢ C, Â—V ) .

Similarly, as W is a complex vector space, we have EW = W
0,1 and so, EW fl EW = {0}.

Thus, —W , the Poisson bivector on W is 0 and we get

ÂPW = W
ú ¢ C = L(W ú ¢ C, 0) .

Then, by Lemma 2.2.1, Âı( ÂPV ) = ÂPW if and only if Â ¶ Ê
≠1

0 = 0. Thus, Â is a GC map if

and only if

Â(V 0,1
1 ü (V2 ¢ C)) µ W

0,1 and Â ¶ Ê
≠1

0
= 0 .

Hence, for any v1 œ V1 and v2 œ V2, we have

Â((≠J1(v1))) = (≠JW )(Â(v1)) and Â(v2) = 0 .

This implies

Â ¶ JV = JW ¶ Â and Â ¶ —V = 0
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where

JV =

Q

ca
J1 0

0 0

R

db and —V = ≠ Â—V =

Q

ca
0 0

0 ≠Ê
≠1

0

R

db .

Let Â be any complex valued linear function on V . Considered as an element of V
ú¢C,

Â has two components corresponding to the decomposition (V ü V
ú) ¢ C = LV ü LV ,

namely ÂLV and ÂLV
.

Lemma 2.2.3. A linear map Â : (V, JV ) ≠æ C = (R2
, JR2) between two GC linear spaces,

is a GC map if and only if Â œ (LV fl (V ú ¢ C)) that is, ÂLV
= 0.

Proof. Let JV be written as

JV =

Q

ca
≠JV —V

BV J
ú
V

R

db .

Suppose Â : (V, JV ) ≠æ (R2
, JR2) is linear a GC map. Let

ÂLV = Y1 + ÷1 ,

ÂLV
= Y2 + ÷2 .

(2.2.2)

where Y1, Y2 œ V ¢ C and ÷1, ÷2 œ V
ú ¢ C. Then, considering Â as an element of V

ú ¢ C,

we have Y1 + Y2 = 0 and ÷1 + ÷2 = Â. Since ÂLV œ LV and ÂLV
œ LV , we have the

following equations,

≠JV (Y1) + —V (÷1) = iY1 , BV (Y1) + J
ú
V (÷1) = i÷1 ,

≠JV (Y2) + —V (÷2) = ≠iY2 , BV (Y2) + J
ú
V (÷2) = ≠i÷2 .

(2.2.3)

Now, by Lemma 2.2.2, Â ¶ —V = 0 which implies —V (Â) = 0. By adding the equations

in the first column in (2.2.3), we get —V (Â) = i(Y1 ≠ Y2) which implies Y1 = Y2. Since

Y1+Y2 = 0, we derive Y1 = Y2 = 0. Then, the second column in (2.2.3) yields J
ú
V (÷1) = i÷1

and J
ú
V (÷2) = ≠i÷2. Adding these, we obtain

J
ú
V (Â) = i(÷1 ≠ ÷2)

=∆ Â ¶ JV = i(÷1 ≠ ÷2)

=∆ JR2 ¶ Â = i(÷1 ≠ ÷2) (by Lemma 2.2.2)

=∆ i(÷1 + ÷2) = i(÷1 ≠ ÷2)

=∆ ÷2 = 0 .
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It follows that ÂLV
= 0.

Conversely, Suppose ÂLV
= 0. Then Â œ LV and so JV (Â) = iÂ. This implies that

—V (Â) = 0 , J
ú
V (Â) = iÂ ,

=∆ Â ¶ — = 0 , Â ¶ JV = JR2 ¶ Â .

Thus, by Lemma 2.2.2, Â is a GC map.

2.3 Generalized complex structures and generalized

holomorphic maps on manifolds

The notion of a Generalized Complex Structure (GCS) can be visualized as a linear GCS

that varies point by point on the tangent bundle of a smooth manifold. Our current

endeavour extends our previous work to encompass the tangent bundle, maintaining a

pointwise perspective throughout. Since we are dealing with smooth manifolds, we aim

to ensure that all operations vary smoothly from point to point. This necessitates an

integrable condition similar to that found in complex or symplectic manifolds. This

integrability is defined using the Courant bracket.

In this section, we formally define GCS on smooth manifolds along with the notion of

GH map. Additionally, we provide some elementary examples to enhance understanding

of GCS and GH maps. To provide context, we revisit some concepts introduced in Section

2.1 and Section 2.2, framing them in terms of the tangent bundle. We will primarily refer

to [70,72,125] and the references therein, for most of the definitions and results regarding

GCS and GH maps on smooth manifolds. We might also recommend referring to Section

2 of the articles [126, 127] for a comprehensive overview of the topics discussed in this

section, conveniently gathered in one place.

2.3.1 Generalized complex structures

To define a GCS on an even dimensional smooth manifold M , we need three key in-

gredients. Firstly, given any 2n-dimensional smooth manifold M , the direct sum of the

tangent and cotangent bundles of M , which we denote by TM ü T
ú
M , is endowed with
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a natural symmetric bilinear form of signature (2n, 2n)

ÈX + ›, Y + ÷Í := 1
2(›(Y ) + ÷(X)) . (2.3.1)

Secondly, we need the Courant Bracket on the smooth sections of TM ü T
ú
M which is

defined as follows.

Definition 2.3.1. The Courant bracket is a skew-symmetric bracket defined on smooth

sections of TM ü T
ú
M , given by

[X + ›, Y + ÷] := [X, Y ]Lie + LX÷ ≠ LY › ≠ 1
2d(iX÷ ≠ iY ›), (2.3.2)

where X, Y œ C
Œ(TM), ›, ÷ œ C

Œ(T ú
M), [ , ]Lie is the usual Lie bracket on vector fields,

and LX , iX are the Lie derivative and the interior product of forms with respect to the

vector field X, respectively.

For the third ingredient, consider the action of TM ü T
ú
M on ·•

T
ú
M defined by

(X + ›) · Ï = iXÏ + › · Ï ,

where X + › œ TM ü T
ú
M and Ï œ ·•

T
ú
M . This action can be extended to the Cli�ord

algebra of TM ü T
ú
M corresponding to the natural pairing (2.3.1). This gives a natural

choice for spinors, namely, the exterior algebra of cotangent bundle, ·•
T

ú
M . Define a

linear map – on ·•
T

ú
M which acts on decomposable forms by

–(a1 · . . . · ai) = ai · . . . · a1 .

Definition 2.3.2. Given two forms of mixed degree ‡i = q
‡

k
i , i = 1, 2, where deg(‡k

i ) =

k, in an n-dimensional vector space, we define their pairing, (‡1 , ‡2) by

(‡1 , ‡2) = (–(‡1) · ‡2)T op, (2.3.3)

where Top indicates the degree n component of the wedge product.

Now, we are ready to present the notion of the generalized complex structure (GCS)

on a 2n-dimensional smooth manifold M in three equivalent ways.

Definition 2.3.3. ( [70], [72]) A generalized complex structure or GCS on M is deter-

mined by any of the following three equivalent sets of data:
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1. A subbundle LM of (TM ü T
ú
M) ¢ C which is maximal isotropic with respect to

the natural bilinear form (2.3.1), and involutive with respect to the Courant bracket

(2.3.2), and also satisfies LM fl L̄M = {0}.

2. A bundle automorphism JM of TM ü T
ú
M which satisfies the following conditions:

(a) J2

M = ≠1

(b) Jú
M = ≠JM , i.e., JM is orthogonal with respect to the natural pairing (2.3.1)

(c) JM has vanishing Nijenhuis tensor, i.e.,

N(A, B) := JM [JMA, B] + JM [A, JMB] + [A, B] ≠ [JMA, JMB] = 0

for all A, B œ C
Œ(TM ü T

ú
M).

3. A line subbundle UM of ·•
T

ú
M ¢ C which generated locally at each point by a form

of the form „ = e
(B+iÊ) · �, such that the pairing (2.3.3)

(„ , „̄) = Ê
n≠k · � · � ”= 0, (non-degenerate condition)

where B and Ê are real 2-forms and � is a decomposable complex k-form, and fl

satisfies

d„ = u · „, (integrability condition) (2.3.4)

for some u œ C
Œ((TM ü T

ú
M) ¢ C), where d is the exterior derivative.

The pair (M, JM) is called a generalized complex (in short, GC) manifold.

At each point, the degree of � is same as the type of the GCS at that point, as we

have seen in Theorem 2.1.4.

Definition 2.3.4. Let (M, JM) be a GC manifold.

1. A point near which the type is locally constant is called a regular point. If every

point of M is regular, we say that the GCS is regular.

2. M is called a regular GC manifold if the GCS, JM is regular.

3. The line bundle UM that defines the GCS is called the canonical line bundle.
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Remark 2.3.1. Note that equations (2.1.1) and (2.1.7) are identical to equations (2.3.1)

and (2.3.3), respectively, when considering GC linear spaces. Transitioning from GC

linear spaces to GC manifolds, the Courant bracket provides the integrability condition

for JM , which can be described in terms of the involutivity of LM , the vanishing Nijenhuis

tensor, or satisfying (2.3.4), as defined in Definition 2.3.3.

Remark 2.3.2. In Definition 2.3.3, the equivalent conditions 1 and 2 are related to each

other by the fact that the subbundle LM can be obtained as the +i-eigenbundle of the

automorphism JM . This precisely corresponds to Proposition 2.1.1 for linear GCS.

Let f : (M, JM) ≠æ (N, JN) be a smooth map between two GC manifolds. Then,

following [70, Section 2.7], we can define the pullback and push forward of the +i-

eigenbundles, denoted by f
ı
LN and fıLM , respectively, as follows.

f
ı
LN :={X + f

ú
÷ œ (TM ü T

ú
M) ¢ C | fúX + ÷ œ LN} ;

fıLM :={fúX + ÷ œ (TN ü T
ú
N) ¢ C | X + f

ú
÷ œ LM} .

(2.3.5)

Let us consider some simple examples of GCS, similar to Example 2.1.1.

Example 2.3.1. Let (M, JM) is a complex manifold with a complex structure JM . Then

the natural GCS, of type dimR M
2

, on M is given by the bundle automorphism

JM :=

Q

ca
≠JM 0

0 J
ú
M

R

db : TM ü T
ú
M ≠æ TM ü T

ú
M .

Its corresponding +i-eigen bundle is

LM = T
0,1

M ü (T 1,0
M)ú

.

Example 2.3.2. Let (M, Ê) be a symplectic manifold with a symplectic structure Ê.

Then, the bundle automorphism

JM :=

Q

ca
0 ≠Ê

≠1

Ê 0

R

db : TM ü T
ú
M ≠æ TM ü T

ú
M ,

gives a natural GCS of type 0 on M . The +i-eigen bundle of this GCS is

LM = {X ≠ iÊ(X) | X œ TM ¢ C} .

Example 2.3.3. ( [70, Section 4.8]) Consider the following di�erential form.

fl = z1 + dz1 · dz2 on C2 = (R4
, JR4) .
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• When z1 = 0, we have

fl = dz1 · dz2 and dfl = 0 .

• When z1 ”= 0, we have

fl = z1e

dz1·dz2
z1 and dfl = (≠ ˆ

ˆz2

) · fl .

Therefore, from Definition 2.3.3, we can see that fl induces a GCS on C2
.

Example 2.3.4. ( [70, Example 4.12]) Consider two GC manifolds denoted as (M1, JM1)

and (M2, JM2). Then, the product GCS, denoted as JM1◊M2, is characterized by the max-

imal isotropic subbundle m
2

j=1
Prı

j(LMj ), with the corresponding canonical line bundle

locally given as w
2

j=1
Prú

j „j. Here, for j = 1, 2, LMj and „j denote the respective +i-

eigenbundle and local generator of the canonical line bundle for JMj , while the map

Prj : M1 ◊ M2 ≠æ Mj is the natural projection map onto the j-th component and

Prı
j(LMj ) is defined similarly as in (2.3.5).

Remark 2.3.3. Note that, the GCS in Example 2.3.3 is of type 0 outside a codimension

2 hypersurface and type 2 along the hypersurface.

Before delving deeper, it’s essential to discuss B-transformations of a GCS on smooth

manifolds. Let B be an element in �2(M), interpreted as a map B : TM ≠æ T
ú
M

defined via the interior product such that X ‘æ iXB = B(X, ·). This allows us to

construct a natural orthogonal, with respect to the natural bilinear form as in 2.3.1,

bundle automorphism

e
B :=

Q

ca
1 0

B 1

R

db : TM ü T
ú
M ≠æ TM ü T

ú
M .

When transitioning from linear GCS to GCS on smooth manifolds, one might initially

assume that for any real smooth 2-form B, the bundle automorphism (JM)B of TM ü

T
ú
M , defined analogously to (2.1.3), , yields a GCS on M . However, this assumption

is not entirely accurate. Although (LM)B, defined similarly as in (2.1.4), is a maximal

isotropic subbundle, there remains a requirement for involutivity of (LM)B with respect

to the Courant bracket, as defined in (2.3.2). This condition is equivalent to ensuring

that e
B is an automorphism of the Courant bracket, expressed as

[eB(C), e
B(D)] = e

B([C, D]) ,
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for all C, D œ (TM ü T
ú
M). The following proposition addresses this issue and provides

a necessary and su�cient condition for e
B to be an automorphism of the Courant bracket.

Proposition 2.3.1. ( [70, Proposition 3.23]) For a real smooth 2-form B œ �2(M), e
B

is an automorphism of the Courant bracket if and only if dB vanishes, that is, dB = 0 if

and only if

[eB(C), e
B(D)] = e

B([C, D]) for all C, D œ (TM ü T
ú
M) .

To sum up, when considering any GC manifold (M, JM), a B-field transformation

(in short, B-transformation) of JM only involves deformation by a real closed 2-form B,

resulting in another GCS on M , denoted as

(JM)B := e
≠B ¶ JM ¶ e

B where e
B =

Q

ca
1 0

B 1

R

db , (2.3.6)

similar to the definition in equation (2.1.3), with the +i-eigenbundle, denoted as

(LM)B := {X + › ≠ B(X, ·) | X + › œ LM} . (2.3.7)

Definition 2.3.5. Let (M, JM) be a GC manifold. Let Type(JM,x) denote the type of

JM,x at x œ M , as defined in Definition 2.1.8.

1. If M is a regular GC manifold, the type of JM is denoted by Type(JM), that is,

Type(JM) := Type(JM,x) for all x œ M .

2. JM is called a GCS of symplectic type if JM is regular and Type(JM) = 0. Conse-

quently, the manifold M is then referred to as a GC manifold of symplectic type.

3. If JM is regular and its type equals dimR M
2

, then M is called a GC manifold of

complex type. In such cases, JM is called a GCS of complex type.

The subsequent proposition provides a complete description of the GC manifold for

both complex and symplectic types.

Proposition 2.3.2. ( [70, Examples 4.10-4.11])

1. Any GCS of complex type is a B-transformation of a GCS, induced by a complex

structure, as in Example 2.3.1.
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2. Any GCS of symplectic type is a B-transformation of a GCS, induced by a symplectic

form, as in Example 2.3.2.

We conclude this subsection by revisiting the generalized Darboux theorem, which

provides a local characterization of a GCS around any regular point in the GC manifold.

Theorem 2.3.1. ( [72, Theorem 4.3]) For a regular point x œ (M, JM) of Type(JM,x) =

k, there exists an open neighborhood Ux µ M of x such that, after a B-transformation,

Ux is GH homeomorphic to U1 ◊ U2, where U1 µ (R2n≠2k
, Ê0), U2 µ Ck are open subsets

with Ê0 being the standard symplectic structure.

2.3.2 Generalized holomorphic maps

As outlined in Section 2.2, GC maps depend on fl(LM) for a general GC manifold M with

+i-eigenbundle LM . The primary reason for this behaviour can be seen in Definition 2.2.1.

However, in the case of smooth GC manifolds, the pointwise dimension of fl(LM) is not

constant; thus, the type is not constant across a general GC manifold, as illustrated in

Example 2.3.3. Consequently, except around a regular point, the concept of GC maps

cannot smoothly vary from point to point. Therefore, the most suitable and natural

notion for GH maps is to rely on the pointwise GC vector space structure of the tangent

bundle of GC manifolds.

Definition 2.3.6. ( [125]) A smooth map Â : (M, JM) ≠æ (M Õ
, JM Õ ) between two GC

manifolds is called a generalized holomorphic (GH) map if for each x œ M ,

(Âú)x : TxM ≠æ TÂ(x)M
Õ

is a GC map, as in Definition 2.2.1. Let JR2 be the standard complex structure on R2

so that (R2
, JR2) is identified with C.Consider (M Õ

, JM Õ ) = (R2
, JR2) where JR2 is as in

Example 2.3.1. In this case, a GH map Â is called a GH function.

Let LM be the +i-eigenbundle of JM so that we have,

(TM ü T
ú
M) ¢ C = LM ü LM .

Let d be the exterior derivative on M .
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Lemma 2.3.1. Given an open set U ™ M , a smooth map Â : (U, JU) ≠æ C = (R2
, JR2)

is a GH function if and only if for each x œ U , we have

dÂx œ (LM fl (T ú
M ¢ C))x .

Proof. Follows from Lemma 2.2.3 and Definition 2.3.6.

Let OM be the sheaf of C-valued GH functions on M . By Lemma 2.3.1, OM is a

subsheaf of the sheaf of smooth C-valued functions on M . To begin with, we consider

some simple examples of OM .

1. When (M, JM) is a complex manifold with JM as its complex structure. Then the

induced natural GCS is, as given in Example 2.3.1,

JM :=

Q

ca
≠JM 0

0 J
ú
M

R

db

with its +i-eigenbundle

LM = T
0,1

M ü (T 1,0
M)ú

.

By Lemma 2.3.1, we can see that, given any GH map Â, dÂ œ �1,0(M) that is, Â is

a holomorphic function. So OM will be the sheaf of holomorphic functions on M .

2. When (M, Ê) is a symplectic manifold with a symplectic structure Ê. The induced

GCS, as given in Example 2.3.2,

JM :=

Q

ca
0 ≠Ê

≠1

Ê 0

R

db

with its +i-eigenbundle

LM = {X ≠ iÊ(X) | X œ TM ¢ C}

which is naturally identified with TM ¢ C. So, dÂ = 0 for any GH map Â, which

implies Â is locally constant. Hence OM is a sheaf of locally constant functions.

Note that, in a simpler terms, Theorem 2.3.1 implies that, for some real closed form

2-form B„ œ �2(U1 ◊ U2), there exists a GH homeomorphism

„ : (Ux, JUx) ≠æ (U1 ◊ U2, (JU1◊U2)B„
)
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where (JU1◊U2)B„
is a the B-transformation, as in (2.3.6), of the product GCS, denoted

by JU1◊U2 . Let p = (p1, . . . , p2n≠2k) and z = (z1, . . . , zk) represent coordinate systems for

R2n≠2k and Ck, respectively, and consider the corresponding local coordinates around x

(Ux, „, p, z) := (Ux, „ ; p1, . . . , p2n≠2k, z1, . . . , zk) . (2.3.8)

We note that the subspaces (EM)x and (EM)x admit the following description,

(EM)x = Span
Ó
ˆpi |x, ˆzj |x: 1 Æ i Æ 2n ≠ 2k, 1 Æ j Æ k

Ô
,

(EM)x = Span
Ó
ˆpi |x, ˆzj |x: 1 Æ i Æ 2n ≠ 2k, 1 Æ j Æ k

Ô
.

(2.3.9)

Using Theorem 2.3.1 in the case of a regular GC manifold, It has been established that

we can obtain a concise depiction of coordinate transformations using local coordinates,

as in (2.3.8). This is demonstrated by the following corollary.

Corollary 2.3.1. ( [103, Proposition 2.7]) Let (M, JM) be a regular GC manifold of type

k. Let’s assume that (U, „, p, z) and (U Õ
, „

Õ
, p

Õ
, z

Õ) are two local coordinates, as in (2.3.8),

with U fl U
Õ ”= ÿ . Then, the coordinate transformation satisfies the following condition

ˆz
Õ
i

ˆzj
= ˆz

Õ
i

ˆpl
= 0 for all i, j œ {1, . . . , k} , l œ {1, . . . , 2n ≠ 2k} .

Furthermore, local coordinates, in (2.3.8), provide a requisite and complete condition

for GH functions on a regular GC manifold, as demonstrated below.

Proposition 2.3.3. ( [103, Example 2.8]) Let (M, JM) be a regular type k GC manifold.

Then, f : M ≠æ C is a GH function if and only if at every point on M , expressed in

terms of local coordinates, as shown in (2.3.8), f satisfies the following

ˆf

ˆzj
= ˆf

ˆpl
= 0 for all i, j œ {1, . . . , k} , l œ {1, . . . , 2n ≠ 2k} .

Definition 2.3.7. (cf. [103]) A di�eomorphism „ : (M, JM) ≠æ (N, JN) between two

GC manifolds is called a generalized holomorphic (GH) homeomorphism if
Q

ca
„ú 0

0 („≠1)ú

R

db ¶ JM = JN ¶

Q

ca
„ú 0

0 („≠1)ú

R

db . (2.3.10)

When N = M , „ is called GH automorphism.

For any GC manifold (M, JM), let Di�JM (M) be the subgroup of Di�(M) defined by

Di�JM (M) := {„ œ Di�(M) | „ is a GH automorphism of (M, JM)} . (2.3.11)



36 2.4. Related cohomologies for generalized complex manifolds

Remark 2.3.4. Note that a GH homeomorphism „ and its inverse „
≠1 are both GH

maps. This can be observed as follows. Let LM , LN denote the +i-eigen bundles of

JM , JN , respectively. For every point p in M , consider the subset of (T„(p)N üT
ú
„(p)

N)¢C

„ı(LM |p) := {„ú(X) + ÷ | X + „
ú
÷ œ LM |p} .

Then, for any X œ TpM ¢ C and ÷ œ T
ú
„(p)

N ¢ C

JN(„ú(X) + ÷) = JN

Q

ca

Q

ca
„ú 0

0 („≠1)ú

R

db (X + „
ú
÷)

R

db .

By (2.3.10), we get Y + › œ „ı(LM) if and only Y + › œ LN , that is

„ı(LM) = LN ,

and using [125, Corollary 3.3], we conclude that both „ and „
≠1 are GH maps. But the

converse is not true always. A GH map which is a di�eomorphism may not always be a

GH homeomorphism. The reason is that a GH map is defined up to a B-transformation

whereas a GH homeomorphism between two GC manifolds shows that their GC structures

are the same.

2.4 Related cohomologies for generalized complex

manifolds

A generalized complex structure (GCS) defined on a smooth manifold gives rise to two

distinct cohomology theories. The first one arises from the Cli�ord action of the ≠i-

eigenbundle of the GCS on the canonical line bundle, while the second is induced by

the ±i-eigenbundles. The former is commonly referred to as generalized Dolbeault co-

homology, while the latter is known as the Lie algebroid cohomology associated with

the ±i-eigenbundles. We will mainly refer to [4, 37, 70, 72] and the references therein for

details on generalized Dolbeault cohomology. For a detailed study of Lie algebroid and

its cohomology, we suggest referring to [109,111] and the references therein.



Chapter 2. GC Structures and related notions 37

2.4.1 Generalized Dolbeault cohomology

Given a GCS, JM on a 2n-dimensional manifold M , we get a decomposition of the complex

of di�erential forms as follows: Let UM µ ·•
T

ú
M ¢ C be the canonical line bundle of

JM , as in Definition 2.3.3. Then the +i-eigenbundle LM of JM in (TM ü T
ú
M) ¢ C can

be obtained as

LM = Ann(UM) = {u œ (TM ü T
ú
M) ¢ C | u · UM = 0} .

For each i œ Z, define

U
i
M := ·n≠i

LM · UM µ ·•
T

ú
M ¢ C. (2.4.1)

Note that U
i
M = 0 for each i < ≠n and i > n, and U

n
M is the canonical line bundle UM .

We have

·•
T

ú
M ¢ C =

nn

i=≠n

U
i
M .

Denote by C
Œ(U i

M) the vector space of smooth sections of U
i
M . Let d be the exterior

derivative on M . Then [70, Theorem 4.23] implies that

d : C
Œ(U i

M) ≠æ C
Œ(U i+1

M ) ü C
Œ(U i≠1

M ). (2.4.2)

decomposes into two di�erential operators as

d = ˆM + ¯̂
M .

The ¯̂
M and ˆM operators are defined by composing d with the projections onto C

Œ(U i≠1

M )

and C
Œ(U i+1

M ), respectively,

¯̂
M : C

Œ(U i
M) ≠æ C

Œ(U i≠1

M ),

ˆM : C
Œ(U i

M) ≠æ C
Œ(U i+1

M ) .

(2.4.3)

Thus, we obtain a Z-graded di�erential complex {C
Œ(U i

M), ¯̂}M and the cohomology of

this complex is called the generalized Dolbeault cohomology of M (cf. [37], [72, Proposition

3.15]),

GH
•
¯̂(M) :=

ker
1

¯̂
M : C

Œ(U•
M) ≠æ C

Œ(U•≠1

M )
2

img
1

¯̂
M : CŒ(U•+1

M ) ≠æ CŒ(U•
M)

2 . (2.4.4)

To get an idea about generalized Dolbeault cohomology, it is useful to consider it first

for some simple cases as follows.
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(a) When M is a complex manifold, The canonical line bundle of the GCS, as defined

in Example 2.3.1, is just ·(n,0)
T

ú
M and LM = T

1,0
M ü (T ú

M)0,1. One can see that

U
•
M = üp≠q=• ·(p,q)

T
ú
M.

So in this case, the generalized Dolbeault cohomology is just

GH
•
¯̂(M) = üp≠q=•H

q(M, �p(M)) ,

= üp≠q=•H
p,q(M).

(2.4.5)

(b) When (M, Ê) is a symplectic manifold, the canonical bundle of the GCS, as defined

in Example 2.3.2, is generated by e
iÊ and its null space is

LM = {X ≠ iÊ(X, ·)| X œ TM ¢ C} .

By [37, Theorem 2.2], one can see that

U
•
M = {e

iÊ(e �
2i ÷)| ÷ œ ·n≠•

T
ú
M ¢ C},

where � is the interior product with the bivector ≠Ê
≠1. Hence, the generalized

Dolbeault cohomology is isomorphic to the complex de Rham cohomology of M

GH
•
¯̂(M) = H

n≠•(M ; C). (2.4.6)

Note that, after a B-field transformation of a GCS JM on a smooth manifold M , a

local section of the canonical line bundle of (JM)B is of the form e
B · „ where „ is a

local section of the canonical line bundle of JM . Hence, the canonical line bundle of the

deformed structure is

(UM)B = e
B · U ,

with the +i-eigenbundle (LM)B as defined in 2.3.7. So, for each i œ Z, we get another

decomposition

·•
T

ú
M ¢ C =

nn

i=≠n

(UM)i
B , where (UM)i

B = e
B

U
i
M .

Then for — œ C
Œ(U i

M),

d(eB
—) = e

B
d— = e

B
ˆ— + e

B ¯̂—,

where e
B

ˆ— œ C
Œ((UM)i+1

B ) and e
B ¯̂— œ C

Œ((UM)i≠1

B ). Hence,

( ¯̂
M)B = e

B ¯̂
Me

≠B (2.4.7)



Chapter 2. GC Structures and related notions 39

and

(ˆM)B = e
B

ˆMe
≠B

. (2.4.8)

The cohomology of the Z-graded complex {C
Œ((UM)i

B), ( ¯̂
M)B}, denoted by GH

( ¯̂
M )B

(M),

is defined as

GH
•
¯̂

B
(M) :=

ker
1
( ¯̂

M)B : C
Œ((UM)•

B) ≠æ C
Œ((UM)•≠1

B )
2

img
1
( ¯̂

M)B : CŒ((UM)•+1

B ) ≠æ CŒ((UM)•
B)

2 . (2.4.9)

Hence, by equation (2.4.7), a B-field transformation preserves the generalized Dolbeault

cohomology of M up to isomorphism

GH
•
¯̂

B
(M) ≥= GH

•
¯̂(M). (2.4.10)

2.4.2 Associated Lie algebroid cohomology

Consider the +i-eigenbundle LM over the GC manifold M . Both the triplets (LM , [ , ], fl)

and (LM , [ , ], fl) define the structure of a Lie algebroid. Here, [ , ] denotes the Courant

bracket as defined in (2.3.2), and fl : (TM ü T
ú
M) ¢ C ≠æ TM ¢ C represents the

projection map. By identifying L
ú
M with LM via the symmetric bilinear form defined in

(2.3.1), we then obtain two di�erential operators as follows:

dL : C
Œ(·•

L
ú
M) ≠æ C

Œ(·•+1
L

ú
M) ; (2.4.11)

dL : C
Œ(·•

LM
ú) ≠æ C

Œ(·•+1
LM

ú) . (2.4.12)

In particular, for any Ê œ C
Œ(·n

LM) and Xi œ C
Œ(LM) for all i œ {1, · · · , n + 1}, we

have

dLÊ(X1, · · · , Xn+1) =
n+1ÿ

i=1

(≠1)i+1
fl(Xi)(Ê(X1, · · · , X̂i, · · · , Xn+1))

+
ÿ

i<j

(≠1)i+j
Ê([Xi, Xj], X1, · · · , X̂i, · · · , · · · , X̂j, · · · , Xn+1) ,

The associated Lie algebroid cohomology corresponding to the complexes {C
Œ(·•

L
ú
M), dL}

and {C
Œ(·•

LM
ú), dL}, are denoted by H

•(LM) , and H
•(LM) , respectively, and are de-

fined as follows:
H

•(LM) := ker(dL : ·•
L

ú
M ≠æ ·•+1

L
ú
M)

img(dL : ·•≠1L
ú
M ≠æ ·•Lú

M) .

H
•(LM) := ker(dL : ·•

LM
ú ≠æ ·•+1

LM
ú)

img(dL : ·•≠1LM
ú ≠æ ·•LM

ú)
.

(2.4.13)
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To understand the associated Lie algebroid cohomology, it is helpful to start with some

simple examples. Let us explore two cases outlined in [72, Section 3.2].

1. In the case of a complex structure, such as in Example 2.3.1, the Lie algebroid

LM is given by T
0,1

M ü (T ú
M)1,0 while dL = ¯̂ is the usual ¯̂-operator for a

complex manifold. The associated Lie algebroid complex is a sum of usual Dolbeault

complexes, resulting in

H
•(LM) =

n

p+q=•
H

p(M, ·q
T

1,0
M) .

2. In the case of a symplectic structure, as in Example 2.3.2, the Lie algebroid LM

is the graph of iÊ, and is, therefore, isomorphic to TM ¢ C as a Lie algebroid.

Consequently, its associated Lie algebroid cohomology is simply the complex de

Rham cohomology, given by

H
•(LM) = H

•(M, C) .

2.4.3 Relation between these two cohomologies

Let (M, JM) denote a 2n-dimensional GC manifold with the canonical bundle UM and

the +i-eigenbundle LM . In accordance with the integrability condition mentioned in (3)

of Definition 2.3.3, the exterior derivative d induces the map

d : C
Œ(UM) ≠æ C

Œ(LM · UM) .

With the identification L
ú
M = LM , we can establish U

i
M = ·n≠i

L
ú
M ¢ UM where U

i
M is

defined as in (2.4.1). Thus, the di�erential operator ¯̂
M can be understood as

¯̂
M : C

Œ(·n≠i
L

ú
M ¢ UM) ≠æ C

Œ(·(n≠i)+1
L

ú
M ¢ UM) , for ≠n Æ i Æ n

extending from d : C
Œ(UM) ≠æ C

Œ(Lú
M ¢ UM) via the rule

¯̂
M(– ¢ —) = dL– ¢ — + (≠1)|–|

– ¢ d— ,

where – œ C
Œ(·n≠i

L
ú
M) and — œ C

Œ(UM) .

This demonstrates that the di�erential operator ¯̂
M is e�ectively derived from the

Lie algebroid deRham operator dL. Put di�erently, we can interpret the generalized
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Dolbeault cohomology as a Lie algebroid cohomology with coe�cients in the canonical

line bundle of the GC manifold. With this understanding, we conclude this chapter.

————— ¶ —————
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Chapter 3

Strong Generalized Holomorphic

Fiber Bundles and Induced

Foliations on Generalized Complex

Manifolds

Generalized complex (GC) geometry encompasses both complex and symplectic struc-

tures, as previously discussed. An elementary example illustrating a generalized complex

structure (GCS) neither of complex nor symplectic type is the product of a complex and

a symplectic manifold, demonstrated in Example 2.1.4. More broadly, the product GCS,

as outlined in Example 2.3.4, is a straightforward instance derived from two given GC

manifolds. However, for more intricate examples, a natural approach should involve con-

sidering fiber bundle theory over a GC manifold, where the fiber itself is a GC manifold,

thus locally inducing the GC structure from the two given GC manifolds. For a detailed

study of general fiber bundle theory, we refer to [85,140] and the references therein.

The main objective of this chapter is twofold. Firstly, we introduce the concept of

strong generalized holomorphic (SGH) fiber bundles and explore various examples of SGH

fiber bundles. In this framework, we also establish the notion generalized holomorphic

(GH) Picard group. Our focus is particularly on providing a comprehensive description of

GH tangent and GH cotangent bundles, which serve as the foundational elements of this

thesis. Secondly, we delve into the foliation induced by a GCS and provide a connection

between transverse geometry and GH tangent and cotangent bundles. In particular, we

43
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illustrate that by imposing certain conditions on the leaf space of the base GC manifold,

SGH fiber bundles provide a further understanding of the transverse geometry of the base

GC manifold. We also provide examples to demonstrate that not all SGH fiber bundles

derive from the leaf space, even if the leaf space is a smooth manifold. For more details on

the transverse geometry of a foliation and its leaf space, we refer to [6,117,118,121,145,146]

and the references therein. This chapter is based on [127, Sections 3-5, 10 and 12-13] and

splits into four sections:

1. Strong generalized holomorphic fiber bundles (Section 3.1).

2. Generalized holomorphic tangent and generalized holomorphic cotangent bundles

(Section 3.2).

3. Generalized holomorphic Picard groups (Section 3.3)

4. Induced foliations on GC manifolds (Section 3.4).

3.1 Strong generalized holomorphic fiber bundles

In this section, we define strong generalized holomorphic (SGH) fiber bundles and explore

various examples of SGH fiber bundles. As a fiber bundle, the total space of an SGH

fiber bundle admits a GCS that is locally a product GCS, induced from both the base

and fiber; see Definition 3.1.1. In the context of vector bundles, SGH vector bundles are

precisely the GH vector bundles defined by Gualtieri and Lang et al. ( [70,103]). Similarly,

in the realm of principal bundles, they are the GH principal bundles analyzed by Wang

( [154, Example 4.2]). We elucidate SGH fiber bundles by analyzing their transition maps

in Theorem 3.1.1. Additionally, we investigate special cases, such as when the GCS of

the fiber or the base manifold is induced by symplectic structures (see Lemma 3.1.1 and

Lemma 3.1.2) or complex structures (see Lemma 3.1.3).

Let (M, JM) be a generalized complex (GC) manifold. Then JM can be written as

JM =

Q

ca
≠JM —M

BM J
ú
M

R

db (3.1.1)

where JM œ End(TM), BM œ �2(M) and —M œ X2(M). Let Di�JM (M) denote the
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subgroup of Di�(M) defined by

Di�JM (M) := {„ œ Di�(M) | „ is a GH automorphism of (M, JM)} . (3.1.2)

Definition 3.1.1. Let G be a connected Lie group. A smooth fiber bundle F Òæ E
fi≠æ M

over a GC manifold (M, JM) with a typical fiber (F, JF ) and structure group G is called

an strong generalized holomorphic (SGH) fiber bundle if

1. E is a GC manifold,

2. there is an open cover {U–} of M and a family of local trivializations {„–} of E

{„– : fi
≠1(U–) ≠æ U– ◊ F}

such that every „– is a GH homeomorphism when U– ◊ F is endowed with the

standard product GC structure.

In addition, if F is a vector space and G is a subgroup of GL(F ), then we say that E is

an SGH vector bundle over M .

Example 3.1.1. Let M1 be a complex manifold and V1 be a holomorphic vector bundle

over M1. Let M2 be a symplectic manifold and V2 be a flat vector bundle over M2. Then

¢i Prú
i (Vi) ≠æ M1 ◊ M2 is an SGH vector bundle where Pri : M1 ◊ M2 ≠æ Mi is the

natural projection map onto i-th component. Here M1 ◊M2 is considered with the product

GCS.

The following theorem is a generalization of [103, Proposition 3.2], providing a char-

acterization of SGH fiber bundles in terms of their transition maps.

Theorem 3.1.1. Let E be a fiber bundle over (M, JM) with typical fiber (F, JF ) and struc-

ture group G. Let {U–, „–} be a family of local trivializations with transition functions

„–— as follows,

{„– : fi
≠1(U–) ≠æ U– ◊ F} , „–— : U–— = U– fl U— ≠æ G ,

where „–—(x) = „–|fi≠1(x) ¶ „
≠1

— (x, ·) for all x œ U–— . Then, E is SGH fiber bundle over

M with local trivializations {U–, „–} if and only if

1. „–—(m) œ Di�JF (F ) for all m œ U–—,
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2. For each (m, f) œ M ◊ F , the following equations hold:

(flf )ú ¶ („–—)úm ¶ JU–—
= JF ¶ (flf )ú ¶ („–—)úm ,

(flf )ú ¶ („–—)úm ¶ —U–—
= 0 ,

BF ¶ (flf )ú ¶ („–—)úm = 0 ,

for all (m, f) œ M ◊ F , where JU–—
, JF , —U–—

, BF are as in equation (3.1.1), and the

map flf : G ≠æ F is defined as flf (g) := g · f .

Proof. Consider the map

Â–— = „– ¶ „
≠1

— : U–— ◊ F ≠æ U–— ◊ F . (3.1.3)

Note that Â–—(m, f) = (m, „–—(m) · f) for all (m, f) œ U–— ◊ F .

First, we claim that E is an SGH fiber bundle if and only if Â–— is a GH automorphism

for any fixed –, —. Indeed, if Â–— is a GH automorphism, then
Q

ca
(Â–—)ú 0

0 (Â—–)ú

R

db ¶ JU–—◊F = JU–—◊F ¶

Q

ca
(Â–—)ú 0

0 (Â—–)ú

R

db , (3.1.4)

where JU–—◊F = (Jij)2◊2 is the product GC structure on U–— ◊ F . Then
Q

ca
(„≠1

– )ú 0

0 („–)ú

R

db ¶ (Jij)2◊2 ¶

Q

ca
(„–)ú 0

0 („≠1

– )ú

R

db (3.1.5)

is an endomorphism of Tfi
≠1(U–)üT

ú
fi

≠1(U–) that produces the GC structure on fi
≠1(U–).

By equation (3.1.4) this structure is independent of the choice of „–. Hence, we obtain a

GC structure on E such that „– becomes GH homeomorphism. The converse is obvious.

Now, it is enough to show that Â–— is a GH automorphism if and only if (1) and (2)

are satisfied.

The product GC structure on U–— ◊ F can be expressed as

J11 =

Q

ca
≠JU–—

0

0 ≠JF

R

db , J21 =

Q

ca
BU–—

0

0 BF

R

db ,

J12 =

Q

ca
—U–—

0

0 —F ,

R

db , J22 =

Q

ca
J

ú
U–—

0

0 J
ú
F

R

db .
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Upon simplification, the expression for equation (3.1.4), at (m, f) œ U–— ◊ F , can be

represented as:

(Â–—)ú(m,f) ¶ J11 = J11 ¶ (Â–—)ú(m,f) , (3.1.6)

(Â–—)ú(m,f) ¶ J12 = J12 ¶ (Â—–)ú
(m,f)

, (3.1.7)

(Â—–)ú
(m,f)

¶ J21 = J21 ¶ (Â–—)ú(m,f) , (3.1.8)

(Â—–)ú
(m,f)

¶ J22 = J22 ¶ (Â—–)ú
(m,f)

. (3.1.9)

Since Â–—(m, f) = (m, „–—(m) · f) where „–—(m) œ G, the map

(Â–—)ú(m,f) : TmU–— ü TfF ≠æ TmU–— ü T„–—(m)·fF

can be expressed as

(Â–—)ú(m,f) =

Q

ca
IdU–—

0

(flf )ú ¶ („–—)úm („–—(m))ú

R

db , (3.1.10)

and the map

(Â—–)ú
(m,f)

: T
ú
mU–— ü T

ú
f F ≠æ T

ú
mU–— ü T

ú
„–—(m)·fF

can be expressed as

(Â—–)ú
(m,f)

=

Q

ca
IdU–—

(„—–)ú
m ¶ fl

ú
„–—(m)·f

0 („—–(m))ú

R

db . (3.1.11)

From equations (3.1.6) and (3.1.10), we have

(„–—(m))ú ¶ (≠JF ) = (≠JF ) ¶ („–—(m))ú (3.1.12)

and

(flf )ú ¶ („–—)úm ¶ (≠JU–—
) = (≠JF ) ¶ (flf )ú ¶ („–—)úm . (3.1.13)

Using equations (3.1.7), (3.1.10) and (3.1.11), we get

(„–—(m))ú ¶ —F = —F ¶ („—–(m))ú
, (3.1.14)

(flf )ú ¶ („–—)úm ¶ —U–—
= 0 , (3.1.15)

and

—U–—
¶ („—–)ú

m ¶ fl
ú
„–—(m)·f = 0 . (3.1.16)
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From equations (3.1.8), (3.1.10) and (3.1.11), we have

(„—–(m))ú ¶ BF = BF ¶ („–—(m))ú , (3.1.17)

(„—–)ú
m ¶ fl

ú
„–—(m)·f ¶ BF = 0 , (3.1.18)

and

BF ¶ (flf )ú ¶ („–—)úm = 0 . (3.1.19)

From equations (3.1.9) and (3.1.11), we have

(„—–(m))ú ¶ J
ú
F = J

ú
F ¶ („—–(m))ú (3.1.20)

and

(„—–)ú
m ¶ fl

ú
„–—(m)·f ¶ J

ú
F = J

ú
U–—

¶ („—–)ú
m ¶ fl

ú
„–—(m)·f . (3.1.21)

Now, we can see that equations (3.1.12), (3.1.14), (3.1.17) and (3.1.20) hold if and only

if Q

ca
(„–—(m))ú 0

0 („—–(m))ú

R

db ¶ JF = JF ¶

Q

ca
(„–—(m))ú 0

0 („—–(m))ú

R

db (3.1.22)

where JF =

Q

ca
≠JF —F

BF J
ú
F

R

db as in (3.1.1). Therefore, equations (3.1.12), (3.1.14), (3.1.17)

and (3.1.20) hold if and only if „—–(m) œ Di�JF (F ) . Note that, by skew-symmetry,

—
ú
U–—

= ≠—U–—
and B

ú
F = ≠BF . Since (m, f) is arbitrary, considering duals, we observe

that

• equation (3.1.15) holds if and only if equation (3.1.16) holds,

• equation (3.1.19) holds if and only if equation (3.1.18) holds,

• equations (3.1.13) and (3.1.21) are equivalent to each other.

Therefore, Â–— is a GH automorphism if and only if equations (3.1.13), (3.1.15), (3.1.19)

and (3.1.22) hold. Hence, Â–— is a GH automorphism if and only if (1) and (2) are

satisfied as desired.

Definition 3.1.2. Let E be an SGH fiber bundle over a GC manifold (M, JM) and U ™ M

be an open set. A smooth section s : U ≠æ E is called a GH section if s is a GH map

from (U, JM |U) to (E, JE).
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Definition 3.1.3. Given any two SGH fiber bundles E and E
Õ over M , a smooth map

„ : E ≠æ E
Õ is called an SGH bundle homomorphism if

1. „ is a bundle homomorphism between E and E
Õ as smooth fiber bundles.

2. „ is a GH map.

If, in addition, „ is a GH homeomorphism, then „ : E ≠æ E
Õ is called SGH bundle

isomorphism.

3.1.1 The case when either the fiber or the base manifold is a

symplectic manifold

In this subsection, we consider the special case of SGH fiber bundles, where the gener-

alized complex structure (GCS) on either the fiber or the base manifold is induced by a

symplectic structure. Our objective is to provide a characterization of this case.

Let E be an SGH fiber bundle over a GC manifold (M, JM). Let a symplectic manifold

(F, Ê) be its typical fiber. The GC structure on F can be expressed as

JF =

Q

ca
0 ≠Ê

≠1

Ê 0

R

db .

Note that JF = J
ú
F = 0 and BF = ≠—

≠1

F = Ê. Since Ê is non-degenerate and f œ F is

arbitrary, for each m œ M , equation (3.1.19) holds if and only if („–—)úm = 0, i.e., „–— is

a locally constant map on U–—. From equation (3.1.17), for X, Y œ TM , we have

Ê = („–—(m))ú ¶ Ê ¶ („–—(m))ú

=∆ Ê(X) = („–—(m))ú(Ê((„–—(m))ú(X)))

=∆ Ê(X, Y ) = Ê((„–—(m))ú(X), („–—(m))ú(Y ))

=∆ Ê(X, Y ) = („–—(m))ú
Ê(X, Y ) .

Lemma 3.1.1. Any SGH fiber bundle E over a GC manifold M with a symplectic fiber

(F, Ê) is a smooth symplectic fiber bundle with a flat connection.

Let E be an SGH fiber bundle over a symplectic manifold (M, Ê) with a typical fiber
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(F, JF ). The GC structure on the base is given by

JM =

Q

ca
0 ≠Ê

≠1

Ê 0

R

db .

Note that JM = J
ú
M = 0 and BM = ≠—

≠1 = Ê. Since Ê is nondegenarate, by equation

(3.1.15), for any (m, f) œ U–— ◊ F , (flf )ú ¶ („–—)úm = 0. Thus, („–—)úm = 0, i.e., „–— is

locally constant on U–—. So, equations (3.1.13) and (3.1.19) are also satisfied. Hence, we

have the following.

Lemma 3.1.2. E be a smooth fiber bundle over a symplectic manifold (M, Ê) with a typ-

ical fiber (F, JF ). Then, E is SGH fiber bundle over M with local trivializations {U–, „–}

if and only if

1. „–—(m) œ Di�JF (F ) for all m œ U–—,

2. „–— is constant on U–—, that is, E admits a flat connection.

3.1.2 The case when the fiber is a complex manifold

In this subsection, we examine a specific instance of SGH fiber bundles, focusing on the

case where the GCS on the fiber is induced by a complex structure. Our goal is to

precisely characterize this scenario.

Let E be an SGH fiber bundle over a GC manifold (M, JM) with typical fiber a

complex manifold (F, JF ) where JF is a complex structure on F . Then the naturally

induced GC structure on F can be written as

JF =

Q

ca
≠JF 0

0 J
ú
F

R

db .

We can see that BF = —F = 0 and also by equation (3.1.22), for any m œ U–—, „–—(m) is

a biholomorphic automorphism.

Proposition 3.1.1. Let (M, JM) be a GC manifold and (N, JN) be a complex manifold

with a complex structure JN . Then, for any smooth map Â : M ≠æ N , the following are

equivalent.
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1. Â is a GH map.

2. For any open set U µ M , Â : U ≠æ N is a GH map.

3. Âú ¶ JM = JN ¶ Âú , Âú ¶ —M = 0 .

Here JM is as in (3.1.1) and N is considered as a GC manifold with the natural GC

structure induced by JN .

Proof. Follows from Lemma 2.2.2.

By Proposition 3.1.1 and equation (3.1.15), for any f œ F , we can show that flf ¶ „–—

is a GH map. Thus, we have the following result.

Lemma 3.1.3. Let E be a smooth fiber bundle over a GC manifold (M, JM) with typical

fiber a complex manifold (F, JF ). Let {U–, „–} be a family of trivial localization. Then E

is an SGH fiber bundle over M with local trivialization {U–, „–} if and only if

1. for each m œ U–—, „–—(m) is a biholomorphic map,

2. for any f œ F , flf ¶ „–— is a GH map.

Example 3.1.2. Let M be a GC manifold and M̃ be a covering space. Let K Æ fi1(M)

be a subgroup corresponding to M̃ such that M̃/K ≥= M . Note that K Òæ M̃
fi≠æ M is a

principal K-bundle where fi is the covering map. Since fi is a local di�eomorphism, M

induces a GC structure (of the same type) on M̃ such that fi becomes a GC map. Let

fl : K ≠æ GLl(C) be a representation. Define

M̃ ◊fl Cl := M̃ ◊ Cl
/ ≥ ,

where (m, z) ≥ (n, w) if and only if n = m · g
≠1 and w = fl(g) · z for some g œ K. Since

K is discrete, the transition maps of the associated vector bundle M̃ ◊fl Cl ≠æ M are

locally constant. Hence, by Lemma 3.1.3, M̃ ◊fl Cl ≠æ M is a (flat) SGH vector bundle

over M .

Remark 3.1.1. Note that, when E denotes a vector bundle over a GC manifold M , using

Lemma 3.1.3, we can see that E is an SGH vector bundle if and only if it is a GH vector

bundle in the sense described by Lang et al. ( [103, Definition 3.1]).
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3.2 Generalized holomorphic tangent and general-

ized holomorphic cotangent bundles

In this section, we demonstrate the existence of two natural SGH vector bundles asso-

ciated with any regular GC manifold. These bundles are referred to as the generalized

holomorphic (GH) tangent bundle and the generalized holomorphic (GH) cotangent bun-

dle. Essentially, they depict the tangent and cotangent bundles of a regular GC manifold

in the transverse direction, evident from their local description.

Let M be a GC manifold. Let E be an SGH vector bundle of real rank 2l over M .

Consider the sheaf E of GH sections of E over M , that is, for any open set U ™ M ,

�(U, E) := {s œ C
Œ(U, E) | s is a GH section of E over U} .

Note that E is a sheaf of OM -modules. On a trivializing neighborhood U ,

E|U ≥= U ◊ Cl
,

so that �(U, E) ≥=
m

l OM(U) . This implies that E is a locally free sheaf of complex rank

l over M . (We will henceforth follow the convention of denoting the sheaf of GH sections

of a GH vector bundle by the corresponding bold letter.)

Conversely, given any locally free sheaf F of OM -modules of rank l, one can construct

an SGH vector bundle in the following manner. Let {U–} be a covering of M such that

F|U– is free and
„Â– : F|U– ≠æ

n

l

OU– ,

is the corresponding isomorphism. Now consider the isomorphism of sheaves of modules

‰Â–— = „Â– ¶ ( „Â—
≠1

) :
n

l

OU–flU—
≠æ

n

l

OU–flU—
.

Since every endomorphism of m
l OU– is represented by an l ◊ l matrix, ‰Â–— defines an

l◊ l matrix („–—) whose elements are GH functions over U– flU— . One can check that the

matrices satisfy the cocycle conditions and thus they can be regarded as the transition

maps of an SGH vector bundle EF of real rank 2l over M such that

EF
≥= F as OM -modules .

Hence, we get the following.



Chapter 3. Strong GH fiber bundles and Foliations on GC manifolds 53

Proposition 3.2.1. Let M be a GC manifold and l œ N. Consider the following two sets

El := Set of all isomorphism classes of SGH vector bundles of real rank 2l

over M ,

and

Sl := Set of all isomorphism class of locally free OM -modules of complex rank l .

Then the association E ≠æ E induces an one to one correspondence between El and Sl.

The inverse map is given by the association F ≠æ EF .

Now, let (M, JM) be a regular GC manifold of type k œ N fi {0}. Let LM and LM are

its corresponding +i and ≠i-eigenspace sub-bundles of (TM ü T
ú
M) ¢ C respectively.

Define

Gú
M := LM fl (T ú

M ¢ C) . (3.2.1)

By [103, Proposition 3.13], Gú
M is an SGH vector bundle over M . It is called the

generalized holomorphic (GH) cotangent bundle. The GH sections of Gú
M are called GH

1-forms. Since Gú
M is B-field transformation invariant, locally (cf. (2.3.8), (2.3.9)), the

space of GH 1-forms is of the form

SpanOU
{dz1 · · · dzk} .

This shows that Gú
M, the sheaf of GH sections of Gú

M , is a locally free sheaf of OM -

modules of finite rank k. Define

GM := HomOM (Gú
M,OM) . (3.2.2)

Since Gú
M is a locally free sheaf of OM -modules of rank k, GM will also be a locally free

sheaf with the same rank. Then, by Proposition 3.2.1, the corresponding SGH vector

bundle is defined as

GM := EGM . (3.2.3)

Here GM as given in Proposition 3.2.1. It is called generalized holomorphic (GH) tan-

gent bundle. The GH sections of GM are called GH vector fields. Since Gú
M is B-

transformation invariant, GM is also invariant under B-transformation. Thus, locally

(cf. (2.3.8)), the space of GH vector fields is of the form

SpanOU
{ ˆ

ˆz1

, · · · ,
ˆ

ˆzk
}
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Note that GM and Gú
M are dual to each other as OM -modules of their GH sections. But,

we can say more. Observe that C
Œ(GM) = GM ¢OM C

Œ
M . Then

C
Œ(Gú

M) = Gú
M ¢OM C

Œ
M

≥= HomOM (GM,OM) ¢OM C
Œ
M

≥= HomOM ¢OM
CŒ

M
(GM ¢OM C

Œ
M , OM ¢OM C

Œ
M )

(by [30, Proposition 7, Section 5, Chapter II])

= HomCŒ
M

(CŒ(GM), C
Œ
M )

= C
Œ((GM)ú) .

(3.2.4)

Here, (GM)ú is the dual SGH vector bundle of GM . This shows that GM and Gú
M are

also dual to each other as C
Œ
M -modules of their smooth sections, that is, they are dual to

each other as complex vector bundles over M .

Remark 3.2.1. We note that the definition of GM , given in [103, p.16], as GM :=

LflTM ¢C is flawed as it varies with B-transformations. In other words, it is not always

the case that GM and e
B(LM) fl TM ¢ C are same, while Gú

M = e
B(LM) fl T

ú
M ¢ C for

any B-transformation. Therefore, this does not guarantee duality with respect to Gú
M .

3.3 Generalized holomorphic Picard groups

In this section, we introduce the GH Picard group and present a generalized form of the

holomorphic short exact sequence in Theorem 3.3.1. Essentially, we focus on SGH vector

bundles of real rank 2 and establish a group structure for the set of isomorphism classes

of SGH vector bundles of real rank 2 (see Theorem 3.3.2). We follow a similar approach

as outlined in [68] for the holomorphic Picard group.

Let M be a smooth manifold. Let C
Œ,ú
M be the sheaf of smooth Cú-valued functions

on M , and let {Z} denote the locally constant sheaf over M whose stalk at each point

is Z. Consider the exponential map C ≠æ Cú defined by exp(z) = e
2fii z. Then for any

open set U ™ M and f œ C
Œ
M (U), the map exp induces a map, again denoted by exp,

exp : C
Œ
M (U) ≠æ C

Œ,ú
M (U) (3.3.1)

defined by exp(f)(x) = e
2fii f(x) for all x œ U . This induces a morphism of sheaves, again
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denoted by exp,

exp : C
Œ
M ≠æ C

Œ,ú
M . (3.3.2)

Note that any k œ {Z}(U) is in the kernel of exp, that is, {Z}(U) ™ ker(exp) where exp

is as in (3.3.1). To show the other side, consider f = w + iv œ C
Œ
M (U) such that

exp(w + iv) = 1 .

Here v, w : U ≠æ R are smooth maps. Then one observes that, for all x œ U ,

e
≠2fiv(x)(cos 2fiw(x) + i sin 2fiw(x)) = 1 ,

=∆ e
≠2fiv(x)(cos 2fiw(x)) = 1 and e

≠2fiv(x)(sin 2fiw(x)) = 0 ;

=∆ cos 2fiw(x) > 0 and sin 2fiw(x) = 0 (as e
≠2fiv(x)

> 0) .

Then there exists a smooth map g : U ≠æ Z µ R such that 2w(x) = g(x) for all x œ U .

Thus w is a locally constant function. Now for any x œ U , g(x) is even. Thus, for all

x œ U , w(x) œ Z and cos 2fiw(x) = 1 . This implies e
≠2fiv(x) = 1 and so v(x) = 0. This

shows that f œ {Z}(U), and hence

ker(exp) = {Z}(U) .

Thus we get the following exact sequence of sheaves over M ,

0 {Z} C
Œ
M C

Œ,ú
M

exp

. (3.3.3)

To show that exp is a surjective map of sheaves, it is enough to show that for any x œ M ,

the map C
Œ
M,x

exp≠≠æ C
Œ,ú
M,x is onto. For that, it is enough to show that, for any simply

connected open set U µ M , the map exp, in (3.3.1), is onto.

Let U µ M be a simply connected open set and g œ C
Œ,ú
M (U). Note that the map

C
exp≠≠æ Cú is a holomorphic covering map and C is the universal cover. Since U is simply

connected, there exists a unique smooth map f œ C
Œ
M (U) such that the following diagram

commutes
C

U

Cú

exp

f

g

; that is, g = exp(f) .

Thus the map in (3.3.2) is onto. This implies the following



56 3.3. Generalized holomorphic Picard groups

Proposition 3.3.1. Let M be a smooth manifold. Then we have the following short

exact sequence of sheaves

0 {Z} C
Œ
M C

Œ,ú
M 0exp

. (3.3.4)

where C
Œ
M , C

Œ,ú
M and {Z} are sheaves over M with their usual meanings.

Now, let M be a GC manifold and let Oú
M be the sheaf of Cú-valued GH functions

over M . One can see that Oú
M is a subsheaf of OM which is again subsheaf of C

Œ
M .

Note that, given any open set U ™ M and any smooth map f : U ≠æ C, we have

d(exp(f)) = exp(f) df . This implies

dL(exp(f)) = exp(f) dLf

where dL as in (2.4.11). By Lemma 2.3.1, we can see that

f œ OM(U) if and only if exp(f) œ Oú
M(U) .

This shows that we can restrict the short exact sequence in Proposition 3.3.1 to OM which

gives us the following.

Theorem 3.3.1. Let M be GC manifold. Then we have the following short exact sequence

of sheaves over M

0 {Z} OM Oú
M 0exp

. (3.3.5)

3.3.1 GH Picard Groups

Let E be an SGH line bundle over a GC manifold M with local trivializations {U–, „–}.

The transition functions „–—, as defined in Theorem 3.1.1, are clearly non-vanishing GH

functions by Lemma 3.1.3, that is, „–— œ Oú
M(U– fl U—) , and satisfy

„–— · „—– = 1 ;

„–— · „—“ · „“– = 1 .

(3.3.6)

For any collection of nonzero GH functions {g– œ Oú
M(U–)} , we can define an alternative

trivialization of E over {U–} by

„
Õ

– = g– · „– ;
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and the corresponding transition functions {„
Õ
–—} will then be given by

„
Õ

–— = g–

g—
· „–— . (3.3.7)

One can see that any other trivialization of E over {U–} can be obtained in this way.

On the other hand, given any collection of GH functions {„–— œ Oú
M(U– fl U—)} ,

satisfying (3.3.6), we can construct an SGH line bundle E with transition functions

{„–—} by taking the union of U– ◊C overall – and identifying z ◊C in U– ◊C and U— ◊C

via multiplication by „–—(z). Any two such collections of GH function {„–— , „
Õ
–— œ

Oú
M(U– fl U—)} , satisfying (3.3.6), define isomorphic SGH line bundles over {U–} if and

only if there exists a collection of nonzero GH functions {g– œ Oú
M(U–)} , satisfying

(3.3.7).

Note that the transition functions {„–— œ Oú
M(U– fl U—)} of E over {U–} represents

a �ech 1-cochain on M with coe�cients in Oú
M and the relations in (3.3.6) show that

{„–—} is indeed a �ech 1-cocycle. Moreover, by the last two paragraphs, we can see

that any two cocycles {„–—} and {„
Õ
–—} define isomorphic SGH line bundles if and only if

{„–— · („Õ
–—)≠1} is a �ech co-boundary. This implies that any SGH bundle isomorphism

class of an SGH line bundle over M defines a unique element in H
1(M,Oú

M) and vice

versa.

Consider the set E1 as defined in Proposition 3.2.1. We can give a group structure,

denoted by · , on E1 where multiplication is given by tensor product and inverses by dual

bundles. Denote the group (E1 , ·) by GPic(M) , that is,

GPic(M) := (E1 , ·) . (3.3.8)

By the last paragraph, we have proved the following.

Theorem 3.3.2. For any GC manifold M , GPic(M) ≥= H
1(M,Oú

M) as groups.

Definition 3.3.1. GPic(M) is called the generalized holomorphic (GH) Picard Group of

M .

3.4 Induced foliations on GC manifolds

In this section, we discuss the leaf space associated with the regular symplectic foliation

S with a transverse complex structure of a GCS. In general, the leaf space M/S might
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lack the Hausdor� property, as illustrated in Example 3.4.2. Nonetheless, assuming M/S

is a smooth orbifold, we provide a structured description of S in Theorem 3.4.1. For

more details on the general theory of orbifolds and related notions, we refer to [2, 8, 15,

16,31,46,75–78,87–91,93,94,107,117,131,135,159] and the references therein.

Let (M, JM) be a GC manifold with LM representing its +i-eigenbundle of JM . We

consider the natural projection fl : (TM ü T
ú
M) ¢ C ≠æ TM ¢ C and fl(LM) = EM .

Then, �M ¢C = EM flEM forms a real distribution of variable dimension within TM ¢C.

According to Theorem 2.1.3 and Theorem 2.1.4, �M integrates (in the sense of Sussmann,

cf. [70, Theorem 3.9]) to a singular symplectic foliation S , implying that JM induces a

generalized symplectic foliation.

However, around a regular point of type k, as indicated by (2.3.9), �M induces a

regular symplectic foliation of real codimension 2k with a transverse complex structure

(cf. [70, Proposition 3.11-3.12]), that is S becomes a regular symplectic foliation around

a regular point. Particularly, Ê|�M ¢C acts as a symplectic form on �M ¢ C = ker(� · �),

where � defines a complex structure transverse to �M . Here, Ê and � are defined in

Definition 2.3.3. With this characterization, the following proposition naturally follows.

Proposition 3.4.1. ( [72, Proposition 4.2]) On a regular neighborhood of a GC manifold,

the leaf space M/S of the regular symplectic foliation S admits a canonical integrable

complex structure.

Proposition 3.4.1 simplifies the understanding of the leaf space around a regular point.

Therefore, grasping the induced symplectic foliation on regular GC manifolds becomes

more straightforward.

So, consider M to be a regular GC manifold of dimension 2m and type k. Let S

denote the associated symplectic foliation of complex codimension k which is transversely

holomorphic. Let TS be the corresponding involutive subbundle of TM of rank 2m≠2k,

called the tangent bundle of the foliation. The normal bundle of the foliation, denoted

by N, is defined by

N := TM/TS .

By Proposition 3.4.1, N is an integrable subbundle with a complex structure. Then N

has a decomposition given by the complex structure

N ¢ C = N1,0 ü N0,1
. (3.4.1)
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As the exact sequence

0 TS TM N 0

splits smoothly, N may be regarded as a subbundle of TM complementary to TS , and

we may identify N1,0 with GM . Define

M := M/S (3.4.2)

to be the leaf space of the foliation S . This is a topological space that has the quotient

topology induced by the quotient map

fĩ : M ≠æ M . (3.4.3)

The map fĩ is open (cf. [117, Section 2.4]).

In general, M could be rather wild. To have a reasonable theory, we assume that

M admits a smooth orbifold structure. Since S is transversely holomorphic, M then

becomes a complex orbifold. Moreover, observe that fĩ is a smooth complete orbifold

map (cf. [27, Definition 3.1]): Namely, for any point x œ M and fĩ(x) œ M , there exist

orbifold charts Ũ and (Ṽ , �fĩ(x)) corresponding to x and fĩ(x), respectively, such that the

following diagram commutes.

Ṽ µopen Ck

�

R2m ∏open Ũ Ṽ /�fĩ(x)

�

M ∏open U V µopen M

˜̃fi

≥=

fĩ

≥=

Pr |R2k

Here �fĩ(x) is the isotropy group corresponding to fĩ(x). The rows of the commutative

diagram are di�eomorphisms of smooth orbifolds and ˜̃fi is the lift of fĩ. One can see from

this diagram that each point y œ M is a regular value of fĩ. Thus, by the preimage

theorem for orbifolds (cf. [27, Theorem 4.2]), fĩ
≠1(y) is an embedded submanifold of real

dimension 2m ≠ 2k for all y œ M . Hence, each leaf is not only an immersed but also a

closed embedded submanifold of M .
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Definition 3.4.1. An open set in M is called a transverse open set if it is a union of

leaves. An open cover U = {U–} is called a transverse open cover of M if each U– is a

transverse open subset of M .

Let S be a leaf of S . By the Tubular Neighborhood Theorem, there exists a transverse

neighborhood (tubular neighborhood) of S which is di�eomorphic to the normal bundle

NS of S. One can see that NS is just the pullback of N via the inclusion map S Òæ M .

Due to the transverse complex structure, N, as well as NS, can be thought of as a

complex vector bundle of complex rank k. Consider the partial connection, known as

the Bott connection (cf. [29, Section 6]), on N which is flat along the leaves. Then its

pullback on NS gives a flat connection. Thus, considering NS as a complex vector bundle,

by [95, Proposition 1.2.5]

NS
≥= S̃ ◊fl Ck

where fl : fi1(S) ≠æ GLk(C) is the linear holonomy representation of fi1(S) and S̃ is the

universal cover of S.

Definition 3.4.2. A 2k-dimensional embedded submanifold of M is called a transversal

section if it is transversal to the leaves of S .

Note that by [117, Proposition 2.20], M admits a Riemannian metric which makes

S into a Riemannian foliation. Since S is an embedded submanifold, T fl S is discrete

for any transversal section T . Then, following the proof of [117, Theorem 2.6], one can

show that the holonomy group of S, Hol(S) is finite. By the di�erentiable slice theorem,

we can indeed assume that the action of Hol(S) on T is linear, that is,

Hol(S) = img(fl) .

We summarise our observations as follows.

Theorem 3.4.1. Let M be a regular GC manifold and let S be the induced symplec-

tic foliation. Assume that M/S has a smooth orbifold structure. Then, we have the

following.

1. Each leaf of S is an embedded closed submanifold of M .

2. The holonomy group of each leaf is finite.
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3. (M, S ) is a regular Riemannian foliation.

4. Around each leaf S, there exists a tubular neighborhood U such that U is di�eomor-

phic to S̃ ◊Hol(S) Ck where S̃ is the universal cover of S and Hol(S) is the holonomy

group of S. Here, Hol(S) acts on Ck via a linear holonomy representation.

Example 3.4.1. Let F be a symplectic manifold and F̃ be its universal cover. Then as

in Example 3.1.2, F̃ ◊fl Cl is a regular GC manifold of type l. The induced symplectic

foliation S is the foliation of F -parameter submanifolds, that is, sets of the form

Sx =
Ó
[m̃, y] | m̃ œ F̃ , y œ [x]

Ô
where [x] := {fl(g) · x | g œ fi1(F )} µ Cl

.

This implies that the leaf space F̃ ◊fl Cl
/S is exactly

Cl
/fl := {[x] | x œ Cl} .

The isotropy group at 0 is img(fl) which is the linear holonomy group. Therefore, we get

that F̃ ◊fl Cl
/S is a smooth orbifold if and only if the linear holonomy group is finite.

Remark 3.4.1. It is tempting to think that the leaf space of a regular GCS is either

manifold or an orbifold. But, it may not be even Hausdor�. The following example

demonstrates this.

Example 3.4.2. Consider the product GCS on M ◊ F where M is a complex manifold

and F is a symplectic manifold. Let N µ F be a closed submanifold such that F\N is

disconnected. Fix m œ M , Consider the open submanifold

Xm = M ◊ F\{m ◊ N} .

Consider the natural regular GCS on Xm induced from M ◊ F . Let (x, f) œ Xm. Then,

the leaf of the induced foliation Sm, through (x, f), is of the following form

S(x,f) =

Y
__]

__[

F if x ”= m ,

(F\N)– if x = m ,

where (F\N)– denotes the connected component of F\N that contains f for x = m. One

can see that the leaf space Xm/Sm is not Hausdro�. Thus, we obtain an infinite family

of regular GC manifolds with non-Hausdor� leaf space.
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3.4.1 Strong generalized Calabi-Yau manifolds and its leaf

spaces

In this subsection, we give some criteria on the GCS so that the leaf space of the associated

symplectic foliation is a smooth torus, and therefore, satisfies the hypothesis that the

leaf space be an orbifold, used in most of our results in this manuscript. This is a

generalization of a result of Bailey et al. [12, Theorem1.9].

Let M
2n be a GC manifold with +i-eigenbundle L of (TM üT

ú
M)¢C. Consider the

bundle w•
T

ú
M ¢ C as a spinor bundle for (TM ü T

ú
M) ¢ C with the following Cli�ord

action

(X + ÷) · fl = iX(fl) + ÷ · fl for X + ÷ œ (TM ü T
ú
M) ¢ C .

Then, there exits a unique line subbundle UM of w•
T

ú
M ¢ C, called the canonical line

bundle associated to the GCS, which is annihilated by L under the above Cli�ord action.

At each point of M , UM is generated by a

fl = e
B+iÊ� ,

where B, Ê are real 2-forms and � = ◊1 · · · · · ◊k is a complex decomposable k-form

where k is the type of the GCS at that point. By [70, 72], the condition L fl L = {0} is

equivalent to the non-degeneracy condition

Ê
n≠k · � · � ”= 0 . (3.4.4)

The involutivity of L, with respect to the Courant bracket, is equivalent to the following

condition on any local trivialization fl of UM ,

dfl = (X + ÷) · fl ,

for some X + ÷ œ C
Œ((TM ü T

ú
M) ¢ C) .

Definition 3.4.3. A GC manifold M of type k is said to be a generalized Calabi-Yau

manifold if its canonical bundle UM is a trivial bundle admitting a nowhere-vanishing

global section fl such that dfl = 0 (cf. [70, 72]). M is called a strong generalized Calabi-

Yau manifold if, in addition, fl is such that � = ◊1 · · · · · ◊k is globally decomposable and

d◊j = 0 for 1 Æ j Æ k.
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Remark 3.4.2. Note that any generalized Calabi-Yau manifold is orientable because we

get a global nowhere-vanishing volume form Ê
n≠k · � · � .

Example 3.4.3.

1. Any type 1 generalized Calabi-Yau manifold is a strong generalized Calabi-Yau man-

ifold.

2. Any 6-dimensional nilmanifold with (b1, b2) œ {(4, 6), (4, 8), (5, 9), (5, 11), (6, 15)}

admits a type 2 strong generalized Calabi-Yau structure (cf. [38, Table 1]) where b1

and b2 are the first and second betti numbers, respectively.

Let M
2n be a compact connected strong generalized Calabi-Yau manifold of type

k. Under some assumptions on the leaves of the induced foliation, we show that the

foliation is simple. To show this, we need to use an extended version of the techniques

used in [12, Section 1.2].

Let fl be a nowhere-vanishing closed section of the corresponding canonical line bundle

UM . We can express fl in the following form

fl = e
B+iÊ · �

where B, Ê are real 2-forms and � = ◊1 · · · · · ◊k is a complex decomposable k-form with

d◊j = 0 for 1 Æ j Æ k. Fix p œ {1, . . . , k}. Let ◊p = Re(◊p) + i Im(◊p) where Re(◊p)

and Im(◊p) denote the real and imaginary parts of ◊p, respectively. First, we show that

[Re(◊p)] and [Im(◊p)] are linearly independent in H
1

dR(M, R).

If possible, let there exist a nontrivial linear combination, say

⁄R[Re(◊p)] + ⁄I [Im(◊p)] = 0 .

Fix m0 œ M and define the map f : M ≠æ R as

f(m) =
⁄

[m0,m]

(⁄R Re(◊p) + ⁄I Im(◊p)) ,

where integral is taken over any path connecting m0 to m œ M . The function f is well-

defined as ⁄R Re(◊p) + ⁄I Im(◊p) is exact. Without loss of generality, let ⁄R ”= 0. Note

that ◊p · ◊p = ≠2i Re(◊p) · Im(◊p). Then the non-degeneracy condition

Ê
n≠k ·

Q

a
kfi

j=1

◊j · ◊j

R

b ”= 0
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implies that

Ê
n≠k ·

Q

cca
kfi

j=1

j ”=p

◊j · ◊j

R

ddb · df ”= 0 .

This shows that df is nowhere vanishing and so, f is a submersion. Therefore, f(M) is

open. However, f(M) is also closed since M is compact. Thus f(M) = R which is a

contradiction. Hence [Re(◊p)] and [Im(◊p)] are linearly independent.

Now, the non-degeneracy condition (3.4.4) is an open condition that gives us the

freedom to choose ◊j œ �1(M, C) (1 Æ j Æ k) such that [Re(◊j)] and [Im(◊j)] are still

linearly independent in H
1(M, Q). Then, we can consider the map

f̃ : M ≠æ Ck
/� ≥=

Ÿ

j

T2 defined as f̃(m) =
n

j

⁄

[m0,m]

◊j ,

where the integral is taken over any path connecting m0 to m and

� = üj[◊j](H1(M, Z))

is a co-compact lattice in Ck. As before, using the non-degeneracy condition, one can

show that f̃ is a surjective submersion.

Suppose S is a leaf of the induced foliation S which is closed. Then S is a compact

embedded submanifold in M . Let Xj be a complex vector field on M such that

◊l(Xj) = ”lj and ◊l(Xj) = 0 ,

where ”lj is Kronecker delta and l, j œ {1, . . . , k} . This is possible since the normal bundle

N of the foliation is trivial and the transverse holomorphic structure induces an integrable

complex structure on N so that C
Œ(N1,0ú) = È◊j | j = 1, . . . , kÍ and C

Œ(N0,1ú) = È◊j | j =

1, . . . , kÍ where N¢ C = N1,0 üN0,1 as defined in (3.4.1). Let Re(Xj) and Im(Xj) be the

real and imaginary parts of Xj, respectively. Note that Re(Xj) and Im(Xj) are pointwise

linearly independent and LY � = LY � = 0 where Y œ {Re(Xj), Im(Xj) : 1 Æ j Æ k}.

Therefore, these vector fields preserve the foliation S which is determined by ker(�·�).

Consider the map

ÂS : S ◊ R2k ≠æ M ,

defined by

ÂS(s, ⁄1, . . . , ⁄2k) = exp
Q

a
kÿ

j=1

A

⁄2j≠1 Re(Xj) + ⁄2j Im(Xj)
BR

b (s) .
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ÂS is a local di�eomorphism as (ÂS)ú(TS ü R2k) = TM . Since Re(Xj) and Im(Xj)

preserve the foliation S , qk
j=1

A

⁄2j≠1 Re(Xj) + ⁄2j Im(Xj)
B

also preserves S . We con-

clude that all leaves in a neighborhood of S are di�eomorphic to S. More precisely,

since S is compact, ÂS provides a leaf preserving local di�eomorphism between a tubular

neighborhood of S in M and S ◊ r
j D2. Here D2 µ R2 is an open disk.

Let V be the set of points in M that lie in leaves that are di�eomorphic to S. Then

V is an open subset of M . Let q œ V . Let – : D2n≠2k ≠æ M be a local parametrization

of the leaf through q such that –(0) = q. Then, the map Â : D2n≠2k ◊ r
j D2 ≠æ M

defined by

Â(s, ⁄1, . . . , ⁄2k) = exp
Q

a
kÿ

j=1

A

⁄2j≠1 Re(Xj) + ⁄2j Im(Xj)
BR

b (–(s))

is a again a leaf preserving local di�eomorphism. Here, D2n≠2k ◊ r
j D2 is considering

with the product GCS. So, img(Â) fl V ”= ÿ . Let q
Õ œ img(Â) fl V and S

Õ be the compact

leaf through it. For some (s, ⁄1, . . . , ⁄2k) œ D2n≠2k ◊ r
j D2, we have

q
Õ = Â(s, ⁄1, . . . , ⁄2k) .

By taking the inverse of exp, we can shows that ÂSÕ (qÕ
, ≠⁄1, . . . , ≠⁄2k) œ img(–) . There-

fore, img(–)fl img(ÂSÕ ) ”= ÿ . Thus, S
Õ is di�eomorphic to the leaf through q via ÂSÕ . This

is because, – is a local parametrization of the leaf through q, and ÂSÕ (qÕ
, ≠⁄1, . . . , ≠⁄2k)

lies in a leaf which is di�eomorphic to S
Õ and it is also in img(–). This implies that the

leaf through q must be di�eomorphic to S
Õ
, since any two leaves are either disjoint or

identical. Hence q œ V .

Since V is both open and closed and M is connected, we have V = M . This conclude

that M is a fibration (fibre bundle) M ≠æ B over a compact connected 2k-dimensional

smooth manifold. Now, ◊j (1 Æ j Æ k) vanishes when restricted to a leaf by [72, Corollary

2.8]. Since ◊j is also closed, it is basic for this fibration, that is, B has 2k-number of

linearly independent nowhere-vanishing closed real 1-forms.

Proposition 3.4.2. Let B be any smooth compact connected 2k-dimensional manifold.

Suppose B has 2k linearly independent nowhere-vanishing closed real 1-forms. Then B

is di�eomorphic to a product of 2-dimensional tori rk
j=1

T2
.

Proof. Let {◊1, . . . , ◊2k} be linearly independent nowhere-vanishing closed 1-forms on B.

Note that ·j◊j is a volume form for B, which is an open condition. So, we can choose
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◊j’s such that ◊j’s are linearly independent in H
1(B, Q). Fix m0 œ B and consider the

following map

„ : B ≠æ R2k
/� ≥=

kŸ

j=1

T2 defined as „(m) =
2kn

j=1

⁄

[m0,m]

◊j ,

where integral is taken over any path connecting m0 to m. Let � = ü2k
j=1

[◊j](H1(B, Z)).

Then � is a co-compact lattice in R2k . One can easily see that
Q

cca
2kfi

j=1

j ”=p

◊j

R

ddb · d„p ”= 0 ,

where „p : B ≠æ R/[◊p](H1(B, Z)) ≥= S
1 is the natural projection of „ onto the p-th

component. This implies that „j (1 Æ j Æ 2k) is a submersion. Hence, „ is a submersion.

It follows that „ is a local di�eomorphism. Since B is compact, „ is a proper map.

Therefore, „ : B ≠æ rk
j=1

T2 is a covering map and it induces an injective map

fi1(„) : fi1(B) ≠æ fi1(
kŸ

j=1

T2) ≥=
n

2k

Z .

Then fi1(B) ≥=
m

l Z for some l Æ 2k. Using the de Rham isomorphism and the universal

coe�cient theorem, we have

H
1

dR(B, R) ≥= Hom(H1(B, R), R) and H1(B, R) ≥= H1(B, Z) ¢Z R , respectively .

Since the rank of H
1

dR(B, R) is 2k, Rank(H1(B, Z)) = 2k. As fi1(B) ≥= H1(B, Z) (since

fi1(B) is abelian), we get

fi1(B) ≥=
n

2k

Z .

So, there exists a smooth covering map „̃ : R2k ≠æ B, such that B is di�eomorphic to

R2k
/fi1(B) ≥=

rk
j=1

T2
.

We have proved the following result.

Theorem 3.4.2. Let M be a compact connected strong generalized Calabi-Yau manifold

of type k. Let S be the induced foliation. Then, the following statements hold.

1. There exists a smooth surjective submersion f̃ : M ≠æ rk
j=1

T2
.

2. Suppose S has a closed leaf. Then, we have:
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(a) All leaves are di�eomorphic and compact. Their holonomy group is trivial.

(b) The leaf space M/S is a smooth manifold.

(c) The submersion f̃ can be chosen so that the components of the fibers of f̃ are

the symplectic leaves of S .

3.4.2 Nilpotent Lie groups, nilmanifolds, and SGH bundles

In this subsection, we give a complete characterization of the leaf space of a left invariant

GCS on a simply connected nilpotent Lie group and its associated nilmanifolds. Fi-

nally, we construct some examples of nontrivial SGH bundles on the Iwasawa manifolds

which show that the category of SGH bundles is in general di�erent from the category of

holomorphic bundles on the leaf space.

Let G
2n be a simply connected nilpotent Lie group and g be its real lie algebra.

Suppose G has a left-invariant GCS. Since G is di�eomorphic to g via the exponential

map, any left-invariant GCS is regular of constant type, say k . The canonical line bundle,

corresponding to a left-invariant GCS, is trivial as G is contractible. So, we can choose

a global trivialization of the form

fl = e
B+iÊ · � , (3.4.5)

where B, Ê are real left invariant 2-forms and � = ◊1 · · · ··◊k is a complex decomposable

k-form with left invariant complex 1-forms ◊j (1 Æ j Æ k) .

Let S be the induced foliation and N be its normal bundle. Then we know that

TS = ker(� · �) . Using [3, Theorem 4], the left-invariant GCS corresponds to a real

Lie subalgebra s µ g such that s ≥= TidS where id œ G is the identity element. Since

any (simply connected) nilpotent Lie group is solvable, S = exp(s) is a closed simply

connected Lie subgroup of G by [48, Section II]. Note that, by the closed subgroup

theorem, S is an embedded submanifold of G and TidS = TidS . Note that

TG ≥= G ◊ g and TS ≥= G ◊ s .

Thus any leaf of S is di�eomorphic to S via the left multiplication map. This implies that

G is foliated by the left cosets of S, that is, the leaf space G/S is G/S . Since S is closed,
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G/S is a smooth homogeneous manifold such that the quotient map fiS : G ≠æ G/S is

a smooth submersion.

Contractibily of G also implies that N ≥= G ◊ R2k
. Let È , Í be an inner product on

R2k
. Consider the metric È , ÍÕ on G ◊ R2k defined as

È(g, v), (h, w)ÍÕ = Èv, wÍ for all (g, v), (h, w) œ G ◊ R2k
.

Note that È , ÍÕ is G-invariant. Then there exists a left-invariant metric, say h on N such

that (N, h) is isometric to (G ◊ R2k
, È , ÍÕ) . This h is a left-invariant transverse metric on

G.

Hence, we have established the following result.

Theorem 3.4.3. Let G be a simply connected nilpotent Lie group with g as its real lie

algebra. Suppose G has a left-invariant GCS. Let S be the foliation induced by the GCS.

Then, the following hold.

1. All leaves of S are di�eomorphic to the leaf through the identity element of G.

2. S is a Riemannian foliation. In particular, G admits a transverse left-invariant

metric.

3. G is foliated by the left cosets of S where S µ G is a closed simply connected Lie

subgroup. The leaf space G/S is the homogeneous manifold G/S .

Let � µ G be a maximal lattice (that is, cocompact, discrete subgroup). Malcev

(cf. [112]) showed that such a lattice exists if and only if g has rational structure constants

in some basis. Let M
2n = �\G be a nilmanifold with a left-invariant GCS. Using [38,

Theorem 3.1], we can say that this left-invariant GCS is generalized Calabi-Yau. This

GCS on M is induced from a left-invariant GCS on G. Let fl be a global trivialization

for the canonical line bundle of the left-invariant GCS on G as defined in (3.4.5). It also

induces a global trivialization for the canonical line bundle of the left-invariant GCS on

M . Let SM be the induced foliation corresponding to this GCS on M and SM be the

leaf through the coset � œ M . Note that, since S is �-invariant, SM is just induced by

S , that is, SM = �\S .

Now, the quotient map fi� : G ≠æ M is a principal �-bundle as well as a covering

map. It induces a principal (Sfl�)-bundle fi�|S : S ≠æ SM and so the fundamental group
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fi1(SM) = S fl � . Therefore, we can identify SM = (S fl �)\S. Note that fi
≠1

�
(SM) = �S.

By [132, Theorem 1.13], S fl � is a maximal lattice in S if and only if �S is closed. Thus,

SM = (S fl �)\S µ M is a compact leaf if and only if �S is closed. The transverse

left-invariant metric on G (see Theorem 3.4.3), is preserved by �-action. Therefore, it

induces a transverse metric on M . This implies that SM is a Riemannian foliation.

Consider the natural left �-action on G/S defined as ÷ · gS = (÷g)S and its quotient

space „M := �\G/S with the quotient topology such that ‚fi : G/S ≠æ „M is continuous.

Note that this map is also open. So, we have the following diagram,

G

M G/S

M/SM
„M

fi� fiS

fĩ ‚fi

where M/SM is the leaf space and fĩ is the quotient map as defined in (3.4.3). We will

use S̃x to denote the leaf through x œ M . Let g œ G and consider the map

� : M/SM ≠æ „M defined as �(S̃fi�(g)) = ‚fi(fiS(g)) . (3.4.6)

Let g, g
Õ œ G such that fi�(g) and fi�(gÕ) are in the same leaf, that is, S̃fi�(g) = S̃fi�(gÕ

)
. To

show � is well-defined, we need to show that ‚fi(fiS(g)) = ‚fi(fiS(gÕ)) .

Let “ : [0, 1] ≠æ S̃fi�(g) be a path such that “(0) = fi�(g) and “(1) = fi�(gÕ) . Since G

is the universal cover of M , the path “ lifts to a unique path “̃ such that “̃(0) = g and

“̃(1) = g
ÕÕ with fi�(gÕ) = fi�(gÕÕ) . Now the path “̃ is contained in one of the connected

components of fi
≠1

�
(S̃fi�(g)), which is a leaf of S , say, g̃S for some g̃ œ G, such that

fi�|g̃S : g̃S ≠æ S̃fi�(g) is a universal covering map. So, we get the following commutative

diagram,
g̃S G

[0, 1]

S̃fi�(g) M

fi�|g̃S fi�

“̃

“

i

ĩ

where i is inclusion and ĩ is injective immersion. Since g, g
ÕÕ œ g̃S, we have fiS(g) =

fiS(gÕÕ) . Now g
Õ and g

ÕÕ are in the same fiber of the universal covering map fi�, and as
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fi1(M) = �, there exists ÷ œ � such that ÷ · g
ÕÕ = g

Õ
. Note that � preserves the foliation

S and so, fiS(÷ · g
ÕÕ) = ÷ · fiS(gÕÕ) . Therefore, we can see that fiS(gÕ) = ÷ · fiS(g) which

implies that ‚fi(fiS(g)) = ‚fi(fiS(gÕ)) . Hence, the map � is well defined.

Now define the inverse of � as

�≠1

A
‚fi(fiS(g))

B

= S̃fi�(g) .

We need to show that �≠1 is well-defined. For that, let g, g
Õ œ G with the condition that

‚fi(fiS(g)) = ‚fi(fiS(gÕ)) . It is enough to show that S̃fi�(g) = S̃fi�(gÕ
)
. The given condition on

fiS(g) and fiS(gÕ) implies that there exists ÷ œ � such that

fiS(g) = ÷ · fiS(gÕ) = fiS(÷ · g
Õ) .

Then, there exists g̃ œ G such that g, ÷ · g
Õ œ g̃S , that is, they belong to the same leaf

of S . This implies that fi�(g) = fi�(÷ · g
Õ) = fi�(gÕ) . Hence S̃fi�(g) = S̃fi�(gÕ

)
. So �≠1 is

well-defined.

Note that fi�, fĩ, fiS and ‚fi are open maps and we have the following commutative

diagram:
G

M G/S

M/SM
„M

fi� fiS

fĩ ‚fi

�

This implies both � and �≠1 are continuous and so, � is a homeomorphism.

Let x, y œ „M . There exist g, g
Õ œ G such that ‚fi≠1(x) = �gS and ‚fi≠1(y) = �g

Õ
S .

Now the map �gS ≠æ �g
Õ
S defined as ÷gs ‘≠æ ÷g

Õ
s is a di�eomorphism. In particular,

both orbits are di�eomorphic to �S . Suppose �S is closed. Set

ker(‚fi) :=
Ó
(gS, g

Õ
S) | ‚fi(gS) = ‚fi(gÕ

S)
Ô

µ G/S ◊ G/S .

To show „M is Hausdro�, it is enough to show that ker(‚fi) is closed, because ‚fi is an open

surjection.

Let {(g1

nS, g
2

nS)}n œ ker(‚fi) be a sequence converging to (g1
S, g

2
S) . Then {g

j
nS}n is

converging to g
j
S for j = 1, 2. By the assumption on {g

j
nS}n (j = 1, 2), they belong to

the same �-orbit, in other words, there exist g̃ such that g
j
nS œ �g̃S (j = 1, 2). Since any
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two �-orbits are di�eomorphic, and �S is closed, �g̃S is also closed. This implies that

g
j
S œ �g̃S for j = 1, 2. Therefore, ‚fi(g1

S) = ‚fi(g2
S) . This implies (g1

S, g
2
S) œ ker(‚fi)

and ker(‚fi) is closed. Hence, M/SM is Hausdro�. So, each leaf is closed as well as

compact in M . Since SM is a Riemannian foliation, the holonomy group of any leaf is

finite, and M/SM is a smooth orbifold. Hence we have proved the following.

Theorem 3.4.4. Let M = �\G be a nilmanifold with a left-invariant GCS. Let SM be

the induced foliation. Then, the following hold.

1. SM is a Riemannian foliation.

2. M/SM is homeomorphic to �\G/S where S µ G is a closed simply connected Lie

subgroup.

3. M/SM is a compact smooth orbifold ≈∆ �S is closed ≈∆ (Sfl�)\S is compact.

Example 3.4.4. Consider the complex Heisenberg group

G =

Y
_____]

_____[

Q

ccccca

1 z1 z3

0 1 z2

0 0 1

R

dddddb

---- zj œ C (j = 1, 2, 3)

Z
_____̂

_____\

.

Here zj (j = 1, 2, 3) is a holomorphic co-ordinate of C3 = {(z1, z2, z3)} . G is a 6-

dimensional simply connected nilpotent lie group. Consider a maximal lattice � µ G

defined as

� =

Y
_____]

_____[

Q

ccccca

1 a1 a3

0 1 a2

0 0 1

R

dddddb

---- aj œ Z ü iZ (j = 1, 2, 3)

Z
_____̂

_____\

.

Then, � acts on G by left multiplication and the corresponding nilmanifold M = �\G

is known as the Iwasawa manifold. Let g be the real lie algebra of G. Choose a basis

{e1, e2, . . . , e6} œ gú by setting

dz1 = e1 + ie2 , dz2 = e3 + ie4 , and z1dz2 ≠ dz3 = e5 + ie6 .

These real 1-forms are pullbacks of the corresponding 1-forms on M , which we denote by

the same symbols. They satisfy the following equations:

dej = 0 ’ 1 Æ j Æ 4 .

de5 = e13 + e42 and de6 = e14 + e23 .
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Here, we make use of the notation ejl = ej · el for all j, l œ {1, . . . , 6} .

Consider the mixed complex form

fl = e
i(e56)(e1 + ie2) · (e3 + ie4) on M .

Note that de5 · de6 = 0 and (e1 + ie2) · (e3 + ie4) = de5 + i de6. Then, we have,

dfl = e
i(e56) · d(ie56) · (e1 + ie2) · (e3 + ie4)

= e
i(e56) · d(ie56) · (de5 + i de6)

= ≠e
i(e56) · (e6 + ie5) · de5 · de6

= 0 ,

and

e56 · (e1 + ie2) · (e3 + ie4) · (e1 ≠ ie2) · (e3 ≠ ie4) = e56 · (de5 + i de6) · (de5 ≠ i de6)

= ≠ie56 · de5 · de6

”= 0 .

By [70, Theorem 3.38, Theorem 4.8], M admits a type 2 strong generalized Calabi-Yau

structure whose canonical line bundle is generated by fl. It is straightforward to see that

fl, when considered as a mixed form on G, gives a left-invariant GCS on G which is a

strong generalized Calabi-Yau structure.

Let f : G ≠æ C2 be the natural projection defined as

fĩ(

Q

ccccca

1 z1 z3

0 1 z2

0 0 1

R

dddddb
) = (z1, z2) .

One can see that �-acts on (z1, z2) via left translation by Z ü iZ. This shows that f

induces a surjective submersion

f̃ : M ≠æ
2n

j=1

C/Z ü iZ ≥= T2 ◊ T2
,

that satisfies the following commutative diagram,

G C2

M T2 ◊ T2

f

fi�

f̃
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where C2 ≠æ T2 ◊ T2 is the natural quotient map. So, there exist ◊1, ◊2 œ �2(T2 ◊ T2
, C)

such that f̃
ú(◊1) = e1 + ie2 and f̃

ú(◊2) = e3 + ie4 . Now, each fiber of this submersion is

di�eomorphic to C/ZüiZ ≥= T2
. Therefore, the foliation induced by the strong generalized

Calabi-Yau structure on M is simple with leaf space T2 ◊ T2 and with the fibers as leaves.

3.4.3 When the leaf space is a manifold

Let M be a type k regular GC manifold such that the leaf space M/S of the induced

foliation S is a smooth manifold. Then M = M/S , as defined in (3.4.2), becomes

a complex manifold of complex dimension k and the quotient map fĩ : M ≠æ M , as

defined in (3.4.3), becomes a smooth surjective submersion. In particular, fĩ is an open

map.

For any open set V ™ M , consider the map fĩ
# : fĩ

≠1OM ≠æ OM defined as

fĩ
#(f) = f ¶ fĩ for f œ OM (fĩ(V )) , (3.4.7)

where OM is the sheaf of holomorphic functions on M . To show fĩ
# is an isomorphism,

it is enough to show fĩ
#

x : (fĩ≠1OM )x ≠æ (OM)x is an isomorphism for any x œ M .

Let x œ M and set y = fĩ(x). Let {U, „} be a co-ordinate chart around y in M , and

let Sx = fĩ
≠1(y) be the fiber (leaf) over y. Then, choosing U su�ciently small, we have

the following commutative diagram by Theorem 3.4.1,

x œ V = fĩ
≠1(U) S̃x ◊ U

Õ

U µ M U
Õ µ Ck

„̃

fĩ

„

Pr2

where „̃ is a GH homeomorphism, U
Õ µ Ck is an open set, and S̃x is the universal cover

of Sx. Note that OV is isomorphic to „̃
≠1OSx◊Ck via „̃

#, defined in a similar manner

as in (3.4.7), and OSx◊U Õ = Pr≠1

2
OU Õ . Using commutativity of the diagram and the fact

that OU is isomorphic to „
≠1OU Õ via „

#, defined similarly as in (3.4.7), we can show that

fĩ
≠1OU is isomorphic to OV via fĩ

#
. Therefore, fĩ

#

x is isomorphism and so is fĩ
#

. Similarly

one can show that fĩ
# is also an isomorphism even when we replace OM by FM ,, that is,

fĩ
# : fĩ

≠1
C

Œ
M ≠æ FM is an isomorphism . (3.4.8)
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Let GM and G
ú
M be the GH tangent and GH cotangent bundle of M , as defined in (3.2.3)

and (3.2.1), respectively. Let {U–} be a coordinate atlas of M such that fĩ
≠1

U–
≥= S̃–◊U

Õ
–

via a GH homeomorphism for some leaf S– and U
Õ
– µ Ck open set where S̃– is the universal

cover of S– . Note that,

FM(Gú
M)|fĩ≠1U– = SpanFM (fĩ≠1U–)

{dz1, . . . , dzk}

where zj (1 Æ j Æ k) are holomorphic coordinates on U
Õ
–. Then (3.4.8) naturally induces

an isomorphism
˜̃fi#|U– : C

Œ
M (T 1,0úM )|U– ≠æ FM(Gú

M)|fĩ≠1U– ,

which gives rise to a sheaf isomorphism

˜̃fi# : fĩ
≠1

C
Œ
M (T 1,0úM ) ≠æ FM(Gú

M) ,

where T
1,0M is the holomorphic tangent bundle of M . Replacing FM(Gú

M) by

FM(GúM), one can show, similarly, that

˜̃fi# : fĩ
≠1

C
Œ
M (T 0,1úM ) ≠æ FM(GúM) .

Also, similarly, we can show that FM(GM) ≥= fĩ
≠1

C
Œ
M (T 1,0M ) because FM(GM) =

HomFM (FM(Gú
M), FM) . We summarize our results as follows.

Theorem 3.4.5. Let M be a regular GC manifold such that the leaf space of the in-

duced foliation is a smooth manifold M . Let GM and G
ú
M be the GH tangent and GH

cotangent bundle of M . Let fĩ : M ≠æ M be the quotient map, and let T
1,0
M be the sheaf

holomorphic sections of the holomorphic tangent bundle of M . Then the following hold.

1. FM
≥= fĩ

≠1
C

Œ
M and OM

≥= fĩ
≠1OM .

2. FM(GM) ≥= fĩ
≠1

C
Œ
M (T 1,0M ) and FM(Gú

M) ≥= fĩ
≠1

C
Œ
M (T 1,0úM ) . In particular,

GM ≥= fĩ
ú
T

1,0M and G
ú
M ≥= fĩ

ú
T

1,0úM .

3. GM ≥= fĩ
≠1

T
1,0
M and Gú

M ≥= fĩ
≠1

T
1,0ú
M .

Remark 3.4.3. Theorem 3.4.5 implies that the pullback of any holomorphic vector bundle

on the leaf space is an SGH vector bundle of M . A natural question is whether all SGH

vector bundles arise in this way. The following two examples demonstrate that this is not

always the case.
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Example 3.4.5. Let M1 be a complex manifold and M2 be a symplectic manifold. Con-

sider the natural product GCS on M1 ◊ M2 . Consider the SGH vector bundle ¢i Prú
i Vi

over M1 ◊ M2, as defined in Example 3.1.1 where V1 is a holomorphic vector bundle over

M1 and V2 is flat vector bundle over M2. This bundle is not a pullback of a holomorphic

vector bundle over M1 unless V2 is trivial.

Example 3.4.6. Let G be the Heisenberg group and M = �\G be the Iwasawa manifold

with the left-invariant GCS as defined in Example 3.4.4. Let fl : � ≠æ GLl(C) be a

nontrivial (faithful) representation. Let G ◊fl Cl be the SGH bundle over M as defined in

Example 3.1.2. Let S (≥= T2) be a leaf of the induced foliation. Considering fi1(S) < � ,

(G ◊fl Cl)|S is isomorphic to R2 ◊flÕ Cl where fl
Õ = fl|fi1(S) is a non-trivial representation.

If possible let, there exist a holomorphic vector bundle W over T2 ◊ T2 such that f̃
ú
W =

G ◊fl Cl. But, then the restriction of f̃
ú
W to any of the fibers of f̃ is a trivial bundle

which is not possible as the fibers of f̃ are the leaves of the induced foliation by the left-

invariant GCS. Hence G ◊fl Cl is an SGH vector bundle on M which is not a pullback of

any holomorphic vector bundle on T2 ◊ T2
.

————— ¶ —————
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Chapter 4

Strong Generalized Holomorphic

Principal Bundles and Generalized

Holomorphic Connections

This chapter is the core of the thesis, delving into SGH principal bundles and elucidating

their associated geometric properties. More precisely, our focus here is on establishing

the theory of generalized holomorphic (GH) connections and their curvature, alongside

associated geometric concepts such as Chern-Weil theory and characteristic classes, for

SGH principal G-bundles over regular GC manifolds, where G denotes a complex Lie

group.

We begin by delineating SGH principal bundles through the utilization of Theorem

3.1.1. Notably, we find that characterizing these bundles is more straightforward when

the structure group is a complex Lie group (cf. Proposition 4.1.2). Subsequently, we

construct the Atiyah sequence for SGH principal G-bundles over regular GC manifolds

where G is a complex Lie group, employing an adaptation of Atiyah’s approach for

defining holomorphic connections on holomorphic principal bundles [7]. This endeavour

yields the Atiyah class, serving as an obstruction to the aforementioned splitting of the

Atiyah sequence, and lays the groundwork for the theory of GH connection; see Definition

4.2.1 and Theorem 4.2.2.

A fundamental result regarding the Atiyah class is the relationship between the Atiyah

class of a holomorphic vector bundle and the Atiyah class of its associated holomorphic

principal bundle, where these classes di�er only by a sign. This prompts the question of

77



78 4.1. Strong generalized holomorphic principal bundles

whether such a relationship holds within the SGH setting, and Theorem 4.3.1 confirm

this with a positive answer.

In our exploration of the theory of the curvature of a GH connection, we develop

de Rham cohomology and Dolbeault cohomology, under the assumption that the leaf

space M/S is an orbifold. This leads us to describe the Atiyah class through sheaf

cohomology theory and present a related Chern-Weil theory, introducing a new type

of characteristic class of such GH principal bundles. It is important to note that the

Atiyah sequence is also studied for principal bundles over various geometric spaces; see

[9,18,19,21,22,24–26,45,55,102,108,110,113,129,139,161]. This chapter is based on [127,

Sections 4-6 and 8-9] and splits into five sections:

1. Strong generalized holomorphic principal bundles (Section 4.1).

2. Generalized Holomorphic Connections on SGH Principal bundles (Section 4.2).

3. Atiyah class of an SGH vector bundle (Section 4.3).

4. Dolbeault cohomology of SGH vector bundles (Section 4.4).

5. Generalized Chern-Weil Theory and characteristic classes (Section 4.5).

4.1 Strong generalized holomorphic principal bun-

dles

In this section, we begin by formally defining SGH principal G-bundles for a real Lie

group G that admits a GC structure. We employ Definition 3.1.1, wherein we essentially

substitute "fiber bundle" with "principal G-bundle" to capture the essence. Consequently,

we establish the Characterization presented in Proposition 4.1.1 for SGH principal G-

bundles, akin to Theorem 3.1.1. However, this description becomes notably simpler since

the mapping flf for f œ F in Theorem 3.1.1 reduces to the left translation by f , given

F = G and G acts on F via right translation.

Particularly, if we consider G to be a complex Lie group, this depiction becomes fur-

ther simplified, as demonstrated in Proposition 4.1.2. Following this, we elaborate on the

SGH version of the classical result regarding the one-to-one correspondence between the
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sets of isomorphic classes of vector bundles of a fixed rank, denoted as l, and isomorphic

classes of principal GLl-bundles, as detailed in Proposition 4.1.3.

Let G be a real (connected) Lie group with a GC structure JG. Let G Òæ P
fi≠æ M be

a smooth principal G-bundle over a GC manifold (M, JM). Let {U–, „–} be a family of

local trivializations

„– : fi
≠1(U–) ≠æ U– ◊ G , (4.1.1)

with transition functions

„–— : U–— = U– fl U— ≠æ G , (4.1.2)

where „–—(x) = „–|fi≠1(x) ¶ „
≠1

— (x, ·) for all x œ U–— .

Definition 4.1.1. P is called an SGH principal G-bundle over (M, JM) if

1. P is a GC manifold.

2. There exist local trivializations {U–, „–} such that every „– is a GH homeomorphism

when U– ◊ G is endowed with the standard product GC structure.

As in (3.1.1), JM and JG can be written in the following form

JM =

Q

ca
≠JM —M

BM J
ú
M

R

db and JG =

Q

ca
≠JG —G

BG J
ú
G

R

db , respectively .

Remark 4.1.1. Note that in the definition of an SGH principal G-bundle, we do not

require that the group operations on G be GH maps, or that the left or right translations

by elements of G be GH homeomorphisms. However, if we assume that G is a complex

Lie group then these conditions hold.

Proposition 4.1.1. The following are equivalent.

1. P is an SGH principal G-bundle over (M, JM) with local trivializations {U–, „–}

and transition functions {„–—}.

2. For all nonempty U–— ™ M and (m, f) œ U–— ◊ G , the map

Â–— : U–— ◊ G ≠æ U–— ◊ G defined as Â–—(m, f) = (m, „–—(m) · f)

is a GH automorphism of U–— ◊ G.

3. The transition functions satisfy the following: For all m œ U–—,
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(a) „–—(m) œ Di�JG(G) ,

(b) („–—)úm ¶ JU–—
= JF ¶ („–—)úm ,

(c) („–—)úm ¶ —U–—
= 0 ,

(d) BG ¶ („–—)úm = 0 .

Proof. Follows from Theorem 3.1.1.

Proposition 4.1.2. Let G be a (connected) complex Lie group. Then, the following are

equivalent.

1. P is an SGH principal G-bundle over (M, JM) with local trivializations {U–, „–}

and transition functions {„–—}.

2. For all nonempty U–— ™ M and (m, f) œ U–— ◊ G , the map

Â–— : U–— ◊ G ≠æ U–— ◊ G defined as Â–—(m, f) = (m, „–—(m) · f)

is a GH automorphism of U–— ◊ G.

3. The transition maps „–— satisfy the following:

(a) „–—(m) is a biholomorphic map on G ’ m œ U–—,

(b) each „–— is a GH map.

Proof. Follows from Proposition 4.1.1 and Lemma 3.1.3.

Let M be a GC manifold and let E be an SGH vector bundle of real rank 2l over M

with local trivializations {U– , „–}. Then, by Theorem 3.1.1 and [103, Proposition 3.2],

we have

1. „–—(m) œ GLl(C), i.e., E is a complex vector bundle of of complex rank l,

2. each entry B⁄“ : U–— ≠æ C of „–— = (B⁄“)l◊l is a GH function,

where „–— : U–— ≠æ GL2l(R) is the transition map as in Theorem 3.1.1.

Following the standard associated principal bundle construction (cf. [140, Chapter 3]),

we construct the principal bundle PE associated to E as follows: Consider the disjoint

union g
U– ◊ GLl(C) where U– µ M varies over a trivializing open cover of E. Define an
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equivalence relation on this set by declaring elements (b, h) œ U— ◊ GLl(C) and (a, g) œ

U– ◊ GLl(C) to be equivalent if and only if a = b and g = „–—(b)h ,

(b, h) ≥ (a, g) ≈∆ a = b and g = „–—(b)h .

Now define

PE :=
h

–

U– ◊ GLl(C)
?

≥ . (4.1.3)

For each m œ U–—,

„–—(m) ¶ JR2l = JR2l ¶ „–—(m) ,

where JR2l denotes the natural complex structure on R2l, which implies „–—(m) is biholo-

morphic. Considering GLl(C) µ GL2l(R), note that the transition map „–— : U–— ≠æ

GLl(C) is a GH map if and only if each entry

B⁄“ : U–— ≠æ C

of „–— = (B⁄“)l◊l is a GH function. Hence, by Proposition 4.1.2, PE is an SGH principal

GLl(C)-bundle.

Given an SGH principal GLl(C)-bundle fi : P ≠æ M with local trivializations

{U–, „–}, the associated vector bundle EP is constructed as follows: Consider the right

action of GLl(C) on P ◊ Cl defined by

(p, f) · g = (p · g, g
≠1(f)) ’ p œ P , f œ Cl and g œ GLl(C) .

Define

EP := P ◊GLl(C) Cl
, (4.1.4)

as the identification space of that right action. Denote by [(p, f)] the equivalence class or

orbit of (p, f) œ P ◊ Cl under the above action. Then, the map

fiP : EP ≠æ M

defined by fiP ([p, f ]) = fi(p) gives the desired the vector bundle structure on EP . Note

that the transition map „–— of EP , as in Theorem 3.1.1, is a GH map by Proposition

4.1.2. Also, „–— : U–— ≠æ GLl(C) is a GH map if and only if each entry

B⁄“ : U–— ≠æ C

of „–— = (B⁄“)l◊l is a GH function. Thus, by [103, Proposition 3.2], EP is a GH vector

bundle over M . The result below now follows using standard arguments.
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Proposition 4.1.3. Let (M, JM) be a GC manifold and l œ N. Consider the following

set

PGLl(C) := Set of all isomorphism classes of SGH principal

GLl(C)-bundles over M .

If PE and EP are as in the equations (4.1.3) and (4.1.4) respectively, then the map

� : El ≠æ PGLl(C) (4.1.5)

defined by �([E]) = [PE] gives a bijective map between two sets with the inverse map

defined as �≠1([P ]) = [EP ] where [E] and [P ] denotes the SGH bundle isomorphism

classes of E and P , respectively, and El as given in Proposition 3.2.1.

4.2 Generalized Holomorphic Connections on SGH

Principal bundles

The aim of this section is twofold. Firstly, we establish the Atiyah sequence for SGH

principal G-bundles over regular GC manifolds, where G is a complex Lie group, and

introduce the concept of a generalized holomorphic (GH) connection. Secondly, we com-

pute the Atiyah class and provide a characterization of a GH connection using local

trivializations.

4.2.1 SGH principal bundles with complex fibers and GH con-

nections

There are some special properties of SGH principal bundles with a complex Lie group

as a structure group which we similar to holomorphic principal bundles over complex

manifolds. These properties do not hold in general. We list a few of them here that are

important for our purposes.

Proposition 4.2.1. Let G Òæ P
fi≠æ M be an SGH principal G-bundle over a regular GC

manifold (M, JM) where G is a complex Lie group. Then
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1. P admits GH sections over any trivializing open set U ™ M .

2. If s : V æ P is a GH section of P over an open subset V ™ M , then so is s · „ for

any GH map „ : V æ G.

3. If s1 and s2 are any two GH sections of P over V , then there exists a unique GH

map „ : V æ G such that s2 = s1 · „ .

Proof. First, note that it su�ces to prove the statement of the theorem for a local trivi-

alization of P as a GH homeomorphism is a GH map. Additionally, by Proposition 3.1.1,

any GH map between complex manifolds is simply a holomorphic map and vice versa.

Then, (1) follows from the fact that a constant map from c : U æ G is GH by

Proposition 3.1.1 as cú = 0. This implies that the local trivialization of P over U admits

a GH section.

Part (2) follows from the fact that the right action of G on itself is GH if G is a

complex Lie group, and that the composition of GH maps is a GH map.

Part (3) follows from the fact that inversion operation in a complex Lie group, is a

GH map, in fact, a GH homeomorphism.

By Remark 4.1.1, G acts on P as a group of fiber preserving GH automorphisms,

P ◊G ≠æ P . The GCS induced by the complex structure on G is regular, which implies

that P is a regular GC manifold. Let Gú
P and GP denote the GH cotangent and GH

tangent bundles of G as specified in (3.2.1) and (3.2.3), respectively. Since G acts on P ,

it has an induced action on (TP ü T
ú
P ) ¢ C. For any g œ G, we have

(X + ›) · g =

Q

ca
g

≠1

ú 0

0 g
ú

R

db (X + ›) for all X + › œ (TP ü T
ú
P ) ¢ C .

As g : P ≠æ P , p ‘æ p · g, is a GH automorphism for every g œ G, it follows that G acts

on i-eigen bundle LP of JP . This implies that G acts on Gú
P and hence on GP . Define

the SGH Atiyah bundle of P by

At(P ) := GP/G . (4.2.1)

Then, a point of At(P ) is a field of GH tangent vectors, defined along one of the fibers

of P , which is invariant under G. We shall show that At(P ) has a natural SGH vector

bundle structure over M .
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Let m œ M and let U µ M be a su�ciently small open neighborhood of m such that

there exist a GH section of P over U ,

s : U ≠æ P . (4.2.2)

Let (GP )s be the restriction of GP to s(U). Now since s : U ≠æ s(U) is a di�eomorphism,

s(U) can be endowed with the structure of a regular GC manifold such that s becomes

a GH homeomorphism between U and s(U). Since s is a GH section, by [103, Example

3.3], s
ú(GP ) is an SGH vector bundle over U and so, (s≠1)ú(sú(GP )) is also an SGH

vector bundle over s(U) which coincides with (GP )s as a smooth bundle. This defines a

canonical SGH bundle structure on (GP )s.

There is a natural one-to-one correspondence between At(P )U and (GP )s,

“s : At(P )U ≠æ (GP )s , (4.2.3)

where “s assigns to each invariant GH vector field along fi
≠1(x) := Px its value at s(x).

This is easily seen to be an isomorphism of smooth vector bundles. Then, the SGH vector

bundle structure of (GP )s defines an SGH vector bundle structure of At(P )U .

It remains to show that this construction is independent of the choice of the GH

section s. Let s1 and s2 be any two GH sections of P over U . Then, by Proposition 4.2.1,

there exist a unique GH map „ : U ≠æ G such that

s1(x) · „(x) = s2(x) , ’ x œ U .

Note that the map Â : U ◊ G ≠æ U ◊ G defined as

Â(x, g) = (x, „(x) · g) for all (x, g) œ U ◊ G

is a GH automorphism of U ◊ G by Proposition 4.1.2. Therefore, Â induces an isomor-

phism of SGH vector bundles, again denoted by Â ,

Â : (GP )s1 ≠æ (GP )s2 ,

satisfying

“s2 = Â ¶ “s1 .

Hence, the SGH vector bundle structure on At(P ) is well-defined.
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Let T denote the sub-bundle of TP formed by vectors tangential to the fibers of P .

Define GT = T fl GP . Since G acts on T, it also acts on GT. Define

R = GT/G . (4.2.4)

If “s is defined as in (4.2.3), then restricting to RU , we get

“s|RU := “
Õ

s : RU ≠æ (GT)s . (4.2.5)

Note that (GT)s is also an SGH vector sub-bundle of (GP )s as (GT) is an SGH vector

sub-bundle of (GP ). Hence by above, R is also an SGH sub-bundle of At(P ).

We now examine R more closely. Let g denote the complex Lie algebra of G. As a

vector space, g is the holomorphic tangent space of G at identity. In the SGH principal

bundle P , for x œ M , each fiber Px can be identified with G up to a left multiplication.

Note that, each smooth tangent vector at the point p œ P , tangential to the fiber, defines

a unique left-invariant smooth vector field on G. Since the left (respectively, right)

multiplication is biholomorphic, the vector space of left (respectively, right) invariant

holomorphic vector fields on G is then isomorphic with g via left (respectively, right)

multiplication. Note that by the locally product nature of the GCS on P , and the

absence of a B transformation in a GH homeomorphism, any holomorphic tangent vector

to a fiber of P is an element of GT. Therefore, any holomorphic tangent vector to the

fiber at the point p œ P defines a unique left invariant GH tangent vector field on G.

Thus, we have an SGH vector bundle isomorphism

GT ≥= P ◊ g .

Then, the action of G on GT induces an action on P ◊ g as follows,

(p, l) · g = (p · g , Ad(g≠1) · l) ’ (p, l) œ P ◊ g . (4.2.6)

Let P ◊G g be the identification space defined by the action in (4.2.6). The adjoint

map is a biholomorphism due to the complex Lie group structure of G. Consequently,

the transition maps of the complex vector bundle P ◊G g are GH maps. Therefore, by

Theorem 3.1.1 and [103, Proposition 3.2], P ◊G g is an SGH vector bundle over M with

fiber g associated to P by the adjoint representation. Hence, R = GT/G ≥= P ◊G g . We

shall denote it by Ad(P ), that is,

Ad(P ) := P ◊G g . (4.2.7)
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The projection fi : P ≠æ M induces a bundle map Gfi : At(P ) ≠æ GM . Using Definition

3.1.1, we deduce that Gfi is an SGH vector bundle homomorphism.

Moreover, let Ts denote the tangent bundle and GTs denotes the GH tangent bundle

of s(U) respectively where s(U) is the image of the GH section s as in (4.2.2). Then we

have (GP )s = (GT)s ü (GTs) where (GP )s and (GT)s are as defined in (4.2.3) and (4.2.5),

respectively. This implies the following commutative diagram:

0 RU At(P )U GU 0

0 (GT)s (GP )s GTs 0

›

“
Õ
s

Gfi

“s s#

where “s, “
Õ
s and › are as in (4.2.3), (4.2.5) and the natural inclusion map, respectively.

Also, the map s
# : GU ≠æ GTs, induced by s, is an isomorphism of SGH vector bundles.

We conclude that

0 R At(P ) GM 0› Gfi

is a short exact sequence of SGH vector bundles over M . We summarize our results in

the following theorem.

Theorem 4.2.1. Let P be an SGH principal G-bundle over a regular GC manifold

(M, JM) where G is a complex Lie group. Then, there exists a canonical short exact

sequence A(P ) of SGH vector bundles over M :

0 Ad(P ) At(P ) GM 0 (4.2.8)

where GM is the GH tangent bundle of M as in (3.2.3), Ad(P ) is the SGH vector bundle

associated to P by the adjoint representation of G as in (4.2.7), and At(P ) is the SGH

vector bundle of invariant GH tangent vector fields on P as in (4.2.1).

Definition 4.2.1. Let P be an SGH principal G-bundle over a regular GC manifold M

where G is a complex Lie group. A generalized holomorphic (GH) connection on P is a

splitting of the short exact sequence A(P ) in (4.2.8) such that the splitting map is a GH

map.

By [7, Proposition 2], the extension A(P ) defines an element

a(P ) œ H
1(M, HomOM (GM , Ad(P)) ,
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and A(P ) is a trivial extension if and only if a(P ) = 0.

Note that Gú
M = HomOM (GM , OM). Hence,

HomOM (GM , Ad(P)) = Ad(P) ¢OM Gú
M .

Thus we have the following result.

Theorem 4.2.2. An SGH principal G-bundle P over a regular GC manifold M defines

an element

a(P ) œ H
1(M, Ad(P) ¢OM Gú

M) .

P admits a GH connection if and only if a(P ) = 0.

Definition 4.2.2. The element a(P ) in Theorem 4.2.2 is called the Atiyah class of the

SGH principal G-bundle P . The SGH vector bundle At(P ) in (4.2.8) is called the SGH

Atiyah bundle of the SGH principal G-bundle P .

Definition 4.2.3. A smooth generalized connection in the principal bundle P is a smooth

splitting of the short exact sequence A(P ) in (4.2.8).

Remark 4.2.1. In this case, when A(P ) is considered as a short exact sequence of smooth

vector bundles, again by [7, Proposition 2], the smooth extension A(P ) defines an element

a
Õ(P ) œ H

1(M, HomCŒ
M

(CŒ(GM) , C
Œ(Ad(P ))) ,

and A(P ) is a trivial smooth extension if and only if a
Õ(P ) = 0. But due to the partition of

unity of smooth functions, we can see that HomCŒ
M

(CŒ(GM) , C
Œ(Ad(P )) is a fine sheaf.

Thus H
1(M, HomCŒ

M
(CŒ(GM) , C

Œ(Ad(P ))) = 0 and so a
Õ(P ) will always be zero. This

implies that a smooth generalized connection always exists.

Remark 4.2.2. It may be feasible to omit the regularity assumption on M by utilizing

sheaf theoretic language. In essence, within the context of sheaf theory, it might be possible

to define the concept of the Atiyah class for an SGH principal bundle over a GC manifold

without the need for regularity.

Remark 4.2.3. It is worth noting that the notion of a smooth generalized connection can

be extended for any arbitrary real (connected) Lie group G that admits a regular GCS,

by extending the approach developed for complex (connected) Lie groups in the preceding

discussions. However, the concept of GH connection may not be extended to any such G
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using the same method. Because, when dealing with an SGH principal G-bundle over a

regular GC manifold where G is an arbitrary real Lie group endowed with a regular GCS,

the combination of Definition 2.3.6 and Theorem 3.1.1 implies that the transition maps

may not be GH maps. So, there is a possibility that the sheaf of GH sections of an SGH

principal G-bundle may not have any elements when G is an arbitrary real (connected)

Lie group with a GCS.

Even in the case of a trivial SGH principal G-bundle, where G is a real Lie group

with a GCS, constant sections are not always GH maps. Consequently, transition maps

may not be GH maps. This can be demonstrated as follows:

Let M denote a GC manifold. Consider G, a real Lie group endowed with a regular

GCS of type zero. Let M ◊G represent the trivial SGH principal G-bundle over M . Then,

every smooth section of M ◊ G is given by a smooth map f : U ≠æ G, where U ™ M

is an open set. If a section is a GH map, then the corresponding smooth map f is also

a GH map, and by Lemma 2.2.1, df respects the linear Poisson structures at each point.

However, in the case of constant sections, f becomes a constant map, implying that df

does not respect the linear Poisson structures at any point, as df = 0. Thus, constant

sections on M ◊ G are not GH maps in this case.

However, when working with a smooth generalized connection, we only need to focus

on smooth sections, which are always available. Hence, we need not concern ourselves

with the aforementioned possibility.

4.2.2 Local coordinate description of the Atiyah class

In this subsection, we compute the Atiyah class a(P ) in local coordinates following Atiyah

[7]. Let G be a (connected) complex Lie group with complex Lie algebra g . Let P be

an SGH principal G-bundle over a regular GC manifold M with local trivializations

{U– , „–} and transition maps „–— (see (4.1.2)).

Let Mg := M ◊g denote the trivial SGH vector bundle over M where g is the complex

Lie algebra of G. Since „– is a GH homeomorphism and it commutes with the action of

G, it induces an SGH vector bundle isomorphism

„„– : At(P )|U– ≠æ GM |U– ü Mg|U– . (4.2.9)
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Define the SGH vector bundle homomorphism

a– : GM |U– ≠æ At(P )|U– (4.2.10)

by a–(X) = („„–)≠1(X ü 0) for all X œ GM |U– . Then the map a–— : GM |U–—
≠æ

At(P )|U–—
, defined as

a–— = a— ≠ a– ,

gives a representative 1-cocycle for a(P ) in H
1(M, HomOM (GM , Ad(P)).

Denote Gg := G ◊ g. Note that GG := T
1,0

G. Both right and left multiplication

maps on G are biholomorphic. Using them we have SGH bundle isomorphisms

› : GG ≠æ Gg and ÷ : GG ≠æ Gg ,

respectively. Thus,

› , ÷ œ H
0(G, HomOG(T1,0

G, Gg)) .

Now, „–— is a GH map due to Proposition 4.1.2, thereby it induces elements

›–— , ÷–— œ �(U–—, HomOM (GM, Mg)) .

Then, for each X œ GM |U–—
,

„„–(a–—(X)) = „„–((„„—)≠1(X ü 0) ≠ („„–)≠1(X ü 0))

= „„–((„„—)≠1(X ü 0)) ≠ (X ü 0)

= (X ü ›–—(X)) ≠ (X ü 0)

= (0 ü ›–—(X)) .

By the short exact sequence in (4.2.8), we can identify Ad(P )|U– as an SGH subbundle

of At(P )|U– . Then, the SGH vector bundle isomorphism between Ad(P )|U– and Mg|U– is

identified with the restriction map

„„–|Ad(P )|U–
: Ad(P )|U– ≠æ Mg|U– .

Therefore, we get

a–— = („„–)≠1 ¶ ›–— , (4.2.11)

and since ›–— = Ad(„–—) · ÷–—, we can replace (4.2.11) by

a–— = („„—)≠1 ¶ ÷–— . (4.2.12)
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Now if a(P ) = 0, then the coboundary equation is

a–— = “— ≠ “–

where “i œ �(Ui, HomOM (GM , Ad(P))) for i œ {–, —}. For each i œ {–, —}, if we denote

�i := „„i ¶ “i ,

then �i œ �(Ui, HomOM (GM , Mg)) . Thus the coboundary equation becomes

›–— = Ad(„–—) · �— ≠ �– , (4.2.13)

or

÷–— = �— ≠ Ad(„—–) · �– . (4.2.14)

Remark 4.2.4. Note that, in case of smooth generalized connection, since we have

H
1(M, HomCŒ

M
(CŒ(GM) , C

Œ(Ad(P )))) = 0 ,

the co boundary equation is

a–— = “
Õ
— ≠ “

Õ
–

where “
Õ
i œ C

Œ(Ui, HomCŒ
M

(CŒ(GM) , C
Œ(Ad(P )))) for i œ {–, —}. Then for each i in

{–, —}, if we again denote

�i := „„i ¶ “
Õ
i ,

we get that �i œ C
Œ(Ui, HomCŒ

M
(CŒ(GM) , C

Œ(Mg))) . Thus the co-boundary equation

becomes

›–— = Ad(„–—) · �— ≠ �– , (4.2.15)

or

÷–— = �— ≠ Ad(„—–) · �– . (4.2.16)

This completes the primary groundwork for GH connection and smooth generalized

connection. In the subsequent section, we will utilize this description to establish the

curvature.
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4.3 Atiyah class of an SGH vector bundle

In this section, we address the question regarding the relationship between the Atiyah

class of an SGH vector bundle and the Atiyah class of its associated SGH principal bundle

by establishing that these classes only di�er by sign, akin to the classical holomorphic

case.

Let E be an SGH vector bundle over a regular GC manifold M with local trivializa-

tions {U– , „–}. Let J
1(E) be the first jet bundle of E over M as defined in [103, Section

3.2]. Then by [103, Theorem 3.17], J1(E) is an SGH vector bundle over M and it fits

into the following exact sequence, denoted by B(E),

0 Gú
M ¢ E J1(E) E 0J fi1 (4.3.1)

of SGH vector bundles over M .

Let „fi1 : J1(E) ≠æ E be the morphism of OM -sheaves, induced by fi1. Then, we

can see that there exists a canonical C-module map of sheaves Â : E ≠æ J1E such that

„fi1 ¶ Â = IdE. Thus, as a sheaf of C-modules, we have

J1(E) = E üC (Gú
M ¢OM E) .

Recall that, for each m œ M , f œ OM,m if and only if (df)m œ (Gú
M)m. So, we can define

the map

„m : OM,m ◊ J1(E)m ≠æ J1(E)m

by

„m(f, s + ”) = fs ü (f” + df ¢ s)

where s œ Em, ” œ ((Gú
M)m ¢OM,m Em), and f œ OM,m. This defines an action of OM on

J1(E) making it a sheaf of OM -modules. We obtain the following short exact sequence

of OM -modules

0 Gú
M ¢OM E J1(E) E 0‚J ‚fi1 (4.3.2)

where ‚J(”) = 0 + ” and „fi1(s + ”) = s are the morphisms of OM -modules induced by the

maps J and fi1 in (4.3.1), respectively.

Since HomOM (E,Gú
M ¢OM E) ≥= Gú

M ¢OM End(E), by [7, Proposition 2] and using

(4.3.2), the extension B(E) defines an element

b(E) œ H
1(M,Gú

M ¢OM End(E)) .
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Definition 4.3.1. ( [103, Definition 4.4]) b(E) is called the Atiyah class of the SGH

vector bundle E over M .

The following result is standard in the holomorphic case (see [7, Proposition 9]) and

follows similarly in the SGH setting. Nonetheless, we provide a proof for the sake of

completeness

Proposition 4.3.1. Let E be an SGH vector bundle of real rank 2l over M . Let PE be

the corresponding SGH principal GLl(C)-bundle as in (4.1.3). Then we have

End(E) ≥= Ad(PE)

as SGH vector bundles where Ad(PE) as in (4.2.7).

Proof. For Ad(PE), there exist local trivializations {U–, „–} of Ad(PE) over M such that

1. „– : Ad(PE)|U– ≠æ U–◊gll(C) is a GH homeomorphism where gll(C) is the complex

Lie algebra of GLl(C);

2. getting U–— = U– fl U— ”= ÿ, the map

Â–— = „– ¶ „
≠1

— : U–— ◊ gll(C) ≠æ U–— ◊ gll(C)

defined as

Â–—(m , X) = (m , Ad(„–—(m)≠1)(X)) ’ m œ U–— and X œ gll(C)

is GH homeomorphism where „–— : U–— ≠æ GLl(C) is the transition map of PE

which is also a GH map by Proposition 4.1.2.

Similarly for End(E), there exist local trivializations {W–, Â„–} of End(E) over M such

that

1. Â„– : End(E)|U– ≠æ U– ◊ End(Cl) is a GH homeomorphism;

2. again getting W–— = W– fl W— ”= ÿ, the map

ÂÂ–— = Â„– ¶ Â„≠1

— : W–— ◊ End(Cl) ≠æ W–— ◊ End(Cl)

defined as

ÂÂ–—(m , A) = (m , ((gú
–—)≠1 ¢ g–—)(p)(A)) ’ m œ W–— and A œ End(Cl)

is a GH homeomorphism where g–— : W–— ≠æ GLl(C) is the transition map of E

which is also a GH map by [103, Proposition 3.2].
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Without loss of generality, we can assume that Ad(PE) and End(E) both have the same

local trivializations over M .

Now given a C-vector space V of complex dimension l and G = Aut(V ), we can have

a canonical isomorphism gll(C) ≥= End(V ). So then we can identify End(Cl) = gll(C) =

Ml(C) where Ml(C) is the set of all l ◊ l complex matrices. Then we can see that for all

m œ U–— and A œ Ml(C),

Ad(„–—(m)≠1)(A) = „–—(m)≠1
A„–—(m) = ((„–—(m)≠1)ú ¢C „–—(m))(A).

In other words, Ad(PE) and End(E) both has the same transition maps with local triv-

ializations {U–, „–} over M . Hence Ad(PE) and End(E) are canonically isomorphic as

SGH vector bundles, that is,

Ad(PE) ≥= End(E) .

Corollary 4.3.1. H
1(M,Gú

M ¢OM End(E)) ≥= H
1(M,Gú

M ¢OM Ad(PE)).

Theorem 4.3.1. Let E be an SGH vector bundle over a regular GC manifold M . Let

P be the associated SGH principal GLl(C)-bundle over M , as in (4.1.4), where l is the

complex rank of E. Let b(E) and a(P ) be the obstruction elements defined by B(E) and

A(P ), as in the equations (4.3.1) and (4.2.8), respectively. Then

a(P ) = ≠b(E) .

Proof. Let E be an SGH vector bundle with local trivializations {U–, „–} where

„– : E|U– ≠æ U– ◊ Cl
, (4.3.3)

are local GH homeomorphisms (cf. (4.1.1)). Then P is defined by the transition functions

(cf. (4.1.2)),

„–— : U–— ≠æ GLl(C) , (4.3.4)

where

Â–— = „– ¶ „
≠1

— : U–— ◊ GLl(C) ≠æ U–— ◊ GLl(C) (4.3.5)

is given by Â–—(m , g) = (m , „–—(m)g).

Let W = Cl so that E ≥= P ◊GLl(C)W . Let MW = M ◊W , a trivial SGH vector bundle

over M . The GH homeomorphism „– induces a sheaf isomorphism of OM |U–-modules

Â„– : E|U– ≠æ MW|U– . (4.3.6)
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This also induces another canonical OM |U–-module isomorphism, again denoted by Â„–,

Â„– = Â„– ¢OM Id : E|U– ¢OM |U–
Gú

M|U– ≠æ MW|U– ¢OM |U–
Gú

M|U– . (4.3.7)

Note that f œ OM if and only if df œ Gú
M. Thus the exterior derivative map d : OM ≠æ

Gú
M is well-defined. Since MW is a trivial bundle,

MW|U–
≥=OM |U–

n

r

OM |U– (4.3.8)

for some r œ N. Thus we can extend d to a C-linear sheaf homomorphism,

d : MW|U– ≠æ MW|U– ¢OM |U–
Gú

M|U– . (4.3.9)

Define a C-homomorphism of sheaves over U–,

D– : E|U– ≠æ E|U– ¢OM |U–
Gú

M|U– (4.3.10)

by

D–(s) = ( Â„–)≠1
d Â„–(s)

where the first Â„–, d and the second Â„– are as in the equations (4.3.7), (4.3.9) and (4.3.6),

respectively. Now consider the sheaf homomorphism

b– : E|U– ≠æ J1(E)|U– (4.3.11)

defined by

b–(s) = s + D–(s) for all s œ E|U– .

Then for any f œ OM |U– and s œ E|U– , we have

b–(fs) = fs + ( Â„–)≠1
d Â„–(fs)

= fs ü (s ¢ df + f( Â„–)≠1
d Â„–(s))

= f · (s + D–(s)) .

Hence, b– is an OM -module homomorphism. Consider the sheaf homomorphism

b–— : E|U–—
≠æ J1(E)|U–—

(4.3.12)

defined by b–— := b— ≠ b–. Note that b–—(s) = D—(s) ≠ D–(s). So

b–— œ �(U–—, HomOM (E, E ¢OM Gú
M)) .
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This shows that {b–—} is a representative 1-cocycle for b(E) in H
1(M, End(E)¢OM Gú

M).

Consider the following two sheaf homomorphisms over U–,

Â„–— = Â„– ¶ ( Â„—)≠1 : MW|U–—
≠æ MW|U–—

, (4.3.13)

and the second one, also denoted by Â„–—,

Â„–— : MW|U–—
¢OM |U–—

Gú
M|U–—

≠æ MW|U–—
¢OM |U–—

Gú
M|U–—

. (4.3.14)

By (4.3.8), we can see that Â„–— can be thought of as a OM |U–—
-valued matrix, again

denoted by
Â„–— :

n

r

OM |U–—
≠æ

n

r

OM |U–—
.

So d( Â„–—) is well understood. Then for any s œ MW|U–—
, we get

Â„–b–—( Â„–)≠1(s) = Â„–(D—(( Â„–)≠1(s)) ≠ D–(( Â„–)≠1(s)))

= Â„–(( Â„—)≠1
d( Â„—( Â„–)≠1(s)) ≠ ( Â„–)≠1(ds))

= Â„–—(d( Â„≠1

–—(s))) ≠ ds

= Â„–— d( Â„≠1

–—) · s

= ≠d( Â„–—) Â„≠1

–— · s .

(4.3.15)

But, in the notation of Subsection 4.2.2, d( Â„–—) Â„≠1

–— = ›–—. Here, using g = gll(C), we

identify the three sheaves HomOM (MW, MW ¢OM Gú
M), HomOM (GM, Mg), and Mg ¢OM

Gú
M via their respective canonical OM -module isomorphisms where GM, Mg are as in

the equations (3.2.3) and (4.2.9) respectively.

Now, HomOM (E, E ¢OM Gú
M) is isomorphic to Ad(P) ¢OM Gú

M by Proposition

4.3.1. Therefore, upon identifying HomOM (GM, Ad(P)), Ad(P) ¢OM Gú
M , and also

HomOM (E, E ¢OM Gú
M) via canonical OM -module isomorphisms, we have, via equations

(4.2.11) and (4.3.15), that

b–— = ≠a–— .

It follows that a(P ) = ≠b(E).

4.4 Dolbeault cohomology of SGH vector bundles

In the preceding section, we introduced the concepts of GH connection and smooth gen-

eralized connection. Now, every connection theory naturally leads to the theory of its
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curvature. Considering the classical holomorphic case, we know that another signifi-

cant aspect of curvature theory is the computation of the Atiyah class via curvature;

see [7, Proposition 4]. The key ingredient for such a description is the classical Dolbeault

cohomology for holomorphic vector bundles.

In this section, we establish the curvature theory for smooth generalized connections

and GH connections in Subsection 4.4.2 by utilizing the local description presented in

Subsection 4.2.2. Furthermore, we delve into developing a de Rham cohomology H
•
D(M)

for regular GC manifold M in Proposition 4.4.3, and a Dolbeault cohomology H
•,ı
dL

(M, E)

for an SGH vector bundle E in Corollary 4.4.2. These elements provide a crucial rela-

tionship between the curvature and the Atiyah class in Theorem 4.4.2. To achieve this

description, we rely heavily on the associated Lie algebroid cohomology detailed in Sub-

section 2.4.2.

4.4.1 Cohomolgy Theory

Let (M, JM) be a regular GC manifold with i-eigen bundle LM . Then, (TM üT
ú
M)¢C =

LM ü LM . Note that

GúM = LM fl (T ú
M ¢ C) and GM = (GúM)ú (4.4.1)

are also smooth vector bundles over M (cf. (3.2.1), (3.2.3)). Let k be the type of JM .

So, on a coordinate neighborhood U (cf. (2.3.8), Corollary 2.3.1),

C
Œ(GúM |U) = SpanCŒ(U)

{dz1, . . . , dzk} and C
Œ(GM |U) = SpanCŒ(U)

{ ˆ

ˆz1

, . . . ,
ˆ

ˆzk
} .

Let S denote the induced regular transversely holomorphic, symplectic foliation of com-

plex codimension k corresponding to JM . Let dS denote the exterior derivative along the

leaves. Define

FM := ker(dS : C
Œ
M ≠æ C

Œ(T úS ¢ C))

as the sheaf of smooth C-valued functions over M which are constant along the leaves.

Note that OM Æ FM Æ C
Œ
M . For any vector bundle E over M whose transition maps

are leaf-wise constant, we denote the sheaf of smooth leaf-wise constant sections of E by

FM(E).
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The transition functions of Gú
M and GúM are constant along the leaves of S . On a

coordinate neighborhood U (cf. (2.3.8)),

FM(GúM |U) = SpanFM (U)
{dz1, . . . , dzk} ,

and

FM(GM |U) = SpanFM (U)
{ ˆ

ˆz1

, . . . ,
ˆ

ˆzk
} .

For any p, q Ø 0 , define
Ã

p,q := C
Œ(·pGú

M ¢ ·qGúM) ,

A
p,q := FM(·pGú

M ¢ ·qGúM) .

(4.4.2)

More specifically, given any open set U ™ M ,

Ã
p,q(U) = C

Œ(U, ·pGú
M) ¢CŒ(U) C

Œ(U, ·qGúM) ,

A
p,q(U) = FM(·pGú

M)(U) ¢FM (U) FM(·qGúM)(U) .

(4.4.3)

Note that A
p,q Æ Ã

p,q and Ã
p,q = A

p,q ¢FM C
Œ
M . For any l œ {0, . . . , 2k}, denote A

l =
m

p+q=l A
p,q and Ã

l = m
p+q=l Ã

p,q. Thus, we get two bigraded sheaves, namely,

A :=
n

p,q

A
p,q

, Ã :=
n

p,q

Ã
p,q

. (4.4.4)

To summarize, Ã and A are the bigraded sheaves of germs of sections of m
p,q(·pGú

M ¢

·qGúM), which are smooth and constant along the leaves, respectively.

Let d : C
Œ(·•

T
ú
M ¢ C) ≠æ C

Œ(·•+1
T

ú
M ¢ C) be the exterior derivative. By

Proposition 3.4.1, we can see that GM and GM both are integrable smooth sub-bundle

of TM ¢ C . Thus we can restrict d to Ã
•, A

•. We denote these restrictions by D̃ and D,

respectively, that is,

D̃ := d|Ã• , D := d|A• . (4.4.5)

In particular, any Ê œ A
p,q (respectively, Ã

p,q), is locally (cf. (2.3.8)) of the form

Ê =
ÿ

I,J

fIJ dzI · dzJ ,

where fIJ œ FM(U) (respectively, C
Œ(U)) , I, J are ordered subsets of {1, . . . , k}, and

dzI = w
iœI dzi, dzJ = w

jœJ dzj . Then,

DÊ (respectively, D̃Ê) =
ÿ

I,J

ˆfIJ dzI · dzJ +
ÿ

I,J

ˆfIJ dzI · dzJ , (4.4.6)
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where ˆfIJ and ˆfIJ are defined by

ˆfIJ :=
kÿ

i=1

ˆfIJ

ˆzi
dzi , ˆfIJ :=

kÿ

i=1

ˆfIJ

ˆzi
dzi . (4.4.7)

We identify L
ú
M with LM via the symmetric bilinear form defined in (2.3.1), and

consider the restrictions of dL to C
Œ(·•GúM) and dL to C

Œ(·•Gú
M) where dL and dL

defined in the Subsection 2.4.2 by the equations (2.4.11) and (2.4.12), respectively. We

denote these by d̃L and d̃L, respectively. In particular, for any Ê œ C
Œ(·pGú

M), locally

we can write

Ê =
ÿ

I

fI dzI .

Then,

d̃LÊ =
ÿ

I

dLfI |CŒ(GúM) dzI .

We know that, for any f œ C
Œ(U), dLf œ L and dLf œ L. Therefore, if we restrict them

to C
Œ(Gú

M) and C
Œ(GúM), respectively, we get that

dL|CŒ(GúM)f = ˆf , dL|CŒ(GúM)
f = ˆf ,

where ˆf and ˆf are defined as in (4.4.7) . We can further restrict dL and dL to

FM(·•GúM) and FM(·•Gú
M) which we again denote by dL and dL, respectively. Thus

we can consider the following morphisms of sheaves

dL : FM(·•GúM) ≠æ FM(·•+1GúM) ,

dL : FM(·•Gú
M) ≠æ FM(·•+1Gú

M) .

(4.4.8)

Note that dL = d̃L|FM (·•GúM)
and dL = d̃L|FM (·•GúM). They induce two di�erential com-

plexes, namely (FM(·•GúM), dL) and (FM(·•Gú
M), dL) . Subsequently, we can naturally

extend dL and dL to A
•,•, again denoted by dL and dL respectively, and get the following

morphisms of sheaves
dL : A

•,• ≠æ A
•,•+1 ;

dL : A
•,• ≠æ A

•+1,•
.

(4.4.9)

In particular, for any Ê œ A
p,q, locally

Ê =
ÿ

I,J

fIJ dzI · dzJ .

Then,

dLÊ =
ÿ

J

dLfIJ |FM (GúM)
· dzI · dzJ , dLÊ =

ÿ

I

dLfIJ |FM (GúM) · dzI · dzJ . (4.4.10)
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By the equations (4.4.6) and (4.4.10), on A
•,•, we have

D = dL + dL and D(A•,•) ™ A
•+1,• ü A

•,•+1
.

Similarly, one can see that D̃ = d̃L + d̃L where d̃L and d̃L are considered as a morphism

of sheaves between Ã
•,• to Ã

•+1,• and Ã
•,•+1, respectively.

Definition 4.4.1. Any element Ê œ Ã
l is called a generalized form of order l and any

element in Ã
p,q is called a generalized form of type (p, q). Here Ã

p,q
, Ã

l are as in (4.4.4).

Definition 4.4.2. Any element Ê œ A
l is called a transverse generalized form of degree

l and any element in A
p,q is called a transverse generalized form of type (p, q). Here

A
p,q

, A
l are as in (4.4.4).

Let Z
• = ker(D : A

• ≠æ A
•+1), i.e., the set of D-closed transverse generalized

forms of degree l. Let B
•(M) = img(D : A

•≠1(M) ≠æ A
•(M)), i.e., the set of D-exact

transverse generalized forms of degree l. Then, the homology of the cochain complex

{A
•(M), D} is called the D-cohomology of M , and it is denoted by

H
•
D(M) := Z

•(M)
B•(M) = ker(D : A

•(M) ≠æ A
•+1)(M)

img(D : A•≠1(M) ≠æ A•(M)) . (4.4.11)

Definition 4.4.3. Let (Gú
M)p := wp

OM
Gú

M for p œ N and (Gú
M)0 := OM . Note that

(Gú
M)•

< FM(·•Gú
M). We say that a transverse generalized form Ê of type (p, 0) is a

GH p-form if dLÊ = 0, that is, Ê œ (Gú
M)p.

Let N be another regular GC manifold and let f : M ≠æ N be a GH map. Then it

follows that

1. f
ú(A•,•

N ) µ A
•,•
M ,

2. f
ú ¶ dLN = dLM ¶ f

ú.

Corollary 4.4.1. Let M be a GC manifold. Given an open set U ™ M , a smooth map

Â : (U, JU) ≠æ C is a GH function, that is, f œ OM(U), if and only if dLf = 0 where dL

as defined in (2.4.11).

Proof. Follows from Lemma 2.3.1.
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Let Z
•,• = ker(dL : A

•,• ≠æ A
•,•+1) and let B

•,•(M) = img(dL : A
•,•≠1(M) ≠æ

A
•,•(M)). Then the homology of the cochain complex {A

•,•(M), dL} is called dL-

cohomology of M and it is denoted by

H
•,•
dL

(M) := Z
•,•(M)

B•,•(M) = ker(dL : A
•,•(M) ≠æ A

•,•+1)(M)
img(dL : A•,•≠1(M) ≠æ A•,•(M)) . (4.4.12)

One can also consider the homology of the cochain complex {Ã
•(M), D̃} which is called

the D̃-cohomology of M , and is denoted by

H
•
D̃(M) := ker(D̃ : Ã

•(M) ≠æ Ã
•+1)(M)

img(D̃ : Ã•≠1(M) ≠æ Ã•(M))
.

Similarly, the homology of the cochain complex {Ã
•,•(M), d̃L} which will be called d̃L-

cohomology of M , and denoted by

H
•,•
d̃L

(M) := ker(d̃L : Ã
•,•(M) ≠æ Ã

•,•+1)(M)
img(d̃L : Ã•,•≠1(M) ≠æ Ã•,•(M))

.

We know that locally (cf. (2.3.8)),

C
Œ(GúM |U) = SpanCŒ(U)

{dz1, . . . , dzk} ,

and

C
Œ(Gú

M |U) = SpanCŒ(U)
{dz1, . . . , dzk} ,

where k is the type of M . Then, by following [68, P-25 , P-42], one immediately obtains

the result below.

Proposition 4.4.1. Let M be a regular GC manifold of type k. Then for any q > 0,

1. d̃L-Poincaré Lemma: For su�ciently small open set U µ M , H
•,q
d̃L

(U) = 0 .

2. H
q(M, Ã

•,•) = 0 .

3. D̃-Poincaré Lemma: For a su�ciently small open set U µ M , H
q
D̃

(U) = 0 .

4. H
q(M, Ã

•) = 0 .

Definition 4.4.4. An open cover U = {U–} of M is called a transverse good cover if U

is a locally finite transverse open cover (cf. Definition 3.4.1) and any finite intersection
ul

i=0
U–i is di�eomorphic to a tubular neighborhood as in Theorem 3.4.1.
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Proposition 4.4.2. Let M be a regular GC manifold of type k. Assume M/S has a

smooth orbifold structure. Let U = {U–} be a su�ciently fine transverse good cover of

M . Then for any q > 0,

1. dL-Poincaré Lemma: For a su�ciently small transverse open set U µ M ,

H
•,q
dL

(U) = 0 .

2. D-Poincaré Lemma: For a su�ciently small transverse open set U µ M ,

H
q
D(U) = 0 .

3. H
q(U, A

•,•) = 0 .

4. H
q(U, A

•) = 0 .

Proof. By Theorem 3.4.1, there exists a transverse open set (tubular neighborhood) U

around a leaf S which is di�eomorphic to S̃ ◊Hol(S) Ck where S̃ is the universal cover of S

and Hol(S) is the holonomy group of S. Since Hol(S) is finite, it acts linearly. Recall that

Nú ¢ C = Gú
M ü GúM where N is the normal bundle of S . Taking U to be su�ciently

small, we have

FM(GúM |U) = SpanFM (U)
{dz1, . . . , dzk} ,

and

FM(Gú
M |U) = SpanFM (U)

{dz1, . . . , dzk} .

Then following the proof in [68, P-25 , P-42], we can prove (1) and (2).

To prove (3) and (4), it is enough to show that there is a partition of unity subordinate to

U such that they are constant along the leaves. This is obtained easily by pulling back

a partition of unity for M/S subordinate to Û = (fĩ(U–)) with respect to the quotient

map fĩ : M ≠æ M/S .

Proposition 4.4.3. (de Rham cohomology for regular GC manifold) Let M be a regular

GC manifold with induced symplectic foliation S . Assume the leaf space M/S admits a

smooth orbifold structure. Then for q Ø 0,

H
q(U, {C}) ≥= H

q
D(M) ,

where {C} is the sheaf of locally constant C-valued functions and U is a su�ceiently fine

transverse good cover of M .
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Proof. By D-Poincaré Lemma, we have the following exact sequence of sheaves

0 {C} A
0

A
1 · · ·D D (4.4.13)

on M . This gives the following exact sequence,

0 Z
•

A
•

Z
•+1 0 .

D (4.4.14)

In particular, the sequence

0 {C} A
0

Z
1 0D (4.4.15)

is exact. By (4) in Proposition 4.4.2, H
q(U, A

•) = 0 for all q > 0. Thus, considering the

associated long exact sequences in cohomology for these exact sequences of sheaves, as

in [68, pp. 40-41, 44], we obtain that for all q Ø 0

H
q(U, {C}) ≥= H

q≠1(U, Z
1) (by (4.4.15))

≥= H
q≠2(U, Z

2) (by (4.4.14))
...

≥= H
1(U, Z

q≠1) (by (4.4.14))

≥=
H

0(U, Z
q)

D(H0(U, Zq≠1))

= Z
q(M)

Bq(M) = H
q
D(M) .

Theorem 4.4.1. (Dolbeault cohomology for regular GC manifold) Let M be a regular GC

manifold with induced symplectic foliation S . Assume that the leaf space M/S admits

an orbifold structure. Then for any p, q Ø 0,

H
q(M, (Gú

M)p) ≥= H
p,q
dL

(M) .

Proof. By dL-Poincaré Lemma, the following sequences of sheaves,

0 (Gú
M)•

A
•,0

Z
•,1 0 ,

dL (4.4.16)

0 Z
•,•

A
•,•

Z
•,•+1 0dL (4.4.17)
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are exact. Let U be a su�ciently fine transverse good cover of M . By (3) in Proposition

4.4.2, H
r(U, A

•,•) = 0 for all r > 0. Hence, using the long exact sequences in cohomology

associated with (4.4.16) and (4.4.17) (cf. [68, pp. 40-41]), we have,

H
q(U, (Gú

M)p) ≥= H
q≠1(U, Z

p,1) (by (4.4.16))

≥= H
q≠2(U, Z

p,2) (by (4.4.17))

≥= H
q≠3(U, Z

p,3) (by (4.4.17))
...

≥= H
1(U, Z

p,q≠1) (by (4.4.17))

≥=
H

0(U, Z
p,q)

dL(H0(U, Zp,q≠1))

= Z
p,q(M)

Bp,q(M) = H
p,q
dL

(M) .

We can choose U = {U–} such that any finite intersection V = ul
i=0

U–i is di�eomorphic

a tubular neighborhood as in Theorem 3.4.1. Fix such a V . Then V := {V fl U–} is a

transverse good cover of V . Note that H
q(V, A

•,•) = 0. Then, as above,

H
q(V, (Gú

M)p|V ) = H
p,q
dL

(V ) .

Since H
p,q
dL

(W ) = 0 for any finite intersection W of elements in V by the dL-Poincaré

Lemma, using Leray’s theorem we have,

H
q(V, (Gú

M)p|V ) = H
q(V, (Gú

M)p|V ) = H
p,q
dL

(V ) .

Again, by the dL-Poincaré Lemma, H
p,q
dL

(V ) = 0. Thus, by Leray’s Theorem, for all

p, q Ø 0,

H
q(U, (Gú

M)p) ≥= H
q(M, (Gú

M)p) .

Let E be an SGH vector bundle over M . We put

AE := A ¢OM E , (4.4.18)

where A is as in (4.4.4). Since A is an FM -module, it is also OM -module, and thus, AE is

well-defined. We can naturally extend dL from A to AE, denoted by d
Õ
L, as follows: For
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f œ FM , – œ A and — œ E, we can define d
Õ
L(f– · —) = fdL(–) · — . This definition is

well-defined because if f œ OM , we have f– · — = – · f—. Then

d
Õ

L(f– · —) = fdL– · — (as dLf = 0)

= dL– · (f—)

= d
Õ

L(– · f—) .

For notational convenience, we again denote by dL or by dL,E , the natural extension d
Õ
L

of the operator dL. We denote the component of type (p, q) of the cohomology of the

complex (H0(M, AE), dL) by H
p,q
dL

(M, E) . Note that tensoring the short exact sequences

(4.4.16) and (4.4.17) with the locally free sheaf E again yields short exact sequences.

Then, following the proof of Theorem 4.4.1, we get the following.

Corollary 4.4.2. H
p,q
dL

(M, E) ≥= H
q(M, (Gú

M)p ¢OM E).

Suppose, the leaf space M := M/S is a smooth manifold. Then, Theorem 3.4.5 shows

that, for l, p, q Ø 0, A
l (respectively, A

p,q), as defined in (4.4.2), is isomorphic to fĩ
≠1(�l

M )

(respectively, fĩ
≠1(�p,q

M )) where �l
M is the sheaf of C-valued smooth l-forms on M . In

particular, The map ˜̃fi#, in Subsection 3.4.3, induces the pullback map fĩ
ú from �l

M (M )

(respectively, �p,q
M (M )) to A

l(M) (respectively, A
p,q(M)) which is an isomorphism of

C-vector spaces. By the definitions of D and dL (see (4.4.5) and (4.4.9)), we have the

following commutative diagrams.

�l
M (M ) A

l(M) �p,q
M (M ) A

p,q(M)

�l+1

M (M ) A
l(M) �p,q+1

M (M ) A
p,q+1(M)

fĩú
(≥=)

d D

fĩú
(≥=)

ˆ

fĩú
(≥=)

fĩú
(≥=)

dL

This shows that we have surjective homomorphisms at the level of de Rham cohomology

and Dolbeault cohomology, respectively:

fĩ
ú : H

l
dR(M , C) ≠æ H

l
D(M) and fĩ

ú : H
p,q

ˆ
(M ) ≠æ H

p,q
dL

(M) .

Since fĩ is a submersion, fĩ
ú is one-to-one. Consequently, fĩ

ú is an isomorphism of C-vector

spaces. Thus, we can conclude the following.

Corollary 4.4.3. Let M be a regular GC manifold such that the leaf space M of the

induced foliation is a smooth manifold. Then,

H
•
dR(M , C) ≥= H

•
D(M) and H

•,•
ˆ

(M ) ≥= H
•,•
dL

(M) .
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Let V be a holomorphic vector bundle over M . Note that, by Lemma 3.1.3, any

holomorphic vector bundle is an SGH vector bundle over M and vice versa. Let V be

the sheaf of holomorphic sections on M . For, p, q Ø 0, consider

�p,q
M (V ) := �p,q

M ¢OM V ,

the sheaf of V -valued di�erential forms of type (p, q) , with the natural extension of ˆ-

operator on H
0(M , �p,q

M (V )) , again denoted by ˆ . Let H
•,•
ˆ

(M , V ) denote the V -valued

Dolbeault cohomology of M . Consider the SGH vector bundle E := fĩ
ú
V over M . Then,

preceding discussions and Theorem 3.4.5 show that, for p, q Ø 0, A
p,q
E , as defined in

(4.4.18), is isomorphic to fĩ
≠1(�p,q

M (V ))). In particular, the pullback map fĩ
ú, induced by

the map ˜̃fi# (cf. Subsection 3.4.3) provides the following isomorphism of C-valued vector

spaces,

fĩ
ú : H

0(M , �p,q
M (V )) ≠æ A

p,q
E (M) ,

where AE as defined in 4.4.18. Consequently, we have the following commutative diagram.

H
0(M , �p,q

M (V )) A
p,q
E (M)

H
0(M , �p,q+1

M (V )) A
p,q+1

E (M)

fĩú
(≥=)

ˆ

fĩú
(≥=)

dL

This shows that fĩ
ú is surjective at the level of Dolbeault cohomology. Since fĩ

ú :

H
•,•
ˆ

(M , V ) ≠æ H
•,•
dL

(M, E) is one-to-one, fĩ
ú is an isomorphism. Thus we get the fol-

lowing extension of Corollary 4.4.3.

Corollary 4.4.4. Let M be a regular GC manifold such that the leaf space M of the

induced foliation is a smooth manifold. Let fĩ : M ≠æ M be the quotient map. Let V be

a holomorphic vector bundle on M . Then,

H
•,•
ˆ

(M , V ) ≥= H
•,•
dL

(M, E) (via fĩ
ú) where E = fĩ

ú
V .

Remark 4.4.1. Corollary 4.4.4 is useful for studying dimC H
•,•
dL

(M, E) . This can be

illustrated as follows:

Let OCPn(1) denote the hyperplane bundle over CPn, and let OCPn(≠1) := OCPn(1)ú

be the tautological line bundle over CPn. For, m œ Z, set

OCPn(m) =

Y
__]

__[

OCPn(≠1)¢m for m Æ 0,

OCPn(1)¢m for m Ø 0.
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Let M be a regular GC manifold with the leaf space CPn. Consider the following SGH

vector bundle over M ,

OM(m) := fĩ
úOCPn(m) where m œ Z and fĩ : M ≠æ CPn is the quotient map .

By Corollary 4.4.2 and Corollary 4.4.4, for m œ Z, we have

dimC H
•(M, (Gú

M)• ¢OM OM(m)) = dimC H
•(CPn

, �•
CPn ¢OCPn OCPn(m)) ,

where �•
CPn denotes the sheaf of holomorphic •-forms on CPn

. Then, using Bott formula

(cf. [28] and [124, Chapter 1]), for p, q Ø 0, we get,

dimC H
q(M, (Gú

M)p ¢OM OM(m)) =

Y
___________]

___________[

1
m+n≠p

m

21
m≠1

p

2
for q = 0, 0 Æ p Æ n, m > p ;

1
≠m+p

≠m

21
≠m≠1

n≠p

2
for q = n, 0 Æ p Æ n, m < p ≠ n ;

1 for m = 0, 0 Æ p = q Æ n ;

0 otherwise .

In particular, for p = 0, we have

dimC H
q(M,OM(m)) =

Y
_______]

_______[

1
m+n

m

2
for q = 0, m Ø 0 ;

1
≠m≠1

≠m≠1≠n

2
for q = n, m Æ ≠n ≠ 1 ;

0 otherwise .

4.4.2 Cohomology class of the curvature

Let G be a complex Lie group with complex Lie algebra g. Let G Òæ P ≠æ M be an

SGH principal bundle. Then, by applying Corollary 4.4.2 to Ad(P) where Ad(P ) is as

in (4.2.7), we have the following.

Corollary 4.4.5. H
q(M, (Gú

M)p ¢OM Ad(P)) ≥= H
p,q
dL

(M, Ad(P )).

Let � = {�–} œ Ã
1,0 ¢OM Ad(P) be a smooth generalized connection on P (see

Definition 4.2.3 and Section 4.2.2), where

�– œ C
Œ(U–, HomCŒ

M
(CŒ(GM) , C

Œ(Mg)))
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on a trivializing neighborhood U– of P . Then, the curvature of this smooth generalized

connection is defined on U– by

�– := D̃�– + 1
2[�–, �–] (4.4.19)

where �– is considered as g valued function. Then, by using either of the equations

(4.2.15) or (4.2.16), we get

�– = Ad(„–—) �— on U– fl U— ,

or

�— = Ad(„—–) �– on U– fl U— .

(4.4.20)

So, after patching, we get an element � œ C
Œ(M, ·2(GM üGM)ú) ¢ Ad(P )). � is called

the curvature of the smooth generalized connection �.

Let � œ A
1,0
Ad(P )

be such that �– œ A
1,0
Mg

for every –. This type of connection always

exists due to the existence of partition of unity on the orbifold leaf space M/S . We can

then reformulate equation (4.4.19) as

�– = D�– + 1
2[�–, �–] on U– . (4.4.21)

This shows that the (1, 1) component of �–, denoted by �1,1
– , is given by

�1,1
– = dL�– on U– . (4.4.22)

By (4.4.20), we have
�1,1

– = Ad(„–—)�1,1
— on U– fl U— ,

or

�1,1
— = Ad(„—–)�1,1

– on U– fl U— .

(4.4.23)

After patching, we get a global element � œ
1
FM(·2(Gú

M ü GúM)) ¢OM Ad(P)
2

(M)

whose (1, 1)-component is �1,1. Then from the equations (4.2.15), (4.2.16), (4.4.22) and

(4.4.23), we can see that the dL-cohomology class [�1,1] of �1,1 is independent of the

choice of a smooth generalized connection of type (1, 0). Note that [�1,1] maps to a(P ),

as defined in Theorem 4.2.2, via the isomorphism in Corollary 4.4.5. We summarise our

results as follows.

Theorem 4.4.2. Let P be an SGH principal G-bundle over a regular GC manifold M

where G is a complex Lie group. Assume that the leaf space of the induced symplec-

tic foliation on M admits a smooth orbifold structure. Let � be a smooth generalized
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connection of type (1, 0) on P , which is constant along the leaves. Let �1,1 denote the

corresponding (1, 1) component of the curvature. Let [�1,1] be the dL-cohomology class

in H
1,1
dL

(M, Ad(P )). Then [�1,1] corresponds to a(P ) œ H
1(M,Gú

M ¢OM Ad(P)) via the

isomorphism in Corollary 4.4.5.

4.5 Generalized Chern-Weil Theory and character-

istic classes

An application of the theory of curvature can be seen in the classical Chern-Weil theory,

which provides the characteristic classes. In general, for a detailed study on Chern-Weil

theory for principal bundles, and characteristic classes, we refer to [23, 47, 67, 97, 115,

116, 119, 147]. In this section, we present a related Chern-Weil theory for SGH principal

G-bundles, under the conditions outlined in Theorem 4.4.2, thereby introducing a new

type of characteristic classes for SGH principal G-bundles.

Let G be a complex Lie group with g denoting its complex Lie algebra. Let Symk(gú)

denotes the set of all symmetric k-linear mappings g◊g◊ · · ·◊g ≠æ C on the Lie algebra

g. Define the right adjoint action of the Lie group G on Symk(gú) by

(f, g) ‘æ Ad(g≠1)f

where (Ad(g≠1)f)(x1, . . . , xk) = f(Ad(g≠1)x1, . . . , Ad(g≠1)xk)
(4.5.1)

for any f œ Symk(gú) and g œ G. Denote the space of Ad(G)-invariant forms by

Symk(gú)G := {f œ Symk(gú) | Ad(g≠1)f = f ’ g œ G} (4.5.2)

Now, given any f œ Symk(gú)G, we define a 2k-form in A
2k, of type (k, k), by

f(�1,1)(X1, X2 . . . , X2k) := 1
(2k)!

ÿ

‡

‘‡f(�1,1(X‡(1), X‡(2)), . . . , �1,1(X‡(2k≠1), X‡(2k)))

(4.5.3)

for X1, . . . , X2k œ FM(GM ü GM), where ‡ is an element of the symmetric group S2k, ‘‡

denotes the sign of the permutation ‡ œ S2k, and �1,1 is defined as in Theorem 4.4.2.

Let C[g] be the algebra of C-valued polynomials on g. Consider the same adjoint

action of G on C[g] as in (4.5.1), and let C[g]G denote the subalgebra of fixed points

under this action. Then any f œ Symk(gú)G can be viewed as a homogeneous polynomial
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function of degree k in C[g]G that is,

Symk(gú)G
< C[g]G for any k Ø 0 .

We set

Sym(gú)G :=
Œn

k=0

Symk(gú)G
.

Then, Sym(gú)G can be viewed as a sub-algebra of C[g]G.

Since dL�1,1 = 0, we can see that dLf(�1,1) = 0 for any f œ Symk(gú)G. Thus

f(�1,1) œ H
k,k
dL

(M). We define a map

�k : Symk(gú)G ≠æ H
k,k
dL

(M) ,

f ‘æ [f(�1,1)] .

(4.5.4)

Using the algebra structure of Sym(gú)G, we extend the map in (4.5.4) to an algebra

homomorphism
� : Sym(gú)G ≠æ H

ú
dL

(M) ,

f ‘æ [f(�1,1)] ,

(4.5.5)

where H
ú
dL

(M) := m
k,l H

k,l
dL

(M).

Note that img � ™ m
kØ0 H

k,k
dL

(M). We show that � is independent of the choice of a

smooth generalized connection of type (1, 0) which is constant along the leaves. For that,

consider two smooth generalized connections �, �Õ of type (1, 0) on the SGH principal

bundle P over M which are constant along the leaves. Define

Ê = � ≠ �Õ ;

Êt = �Õ + tÊ , for t œ [0, 1] .

From the equations (4.2.15) and (4.2.16), one can see that Êt is a 1-parameter family of

smooth generalized connections of type (1, 0) constant along the leaves. Let �t be the

curvature of Êt and let �1,1
t be the (1, 1) component of �t. By (4.4.22), we have

�1,1
t = dLÊt ,

= dL�Õ + t dLÊ ,

=∆ d�1,1
t

dt
= dLÊ .

(4.5.6)

Consider the transverse generalized (2k ≠ 1)-form of type (k, k ≠ 1), defined by

Ï = k

⁄
1

0

f(Ê, �1,1
t , . . . , �1,1

t ) dt . (4.5.7)
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Note that

k dLf(Ê, �1,1
t , . . . , �1,1

t ) = kf(dLÊ, �1,1
t , . . . , �1,1

t ) ,

= kf(d�1,1
t

dt
, �1,1

t , . . . , �1,1
t ) (by (4.5.6)) ,

= d

dt
(f(�1,1

t , . . . , �1,1
t )) .

(4.5.8)

Hence,

dLÏ =
⁄

1

0

d

dt
(f(�1,1

t , . . . , �1,1
t )) dt = f(�1,1

1 , . . . , �1,1
1 ) ≠ f(�1,1

0 , . . . , �1,1
0 ) .

This shows that the algebra homomorphism �, in (4.5.5), is independent of the choice of

smooth generalized connections of type (1, 0) which are constant along the leaves.

Definition 4.5.1. The algebra homomorphism �, defined in (4.5.5), is called the gener-

alized Chern-Weil homomorphism.

4.5.1 Generalized Chern classes

Let P ≠æ M be an SGH principal G-bundle over a regular GC manifold M . Let G be a

complex Lie group with a canonical faithful representation such as a classical complex Lie

group. Then the complex Lie algebra g is identified with a complex subalgebra of Ml(C)

where l is the dimension of the representation. For any A œ g , consider the following

characteristic polynomial

det
3

I + t
A

2fi i

4
=

lÿ

k=0

fk(A) t
k

, (4.5.9)

where fk œ C[g] is an elementary symmetric polynomial of degree k and I is the identity

matrix. Since the right hand side of (4.5.9) is invariant under Ad(G)-action, we have

fk œ Symk(gú)G
.

Following [147, Example 32.3], we define an analogue of Chern classes for an SGH princi-

pal G-bundles where G is a complex Lie group with a holomorphic faithful representation.

Definition 4.5.2. The k-th generalized Chern class of P , denoted by gck(P ), is defined

as the image of fk under the generalized Chern-Weil homomorphism, that is,

gck(P ) := �(fk) ,

where � as defined in (4.5.5).
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Proposition 4.5.1. gc1(P ) =
Ë1

1

2fi i

2
Trace(�1,1)

È
, where �1,1 as defined in (4.4.22).

Proof. Consider the usual determinant map det : Ml(C) ≠æ C , and the smooth map

(det ¶ Â)(z) = ql
k=0

fk(A) z
k

, where Â(z) = I + z
A

2fi i for all z œ C, A œ g. Here, g

is identified with a complex subalgebra of Ml(C). After di�erentiating both sides with

respect to z, at z = 0, we get f1(A) =
1

Trace(A)

2fi i

2
which concludes the proof.

————— ¶ —————
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Chapter 5

Connections on Strong Generalized

Holomorphic Vector Bundles and

Hodge theory

In this chapter, we extend the concept of GH connections to SGH vector bundles, which

are also GH vector bundles in the sense described by Lang et al. ( [103, Definition

4.1]) (see Remark 5.1.7). We achieve this by introducing two new types of connections:

smooth generalized connections and transverse generalized connections. Furthermore, we

delve into related topics such as Hodge theory and explore related dualities and vanishing

theorems. For an extensive exploration of the theory of connection on vector bundles,

we refer to [51, 95, 96, 144]. In general, for a detailed study of Hodge theory, as well as

related dualities and vanishing theorems, we refer to [20,54,68,86,120,136,150,160] and

the references therein. To delve into elliptic operators on manifolds, we refer to [133,134]

and the references therein.

We begin by introducing a smooth generalized connection for SGH vector bundles,

which is a smooth version of a GH connection. Next, we provide a local description in

5.1.2 and delineate this connection’s characteristics in Proposition 5.1.1-5.1.3. We then

delve into the theory of its associated curvature. However, a smooth generalized connec-

tion proves insu�cient in capturing the transverse geometry of a GC manifold. Hence,

we introduce the transverse generalized connection along with its corresponding curva-

ture. Essentially, they are smooth generalized connections but remain constant along

the leaf direction of the induced foliation. Assuming the leaf space to be an orbifold, we

113
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describe the theory of the transverse generalized connection and its curvature. We also

provide generalized Chern classes for SGH vector bundles, similar to those discussed in

Subsection 4.5.1. Within this framework, we establish both generalized Poincaré duality

and generalized Serre duality, along with providing a Hodge decomposition in Theorem

5.2.2. Furthermore, we extend our analysis to establish the generalized Hodge decom-

position and generalized Serre duality for SGH vector bundles in Theorem 5.2.3-5.2.4.

Assuming the leaf space to be a Kähler orbifold, we present the generalized Kodaira van-

ishing theorem and generalized Serre theorem in Theorem 5.2.5. This chapter is based

on [127, Sections 10 and 11] and splits into two sections:

1. Connections on SGH vector bundles (Section 5.1).

2. Dualities and vanishing theorems for SGH vector bundles (Section 5.2).

5.1 Connections on SGH vector bundles

Let M be a regular GC manifold and E be an SGH vector bundle over M . Set

ÃE := Ã ¢CŒ
M

C
Œ(E) = Ã ¢OM E , (5.1.1)

where Ã is defined as in (4.4.4).

Definition 5.1.1. A smooth generalized connection on an SGH vector bundle E, is a

C-linear sheaf homomorphism

Ò : Ã
0

E ≠æ Ã
1

E

which satisfies the Leibniz rule

Ò(fs) = D̃f ¢ s + fÒ(s)

for any local function on M and any local section s of E.

Let {U–, „–} be a system of local trivializations of E. Then, on U–, we may write

Ò|U– = „
≠1

– ¶ (D̃ + ◊–) ¶ „–
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where ◊– is a matrix valued generalized 1-form. On U– fl U—, we have

„
≠1

— ¶ (D̃ + ◊—) ¶ „— = „
≠1

– ¶ (D̃ + ◊–) ¶ „– ,

=∆ „
≠1

— ¶ ◊— ¶ „— ≠ „
≠1

– ¶ ◊– ¶ „– = „
≠1

– ¶ D̃ ¶ „– ≠ „
≠1

— ¶ D̃ ¶ „— ,

=∆

Y
_____]

_____[

„
≠1

— ¶ ◊— ¶ „— ≠ „
≠1

– ¶ ◊– ¶ „– = „
≠1

— ¶ („≠1

–— ¶ D̃ ¶ „–— ≠ D̃) ¶ „— ,

or

„
≠1

— ¶ ◊— ¶ „— ≠ „
≠1

– ¶ ◊– ¶ „– = „
≠1

– ¶ (D̃ ≠ „–— ¶ D̃ ¶ „
≠1

–—) ¶ „– .

Thus, we get the following co-boundary equation for Ò.
Y
_____]

_____[

◊— ≠ Ad(„—–) · ◊– = „
≠1

–—D̃(„–—)

or

Ad(„–—) · ◊— ≠ ◊– = ≠„–—D̃(„≠1

–—)

on U– fl U— . (5.1.2)

A straightforward modification of the proof of [86, Proposition 4.2.3] yields the following.

Proposition 5.1.1. Let E be an SGH vector bundle over M . Then

1. For any two smooth generalized connections Ò, ÒÕ on an SGH vector bundle E,

Ò ≠ ÒÕ is Ã
0-linear.

2. For any ◊ œ Ã
1

End(E)
(M), Ò + ◊ is also a smooth generalized connection of E.

3. The set of all smooth generalized connections on E, is an a�ne space over the

(infinite-dimensional) C-vector space Ã
1

End(E)
(M).

Any SGH vector bundle E is also a complex vector bundle and it admits a hermitian

metric h. The pair (E, h) is then known as a hermitian vector bundle.

Definition 5.1.2. Given a hermitian vector bundle (E, h), a smooth generalized connec-

tion Ò is called a generalized hermitian connection with respect to h if for any two local

sections s, s
Õ, one has

D̃(h(s, s
Õ)) = h(Òs, s

Õ) + h(s, Òs
Õ) . (5.1.3)

Let ◊ be a element in Ã
1

End(E)
(M) and Ò be a generalized hermitian connection. Then,

by Proposition 5.1.1, Ò + ◊ is also a smooth generalized connection. Now, one can see
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that Ò + ◊ satisfies (5.1.3) if and only if h(◊s, s
Õ) + h(s, ◊s

Õ) = 0 for all smooth local

sections s, s
Õ . Consider the subsheaf

End(E, h) := {◊ œ C
Œ(End(E)) | h(◊s, s

Õ) + h(s, ◊s
Õ) = 0 ’ local sections s, s

Õ}

of C
Œ(End(E)). Note that End(E, h) has the structure of a real vector bundle.

Proposition 5.1.2. The set of all generalized hermitian connections on (E, h) is an

a�ne space over the (infinite-dimensional) R-vector space Ã
1

End(E,h)
(M) where Ã

1

End(E,h)
=

Ã
1 ¢CŒ

M,R
C

Œ(End(E, h)), and C
Œ
M,R is the sheaf of R-valued smooth functions.

Proof. Follows from Proposition 5.1.1 after considering E as a real vector bundle.

Remark 5.1.1. (cf. [86, Section 4.2]) End(E, h) is not always an SGH vector bundle.

It is not even always a complex vector bundle. For example, if E = M ◊ C is the trivial

SGH vector bundle. Then End E is again M ◊ C but End(E, h) is just the M ◊ iR.

Now Ã
1

E = Ã
1,0
E + Ã

0,1
E , as in (4.4.2). So, we can decompose any smooth generalized

connection Ò into two components, Ò1,0 and Ò0,1 such that Ò = Ò1,0 + Ò0,1 where

Ò1,0 : Ã
0

E ≠æ Ã
1,0
E ; Ò0,1 : Ã

0

E ≠æ Ã
0,1
E .

Note that for any local function f on M and local section s of E,

Ò0,1(fs) = d̃Lf ¢ s + fÒ0,1(s) .

Definition 5.1.3. A smooth generalized connection Ò on E is compatible with the GCS

if Ò0,1 = d̃L.

After some straightforward modifications of the proofs in [86, Corollary 4.2.13, Propo-

sition 4.2.14], one obtains the following.

Proposition 5.1.3. Let E be an SGH vector bundle over M with a hermitian structure

h.

1. The space of smooth generalized connections on E, compatible with the GCS, forms

an a�ne space over the C-vector space Ã
1,0
End(E)

(M).

2. There exists a unique generalized hermitian connection Ò on E with respect to h

which is also compatible with the GCS. This smooth generalized connection is called

generalized Chern connection.
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Definition 5.1.4. The curvature of a smooth generalized connection Ò, denoted by �Ò

and referred to as a smooth generalized curvature, is the composition

�Ò := Ò ¶ Ò : Ã
0

E ≠æ Ã
1

E ≠æ Ã
2

E .

Example 5.1.1. Let E = M ◊Cl be the trivial SGH vector bundle. By Proposition 5.1.1,

any smooth generalized connection is of the form Ò = D̃ +◊ where ◊ œ Ã
1

End(E)
(M). Note

that D̃ : Ã
p æ Ã

p+1 extends naturally to D̃ : Ã
p
E æ Ã

p+1

E by the Leibniz rule. So, for any

local section s œ Ã
0

E, we have

�Ò(s) = (D̃ + ◊)(D̃s + ◊s)

= D̃(D̃s) + (D̃(◊s) + ◊ · D̃s) + ◊ · ◊(s)

= (◊ · ◊ + D̃(◊))(s) .

For any smooth generalized connection Ò on an SGH vector bundle E with local

trivialization {U–, „–}, we know that Ò = „
≠1

– ¶ (D̃ + ◊–) ¶ „–. By (5.1.2), on U–—,

◊— = Ad(„—–) · ◊– + „
≠1

–—D̃(„–—) .

This implies

D̃(◊—) = D̃(„—–) · D̃(„–—) + D̃(„—–) · ◊– · „–— + Ad(„—–) · D̃(◊–)

≠ „—– · ◊– · D̃(„–—) ,

(5.1.4)

and also,

◊— · ◊— = Ad(„—–)(◊– · ◊–) + „—–D̃(„–—) · „—–D̃(„–—)

+ „—–D̃(„–—) · Ad(„—–) · ◊– + Ad(„—–) · ◊– · „—–D̃(„–—) .

Note that D̃(„—–)„–— = ≠„—–D̃(„–—) since D̃(„—– „–—) = 0. Thus, we get

◊— · ◊— = Ad(„—–)(◊– · ◊–) ≠ D̃(„—–) · D̃(„–—) ≠ D̃(„—–) · ◊– · „–—

+ „—– · ◊– · D̃(„–—)
(5.1.5)

Hence, by combining (5.1.4) and (5.1.5) on U–—, we have

„— ¶ �Ò ¶ „
≠1

— = (◊— · ◊— + D̃(◊—))

= Ad(„—–)(◊– · ◊– + D̃(◊–))

= Ad(„—–)(„– ¶ �Ò ¶ „
≠1

– ) .
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This implies that �Ò œ Ã
2

End(E)
(M) . Now, assume that E admits a hermitian structure

such that Ò is a generalized hermitian connection with respect to h. Without loss of

generality, we can assume that (E, h)|U– is isomorphic to U– ◊Cl with constant hermitian

structure. Then we can easily see that, on U–, ◊–
t = ≠◊– and so, by Example 5.1.1,

�Ò
t = ≠�Ò . Note that, using (5.1.3), we have, for any local si œ Ã

ki
E (i = 1, 2),

D̃h(s1, s2) = h(Òs1, s2) + (≠1)k1h(s1, Òs2) .

This implies that for si œ Ã
0

E,

0 = D̃(D̃h(s1, s2))

= D̃(h(Òs1, s2) + h(s1, Òs2))

= h(�Òs1, s2) + h(s1, �Òs2) .

(5.1.6)

If we further assume that Ò is compatible with the GCS, we get,

�Ò = Ò2 = (Ò1,0)2 + Ò1,0 ¶ d̃L + d̃L ¶ Ò1,0
.

Thus, h(�Òs1, s2) and h(s1, �Òs2) are of type (2, 0)+(1, 1) and (1, 1)+(0, 2), respectively.

So, by (5.1.6), (Ò1,0)2 = 0. We have proved the following.

Proposition 5.1.4. Let E be an SGH vector bundle over M with a hermitian structure

h. Let Ò be a smooth generalized connection with curvature �Ò. Then

1. If Ò is a generalized hermitian connection with respect to h, �Ò satisfies

h(�Òs1, s2) + h(s1, �Òs2) = 0 for any sections s1, s2 .

2. If Ò is compatible with the GCS, then �Ò has no (0, 2)-part, that is,

�Ò œ (Ã2,0
End(E)

ü Ã
1,1
End(E)

)(M) .

3. If Ò is a generalized Chern connection on (E, h), �Ò is of type (1, 1), skew-

hermitian and real.

Recall the transversely holomorphic symplectic foliation S of M and the corre-

sponding leaf space M/S . We have seen that a smooth generalized connection on an

SGH vector bundle E over M with trivializations {U–, „–} is equivalent to a family

{◊– œ Ã
1

End(E)|U–
(U–)} satisfying (5.1.2). If each ◊– is constant along the leaves of S ,

that is, if we replace Ã
• by A

•, we get the following notion.
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Definition 5.1.5. Let E be an SGH vector bundle on M .

1. A transverse generalized connection on E, is a C-linear sheaf homomorphism

Ò : A
0

E ≠æ A
1

E

which satisfies the Leibniz rule

Ò(fs) = Df ¢ s + fÒ(s)

for any local function f œ FM and any local section s of FM(E).

2. A transverse generalized curvature is the curvature of a transverse generalized con-

nection Ò, denoted by �Ò. Note that, �Ò œ A
2

End(E)
(M) .

Remark 5.1.2. A transverse generalized connection is also a smooth generalized con-

nection in the sense that given a transverse generalized connection Ò, we can consider a

C-linear sheaf homomorphism

Ò̃ : Ã
0

E = C
Œ
M ¢FM A

0

E ≠æ Ã
1

E = C
Œ
M ¢FM A

1

E ,

defined by

Ò̃(fs) = D̃f ¢ s + fÒs

for any local smooth function f and any local section s œ A
0

E. One can check that Ò̃ is a

smooth generalized connection.

Remark 5.1.3. A smooth generalized connection always exists. A transverse generalized

connection exists locally. For it to exist globally we need a smooth partition of unity,

which is constant along the leaves. If we assume M/S is a smooth orbifold, such a

partition of unity exists. Henceforth, in this section, we always assume that M/S is a

smooth orbifold.

We can replicate all the definitions and results for smooth generalized connections

in this section, except those concerning hermitian structure, to transverse generalized

connections by making the following substitutions.
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Replaced

by

C
Œ
M FM

Ã
•

A
•

Ã
•,•

A
•,•

D̃ D

d̃L dL

Table 5.1: Replacement table

For the results concerning the generalized hermitian connection, some extra care is

needed. Consider the trivial SGH vector bundle E = M ◊ Cr with a hermitian structure

h and let Ò be a smooth generalized connection which satisfies (5.1.3). Any hermitian

metric h given on E is given by a function, again denoted by h, on M that associates to

any x œ M , a positive-definite hermitian matrix h(x) = (hij(x)). So we can think of h as

a smooth global section of E
ú ¢ E

ú, that is,

h œ C
Œ(M, E

ú ¢ E
ú) .

Now Ò is of the form Ò = D̃ + ◊ for some ◊ = (◊ij) œ Ã
1

End(E)
(M). Let ei be the constant

i-th unit vector considered as a section of E. The assumption on Ò will yield

D̃h(ei, ej) = h(
ÿ

k

◊kiek, ej) + h(ei,
ÿ

l

◊ljej) ,

or equivalently D̃h = ◊
t · h + h · ◊. Furthermore, if we assume that Ò is compatible with

the GCS, then ◊ is of type (1, 0). This implies

d̃Lh = h · ◊

=∆ ◊ = h
≠1

d̃Lh .

This shows that hermitian structure uniquely determines the smooth generalized connec-

tion. Thus, for a transverse generalized connection, we would like to have a hermitian

metric which is constant along the leaves.
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Definition 5.1.6. A hermitian metric h on an SGH vector bundle E is called a transverse

hermitian metric if h œ FM(M, E
ú ¢ E

ú), that is, h is constant along the leaves of S .

Remark 5.1.4. Our assumption that M/S is a smooth orbifold ensures that a transverse

hermitian metric always exists.

With this notion of transverse hermitian metric and using the substitutions in Table

5.1, we can replicate all the relevant definitions and extend the results in Proposition

5.1.3 and Proposition 5.1.4 to the transverse generalized connections. In particular, we

have the following.

Theorem 5.1.1. Let E be an SGH vector bundle over M such that M/S is a smooth

orbifold. Let h be a transverse hermitian metic on E.

1. There exists a unique transverse generalized hermitian connection Ò on E with

respect to h which is also compatible with the GCS. This transverse generalized

connection is called transverse generalized Chern connection.

2. The transverse generalized curvature of Ò, �Ò is of type (1, 1), skew-hermitian and

real.

3. The space of transverse generalized connections on E, compatible with the GCS,

forms an a�ne space over the C-vector space A
1,0
End(E)

(M).

5.1.1 Generalized Chern classes for SGH vector bundles

Let E ≠æ M be an SGH vector bundle over M of complex rank l. Then, following

Subsection 4.5.1, consider the following characteristic polynomial

det
3

I ≠ t
A

2fi i

4
=

lÿ

j=0

gj(A) t
j
,

where gj œ C[Ml(C)] is the elementary symmetric polynomial of degree j and I is the

identity matrix. Then, we can define an analogue of Chern classes similar to the classical

case, as follows.
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Definition 5.1.7. Let E be an SGH vector bundle over M . The j-th generalized Chern

class of E, denoted by gcj(E), is defined as the image of gj under the generalized Chern-

Weil homomorphism, that is,

gcj(E) := �(gj) ,

where � as defined in (4.5.5).

Example 5.1.2. Let E be an SGH vector bundle over M where the leaf space M/S

admits an orbifold structure. Let Ò be the transverse generalized Chern connection and

�Ò be its curvature. Then gc1(E) = ≠ 1

2fii [Trace(�Ò)].

Remark 5.1.5. Note that, if the leaf space M/S is a smooth manifold, and if we have

an SGH vector bundle E over M which is the pullback of a holomorphic vector bundle V

over M/S , then, by using Corollary 4.4.4, we can conclude that the generalized Chern

classes of E are the pullback of the Chern classes of V , that is

gcj(E) = fĩ
ú(cj(V )) for 0 Æ j Æ l ,

where cj(V ) is the j-th Chern class of V , fĩ : M ≠æ M/S is the quotient map, and l is

the complex rank of E.

Remark 5.1.6. Given an SGH line bundle over M , the image of its isomorphism class

in H
1(M,Oú

M), under the connecting homomorphism in the long exact sequence of sheaf

cohomologies derived from the short exact sequence in Theorem 3.3.1, may not give the

first generalized Chern class of the bundle. This is because the first generalized Chern

class lies in H
1,1
dL

(M) which under suitable conditions lies in H
2

D(M). But the latter

basically describes the cohomology of the leaf space of the GCS and may not be the same

as the de Rham cohomology of M . If the bundle is the pullback of a holomorphic line

bundle on the leaf space of the symplectic foliation, then there is no such discrepancy.

Remark 5.1.7. It is important to note that if we substitute FM with OM in Definition

5.1.5 and refer to Remark 3.1.1, we get a GH connection on an SGH vector bundle as

defined by Lang et al [103, Definition 4.1]. In this framework, the subsequent result has

been established concerning the existence of a GH connection on an SGH vector bundle.

Theorem 5.1.2. ( [103, Sections 4.1–4.2]) Let E be an SGH vector bundle over a regular

GC manifold. Then, the following are equivalent:
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1. E admits a GH connection.

2. The short exact sequence, as defined in (4.3.2), splits.

3. b(E) = 0 where b(E) is the Atiyah class of the SGH vector bundle E as defined in

Definition 4.3.1.

Theorem 5.1.3. Consider E as an SGH vector bundle over a regular GC manifold M .

Let P denote the corresponding SGH principal bundle, as in (4.1.4). Then, E admits a

GH connection if and only if P admits a GH connection.

Proof. Follows from Theorem 4.2.2, Theorem 4.3.1, and Theorem 5.1.2.

With this, we conclude the groundwork necessary for establishing an analogue of

Hodge theory and related dualities and vanishing theorems in the following section.

5.2 Dualities and vanishing theorems for SGH vector

bundles

In this section, we extend some classical results like Serre duality, Poincaré duality, Hodge

decomposition and vanishing theorems to the cohomology theory of Section 4.4.1 following

the approach of [6] and [86].

5.2.1 Generalized Serre duality and Hodge decomposition

Let M
2n be a compact regular GC manifold of type k. Then the leaf space M/S , as

defined in (3.4.2), is a compact space. Let us assume M/S is a smooth orbifold. Then, by

the integrability condition of the GCS, M/S is a complex orbifold, and hence, orientable.

Thus the cohomology H
2k(M/S ) is nontrivial. Therefore, there exists a (2n ≠ 2k)-form

‰ on M (see [6, Section 2.8]) which restricts to a volume form on each leaf such that for

any X1, . . . , X2n≠2k œ C
Œ(TS ) and Y œ C

Œ(TM),

d‰(X1, . . . , X2n≠2k, Y ) = 0 . (5.2.1)
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Fix a Riemannian metric on the leaf space. This induces a transverse Riemmaninan

metric on M . We can complete the transverse metric by a Riemannian metric along the

leaves to obtain a Riemannian metric on M for which the leaves are minimal. In fact, ‰

is associated to this metric.

Now, define a Hodge-star operator on A
•,

ı : A
• ≠æ A

2k≠•
, (5.2.2)

as follows: Let U be an open set in M on which the GCS is equivalent to a product

GCS (see Theorem 2.3.1). This implies that the symplectic foliation on U is trivial. Let

e1, . . . , e2k be transverse generalized 1-forms such that {e1, . . . , e2k} is an orthonormal

frame of A
1(U). Then, for any r > 0, ı : A

r(U) ≠æ A
2k≠r(U) is defined by,

ı(ei1 · ei2 · · · · · eir) = Sign(i1, . . . , ir, j1, . . . , j2k≠r) ej1 · ej2 · · · · · ej2k≠r
(5.2.3)

where {j1, . . . , j2k≠r} is the increasing complementary sequence of {i1, . . . , ir} in the

set {1, 2, . . . , 2k} and Sign(i1, . . . , ir, j1, . . . , j2k≠r) denotes the sign of the permutation

{i1, . . . , ir, j1, . . . , j2k≠r}. A simple calculation will show that

ıı = (≠1)r(2k≠r)
. (5.2.4)

Define a hermitian product on A
r(M), by

h(–, —) :=
⁄

M
– · ı— · ‰ . (5.2.5)

Define another operator D
ú : A

r ≠æ A
r≠1 by

D
ú := (≠1)2k(r≠1)≠1

ı D ı . (5.2.6)

For any – œ A
r≠1(M) and — œ A

r(M),

d(– · ı— · ‰) = D– · ı— · ‰ ≠ – · ıD
ú
— · ‰ + (≠1)2k≠1

– · ı— · d‰ .

Using (5.2.1) and integrating both sides, we get h(D–, —) = h(–, D
ú
—). The operator D

ú

is called the formal adjoint of D.

Since M/S is a complex orbifold, S is hermitian as well. The operator ı induces a

(vector space) isomorphism between A
p,q(M) and A

k≠q , k≠p(M), that is,

A
p,q(M) ≥= A

k≠q , k≠p(M) , (as C-vector spaces) ,



Chapter 5. Connections on SGH vector bundles and Hodge theory 125

where A
p,q as defined in (4.4.3). Moreover, D = dL + dL on A

p,q where dL, dL are defined

as in (4.4.9). Then the operator D
ú, restricted to A

p,q, decomposes into the sum of two

operators

d
ú
L := ≠ ı dL ı ;

d
ú
L := ≠ ı dL ı ,

respectively of type (≠1, 0) and (0, ≠1). One can see that d
ú
L and d

ú
L

are the formal

adjoints of dL and dL, respectively. Define the following operators

�D := D
ú
D + DD

ú ;

�d
L

:= dLd
ú
L + d

ú
LdL ;

�dL := d
ú
LdL + dLd

ú
L .

(5.2.7)

Note that, similar to the classical case, �D, �d
L
, and �dL are self-adjoint operators.

For any p, q, r Ø 0, define

Hr
D := ker(�D) = {– œ A

r(M) | D– = D
ú
– = 0} ;

Hp,q
d

L
:= ker(�d

L
) = {– œ A

p,q(M) | dL– = d
ú
L– = 0} ;

Hp,q
dL

:= ker(�dL) = {– œ A
p,q(M) | dL– = d

ú
L– = 0} .

(5.2.8)

Definition 5.2.1. A form – œ Hr
D is called a transverse GH harmonic form of order r

and if – œ Hp,q
dL

, it’s called transverse GH form of type (p, q).

Theorem 5.2.1. Let M be a compact regular GC manifold of type k. Let S be the

induced transversely holomorphic foliation. Assume that M/S is a smooth orbifold.

Then we have the following.

1. H•
D and H•,•

dL
both are finite dimensional.

2. There are orthogonal decompositions

(a) A
•(M) = H•

D ü img(�D) = H•
D ü img(D) ü img(Dú) ,
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(b) A
•,• = H•,•

dL
ü img(�dL) = H•,•

dL
ü img(dL) ü img(dú

L
) .

Proof. Since M/S is a compact complex orbifold, A
• and A

•,• both are hermitian vector

bundles over M . Now, a simple local coordinate calculation shows that both �D and �dL

are strongly elliptic operators. This implies that the complexes {A
•
, D} and {A

•,•
, dL}

both are transversely elliptic. Thus by [6, Theorem 2.7.3], we are done.

Corollary 5.2.1. Let H
•
D(M) and H

•,•
dL

(M) are defined as in (4.4.11), (4.4.12), respec-

tively. Then H
•
D(M) and H

•,•
dL

(M) are finite dimensional and isomorphic to H•
D and

H•,•
dL

, respectively.

Proof. Follows from Theorem 5.2.1.

The operator ı induces a C-linear isomorphism

ı : H•,ú
dL

(M) ≥= Hk≠ú, k≠•
d

L
(M) .

On the other hand, consider the following hermitian map

h̃ : A
•(M) ◊ A

2k≠•(M) ≠æ C

defined by h̃(–, —) =
s

M – · — · ‰ . It induces a non-degenerate pairing

� : H
•
D(M) ◊ H

2k≠•
D (M) ≠æ C .

Theorem 5.2.2. Let M be a compact regular GC manifold of type k. Let S be the

induced transversely holomorphic foliation. Assume that M/S is a smooth orbifold.

Then

1. H
•
D(M) satisfies the generalized Poincaré duality, that is,

H
•
D(M) ≥= (H2k≠•

D (M))ú
.

2. H
•,•
dL

(M) satisfies the generalized Serre duality, that is,

H
•,•
dL

(M) ≥= (Hk≠•,k≠•
dL

(M))ú
.

3. Moreover, if S is also transversely Kählerian, we have a generalized Hodge decom-

position,

H
•
D(M) =

n

p+q=•
H

p,q
dL

(M) .
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Proof. (1) and (2) follows from the preceding discussion.

(3) Since S is transversely Kählerian, we can prove, analogous to the classical Kähler

case, that �D = 2�dL . Since A
•(M) = m

p+q=• A
p,q(M), every – is a transverse

GH harmonic form of order • if and only if its each component is a transverse GH

harmonic form of type (p, q) where p + q = •. Then using Theorem 5.2.1, we have

the direct decomposition

H
•
D(M) =

n

p+q=•
H

p,q
dL

(M) .

As the complex conjugation operator induces an isomorphism (of real vector spaces)

H
•,ú
dL

(M) ≥= H
ú,•
dL

(M) , the operator ı also induces a unitary isomorphism

ı : H
•,ú
dL

(M) ≠æ H
k≠•, k≠ú
dL

(M)

defined by ı(–) = ı(–) = ı(–).

Let E be an SGH vector bundle on M with a transverse hermitian structure H. Then

H can be considered as a C-antilinear isomorphism H : E ≥= E
ú. Consider the following

operators

1.

ıE : A
•,•
E ≠æ A

k≠•,k≠•
Eú (5.2.9)

defined by ıE(„ ¢ s) = ı(„) ¢ H(s) for any local sections „ œ A
•,• and s œ FM(E)

where ı(„) = ı(„).

2.

d
ú
L,E : A

•,•
E ≠æ A

•,•≠1

E (5.2.10)

defined by d
ú
L,E = ≠ıEú ¶ dL,Eú ¶ ıE where dL,Eú : A

•,•
Eú ≠æ A

•,•+1

Eú is the natural

extension of dL, as defined in (4.4.9), described in Subsection 4.4.1.

3. �dL,E := d
ú
L,E dL,E + dL,E d

ú
L,E .

Let M be a compact GC manifold. Then, we can define a natural hermitian scalar

product on A
•,•
E (M), similarly as in (5.2.5),

hE(–, —) :=
⁄

M
– · ıE(—) · ‰ . (5.2.11)
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for any local section –, — œ A
•,•
E (M) where · is the exterior product on A

•,• and the

evaluation map E ¢ E
ú ≠æ C in bundle part. Then, similarly, we can prove that

Lemma 5.2.1. d
ú
L,E is the formal adjoint of dL,E and �dL,E is self-adjoint.

Set H•,•
dL,E

:= ker(�dL,E ) = {– œ A
•,•
E (M) | dL,E – = d

ú
L,E – = 0} .

Theorem 5.2.3. (Generalized Hodge decomposition for SGH vector bundle) Let (E, H)

be an SGH vector bundle with a transverse hermitian structure H, over a compact GC

manifold M . Assume M/S is a smooth orbifold. Then

1. H•,•
dL,E

is finite dimensional.

2. A
•,•
E (M) = H•,•

dL,E
ü img(�dL,E ) = H•,•

dL,E
ü img(dL,E) ü img(dú

L,E)

Proof. Follows from Theorem 5.2.1 by replacing {A
•,•

, dL} and �dL with {A
•,•
E , dL,E} and

�dL,E , respectively.

Consider the natural pairing

h̃E : A
•,•
E (M) ◊ A

k≠•,k≠•
Eú (M) ≠æ C

defined by h̃E(–, —) =
s

M – · — · ‰ where · is the exterior product on A
•,• and the

evaluation map E ¢ E
ú ≠æ C in bundle part.

Theorem 5.2.4. (Generalized Serre duality for SGH vector bundle) Let E be an SGH

vector bundle with the same assumption as in Theorem 5.2.3. Then there exists a natural

C-linear isomorphism between H
•,•
dL

(M, E) and (Hk≠•,k≠•
dL

(M, E
ú))ú, that is,

H
•,•
dL

(M, E) ≥= (Hk≠•,k≠•
dL

(M, E
ú))ú (as C-vector spaces) ,

where k = Type(M).

Proof. Consider the natural pairing h̃E. It induces a pairing

�E : H
•,•
dL

(M, E) ◊ H
k≠•,k≠•
dL

(M, E
ú) ≠æ C .

defined as �E([–], [—]) = h̃E(–, —) where [–], [—] denote the classes of –, —, respectively.

One can easily check that this is well-defined. To show that �E is non-degenerate,

by Theorem 5.2.3, it is enough to show that for any 0 ”= – œ H•,•
dL,E

, there exist a

— œ H•,•
dL,Eú such that

s
M – · — · ‰ ”= 0. Note that, ıE induces a C-antilinear isomorphism

ıE : H•,•
dL,E

≠æ Hk≠•,k≠•
dL,Eú . This implies there exist — s.t ıE(–) = —. Thus �E([–], [—]) =

hE(–, –) ”= 0 and this proves the theorem.
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5.2.2 Generalized Vanishing Theorems

Let g be a transversely hermitian metric and I be the transverse complex structure

corresponding to the GCS on M where M and M/S satisfy the same conditions as before

with one exception, namely, M need not be compact. Define a transverse generalized form

of type (1, 1) by

Ê := g(I(·), ·) œ A
1,1(M) .

This form is called the transverse generalized fundamental form. We define four operators,

in particular, an analogue L of the Lefschetz operator, and a corresponding dual Lefschetz

operator �, as follows.

(1) L : A
• ≠æ A

•+2 ; – ‘æ – · Ê ,

(2) � := ı
≠1 ¶ L ¶ ı : A

• ≠æ A
•≠2

,

(3) d
ú
L := ≠ ı dL ı ,

(4) d
ú
L := ≠ ı dL ı ,

where ı is defined in (5.2.2). Note that d
ú
L and d

ú
L

are well defined even if M is not

compact. But if M is compact, they are formal adjoints with respect to the hermitian

inner product h (see (5.2.5)).

Now, assume DÊ = 0. This implies that S is transversely Kählerian with trans-

versely Kähler metric g. Thus, M/S is a Kähler orbifold. Trivial modification of the

proofs of [86, Proposition 1.2.26, Proposition 3.1.12] yields the following identities anal-

ogous to the Kähler identities in the classical case.

Proposition 5.2.1. Let M be a regular GCS such that the leaf space M/S is a Kähler

orbifold. Then

1. [�,L] = (k ≠ (p + q)) IdAp,q

2. [dL,L] = [dL,L] = 0 and [dú
L, �] = [dú

L
, �] = 0 .

3. [dú
L,L] = idL , [dL,L] = ≠idL and [�, dL] = ≠id

ú
L

, and [�, dL] = id
ú
L .
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For the rest of this section, assume that M is compact and M/S is a Kähler orbifold.

Let E be an SGH vector bundle over M . Consider the natural extension of L, � on A
•,•
E ,

which will be again denoted by L, �, respectively. Fix a transverse hermitian structure on

E (see Definition 5.1.6). Let ÒE be the transverse generalized Chern connection and �Ò

be its curvature. Let {U–, „–} be an orthonormal trivialization of E. Then, on U– ◊ Cr,

with respect to such trivialization,

1. ıE can be identified with the complex conjugate ı of the operator ı defined in

(5.2.3).

2. ÒE = D + ◊– , Ò1,0
E = dL + ◊

1,0
– and ◊

ú
– = ≠◊– .

3.

(Ò1,0
E )ú = ≠ı ¶ Ò1,0

Eú ¶ ı (by (5.2.10))

= ≠ı ¶ (dL ≠ ◊
1,0
– ) ¶ ı (by (5.2.10))

= d
ú
L ≠ (◊1,0

– )ú
.

[�, Ò0,1
E ] + i(Ò1,0

E )ú = [�, dL] + [�, ◊
0,1
– ] + id

ú
L ≠ i(◊1,0

– )ú

= [�, ◊
0,1
– ] ≠ i(◊1,0

– )ú (by (3) Proposition 5.2.1) .

So, the global operator [�, Ò0,1
E ] + i(Ò1,0

E )ú is linear. For any point x œ M , we can always

choose an orthonormal trivialization {U–, „–} such that x œ U– and ◊–(x) = 0 . Since M

is compact, (Ò1,0
E )ú = ≠ıEú ¶ Ò1,0

Eú ¶ ıE is the formal adjoint of Ò1,0
E .

Lemma 5.2.2. Let ÒE be the transverse generalized Chern connection on E and �Ò be

its curvature. Then, we have

1. [�, Ò0,1
E ] = ≠i((Ò1,0

E )ú) = i(ıEú ¶ Ò1,0
Eú ¶ ıE) .

2. For an arbitrary – œ H•,•
dL,E

,

i

2fi
hE(�Ò�–, –) Æ 0; and i

2fi
hE(��Ò–, –) Ø 0 ,

where hE is the natural hermitian product, defined in (5.2.11).
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Proof. (1). follows from the preceding discussion.

(2). By Proposition 5.1.1, �Ò = Ò1,0
E ¶ dL,E + dL,E ¶ Ò1,0

E . Let – be an element in

Hp,q
dL,E

. Since �– œ A
p≠1,q≠1

E (M), �Ò�– œ A
p,q
E (M). So, we can compute

hE(i�Ò�–, –) = ihE(Ò1,0
E dL,E�–, –) + ihE(dL,EÒ1,0

E �–, –)

= ihE(dL,E�–, (Ò1,0
E )ú

–) + ihE(Ò1,0
E �–, d

ú
L,E–)

= hE(dL,E�–, ≠i(Ò1,0
E )ú

–) + 0 (as – œ Hp,q
dL,E

)

= hE(dL,E�–, [�, Ò0,1
E ]–) (by (1))

= hE(dL,E�–, �Ò0,1
E –) ≠ hE(dL,E�–, Ò0,1

E �–)

= ≠hE(dL,E�–, dL,E�–) (as Ò0,1
E = dL,E)

Æ 0 .

Similarly, we can show hE(i��Ò–, –) Ø 0 .

Definition 5.2.2.

1. A real (1, 1)-transverse generalized form – (that is, – = –) is called (semi-) positive

if for all GH tangent vectors 0 ”= v œ GM , one has

≠i–(v, v) > 0 (Ø 0) .

2. Let Ò be a transverse generalized hermitian connection with respect to a transverse

hermitian structure H on E such that �Ò œ A
1,1
End(E)

(M). The transverse generalized

curvature �Ò is (Gri�ths-) positive if, for any local section 0 ”= s œ FM(E), one

has

H(�Ò(s), s)(v, v) > 0

for all 0 ”= v œ GM .

Definition 5.2.3. An SGH line bundle E over M is positive if its first generalized Chern

class gc1(E) œ H
2

D(M) (by Theorem 5.2.2) can be represented by a closed positive (1, 1)-

transverse generalized form where gc1(E) is defined in Example 5.1.2.
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Theorem 5.2.5. Let M be a compact regular GC manifold of type k. Let the leaf space

M/S of the induced foliation be a Kähler orbifold. Let E be a positive SGH line bundle

on M . Then, we have the following

1. (Generalized Kodaira vanishing theorem)

H
q(M, (Gú

M)p ¢OM E) = 0 for p + q > k .

2. (Generalized Serre’s theorem) For any SGH vector bundle E
Õ on M , there exists a

constant m0 such that

H
q(M, E

Õ ¢OM E
m) = 0 for m Ø m0 and q > 0 .

Proof. Choose a transverse hermitian structure on E such that the curvature of the

transverse generalized Chern connection ÒE is positive, that is, i
2fi �ÒE is a transverse

Kähler form (that is, D-closed transverse generalized fundamental form) on M . We

endow M with this corresponding transverse Kähler structure.

(1) With respect to this transverse Kähler structure, the operator L is nothing but

the curvature operator i
2fi �ÒE . Then, for – œ Hp,q

dL,E
,

0 Æ hE( i

2fi
[�, �ÒE ]–, –) (by (2) Lemma 5.2.2)

= hE([�,L]–, –)

= (k ≠ (p + q))hE(–, –) (by (1) Proposition 5.2.1) .

By Corollary 4.4.2 and Theorem 5.2.3, we get

Hp,q
dL,E

≥= H
p,q
dL

(M, E) ≥= H
q(M, (Gú

M)p ¢OM E) .

Hence H
q(M, (Gú

M)p ¢OM E) = 0 for p + q > k.

(2) Let m ”= 0. Choose a transverse hermitian structure on E
Õ and denote its as-

sociated transverse generalized Chern connection by ÒEÕ . Then we have an induced

transverse Chern connection on E
ÕÕ := E

Õ ¢ E
m, denoted by Ò, corresponding to the

induced transverse hermitian structure,

Ò = ÒEÕ ¢ 1 + 1 ¢ ÒEm ,
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where ÒEm is induced by ÒE. Its curvature is of the form

i

2fi
�Ò = i

2fi
�Ò

E
Õ ¢ 1 + i

2fi
(1 ¢ �ÒEm )

= i

2fi
�Ò

E
Õ ¢ 1 + m(1 ¢ i

2fi
�ÒE ) (as �ÒEm = m�ÒE )

By (2) in Lemma 5.2.2, for – œ Hp,q
d

L,E
ÕÕ , we have

0 Æ i

2fi
hEÕÕ ([�, �Ò]–, –)

= i

2fi
hEÕÕ ([�, �EÕ ]–, –) + m hEÕÕ ([�,L]–, –)

= i

2fi
hEÕÕ ([�, �EÕ ]–, –) + m(k ≠ (p + q))hEÕÕ (–, –) (by (1) Proposition 5.2.1) .

Since hEÕÕ is a positive-definite hermitian matrix on each fiber of E
ÕÕ , we can consider the

fiber wise Cauchy-Schwarz inequality

|hEÕÕ ([�, �EÕ ]–, –)| Æ ||[�, �EÕ ]|| · hEÕÕ (–, –) .

By compactness of M , we have a global upper bound C for the operator norm ||[�, �EÕ ]||,

independent of m, and a corresponding global inequality. Thus, we get,

0 Æ | i

2fi
hEÕÕ ([�, �EÕ ]–, –)| + (m(k ≠ (p + q))) hEÕÕ (–, –)

=
3

C

2fi
+ (m(k ≠ (p + q)))

4
hEÕÕ (–, –) .

Hence, if C+2fi m(k≠(p+q)) < 0, then – = 0. When p = k and q > 0, m >
C
2fi Ø C

2fi q

ensures – = 0. So, if we take m0 >
C
2fi , by Corollary 4.4.2 and Theorem 5.2.3, we get

Hk,q
d

L,E
ÕÕ

≥= H
q(M, (Gú

M)k ¢OM (EÕ ¢OM E
m)) = 0 for m Ø m0 and q > 0 .

Now, we apply these arguments to the SGH bundle (GM)k ¢ E
Õ instead of E

Õ . The

constant m0 might change in the process but this will prove the assertion.

————— ¶ —————
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Chapter 6

Generalized Complex Structure on

Torus Principal Bundles

In Chapter 3, we have seen how the total space of SGH bundles admits a GCS, which is

locally a product GCS induced from both the base and the fiber. The natural query aris-

ing from this observation is why not consider it locally equivalent (via B-transformations

and di�eomorphisms) to a product GCS. While this question seems plausible locally,

complications arise when considering the GCS on di�erent trivializations; suitable patch-

ing for B-transformations or di�eomorphisms may not happen, and transition maps may

not preserve the B-transformations. However, if globally, there exists a B-transformation

inducing local B-transformations, then patching becomes straightforward.

The objective of this chapter can be approached in two ways. First, it delves into

this scenario for certain principal G-bundles over complex manifolds, where G denotes

a symplectic manifold. It demonstrates that even if the GCS is locally equivalent (via

B-transformations and di�eomorphisms) to a product GCS, Lemma 3.1.1 remains valid.

Additionally, when G is a torus, the condition of locally equivalent (via B-transformations

and di�eomorphisms) to a product GCS, is equivalent to the flatness of those certain

principal torus bundles, as described in Theorems 6.2.1-6.2.3. Second, it provides a class

of GC manifolds whose leaf space is a smooth manifold.

An application of Theorem 6.2.1 is that the spectral sequence developed by Angella et

al. [4] can be applied to describe the generalized Dolbeault cohomology of the total space

of the bundle. This is explained in the more general setting of symplectic fiber bundles

with suitable assumptions on the GCS that are slightly more general than the hypotheses

135
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of [4] (see Theorems 4.2.1 and 4.2.2). The case of principal torus bundles is stated in

Corollary 4.3.1, and a Künneth formula for the generalized Dolbeault cohomology of

these bundles is given in Corollary 4.4.1. It is important to note that by using torus

action on a GC manifold, one can also study various geometric properties. For example,

see [17, 105,106]. This chapter is based on [126] and is structured into three sections:

1. GC structure on principal bundles (Section 6.1).

2. Tubular neighborhood of the fiber of a torus bundle (Section 6.2).

3. A spectral sequence for the generalized Dolbeault cohomology (Section 6.3).

6.1 GC structure on principal bundles

The following construction of a generalized complex structure on a smooth principal

torus bundle over a complex manifold is mentioned as Example 2.16 in the thesis of

Cavalcanti [36]. We present a detailed argument for the convenience of the reader.

Proposition 6.1.1. Let (E, fi, M) be a smooth principal T2l-bundle over a complex man-

ifold M with characteristic class of type (1, 1). Then, the total space E admits a family

of regular GCS with the fibers as leaves of the associated symplectic foliation.

Proof. Consider a connection (◊1, . . . , ◊2l) on the principal bundle E corresponding to

a decomposition T2l = r
2l
j=1

S
1 of Lie groups. By the hypothesis, we may choose the

connection so that its curvature form is of type (1, 1). Then, for each j there exists a

2-form ‰j of type (1, 1) on M such that

d◊j = fi
ú
‰j . (6.1.1)

Note that

Ê :=
lÿ

j=1

◊2j≠1 · ◊2j (6.1.2)

is a T2l-invariant 2-form on E which restricts to an invariant symplectic form on each

fiber of E.

Let � be a local generator of ·(n,0)(T ú
M ¢ C) where n = dimC(M). More precisely,

if (z1, . . . , zn) is a system of local holomorphic coordinates on M , we may take

� = dz1 · . . . · dzn .
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In addition, let ÷ be an arbitrary real closed 2-form on E. Define

fl := e
÷+iÊ · fi

ú� . (6.1.3)

Then, it is clear that

fi
ú� · fi

ú� · Ê
l ”= 0 . (6.1.4)

Moreover, as d� = 0 and d÷ = 0, we have

dfl = e
÷ · i

A

e
iÊ ≠ (iÊ)l

l!

B

dÊ · fi
ú� . (6.1.5)

Using (6.1.2), we have

dÊ · fi
ú� =

lÿ

j=1

(fiú
‰2j≠1 · ◊2j ≠ ◊2j≠1 · fi

ú
‰2j) · fi

ú� .

Note that

‰j · � = 0

for each j, as ‰j is of type (1, 1) and � is of type (n, 0). Hence,

dÊ · fi
ú� = 0 = dfl . (6.1.6)

By Definition 2.3.3 (cf. [70, Theorem 3.38 and Theorem 4.8]), (6.1.4) and (6.1.6)

imply that E admits a generalized complex structure whose canonical line bundle is

locally generated by fl (see also [38, Section 1]).

Let K be an even-dimensional compact Lie group and let G denote the complexifi-

cation of K. Let (EK , fi, M) be a smooth principal K-bundle over a complex manifold

M . We say that (EK , fi, M) admits a complexification if it can be obtained by a smooth

reduction of structure group from a holomorphic principal G-bundle (EG, Âfi, M).

Theorem 6.1.1. Let K be an even dimensional compact Lie group and let G denote the

complexification of K. Let (EK , fi, M) be a smooth principal K-bundle over a complex

manifold M , which admits a complexification. Then EK admits a family of generalized

complex structures.

Proof. Let T be a maximal torus of K. Let B be a Borel subgroup of G containing K.

Then, by [130, Section 5] there exists a complex manifold X = EG/B, such that EK

admits the structure of a principal T -bundle, (EK , fi
Õ
, X) say, over X. Moreover, this
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principal T-bundle over X admits a complexification. So, by [130, Section 4], (EK , fi
Õ
, X)

admits a (1, 0) connection with (1, 1) curvature. Now, applying Theorem 6.1.1 to the

bundle (EK , fi
Õ
, X), we conclude that EK admits a family of generalized complex struc-

tures.

Specific examples of bundles that admit a complexification include the unitary frame

bundle associated with a holomorphic vector bundle of even rank over a complex manifold.

We refer the reader to [130, Section 3] for more examples. The following example was

kindly shared with us by Ajay Singh Thakur.

Example 6.1.1. Let E æ M be a smooth vector bundle of rank n over a complex manifold

M . Let fi : P(E) æ M be the associated projective bundle over M with fiber CPn≠1, where

P(E) is the space of lines in E. Let L be the tautological complex line bundle over P(E).

The restriction of L to each fiber is the tautological line bundle O(≠1) over CPn≠1. Let

Ê be the first Chern class of the dual bundle Lú. Note that the Fubini-Study metric ÊF S

on CPn≠1 is first Chern class of the line bundle O(1). Therefore, Ê a closed two form on

P(E), whose restriction to each fiber CPn≠1 is the symplectic form ÊF S. If � be a local

generator of ·(n,0)(T ú
M ¢ C), then define

fl := e
iÊ · fi

ú�. (6.1.7)

As d� = 0 and dÊ = 0, we have dfl = 0. Hence, P(E) admits a generalized complex

structure.

6.2 Tubular neighborhood of the fiber of a torus bun-

dle

Let ◊ be a Maurer-Cartan connection 1-form on S
1. Consider a decomposition

T2l =
2lŸ

j=1

S
1 (6.2.1)

of Lie groups. Let Pi : T2l = r
2l
j=1

S
1 ≠æ S

1 be the projection map on i-th coordinate for

i = 1, . . . , 2l. Then (P ú
1
◊, . . . , P

ú
2l◊) is the Maurer-Cartan connection on T2l = r

2l
j=1

S
1.

Note that the 2-form

ÊT =
lÿ

j=1

(P ú
2j≠1

◊ · P
ú
2j◊) (6.2.2)
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gives a symplectic form on T2l.

Let M ◊ T2l Pr2≠≠æ T2l is the natural projection map. For each i œ {1, 2, ..., 2l}, define

◊̃i = Prú
2

P
ú
i ◊ . (6.2.3)

Then, (◊̃1, . . . , ◊̃2l) is a T2l-invariant connection of the trivial principal T2l-bundle

M ◊ T2l Pr1≠≠æ M .

Now, let fi : E æ M be a smooth principal T2l-bundle that satisfies the hypothesis

of Proposition 6.1.1. Let {U–} be a locally finite open cover of M such that E admits a

local trivialization

„– : fi
≠1(U–) ≠æ U– ◊ T2l (6.2.4)

over each U–. Let i– : U– ◊ T2l
Òæ M ◊ T2l be the natural inclusion map. Then,

„
ú
–i

ú
–◊̃i, 1 Æ i Æ 2l, are 1-forms on fi

≠1(U–). Let {Â–} be a smooth partition of unity on

M subordinate to {U–}. For each j œ {1, . . . , 2l}, define an S
1-invariant 1-form ◊j on E

by

◊j =
ÿ

–

(Â– ¶ fi) „
ú
–i

ú
–◊̃j . (6.2.5)

Then, � := (◊1, . . . , ◊2l) gives a connection on the principal bundle E corresponding to

the decomposition (6.2.1) which is invariant under the T2l action. Define

Ê :=
1ÿ

j=1

◊2j≠1 · ◊2j . (6.2.6)

If the curvature of � is of type (1, 1), then by Proposition 6.1.1, we have a family of

GCS on E with the canonical line bundle UE locally generated by

fl = e
÷+iÊ · fi

ú(�) (6.2.7)

where ÷ is a closed real 2-form on E. In general, fl only gives an almost GCS on E, i.e.,

the integrability condition (2.3.4) may not be satisfied.

Let

fl0 := e
iÊ · fi

ú(�) . (6.2.8)

For each b œ M , let

ib : fi
≠1(b) = Eb ≠æ E (6.2.9)
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be the natural inclusion map. Consider the T2l-invariant symplectic structure induced by

Ê on Eb,

Êb := i
ú
bÊ .

Given b œ U–, consider the map (cf. (6.2.4))

„
≠1

–,b := „
≠1

– (b, ·) : T2l ≠æ Eb.

Similarly, using the identification of {b} ◊ T2l with T2l, denote by

„–,b : Eb ≠æ T2l (6.2.10)

the restriction of the map „– to Eb. Consider the family of symplectic forms Ễb on T2l

defined by

Ễb = („≠1

–,b)ú
Êb . (6.2.11)

Lemma 6.2.1. For any b œ U– fl U—,

(„≠1

–,b)ú
Êb = („≠1

—,b)ú
Êb .

Proof. Consider the composition of the maps Eb
„–,b≠≠æ T2l

„≠1
—,b≠≠æ Eb. Note that „

≠1

—,b ¶ „–,b œ

T2l. Then, we have,

(„≠1

—,b ¶ „–,b)ú
Êb = Êb (as Êb is T2l-invariant)

=∆ „
ú
–,b ¶ („≠1

—,b)ú
Êb = Êb ,

=∆ („≠1

—,b)ú
Êb = („≠1

–,b)ú
Êb.

Thus, the symplectic form Ễb that defined on T2l by (6.2.11) does not depend on the

choice of local trivialization.

Remark 6.2.1. Lemma 6.2.1 does not depend on the choice of connection i.e, for any

connection (◊1, . . . , ◊2l) on the principal bundle E corresponding to a decomposition T2l =
r

2l
j=1

S
1 of Lie groups and the corresponding Ê as in Proposition 6.1.1, we can use the

same techniques and get the same result.



Chapter 6. GCS on torus principal bundles 141

Now by a similar argument as in Lemma 6.2.1 and as ◊̃i is T2l-invariant,

„
ú
–,b(◊̃i |W ) = „

ú
—,b(◊̃i |W ) ,

for any open set W µ U– fl U— and any b œ W . Therefore,

i
ú
b ¶ „

ú
–(◊̃i |W ) = i

ú
b ¶ „

ú
—(◊̃i |W ) ,

for any b œ W µ U– fl U—.

Then, it follows from the local finiteness of {U–} and (6.2.5) that for any b œ M and

i œ {1, . . . , 2l}, there exists a suitable open set W containing b such that

i
ú
b◊i =

ÿ

—

Â—(b) i
ú
b ¶ „

ú
—(◊̃i |W )

=
ÿ

—

Â—(b) i
ú
b ¶ „

ú
–(◊̃i |W )

= i
ú
b ¶ „

ú
–(◊̃i |W )

for any – satisfying b œ U–. Hence, we have,

i
ú
b◊i = i

ú
b ¶ „

ú
–(◊̃i |W )

= i
ú
b ¶ „

ú
–(◊̃i)

= („– ¶ ib)ú
◊̃i

(6.2.12)

for any – such that b œ U–.

Let us explicitly calculate Ễb for every b œ M . As in (6.2.6), Ê = q
1

j=1
◊2j≠1 · ◊2j.
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We have

i
ú
bÊ =

lÿ

j=1

i
ú
b◊2j≠1 · i

ú
b◊2j

=
lÿ

j=1

(„– ¶ ib)ú
◊̃2j≠1 · („– ¶ ib)ú

◊̃2j (by (6.2.12))

=
lÿ

j=1

(„– ¶ ib)ú(◊̃2j≠1 · ◊̃2j)

=
lÿ

j=1

(Pr2 ¶ „– ¶ ib)ú(P ú
2j≠1

◊ · P
ú
2j◊)

=
lÿ

j=1

(Pr2 ¶ ĩb ¶ „–,b)ú(P ú
2j≠1

◊ · P
ú
2j◊)

=
lÿ

j=1

„
ú
–,b(P ú

2j≠1
◊ · P

ú
2j◊) (as Pr2 ¶ ĩb = IdT2l , see (6.2.20))

= „
ú
–,b ÊT (see (6.2.2))

for any – such that b œ U–. Therefore, for each b œ M ,

Ễb = („≠1

–,b)ú(iú
bÊ) = („≠1

–,b)ú(„ú
–,bÊT) = ÊT . (6.2.13)

In other words, Ễb is independent of the choice of b œ M .

Lemma 6.2.2. Let (◊1, . . . , ◊2l) and (◊Õ
1
, . . . , ◊

Õ
2l) be any two connections on E correspond-

ing to a decomposition of T2l = r
2l
i=1

S
1 of Lie groups. Then, for each j œ {1, · · · , 2l},

there exists a 1-form —j œ �1(M) such that

◊j ≠ ◊
Õ

j = fi
ú
—j .

Proof. Denote the connections by � := (◊1, . . . , ◊2l) and �Õ := (◊Õ
1
, . . . , ◊

Õ
2l). For each

x œ M , define the value of —j at x, by

(—j)x(v) := (◊j ≠ ◊
Õ

j)y(w) (6.2.14)

for any v œ TxM , where fi(y) = x and dfiy(w) = v. First, we show that the definition

is independent of the choice of w for fixed v and y. Let w, w
Õ œ (dfiy)≠1(v). Then,

dfiy(w ≠ w
Õ) = 0. So w ≠ w

Õ œ Ty(Ex). There exists a vector W in the Lie algebra t of

T2l such that the fundamental vector field W
# of W satisfies

W
#(y) = w ≠ w

Õ
.
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It follows that

�y(w ≠ w
Õ) = W = �Õ

y(w ≠ w
Õ) .

Thus,

(◊j ≠ ◊
Õ

j)y(w) = (◊j ≠ ◊
Õ

j)y(wÕ) ,

showing that the definition of (—j)x(v) in (6.2.14) is independent of the choice of w.

Moreover, as the structure group is abelian, the connections � and �Õ on E are T2l-

invariant. Given any y, y
Õ œ fi

≠1(x), there exists g œ T2l such that y = rg(yÕ) = y
Õ · g. Let

w
Õ œ TyÕ M such that (drg)yÕ (wÕ) = w and dfiy(w) = v. Then,

(◊j ≠ ◊
Õ

j)y(w) = (◊j ≠ ◊
Õ

j)gyÕ ((drg)yÕ (wÕ))

= (rú
g(◊j ≠ ◊

Õ

j))yÕ (wÕ)

= (◊j ≠ ◊
Õ

j)yÕ (wÕ) .

This proves that the definition of (—j)x as in (6.2.14) is independent of choices of both y

and w.

Next, we take advantage of the above independence of choices to show that —j is a

smooth form. Let

f := „
≠1

– ¶ i

where i : U– ≠æ U– ◊ T2l is the inclusion map defined by i(z) := (z, 1). Here, 1 denotes

the identity element of T2l. Then, dfif(z)(dfz(v)) = v for all z œ U and v œ TzU . It follows

that

—j = (◊j ≠ ◊
Õ

j) ¶ df ,

completing the proof of the lemma.

Let (◊1, . . . , ◊2l) be the connection defined in (6.2.5), and let � denote a local (n, 0)

form on M as in Proposition 6.1.1. Let (◊Õ
1
, . . . , ◊

Õ
2l) be any connection on E, corresponding

to the same decomposition T2l = r
2l
i=1

S
1 of Lie groups, such that dfl

Õ
0

= 0 where

fl
Õ

0
:= e

iÊ
Õ
· fi

ú(�) and Ê
Õ :=

lÿ

i=1

◊
Õ

2i≠1
· ◊

Õ

2i . (6.2.15)

Then, following the Proposition 6.1.1, we get a family of GCS on E with the canonical

line bundle U
Õ
E , locally generated by

fl
Õ = e

÷+iÊ
Õ
· fi

ú(�) (6.2.16)
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where ÷ is a closed real 2-form on E.

Fix –. Let Pr1 : U– ◊T2l ≠æ U– and Pr2 : U– ◊T2l ≠æ T2l be the natural projections.

Note that Pr1 ¶ „– = fi on E |U–= fi
≠1(U–). On fi

≠1(U–), we have the GCS given by

fl
Õ
0
|fi≠1(U–) = e

iÊ
Õ
· fi

ú�. Hence, we get a GCS on U– ◊ T2l given by

Âfl– := („≠1

– )ú(flÕ

0
|fi≠1(U–)) = e

i(„≠1
– )

úÊ
Õ
· („≠1

– )ú
fi

ú� = e
i(„≠1

– )
úÊ

Õ
· Prú

1
� . (6.2.17)

Consider the following decomposition.

�k
C(U– ◊ T2l) =

ÿ

r+p+q=k

Prú
2
(�r

C(T2l))¢CŒ(U–◊T2l,C)

A

Prú
1
(�p,0(U–))

¢CŒ(U–,C) Prú
1
(�0,q(U–))

B (6.2.18)

Accordingly, i(„≠1

– )ú
Ê

Õ œ C
Œ(·2

T
ú
C(U– ◊ T2l)) decomposes into six components,

A
200

A
110

A
101

A
020

A
011

A
002

.

Here, the first superscript in A
rpq corresponds to the C-valued de Rham grading on

�•
C(T2l), and the last two superscripts correspond to the Dolbeault grading on �•

C(U–).

Furthermore, the exterior derivative decomposes into the sum of three operators

d = dF + ˆ + ˆ ,

each of degree 1 in their respective component of the tri-grading. Note that dF is the

fiber-wise exterior derivative.

Denote the imaginary part of A
200 by ‚Ê. In other words,

A
200 = i‚Ê . (6.2.19)

Consider the maps,

T2l
U– ◊ T2l

fi
≠1(U–)ĩb „≠1

–

where

ĩb(x) := (b, x) . (6.2.20)
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Recall the connection form ◊j in (6.2.5). Then, applying Lemma 6.2.2 and equation

(6.2.13), for each b œ M , we get

i
ú
b◊

Õ

j = i
ú
b◊j ’ j

=∆ i
ú
bÊ

Õ = i
ú
bÊ (Ê as in (6.2.6))

=∆ („≠1

–,b)ú
i
ú
bÊ

Õ = („≠1

–,b)ú
i
ú
bÊ

=∆ („≠1

–,b)ú
i
ú
bÊ

Õ = Ễb

=∆ („≠1

–,b)ú
i
ú
bÊ

Õ = ÊT .

Then, we have,

ĩ
ú
bA

200 = i(̃iú
b(„≠1

– )ú
Ê

Õ))

= i(„≠1

– ¶ ĩb)ú
Ê

Õ

= i(ib ¶ „
≠1

–,b)ú
Ê

Õ

= i(„≠1

–,b)ú
i
ú
bÊ

Õ

= iÊT .

Hence, by (6.2.19) we get,

ĩ
ú
b ‚Ê = ÊT ’ b œ U– . (6.2.21)

Consider the GCS Âfl– on U– ◊ T2l from (6.2.17),

e
i(„≠1

– )
úÊ

Õ
· Prú

1
� = e

q
Arpq · Prú

1
� .

Note that only the components A
200

, A
101 and A

002 act non-trivially, via the wedge prod-

uct, on Prú
1

� in the expression e
i(„≠1

– )
úÊ

Õ
·Prú

1
�, as � is a pure (n, 0)-type form. Therefore,

Âfl– simplifies to

Âfl– = e
i‚Ê+A101

+A002 · Prú
1

� . (6.2.22)

Then by equation (6.1.6), we get that d(i(„≠1

– )ú
Ê

Õ)·Prú
1

� = 0 which implies the following

four equations

ˆA
002 = 0 (6.2.23)
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ˆA
101 + dF A

002 = 0 (6.2.24)

ˆA
200 + dF A

101 = 0 (6.2.25)

dF A
200 = 0 . (6.2.26)

The last equation just states that the pullback of i(„≠1

– )ú
Ê

Õ to any fiber is a closed form,

as we already know by (6.2.21). Moreover, since A101 and A002 are of the type (110) and

(020), respectively, their wedge products with Prú
1

� vanish. Therefore, in general, the

exponent of e in (6.2.22) may be modified to

i‚Ê + A
101 + A101 + A

002 + A002 + ‚A ,

where ‚A is a real 2-form of type (011). Therefore, we obtain,

Âfl– = e
‚B+i‚Ê · Prú

1
� , (6.2.27)

where ‚B = A
101 + A101 + A

002 + A002 + ‚A .

Lemma 6.2.3. The form ‚Ê is the pullback of the form ÊT on T2l under the projection

map Pr2 : U– ◊ T2l ≠æ T2l, i.e.

‚Ê = Prú
2

ÊT .

Proof. Since ‚Ê is of type (200), it is of the form

‚Ê =
ÿ

1ÆjÆ l(2l≠1)

aj Prú
2

Êj

where aj œ C
Œ(U– ◊ T2l

, R) and {Êj : 1 Æ j Æ l(2l ≠ 1)} is a global frame of the trivial

bundle of smooth 2-forms on T2l. For any b, b
Õ œ U–, by (6.2.21),

ĩ
ú
b ‚Ê = ĩ

ú
bÕ ‚Ê

=∆
ÿ

j

aj(b, ·) Êj =
ÿ

j

aj(b
Õ
, ·) Êj

=∆
ÿ

j

(aj(b, ·) ≠ aj(b
Õ
, ·)) Êj = 0

=∆ aj(b, ·) = aj(b
Õ
, · ).

Hence, there exists smooth functions bj œ C
Œ(T2l

, R) such that

aj = Prú
2

bj .
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Then,

‚Ê = Prú
2

Ê̄ where Ê̄ =
ÿ

j

bjÊj œ �2(T2l) .

Finally, using (6.2.13) and the fact that Pr2 ¶̃ib = Id, we have

ÊT = ĩ
ú
b ‚Ê = ĩ

ú
b Prú

2
Ê̄ = Ê̄ .

Let fl
Õ
1

= e
i Pr

ú
2 ÊT · Prú

1
� . Then from (6.2.27) and Lemma 6.2.3, we can see that the

generalized complex structure Âfl–, from (6.2.17), is of the form

Âfl– = e
‚B
fl

Õ

1
on U– ◊ T2l

, (6.2.28)

where ‚B = A
101 + A101 + A

002 + A002 + ‚A, as defined in (6.2.27). Now dÂfl– = 0 because

dfl
Õ = 0, where fl

Õ as in (6.2.16). This implies

e
‚B · d ‚B · fl

Õ

1
= 0 (as dfl

Õ

1
= 0)

=∆ d ‚B · fl
Õ

1
= 0

=∆ d ‚B · Prú
1

� = 0 .

So, to ensure d ‚B = 0, it is enough to show that (d ‚B)012 and (d ‚B)111 both are zero. This

imposes the following two constraint equations,

(d ‚B)012 = ˆA
002 + ˆ ‚A = 0 (6.2.29)

(d ‚B)111 = ˆA
101 + ˆA101 + dF

‚A = 0 . (6.2.30)

For each j œ {1, 2, . . . , 2l}, set

◊
ÕÕ

j,– := („≠1

– )ú
◊

Õ

j .

Then (◊ÕÕ
1,–, . . . , ◊

ÕÕ
2l,–) defines a T2l-invariant connection on U– ◊ T2l. Consider the con-

nection (◊̃1, . . . , ◊̃2l) on U– ◊ T2l as defined in (6.2.3). By Lemma 6.2.2, there exist

—j,– œ �1(U–) such that

◊
ÕÕ

j,– ≠ ◊̃j = Prú
1

—j,– . (6.2.31)
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Then, we have,

(„≠1

– )ú
Ê

Õ =
lÿ

j=1

◊
ÕÕ

2j≠1,– · ◊
ÕÕ

2j,– ,

= Prú
2

ÊT +
lÿ

j=1

(◊̃2j≠1 · Prú
1

—2j,– + Prú
1

—2j≠1,– · ◊̃2j)

+
lÿ

j=1

Prú
1
(—2j≠1,– · —2j,–) .

Let —
pq
j,– correspond to the Dolbeault grading of —j,– , on �•

C(U–) . One can see that

A
002 =

lÿ

j=1

Prú
1
(—01

2j≠1,– · —
01

2j,–) ,

A
101 =

lÿ

j=1

(◊̃2j≠1 · Prú
1

—
01

2j,– + Prú
1

—
01

2j≠1,– · ◊̃2j) .

(6.2.32)

Set A
02 := ql

j=1
(—01

2j≠1,– · —
01

2j,–) . Then,

A
002 = Prú

1
A

02
. (6.2.33)

From (6.2.23), we get ˆA
02 = 0. By using local ˆ-Poincaré Lemma on U–, there exists a

smooth form ÷ of type (01) on U– such that

A
02 = ˆ÷ on U– . (6.2.34)

Let us assume that ‚A = Prú
1

A
11 where A

11 is a real form of type (11) on U– . Then,

equation (6.2.29) is equivalent to

ˆ(A11 ≠ ˆ÷) = 0 on U– . (6.2.35)

Again, by using the local ˆ-Poincaré Lemma on U–, a smooth form ÷
Õ of type (10) on U–

such that

A
11 ≠ ˆ÷ = ˆ÷

Õ on U– . (6.2.36)

Since A
11 is real, A

11 ≠ˆ÷≠ˆ÷ is both ˆ and ˆ closed form. Then, by the local ˆˆ-Lemma

on U–, there exists a smooth function ‰ œ C
Œ(U–, R) such that, on U–

A
11 ≠ ˆ÷ ≠ ˆ÷ = iˆˆ‰

=∆ A
11 = ˆ÷ + ˆ÷ + iˆˆ‰ .

(6.2.37)
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So, we can see that the general solution of equation (6.2.35) is (6.2.37). Thus, for any

choice of such a ‰, we get a desirable A
11 as well as ‚A such that the first condition (6.2.29)

is satisfied. By (6.2.32), we observe that

ˆA
101 + ˆA101 =

lÿ

j=1

Ë
◊̃2j≠1 · Prú

1
(ˆ—

01

2j,– + ˆ—
01

2j,–) + Prú
1
(ˆ—

01

2j≠1,– + ˆ—
01

2j≠1,–) · ◊̃2j

È
.

Then, the second equation (6.2.30) is equivalent to

ˆ—
01

j,– + ˆ—
01

j,– = 0 for all j œ {1, . . . , 2l} . (6.2.38)

Since d◊̃j = 0 , by (6.2.31), the curvature of the connection (◊ÕÕ
1,–, . . . , ◊

ÕÕ
2l,–) is

(Prú
1

d—1,–, . . . , Prú
1

d—2l,–) . (6.2.39)

Theorem 6.2.1. Let E be a principal T2l-bundle over an n-dimensional complex manifold

M . Let �Õ := (◊Õ
1
, . . . , ◊

Õ
2l) be any connection on E corresponding to a decomposition

T2l = r
2l
i=1

S
1 of Lie groups. Let Ê

Õ := ql
i=1

◊
Õ
2i≠1

· ◊
Õ
2i. Let � be a local generator of

·(n,0)(T ú
M ¢ C) over the trivializing open set U– µ M . Set

fl
Õ := e

iÊ
Õ
· fi

ú�

Then we have the following

1. The condition dfl
Õ = 0 gives a GCS of type dimC(M) if and only if the curvature of

the connection �Õ is of type (1, 1).

2. Let {U–, „–} be a local trivialization. Then, fl
Õ is equivalent (via B-field transfor-

mation and di�eomorphism) to the product GCS

(„≠1

– )ú(flÕ|fi≠1(U–)) ≥= e
i Pr

ú
2 ÊT · Prú

1
� .

on every U– ◊ T2l if and only if the curvature of the connection �Õ is trivial.

Proof. 1. The su�ciency direction follows from the proof of Proposition 6.1.1.

For the other direction, let {U–, „–} be a local trivialization. Consider the connec-

tion (◊̃1, . . . , ◊̃2l) on U– ◊ T2l as defined in (6.2.3). Let dfl
Õ = 0 .
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Then, on U– ◊ T2l, we have

d(„≠1

– )ú(flÕ) = 0

=∆ d(e‚B
fl

Õ

1
) = 0 , where fl

Õ

1
= e

i Pr
ú
2 ÊT · Prú

1
�

=∆ d ‚B · Prú
1

� = 0

=∆ d(A101 + A
002) · Prú

1
� = 0 , as � is of type (n, 0)

=∆ ˆA
101 = 0 , as dF A

002 = 0

=∆
lÿ

j=1

Ë
◊̃2j≠1 · Prú

1
(ˆ—

01

2j,–) + Prú
1
(ˆ—

01

2j≠1,–) · ◊̃2j

È
= 0 , see (6.2.32)

=∆ ˆ—
(0,1)

j,– = 0 for all j .

This shows that the (0, 2) component of the curvature is zero. Since the curvature

is real, it follows that the (2, 0) component of the curvature is also zero.

2. By part (1), the curvature is assumed to be of type (1, 1). Then it follows from

(6.2.39), that the curvature is of the form

(Prú
1

�1,–, . . . , Prú
1

�2l,–)

where �j,– = ˆ—
01

j,– + ˆ—
01

j,– for all j. Then, by equation (6.2.38), the GCS is a

product on local trivializations if and only if the curvature is zero.

Theorem 6.2.2. Let E be a principal G-bundle over an n-dimensional complex manifold

M where the structure group is a symplectic manifold (G, ÊG). If there exists a GCS, fl
Õ
,

of type dimC(M) such that, on each trivialization {U–, „–}, it is equivalent (via B-field

transformation and di�eomorphism) to the product GCS

(„≠1

– )ú(flÕ|fi≠1(U–)) ≥= e
i Pr

ú
2 ÊG · Prú

1
� ,

then E is a flat symplectic G-bundle where � is a local generator of ·(n,0)(T ú
M ¢ C) .

Proof. Consider the map

Â : U–— ◊ G ≠æ U–— ◊ G
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defined by

Â(m, f) = (m, „–—(m)f) for all (m, f) œ U–— ◊ G ,

where U–— = U– fl U— and „–— = „– ¶ „
≠1

— : U–— ≠æ G is the transition map. By the

assumption on the GCS, there exists a real closed form B– œ �2(U– ◊ G) , such that

(„≠1

– )ú(flÕ|fi≠1(U–)) = e
B–+i Pr

ú
2 ÊG · Prú

1
� . (6.2.40)

On U–— ◊ G , we again denote B–|U–—◊G and B—|U–—◊G by B– and B— , respectively. Let

(B–+iÊG)rpq denote the (rpq)-component of B–+iÊG corresponding to the decomposition

of �2

C(U–— ◊ G) , as defined in (6.2.18) . Similar meanings are assigned to (Âú(B– +

iÊG))rpq
, (B— + iÊG)rpq

, and (Âú(B— + iÊG))rpq
. By (6.2.40), on U–— ◊ G, we have

Â
ú(eB–+i Pr

ú
2 ÊG · Prú

1
�) = e

B—+i Pr
ú
2 ÊG · Prú

1
�

=∆ e
Âú

(B–+i Pr
ú
2 ÊG) · Prú

1
� = e

B—+i Pr
ú
2 ÊG · Prú

1
�

=∆ e

q
(Âú

(B–+i Pr
ú
2 ÊG))

r0q · Prú
1

� = e

q
(B—+i Pr

ú
2 ÊG)

r0q · Prú
1

� , as � is of type (n, 0)

=∆
ÿ

(Âú(B– + i Prú
2

ÊG))r0q =
ÿ

(B— + i Prú
2

ÊT)r0q
.

For m œ U–—, consider the map ĩm, as defined in (6.2.20). Then,

ÿ
ĩ
ú
m(Âú(B– + i Prú

2
ÊG))r0q =

ÿ
ĩ
ú
m(B— + i Prú

2
ÊG)r0q

=∆ ĩ
ú
m(Âú(B– + i Prú

2
ÊG))200 = ĩ

ú
m(B— + i Prú

2
ÊG)200

=∆ „–—(m)ú(̃iú
mB– + iÊG) = ĩ

ú
mB— + iÊG

=∆ „–—(m)ú
ÊG = ÊG , as B– , B— and „–—(m) are real .

This shows that E is a symplectic G-bundle. Due to the property that E is a symplectic

bundle, one can see that (Â≠1)ú preserves e
i Pr

ú
2 ÊG · Prú

1
� , i.e,

(Â≠1)ú
fl0 = fl0 , where fl0 = e

i Pr
ú
2 ÊG · Prú

1
� .

Let L be the +i-eigenbundle (i.e, null space) of the product GCS , fl0 . At a point (m, f) œ

U–— ◊ G, L can be written in the following form,

L(m,f) =
1
T

0,1
m U–— ü (T 1,0

m U–—)ú
2

ü {X ≠ iÊG,f (X) | X œ TfG ¢ C} . (6.2.41)
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For any X + ÷ œ L, Âú(X) + (Â≠1)ú
÷ is again an element of L which is verified from the

following:

(Âú(X) + (Â≠1)ú
÷) · fl0 = fl0(Âú(X)) + (Â≠1)ú

÷ · fl0

= (Â≠1)ú
1
Â

ú
1
iÂú(X)(Â≠1)ú

fl0

22
+ (Â≠1)ú(÷ · fl0) , as (Â≠1)ú

fl0 = fl0

= (Â≠1)ú(iXfl0 + ÷ · fl0)

= 0 , as (X + ÷) · fl0 = 0 .

It follows that

X + ÷ œ L if and only if Âú(X) + (Â≠1)ú
÷ œ L (6.2.42)

Note that for (m, f) œ U–— ◊ G,

(Â)ú(m,f) =

Q

ca
IdU–—

0

(rf )ú ¶ („–—)úm („–—(m))úf

R

db ,

(Â≠1)ú
(m,f)

=

Q

ca
IdU–—

(„≠1

–—)ú
m ¶ (r„–—(m)·f )ú

0 („≠1

–—(m))ú
f

R

db ,

(6.2.43)

where the map rf : G ≠æ G is the right translation by f .

Let e œ G be the identity element and Y œ TeG . Then, for (m, e) œ U–— ◊ G , we have
Q

ca
(Â)ú 0

0 (Â≠1)ú

R

db (Y ≠ iÊG,e(Y )) = (Â)ú(Y ) ≠ (Â≠1)ú(iÊG,e(Y ))

=
Ó
(„–—(m))úe(Y ) ≠ i(„≠1

–—(m))ú
e(ÊG,e(Y ))

Ô
(By (6.2.43))

≠ i

1
(„≠1

–—)ú
m ¶ (r„–—(m))ú(ÊG,e(Y ))

2
,

By (6.2.41) and (6.2.42), {Y ≠ iÊG,e(Y )} œ L(m,e) implies that

(Â)ú(Y ) ≠ (Â≠1)ú(iÊG,e(Y )) œ L(m,„–—(m)) .

Then, it follows that

÷ := ≠i

1
(„≠1

–—)ú
m ¶ (r„–—(m))ú(ÊG,e(Y ))

2
œ (T 1,0

m U–—)ú
.
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Since („≠1

–—)ú
m and (r„–—(m))ú both are real linear operators, and ÊG,e(Y ) is a real 1-form,

we get ÷ = ≠÷. This contradicts the fact that ÷ œ (T 1,0
m U–—)ú

, and so,

(„≠1

–—)ú
m ¶ (r„–—(m))ú(ÊG,e(Y )) = 0 .

Now (r„–—(m))ú is an isomorphism and ÊG,e is non-degenerate which shows that („≠1

–—)ú
m

will vanish. As m œ U–— is arbitrary, we get

(„–—)ú
m = 0 , for all m .

Hence E is a flat symplectic principal G-bundle.

Theorem 6.2.3. Let E be a principal T2l-bundle over an n-dimensional complex manifold

M . Then, E is a flat symplectic T2l-bundle if and only if there exists a GCS, fl
Õ
, of

type dimC(M) such that, on each trivialization {U–, „–}, it is equivalent (via B-field

transformation and di�eomorphism) to the product GCS

(„≠1

– )ú(flÕ|fi≠1(U–)) ≥= e
i Pr

ú
2 ÊT · Prú

1
� ,

where ÊT is a symplectic form on T2l and � is a local generator of ·(n,0)(T ú
M ¢ C) .

Proof. One way is straightforward as one can construct such a GCS by using Theorem

6.2.1. The converse direction follows from Theorem 6.2.2.

Remark 6.2.2. Theorem 6.2.3 and Theorem 6.2.2 do not imply that all GCS of type

dimC M is the product GCS on a trivializing open set. Even in the simplest case, it may

happen that there exists a GCS which cannot be the product GCS in a trivializing open

neighborhood. The following example demonstrates this.

Example 6.2.1. Let E = F ◊ C be the trivial bundle over C with symplectic fiber F of

dimension 2l. Let ÊF be a symplectic form on F . Set

A := izz dz .

Let ‡ be a real closed, but not exact, 1-form on F . Consider the following 2-form

iÊ = iÊF + (A ≠ A) · ‡ .

Now d(A ≠ A) = ≠i (z + z) dz · dz . This implies dÊ ”= 0 but d(iÊ) · dz = 0 .

Note that Ê
l · dz · dz = Ê

l
F · dz · dz ”= 0 . Thus, we have a GCS of type 1 given by

fl = e
iÊ · dz .
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If possible, let there exists a closed real B œ �2(E) such that

fl = e
B+iÊF · dz .

Let C
rpq denote the (rpq)-component of C := B + iÊF in the natural decomposition of

�2

C(F ◊ C) , as given in (6.2.18). Then, we have

fl = e
B+iÊF · dz

=∆ e
≠A·‡ · dz = e

q
Cr0q · dz

=∆ ≠ A · ‡ = C
101

.

Since C
011 is real, it is of the form C

011 = if dz · dz for some f œ C
Œ(C ◊ F, R) . Let dF

be the exterior derivative in fiber direction. So,

dC = 0

=∆ (dC)111 = 0

=∆ (i dF f + i(z + z) ‡) · dz · dz = 0

=∆ dF f + (z + z) ‡ = 0 .

Fixing any z œ C ≠ {iR}, we have

dF g = ‡ , where g = ≠ 1
z + z

f(≠, z) œ C
Œ(F, R) .

This contradicts that ‡ is not exact. If possible, let there exists a real automorphism h

on F ◊ C such that

h
ú
fl = e

B+iÊF · dz .

Note that h
ú
dz = dz , and i h

ú
Ê · dz = (B + iÊF ) · dz . So, it follows that

ih
ú
ÊF + h

ú(≠A · ‡) =
ÿ

C
r0q

=∆ h
ú(≠A · ‡) = C

101

Then, we can continue as before. Thus we conclude that fl is not equivalent to the product

GCS.
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6.3 A spectral sequence for the generalized Dol-

beault cohomology

A generalized holomorphic bundle over a GC manifold B consists of a complex vector

bundle W with a Lie algebroid connection

D : C
Œ(·i

L
ú ¢ W ) ≠æ C

Œ(·i+1
L

ú ¢ W )

satisfying D ¶ D = 0 (cf. [70, Definition 4.27]) . For a generalized holomorphic bundle

(W, D), the Lie algebroid cohomology is defined as

H
•(L, W ) = ker(D : C

Œ(·•
L

ú ¢ W ) ≠æ C
Œ(·•+1

L
ú ¢ W ))

img(D : CŒ(·•≠1Lú ¢ W ) ≠æ CŒ(·•Lú ¢ W )) . (6.3.1)

For any 2n-dimensional GC manifold B with canonical line bundle U , the corresponding

involutive maximal isotropic subbundle L, and the operator ¯̂ as in equation (2.4.3) gives

a Lie algebroid connection. Thus {U, ¯̂} is a generalized holomorphic bundle over B and

also note that

GH
n≠•
¯̂ (B) = H

•(L, U) . (6.3.2)

Now coming back to our situation, let L be the null space of the canonical line bundle

of E, denoted as UE, as in Theorem 6.2.1. On a local trivialization {U–}, for a local

holomorphic coordinate system (z1, · · · , zn) œ U–, assume that, the GCS on U– ◊ T2l is

(„≠1

– )ú(fl0|fi≠1(U–)) = e
i Pr

ú
2 ÊT · Prú

1
� (6.3.3)

where � = dz1 · · · · · dzn and the null space is

L|fi≠1(U–) = Prú
1
(T 0,1

U– ü (T 1,0
U–)ú) ü Prú

2
{X ≠ iÊT(X) | X œ T (T2l) ¢ C}.

Further, note that,

Prú
2
{X ≠ iÊT(X) | X œ T (T 2l) ¢ C} = {X ≠ i Prú

2
ÊT(X) | X œ Prú

2
T (T2l) ¢ C}.

Consider the Courant involutive subbundle S < L such that on local trivialization

S|fi≠1(U–) = {X ≠ i Prú
2

ÊT(X) | X œ Prú
2

T (T2l) ¢ C}.

Then following [4, Section 2], for any generalized holomorphic bundle V over E, the

subspaces

F
p

C
Œ(·p+q

L
ú¢V ) = {„ œ C

Œ(·p+q
L

ú¢V ) | „(X1, · · · , Xp+q) = 0 for Xn1 , · · · , Xnq+1 œ S}
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of C
Œ(·•

L
ú ¢ V ) give a bounded decreasing filtration of { C

Œ(·•
L

ú ¢ V ), D} such that

the corresponding spectral sequence {E
•,•
r }r converges to the Lie algebroid cohomology

H
•(L, V ) described in (6.3.1). By definition,

E
p,q
0 = F

p
C

Œ(·p+q
L

ú ¢ V )
F p+1 CŒ(·p+qLú ¢ V )

=
{„ œ C

Œ(·p+q
L

ú ¢ V ) | „(X1, · · · , Xp+q) = 0 for Xn1 , · · · , Xnq+1 œ S}
{„ œ CŒ(·p+qLú ¢ V ) | „(X1, · · · , Xp+q) = 0 for Xn1 , · · · , Xnq œ S} .

Locally, we have,

F
p

C
Œ(·p+q

L
ú¢V ) =

n

pÆiÆp+q

C
Œ

1
·i Prú

1
(Lú

M |U–) ¢ ·p+q≠i
S

ú|fi≠1(U–)

2
¢CŒ(U–◊T2l,C) C

Œ(V ).

If V = fi
ú(V Õ), for a holomorphic vector bundle V

Õ over M and LM = T
0,1

M ü (T 1,0
M)ú,

then

E
p,q
0

≥= C
Œ(·p Prú

1
(Lú

M |U–) ¢ Prú
1
(V Õ|U–)) ¢CŒ(U–◊T2l,C) C

Œ(·q
S

ú|fi≠1(U–))

≥= C
Œ(Pr≠1

1
(·p(Lú

M |U–) ¢ V
Õ|U–)) ¢CŒ(U–,C) C

Œ(·q
S

ú|fi≠1(U–))

≥= C
Œ(·p(Lú

M |U–) ¢ V
Õ|U–) ¢CŒ(U–,C) C

Œ(·q
S

ú|fi≠1(U–)).

The di�erential d0 on E
p,q
0 is given by id ¢ dS where dS is the di�erential on the Lie

algebroid complex C
Œ(·•

S
ú). For b œ M and Eb = fi

≠1(b), by [150, Section 9.2], we get

a flat holomorphic vector bundle H• = fibœMH
•(Eb, C) over M where H

•(Eb, C) denotes

the C-valued de Rham cohomology of Eb. Now, consider the Lie algebroid corresponding

to the relative tangent bundle T of the principal bundle E, and the corresponding Lie

algebroid cohomology H
•(T). Then, by [80, Chapter I.2.4],

H
•(T) ≥= C

Œ(M,H•) . (6.3.4)

Since T (U– ◊ T2l) = Prú
1

T (U–) ü Prú
2

T (T2l), we have T|fi≠1(U–) = Prú
2

T (T2l). Moreover,

as ÊT is closed, we have a Lie algebroid isomorphism,

T|fi≠1(U–)

≥=≠æ S|fi≠1(U–), X ‘æ X ≠ i Prú
2

ÊT(X) .

Applying (6.3.4), locally we have,

E
p,q
1

≥= C
Œ(·p (Lú

M |U–) ¢ V
Õ|U–) ¢CŒ(U–,C) C

Œ(U–,Hq|U–)
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with the di�erential d1 = ¯̂
M , the usual Dolbeault operator on M . Hence, globally we

have,

E
p,q
1

≥= C
Œ(·p

L
ú
M ¢ V

Õ ¢ Hq)

with the di�erential d1 being the Lie algebroid connection for the holomorphic bundle

V
Õ ¢ H•. Hence, we obtain,

E
p,q
2

≥= H
p(LM , V

Õ ¢ Hq).

Thus, we have a description of the generalized Dolbeault cohomology of the total space

which extends the description in [4, Theorem 2.1].

Theorem 6.3.1. Let fi : E ≠æ M be a fiber bundle over a complex manifold M of

complex dimension n with a symplectic fiber (F, ÊF ) . Assume that there exists Ê œ �2(E)

such that

1. it defines a generalized complex structure J on E which is locally of the form fl :=

e
iÊ · fi

ú(�) ,

2. on each local trivialization {U–, „–}, the GCS is equivalent (via B-field transforma-

tion and di�eomorphism) to the product GCS as in (6.3.3), i.e

(„≠1

– )ú(fl|fi≠1(U–)) ≥= e
i Pr

ú
2 ÊF · Prú

1
� .

Here, � is a local generator of ·(n,0)(T ú
M ¢ C) . Let L be the +i-eigenbundle of J. Let V

be a complex vector bundle over E such that V = fi
ú
V

Õ for a holomorphic vector bundle

V
Õ over the complex manifold M . Considering V as a generalized holomorphic bundle,

there exists a spectral sequence {E
•,•
r }r which converges to H

•(L, V ) such that

E
p,q
2

≥= H
p(LM , V

Õ ¢ Hq) .

Proof. Follows from the preceding description of the generalized Dolbeault cohomology

of the total space.

Since UE = fi
ú
UM , where UM is the canonical line bundle for M , we have the following

theorem.

Theorem 6.3.2. Consider the same setting as in the preceding theorem and dimR F = 2l.

Then there exists a spectral sequence {E
•,•
r }r which converges to GH

n+l≠•
¯̂ (E) such that

E
p,q
2

≥= GH
n≠p
¯̂ (M,Hl≠q).
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Corollary 6.3.1. For a flat T2l-principal bundle E with the family of GCS as defined in

Proposition 6.1.1, there exists a spectral sequence {E
•,•
r }r which converges to GH

n+l≠•
¯̂ (E)

such that

E
p,q
2

≥= GH
n≠p
¯̂ (M,Hl≠q).

Example 6.3.1. (Generalized Dolbeault cohomology of trivial torus bundles) When the

torus bundle is trivial E = M ◊ T2l, the flat holomorphic vector bundle H• is also trivial

i.e, H• = M ◊ H
•(T2l

, C). So the E
p,q
2 term of the spectral sequence as in Theorem 6.3.1

is of the form

E
p,q
2

≥= H
p(LM , UM ¢ H

l≠q(T2l
, C)) = GH

q
¯̂(T2l) ¢ GH

n≠p
¯̂ (M).

Now, each element in E2 term is already a global form on M ◊ T2l. Hence, dk vanishes

for any k Ø 2 , and E2 = EŒ. Therefore, we get the following analogue of the Künneth

formula

Corollary 6.3.2. For the family of generalized complex structures as defined in Propo-

sition 6.1.1, when E = M ◊ T2l, the generalized Dolbeault cohomology group of E has a

decomposition in terms of the generalized Dolbeault cohomology groups of the fiber space

and the base manifold, i.e,

GH
n+l≠m
¯̂ (E) ≥=

n

p+q=m

1
GH

q
¯̂(T2l) ¢ GH

n≠p
¯̂ (M)

2

where ≠l Æ q Æ l , ≠n Æ p Æ n and ≠(n + l) Æ m Æ (n + l).

Remark 6.3.1. In Theorem 6.3.1, if the form Ê is closed, one may construct a B-

transformation so that the GCS is the product GCS on each trivializing neighborhood.

But even if Ê is not closed, it may still be possible to construct such a B-transformation.

The following example will show such a construction in the simplest case.

Example 6.3.2. Let E = C◊ F be the trivial bundle over C with symplectic fiber F . Let

ÊF is a symplectic form on F . Set

1. A1 := ( z2

2
+ zz) dz .

2. A2 := z dz .

Let ‡ be a real closed 1-form on F . Define

iÊj = iÊF + (Aj ≠ Aj) · ‡ , for j = 1, 2 .
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Not that d(A1 ≠ A1) = 2(z + z) dz · dz and d(A2 ≠ A2) = 2dz · dz. This implies that

dÊj ”= 0 and d(iÊj) · dz = 0 .

One can see that Ê
l
j · dz · dz = Ê

l
F · dz · dz ”= 0 which implies that

flj = e
iÊj · dz for j = 1, 2 ,

gives a GCS on E. One may write

flj = e
Bj+iÊF · dz , where Bj = (Aj + Aj) · ‡ is a real 2-form .

Notice that dAj = ≠dAj . This shows that dBj = 0 for j = 1, 2. Hence each flj is

equivalent to the product GCS.

————— ¶ —————
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