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Abstract

Inverse modelling is an ill-posed problem, and the regularisation technique is used to

solve the inverse problem by biasing the solution with prior information. In the absence

of prior information about the model, a constraint that seeks the smoothest model is

enforced. However, a regularisation scheme that imposes information obtained from

other geophysical methods has the potential to produce a more realistic model with sharp

boundaries of anomalies. This thesis presents a study on the development of a structurally

constrained inversion algorithm of controlled-source electromagnetic (CSEM) data. We

have devised an efficient space-domain forward and gradient computation algorithm for

CSEM data. The space-domain simulation is achieved by imposing novel boundary condi-

tions on the plane perpendicular to the strike direction that passes through the transmitter

position. In this study, the boundary conditions for various transmitter types are derived

using the symmetric/antisymmetric character of the electric and magnetic fields. For all

the other boundaries, a homogenous Dirichlet boundary condition is applied. The devised

strategy facilitates efficient computation as one needs to discretise the space only on the

side of the source position along the strike direction. Furthermore, the benchmarking

experiment reveals that only six to eight grids are sufficient for discretisation in the strike

direction for the accuracy required in geophysical data analysis.

A Gauss-Newton optimisation-based inverse modelling algorithm is developed for

two-dimensional (2D) CSEM data inversion by employing the proposed forward modelling

algorithm. The algorithm can perform inversion for the vertical transverse isotropy (VTI)

subsurface model. The adjoint approach is used for the computation of the Jacobian

matrix. A Gauss-Newton method is employed to calculate updated model parameters

where the Hessian matrix is solved using a conjugate gradient solver. The developed

algorithm is tested for synthetic and real-field CSEM data, and the inversion experiment

agrees with the benchmarking of forward modelling, indicating that around eight are

sufficient for discretisation in the strike direction. The comparison of the proposed

algorithm with a published algorithm shows that our algorithm is at least one order faster

in terms of computation time and requires less memory.



x

A structurally constrained 2D inversion algorithm for CSEM data inversion is de-

veloped that incorporates structural information using a cross-gradient method. The

cross-gradient method enforces the structural similarity between the two models by

optimising the 2-norm of cross-product of spatial gradients of both models. Using the

developed algorithm, a detailed analysis is carried out to test the advantages and limita-

tions of the structurally constrained inversion based on the cross-gradient method. The

structurally constrained inversion improves the inverted model but does not produce a

sharp boundary due to the smoothing operator employed in our code for regularisation.

We also developed an algorithm to simulate a 2D frequency-domain acoustic wave

response in a transversely isotropic medium with a tilted symmetry axis. The algorithm

employs a support-operator finite-difference method for modelling. This method con-

structs a nine-point stencil finite-difference scheme for second-order elliptic equations

for generalised anisotropic physical properties. The modelling scheme is benchmarked

using the analytical responses of the half-space model for isotropic and anisotropic media.



Acknowledgements

The divine blessings and unwavering support of my father, Bachan Singh Chauhan, my

Mother, Satlesh Chauhan, my sister, Vartika Chauhan, and one of my best friends, Deepan-

shu Chauhan, empowered me to overcome all obstacles encountered during my research

work.

I am deeply grateful to Dr. Rahul Dehiya, my research supervisor, for his unwavering

support, invaluable guidance, and continuous encouragement throughout this endeavor.

His scientific acumen, balanced approach, and discerning critique have significantly

contributed to my growth as a researcher, aiding in developing and refining my ideas and

research.

I am pleased to express my sincere thanks to Dr. Gyana Ranjan Tripathi, Head, Depart-

ment of Earth and Climate Science, Indian Institute of Science Education and Research

(IISER), Pune, for providing the necessary amenities required for my research work.

I would also like to express my gratitude to my advisory committee, Prof. Bharat Shekhar

and Dr. Arjun Dutta, for their invaluable comments and suggestions. Their guidance has

contributed significantly to the enhancement of my skills and the improvement of my

research work. I am thankful to the Indian Institute of Science Education and Research

(IISER), Pune, for their financial assistance. I want to express my gratitude and extend

my thanks to all the administrative staff of the Department of Earth and Climate Science,

IISER, Pune.

I would like to offer special thanks to my Grandfather, Late Rampal Singh, and my Grand-

mother, Somti Devi.

I would like to express my deepest gratitude to my friends, Suraj Lakhchaura and Dhruv

Khatri, for always being there and bearing with me during the good and bad times of my

academic career.

Special thanks to my seniors, Dr. Deepak Suryavanshi, Dipak Kumar Chaubey, and my lab

members for being with me in every difficult situation.

Last but not least, I am grateful to all my silent helpers who have supported me at

various stages of difficulties during my research work, whether directly or indirectly.





Table of contents

List of figures xv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Controlled source electromagnetic method . . . . . . . . . . . . . . . . . . . . 2

1.2.1 CSEM forward modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 CSEM Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Seismic method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Theory of seismic wave equation . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Anisotropic Acoustic wave equation . . . . . . . . . . . . . . . . . . . . 9

1.3.3 Seismic Forward modelling . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.4 Methods to numerically solve wave equation . . . . . . . . . . . . . . 11

1.3.5 Stability Criterion and Numerical Grid Dispersion . . . . . . . . . . . 13

1.3.6 Accuracy and Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.7 Absorbing boundary condition . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Joint Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.1 Simultaneously Joint Inversion . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.2 Cooperative or constrained inversion . . . . . . . . . . . . . . . . . . . 18

1.5 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 2D CSEM algorithm based on a space-domain forward modeling approach 21

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Forward and Inverse Modeling Methodology . . . . . . . . . . . . . . . . . . . 23

2.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.1 Benchmarking of SD2DEM . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



xiv Table of contents

3 2D structurally constraint CSEM inversion algorithm 45

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.1 Structural constraint on the salt dome . . . . . . . . . . . . . . . . . . 50

3.4.2 Structural constraint and initial model derived from prior model for

the salt dome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.3 Structural constraint and initial model derived from prior model for

the salt dome and reservoir . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.4 Similarity prejudice between the vertical and horizontal resistivity

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 2D Anisotropic Acoustic wave modeling using support operator method 61

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 The tilted transverse isotropic acoustic wave modeling . . . . . . . . . . . . . 63

4.3.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.2 Construction of ∇·Θ∇ operator . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.1 Isotropic Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.2 Vertical Transverse Isotropic case . . . . . . . . . . . . . . . . . . . . . 69

4.4.3 Tilted Transverse Isotropic case . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Conclusion and future possibilities 83

References 87

Appendix A Boundary conditions for HEDx 99

A.1 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Appendix B System matrix coefficients of MFDM scheme 101

B.1 Discretised form of differential operators for mimetic scheme . . . . . . . . 101



List of figures

2.1 Synthetic 2D-VTI resistivity model; (a) vertical resistivity; (b) horizontal

resistivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 EM field magnitude overlayed by phase for HEDx (a-c) and HEDy (d-f) for

the transmitter located at 0, 0, 970 m and receivers are placed at 1000 m

depth on a 100×100 m grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Schematic diagram depicting the staggered grid utilized for discretization

where electric field components Ex , Ey and Ez are assigned at midpoint of

edges and magnetic field components Hx , Hy and Hz are defined at center

of cell faces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Forward-modeling code benchmarking; (a) Magnitude plots for a receiver

at x =-0.0 km simulated using Dehiya (2021) and SD2DEM algorithm using

eight grids in strike direction; (b) Phase plots for a receiver at x =-0.0 km

simulated using Dehiya (2021) and SD2DEM algorithm using eight grids

in strike direction; (c) relative percentage error in magnitude; (d) phase

difference plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Inverted resistivity models obtained using 2D anisotropic inversion of syn-

thetic data for varying numbers of grids in strike direction; here, inverted-

solid triangles represent the receiver’s positions and dashed-black lines

denote the salt dome and reservoir positions; (a) ρv model of the 6-grid case

; (b) ρv model of the 8-grid case; (c) ρv model of the 10-grid case; (d) ρh

model of the 6-grid case ; (e) ρh model of the 8-grid case; (f) ρh model of

10-grid case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Data misfit plots for synthetic data inversion experiments; (a) amplitude

ratio’s histogram of predicted data to the initial and final inverted model

using 8 grids in strike direction; (b) cross plot of data misfit (%) for 8 grids vs.

6 grids; (c) cross plot of data misfit (%) for 8 grids vs. 10 grids. . . . . . . . . . 35



xvi List of figures

2.7 Inverted resistivity models obtained using 2D anisotropic inversion of Troll

field CSEM data for varying numbers of grids in strike direction; here, inverted-

solid triangles represent the receiver’s positions and dashed-black line sketched

at 1.35 km illustrates the top of the gas reservoir; (a) ρv model of 6-grid case

; (b) ρv model of 8-grid case; (c) ρv model of 10-grid case; (d) ρh model of

6-grid case ; (e) ρh model of 8-grid case; (f) ρh model of 10-grid case. . . . . 37

2.8 Data misfit plots for Troll field CSEM data inversion experiments; (a) am-

plitude ratio’s histogram of predicted data to the initial and final inverted

model using 8 grids in strike direction; (b) cross plot of data misfit (%) for 8

grids vs. 6 grids; (c) cross plot of data misfit (%) for 8 grids vs. 10 grids. . . . 38

2.9 Inverted resistivity models obtained using 2D MARE2DEM inversion code

of Synthetic EM data; (a) vertical resistivity; (b) horizontal resistivity. . . . . 38

2.10 nRMS ( in %) plot and time comparison between SD2DEM and MARE2DEM

of synthetic EM data; (a) nRMS plot; (b) time efficiency comparison plot. . . 39

2.11 Inverted resistivity models obtained using 2D MARE2DEM inversion code

of Troll EM data; (a) vertical resistivity; (b) horizontal resistivity. . . . . . . . 39

2.12 nRMS(in %) plot and time comparison between SD2DEM and MARE2DEM

of Troll EM data; (a) nRMS plot; (b) time efficiency comparison plot. . . . . 39

3.1 Inverted resistivity models obtained by inversion without any structural

constraints; here, inverted-solid triangles represent the receiver’s positions

and dashed-black lines denote the salt dome and reservoir positions; (a) ρv ;

(b) ρh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Inverted resistivity models obtained by applying structural salt dome con-

straints; here, inverted-solid triangles represent the receiver’s positions and

dashed-black lines denote the salt dome and reservoir positions; (a) ρv (ac-

curate); (b) ρh (accurate); (c) ρv (inaccurate: broadened+500m, shifted up

50m); (d) ρh (inaccurate: broadened+500m, shifted up 50m); (e) ρv (inac-

curate: shrunkned+500m, shifted down 50m); (f) ρh(inaccurate: shrunk-

ned+500m,shifted down 50m). . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Inverted resistivity models obtained by providing predefined initial models

and also applying structural salt dome constraints; (a) ρv (accurate); (b) ρh

(accurate); (c) ρv (inaccurate: broadened+500m, shifted up 50m); (d) ρh

(inaccurate: broadened+500m, shifted up 50m); (e) ρv (inaccurate: shrunk-

ned+500m, shifted down 50m); (f) ρh(inaccurate: shrunkned+500m,shifted

down 50m). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



List of figures xvii

3.4 Inverted resistivity model using a half-space initial model with the applica-

tion of only structural constraints of the salt dome; (a) ρv ; (b) ρh . Note that

for the forward simulation, a model representing approximately half of the

actual salt dome was used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Inverted resistivity model using an accurate salt dome initial model with

10 ohm-m resistivity and no structural constraint; (a) ρv ; (b) ρh . Note that

for the forward simulation, a model representing approximately half of the

actual salt dome was used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Inverted resistivity models obtained by providing predefined initial mod-

els and also applying structural salt dome and reservoir constraints; (a) ρv

(accurate); (b) ρh (accurate); (c) ρv (inaccurate: broadened+500m, shifted

up 50m); (d) ρh (inaccurate: broadened+500m, shifted up 50m); (e) ρv (in-

accurate: shrunkned+500m, shifted down 50m); (f) ρh(inaccurate: shrunk-

ned+500m,shifted down 50m). . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 Inverted resistivity models obtained by imposing similarity between vertical

and horizontal resistivity in an anisotropic inversion; (a) vertical resistivity

(ρv ); (b) horizontal resistivity(ρh). . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.8 Inverted resistivity models of a isotropic model obtained by an anisotropic

inversion; (a) vertical resistivity (ρv ); (b) horizontal resistivity(ρh). . . . . . . 58

3.9 Inverted resistivity models obtained by imposing similarity between vertical

and horizontal resistivity in an isotropic model; (a) vertical resistivity (ρv );

(b) horizontal resistivity(ρh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 Schematic representation of the nine-point stencil scheme employed for

model discretization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Schematic diagram for a cell i , j having area Ω and four sides as, l1, l2, l3

and l4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Real and imaginary parts of pressure wavefield in the frequency domain

simulated using the support opertaor method for a homogeneous isotropic

medium employing a monochromatic source emitting 10 Hz frequency. The

same color scale is used for both images; hence, it is only displayed in one of

the images for brevity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Relative misfit of amplitude between the analytical and numerical simula-

tion performed using the support-operator method at 10 Hz. . . . . . . . . . 70



xviii List of figures

4.5 Real and imaginary parts of responses calculated using the proposed nu-

merical method, including the PML region and the analytical responses at a

horizontal line passing through the source position for a 10 Hz frequency

source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6 Ricker Wavelet of 10 Hz dominant frequency; (a) time domain and (b) am-

plitude spectrum in the frequency domain . . . . . . . . . . . . . . . . . . . . 71

4.7 Pressure wavefield in the time domain for a homogeneous isotropic medium

employing a 10 Hz dominant frequency Ricker wavelet as a source; the

corresponding time is mentioned at the top of each image. . . . . . . . . . . 73

4.8 Real part of pressure wavefield in the frequency domain for a homogeneous

VTI medium for 10 and 18 Hz frequencies. . . . . . . . . . . . . . . . . . . . . 73

4.9 Pressure wavefield in the time domain for a homogeneous VTI medium

at three-time instances using a 10 Hz dominant frequency Ricker wavelet

as a source, where the red and blue curves show the P and S wavefronts

calculated using the analytical formula. . . . . . . . . . . . . . . . . . . . . . . 74

4.10 Pressure wavefield in the time domain for a homogeneous Zinc VTI medium

at three-time instances using a 10 Hz dominant frequency Ricker wavelet

as a source, where the red and blue curves show the P and S wavefronts

calculated using the analytical formula. . . . . . . . . . . . . . . . . . . . . . . 75

4.11 Real part of pressure wavefield in the frequency domain for a homogeneous

TTI medium for 10 and 18 Hz frequencies. . . . . . . . . . . . . . . . . . . . . 76

4.12 Pressure wavefield in the time domain for a homogeneous TTI medium

at three-time instances using a 10 Hz dominant frequency Ricker wavelet

as a source, where the red and blue curves show the P and S wavefronts

calculated using the analytical formula. . . . . . . . . . . . . . . . . . . . . . . 76

4.13 Schematic diagram depicting interfaces of different strata of a 2D heteroge-

neous along with their densities and velocities. . . . . . . . . . . . . . . . . . 78

4.14 Images of buoyancy tensor’s elements obtained using the spatially vary-

ing tilt angle of the medium symmetry axis, where the angle is measured

between the tangent to the interface with the vertical direction. The title

of each image indicates the respective expression of the buoyancy tensor

element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



List of figures xix

4.15 Real part of pressure wavefield in the frequency domain for heterogeneous

subsurfaces due to 10 Hz frequency monochromatic source; (a) for the

isotropic model; (b) for the TTI model where the direction of the symmetry

axis is taken as tangential to the interface; (c) for the TTI model where the

direction of the symmetry axis is considered as perpendicular to the interface. 79

4.16 Pressure wavefield in the time domain for heterogeneous subsurfaces using

a 10 Hz dominant frequency Ricker wavelet as a source; (a) to (c) pressure

wavefield for the isotropic model; (d) to (f) pressure wavefield for the TTI

model where the direction of the symmetry axis is taken as tangential to the

interface; (g) to (i) pressure wavefield for the TTI model where the direction

of the symmetry axis is considered as perpendicular to the interface. The

dashed cyan color curves denote the interfaces of different litho units. . . . 80

4.17 Simulated shot-point gathers for heterogeneous subsurfaces using a 10 Hz

dominant frequency Ricker wavelet as a source; (a) for the isotropic model;

(b) for the TTI model where the direction of the symmetry axis is taken as

tangential to the interface; (c) for the TTI model where the direction of the

symmetry axis is considered as perpendicular to the interface. . . . . . . . . 81





Chapter 1

Introduction

1.1 Motivation

In the realm of geophysical exploration, achieving a precise and comprehensive under-

standing of the subsurface is paramount. It involves measuring various geophysical data

types, which are often sparse due to the difficulty of installing sensors in solid parts of the

Earth. The observed geophysical data is processed and analysed using techniques such as

inverse modelling to obtain the physical properties of the subsurface. Accurately know-

ing these physical properties affects the success of identifying and extracting valuable

resources such as hydrocarbons and ores. Individual geophysical methods, while effective,

often have limitations in accurately capturing the complexity of the Earth’s subsurface due

to the sparsity of data, resolution of the geophysical method and the ill-posed nature of

inverse modelling. The joint analysis of various geophysical data has great potential to add

value to subsurface imaging. This thesis aimed to develop algorithms for joint analysis

of seismic and Controlled Source Electromagnetic (CSEM) data. Such joint analyses are

considered to emerge as a game-changer, offering a synergistic approach that leverages

the strengths of both techniques to provide superior imaging and characterisation of

subsurface structures. For example, seismic data has long been the cornerstone of subsur-

face imaging due to its high resolution and detailed insights into geological formations.

Seismic methods predominantly measure the elastic properties of the subsurface, which

depend on both lithology and fluid content. However, one significant challenge in seismic

interpretation is the difficulty in determining fluid saturation, leading to ambiguities

and uncertainties in reservoir characterisation; consequently, distinguishing between

commercial and non-commercial hydrocarbon reserves becomes challenging. On the

other hand, CSEM methods are sensitive to the electrical resistivity of the subsurface,

which varies significantly with hydrocarbon saturation. While CSEM data can provide



2 Introduction

clear indications of resistivity anomalies associated with hydrocarbon deposits, it gen-

erally offers lower spatial resolution than seismic data and may struggle with complex

geological settings. Sub-basalt and sub-salt are other areas where integrating seismic and

CSEM data can elevate the subsurface imaging significantly. Furthermore, combining

seismic and CSEM data is advantageous in subsurface CO2 sequestration projects, in-

cluding during the monitoring phase. Nevertheless, by integrating seismic and CSEM

data through joint inversion, we can exploit the complementary nature of these methods

to overcome their individual limitations. Joint inversion combines the high-resolution

structural information from seismic data with the fluid sensitivity of CSEM data, leading

to a more accurate and detailed subsurface model. In an era striving for sustainable

energy solutions, such advancements in exploration technologies play a pivotal role in

ensuring efficient and sustainable resource utilisation and meeting energy demands while

minimising environmental impact.

To highlight the contribution of this thesis, first, a detailed review of CSEM and seismic

methods with emphasis on forward and inverse modelling is presented. Subsequently, the

literature survey of joint analysis, mainly the joint inversion of these methods, is discussed.

Finally, the thesis’s objective and contribution are presented at the end of this chapter.

1.2 Controlled source electromagnetic method

The CSEM method is a geophysical technique (Constable, 2010; Cox, 1981) used primarily

in subsurface imaging up to 3 to 4 km. It has been used successfully for hydrocarbon

exploration (Constable, 2010), offshore freshwater mapping (Evans, 2007), gas hydrate

studies (Schwalenberg et al., 2010), CO2 sequestration (Bhuyian et al., 2012) and mineral

exploration (Constable, 2010). The CSEM method involves generating electromagnetic

fields using a controlled source and measuring the resulting electromagnetic (EM) re-

sponse at various distances from the source. The CSEM method can be applied in the

time or frequency domain. The frequency domain method suffers from the airwave prob-

lem (Amundsen et al., 2006). Consequently, various techniques have been developed to

eliminate the airwave signal from seafloor CSEM data (Amundsen et al., 2006). Insights

from land-based EM surveys indicate that addressing the airwave issue is most effectively

achieved using time-domain EM methods rather than frequency-domain approaches

(Weiss, 2007). However, the frequency domain methods are most effective in deep wa-

ter marine environments (>300 m) where the conductive marine water suppresses the

airwave significantly since the transmitter and receives are placed at/near the sea floor.

The typical frequency range in marine CSEM experiments is 0.01 Hz to 10 Hz. The EM
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wave propagated as a diffusion regime in the earth’s subsurface for this frequency range.

The primary EM field from the source induces secondary EM fields in the surrounding

medium. The transmitter is towed as close to the sea floor as possible (generally 30 to

50 m). The EM is detected by receivers placed on the seafloor. Since the recorded EM

field also contains the secondary components, the observed data has the sensitivity of

the subsurface resistivity around the transmitter and receivers. Therefore, geophysicists

can infer the resistivity distribution within the subsurface by analysing the recorded data,

providing valuable information about its composition and structure. However, the data

must be transformed into the resistivity model to obtain the subsurface image, which is

achieved by the inverse modelling of the observed data. Inverse modelling is a data fitting

technique which requires a forward modelling algorithm for data simulation.

1.2.1 CSEM forward modelling

The forward modelling of CSEM data involves solving Maxwell’s equations, which govern

the behaviour of electromagnetic fields in the subsurface. The Maxwell’s equations in the

time domain in a source-free media can be written as

∇·D = 0 (Gauss’s Law for Electricity) (1.1)

∇·B = 0 (Gauss’s Law for Magnetism) (1.2)

∇×E =−∂B

∂t
(Faraday’s Law) (1.3)

∇×H =σE+ ∂D

∂t
(modified Ampère’s Law), (1.4)

where, E is the electric field, B is the magnetic field, H is the magnetic field intensity, D is

the electric displacement field and σ is electrical conductivity. For a complex media, an

analytical solution of the above equation is not attainable. Therefore, numerical methods

are used to solve these equations for the forward modelling of CSEM data.

The forward modelling of EM data aims to solve Maxwell’s equation to simulate the

response of the subsurface accurately and efficiently. Maxwell’s equations may be solved

in the frequency or time domains depending on the geophysical method or due to com-

putational considerations. Maxwell’s equations can be solved simultaneously for both

the electric and magnetic fields, where one has to solve the first-order partial differential

equation (PDE). Alternatively, a second-order PDE (Helmholtz equation) can be derived
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using Maxwell’s equations in terms of either the electric field or the magnetic field. The ad-

vantage of working with the Helmholtz equation is that the number of unknowns becomes

half compared to the first approach. Most studies prefer to work with the Helmholtz

equation expressed for the electric field for frequency domain simulation. Irrespective

of the approach, the PDE must be solved using numerical techniques. All the numerical

methods involve discretizing the subsurface model, and the solution is obtained at the

discrete nodes within the computation domain. Since the modelling domain is very small

compared to the earth, except for global sounding, the computation domain needs to be

expressed as an unbounded region. Consequently, absorbing boundary conditions are

applied on all sides of the computation domain. Since low-frequency EM propagation is

a diffusion process and, the field decays as it travels into a finite conductivity medium.

Therefore, boundary conditions are applied by padding a highly sparse grid on all sides

of the modelling domain such that the field at the boundary can be approximated with a

known field. Some studies have also applied perfectly matched layer boundary conditions

for EM simulation. In the case of controlled sources, the source term needs to be handled

carefully, as the EM fields are undefined at the source position. A Dirac delta defines the

source term; therefore, an approximate Dirac delta function can be used to address the

source singularity. However, such an approach requires very fine discretization around the

receiver position. Another technique is primary/secondary field decomposition, which

can handle source singularity effectively. However, it requires an efficient computation of

the primary field, which may become challenging if the transmitter is in contact with a

rugged topography. The choice of the strategy to manage source singularity also impacts

the choice of a numerical method to be used for forward modelling. Several numerical

methods have been employed for EM simulation, delivering reasonable accuracy for

complex geological settings. Some of the most used numerical methods are:

1. Finite Element Method:

The Finite Element Method (FEM) in EM modeling involves discretizing the com-

putational domain into small elements to solve Maxwell’s equations. It transforms

these equations into a weak form by integrating them over each element. The

finite element method is highly effective in handling irregular geometries and vary-

ing resistivity contrasts, making it a popular choice for CSEM forward modelling.

da Silva et al. (2012) developed a finite element algorithm that he also used for the

3D CSEM inversion algorithm. Cai et al. (2017) developed a 3D anisotropic CSEM

inversion algorithm using an edge-based finite element method. Kong et al. (2008)

solve a 2.5D FEM approach for marine CSEM applications in layered anisotropic

media, utilizing delta sources to solve the governing PDEs. An open-source, parallel
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Python tool PETGEM for efficient and precise 3D CSEM modelling was developed

by Castillo-Reyes et al. (2018).

2. The Finite Difference Method:

The Finite Difference Method (FDM) is a widely adopted approach for tackling

Maxwell’s equations in geophysical modelling. It involves approximating the differ-

ential operator using difference formulas. The staggered grid concept introduced

by Yee (1966) is employed, which led to improved accuracy. This method strategi-

cally defines electric fields at the edge centre of cells and magnetic fields at the cell

centre or vice versa, resulting in a sparse, symmetric, and non-hermitian system

matrix characterized by complex diagonal elements. FDM’s notable advantage lies

in its simplicity of implementation, which has spurred the development of various

forward modelling algorithms for solving EM problems (Sasaki, 1999; Siripunvara-

porn et al., 2002; Smith, 1996; Streich, 2009). A 3D Magnetotelluric (MT) modelling

scheme, conserving electric current and magnetic flux on a staggered grid, was

developed by Fomenko and Mogi (2002). Bergmann et al. (1996) solved Maxwell’s

equation for ground penetrating radar using the staggered grid finite difference

method. Lampe et al. (2003) developed a finite-difference time-domain simulation

tool specifically designed for the antennas used in ground-penetrating radar sys-

tems. Mackie et al. (1994) designed a finite difference algorithm, employing the

minimum residual relaxation technique, to calculate the magnetotelluric response

of various models. A radiation boundary-based FDM algorithm is developed for

CSEM (Dehiya, 2021) and MT (Singh and Dehiya, 2022) data simulation.

3. Integral Equation Method (IEM):

Integral equation methods (IEM) are constructed by writing Maxwell’s equations

in integral form with matrix Green’s functions by creating so-called secondary or

scattering sources. Because Maxwell’s equations are linear in the source, the electric

and magnetic fields can be written as sums of background and scattered fields. The

background model distribution of the conductivity must be taken such that the

electric and magnetic fields can be computed quickly and accurately everywhere in

space. Several developers have utilized the IEM for 3D modelling purposes (Avdeev

et al., 2002; Gribenko et al., 2010; Gribenko and Zhdanov, 2007).

Once the EM fields are computed at all the nodal positions, the next step is to calculate

the response at the receiver locations. The EM responses are interpolated and transformed

into the same form as the observed data. For example, if the Helmholtz equation is solved

for the electric field and the observations are magnetic fields, the magnetic field response
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at each observation position is calculated by transforming the electric field into the

magnetic field using Faraday’s law. Since some components may be discontinued at the

observation position, the interpolation must be performed by considering discontinuity.

For example, in marine CSEM, the normal component to the seafloor of the electric field

is discontinuers at the observation position (Ward et al., 1988).

1.2.2 CSEM Inversion

Inverse modelling aims to search for a model that fits the data within a threshold which is

mainly governed by the noise in the data. It is an ill-posed problem, making it difficult

to solve. Specifically, the EM data inversion is a non-linear inverse problem. Various

inversion techniques have been developed to address the challenges encountered by EM

data inversion. Broadly, this technique can be divided into two categories: stochastic

and deterministic inversion algorithms. Stochastic inversion represents a random walk

into model space in search of a model that fits data. One of the useful random search

methods is Markov Chain Monte Carlo (MCMC), which has been applied to EM data

analysis (Malinverno, 2002; Minsley, 2011). The Bayesian inversion is considered the

most robust in a class of stochastic inversion, which provides a probability distribution

function (pdf), not just a model. Consequently, the evaluated pdf can be used to obtain

useful characteristics of the model, including the assessment of model uncertainties and

generating multiple possible solutions. Therefore, such inversion algorithms provide

valuable insights into the reliability and variability of the inversion results, aiding in the

interpretation of complex subsurface features (Sambridge and Mosegaard, 2002). However,

in Bayesian inversion, the probabilistic approach necessitates the evaluation of numerous

probable models to evaluate the posterior distribution correctly. This requires repeatedly

solving the forward problem for each model iteration. Consequently, fast computation is

crucial to make this process feasible within a reasonable time frame, ensuring that the

inversion results are obtained timely and trustworthy (Wu et al., 2023). Efficient forward

CSEM computation allows for the exploration of a large model space, leading to more

robust and comprehensive probabilistic interpretations. Due to the high computation

demand, the Bayesian inversion has not been used extensively, particularly for 2D and 3D

inversion.

On the other hand, deterministic inversion requires much less computation time

than Bayesian inversion. The EM deterministic inversion is achieved by linearizing the

non-linear problem around a model, and most of the algorithms converge to the nearest

minima (Tarantola, 2005). Therefore, the global minimum is only attainable if the initial

model is in the neighborhood of the initial model. Thus, the initial resistivity model
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needs to be derived from geological knowledge, preliminary data, or reasonable assump-

tions about the subsurface. The iterative nature of EM inversion, combined with the

need for accurate forward modelling and sophisticated numerical techniques, makes it

a computationally demanding task. However, advancements in computational power

and algorithms have significantly enhanced the efficiency and effectiveness of CSEM

inversion. High-performance computing and parallel processing allow for the handling of

large-scale models and extensive datasets, enabling detailed imaging of the subsurface

(Cai et al., 2022; Liu and Yin, 2016). These schemes optimize an objective function that in-

volves minimizing the 2-norm misfit between observed and predicted data for the current

model. Regularization techniques are essential for stabilizing the inversion process and

mitigating the effects of noise and non-uniqueness in the data. Common regularization

methods include Tikhonov regularization and total variation regularization, which impose

additional constraints on the model to promote smoothness or sparseness. These con-

straints help to ensure that the inversion results are geologically plausible and not overly

influenced by noise in the data (Tarantola, 2005). The gradient of the objective function

is used to update the model. Therefore, the gradient calculation is required for a model

update at each iteration. The steepest descent method updates the model in the reverse

direction of the gradient that points to a maximum reduction of the objective function

at the current position. The line search approach is used to calculate the step length for

the model update. However, the steepest descent shows very slow convergence in case

of an ill-conditioned problem, which is generally the case of EM inversion. Therefore,

the non-linear conjugate gradient algorithm is preferred for EM inversion, which is more

efficient than the steepest descent technique. In this method, a maximum correction is

applied in a direction. Therefore, this algorithm is assumed to be cover in the maximum

N state in the case of N-dimensional model space. However, in practice, many few up-

dates are required as problems need to be solved up to a certain accuracy. Furthermore,

the clustering of singular values drove significantly faster convergence. Therefore, the

preconditioned conjugate gradient methods have also been developed for EM inversion.

He et al. (2010) used a non-linear conjugate-gradient method for mapping the reservoir

of the Qaidan basin (China) based on resistivity and induced polarization derived from

continuous 3D magnetotelluric profiling. There are algorithms which use the non-linear

conjugate gradient method for magnetotelluric inversion (He et al., 2010; Rodi and Mackie,

2001). Sasaki (2001) employed the Incomplete Cholesky biconjugate gradient (ICBCG)

method in order to create a comprehensive 3-D inversion algorithm for electromagnetic

data.
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Including the curvature information in the gradient-based method can speed up the

convergence significantly. Consequently, the Newton optimization-based methods can

solve the optimization problem in very few iterations. However, it requires the calculation

of the Hessian matrix, which is a computationally intensive task. In the Gauss-Newton

method, the Hessian is approximated by the Jacobian matrix. The Jacobian matrix includes

the derivative of all simulated data points with respect to each model parameter as its

elements. Gauss-Newton method has been employed by several researchers for CSEM

(Dehiya, 2024; Wang et al., 2018) and MT (Nádasi et al., 2022) inversion. The research

conducted by Günther et al. (2006) involved the application of a Gauss-Newton method

with inexact line search to effectively model the data within error constraints, leading to

the creation of a 3D modelling and inversion algorithm for DC resistivity data. A practical

algorithm for generating smooth models developed by Constable et al. (1987) is generally

known as Occam inversion, which is analogous to the Gauss-Newton method. deGroot

Hedlin and Constable (1990) used Occam’s inversion to generate a smooth, 2D model

for magnetotelluric data. Siripunvaraporn and Egbert (2000) and Siripunvaraporn et al.

(2005) present data space OCCAM’S inversion scheme for 2D and 3D magnetotelluric

data, respectively. Another variant of Newton’s method is the quasi-Newton algorithm,

in which the inverse of the Hessian matrix is computed using the information from

the previous iterations. It reduces the computation per iteration substantially, but the

convergence rate is less than the Gauss-Newton method. Haber (2004) discussed the

Quasi-Newton methods for large-scale electromagnetic inverse problems. The three-

dimensional magnetotelluric inversion algorithm developed by Avdeev and Avdeeva

(2009) employs a limited-memory quasi-Newton optimization technique, which uses

information from only the last few iterations for computing the inverse Hessian matrix.

1.3 Seismic method

The seismic method stands as one of the fundamental techniques in geophysical explo-

ration, providing valuable insights into the subsurface structure of the Earth. It relies

on the propagation of seismic waves generated by artificial sources or natural phenom-

ena, such as earthquakes, and their subsequent detection through sensitive instruments

called seismometers. By analyzing the characteristics of these seismic waves as they

travel through different geological layers, researchers can infer crucial information about

subsurface properties like rock types, layer thicknesses, and structural features.
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1.3.1 Theory of seismic wave equation

The linearized set of partial differential equations that govern the motion of homogeneous

elastic solids Payton (1983) are :

Force-Equilibrium equation:

∂τ j i

∂x j
+ρ fi = ρ∂

2ui

∂t 2
, (1.5)

momentum-equilibrium equation:

τi j = τ j i , (1.6)

Strain-displacement relation:

ei j = 1

2
(
∂ui

∂x j
+ ∂u j

∂xi
), (1.7)

Stess-strain relation:

τi j = ci j kl ekl . (1.8)

The equations presented above, applicable within the solid’s interior, are expressed in

terms of a stationary Cartesian reference frame with t representing time. τi j and ei j denote

the Cartesian components of the stress and strain tensors, respectively, while ui denotes

the components of the displacement vector. The components of the body force vector, per

unit mass, are fi and ρ is the constant mass density of the solid. The fourth order tensor

of the elasticity’s ci j kl satisfy the (Green) symmetry conditions

ci j kl = c j i kl = ckl i j , (1.9)

so, there are 21 independent constants needed to describe the stress-strain relations for

a general anisotropic elastic solid. Equations (1.5)-(1.8) constitute a set of 15 equations

for the 15 unknowns τi j , ei j and ui . Since the equations are linear with constant coeffi-

cients, it is an easy matter to reduce this set to 3 equations for the 3 components of the

displacement vector ui ,

ci j kl
∂2uk

∂xl∂x j
+ρ fi = ρ∂

2ui

∂t 2
, (1.10)

1.3.2 Anisotropic Acoustic wave equation

In the case of an isotropic solid, the ci j kl tensor is constrained to satisfy;
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ci j kl =λδi jδkl +µ(δi kδ j l +δi lδ j k), (1.11)

if the medium is isotropic, the seismic wave propagates equally fast in all directions. The

most straightforward anisotropic symmetry system in the physical realm is axisymmetric

anisotropy, commonly called transverse isotropy. A transversely isotropic medium can

be subdivided into three categories: one with a vertical symmetry axis, another with a

horizontal symmetry axis, and a third with a tilted symmetry axis. The axis of symmetry

is an axis of rotational invariance, about which the formation may be rotated by any

amount and still leave the material indistinguishable from what it was before (Ikelle

and Amundsen, 2018). The direction of symmetry is typically linked to either gravity

or regional stress. If gravity plays the primary role, the symmetry direction is vertical,

resulting in VTI (transverse isotropy with a vertical symmetry axis). When regional stress

is the dominant factor, the symmetry axis may be horizontal, leading to HTI (transverse

isotropy with a horizontal symmetry axis). Alternatively, the symmetry axis can be tilted

concerning the vertical and horizontal axes, resulting in TTI(transverse isotropy with a

tilted symmetry axis). For a detailed formulation of the ci j kl expression about transverse

isotropic media, I recommend the book Introduction to Petroleum Seismology written by

Ikelle and Amundsen (2018).

Alkhalifah (1998) first derived the anisotropic acoustic wave equation, that is, simple

dispersion relations, which is the vertical slowness to the horizontal one in transversely

isotropic media, and then by using this dispersion relation Alkhalifah (2000) derived the

anisotropic acoustic wave equation for vertical transversely isotropic media. Zhou et al.

(2006) derived the equation for the anisotropic acoustic wave equation in two dimensional

titled transverse isotropic media. Further, Operto et al. (2009) modified the TTI acoustic

wave equation provided by Zhou et al. (2006). The anisotropic acoustic wave equation in

the frequency domain can be written as

ω2

κ
p − (1+2δ)H p −H0p = (1+2δ)H q

ω2

κ
q −2(ϵ−δ)H q = 2(ϵ−δ)H p,

(1.12)

where κ is the bulk modulus; b is the inverse of mass density, termed buoyancy; the δ and

ϵ are dimensionless parameters defining the anisotropy (Thomsen, 1986). H and H0 are

differential operator and the cross derivative term in these both differential operator are

responsible for angular rotation of the symmetry axis in TTI medium, p is the pressure
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wavefield, and q is the auxiliary pressure wavefield introduced by Zhou et al. (2006) to

recast the fourth-order equation proposed by Alkhalifah (1998) into a coupled second-

order equations which are much easier to solve.

1.3.3 Seismic Forward modelling

Seismic forward modelling is a computational technique used in geophysics to simulate

the propagation of seismic waves through Earth’s subsurface. It involves mathematical

algorithms that calculate how seismic waves travel and interact with different geological

structures, such as rock layers and faults. For input parameters like wave source, velocity

models, and subsurface properties, forward modelling predicts the expected seismic

response recorded by receivers at the surface or borehole locations. Seismic Forward

modelling includes discretization of the wave equation, methods to numerically solve

wave equation, stability criterion, numerical dispersion, accuracy and efficiency of the

forward modelling algorithm and the implementation of absorbing boundary conditions.

1.3.4 Methods to numerically solve wave equation

There are several numerical method to discretize the wave equation:

1. Finite Difference Method:

The finite difference method is widely recognized as the most direct approach

and has been extensively utilized in seismological studies as the initial numerical

method. The pioneers in the application of the finite-difference method to the inves-

tigation of elastic wave propagation are credited to Alterman and Karal Jr (1968), as

documented in their work. Boore (1970), on the other hand, employed the finite dif-

ference method to simulate Love waves. Furthermore, Alford et al. (1974) conducted

a comprehensive analysis of the finite difference approximation to the acoustic wave

equation, comparing the numerical outcomes with analytical solutions. Robertsson

et al. (1994) developed a finite-difference simulator to model wave propagation in

viscoelastic media; he also shows that a staggered scheme of second-order accuracy

in time and fourth-order accuracy in space appears to be optimal. Igel et al. (1995)

presented an algorithm to solve anisotropic elastic wave equation using finite differ-

ence method. The staggered finite-difference method introduced by Virieux (1984)

and Virieux (1986) for solving acoustic- and elastic-wave propagation is the most

commonly used finite-difference method in exploration seismic applications. Re-

views and practical guides to implementing the staggered finite-difference method

are presented by Robertsson et al. (2012). Saenger and Bohlen (2004) describe the
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application of the rotated staggered-grid finite-difference technique to the wave

equations for anisotropic and viscoelastic media. Hustedt et al. (2004) compare

different finite-difference schemes for two-dimensional acoustic frequency-domain

forward modelling, and also discuss the idea of mixed-grid finite difference scheme.

Galis et al. (2008) developed a new hybrid numerical method for 3-D viscoelastic

modelling of seismic wave propagation and earthquake motion in heterogeneous

media, based on the combination of the fourth-order velocity-stress staggered-grid

finite-difference scheme.

2. Psuedospectral Method:

The pseudospectral methods are based on discrete function approximations, allow-

ing for precise interpolation at specified collocation points. Notably, the Fourier

method utilizes trigonometric basis functions, while the Chebyshev method makes

use of Chebyshev polynomials. This approach was the first to deviate from the finite

difference method and found extensive application in various seismological studies.

Pseudospectral methods emerged in the early 1980s as transform methods due to

their reliance on Fourier transform for implementation. Initially applied to acoustic

wave equations, these methods were later extended to elastic wave equations and

three-dimensional scenarios (Kosloff and Baysal, 1982),. To enhance the accurate

representation of curved internal interfaces and surface topography, grid stretch-

ing through coordinate transformation was introduced and successfully applied to

acoustic and elastic wave propagation problems (Komatitsch et al., 1996; Tessmer

et al., 1992).

3. Finite Element Method:

The finite element method is a series expansion method. The continuous solution

field is replaced by a finite sum over basis function. The finite element method

is used to studied the surface wave propagation (Lysmer and Drake, 1972; Schlue,

1979). Marfurt (1984a) solved scalar wave equation using finite element method

and also provide a comparison with finite difference method. Serón et al. (1990)

developed a low order finite element method to solve the elastic wave propagation.

4. Spectral Element Method:

The spectral element technique combines the adaptability of finite element ap-

proaches in terms of computational grids with the spectral accuracy of Lagrange

basis functions implemented within the elements. The spectral element method

was first applied in fluid dynamics (Maday and Patera, 1989; Patera, 1984). The ini-

tial publications on spectral element formulations for elastic wave problems can be
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attributed to Priolo et al. (1994), Seriani and Priolo (1994) and Faccioli et al. (1996).

Komatitsch and Vilotte (1998) present the spectral element method to simulate

elastic wave propagation in realistic geological structures involving complicated

free surface topography and material interfaces for two-and three dimensional ge-

ometries. Peter et al. (2011) demonstrate the great flexibility of the spectral element

method for both modelling and inversion.

5. Finite Volume Method:

The finite volume approach arises as a direct consequence of discretizing conser-

vation equations while taking into account the fluxes between finite-volume cells

containing averaged solution fields. For the first time Dormy and Tarantola (1995)

solved elastic wave propagation using finite volume method. Tadi (2004) devel-

oped 2D elastic wave propagation algorithm using finite volume method. Brossier

et al. (2008) proposed a new numerical technique for solving 2D elastodynamics

equations based on finite volume frequency domain approach.

6. Discontinous Galerkin Method:

The Discontinuous Galerkin method represents a variant of finite element method-

ologies, distinguished primarily by the characteristic that solution fields exhibit

discontinuity at the interfaces of the elements. Käser and Dumbser (2006) present a

discontinuous Galerkin numerical approach to solve the elastic wave equation in

heterogeneous media in the presence of externally given source terms with arbitrary

high order accuracy in space and time on unstructured triangular meshes. Dumbser

and Käser (2006) used an arbitrary high-order discontinuous Galerkin method for

simulation of elastic wave with unstructured meshes.

1.3.5 Stability Criterion and Numerical Grid Dispersion

The stability criterion is a fundamental concept to consider when dealing with space-

time discretization and simulation task planning. The stability criterion is known as the

Courant-Friedrichs-Lewy (CFL) criterion, is a dimensionless quantity that represents the

ratio between physical velocity and grid velocity. While satisfying the CFL criterion is

necessary, it is not sufficient to ensure the accuracy of the simulation. To achieve accurate

simulation results, it is essential to meet the numerical grid dispersion criterion as well.

The number of grid point per wavelength is the crucial factor to avoid dispersion. Note

that, as the number of grid point per wavelength increase, the grid increment will be

decreased, therefore computational cost increases. These two criterion plus other reason
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gave rise to a debate whether the wave equation need to be solved in time domain or

frequency domain.

1.3.5.1 Frequency Domain modelling

Despite the effectiveness of time-domain modelling, there is a renewed interest in frequency-

domain methods, mainly driven by researchers interested in full waveform inversion and

the accurate modelling of seismic attenuation. Frequency domain finite difference (FDFD)

methods have been actively employed in wave equation analysis. Pratt (1990) did elastic

wave modelling in the frequency domain using the finite difference method and provided

a tool for cross-hole seismic imaging. Pratt and Worthington (1990) propose a second-

order five-point finite-difference scheme for modelling 2D acoustic waves in the frequency

domain. To ensure accurate results and avoid dispersion, the authors recommend a mini-

mum of 13 grid points per wavelength for implementing this scheme. The second-order

nine-point 2D acoustic wave extrapolator proposed by Jo et al. (1996) utilizes a unique ap-

proach. This technique approximates the spatial derivatives and mass acceleration term

by integrating second-order five-point central difference stencils in Cartesian coordinates

with the central difference scheme in a rotated 45-degree coordinate. This innovative

combination significantly decreases the minimum number of grid points required per

wavelength to 3.3. In order to enhance the precision of numerical calculations, Shin and

Sohn (1998) devised a method that integrates rotated coordinate systems at angles of

26.6, 45, and 63.4 degrees. Additionally, they incorporated a nine-point extrapolator and

introduced a second-order 25-point finite difference scheme. As a result, the necessary

number of grid points per wavelength was reduced to 2.5. Hustedt et al. (2004) compare

different finite-difference schemes for modelling the 2D acoustic wavefields and present a

13-point scheme without rotating the coordinates. Marfurt (1984b) used finite element

frequency domain approach for seismic modelling. Shi et al. (2016) developed spectral

element method for elastic and acoustic waves in frequency domain.

1.3.6 Accuracy and Efficiency

Accuracy and efficiency are two critical factors in evaluating the performance of an algo-

rithm. Accuracy refers to how close an algorithm’s output is to the true or desired output.

Efficiency measures how well an algorithm utilizes computational resources such as time

and memory. Crase (1990) developed an high order space and time finite-difference

modelling of the elastic wave equation to increase the efficiency and accuracy of the

modelling. De Basabe and Sen (2007) provide formulas of grid dispersion and stability
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criteria of some finite-elements methods for acoustic and elastic wave equations based on

the approach of generalized eigen value formulation. Seriani and Oliveira (2008) studied

the numerical dispersion of spectral element methods of arbitrary order for the isotropic

elastic wave equation in two and three dimensions by a simplified model analysis of the

discrete wave operators. Moczo et al. (2010) provide a detailed analysis on accuracy of

the finite-difference and finite-element schemes with respect to P-wave to S-wave speed

ratio. De Basabe and Sen (2010) studied the stability of some higher-order finite element

methods, namely the spectral element method and the interior-penalty discontinuous

Galerkin method for acoustic or elastic wave propagation. Etgen and O’Brien (2007) pro-

vide a tutorial on computational methods for large-scale 3D acoustic finite-difference

modelling.

1.3.7 Absorbing boundary condition

Absorbing boundary condition is crucial in seismic forward modelling. Absorbing bound-

ary conditions (ABCs) minimize reflections, ensuring reflection-free boundaries. They

prevent wave wrap-around in finite domain simulations. ABCs absorb waves leaving the

computational domain, preventing artificial reflections. Their implementation enhances

accuracy, stability, and numerical performance. They are essential for seismic modelling

in various applications. Higdon (1991) provided absorbing boundary conditions for elastic

waves based on compositions of simple first order differential operators. Liu and Sen

(2010) proposed an efficient scheme to absorb reflections from the boundaries in numer-

ical solutions of wave equations by dividing the computational domain into boundary,

transition, and inner areas. Berenger (1994) developed perfectly matched layer (PML)

boundary condition based on the use of an absorbing layer especially designed to absorb

the reflection for electromagnetic waves. Komatitsch and Tromp (2003) developed a per-

fectly matched layer absorbing boundary condition for the second-order seismic wave

equation.

1.4 Joint Inversion

In recent years, oil and gas exploration has moved into areas that contain geological units

with similar characteristics as encountered in mineral exploration. Imaging the extent

and structure of sediments beneath basalt layer and below and the flanks of salt domes is

particularly problematic using seismic method only. Also, seismic data have constraints

in accurately defining the interface between hydrocarbons and water due to the minimal
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contrast in seismic velocities between the two fluids. In both basalt and salt case the

problem are similar, the high velocity contrast between the basalt or salt and sediments

above makes it easy to image the top of the structures due to high reflection coefficient.

This high reflection coefficient though has the effect that little energy penetrates below

and any topography on this interface will distort the seismic wave. One potential strat-

egy to enhance the accuracy of seismic models is to conduct electromagnetic surveys

in conjunction with seismic surveys. Joint inversion is a sophisticated computational

technique in geophysics that integrates multiple types of geophysical data to produce

a more accurate and comprehensive model of the subsurface. By combining data from

different sources, joint inversion leverages the strengths and compensates for the weak-

nesses of individual geophysical methods, thereby enhancing the resolution and reliability

of subsurface imaging. There are several types of joint inversion, categorized based on the

nature of the integrated data sets and the inversion methodologies employed. There are

mainly two types of joint inversion.

1. Simultaneously joint inversion:

This type involves inverting multiple data sets together in a single, unified frame-

work. It typically uses a single objective function that integrates all data types,

providing a more coherent and mutually consistent subsurface model.

2. Cooperative or Constrained inversion:

This type involves inverting single data sets while the information derived form the

other geophysical properties are incorporated into the inversion.

1.4.1 Simultaneously Joint Inversion

In Simultaneously joint inversion, different types of datasets are inverted within a single

computational algorithm, with a single objective function and where all model parameter

are adjusted concurrently throughout the inversion. Simultaneous joint inversion is

further classified into two parts.

1. Inversion through direct parameter coupling:

Direct parameter coupling included making a cross-property relationship from the

borehole, Petrophysical relationship (Chen and Hoversten, 2012; Heincke et al.,

2006; Panzner et al., 2016). The initial classification is established on the correlation

between conductivity and seismic velocity via petrophysical parameters such as

fluid saturation and porosity (Harris and MacGregor, 2006; Hoversten et al., 2006).
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Here the relationship is not expressed in terms of one geophysical parameter as

a function of another, but all geophysical quantities (e.g., resistivity, velocity, den-

sity) are functions of quantities such as porosity and permeability. However direct

parameter coupling requires accurate cross-property relationships, which might

not be well-defined across different geological settings. Panzner et al. (2016) use a

sequential analysis of different datasets, where inversion are performed individually,

but information is exchanged between the inversions. These kinds of integrated

workflows are often used in hydrocarbon exploration instead of full joint inversion.

Heincke et al. (2017) perform a full joint inversion of three different datasets. Un-

fortunately, these petrophysical relationships are not superficial and may not be

accurate or unique.

2. Inversion through Structural Coupling:

Establishing accurate relationships between different types of geophysical proper-

ties is inherently challenging due to the complex nature of subsurface structures.

One effective approach to address this challenge is to structurally coupled the differ-

ent geophysical parameters without requiring an explicit functional relationship

between them by employing the cross-gradient method. By using the cross-gradient

approach, the inversion processes of multiple geophysical datasets are linked, al-

lowing for the consistent integration of distinct geophysical properties and thereby

improving the reliability and coherence of the resulting subsurface models. The

cross-gradient function between two model vectors is defined as the cross-product

of the spatial gradient of each model. Gallardo and Meju (2003) and Gallardo and

Meju (2004) introduce and successfully apply this approach in two dimensions

for joint interpretation of DC resistivity and seismic travel time data. Haber and

Holtzman Gazit (2013) and Meju and Gallardo (2016) discuss some of the issues

implementing this constraint for practical inversion. Gallardo et al. (2012) devel-

oped a robust geophysical integration algorithm that structurally combines different

datasets. Linde et al. (2006) jointly invert the P-wave and S-wave velocities for local

earthquake tomography. Colombo and De Stefano (2007) and Colombo et al. (2008)

developed a structurally joint inversion algorithm for MT and seismic data in marine

environments for reservoir-exploration applications. However, there are some limi-

tations to structurally coupled joint inversion, e.g., it is difficult to combine different

types of geophysical data, which may have different resolutions and sensitivities; it is

computationally intensive due to the integration of multiple datasets and inversion
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schemes.

1.4.2 Cooperative or constrained inversion

In cooperative inversion, the information is incorporated from other geophysical studies

as constraints but does not perform a joint inversion. These constraints are based on

prior information, which might be uncertain or incorrect, leading to biased results. This

means that the information is considered as an estimation of ground truth, potentially

with some uncertainty, but there is no feedback to modify it as a result of the inversion.

Meju et al. (2019) developed 3D anisotropic structurally constrained CSEM inversion

algorithm. Structure-guided 3D inversion of CSEM and MT data was developed by Miller

et al. (2019). Ma et al. (2024) developed image-guided structure-constrained inversion of

electrical resistivity data. 3D Structurally CSEM inversion algorithm using octree meshes

developed by Liu et al. (2024).

1.5 Structure of the thesis

The joint analysis of multiphysics data using inverse modelling has great potential for solv-

ing challenging problems related to subsurface imaging. With evolving energy scenarios,

projects like enhanced oil recovery and CO2 sequestration monitoring are the need of the

hour. Therefore, the geophysical research community is actively pursuing the integration

of multiphysics data. With a similar objective, this thesis aims to work on joint analysis of

CSEM and seismic data, focusing on inverse modelling algorithm development and scru-

tinising their advantages and limitations. The objective includes developing algorithms

that can invert for anisotropic subsurfaces which require more computational resources

than isotropic cases. Furthermore, due to the varying resolutions of seismic and CSEM

data, the discretisation may be governed by the higher resolution method. Consequently,

considering anisotropy and the objective of integrating the seismic and CSEM data pose a

computationally challenging problem. Therefore, the focus of the present thesis is on the

2D imaging of the subsurface. For joint inversion, we first focus on cooperative strategy,

where the CSEM data inversion is constrained by prior structural information derived

from other geophysical methods, say seismic. To this end, we present a novel algorithm

and provide a comprehensive analysis using numerical experiments using a complex

model. Secondly, we work towards the development of simultaneous joint inversion of

seismic and CSEM data. For this objective, we developed a seismic modelling algorithm
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for anisotropic modelling. The future goal is to integrate the algorithms developed in this

thesis to devise a simultaneous joint inversion algorithm. A brief chapter-wise description

of the content of the present thesis is as follows.

1. In the first chapter, the thesis provides an overview of the fundamental concepts

related to the CSEM method. It begins with a basic introduction to the principles

and applications of the CSEM method. The chapter also covers the basics of EM

inversion methods. Additionally, the chapter introduces the seismic method, out-

lining the basics of seismic data acquisition and processing. It concludes with an

explanation of seismic forward modelling techniques and methodologies.

2. The second chapter delves into the development of a space-domain forward mod-

elling algorithm specifically designed for two-dimensional CSEM inversion. It starts

with an introduction to the importance and challenges of forward modelling in

geophysics. The chapter then presents the mathematical formulation of the prob-

lem, including the governing equations and numerical methods used. Following

this, the implementation of the algorithm is discussed. The chapter also includes a

section on the validation and testing of the inversion algorithm, benchmarking its

performance against synthetic and real data. Finally, the results obtained from the

forward modelling and inversion are analyzed and discussed in detail.

3. In the third chapter, the thesis focuses on the development of a structurally con-

strained inversion algorithm that integrates CSEM results with other geophysical

data using the cross-gradient method. The chapter begins with an introduction to

the concept of joint inversion, highlighting its motivation and objectives. It then

explains the cross-gradient method, providing a detailed theoretical and mathe-

matical formulation. The results from the constrained inversion are presented and

analyzed through various case studies and performance evaluations.

4. The fourth chapter addresses the development of a two-dimensional anisotropic

acoustic wave modelling algorithm. This chapter begins with an introduction to

anisotropic acoustic wave modelling, emphasizing its significance and applications

in geophysics. It then details the mathematical models and numerical techniques

used to simulate wave propagation through anisotropic subsurface formations. The

development and implementation of the algorithm are discussed, including the
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computational challenges and solutions. The chapter also includes validation and

testing of the algorithm, with results presented from various synthetic and real-

world scenarios.

5. The final chapter of the thesis summarizes the key findings and contributions of the

research. It revisits the objectives outlined in the introduction and discusses how

they were achieved through the development of advanced geophysical inversion

techniques. The chapter provides a comprehensive summary of the results from

each of the preceding chapters, emphasizing the improvements and innovations

introduced. It also discusses the limitations encountered during the research and

provides suggestions for future work. The chapter concludes with an outlook on the

potential future developments in the field, including the proposed development of

a two-dimensional anisotropic seismic inversion algorithm and the simultaneous

integration of seismic and CSEM results through a joint inversion algorithm. This in-

tegrated approach aims to further enhance subsurface imaging and characterization

in geophysical exploration.



Chapter 2

2D CSEM algorithm based on a

space-domain forward modeling

approach

2.1 Abstract

We develop a two-dimensional controlled-source electromagnetic inversion algorithm

employing a space-domain forward modeling algorithm. The space-domain forward mod-

eling algorithm is devised by imposing boundary conditions on the plane perpendicular to

the strike direction that passes through the source position. The boundary conditions for

various source types are derived using the symmetric/ antisymmetric character of the elec-

tric and magnetic fields. The benchmarking analysis reveals that roughly eight grids are

sufficient for discretizing space in the strike directions for accurate forward response com-

putations. For inverse modeling, the Gauss-Newton optimization technique is utilized.

Numerical inversion experiments of synthetic and real-field data clearly demonstrate the

versatility and robustness of the developed algorithm. The inversion experimentations

also concur with the forward response benchmarking analysis and suggest that only a few

grids (around eight) are adequate to discretize space in the strike direction. The developed

algorithm is more than one order efficient compared to a wavenumber domain code.

2.2 Introduction

The three-dimensional character of the source in a controlled-source electromagnetic

(CSEM) method is considered to be the primary cause for less focus on the development
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of 2D CSEM inversion algorithms Constable (2010). That’s why several 3D forward Spitzer

(2024); Wang et al. (2021); Yavich and Zhdanov (2020) and inverse modeling algorithms

Long et al. (2024); Xue et al. (2023) have been developed for interpreting CSEM data.

However, Weiss and Constable (2006) argued that CSEM data recorded along a profile can

be very well analyzed using a 2D CSEM inversion code. Hoversten Jr et al. (2001) shows that

2D inversion of crosswell EM data can provide useful information in realistic 3D petroleum

reservoirs. If a CSEM data set is indeed sensitive to 2D conductivity distribution, either

due to the subsurface conductivity distribution or survey geometry, 2D inversion should

be preferred for such data analysis because an unwarranted application of 3D inversion

causes unnecessary over-parameterization of an inverse problem than required. The

typical marine CSEM data recorded at inline receivers due to an electric dipole is generally

sensitive to the subsurface between the transmitter and receivers Weiss and Constable

(2006). In hydrocarbon exploration investigations, the inline electric field over a buried

thin-resistive reservoir often matched well with CSEM data simulated by a 2D code Key

(2016). 2D inversion can be very valuable in towed CSEM systems Anderson and Mattson

(2010); Constable et al. (2016), where the source and receives are generally moved along

a line. Furthermore, the thousands of source and receiver positions in a towed CSEM

system make 3D inversion computationally expensive. Moreover, the subsurface resistivity

recorded using a 2D inversion algorithm can also serve as an initial guess for 3D inversion,

which can reduce the cost of 3D inversion Key (2016). Consequently, many 2D forward

Li et al. (2020) and inverse Abubakar et al. (2008); Key (2016) modeling algorithms have

been developed in the past. The 2D CSEM inversion has been applied in many studies as

reported in the literature Chesley et al. (2021); Weitemeyer et al. (2010).

The computational complexity of 2D frequency-domain forward modeling in the

presence of a controlled source is the primary hindrance of 2D inversion algorithms

compared to plane-wave methods such as magnetotelluric. Though a general solution

can be formulated in the space domain, nonetheless, to overcome the 3D nature of the

source in a computationally efficient manner, the 2D frequency-domain CSEM problem

is generally solved in the wavenumber domain. For reliable space-domain responses,

wavenumber-domain simulations are required for tens of wavenumbers. For example,

Key and Ovall (2011) uses 30 wavenumbers in the MARE2DEM code. Generally, a digital

filter Anderson (1989) or Gauss quadrature method Chave (1983) is used for the space-

domain transformation. A Gauss-Legendre quadrature-based inverse Fourier transform

technique is employed by Zeng et al. (2018) for a logging experiment. Wu et al. (2019)

used a Gauss-Hermite quadrature-based integration for inverse Fourier transform for

logging-while-drilling electromagnetic (EM) method in 2-D anisotropic media. It involves
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wavenumber-domain response calculation for a wide wavenumber band covering several

decades Key and Ovall (2011) followed by hundreds of thousands of Fourier transforms.

In the case of inverse modeling, the simulations are required to be performed for both

forward and adjoint fields. For example, a Jacobian matrix corresponding to m parameter

and n data would require mn Fourier transforms Key (2016). Consequently, 2D CSEM

inversion algorithm implementation is a tricky and computationally expensive task, owing

to the requirement of Fourier transform. Recently, Engebretsen et al. (2022) and Xiao

et al. (2022) have presented a space-domain algorithm for time-domain electromagnetic

data recorded by airborne systems using the symmetry of EM fields in 2D models. The

present study develops an efficient 2D CSEM inversion algorithm based on a space-

domain forward modeling scheme. The proposed algorithm is easy to implement. For

theoretical foundation, boundary conditions devised for the forward modeling algorithm

are discussed in detail. The numerical experiments are carried out for synthetic and field

data to ascertain the robustness of the developed algorithm.

2.3 Forward and Inverse Modeling Methodology

In the frequency domain, Maxwell’s curl equations that describe the electrodynamics can

be written as (considering e−ιωt time dependency)

∇×E = ιωµH+ Jmδ(r− rs),

∇×H = (σ̂− ιωϵ)E+ Jeδ(r− rs),
(2.1)

where E and H, denote electric and magnetic field, respectively; ω is angular frequency;

µ and ϵ represent magnetic permeability and electric permittivity, respectively; ι=p−1;

σ̂ denotes conductivity tensor; Jm and Je are magnetic and electric current densities due

to sources; rs = [xs , ys , zs], is the source’s position vector and δ() is Dirac delta function.

The magnetic current density is not defined in EM field theory, here it is simply used to

represent a magnetic source. For an anisotropic media, the σ̂, is defined as Martí (2014)

σ̂=

σxx σx y σxz

σy x σy y σy z

σzx σz y σzz

 . (2.2)

The vector Helmholtz equation can be derived using equation (2.1), and in terms of

electric field; assuming µ is constant in space, it is expressed as
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∇×∇×E− (ιωµσ̂+ω2µϵ)E = s(ω)δ(r− rs), (2.3)

where s(ω) is the source term that can be an electric or magnetic transmitter. A source can

be an array of transmitters, and using the linearity of equation (2.3), a joint response of

the transmitter’s array can be calculated concurrently. Conventionally, for a 2D medium,

the EM field simulation is done by first transforming equation (2.3) into the wavenumber

domain and then numerically solving the wavenumber-domain equation. The wavenum-

ber domain equation contains only two space variables, leading to the requirement of

discretization being restricted to 2D space only. Typically, the homogeneous Dirichlet

boundary conditions (BCs) are applied on all sides of the model for CSEM modeling.

After simulation using tens of wavenumber, the inverse Fourier transform is applied to

obtain the space-domain response. The present study explores the prospect of an efficient

inversion algorithm based on space-domain simulation of EM field for both forward and

adjoint fields for 2D models. The subsequent part of this section explains the theory of

the proposed forward modeling algorithm.

The vector equation given in equation (2.1) can be decomposed into six scalar equa-

tions. Furthermore, for a 2D model with a strike in the y-direction, these scalar equations

can be transformed into the wavenumber domain (considering e ιky y space dependency)

as

ιky Ez −
∂Ey

∂ z
= ιωµHx + J m

x e ιky (y−ys )δ(x −xs)δ(z − zs), (2.4)

∂Ex

∂ z
− ∂Ez

∂ x
= ιωµHy + J m

y e ιky (y−ys )δ(x −xs)δ(z − zs), (2.5)

∂Ey

∂ x
− ιky Ex = ιωµHz + J m

z e ιky (y−ys )δ(x −xs)δ(z − zs), (2.6)

ιky Hz −
∂Hy

∂ z
= (σxx − ιωϵ)Ex +σx y Ey +σxzEz + J e

xe ιky (y−ys )δ(x −xs)δ(z − zs), (2.7)

∂Hx

∂ z
− ∂Hz

∂ x
=σy xEx + (σy y − ιωϵ)Ey +σy zEz + J e

y e ιky (y−ys )δ(x −xs)δ(z − zs), (2.8)

∂Hy

∂ x
− ιky Hx =σzxEx +σz y Ey + (σzz − ιωϵ)Ez + J e

z e ιky (y−ys )δ(x −xs)δ(z − zs). (2.9)

For brevity, identical notations are used for the field in the wavenumber domain as in the

space domain. For 2D models with the strike in the y-direction, the electric conductivity

tensor spatially varies only on x and z-directions. Accordingly, for the 2D model, we aim to

derive a set of BCs at a xz plane in the space domain, utilizing equations (2.4)–(2.9). First,
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the symmetric and antisymmetric nature of the field in the wavenumber domain with

respect to ky is examined. Subsequently, the property of Fourier transform is employed

to obtain BCs at a xz plane in the space domain. Foremost, the right-hand side terms of

equations (2.4) to (2.9) need to be made independent of ky , which is achieved by defining

the plane as y = ys . The next step is to obtain the relationship between the electric and

magnetic fields at ky and−ky under y = ys . Since equation (2.5) does not contain ky except

in source term, and it relates Ex , Ez , and Hy field components; consequently, Ex , Ez , and

Hy field components will have identical behavior in terms of symmetry/antisymmetry

characteristic about y = ys plane. Likewise, the other group consisting of Ey , Hx , and

Hz will have identical behavior. However, it requires decoupling the current density’s

y-component from the x- and z-components of the electric field. It is achieved by defining

one of the principal directions of conductivity along the y-coordinate axis. Therefore, the

conductivity tensor given in equation (2.2) requires to be redefined as

σ̂=

σxx 0 σxz

0 σy y 0

σzx 0 σzz

 . (2.10)

The grouping mentioned above is realized because for equations (2.4)–(2.9), if the ky

term is associated with the member of one group, the terms without ky are always from

another group in an equation. Now, for the conductivity tensor defined in equation (2.10),

the BCs at a plane y = ys for different transmitter types can be obtained with a simple

procedure. Let’s compare the solution of coupled equations (2.4)–(2.9) at ±ky considering

a single transmitter oriented along any one coordinate axis. This implies that only one

equation will be inhomogenous while all five other equations will be homogeneous.

For the inhomogeneous equation, the field term with ky as a coefficient will be an odd

function of ky , while the variables without ky will be even functions. It occurs because the

negative sign of−ky is absorbed by the variable term associated with it, leading to the same

equation as for ky . Since signs of the solution do not matter for homogeneous equations,

the odd/even character of all the variables associated with these equations are only

governed by the inhomogeneous equation. For example, in the case of a horizontal-electric

dipole oriented in the x-direction (HEDx ; here, subscript, x , denotes the orientation), that

means, except J e
x , all other current density terms are zero, the Ex , Ez , and Hy will be even

functions of ky whereas Ey , Hx , and Hz will be odd functions. Now, from the property that

the Fourier transform of even (odd) function is even (odd), for HEDx , the BCs at y = ys

plane can be written as (see Appendix A.1 for more details)
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where the superscripts, y−
s and y+

s denote the field on the negative and positive sides but

equidistant from plane y = ys . These BCs are also applicable for a vertical-electric dipole

(VEDz) and horizontal-magnetic dipole oriented in the y-direction (HMDy ) as these are

members of the same group. Alternatively, we can follow the same procedure to derive the

BCs for (VEDz) and (HMDy ). Likewise, for HEDy , where all current density terms except,

J e
y , will vanish, the Ex , Ez , and Hy will be odd functions whereas Ey , Hx , and Hz will be

even functions. Hence, for HEDy , the BCs at y = ys plane can be expressed as,
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, (2.12)

Furthermore, these BCs are also true for vertical-magnetic dipole (VMDz) and the HMDx

transmitters. Magnetic dipole transmitters are important in cross-well EM tomography,

where 2D inversion is generally preferred, particularly for vertical wells Hoversten Jr et al.

(2001). Magnetic transmitters are also employed in airborne EM methods, where data is

recorded along profiles. Therefore, for 2D analysis of airborne EM data, the BCs obtained

for the magnetic source can be applied. To illustrate these characteristics of the EM field,

we consider a complex 2D model. The model includes an isotropic salt body of resistivity

50Ωm and anisotropic reservoir (ρv - 200Ωm; ρh- 100Ωm) embedded in a background

having linearly increasing resistivity from 1km (ρv - 2Ωm; ρh- 1Ωm) to 4km (ρv - 10Ωm;

ρh- 5Ωm), as shown in Figure (2.1). The simulation of the transmitter placed at (0,0,970)

m is performed by 3D CSEM modeling code developed by Dehiya (2021), and the field

is calculated on 100×100 m grid points at the seafloor (z=1 km). The magnitude shall

be symmetric about the line y = 0 m for both even and odd functions, while the phase

shall be symmetric for the even case and will be reversed in the case of odd functions.

The plots of magnitude overlayed by the phase for all three electric field components for

HEDx and HEDy transmitters are shown in Figure (2.2), where the magnitude for all the

cases is symmetric about y = 0 line. For HEDx , the phase is symmetric for Ex and Ez com-

ponents while it is reversed for Ey component, whereas, for HEDy , the phase is reversed

for Ex and Ez components and it is symmetric for Ey component. These observations

are in concurrence with the conditions derived in equation (2.11) and equation (2.12),
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Fig. 2.1 Synthetic 2D-VTI resistivity model; (a) vertical resistivity; (b) horizontal resistivity.

respectively. Furthermore, using the differentiation definition, the BCs for symmetric and

antisymmetric functions can be written as,

∂ f (y)

∂y
= 0, (2.13)

and
∂ f (y)

∂y
− 1

∆y
f (y +∆y) = 0, (2.14)

respectively. Equation (2.13) defines a homogeneous Neumann BC (Neumann bound-

ary condition), whereas equation (2.14) is somewhat similar to a homogeneous Robin

BC (Robin boundary condition). Therefore, homogeneous Neumann BC is applied for

symmetric field components, and for antisymmetric field components, the BC given in

equation (2.14) is used.

We can draw many useful conclusions from the above discussion and the relations

given in equations (2.11)–(2.12). First, the transmitters can be classified into two groups

viz., (i) HEDx , VEDz , HMDy and (ii) HEDy , HMDx , VMDZ , where all members of a group

have same symmetric/antisymmetric characteristics of different components of EM field.

Furthermore, for any source constructed by a linear combination of transmitters that

includes members of both groups, the joint response will be neither symmetric nor an-

tisymmetric. Consequently, for a wavenumber-based algorithm, the inverse Fourier

transform would require either response at both positive and negative wavenumbers or

wavenumber-domain simulation should be done separately for both groups. For exam-

ple, in the case of an arbitrarily oriented electric dipole, the computation for the HEDy

contribution and its projection in the xz plane needs to be done separately. Second, equa-

tions (2.11) to (2.12) help in understanding whether sine or cosine transform is adequate

for Fourier transform while transforming various components into space domain in a

wavenumber-based algorithm. Another valuable piece of information is that in case one
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Fig. 2.2 EM field magnitude overlayed by phase for HEDx (a-c) and HEDy (d-f) for the
transmitter located at 0, 0, 970 m and receivers are placed at 1000 m depth on a 100×100
m grid.
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of the principal axes of anisotropy is not in the y-coordinate direction, the field will not

be symmetric/antisymmetric; therefore, the wavenumber-domain solutions need to be

computed at both negative and positive wavenumbers. Furthermore, the condition of

the plane of symmetry (i.e., y = ys) suggests that the source-receiver offset in the strike

direction should be taken from the source position rather than from the coordinate axes,

otherwise, the symmetric/antisymmetric condition will not be attained and again both

negative and positive wavenumbers will be required for inverse Fourier transform. All

these requirements are taken care of in a wavenumber-based EM modeling algorithm and

are known; nonetheless, it is instructive to highlight these with the above analysis.

Inverse modeling is posed as an optimization problem that aims to minimize the misfit

between observed data, dobs , and predicted data, F(m). The objective functional that we

seek to optimize in this study is defined as,

φ= ||Wd (dobs −F(m))||2 +λ(||Rm||2 +β||Lm||2) (2.15)

where Wd , denotes data covariance matrix; λ is regularization parameter; R denotes

second order derivative (Laplacian) operator; β is a positive scalar; L is an operator that

seeks to minimize the difference between horizontal and vertical conductivities. The last

term is applicable only in the case of anisotropic inversion. Using the Gauss-Newton

method, we can write an expression for estimation of correction in model parameter, δmi ,

at i th iteration as,

Hi−1δmi =−gi−1, (2.16)

where

Hi−1 = JT
i−1WT

d Wd Ji−1 +λi−1(RT R+βLT L), (2.17)

and

gi−1 =−JT
i−1WT

d Wd (dobs −F(mi−1))+λi−1(RT Rmi−1 +βLT Lmi−1), (2.18)

where Hi−1 and gi−1 represent Hessian and gradient of objective functional computed

for the model parameter, mi−1 after (i −1)th iteration and Ji−1, is the Jacobian matrix

calculated for model parameter, mi−1. An adjoint approach Mcgillivray and Oldenburg

(1990) is used for Jacobian matrix computation. Finally, the updated model parameter

after i th iteration is calculated as, mi = mi−1 +δmi . Equation (2.16) can be rearranged for

direct computation of the updated model parameter as,

Hi−1mi =−gi−1 +Hi−1mi−1. (2.19)
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A normalized Root Mean Square (nRMS), defined as,

nRMSi =
√√√√ 1

n

n∑
i=1

(d obs
i −F(m)i )2

|dobs
i |2

, (2.20)

is computed at each iteration, where n is the number of data points.

2.4 Algorithm

In this study, we propose to solve the 2D CSEM inverse modeling problem using a space

domain forward (and adjoint) simulation scheme. The forward modeling is achieved

by solving equation (2.3) using a staggered-grid finite-difference technique. The model

discretization is similar to a 3D case, except that in the y-direction (strike direction),

only one side of the xz plane that passes through the source position is taken as part of

the modeling domain. The electric field components, Ex , Ey and Ez are defined at the

mid of cell sides in x-, y- and z-directions, respectively. Meanwhile, the magnetic fields

are defined at the center of cell faces. Figure 2.3 depicts the discretization scheme at a

representative cell. At the y = ys plane, the BCs are source dependent as given in equation

(2.11) and (2.12). The homogeneous Dirichlet BCs are applied on all other sides of the

model. Let’s denote the linear system of equations obtained after discretization as

Ae = b, (2.21)

where A denote system matrix; e describes a vector comprising nodal electric fields and b

contains source information. A primary/secondary approach is employed to handle the

source singularity. Since the BCs mentioned above also apply to the total and primary

fields, these are also satisfied by the secondary field. It is important to note that the

system matrix depends on BCs and will not be the same for different source types having

distinct BCs at y = ys plane. Consequently, a source with an orientation that requires to be

expressed by a linear combination of different source types needs separate computations.

However, in a typical marine CSEM survey, the receivers are rotated to the towline direction.

Furthermore, the reciprocity principle is used to flip the role of receivers as transmitters

for efficient computations. Since BCs are the same for a vertical and horizontal electric

dipole oriented perpendicular to the strike direction, the system matrix for any arbitrarily

oriented electric dipole in a plane perpendicular to the strike direction will be the same.

An element (p th row and q th column) of Jacobian is defined as
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Fig. 2.3 Schematic diagram depicting the staggered grid utilized for discretization where
electric field components Ex , Ey and Ez are assigned at midpoint of edges and magnetic
field components Hx , Hy and Hz are defined at center of cell faces.

Jp,q = ∂F(m)p

∂mq
, (2.22)

where subscript p and q represent the p th simulated data point and q th model parameter.

The Jp,q element can be calculated by differentiating equation (2.21) and transforming

the differentiation of the electric term to the observed field at the receiver position as

Jp,q = T
∂e

∂mq
=−TA−1 ∂A

∂mq
e, (2.23)

where T is a matrix that interpolates and transforms the derivative of an electric field to

the observed data type at receiver locations. The matrix derived from the differentiation

of the system matrix is very sparse, and the number of non-zero elements also depends

on the number of y grids as conductivity is invariant in the y-direction. In the case of VTI,

the differentiation of A is calculated separately for horizontal and vertical conductivities.

Now, by assembling all the elements, the Jacobian matrix can be expressed as

J = TA−1G, (2.24)

where

G =
[(
− ∂A

∂m1
e
)(

− ∂A

∂m2
e
)

...

(
− ∂A

∂mn

)
e
]

. (2.25)

Since the matrix G depends on the nodal field, it needs to be computed separately for

each source position and type. Now by taking the transpose of equation (2.24), we get
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JT = GT A−T TT = GT R, (2.26)

where R is matrix containing the adjoint field. In our algorithm, first, forward and adjoint

fields are computed, and subsequently, the equation (2.19) is solved using a conjugate

gradient iterative solver to obtain approximate updated model parameters. Further, the

real and imaginary parts are treated as independent data points to recast the problem

into a real algebra, leading to mapping from a real space (having the dimension of data

points) to a real space (possessing the dimension of the number of model parameters).

The procedure mentioned in Dehiya et al. (2017) is followed in this study for the model

update calculations. A cooling approach is used for the regularization parameter as

λi =λi−1/1.5. If the value of objective functional increases in any iteration, the correction

term is damped as, mi = γmi + (1−γ)mi−1, where γ is estimated using a line search

approach. PARDISO direct solver Schenk and Gärtner (2004) is employed for solving the

system matrix for both forward and adjoint responses. The proposed algorithm is referred

to as Space Domain 2D EM (SD2DEM), hereafter.

2.5 Numerical Results

The primary objective of the numerical experiments is to demonstrate the accuracy

and robustness of the developed algorithm and examine the optimum number of grids

required to discretize the space in the y-direction. Two tests, the first using synthetic data

and the second considering field data, are presented for numerical experiments. Three

scenarios employing 6, 8, and 10 grids for the discretization in the y-direction are analyzed

for both data sets. All the experiments presented in this study are executed on Precision

3640 workstation with an intel core i7-based CPU with 64 GB RAM and eight physical

cores. All the programs are run using parallel computing employing eight threads. The

developed algorithm is parallelized using an openMP library. For the synthetic test, data

consist of three frequencies, 0.1, 0.25, and 1.0 Hz, and were simulated using Dehiya (2021)

code for a VTI resistivity model shown in Figure (2.1). The data were simulated for seven

receivers separated by 1km and placed on the seafloor covering the central 6 km. The

transmitter is towed 30 m above the seafloor, and the data were simulated using a 100 m

transmitter spacing covering a 10 km distance.

For the SD2DEM algorithm, simulation is performed using 100 m and 25 m grid

spacing in x- and z-direction. Seven grids are padded on all sides of x and z-directions,

respectively. For the discretization in the y-direction, we have taken the first grid spacing

the same as in the x-direction, which is 100 m. Subsequently, the grid spacing increases by
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Fig. 2.4 Forward-modeling code benchmarking; (a) Magnitude plots for a receiver at x =-
0.0 km simulated using Dehiya (2021) and SD2DEM algorithm using eight grids in strike
direction; (b) Phase plots for a receiver at x =-0.0 km simulated using Dehiya (2021) and
SD2DEM algorithm using eight grids in strike direction; (c) relative percentage error in
magnitude; (d) phase difference plots.

a factor such that the domain boundary reaches around 15 km from the source location.

The domain dimension in the y-direction depends on the largest skin depth likely for the

data to be analyzed. Therefore, a representative resistivity of the host medium and lowest

frequency can be used to compute its value. Generally, the domain size in the y-direction

has the same dimension as the grid padding region in the x-direction. Therefore, strategies

used in choosing the grid padding can be applied to find the optimum discretization in

the y-direction. It is instructive to re-emphasize that the number of model parameters for

inversion depends only on the discretization in the x and z directions, as the conductivity

does not vary in the y-direction.

For benchmarking, the amplitude and phase comparison plots for 1.0 Hz signal con-

cerning a receiver located at x=0.0 km for the eigth y-grids case along with the responses

computed using Dehiya (2021) are shown in Figure (2.4a) and Figure (2.4b), respectively.

The relative percentage error in magnitude for all three y-grids scenarios is calculated and



34 2D CSEM algorithm based on a space-domain forward modeling approach

Fig. 2.5 Inverted resistivity models obtained using 2D anisotropic inversion of synthetic
data for varying numbers of grids in strike direction; here, inverted-solid triangles repre-
sent the receiver’s positions and dashed-black lines denote the salt dome and reservoir
positions; (a) ρv model of the 6-grid case ; (b) ρv model of the 8-grid case; (c) ρv model of
the 10-grid case; (d) ρh model of the 6-grid case ; (e) ρh model of the 8-grid case; (f) ρh

model of 10-grid case.

illustrated in Figure (2.4c). The maximum relative percentage error is 3% for 8, and 10

y-grids, whereas it increases to around 5% for the six y-grids case. The phase difference

is within ±4o for for 8, and 10 y-grids and ±6o for the six y-grids case as shown in Figure

(2.4d). Therefore, SD2DEM delivers a numerical acceptable response, particularly for

eight or more grids in the y-direction.

For the inversion experiment, the synthetic data is corrupted by 3% Gaussian noise.

The initial model is taken as a half space of 1.5 Ωm resistivity for both horizontal and

vertical models. The inverted models for all inversion run after the nRMS reaches 3 % are

shown in Figure (2.5). The recovered resistivity models are mostly identical, except for

a little difference in the model with six y-grids inversion. To analyze the data misfit, the

histogram of the amplitude ratio of predicted to observed data for initial and final inverted
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Fig. 2.6 Data misfit plots for synthetic data inversion experiments; (a) amplitude ratio’s
histogram of predicted data to the initial and final inverted model using 8 grids in strike
direction; (b) cross plot of data misfit (%) for 8 grids vs. 6 grids; (c) cross plot of data misfit
(%) for 8 grids vs. 10 grids.

models for eight y-grids is shown in Figure (2.6a). The histogram for the final-inverted

model shows no bias in data fit as it is nicely distributed around one, where a ratio equal to

one represents perfect data fit. The cross plot of data misfit for eight y-grids vs. the six and

ten y-grids are shown in Figures (2.6b) and (2.6c), respectively. The scatter of data misfit

for eight vs. ten is more narrowly aligned analog at 45o line, illustrating a highly identical

data fit for eight and ten y-grids cases compared to the six y-grids inversions run even

though six y-grids case shows no bias either. These observations are explained by relatively

higher misfit for the six y-grids modeling (see Figure 2.4). These results demonstrate that

around eight unequispaced grids are good enough for discretization in the y-direction,

however, smaller number of grid also deliver reasonable model and misfit.

The real-field data include more complex noise characteristics and realistic subsurface

resistivity distribution. Therefore, it is instructive to test the algorithm on field data to

test its versatility. The Troll field data recorded along northern most towline oriented in

a East-West direction (see Figure 2 in Gabrielsen et al. (2009)) is presented in this study.
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The reservoir in the Troll field consists of cyclic shallow-marine sandstones and is located

in eastward-tilted fault blocks at a depth of around 1.5 km below the seafloor Halbouty

(1992). The Troll CSEM data used in this study consists of an inline electric field recorded

at five receivers and 237 transmitter locations containing 0.25 Hz, 0.75 Hz, and 1.25 Hz fre-

quencies. The SD2DEM algorithm requires the transmitter to be at y = 0 m and receivers

to be at y ≥ 0 m. Hence, the y-coordinates of a transmitter and receivers are subtracted

by the transmitter’s y-coordinate. For a 2D model, the actual position of a transmitter

and receivers in the y-direction does not matter, and only the relative distance of the

transmitter and receivers in the strike direction affects the modeling response. Therefore,

the repositioning of transmitters and receivers will have no impact on forward and adjoint

calculations. This transformation may yield some of the receiver’s y-coordinates as neg-

atively valued, which is not permitted in the SD2DEM algorithm. However, we can use

boundary conditions given in equation (2.11) and equation (2.12) to address this issue.

Since the Ex and Ez components are symmetric and Ey is antisymmetric about plane

y = ys . Consequently, by taking the absolute value of the receiver’s y-coordinates and

reversing the sign of angles that define the deviation of the receiver from plane y = ys , the

receiver’s y-coordinates can be made positively valued. This straightforward repositioning

and reorientation of the transmitter’s y-coordinates are done during the data preparation

step before inversion. For inversion, the subsurface model is discretized by 200 m and 25

m grid spacing in x- and z-directions, respectively. Three scenarios for y-grids as applied

in synthetic data are experimented with. The coefficient β is set equal to zero. All the

inversion runs converge to a comparable nRMS (7.40%±0.01) after 12 inversion iterations.

The vertical and horizontal resistivity models for all three inversion runs are shown in

Figure (2.7). The recovered resistive anomaly matched well with the gas reservoir, which

has its top at around 1.35 km Gabrielsen et al. (2009). The histogram and the cross plots,

as described in the synthetic experiment, are also generated for Troll data inversion and

shown in Figure (2.8). The results of real-field data inversion agree well with the conclusion

drawn from the synthetic data. Therefore, both the inversion tests illustrate that one may

need around eight grids in the y-direction for this algorithm to deliver optimum results.

2.5.1 Benchmarking of SD2DEM

To benchmark SD2DEM code, a comparison with a wavenumber-domain inversion algo-

rithm, MARE2DEM Key (2016) using Master version, is presented here. The SD2DEM and

MARE2DEM have several differences; therefore, the impact of space-domain simulations

may not be accounted for exactly. For clarity, first, the main differences between these

algorithms are discussed. The MARE2DEM used a wavenumber domain modeling code
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Fig. 2.7 Inverted resistivity models obtained using 2D anisotropic inversion of Troll field
CSEM data for varying numbers of grids in strike direction; here, inverted-solid triangles
represent the receiver’s positions and dashed-black line sketched at 1.35 km illustrates
the top of the gas reservoir; (a) ρv model of 6-grid case ; (b) ρv model of 8-grid case; (c)
ρv model of 10-grid case; (d) ρh model of 6-grid case ; (e) ρh model of 8-grid case; (f) ρh

model of 10-grid case.
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Fig. 2.8 Data misfit plots for Troll field CSEM data inversion experiments; (a) amplitude
ratio’s histogram of predicted data to the initial and final inverted model using 8 grids in
strike direction; (b) cross plot of data misfit (%) for 8 grids vs. 6 grids; (c) cross plot of data
misfit (%) for 8 grids vs. 10 grids.

Fig. 2.9 Inverted resistivity models obtained using 2D MARE2DEM inversion code of
Synthetic EM data; (a) vertical resistivity; (b) horizontal resistivity.



2.5 Numerical Results 39

Fig. 2.10 nRMS ( in %) plot and time comparison between SD2DEM and MARE2DEM of
synthetic EM data; (a) nRMS plot; (b) time efficiency comparison plot.

Fig. 2.11 Inverted resistivity models obtained using 2D MARE2DEM inversion code of Troll
EM data; (a) vertical resistivity; (b) horizontal resistivity.

Fig. 2.12 nRMS(in %) plot and time comparison between SD2DEM and MARE2DEM of
Troll EM data; (a) nRMS plot; (b) time efficiency comparison plot.



40 2D CSEM algorithm based on a space-domain forward modeling approach

Key and Ovall (2011) based on the finite element method with adaptive grid refinement for

forward/adjoint simulations. It employs Occam’s inversion scheme for inverse modeling.

However, it only search for optimum regularization parameters if the misfit is not reduced

considerably. Thus, it may operate like a Gauss-Newton optimization at many iterations.

It can consider data in several formats, but the option in the available code works on fitting

the log base 10 of magnitude and phase in degrees as data. Wheelock et al. (2015) has

shown the benefits of such representation of data in EM inversion. The MARE2DEM com-

putes the full Jacobian matrix and solves it using a direct solver. In contrast, the SD2DEM is

a finite difference-based space domain algorithm. It utilizes the Gauss-Newton optimiza-

tion method, where one hundred conjugate gradient iterations are used for numerical

tests presented in this study. Therefore, the Jacobian is not assembled completely, and

the Hessian is solved only approximately. In SD2DEM, the regularization parameter is

computed using a cooling approach, and no search method is employed to find an opti-

mum regularization parameter. Both algorithms have similar regularization strategies,

but there may be some differences in actual implementation. For benchmaring both the

synthetic and Troll field data is inverted using MARE2DEM. We made the utmost effort

to minimize the difference using user inputs for the inversion experiments presented

in this study. Therefore, the inversion domain in x and z direction for MARE2DEM is

taken as same as SD2DEM. The synthetic data concerning the salt dome model is inverted

using MARE2DEM using magnitude (in log base 10) and phase. The model is discretized

using rectangular cells of 100 m and 25 m in the x- and z-direction, respectively, as in the

case of SD2DEM experiments. Therefore, the number of unknown model parameters for

MARE2DEM is same as the SD2DEM test. Outside the inversion domain, the model is

discretized using an unstructured grid generated automatically using the MARE2DEM

utilities. The inversion is performed for the VTI case without prejudicing a similarity

between vertical and horizontal resistivities. The smoothing factors for both vertical and

horizontal directions are equal to one, as in the case of SD2DEM experiments. The recov-

ered resistivity models for the MARE2DEM inversion run after 20 iterations are shown in

Figure (2.9). The salt body is recuperated very well by MARE2DEM inversion, delivering a

better geometry of the salt body than the SD2DEM inversion. The SD2DEM algorithm

finds it a little tricky to image the vertical resistivity of the deep part of the salt body. On the

other hand, the reservoir is imaged relatively better in the case of the SD2DEM algorithm.

One of the most likely circumstances for differences could be the consideration of log

magnitude and phase as data in MARE2DEM while SD2DEM fit the real and imaginary

parts of data. One inherent factor for the difference could be how these two approaches

applied the data weights. The complex data fitting weighted by the absolute value of the
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corresponding datum tends to favor the bigger element between the real and imaginary

parts of the datum. Therefore, such an algorithm penalizes the smaller elements between

real and imaginary parts of the datum, which may contain valuable information in the

case of complex models such as the present one. Wheelock et al. (2015) discussed a 2D

magnetotelluric experiment to compare inversion using complex impedance tensors and

a log of apparent resistivity plus phase. Nonetheless, a detailed investigation of these

issues for CSEM data still needs to be studied. To compare the convergence of data fitting,

the nRMS for MARE2DEM inversion is recomputed as per the definition given in equation

(2.20) using the response calculated at each iteration. The nRMS plot for MARE2DEM

and SD2DEM inversion run using eight y-grids are shown in Figure (2.10a). Both algo-

rithms show a comparable convergence and converge to the nRMS value as three after 20

inversion iterations. Therefore, the proposed algorithms perform well in terms of data

fitting compared to the wavenumber domain inversion algorithm. Figure (2.10b) shows

the computation times after each iteration for both algorithms and the speedup factor

defined as the ratio of MARE2DEM time to SD2DEM time. Since the MARE2DEM involves

searching for the optimum regularization factor at some iterations, the computation cost

for MARE2DEM may vary from iteration to iteration. The SD2DEM (with eight y grids case)

shows roughly a thirty-time reduction in computation time for this experiment. Therefore,

the proposed algorithm outperforms a wavenumber domain algorithm in terms of com-

putation efficiency. The peak memory usage for SD2DEM is 12.6 GB, where two-thirds

of memory use is due to the direct solver application in forward/adjoint computation.

The maximum memory utilization for MARE2DEM is 30.6 GB, which peaks during the

formation of the Jacobian matrix. However, it is instructive to state again that the efficiency

may not be fully attributed to space domain computation alone.

Troll data using the MARE2DEM algorithm was also inverted, employing rectangular

cells with the same dimension as in the case of SD2DEM Troll experiments to keep the

number of unknown model parameters the same for both algorithms. The recovered

resistivity models after 12 iterations of VTI inversion without prejudicing a similarity

between vertical and horizontal resistivities are shown in Figure (2.11). The reservoir is

imaged at the correct depth window in the vertical resistivity model. However, the ob-

tained inverted model shows more artifacts compared to SD2DEM inversion results. The

nRMS plot for MARE2DEM (recomputed as per equation (2.20)) and SD2DEM inversion

run using eight y-grids are shown in Figure (2.12a). Both algorithms show a comparable

convergence and converge to the nRMS value of 7.4% after 12 inversion iterations. Figure

(2.12b) shows the computation times for both algorithms and the speedup factor. The

SD2DEM (with eight y grids case) shows around a sixteen-time drop in computation
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time for Troll field data. The highest memory utilized for SD2DEM and MARE2DEM is

20.0 GB and 33.6 GB, respectively, for the Troll field experiment. Therefore, in terms of

computation efficiency, the proposed algorithm is more than one order faster and uses

roughly 1.6–2.4 times less memory compared to MARE2DEM with an equivalent nRMS

convergence. The computation and memory analysis of SD2DEM indicated that both

computation time and memory requirements increase almost linearly with number of

y-grids. Quantitatively, the computation time and memory requirement increase by a

factor of roughly 1.36 and 1.28 times per y grid, respectively. The MARE2DEM performs

better in terms of model recovery for the salt dome model. However, the SD2DEM delivers

a smoother model for Troll field data than MARE2DEM. Besides, in SD2DEM, there is no

limitation on the receiver’s deviation in strike direction, or the requirement of projecting

the receives onto the transect, as may be the case of wavenumber-domain algorithms. For

example, in MARE2DEM, if the along-strike source-receiver offset is large, the choice of

wavenumber is advised to be benchmarked using a 1D modeling response. In a nutshell,

the algorithm development and execution of the proposed algorithm are very straightfor-

ward and deliver efficient computation and reasonable convergence. Due to the efficiency

of the proposed space domain algorithm, it can potentially be developed for unstructured

grids as well. Furthermore, a space domain modeling algorithm may be employed in other

inversion schemes, such as Bayesian inversion, as efficient computation is essential for

such optimization techniques.

2.6 Conclusion

A novel space-domain 2D CSEM inverse modeling algorithm is developed in this study. A

new set of boundary conditions is derived for the plane perpendicular to the strike direc-

tion that passes through the transmitter position. These boundary conditions are derived

using the electromagnetic field components’ symmetric/antisymmetric characteristics

about the plane mentioned above. A space-domain forward modeling algorithm is de-

veloped employing these boundary conditions. A comparison of the simulated response

with a published algorithm’s responses reveals that around eight grids are sufficient for the

discretization of space in the strike direction for numerical accuracy required in electro-

magnetic data analysis. Furthermore, a Gauss-Newton-based inversion code is developed,

utilizing the proposed modeling algorithm for forward and adjoint computations. The

inversion experiments using synthetic and real field data also indicate that around eight

grids are sufficient for discretization in the strike direction. The numerical experiments

suggest that the proposed algorithm is at least one order faster in computation and re-
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quires 1.6–2.4 times less memory than a wavenumber domain algorithm, MARE2DEM.

However, it must be stated that the proposed and MARE2DEM algorithms employ very

distinct forward and inverse modeling approaches. Therefore, it is not possible to at-

tribute the computational advantages solely to the space domain strategy. Nevertheless,

the proposed algorithm is very straightforward to implement as it eliminates the need for

inverse Fourier transform in two-dimensional electromagnetic modeling and inversion.





Chapter 3

2D structurally constraint CSEM

inversion algorithm

3.1 Abstract

This chapter presents the development and evaluation of a 2D structurally constrained

controlled-source electromagnetic inversion algorithm employing the cross-gradient

method. Our investigation reveals that structural constraints significantly improve the

imaging of complex geological features such as salt domes. However, inaccurate con-

straints can impact the resistivity distribution obtained by constrained inverse modelling.

We also examine the benefit of an initial model based on prior information, including the

impact of inaccurate prior. Moreover, minimising the difference between horizontal and

vertical resistivity enhances the imaging of deep salt bodies; however, it generates artefacts

if the subsurface is anisotropic. The analysis presented in this study emphasises the impor-

tance of carefully devising inversion experiments to ensure the usefulness and reliability

of subsurface models obtained by the inversion of controlled-source electromagnetics.

3.2 Introduction

Geophysical inverse modelling is a critical tool in subsurface exploration, allowing scien-

tists to infer the physical properties of the Earth’s interior from surface measurements.

However, this process is inherently non-unique due to the ill-posed nature of inversion;

consequently, multiple subsurface models can explain the observed data equally well.

This non-uniqueness arises from several factors, including inadequate data coverage,

weak sensitivity to some of the model parameters, model discretization, and the method’s
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resolution, which depend on the underlying physics of the geophysical methods, as each

method depends on different physical processes. Consequently, the model derived from

inverse modelling depends on the initial model and the regularization technique, due to

the non-uniqueness of the inversion process. Additionally, the quantity and quality of

the data available and the geometry of the survey conducted also play significant roles in

this non-uniqueness. Given these challenges, combining information from multiple geo-

physical methods has emerged as a powerful approach to mitigate the non-uniqueness,

at least partially, in inverse modelling. By integrating data from different techniques,

it is possible to leverage the complementary sensitivities of each method to different

subsurface properties, thereby providing more robust and constrained models. For ex-

ample, seismic data struggles to accurately define hydrocarbon saturation, as the change

in seismic velocity is minimal after 10-15 % saturation. Therefore, it is challenging to

distinguish between commercial and non-commercial reserves. Thus, basing assessments

of reservoir potential solely on seismic information may lead to erroneous conclusions.

However, on the other hand, the resistivity of rock changes with hydrocarbon saturation.

Hence, one potential strategy to improve the accuracy of reservoir models is to conduct

controlled source electromagnetic (CSEM) surveys in conjunction with seismic surveys

(MacGregor et al., 2001; Sinha, 1999). However, there is no analytical formulation that

relates the seismic velocities and the electrical resistivity which causes the joint inversion

of CSEM and seismic data challenging.

There are three primary approaches to combining geophysical data, where no an-

alytical relationship exists among the physical property senses by each method. One

such approach is direct parameter coupling, which involves creating a cross-property

relationship derived from borehole data or petrophysical relationships. This method has

been applied successfully in various studies. Panzner et al. (2016) combined the seismic

and electromagnetic (EM) data to improve sub-basalt imaging in the Faroe-Shetland Basin

by making an empirical relationship between resistivity and the velocity from well-log

data. Heincke et al. (2017) combine magnetotelluric, gravity, and seismic data using the

petrophysical relationship as a constraint. Inverse modelling is likely to perform very well

in such imaging analyses since a relationship between parameters is available. However,

the outcome of such a joint inversion heavily depends on the cross-property relationship

used during the inversion. Therefore, one needs to have a borehole in the study area that

penetrates the depths to be imaged. Complex geological regions where physical proper-

ties change rapidly away from the bore may need better well data coverage in the study

area. However, in reality, such relationships only approximately match throughout the

study area. Furthermore, the well-log data has a different sensitivity scale to small-scale
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features than the surface data, making the cross-property relationship only approximately

valid. Another approach is structurally coupling joint inversion, which integrates different

types of geophysical data based on their structural similarities. This method does not

require borehole measurements but comes with complexities in combining datasets with

varying resolutions and sensitivities (Gallardo et al., 2012; Gallardo and Meju, 2004; Meju

et al., 2003). Colombo and De Stefano (2007) presented a simultaneous joint inversion

algorithm to combine seismic, gravity and electromagnetic data. The third approach

is the constraint inversions, it utilizes prior subsurface information to perform a single

physics-based data inversion. Prior knowledge of the subsurface can be used in numerous

ways during inversion. For example, it can be used to create an initial guess model which is

in proximity to the global minima as the gradient-based inversion converges to the nearest

minima. The prior information can be explained by designing the regularization operator

for inverse modelling to steer the model as per prior information. One valuable use is

enforcing structural similarity on the inverted model using prior information employing

the cross-gradient-based regularization technique. Saunders et al. (2005) developed a

structurally constrained CSEM inversion algorithm based on the seismic structural data.

Auken et al. (2005) works on a piecewise one dimensional laterally constrained inversion

algorithm of resistivity data based on layered earth model. An image-guided inversion

algorithm of electrical resistivity data developed by Zhou et al. (2014) where structural

information is obtained directly from a guiding image.

In this study, we present the development of a structurally constrained CSEM inver-

sion algorithm and exhaustive analysis to test the pros and cons of such an inversion

application. The main focus is to find the best practices to be followed while working with

such inversion algorithms for CSEM data inversion. For the algorithm development part,

the SD2DEM code presented in the previous study is augmented with the functionality of

applying structural constraints on 2D CSEM inversion. The rest of the chapter is as follows.

First, the theory of structural coupling using a cross-gradient approach is presented. The

second part is the numerical experiments, which is the main focus of this study, and the

chapter ends with a conclusion.

3.3 Methodology

To develop a structurally constrained inversion algorithm, the objective function is modi-

fied by augmenting an additional regularization term to incorporate the prior information

into our SD2DEM inversion algorithm. A cross-gradient approach is used to apply the

structural similarity. Therefore, the functional given in equation (2.15) can be modified as
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φ j oi nt = ||Wd (dobs −F(m))||2 +λ(||Rm||2 +β||Lm||2 +γ||Km||2) (3.1)

where dobs denotes the observed data, F(m) denotes the predicted data , Wd , denotes

data covariance matrix; λ is regularization parameter; R denotes second order derivative

(Laplacian) operator; L is an operator that seek to minimize the difference between

horizontal and vertical conductivity; β and γ are the positive scalars and K is an operator

that define the cross gradient function which can be expressed as

||Km||2 = ||∇m×∇mr e f ||2 (3.2)

where mr e f is a model derived from the prior information obtained from other geophysical

methods. By including the 2-norm of cross-product of gradients of the prior model

and unknown parameter vector, the unknown parameters can be constrained to have a

similar structure as the prior model. The benefit of such a functional is that it does not

enforce conductivity contrast at all the interface of the prior model. It occurs because the

cross-product can be zero if one of the gradients is zero or both gradients are identical

directionally. Therefore, the optimization would not enforce resistivity interfaces at all

contrasting horizons of the prior model. An expression for estimation of correction in

the model parameter, δmi , at i th iteration by using the Gauss-Newton method for the

above-stated functional can be written as

Hi−1δmi =−gi−1, (3.3)

where

Hi−1 = JT
i−1WT

d Wd Ji−1 +λi−1(RT R+βLT L+γKT K), (3.4)

and

gi−1 =−JT
i−1WT

d Wd (dobs −F(mi−1))+λi−1(RT R+βLT L+γKT K)mi−1, (3.5)

where Hi−1 and gi−1 represent Hessian and gradient of objective functional computed

for the model parameter, mi−1 after (i −1)th iteration and Ji−1, is the Jacobian matrix

calculated for model parameter, mi−1. An adjoint approach (Mcgillivray and Oldenburg,

1990) is used for Jacobian matrix computation. Finally, the updated model parameter

after i th iteration is calculated as, mi = mi−1 +δmi . Equation (3.3) can be rearranged for

direct computation of the updated model parameter as,

Hi−1mi =−gi−1 +Hi−1mi−1. (3.6)

The rest of the strategies are the same as discussed in the previous chapter.
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3.4 Numerical Results

The numerical experiments are aimed at investigating the effectiveness of the developed

algorithm. To test the limit of an algorithm, a problem that is difficult for that algorithm

should be experimented with. Therefore, we opted for a synthetic model, which poses

an imaging challenge for CSEM methods. CSEM methods are designed to sense thin,

resistive bodies with large horizontal dimensions like hydrocarbon reservoirs (Constable,

2010). Salt dome imaging presents a challenge for the CSEM method that’s why the

magnetotelluric (MT) method is often employed along with CSEM data to image the salt

dome. Consequently, the resistivity model used in the previous chapter, as shown in Figure

2.1, is used for the experiments for the present analysis. For evaluating the advantage of

the proposed algorithm, its results need to be compared with an inverted model obtained

without any structural constraint; therefore, for better comparison, the inverted model

obtained in the previous study is shown in Figure 3.1. This model serves as a reference

model for the analysis present in this study. It is to be noted that the inversion domain

is 10 km by 4 km is defined for inversion, and the grid size is 100 m and 25 m in x- and z-

direction, respectively, which is the same as the one employed in synthetic data inversion

in the previous chapter. All the user inputs, such as regularization parameter strategy and

misfit computation, are the same as in the previous chapter’s inversion experiment for

the salt dome study. Prior structural information about the subsurface can be included

in inversion in many ways. One of the ways to do this is to use it to apply structural

constraint via a cross-gradient strategy. The second approach is to generate an initial

model using it. Since, in this case, only the geometry of the body is known, the resistivity is

assumed to be unknown. Assuming the structural information is derived from the seismic

method, we would have some information about the anomaly. For example, in the present

case, if it is believed based on the seismic image that the anomaly is a salt body, we can

assign a relatively more resistivity to it compared to the host, which is sedimentary rock

saturated by marine water, which has a resistivity around 1 Ω-m. Therefore, an initial

model for the inversion can be derived by specifying the geometry based on the prior

structure and assigning a higher resistivity than the host media. The third strategy could

be to deploy an initial guess model based on the prior information and enforce structural

constraints using the cross-gradient functional. Furthermore, it is imperative to believe

that the structural information will have uncertainties and will not be perfectly accurate.

Therefore, it is instructive to experiment using somewhat inaccurate prior information.

We test all these scenarios in this numerical experiment section to obtain insight into the

effectiveness of the proposed algorithm. Unfortunately, any numerical experiment-based

study has a limitation in that the analysis is biased by the experiment design, such as the
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Fig. 3.1 Inverted resistivity models obtained by inversion without any structural con-
straints; here, inverted-solid triangles represent the receiver’s positions and dashed-black
lines denote the salt dome and reservoir positions; (a) ρv ; (b) ρh .

choice of synthetic model and survey parameters which is also the shortcoming of the

present analysis. However, we try to make the current analysis detailed so that some broad

observations can be obtained.

3.4.1 Structural constraint on the salt dome

For the first experiment, we incorporated accurate structural information of the salt dome

as constrainet into the CSEM inversion algorithm. This assumption is not realistic as

the shape of deeply buried bodies is not known accurately. However, this experience

serves the purpose of the best-case scenario; therefore, it provides a benchmark for other

tests. For inversion, the initial model is taken as a half-space of 1.5Ωm resistivity for both

horizontal and vertical models. The scaling factor for cross-gradient, γ, is taken as 50. We

have tested its values as 1, 10, 50, and 100. γ=50 is found to be suitable for our inversion,

and the same is used for all the experiments in this chapter. After the nRMS reaches 3 %,

the inverted models are considered the final model as the synthetic data is contaminated

by 3% Gaussian noise. The vertical and horizontal resistivity models estimated by this

inversion run are shown in Figures (3.2a) and (3.2b), respectively. The comparison of these

inverted models with unconstrained inversion (Figure 3.1) clearly shows the advantage

of structurally constrained inversion. The structurally constrained inversion successfully

compels the salt body into its boundaries. However, the boundaries are not as sharp as

those of the synthetic model. The smoothness constraints that are applied to stabilise the

inversion process cause the smooth interface of anomalies. Therefore, the regularization

term includes functionals with competing goals. We have also observed relatively slower

convergence in the case of constrained inversion than unconstrained inversion. We

postulate that it is due to conflicting regularization terms, but we are unable to prove it.

The next objective is to test a realistic situation where the shape of the salt body is only
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Fig. 3.2 Inverted resistivity models obtained by applying structural salt dome constraints;
here, inverted-solid triangles represent the receiver’s positions and dashed-black lines de-
note the salt dome and reservoir positions; (a) ρv (accurate); (b) ρh (accurate); (c) ρv (inac-
curate: broadened+500m, shifted up 50m); (d) ρh (inaccurate: broadened+500m, shifted
up 50m); (e) ρv (inaccurate: shrunkned+500m, shifted down 50m); (f) ρh(inaccurate:
shrunkned+500m,shifted down 50m).
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known approximately. Therefore, an error is included in the structure of the prior model.

Additionally, it is assumed that the inaccuracy will be less in the estimate of the position

of the top of salt than in the side flanks. We consider two scenarios for inaccurate prior

structural models. First, the top of the salt is 50 meters above its actual position, and the

flank expands outward by 500 meters maximum at the base. Therefore, the error linearly

increases from 50 m at the top to 500 at the base of the salt. For the second case, the top is

shifted down by 50 m, and flanks are shrunk inward by 500 m at the base, with structural

error going from 50 m at the top to 500 m at the base. The inverted models for the nRMS

3% for both the tests are shown in Figures (3.2c) to (3.2f). The comparison of inverted

models of inaccurate structural information with accurate prior illustrates that structural

information errors impact the salt body’s estimated resistivity. However, the changes are

incremental, illustrating the stability of the scheme for error propagation in the estimated

model. It is instructive to add that all the inversion results show minimal influence on the

imaging of the reservoir.

3.4.2 Structural constraint and initial model derived from prior model

for the salt dome

For the second set of experiments, a prior model is used to design an initial model and

apply the structural constraint using the cross-gradient technique on the salt body only.

For the initial model, the resistivity of the salt body is assigned as 10Ω-m. This assumption

of allocating a higher resistivity is reasonable for the salt bodies as they generally have

higher resistivity than host rock in marine environments. Similar to previous experiments,

three types of prior information are tested, namely, accurate prior and the two erroneous

priores, same as described in the previous subsection. The inverted models for all in-

version run after the nRMS reaches 3% are shown in Figure (3.3). All the inversion runs

have performed reasonably well, achieving identical data fit, and the inverted models are

comparable. Compared to previous experiments, the salt body is mapped up to greater

depths for both horizontal and vertical resistivity models. Furthermore, the resistivity in

the deeper part is increased towards the actual value, which is 50Ω-m from the 10Ω-m

prescribed for the initial model. It indicates that the data also senses the deeper part of

the salt body. It contradicts the previous experiments, where results indicate that the data

only senses the top 3 km salt body in the vertical resistivity model. Thus, we argue that

since our algorithm converges to the nearest minima, the change in the initial model leads

to a convergence of the inversion to different minima, causing varying vertical resistivity

images for these experiments. It raises an important question: Should we use an initial
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Fig. 3.3 Inverted resistivity models obtained by providing predefined initial models
and also applying structural salt dome constraints; (a) ρv (accurate); (b) ρh (accu-
rate); (c) ρv (inaccurate: broadened+500m, shifted up 50m); (d) ρh (inaccurate: broad-
ened+500m, shifted up 50m); (e) ρv (inaccurate: shrunkned+500m, shifted down 50m); (f)
ρh(inaccurate: shrunkned+500m,shifted down 50m).

model derived from prior information in case we have considerable uncertainties in the

prior information? For the present case, it is expected that the bottom of salt may contain

significant uncertainties as imaging the bottom of salt is challenging.

An experiment with a modified synthetic model is performed to examine the limitation

of CSEM imaging using constrained inversion with significant errors in the position of

the bottom of the salt body. The synthetic model is created by truncating the base of the

salt body at 3 km depth, and the CSEM data with the same configuration as the earlier

case is simulated. The data was contaminated by 3% Gaussian noise, the same as in the

previous case. The data is inverted with the prior, where the salt body is extended up to 4

km with accurate top and side flanks up to 3 km. Therefore, the error in the prior model is
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Fig. 3.4 Inverted resistivity model using a half-space initial model with the application
of only structural constraints of the salt dome; (a) ρv ; (b) ρh . Note that for the forward
simulation, a model representing approximately half of the actual salt dome was used.

only below 3 km depth. First, the inversion is done employing only structural constraint

with this prior and using a half-space initial model with a resistivity of 1.5 Ω-m. Figure

(3.4) illustrates the obtained inverted model. The results show that the inverted resistivity

values were confined within the boundaries of the salt dome, with the top part being

well-imaged, and the salt body did not extend up to 4 km as defined in the prior model. In

the second experiment, an initial guess model containing a salt body, 10Ω-m up to 4 km

depth in a 1.5Ω-m host is used along with the structural constraint. The inverted model is

depicted in Figure (3.5). The results illustrate that the inversion is not able to update the

resistivity under the salt base, and it remains around 10Ω-m, which is the initial guess

model value. It indicates that the simulated CSEM data does not sense the subsurface

below the salt body. However, it was observed in the second set of experiments that CSEM

data could sense the subsurface below 3 km. Therefore, collectively, all three inversions

suggest that CSEM data has a weak sensitivity of the model below 3 km where the salt body

is present. Consequently, a good initial guess leads to a more reasonable estimate of the

subsurface at those depths. These two experiments lead to important conclusions. First,

the results suggest that using a predefined initial model can lead to misinterpretation in

case some part of the model is weakly sense by the data. Specifically, the persistence of

the initial resistivity value in the inverted model highlights a potential bias introduced by

the predefined model, which may not accurately reflect the deeper parts of the salt dome.

Second, applying only structural constraints appears to be a more reliable approach as it

does not introduce such prejudices. Such a model may lack some information but does

not have fictitious anomalies. In summary, while predefined initial models can aid in

imaging specific parts of the subsurface, they lead to the risk of misinterpretation if prior

information is grossly inaccurate. Therefore, if confidence in the predefined model is

lacking, particularly in the weakly sensitive part of the model, it is advisable to avoid its use
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Fig. 3.5 Inverted resistivity model using an accurate salt dome initial model with 10 ohm-m
resistivity and no structural constraint; (a) ρv ; (b) ρh . Note that for the forward simulation,
a model representing approximately half of the actual salt dome was used.

in the initial model design. Instead, relying solely on structural constraints can provide a

more balanced and less biased imaging outcome.

3.4.3 Structural constraint and initial model derived from prior model

for the salt dome and reservoir

A structural constraint is applied to both the salt body and the reservoir for this group

of experiments. The initial guess model consists of a salt dome and reservoir with 10

Ω-m resistivity. The objective of this investigation is to assess whether the inclusion

of predefined information and the application of additional reservoir constraints can

enhance the accuracy of the inverted results, particularly for reservoirs. The experiment is

performed for three cases that are accurate prior to the salt dome shape and two cases of

inaccurate salt dome geometry as described earlier. The position of the reservoir is taken

as its actual position for all three cases. The inverted models for all inversion runs after the

nRMS reaches 3 % are shown in Figure (3.6). Surprisingly, the reservoir was not confined

to the boundaries given in the prior model, which was its actual position and was even

included in the initial model. We argue that it is caused by the smoothing regularization

function that prevents the sharp boundaries. Since the grid size in the z-direction is 25 m

while the reservoir thickness is 100 m, smoothening openers compelled it to be thicker

than its actual size. Therefore, the reservoir is mapped just above its actual position

to satisfy the smoothening and cross-gradient operator. However, the cross-gradient

operator forces the bottom of the imaged reservoir to be concise with the top of the prior

model, making it flatter than the previous case. The results of all the above experiments

suggest that a 1-norm-based regularization scheme can be tested to replace the smoothing

operator-based regularization. Since the 1-norm promotes sparsity, it may allow a sharp



56 2D structurally constraint CSEM inversion algorithm

Fig. 3.6 Inverted resistivity models obtained by providing predefined initial models and
also applying structural salt dome and reservoir constraints; (a) ρv (accurate); (b) ρh

(accurate); (c) ρv (inaccurate: broadened+500m, shifted up 50m); (d) ρh (inaccurate:
broadened+500m, shifted up 50m); (e) ρv (inaccurate: shrunkned+500m, shifted down
50m); (f) ρh(inaccurate: shrunkned+500m,shifted down 50m).

interface of anomaly, which will conform with the cross-gradient constraint. However,

this development is out of the scope of the present analysis and will be explored in future

studies.

3.4.4 Similarity prejudice between the vertical and horizontal resistivity

models

The comparison of inverted vertical and horizontal resistivity models indicates that the

shallower part of the salt dome is mapped relatively well in the vertical resistivity model,

and the deeper part is better imaged in the horizontal resistivity model. Therefore, it is

instructive to study whether enforcing a similarity prejudice between them can improve
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both the vertical and horizontal resistivity models. It is expected that anomalies’ interface

of both vertical and horizontal resistivity coincide. This will also improve the horizontal

resistivity image of the reservoir, which is faintly mapped in the horizontal resistivity

model. One of the ways is to minimise the difference between the horizontal and vertical

resistivity model, which is a case of a nonzero value of parameter β. We tested this

technique with different β values, such as 0.1 and 1. For the inversion, we used an initial

model comprising a half-space with a resistivity of 1.5Ω-m for both horizontal and vertical

components. The inversion results for β =0.1 are presented in Figure (3.7). The inversion

did not converge below 3.88 % nRMS; because, for an anisotropic model, the difference can

not be zero. Furthermore, the obtained model indicates that attempting to align vertical

and horizontal resistivity introduces artifacts in the inverted model. These artifacts arise

because the regularization term associated with the β factor tries to make the subsurface

closer to an isotropic character. A viable strategy to mitigate these artifacts is to accurately

characterise the anisotropy of the medium, which requires the anisotropy to be known

prior, which is difficult to obtain. Nevertheless, we see the evident advantage of this

strategy in terms of salt body imaging. Therefore, the imaging of the salt dome can be

improved significantly by enforcing similarity between vertical and horizontal resistivity.

It needs to be added that the salt is an isotropic body (see Figure 2.1) in the present case.

However, if the salt dome is taken anisotropic, it would not change the conclusion that by

incorporating detailed anisotropic information into the model, one can achieve a more

realistic representation of the subsurface properties.

To prove the above stated assertion, we experimented using the isotropic model.

The model comprises the same feature as in Figure (2.1) but with isotropic properties

in both vertical and horizontal resistivity models. Utilising this model, we performed

anisotropic inversion to evaluate the impact on imaging results. The inverted models

without any similarity bias (β=0) after the nRMS reaches 3 % are shown in Figure (3.8),

which is analogous to the anisotropic subsurface in terms of depth of imaging, data

sensitivity, etc. Subsequently, we sought to achieve a similarity between horizontal and

vertical resistivity employing β=0.1, and the resulting inverted models are presented in

Figure (3.9). The inversion outcome is devoid of any significant artefacts compared to

the anisotropic synthetic data scenario. The benefit of biasing the vertical and horizontal

models to be similar clearly demonstrates the advantage of salt dome imaging. This

finding underscores the CSEM method’s inability to sense both vertical and horizontal

resistivity equally well through the subsurface that is being imaged. It also highlights the

importance of prior information about anisotropy, which can play a valuable role in CSEM

imaging for geological complex subsurfaces.
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Fig. 3.7 Inverted resistivity models obtained by imposing similarity between vertical and
horizontal resistivity in an anisotropic inversion; (a) vertical resistivity (ρv ); (b) horizontal
resistivity(ρh).

Fig. 3.8 Inverted resistivity models of a isotropic model obtained by an anisotropic inver-
sion; (a) vertical resistivity (ρv ); (b) horizontal resistivity(ρh).

Fig. 3.9 Inverted resistivity models obtained by imposing similarity between vertical and
horizontal resistivity in an isotropic model; (a) vertical resistivity (ρv ); (b) horizontal
resistivity(ρh).
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3.5 Conclusion

We developed a 2D structurally constrained CSEM inversion algorithm using the cross-

gradient method. The inversion analysis obtained by numerical experiments provides

valuable information for applying such constraints on the inverted models. Structural

constraints improve the imaging of complex geological features such as salt domes. How-

ever, the smoothing constraint conflict with the structural constraint prevents the sharp

anomaly interface being produced in an inverted model. Using an initial model based on

the prior information can improve the inversion outcome. However, it is crucial to exer-

cise caution when utilising predefined initial models if confidence in prior information is

lacking. Additionally, the strategy of minimising the difference between horizontal and

vertical resistivity could improve the imaging of geologically complex subsurface. How-

ever, prior information may be required about the anisotropy of artefacts-free inversion.

Overall, these results underscore the importance of careful model selection and constraint

application to optimise the accuracy and reliability of subsurface imaging.





Chapter 4

2D Anisotropic Acoustic wave modeling

using support operator method

4.1 Abstract

We developed an algorithm to simulate two-dimensional frequency-domain acoustic-

wave response in a transversely isotropic medium with a tilted symmetry axis. The algo-

rithm employs a support-operator finite-difference method for modeling. This method

constructs a nine-point stencil finite-difference scheme for second-order elliptic equa-

tions for generalized anisotropic physical properties. The medium’s properties are de-

scribed as P-wave velocity on the symmetric axis, density, Thomsen’s anisotropic pa-

rameters (epsilon and delta), and the tilt angle. The benchmarking analysis of modeled

amplitude is illustrated using an isotropic whole-space model. Several synthetic exper-

iments are conducted to evaluate the accuracy of the scheme for anisotropic models.

The results suggest that the developed algorithm simulates the P-wave solution and the

fictitious S-wave mode, as reported in the literature. Simulation for a heterogenous model

with a spatially varying tilt angle of the medium symmetry axis is performed to ascertain

the algorithm’s robustness. The outcomes of the numerical experiments demonstrate

that the developed algorithm can accurately simulate the frequency-domain response of

acoustic waves in the tilted anisotropic media.

4.2 Introduction

In exploration seismology, anisotropy refers to the directional dependency of seismic

wave propagation in subsurface material. Understanding anisotropy is vital in the seismic



62 2D Anisotropic Acoustic wave modeling using support operator method

methods for accurate velocity model building Li et al. (2008), amplitude interpretation,

and reservoir characterization Besheli et al. (2005). Anisotropy can occur in various forms,

but the two most common types encountered in exploration seismology are transverse

isotropy and orthorhombic anisotropy. Transverse Isotropy (TI) is a frequently observed

anisotropic nature of subsurface formations. The primary physical factors contributing

to this TI symmetry, also known as hexagonal symmetry, are the inherent anisotropic

properties of sedimentary formations, particularly shales, and the presence of regular fine

and coarse layering. When sediments are horizontally layered, they exhibit TI characteris-

tics with a vertical symmetry axis, commonly referred to as vertical transverse isotropy

(VTI) Ikelle and Amundsen (2018). However, the tilted symmetry axis can arise due to the

slope and folding of strata; in such cases, the anisotropy can be represented by a tilted

transverse isotropic (TTI) media.

To model the propagation of seismic waves in anisotropic media, researchers com-

monly employ numerical methods such as finite difference Igel et al. (1995) and pseu-

dospectral methods Carcione et al. (1988). Accurate modeling of seismic wave propagation

in an anisotropic subsurface requires working with an elastic wave equation. However, it

requires tremendous computational resources, and often, an acoustic wave approximation

is adopted in the field of reflection seismology, particularly in the marine environment. For

simulation of P-waves propagation using an acoustic wave approximation in vertical trans-

versely isotropic (VTI) and orthorhombic anisotropic media, an approach proposed by

Alkhalifah (1998, 2003) can be employed. His technique simplifies computational require-

ments by setting the vertical S-wave velocity to zero in the dispersion relation. Alkhalifah

(1998) demonstrated that this strategy yields a kinematically accurate approximation of

P-wave propagation.

The modeling of wave propagation can be implemented either in the time domain

Gao et al. (2018); Mehra et al. (2012) or frequency domain Hustedt et al. (2004); Plessix

(2007); Williamson and Pratt (1995). In general, time domain modeling is favored for 3D

modeling; however, for 2D modeling, the frequency domain method provides an efficient

option. Frequency-domain modeling is better suited for frequency-dependent behavior

and long-distance wave propagation and allows greater control over sources in acoustic

wave modeling Plessix (2007). In the past few years, researchers have made significant

advancements in the development of anisotropic acoustic wave algorithms for VTI and TTI

media. Zhou et al. (2006) introduced an algorithm for VTI media, while Operto et al. (2009)

focused on frequency-domain modeling of visco-acoustic wave propagation through a

TTI media.
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In this study, we present the development of 2D acoustic wave modeling in an anisotropic

medium using a support operator method. Support-operator method was first used by

Ely et al. (2008) for seismic modeling. First, the discussion on governing equations for

acoustic wave modeling in an anisotropic medium is presented, and next, mathematical

concepts of the support operator method are discussed. Subsequently, the accuracy and

versatility of the developed algorithm are illustrated using several numerical experiments.

4.3 The tilted transverse isotropic acoustic wave modeling

For tilted transverse isotropic (TTI) media, a modified 2D acoustic wave equation was

proposed by Zhou et al. (2006); and Operto et al. (2009) revised it for variable density

medium. Accordingly, for a spatially varying angle of the tilted-symmetric axis and density,

a 2D acoustic wave equation in the time domain can be expressed as,

1
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where κ is the bulk modulus; b is the inverse of mass density, termed buoyancy; the δ and

ϵ are dimensionless parameters defining the anisotropy Thomsen (1986), and θ0 is the

angle of tilled symmetry axis to the vertical direction; p is the pressure wavefield, and q is

the auxiliary pressure wavefield introduced by Zhou et al. (2006) to recast the fourth-order

equation proposed by Alkhalifah (1998) into a coupled second-order equations which

are much easier to solve. Furthermore, the ϵ−δ must be greater than or equal to zero so

that equation (4.1) can be a well posed initial value problem. H and H0 are differential

operator and the cross derivative term in these both differential operator are responsible

for angular rotation of the symmetry axis in TTI medium. Isotropic acoustic wave equation

is a special case of equations (4.1) and (4.2) under the conditions, ϵ= δ= 0, whereas ϵ ̸= δ
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means that ellipticity does not vanish. The solution of the above equations provides the

response in the time domain. Equation (4.1) can be transformed into frequency domain

using the Fourier transform and in the frequency domain can be written as,

ω2

κ
p − (1+2δ)H p −H0p = (1+2δ)H q

ω2

κ
q −2(ϵ−δ)H q = 2(ϵ−δ)H p,

(4.3)

where ω is the angular frequency. The same notations are used for the time and frequency

domain responses for brevity. Equation (4.2) can be represented in a concise form using a

set of elliptic partial differently equations as,

H =∇·Θ∇
H0 =∇·Θ0∇,

(4.4)

whereΘ andΘ0 are given as,

Θ=
(

cos2θ0b − sin2θ0
2 b

− sin2θ0
2 b sin2θ0b

)
& Θ0 =

(
sin2θ0b sin2θ0

2 b
sin2θ0

2 b cos2θ0b

)
. (4.5)

Using equations (4.3) and (4.4), we can recast the problem of acoustic wave modeling

for a TTI media as a matrix equation given as,(
ω2

κ
− (1+2δ)H −H0 −(1+2δ)H

−2(ϵ−δ)H ω2

κ −2(ϵ−δ)H

)(
p

q

)
=

(
0

0

)
(4.6)

The above equation is written for source free media and in case of a source, the right

hand side vector will contain the source information. In this study, we propose to solve

the equation (4.6) using the support operator method originally introduced by Shashkov

(2018).

4.3.1 Discretization

The matrix equation (4.6) can be assembled by four block matrices where each block

matrix depends on the discrete approximation of the continuum operators given in equa-

tion (4.4). We discretize these continuum operators using the support operator method

Samarskii et al. (1981). The details of the support operator method can be found in

Shashkov (2018); however, for completeness, a basic concept of the method is presented



4.3 The tilted transverse isotropic acoustic wave modeling 65

in this study. The support operator method instructs first devising the prime operator,

and subsequently, the derived operator is designed by enforcing the relationship between

prime and derived operators. The basic concept of the support operator method for

designing a conservative differences scheme can be explained using the following five

steps Shashkov (2018). First, write the governing equation using first-order differential

operators such as gradient, divergence, and curl. Therefore, we have rewritten the present

problem employing the gradient and divergence operators (see equations 4.4 to 4.6). The

second step is to use an identity through which the operators involved in the governing

equation are connected. The identity employed in the present scheme is given as,∫
v
φ∇· F⃗d v +

∫
v

(⃗F,∇φ)d v =
∮

s
φ(⃗F, n⃗)d s, (4.7)

where φ and F⃗ are scalar and vector functions, respectively; n⃗ denotes outer unit-normal

vector; v represents an arbitrary volume enclosed by the surface, s. The third step is to

discretize the scalar, vector, and tensor functions. We implement a nodal discretization

of scalar functions and cell-centered discretization of vector and tensor functions. The

next step is to construct a prime operator, and in the case of nodal discretization of scalar

functions, the natural choice is the gradient operator as the prime operator. Therefore,

the divergence operator is assigned the role of a derived operator. The last step is to

construct the derived operator enforcing the identity given in equation (4.7). Shashkov

(2018) showed that imposition of identity given in the above equation leads to the relation

between gradient and divergence operators as,

D IV =−GR AD∗, (4.8)

where ∗ represents adjoint operator; GR AD and D IV , denote the gradient and divergence

operators, respectively. Thus, the discrete analog of the general elliptic operator is self-

adjoint and positive. These properties of the discrete problem make it possible to use

effective iterative methods for solving the system of finite difference equations. Since

the operators constructed through this procedure mimic the properties of the original

continuum operator of the identity, the support operator method is also known as the

mimetic finite different method (MFDM). A nine-point stencil discretization, as shown in

figure (4.1), is considered to describe the salient features of the support operator method.

The grid follows a left-handed coordinate system with the z-axis pointed downward (i.e.,

depth).
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Fig. 4.1 Schematic representation of the nine-point stencil scheme employed for model
discretization.

Fig. 4.2 Schematic diagram for a cell i , j having areaΩ and four sides as, l1, l2, l3 and l4.

4.3.2 Construction of ∇·Θ∇ operator

The components of the gradient operator can be derived utilizing Green’s formula as,

∂P

∂x
= lim

A→0

∮
C P d z

A
(4.9)

and
∂P

∂z
=− lim

A→0

∮
C P d x

A
, (4.10)

where A is an arbitrary area surrounded by a boundary denoted by C. For discrete cases, the

area, A, of the i, j cell is represented byΩi j as illustrated in figure (4.2) . l1, l2, l3 and l4 are
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the four sides of quadrilateral as shown in figure (4.2). For an approximation of the right-

hand side of equation (4.9) and (4.10), the contour integral is divided into four integrals

each over the corresponding side of the quadrangle of areaΩi j . Because each side of the

quadrangle is a segment of the line, the integral over each side is one-dimensional, and to

approximate it, the trapezium rule is used. After applying the trapezium rule, the discrete

analogous of equations (4.9) and (4.10) can be written as,

(DxP )i j =
(Pi+1, j+1 −Pi , j )(zi , j+1 − zi+1, j )− (Pi , j+1 −Pi+1, j )(zi+1, j+1 − zi , j )

2Ωi j
, (4.11)

and

(DzP )i j =
(Pi+1, j+1 −Pi , j )(xi , j+1 −xi+1, j )− (Pi , j+1 −Pi+1, j )(xi+1, j+1 −xi , j )

2Ωi j
, (4.12)

respectively, where, xi , j and zi , j denote the coordinate of i , j node. Using the equations

(4.11) and (4.12), an expression of prime operator, gradient, for discrete case can be written

as,

GR AD(P ) =
[

DxP

DzP

]
. (4.13)

The gradient operator maps the scalar field to a vector field. The next step is to operate

the tensor on the vector field, which results in another vector field (say W) as,

W =
[

W x

W z

]
=Θ GR AD(P ) =

[
Θxx Θxz

Θxz Θzz

][
DxP

DzP

]
. (4.14)

where Θ is a tensor, referred as buoyancy tensor, hereafter in this study. Now, the next

task is to construct the derived operator (divergence) using the gradient operator given

in equation (4.13) by enforcing the property given in equation (4.8). Consequently, the

expression for divergence operator can be written as,
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(D IV W⃗) = 0.5

V Ni j
(−((zi−1, j − zi , j−1)W x

i−1, j−1 − (zi , j+1 − zi+1, j )W x
i j+

(zi+1, j − zi , j−1)W x
i , j−1 − (zi , j+1 − zi−1, j )W x

i−1, j )+
((xi−1, j −xi , j−1)W z

i−1, j−1 − (xi , j+1 −xi+1, j )W z
i j+

(xi+1, j −xi , j −1)W z
i , j−1 − (xi , j+1 −xi−1, j )W z

i−1, j )),

(4.15)

where V Ni j is the average area for four cells sharing node i , j as their corner. By assem-

bling the terms for a nine-point stencil depicted in figure (2.1), an equation for a central

node, i , j , can be written as Shashkov (2018),

(∇·Θ∇P )i j =Ci , j Pi , j +Ci+1, j Pi+1, j +Ci−1, j Pi−1, j +Ci , j−1Pi , j−1 +Ci , j+1Pi , j+1

+Ci−1, j−1Pi−1, j−1 +Ci−1, j+1Pi−1, j+1 +Ci−1, j+1Pi−1, j+1 +Ci+1, j+1Pi+1, j+1, (4.16)

where Ci , j ,Ci+1, j ,Ci−1, j ,Ci , j−1,Ci , j+1,Ci−1, j−1,Ci−1, j+1,Ci+1, j−1,Ci+1, j+1 are the coefficients

and the expression for these coefficients are given in the Appendix B.1.

The linear equations for all the nodes are assembled to form a discrete representation

of elliptic equations to construct operators, H and H0. Subsequently, a linear system of

equations is obtained by assembling these block matrices to form the matrix equation

(4.4) and solved for a monochromatic source under the appropriate boundary condi-

tions. The homogeneous boundary conditions are applied to simulate the wavefield in

an unbounded domain. It requires the field to vanish at the domain boundary, which

is achieved by applying the PML technique. The support operator method works with

discontinuous physical parameters. Gyrya and Lipnikov (2012) discuss a detailed analysis

of the stability of the mimetic finite difference method, which applies to the present study.

We have employed a direct solver for computing the inverse of the system matrix. The

proposed algorithm has been implemented in the Python programming language. Next,

we present numerical experiments to test the accuracy of the developed code.

4.4 Numerical Results

This section presents the results from numerical simulations for isotropic, vertical trans-

verse isotropic (VTI), and tilted transverse isotropic (TTI) whole-space models and a

heterogenous model having a spatially varying tilt angle of the medium symmetry axis.
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The simulation results are compared with analytical results wherever available. For whole-

space models, the modeling domain extends at 3250 m × 3250 m and the transmitter is

placed at the center of the model.

4.4.1 Isotropic Case

The primary goal of the isotropic modeling experiment is to analyze the accuracy of

amplitudes computed using the developed algorithm, as the analytical results Aki and

Richards (2002) are available for the isotropic case. A whole space of 4000 m/s P-wave

velocity is considered for the isotropic case. The real and imaginary parts of the simulated

response using the developed algorithm at 10 Hz frequency are shown in figure (4.3).

For the benchmarking, a relative misfit defined as |
|Ga

(i , j )|−|GSO
(i , j )|

|Ga
(i , j )|

| is calculated; where, G a

and GSO denote the analytical and numerical responses, respectively, at (i , j ) node and

| | represents the absolute value. The misfit plot for the 10 Hz simulation is shown in

figure (4.4), where the maximum misfit value is around 0.06. The misfit is relatively

small in the diagonal directions compared to the axis directions. Gyrya and Lipnikov

(2012) showed that the numerical dispersion in the support operator method is relatively

less in the diagonal direction, therefore, the we observe better fit in diagonal direction.

Additionally, the real and imaginary parts of the simulated and analytical response along

a horizontal profile passing through the source position are illustrated in figure (4.5). The

plots include the absorbing boundary region to exhibit the effectiveness of boundary

conditions application on the simulated response. These comparison analyses illustrate

the accuracy of amplitude computed using the proposed algorithm.

Furthermore, time domain responses are calculated using inverse Fourier transform

for a 10 Hz dominant frequency Ricker wavelet Ricker (1940) as the source. The Ricker

wavelet that is utilized as a source and its amplitude spectrum is illustrated in figure (4.6).

The wavefronts at three-time samples viz. t = 0.1s, t = 0.2s, and t = 0.3s, are displayed

in figure (4.7). As expected, the frequency and time domain wavefield exhibit a perfectly

circular shape. The circular behavior arises due to the isotropic nature of the medium,

as the velocity is the same in all directions. These results indicate that the developed

algorithm can simulate accurate acoustic wave propagation in isotropic media. Next, we

consider a VTI half-space model.

4.4.2 Vertical Transverse Isotropic case

For the VTI experiment, we considered two cases: weak anisotropy and strong anisotropy.

The parameters for both models are listed in Table (4.1). For the first case, the horizontal-
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Fig. 4.3 Real and imaginary parts of pressure wavefield in the frequency domain simulated
using the support opertaor method for a homogeneous isotropic medium employing a
monochromatic source emitting 10 Hz frequency. The same color scale is used for both
images; hence, it is only displayed in one of the images for brevity.

Fig. 4.4 Relative misfit of amplitude between the analytical and numerical simulation
performed using the support-operator method at 10 Hz.
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Fig. 4.5 Real and imaginary parts of responses calculated using the proposed numerical
method, including the PML region and the analytical responses at a horizontal line passing
through the source position for a 10 Hz frequency source.

Fig. 4.6 Ricker Wavelet of 10 Hz dominant frequency; (a) time domain and (b) amplitude
spectrum in the frequency domain
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to-vertical velocity ratio is 1.1, as the horizontal velocity is 1+ϵ times the vertical velocity

Thomsen (2014) because we measure the angle, θ0, from the vertical direction. Figure

(4.8) shows the frequency-domain response of the pressure wavefield’s real component

at 10 and 18 Hz. Further, the time domain response utilizing a Ricker wavelet of 10 Hz

dominant frequency is calculated employing inverse Fourier transform. Figure (4.9) shows

the wavefronts at three specific time instances (t = 0.1s,0.2s,0.3s). Since the horizontal

velocity is faster than the vertical velocity in this VTI model, the simulated response ex-

hibits an elliptical nature with the major axis in the horizontal direction. The time domain

results also comprise another wavefield propagating slower than the main P-wavefront. It

is a fictitious S-wave that arises in the case of anisotropic acoustic wave modeling and is

referred to as S-wave artifacts in literature Alkhalifah (1998). Several schemes have been

proposed Abedi and Stovas (2020); Li and Stovas (2021); Stovas et al. (2021); Xu et al. (2020)

to suppress these artifacts in the acoustic wave modeling of anisotropic models. The

S-wave artifact is diamond-shaped for this model because the anisotropic parameter ϵ is

greater than δ, and this behavior follows the results reported in other studies Zhou et al.

(2006). To assess the VTI simulation’s accuracy, the time domain responses are bench-

marked using the analytical wavefront calculated using the Payton (1983) formulation,

developed explicitly for Class IV TI (transversely isotropic) media. The red and blue curves

overlayed on the time-domain response in figure (4.9) represent the analytical P and S

wavefronts, respectively. We can observe an excellent kinematic agreement between the

acoustic snapshot and the analytic P-wavefront, indicating that the acoustic approxi-

mation of wave propagation in VTI model provides an accurate simulation. Thus, the

developed algorithm exhibits the capabilities of modeling accurate results for the acoustic

approximation of wave propagation in VTI media, at least for a weak anisotropy case. Next,

we analyze the algorithm’s robustness for a strong anisotropy VTI model.

Medium Velocity Density Epsilon (ϵ) Delta (δ) Phi (φ in ◦)
(Vp in ms−1) (ρ in kg m−3)

Sediments 4000 2500 0.1 0.02 0
zinc medium 2955.06 7100 0.830645 2.7098 0

TTI 4000 2500 0.1 0.02 45

Table 4.1 Table presents the values of physical parameters utilized for different numerical
tests for anisotropic experiments. The P-wave velocity along the vertical direction through
the medium is represented by Vp . The dimensionless parameters, epsilon (ϵ) and delta
(δ), introduce anisotropy to the media. The angle between the vertical axis and the axis of
anisotropy is denoted as phi (φ).
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Fig. 4.7 Pressure wavefield in the time domain for a homogeneous isotropic medium
employing a 10 Hz dominant frequency Ricker wavelet as a source; the corresponding
time is mentioned at the top of each image.

Fig. 4.8 Real part of pressure wavefield in the frequency domain for a homogeneous VTI
medium for 10 and 18 Hz frequencies.
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Fig. 4.9 Pressure wavefield in the time domain for a homogeneous VTI medium at three-
time instances using a 10 Hz dominant frequency Ricker wavelet as a source, where the
red and blue curves show the P and S wavefronts calculated using the analytical formula.

The zinc crystal is often used to test the modeling algorithm for strong anisotropy

media. The Thomsen parameters ϵ and δ for zinc crystal are 0.83 and 2.7, respectively,

leading to a horizontal-to-vertical velocity ratio of 1.83., which is a strong anisotropic.

Generally, this particular combination of parameters is expected to result in an unstable

simulation of S-waves when using the VTI acoustic equation Operto et al. (2009). However,

in our frequency domain solution, we did not observe the generation of S-waves even

though the value of ϵ is smaller than δ, and the simulation of P-waves remained stable.

Operto et al. (2009) provided a possible explanation for this unexpected behavior due

to the presence of absorbing boundary conditions in the frequency domain problem.

Implementing these absorbing boundary conditions cancels out the instability associated

with the S-wave mode. Therefore, it also confirms our algorithm’s optimal performance

of boundary conditions. To assess the accuracy of modeled response, the analytical VTI

wavefronts are computed and overlayed on the numerically calculated wavefront for the

zinc crystal (Figure 4.10). The comparison shows an effective agreement in terms of kine-

matics behavior between wavefronts for P-wave propagation. This matching reinforces the

reliability and precision of the numerical approach in modeling wave propagation even

in VTI media with disparate values of ϵ and δ. Furthermore, these results are noteworthy

as they demonstrate the stability of the frequency-domain simulations in the presence

of anisotropy, even in cases where the parameter ϵ is considerably smaller than δ. These

experiments indicate that the chosen method and its associated boundary conditions

are robust and capable of accurately capturing the behavior of P-wave propagation in

anisotropic media, even for strong anisotropic VTI media.
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Fig. 4.10 Pressure wavefield in the time domain for a homogeneous Zinc VTI medium
at three-time instances using a 10 Hz dominant frequency Ricker wavelet as a source,
where the red and blue curves show the P and S wavefronts calculated using the analytical
formula.

4.4.3 Tilted Transverse Isotropic case

In the last experiment for the whole-space examples, a TTI anisotropic model is consid-

ered, and the parameters for this model are given in Table (4.1) (see bottom-most row).

Figures (4.11) and (4.12) illustrate the frequency and time domain pressure wavefield,

respectively. The wavefields in both cases exhibit an elliptical shape, similar to the VTI

results; however, the elliptical wavefront’s major axis is tilted as the anisotropy axis is

rotated at 45o . This tilt in the simulated response matches the angle in the anisotropic.

As expected, the S-wave artifacts caused by the anisotropy are also rotated by the same

angle. The tilted axis of anisotropy introduces directional dependencies, leading to the

tilted wavefronts observed in both the frequency and time domains. Therefore, we can use

the analytical wavefront formulation developed for the VTI model and rotate it with the

angle of anisotropy to benchmark TTI modeling. Consequently, the analytical wavefronts

for both P- and S-wave are calculated and overlayed on the time domain response after

rotating it with an anisotropy angle. Similar to the VTI case, the TTI modeling results also

match the analytical result for P-wave propagation. The above-discussed experiments

for isotropic, VTI, and TTI whole-space models demonstrate that the support operator

method employed in our simulations delivers accurate simulation, providing a valuable

tool for modeling anisotropic acoustic wave propagation. Next, a simulation in the case of

a heterogeneous model is presented.



76 2D Anisotropic Acoustic wave modeling using support operator method

Fig. 4.11 Real part of pressure wavefield in the frequency domain for a homogeneous TTI
medium for 10 and 18 Hz frequencies.

Fig. 4.12 Pressure wavefield in the time domain for a homogeneous TTI medium at three-
time instances using a 10 Hz dominant frequency Ricker wavelet as a source, where the
red and blue curves show the P and S wavefronts calculated using the analytical formula.
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4.4.3.1 Heterogeneous medium

A model with five strata of distinct velocities is used for wave propagation simulations

in a heterogeneous subsurface. The model has several folded layers forming anticlinal

structures with a perfectly vertical axial plane meeting the x-axis at -500 m. The litho

unit interfaces, densities, and velocities are shown in figure (4.13). The bulk modulus is

calculated by multiplying the density of each unit and the square of velocity. Furthermore,

two TTI cases with spatially varying tilt angles of the medium’s symmetry axis are also

considered for experiments. In the first case, the direction of the symmetry axis is taken as

the tangential to the interface, while in the second case, the symmetry axis is assumed

as normal to the interface. Subsequently, the tilt angle of the symmetry axis is estimated

as the angle between the symmetry axis and the vertical direction. The calculated tilt

angles and densities are used to obtain the elements of the buoyancy tensor (see equation

(4.5)). Images of all three estimated tensor elements for the first TTI case are shown

in figure (4.14). In the TTI simulations, the δ and ϵ are taken as 0.02 and 0.1, except

in the first layer, since the first litho unit is assumed to be isotropic, so that the travel

time and amplitude of the first reflection can be compared between the isotropic and

anisotropic medium. The simulations are performed for a source placed at 0.0 and 50 m

in the x and z-direction for all three (one isotropic and two TTI) models using a modeling

domain of 10000 m and 3500 m in the horizontal and vertical directions, respectively.

The grid spacing is taken as 25 m in both horizontal and vertical directions. Figure (4.15)

presents the real components of simulated pressure wavefields at 10 Hz frequency for

all three cases. Furthermore, the frequency domain responses are transformed into the

time domain using the Fourier transform, considering a Ricker wavelet of 10 Hz dominant

frequency. The snapshots of wavefield propagation at three-time instances at 0.2, 0.4, and

0.6 seconds are illustrated in figure (4.16). The reflected waves display their association

with the interface drawn as cyan colored dashed lines over the images. Additionally, weak

diffracted energy is also observable, traveling behind the reflected wavefront. These are

generated due to the staircase approximation of dipping interfaces due to structured grid

discretization used in the method, as visible in figure (4.14). Since the wave velocity along

the symmetry axis will be the same as the isotropic velocities of respective strata, whereas

the velocity perpendicular to the symmetry axis will be 1+ϵ times the velocity along the

symmetry axis, therefore, the velocity will be higher in the direction perpendicular to the

interface as in the first case of TTI. In contrast, in the second case, it will be faster in the

direction parallel to the interface. A careful comparison of three simulated wavefronts at

a particular time does reveal such behavior. For example, the velocity in the z-direction

of the subsurface just below the source position will be the same for the isotropic model
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Fig. 4.13 Schematic diagram depicting interfaces of different strata of a 2D heterogeneous
along with their densities and velocities.

and the second case of TTI; however, it will be faster for the first case of TTI. The same is

observed by comparing the wavefronts in the z-direction at x=0 m, particularly visible at

0.6 s snapshots. In contrast, in the second TTI case, the wavefront expands faster in the

horizontal direction than in other cases, as anticipated.

The shot-point gatherers for receivers located at 75 m inside the subsurface are de-

picted in figure (4.17). Since the first layer is isotropic in all three simulations, the travel

time of the first reflection should be the same, and these do match each other in sim-

ulated gathers. Furthermore, the acoustic impedance contrast at the first interface for

the isotropic and the second TTI model is approximately the same at the zero offset;

however, it is higher for the first TTI case. The same is revealed by comparing the first

reflected events of all three simulations as the first reflection amplitude at near zero offsets

are similar for figures (4.17a) and (4.17c) while it is stronger in case of the figure (4.17b).

Furthermore, the travel time of all the reflections for isotropic and the second case of TTI

matched well at smaller offsets, while the travel time is smaller for the first case of TTI

owing to faster velocity in the direction perpendicular to the interfaces, except in the first

layer. The diffracted energy is also observable in shot point gathers. Thus, the simulated

data exhibit the properties of seismic wave propagation and behavior as expected for

such models, but there are no analytical results for these models to compare. Nonethe-

less, the numerical results collectively demonstrate the proposed algorithm’s ability to

model the response of an acoustic approximation in arbitrarily oriented anisotropic media.

Therefore, the proposed algorithm can be used in seismic data analysis for anisotropic

subsurface.
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Fig. 4.14 Images of buoyancy tensor’s elements obtained using the spatially varying tilt
angle of the medium symmetry axis, where the angle is measured between the tangent to
the interface with the vertical direction. The title of each image indicates the respective
expression of the buoyancy tensor element.

Fig. 4.15 Real part of pressure wavefield in the frequency domain for heterogeneous
subsurfaces due to 10 Hz frequency monochromatic source; (a) for the isotropic model;
(b) for the TTI model where the direction of the symmetry axis is taken as tangential to the
interface; (c) for the TTI model where the direction of the symmetry axis is considered as
perpendicular to the interface.
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Fig. 4.16 Pressure wavefield in the time domain for heterogeneous subsurfaces using a 10
Hz dominant frequency Ricker wavelet as a source; (a) to (c) pressure wavefield for the
isotropic model; (d) to (f) pressure wavefield for the TTI model where the direction of the
symmetry axis is taken as tangential to the interface; (g) to (i) pressure wavefield for the
TTI model where the direction of the symmetry axis is considered as perpendicular to the
interface. The dashed cyan color curves denote the interfaces of different litho units.
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Fig. 4.17 Simulated shot-point gathers for heterogeneous subsurfaces using a 10 Hz dom-
inant frequency Ricker wavelet as a source; (a) for the isotropic model; (b) for the TTI
model where the direction of the symmetry axis is taken as tangential to the interface; (c)
for the TTI model where the direction of the symmetry axis is considered as perpendicular
to the interface.

4.5 Conclusion

We have developed an algorithm for 2D acoustic wave simulation in anisotropic me-

dia based on a support-operator finite-difference technique. The algorithm leads to a

nine-point stencil discretization of the model. The accuracy of the modeled amplitude is

benchmarked using an isotropic whole-space model. For the vertical transverse isotropic

case, the simulated P-wave wavefront agrees well with the analytical simulation for both

weak and strong anisotropic experiments. The tilted transverse isotropic media modeling

also matched well with the analytical wavefront. The S-wave artifacts are observed in

an anisotropic model with a similar character reported in the literature. The developed

algorithm also experimented with a heterogeneous isotropic model and a tilted transverse

isotropic model having a spatially varying tilt angle of the medium symmetry axis to

examine its modeling capability. The benchmarking study presented using numerical ex-

periments demonstrates the reliability and accuracy of the proposed method for acoustic

wave simulation for anisotropic models.
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Conclusion and future possibilities

The research presented in this thesis has laid a robust foundation for the development of

advanced geophysical inversion techniques, particularly focusing on the integration of

seismic and controlled-source electromagnetic (CSEM) data. First, a space-domain for-

ward modelling algorithm for two-dimensional (2D) CSEM data is devised. The efficiency

of forward modelling is ensured using new boundary conditions specified at the plane

perpendicular to the strike direction that intersects the transmitter position. These condi-

tions leverage the symmetric and antisymmetric properties of the electromagnetic field

components concerning the specified plane. A comparison of the simulated responses

with the published algorithm results exhibits that approximately eight grids are adequate

for spatial discretisation in the strike direction, ensuring the numerical accuracy needed

for electromagnetic data simulation. A novel 2D CSEM inverse modelling algorithm is

developed employing a space domain approach for both forward and adjoint field com-

putation. Subsequently, these fields are used for the computation of the Jacobian matrix,

which is utilised for gradient and Hessian calculation. A Gauss-Newton scheme is devel-

oped for iteratively updating the model parameters where the Hessian matrix is solved

approximately using the conjugate gradient method. Inversion tests using synthetic and

real field data also confirm that around eight grids are sufficient for discretisation in the

strike direction, making the proposed algorithm highly efficient. A comparative study with

a wavenumber domain 2D CSEM code (MARE2DEM) shows that the developed inversion

algorithm is more than one order faster than MARE2DEM and also requires less memory.

A constrained inversion algorithm for 2D CSEM data is also developed by augmenting

a cross-gradient-based regularisation functional in the above-mentioned algorithm. This

algorithm integrates CSEM data with prior information obtained by other geophysical

methods, leveraging structural details as a constraint to enhance the interpretative accu-

racy of the inversion process. The analysis carried out using the constrained inversion
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algorithm provides useful knowledge about the benefits and limitations of the developed

algorithm. It shows that structurally constrained inversion enhances the imaging of ge-

ological complex subsurfaces like salt domes. However, the inversion does not produce

the sharp boundaries of anomalies due to smoothing constraints that seek a smooth

model. An initial model based on prior knowledge can used to converge to global minima.

However, the numerical experiment reveals that it is essential to exercise caution when

creating such an initial model if faith in prior information is low. Further, the strategy

of optimising the 2-norm of the difference between horizontal and vertical resistivity

could enhance the imaging of geologically complex subsurface. However, prior knowledge

about the anisotropy is required for such an application to obtain an artifacts-free inverted

model.

We also developed a 2D acoustic wave simulation algorithm for anisotropic me-

dia using a support-operator finite-difference method, resulting in a nine-point sten-

cil discretisation. The simulated P-wave wavefronts for vertical and tilted transverse

isotropic cases matched well with analytical simulations. S-wave artifacts observed in the

anisotropic model were consistent with those reported in the literature. Numerical experi-

ments demonstrated the algorithm’s reliability and accuracy in modelling heterogeneous

isotropic and spatially varying tilted transversely isotropic media. The ability to accurately

model anisotropic wave propagation is critical for improving the fidelity of seismic data

interpretation, particularly in complex geological settings.

The work presented in this thesis represents a substantial advancement in the field

of geophysical inversion, providing new tools and methodologies for more accurate and

integrated subsurface imaging. These accomplishments not only contribute to the aca-

demic understanding of geophysical processes but also have practical implications for

exploration geophysics, potentially leading to more effective resource exploration and de-

velopment strategies. In future, the next phase of this research will focus on developing a

2D anisotropic seismic inversion algorithm. Since we have already developed an inversion

framework for CSEM inversion and seismic modelling, the creation of a seismic inversion

algorithm simply requires the integration of the inversion module with the seismic mod-

elling code. We plan to work with the anisotropic properties of the subsurface for seismic

data inversion as well. By accurately accounting for anisotropy in the inversion process,

it is expected that the resulting subsurface models will exhibit improved resolution and

reliability.

A key extension of future work will involve the simultaneous integration of seismic

and CSEM results. This will be achieved by developing a simultaneous joint inversion

algorithm designed to leverage the complementary strengths of both data types. The
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integration process will build upon the constrained inversion techniques developed in the

earlier phases of this research but will extend them to allow for the simultaneous inversion

of both seismic and CSEM data. The development of this simultaneous joint inversion

algorithm will involve several technical challenges. One of the primary challenges will be

the effective handling of the different scales and resolutions of seismic and CSEM data.

Additionally, the algorithm needs to be efficient in delivering the results in reasonable

time frame.

The anticipated outcome of future work is a comprehensive and integrated inver-

sion framework that can provide high-resolution, multi-parameter subsurface models

using multiphysics data. Such a framework will not only enhance the understanding of

subsurface geological structures but also improve the accuracy of resource exploration

and characterization efforts. The simultaneous joint inversion of seismic and CSEM data

represents a significant step forward in geophysical inversion methodologies, promising

to deliver more detailed and reliable subsurface images. In summary, the research journey

outlined in this thesis has achieved significant milestones in the development of advanced

inversion techniques. The planned future work aims to build on these achievements,

pushing the boundaries of what is possible in integrated geophysical inversion. By con-

tinuing to innovate and refine these methodologies, the ultimate goal is to provide more

accurate and comprehensive tools for subsurface exploration and analysis.
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Appendix A

Boundary conditions for HEDx

A.1 Boundary conditions

For HEDx transmitter and using conductivity tensor given in equation (2.10), equations

(2.4)–(2.9) can be written as,

ιky Ez −
∂Ey

∂ z
− ιωµHx = 0, (A.1.1)

∂Ex

∂ z
− ∂Ez

∂ x
− ιωµHy = 0, (A.1.2)

∂Ey

∂ x
− ιky Ex − ιωµHz = 0, (A.1.3)

ιky Hz −
∂Hy

∂ z
− (σxx − ιωϵ)Ex −σxzEz = J e

xδ(x −xs)δ(z − zs) (A.1.4)

∂Hx

∂ z
− ∂Hz

∂ x
− (σy y − ιωϵ)Ey = 0, (A.1.5)

∂Hy

∂ x
− ιky Hx −σzxEx − (σzz − ιωϵ)Ez = 0 (A.1.6)

Now substituting, ky = -ky , Ey = −Ey , Hx = −Hx and Hz = −Hz we observed that it

leads to the same equation as give in equations (A.1.1)–(A.1.6). Therefore, the Ex , Ez , and

Hy are even functions of ky whereas Ey , Hx , and Hz are odd functions of ky .





Appendix B

System matrix coefficients of MFDM

scheme

B.1 Discretised form of differential operators for mimetic

scheme

The expressions for coefficients of system matrix constructed using the support operator

methods can be written as Shashkov (2018),

Ci+1, j = ((z(i , j +1)− z(i +1, j ))∗ (Θxx(i , j )/(2.0∗Ω(i , j )))∗
(z(i , j )− z(i +1, j +1))+ (z(i +1, j )− z(i , j −1)∗
(Θxx(i , j −1)/(2.0∗Ω(i , j −1)))∗ (z(i +1, j −1)− z(i , j ))−
(z(i , j +1)− z(i +1, j ))∗ (Θxz(i , j )/(2.0∗Ω(i , j )))∗ (x(i , j )−x(i +1, j +1))−
(z(i +1, j )− z(i , j −1))∗ (Θxz(i , j −1)/(2.0∗Ω(i , j −1)))∗ (x(i +1, j −1)−x(i , j ))−
(x(i , j +1)−x(i +1, j ))∗ (Θxz(i , j )/(2.0∗Ω(i , j )))∗ (z(i , j )− z(i +1, j +1))−
(x(i +1, j )−x(i , j −1))∗ (Θxz(i , j −1)/(2.0∗Ω(i , j −1)))∗ (z(i +1, j −1)− z(i , j ))+
(x(i , j +1)−x(i +1, j ))∗ (Θzz(i , j )/(2.0∗Ω(i , j )))∗ (x(i , j )−x(i +1, j +1)+
(x(i +1, j )−x(i , j −1))∗ (Θzz(i , j −1)/(2.0∗Ω(i , j −1)))∗ (x(i +1, j −1)−x(i , j )))/(2.0∗V Ni , j ),

(B.1.1)
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Ci+1, j+1 = ((z(i , j +1)− z(i +1, j ))∗ (Θxx(i , j )/(2.0∗Ω(i , j )))∗ (z(i +1, j )− z(i , j +1))−
(z(i , j +1)− z(i +1, j ))∗ (Θxz(i , j )/(2.0∗Ω(i , j )))∗ (x(i +1, j )−x(i , j +1))−
(x(i , j +1)−x(i +1, j ))∗ (Θxz(i , j )/(2.0∗Ω(i , j )))∗ (z(i +1, j )− z(i , j +1))+
(x(i , j +1)−x(i +1, j ))∗ (Θzz(i , j )/(2.0∗Ω(i , j )))∗ (x(i +1, j )−x(i . j +1)))/(2.0∗V Ni , j ),

(B.1.2)

Ci , j+1 =−((z(i , j +1)− z(i +1, j ))∗ (Θxx(i , j )/(2.0∗Ω(i , j )))∗
(z(i , j )− z(i +1, j +1))+ (z(i −1, j )− z(i , j +1)∗
(Θxx(i −1, j )/(2.0∗Ω(i −1, j )))∗ (z(i , j )− z(i −1, j −1))+
(z(i , j +1)− z(i +1, j ))∗ (Θxz(i , j )/(2.0∗Ω(i , j )))∗ (x(i , j )−x(i +1, j +1))−
(z(i −1, j )− z(i , j +1))∗ (Θxz(i −1, j )/(2.0∗Ω(i −1, j )))∗ (x(i , j )−x(i −1, j +1))+
(x(i , j +1)−x(i +1, j ))∗ (Θxz(i , j )/(2.0∗Ω(i , j )))∗ (z(i , j )− z(i +1, j +1))−
(x(i −1, j )−x(i , j +1))∗ (Θxz(i −1, j )/(2.0∗Ω(i −1, j )))∗ (z(i , j )− z(i −1, j +1))−
(x(i , j +1)−x(i +1, j ))∗ (Θzz(i , j )/(2.0∗Ω(i , j )))∗ (x(i , j )−x(i +1, j +1)+
(x(i −1, j )−x(i , j +1))∗ (Θzz(i −1, j )/(2.0∗Ω(i −1, j )))∗ (x(i , j )−x(i −1, j +1)))/(2.0∗V Ni , j ),

(B.1.3)

Ci−1, j+1 =−((z(i −1, j )− z(i , j +1))∗ (Θxx(i −1, j )/(2.0∗Ω(i −1, j )))∗ (z(i −1, j )− z(i , j +1))+
(z(i −1, j )− z(i , j +1))∗ (Θxz(i −1, j )/(2.0∗Ω(i −1, j )))∗ (x(i −1, j )−x(i , j +1))+
(x(i −1, j )−x(i , j +1))∗ (Θxz(i −1, j )/(2.0∗Ω(i −1, j )))∗ (z(i −1, j )− z(i , j +1))−
(x(i −1, j )−x(i , j +1))∗ (Θzz(i −1, j )/(2.0∗Ω(i −1, j )))∗ (x(i −1, j )−x(i . j +1)))/(2.0∗V Ni , j ),

(B.1.4)
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Ci−1, j =−((z(i −1, j )− z(i , j +1))∗ (Θxx(i −1, j )/(2.0∗Ω(i −1, j )))∗
(z(i , j )− z(i −1, j +1))− (z(i , j −1)− z(i −1, j )∗
(Θxx(i −1, j −1)/(2.0∗Ω(i −1, j −1)))∗ (z(i −1, j −1)− z(i , j ))+
(z(i −1, j )− z(i , j +1))∗ (Θxz(i −1, j )/(2.0∗Ω(i −1, j )))∗ (x(i , j )−x(i −1, j +1))+
(z(i , j −1)− z(i −1, j ))∗ (Θxz(i −1, j −1)/(2.0∗Ω(i −1, j −1)))∗ (x(i −1, j −1)−x(i , j ))+
(x(i −1, j )−x(i , j +1))∗ (Θxz(i −1, j −1)/(2.0∗Ω(i −1, j −1)))∗ (z(i , j )− z(i −1, j +1))+
(x(i , j −1)−x(i −1, j ))∗ (Θxz(i −1, j −1)/(2.0∗Ω(i −1, j −1)))∗ (z(i −1, j −1)− z(i , j ))−
(x(i −1, j )−x(i , j +1))∗ (Θzz(i −1, j )/(2.0∗Ω(i −1, j )))∗ (x(i , j )−x(i −1, j +1)−
(x(i , j −1)−x(i −1, j ))∗ (Θzz(i −1, j −1)/(2.0∗Ω(i −1, j −1)))∗ (x(i −1, j −1)−x(i , j )))

/(2.0∗V Ni , j ),

(B.1.5)

Ci−1, j−1 =−((z(i , j −1)− z(i −1, j ))∗ (Θxx(i −1, j −1)

/(2.0∗Ω(i −1, j −1)))∗ (z(i , j −1)− z(i −1, j ))+
(z(i , j −1)− z(i −1, j ))∗ (Θxz(i −1, j −1)/(2.0∗Ω(i −1, j −1)))∗ (x(i , j −1)−x(i −1, j ))+
(x(i , j −1)−x(i −1, j ))∗ (Θxz(i −1, j −1)/(2.0∗Ω(i −1, j −1)))∗ (z(i , j −1)− z(i −1, j ))−
(x(i , j −1)−x(i −1, j ))∗ (Θzz(i −1, j −1)/(2.0∗Ω(i −1, j −1)))∗ (x(i , j −1)−x(i −1. j )))

/(2.0∗V Ni , j ),

(B.1.6)
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Ci , j−1 = ((z(i , j −1)− z(i −1, j ))∗ (Θxx(i −1, j −1)/(2.0∗Ω(i −1, j −1)))∗
(z(i −1, j −1)− z(i , j ))− (z(i +1, j )− z(i , j −1)∗
(Θxx(i , j −1)/(2.0∗Ω(i , j −1)))∗ (z(i +1, j −1)− z(i , j ))−
(z(i , j −1)− z(i −1, j ))∗ (Θxz(i −1, j −1)/(2.0∗Ω(i −1, j −1)))∗ (x(i −1, j −1)−x(i , j ))+
(z(i +1, j )− z(i , j −1))∗ (Θxz(i , j −1)/(2.0∗Ω(i , j −1)))∗ (x(i +1, j −1)−x(i , j ))−
(x(i , j −1)−x(i −1, j ))∗ (Θxz(i −1, j −1)/(2.0∗Ω(i −1, j −1)))∗ (z(i −1, j −1)− z(i , j ))+
(x(i +1, j )−x(i , j −1))∗ (Θxz(i , j −1)/(2.0∗Ω(i , j −1)))∗ (z(i +1, j −1)− z(i , j ))+
(x(i +1, j )−x(i , j −1))∗ (Θzz(i −1, j −1)/(2.0∗Ω(i −1, j −1)))∗ (x(i −1, j −1)−x(i , j )−
(x(i +1, j )−x(i , j −1))∗ (Θzz(i , j −1)/(2.0∗Ω(i , j −1)))∗ (x(i +1, j −1)−x(i , j )))/(2.0∗V Ni , j ),

(B.1.7)

Ci−1, j+1 = ((z(i +1, j )− z(i , j −1))∗ (Θxx(i , j −1)/(2.0∗Ω(i , j −1)))∗ (z(i , j −1)− z(i +1, j ))−
(z(i +1, j )− z(i , j −1))∗ (Θxz(i , j −1)/(2.0∗Ω(i , j −1)))∗ (x(i , j −1)−x(i +1, j ))−
(x(i +1, j )−x(i , j −1))∗ (Θxz(i , j −1)/(2.0∗Ω(i , j −1)))∗ (z(i , j −1)− z(i +1, j ))+
(x(i +1, j )−x(i , j −1))∗ (Θzz(i , j −1)/(2.0∗Ω(i , j −1)))∗ (x(i , j −1)−x(i +1. j )))/(2.0∗V Ni , j ),

(B.1.8)

and

Ci , j =−(Ci+1, j +Ci−1, j +Ci , j−1 +Ci , j+1 +Ci+1, j−1 +Ci−1, j−1 +Ci−1, j+1 +Ci+1, j+1),

(B.1.9)
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