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Abstract

Supersymmetric field theories can be studied via an alternate approach using purely bosonic

variables. In this method, a transformation (Nicolai map) of the bosonic fields exists for super-

symmetric gauge theories such that the Jacobian of the map is same as the product of fermion

and ghost determinants. This thesis investigates the development of supersymmetric Yang-Mills

theories without anti-commuting variables, presenting them as entirely bosonic theories.

We derived the second order map (perturbatively in the coupling constant) in the Landau gauge

for all pure supersymmetric Yang-Mills theories. This approach yields the well-known old re-

lation that supersymmetric Yang-Mills theories can exist only in D = 3, 4, 6, 10 space-time

dimensions. We investigated this formalism to the third order in the coupling constant using

the rigorous R prescription. While working on the order g3 map, we discovered a simpler map

through trial and error, also to the third order that works only in space-time dimension six. The

existence of two maps at order g3 in six dimensions highlights the uniqueness of the map and

the formalism.

In this approach, correlation functions and scattering amplitudes can be calculated using the

inverse map. The light-cone gauge is useful for studying scattering amplitudes as the spinor

helicity variables appear naturally in this gauge. We studied the Nicolai map approach in the

light-cone gauge for supersymmetric Yang-Mills theory and computed the map perturbatively to

order g2. With the physical helicity fields, we obtained two maps at the second order in coupling

and discussed the problems related to the uniqueness of these maps.
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Chapter 1

Introduction

Quantum field theory is a highly successful and experimentally well-tested framework for de-

scribing elementary particles and three of the four fundamental forces of nature. It combines

special relativity with quantum mechanics. The former explains the dynamics of relativistic

particles, and the latter serves as a framework for investigating particles at the quantum scale.

The study of quantum field theory and its physical and mathematical properties is particularly

exciting in theoretical physics because it enhances our understanding of nature.

In quantum field theory, the primary objects of interest are scattering amplitudes. These are

the central building blocks for constructing scattering cross-sections, which describe the prob-

abilities of elementary particles interacting with each other at particle colliders. The study of

scattering amplitudes improves the understanding of the mathematical structure of quantum field

theories and offers the necessary tools for interpreting modern experiments. However, these am-

plitudes are often plagued by ultraviolet divergences at high energies. Enhancing the symmetry

in the theory might improve the ultraviolet behavior.

Supersymmetry, a space-time symmetry that relates bosons and fermions, is of great interest

in this context as it dramatically improves the ultraviolet properties. The vanishing of vacuum

energy for supersymmetric theories is one such example. For bosonic and fermionic theories,

the vacuum energy is divergent separately and contributes with opposite signs. However, in

supersymmetric theories, the number of bosons and fermions are equal, and due to this, they

cancel out these divergences to all orders in perturbation theory. The proof of the vanishing of

the vacuum energy for interacting supersymmetric theories was first shown by Zumino in [1].

The vanishing of vacuum energy plays an important role in constructing supersymmetric theo-

ries (without anti-commuting variables), which is the central theme of this thesis.

Supersymmetry transformations map bosonic particles (fields) into fermionic particles (fields)

and vice versa. These transformations are fermionic in nature and involve anti-commutation
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relations, forming a supersymmetry algebra. In a usual quantum field theory, the maximum

allowed symmetry (under certain assumptions) is Poincaré and internal symmetries [2]. Super-

symmetric field theories are invariant under the additional supersymmetric transformations, and

they circumvent the no-go theorem (Coleman Mandula theorem) [2], allowing the extension of

the maximum allowed symmetry for field theories [3, 4].

The first supersymmetric quantum field theory model, known as the Wess-Zumino model, was

developed in four dimensions [5]. It included a complex scalar field and a fermionic field, with

the theory demonstrating well-behaved ultraviolet properties. Following this, supersymmetric

theories involving gauge fields were also constructed, showing similar finiteness. Supersym-

metry has since been applied to particle physics and has successfully explained questions like

naturalness and the hierarchy problem, unification of standard model interactions, and dark mat-

ter contents [6]. While many arguments support the existence of supersymmetry in nature, it has

yet to be experimentally observed, possibly due to the spontaneous breaking of supersymmetry

at high energy.

Nevertheless, supersymmetry played a huge role in the development of quantum field theory

and mathematical physics. Supersymmetric theories have acted as a toy model, and advances

in them have improved our understanding of quantum field theory. They have also provided a

testing ground for computation tools and techniques that can be applied to quantum field the-

ory. The N = 4 super Yang-Mills theory, in the planar limit, is, from many perspectives, the

best example [7, 8]. It has a number of simplifying features; its scattering amplitudes are ultra-

violet finite [9, 10], exhibit novel symmetries like conformal invariance [11] and dual conformal

invariance [12], surprising duality between scattering amplitudes and Wilson loops [13], and

integrable properties [14]. The similarity of N = 4 theory with QCD also helps us to study

these theories at strong coupling. It also offers new techniques for the computation of Feynman

integrals that are relevant to LHC physics [8].

Despite significant progress in our understanding of the N = 4 super Yang-Mills theory and its

scattering amplitude, certain relationships, such as dual conformal invariance and the surprising

duality between the Wilson loop and amplitudes, have yet to be understood from the Lagrangian

perspective. This theory also lacks well-defined asymptotic states, preventing the S-matrix from
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being defined in the usual sense. The N = 4 super Yang-Mills theory has been shown to be ul-

traviolet finite to all orders only in the light-cone gauge, in terms of physical degrees of freedom

[9, 10]. A non-perturbative proof of finiteness still does not exist. Given all these open questions,

it appears worthwhile to understand all possible aspects of supersymmetric Yang-Mills theories

and their properties.

In this thesis, we aim to develop a different framework of supersymmetric theories to answer

some of the above questions eventually. Supersymmetric theories can be constructed without

anti-commuting variables and thus expressed in terms of purely bosonic variables. This is the

central theme of this thesis, and it was first proposed in [15–17] by Hermann Nicolai and further

studied by Dietz, Flume, and Lechtenfeld [18–20]. The focus of this thesis is on supersymmet-

ric gauge theories, and they can be devised in a different way provided there exists a non-linear

and non-local transformation of the bosonic fields, called the Nicolai map Tg that linearizes the

Yang-Mills action in such a way that the Jacobi determinant of the transformation Tg exactly

equals the product of the Matthews–Salam–Seiler (MSS) [21, 22] and Faddeev–Popov (FP) [23]

determinants. This interesting approach gives a fresh insight into the physics of supersymmetric

gauge theories.

Some key questions that arise are:

(a) Is the mapped bosonic theory free, and where is the information about the interaction?

(b) Is the information about supersymmetry still intact, and how do we compute the objects of

interest, like correlation functions or scattering amplitudes, in this mapped theory?

These questions were partly answered in the 1980s by the work of Dietz and Lechtenfeld [17],

where they showed that the correlation functions of fully interacting supersymmetric theory can

be computed using the inverse Nicolai map in terms of a free correlator. This allows us to quan-

tize a supersymmetry theory without the use of fermions, as all the information of interaction is

in the map. Despite all of this development during the 1980s on Nicolai map [20], there were no

results for the N = 4 supersymmetric Yang-Mills theory, which is considered one of the most

interesting theory from many perspectives [8]. Additionally, for supersymmetric gauge theories,

the map was known only up to order g2 in four dimensions in the Landau gauge. To compute

correlators at higher loops, one needs to know the map to higher orders in the coupling constant.
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1.1 Results of work

To answer all of the above questions, we embark on a comprehensive exploration of supersym-

metric theory of Yang-Mills without any fermions. For the first time, we construct an order g2

map that works in space-time dimensions D = 3, 4, 6, 10 [24]. Since N = 1 supersymmetric

Yang-Mills theory in ten dimensions is the parent theory for N = 4 theory [25, 26], one can de-

rive the map for this theory by dimensional reduction of the ten-dimensional map. Subsequently,

the correlators for N = 4 theory was computed utilizing our novel map by Nicolai and Plefka

[27]. Building upon the old ideas of Dietz and Lechtenfeld [18, 19], we systematically construct

the map up to order g3 and give the direct proof for all statements of the main theorem using the

R operator [28].

Furthermore, we find a simpler map up to the third order that works only in space-time dimen-

sion six [29]. This transformation is derived through guess work, and we address the issue of

uniqueness of the map. We show that the two order g3 maps can be connected at the Jacobian

level. To better understand the connection between scattering amplitude and the map, we initi-

ate the study of this formalism in the light-cone gauge. We calculate the Nicolai map for super

Yang-Mills theory in the light-cone gauge to the second order in the coupling constant [30].

1.2 Thesis outline

We present below an outline of the work and the results presented in the thesis.

In chapter 2, we given an overview of supersymmetric field theories and their properties required

for the subsequent chapters. We also discuss the formulation of field theories in the light-cone

gauge.

In chapter 3, we first review the construction of the Nicolai map in supersymmetric quantum

mechanics as an example. We then discuss the construction of the map up to order g2 for super-

symmetric Yang-Mills theories. We show that the determinant matching condition yields the old

result [26] that super Yang-Mills theories can exist only in D = 3, 4, 6, 10 space-time dimen-

sions (also known as critical dimensions).
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In chapter 4, we present the systematic construction of this formalism. We discuss the general

construction of R operator in the Landau gauge for all on-shell supersymmetric Yang-Mills the-

ories in space-time dimensions D = 3, 4, 6, 10. We require using the Landau gauge to prove the

distributive property of the R operator. We outline the relation between the R operator and the

map. We then derive the new result, the map Tg up to order g3 using the R operator. We perform

checks for the derived map and find that the map exists in the critical dimensions.

In chapter 5, we present a novel map also to order g3 that works only in six dimensions. We

arrive at the map by trial and error and discover that the guessed map is simpler than one derived

using R prescription (4.2). The existence of two maps at order g3 in six dimensions raises ques-

tions about the uniqueness of this approach. We discuss the uniqueness of the maps and show

that one can establish the connection between them at the level of the Jacobi determinant. We

also outline an algorithmic approach to determine the map directly.

In chapter 6, we focus on the construction of N = 1 supersymmetric Yang-Mills theory in the

light-cone gauge. We present the formulation of the Nicolai map in four dimensions, in terms

of physical degrees of freedom, to second order. We also generalize the map to arbitrary D

and establish the connection with the already found map in general gauges [31]. We find that

in this gauge, there are two maps in four dimensions that satisfy all the conditions of the main

theorem. Using the simple four-dimensional map, we compute the scattering amplitudes. We

also discuss the probable connection between Nicolai map and quadratic form structures found

in the light-cone Hamiltonians of Yang-Mills theory.
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Chapter 2

Aspects of quantum field theory

Here, we briefly introduce the Poincaré symmetry and extend it to super Poincaré by adding a

new spacetime symmetry called supersymmetry. We discuss the representations of supersym-

metry algebra and review some basic aspects of supersymmetric Yang-Mills theories. In the end,

we outline the formulation of quantum field theories in the light-cone gauge.

2.1 Symmetries in quantum field theory

Quantum field theory provides a theoretical framework to understand the dynamics of elemen-

tary particles. The set of transformations under which physical laws are invariant (covariant)

are called symmetries. Mathematically, these symmetries can be associated with groups, and

continuous symmetries have an underlying algebra.

2.1.1 Poincaré symmetry

The set of transformations that leave all relativistic quantum field theories invariant in four-

dimensional Minkowski spacetime with a metric signature (+1,→1,→1,→1) are of the form

x→µ = !µ
ω x

ω , (2.1)

which preserves the form of metric and where ! is known as the Lorentz transformation matrix

and obeys !Tω! = ω. The Lorentz transformations with det! = 1 and !0
0 = 1 form the Lorentz

group SO(1, 3) and obeys the algebra

[Mµω , Mεϑ] = iωµεMωϑ + iωωϑMµε → iωµϑMωε → iωωεMµϑ , (2.2)

where Mµω are six 4↑4 anti-symmetric matrices that generate the different Lorentz transforma-

tions (three rotations and three boosts).
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One can introduce new generators

Ji ↓
1

2
εijkMjk , Ki ↓ M0i , (2.3)

where Ji are rotation generators and are hermitian in nature, the boost generators Ki are anti-

hermitian, and this makes the Lorentz group non-compact. This non-compactness implies that

the Lorentz group does not have a finite dimensional unitary representation.

To study the representations of the Lorentz algebra, we introduce the new linear combinations

of the generators Ji and Ki

Ni =
1

2
(Ji + iKi) , N †

i =
1

2
(Ji → iKi) , (2.4)

where Ni and N †

i are hermitian and the algebra is

[Ni , N
†

j ] = 0 , [Ni , Nj] = iεijkNk , [N †

i , N
†

j ] = iεijkN
†

k . (2.5)

This means that these new generators obey the Lie algebra of SU(2), and which proves the fact

that the Lorentz algebra is isomorphic to two complexified su(2) algebras, and therefore, the

representations of these su(2) algebras can be used to construct the finite-dimensional repre-

sentations of the Lorentz algebra. For example (12 , 0) has spin half and denotes a left-handed

spinor, and (0, 12) describes a right-handed spinor. These spinor representations labeled in terms

of su(2) representations are realized by two-component complex spinors. For more details on

spinors, refer to Appendix A.

The Lorentz group can be extended by including space-time translations generated by the gen-

erator Pµ. In terms of Pµ,Mµω the Poincaré algebra reads

[Pµ , Pω ] = 0 ,

[Mµω , Mεϑ] = iωµεMωϑ + iωωϑMµε → iωµϑMωε → iωωεMµϑ ,

[Pε , Mµω ] = →iωεµPω + iωεωPµ . (2.6)
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2.1.2 Supersymmetry

The relativistic quantum field theories with additional symmetry that relates bosons (denoting

force carriers) and fermions (describing matter particles) are called supersymmetric field theo-

ries. The supersymmetry generator QI
ϖ (where ϑ is the spinor index and I = 1, ...N labels the

different supercharges) act as

Q|boson↔ = |fermion↔ , Q|fermion↔ = |boson↔ , (2.7)

and they change the spin of a particle and, hence, its space-time properties. These generators,

QI
ϖ, are anti-commuting fermionic generators and transform under the spinor representation of

the Lorentz group and satisfy the following algebra

{QI
ϖ , Q

J
ϱ} = {Q̄I

ϖ̇ , Q̄
J
ϱ̇
} = 0 ,

{QI
ϖ , Q

J
ϖ̇} = 2 ϖIJϱµ

ϖϖ̇Pµ , (2.8)

where Q̄ is related to Q by complex conjugation. The commutators involving supersymmetry

and Poincaré generators are

[Pµ , Q
I
ϖ] = [Pµ , Q̄

I
ϖ̇] = 0 ,

[Mµω , Q
I
ϖ] = i(ϱµω)

ϱ
ϖ Q

I
ϱ ,

[Mµω , Q
ϖ̇ I ] = i(ϱµω)

ϖ̇
ϱ̇
Q̄ϱ̇ I . (2.9)

From the above commutation relations, one can find that the particles that belong to the same

supermultiplet have the same mass but different spins, and the fermions and bosons in a super-

multiplet are equal in number. Also, for supersymmetric theories, the vacuum state is annihilated

by all the supersymmetric generators, and the energy P0 is nonnegative.

Supersymmetric field theories are formulated by constructing supersymmetric representations in

terms of fields. Consider the action of infinitesimal supersymmetry transformation on a multiplet

of fields (ς,φ, ...)

ϖςς = (εQ+ ε̄Q̄)ς , ϖςφ = (εQ+ ε̄Q̄)φ , (2.10)
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where εϖ is an anti-commuting parameter such that {[εϖ , .]} = 0. To check the algebraic struc-

ture of the infinitesimal supersymmetry transformation, consider the commutation relation be-

tween two successive infinitesimal transformations of the scalar field

[ϖ1, ϖ2]ς = →2i(ε1ϱ
µε̄2 → ε2ϱ

µε̄1)↼µς . (2.11)

From the above relation, one can obtain the action of supersymmetry transformation on the other

fields and can check that supersymmetry algebra closes on the multiplet. Theories, where one

needs the equation of motion to close the algebra, are called on-shell supersymmetry field the-

ories, and if the algebra follows without using the equation of motion, such theories are called

off-shell supersymmetric.

Under the action of supersymmetry transformations, the constructed Lagrangian in supersym-

metric theories must (at most) transform as a total derivative.

2.2 Supersymmetric Yang-Mills theory

Let us examine a theory with a non-abelian gauge field Aa
µ(x) and a Majorana fermion ↽a(x).

As supersymmetry commutes with the gauge symmetry, both fermions and bosons transform

under the adjoint representation of the gauge group SU(N) or U(N) labeled by the index a.

The gauge transformation of the super multiplet fields are

Aa
µ ↗ Aa

µ + ↼µ!
a + gfabcAb

µ!
c ,

↽a ↗ ↽a + gfabc↽b!c , (2.12)

where !a denotes an infinitesimal gauge transformation, g is the coupling, and fabc corresponds

to the antisymmetric structure constants that satisfy

[T a
r , T b

r ] = ifabcT c
r , (2.13)
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where T a belongs to the generators of the gauge group for any representation r. In addition to

this, the structure constants obey the Jacobi identity

fabcfade + facdfabe + fadbface = 0 . (2.14)

For the adjoint representation (T b
G)ac = ifabc, and its dimensions for SU(N) gauge group is

N2 → 1 and the structure constants obey

fabcfabd = Nϖcd . (2.15)

For the description of spinors, we need to introduce a set of ⇀ matrices that are defined through

the Clifford algebra relation

{⇀µ , ⇀ω} = 2 ωµω I , (2.16)

where I denotes the identity matrix in spinor space, and we have suppressed the spinor indices

ϑ, ⇁ = 1, 2, ......r ( r denotes the number of independent fermion components). The trace of

(2.16) gives

tr I = r , (2.17)

where trace over spinor indices are denoted by tr. The trace of an odd number of gamma matrix

vanishes, and the traces over the product of gamma matrices are given by

tr(⇀µ1 , ....., ⇀µn) =
n∑

i=2

(→1)i ωµ1µi tr(⇀µ2 ....⇀̂µi ....⇀µn) , (2.18)

where the hat on the gamma matrix indicates the excluded matrix from the trace.

Gamma matrices can be constructed by tensoring the product of sigma matrices. For even di-

mensions, the representation of gamma matrix has 2
D
2 complex degrees of freedom, whereas for

odd D, the representation is 2
D→1
2 dimensional. In any even dimension, the degree of freedom

11



of the spinor can be reduced by a factor of two by using the Weyl condition

↽ =
1

2
(1± ⇀D+1)↽ . (2.19)

Another condition that one can apply on spinors is the Majorana condition, which is

↽̄ = (↽TC) , (2.20)

where C describes the charge conjugation matrix. This condition halves the degree of freedom

of the spinor and works only in specific dimensions (for more details, see Appendix B). For

spinors in specific dimensions, one can apply both the Majorana and Weyl condition that de-

creases the degrees of freedom by a factor of four.

The N = 1 supersymmetric Yang-Mills action with gauge invariant part is

Sinv =

∫
dDx

[
→1

4
F a
µωF

µω a +
i

2
↽̄a⇀µ(Dµ↽)

a

]
, (2.21)

where,

F a
µω = ↼µA

a
ω → ↼ωA

a
µ + g fabcAb

µ A
c
ω , Dµ↽

a = ↼µ↽
a + g fabcAb

µ ↽
c .

Supersymmetry requires that the number of bosonic and fermionic degrees of freedom are equal.

A gauge field in D dimension has D → 2 on-shell real degrees of freedom, and the fermion has

2[
D
2 ] on-shell, real degrees of freedom. Naively, for any dimension these two numbers are not

equal; we must impose additional conditions on spinors for matching. One can impose different

conditions like Majorana or Weyl on the fermion to decrease its number of independent com-

ponents. Below, we discuss the different scenarios when the bosonic and fermionic degrees of

freedom can be matched

Aµ ↽M ↽W ↽MW

D=3 1 1 - -
D= 4 2 2 2 -
D=6 4 - 4 -

D=10 8 16 16 8

12



where ↽M is Majorana spinor, ↽W is Weyl spinor, and ↽MW is Majorana-Weyl spinor. For

D > 10, the degrees of freedom cannot be matched, so for supersymmetric Yang-Mills theories,

the only options are

D = 3, 4, 6, 10 ↘≃ r = 2, 4, 8, 16 , (2.22)

and this gives the relation

r = 2(D → 2) , (2.23)

which we will later rederive within the framework of the Nicolai map.

Under the following supersymmetry transformations

ϖAa
µ = iε̄ ⇀µ↽

a, ϖ ↽a = →1

2
ε ⇀µωF a

µω ,

the on-shell action (2.21) is invariant up to a total derivative. One needs to use the Fierz identity

to show this invariance, and this condition only holds in D = 3, 4, 6, 10 dimensions. It was first

proved in [26] that supersymmetric Yang-Mills theories without any matter only exist in these

dimensions.

Due to the manifest Lorentz invariance, the gauge theories have an additional redundancy that

leads to the propagation of unphysical degrees of freedom. These redundancy in the path integral

can be fixed using the gauge fixing procedure [23] which gives additional contribution to the

Lagrangian

Sgf =

∫
dDx

(
1

2ξ
(Ga[Aµ])

2 + C̄a↼G
a[Aµ]

↼Ab
µ

(DµC)a
)

, (2.24)

which ensures that the gauge field propagator and path integral are properly defined.

The objects of interest, correlation functions, for this theory are computed by taking the full

action S = Sinv + Sgf . For the operators O1(x1)....On(xn) of super Yang-Mills theory, the

13



correlation function is defined as

〈〈
O1(x1)....On(xn)

〉〉
=

∫
DAD↽DC DC̄ ei Sinv [g,A,φ]+i Sgf [g,A,C,C̄] O1(x1)....On(xn) .

(2.25)

Note that the correlation functions are properly normalized for all g. This is due to fact that the

vacuum energy vanishes in supersymmetric theories [1] as the normalization term denotes the

sum of vacuum energy.

In this thesis, we will mostly work with the Landau gauge

Ga[Aµ] = ↼µAa
µ . (2.26)

It can be obtained by setting ξ ↗ 0 in the part of the action that contains gauge fixing term

(2.24). The limit corresponds to inserting the delta function that imposes the gauge condition.

The ghost propagator

Gab(x) ↓ Ca(x)C̄b(0) , (2.27)

obeys

→↼µ(DµG)ab(x) = ϖabϖ(x) . (2.28)

One can study supersymmetric theories in another popular gauge known as the axial gauge; it is

defined as

Ga(A) = nµAa
µ (2.29)

where nµnµ = 1. For the case when n2 = 0 it is known as the light-cone gauge or light-front.

In the axial-type gauges, there are no ghost fields, as they can be dropped out from the path

integral. This specific light cone gauge is called LC4, and the field theories using this approach

were studied by Leibbrandt and Lee [32, 33]. In this thesis, specifically in the Chapter 6, we

adopt the LC2 light-cone gauge approach, where only the physical degrees of freedom of the

theory propagates. We outline below this approach in some detail.
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2.3 Field theories in the light-cone gauge

The laws of nature are independent of the choice of frames and coordinates. Similarly, in quan-

tum field theory, the physical observables do not depend on the gauge choice. In certain coor-

dinate systems, some properties become more evident than in others. The light-cone gauge is

particularly interesting in this regard because it offers a unique perspective on scattering ampli-

tudes, and hidden symmetries become more apparent in this formalism.

The light-cone coordinates were first proposed by Dirac for relativistic theory in [34], demon-

strating that within the light-cone framework, any of the null coordinates can be chosen as time.

In this formulation, seven out of ten generators of Poincaré symmetry are independent of time

derivatives, and the Hamiltonian eigenvalue equation does not contain square roots.

In four dimensions, with Minkowski metric ωµω = diag(→1, 1, 1, 1), the light cone coordinates

are defined as

x+ =
1⇐
2
(x0 + x3) , x↑ =

1⇐
2
(x0 → x3) ,

x =
1⇐
2
(x1 + i x2) , x̄ =

1⇐
2
(x1 → i x2) , (2.30)

and the corresponding derivatives are

↼± =
1⇐
2
(↼0 ± ↼3) , ↼ =

1⇐
2
(↼1 + i ↼2) , ↼̄ = ↼↓ , (2.31)

where ↼± = ↼
↼x±

and ↼↑x+ = ↼+x↑ = →1. The coordinate x+ is chosen to be time and the

equivalent momentum p+ = →p↑ is the light-cone Hamiltonian.

Light-cone field theories can be developed in two ways. In the first approach, one can start with

the covariant Lagrangian, and by using the appropriate gauge condition and constraint equations,

the relevant Lagrangian can be expressed in terms of the helicity fields. This method is outlined

in detail for N = 1 supersymmetric Yang-Mills in Chapter 6.

In the second approach, field theories can be constructed from the symmetry principles. For
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light-cone field theories, Poincaré invariance is not manifest, and must be explicitly checked

under the Poincaré group. The non-manifest nature of Poincaré invariance can be used to con-

struct interaction vertices in light-cone field theories. The idea is that Hamiltonian is also an

element of the Poincaré algebra and can be fixed using the closure of Poincaré algebra. This

method was first used in [35] to derive interaction vertices for arbitrary spins up to order g. The

algebra-closure approach allows for the consistent derivation of interaction vertices perturba-

tively. Recently, this framework [35–37] was expanded to include higher derivative interaction

vertices for arbitrary spin theories [38]. There has been considerable work on constructing con-

sistent higher-spin interaction vertices in the light front approach using various methods [39–42].

While these ideas are exciting, they are not covered in this thesis.
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Chapter 3

Nicolai map at order g2 for supersymmetric Yang-Mills theory

The material presented in this chapter is mostly based on author’s publication [24].

This chapter focuses on the construction of the Nicolai map up to second order in the coupling

constant for pure supersymmetric Yang-Mills theories in arbitrary dimensions. The transforma-

tion is derived through trial and error, starting with an educated guess that maps the free bosonic

theory to a fully interacting Yang-Mills theory. The determinant matching condition yields an

old result that pure supersymmetric Yang-Mills theories can exist only in space-time dimensions

D = 3, 4, 6, 10.

3.1 Notations and conventions

Supersymmetric theory with at most quadratic fermionic terms in the Lagrangian, can be de-

fined by a non-linear and non-local transformation of the bosonic fields (“Nicolai map”) that

linearizes the bosonic action in such a way that the Jacobian of the bosonic field transformation

equals the fermion determinant obtained upon integrating out all anticommuting fields.

We begin by presenting the construction of the Nicolai map using supersymmetric quantum

mechanics as an example, based on the seminal work by Ezawa and Klauder [43]. Consider a

system with two degrees of freedom q(t) (bosonic) and φ(t) (fermionic). The Euclidean action

is given by

S =

∫
dt

[
1

2
q̇2(t) + q̇(t)V [q(t)] +

1

2
V 2 [q(t)] + φ̄(t)

(
d

dt
+ V → [q(t)]

)
φ(t)

]
, (3.1)

where the form of superpotential V (q) is not required and V → = dV
dq .

The above Lagrangian is invariant (up to a total derivative) under infinitesimal supersymmetric

17



transformations

ϖq(t) = ε̄ φ(t) + φ̄(t) ε, ϖ φ(t) = ε (q̇(t)→ V [q(t)]) , ϖ φ̄(t) = ε̄ (→q̇(t)→ V [q(t)]) ,

(3.2)

where ε, ε̄,φ, and φ̄ are Grassmann variables; all of them anti-commute with each other.

The ansatz for the transformation Tg q(t) is

Tg q(t) ↓ q→(t) = q(t) +

∫
dt→ θ(t→ t→)V [q(t→)] , (3.3)

where g is the coupling of V (q) and θ(t→ t→) is the step function.

We can show that Tg q(t) maps the free action to the full bosonic action

∫
dt

(
1

2

d q→(t)

dt

)2

=

∫
dt

(
1

2
q̇2(t) + q̇(t)V [q(t)] +

1

2
V 2 [q(t)]

)
. (3.4)

The Jacobi determinant of the transformation Tg q(t) is

det

(
ϖq→(t)

ϖq(t→)

)
= det (ϖ(t→ t→) + θ(t→ t→)V → [q(t→)]) . (3.5)

As the action (3.1) is quadratic in fermions, one can integrate out the fermions using the standard

Gaussian integration method (see Appendix C), and we get

”FD(q) = det

[(
d

dt
+ V → [q(t)]

)
ϖ(t→ t→)

]
,

= det

[
d

dt
ϖ(t→ t→)

]
det (ϖ(t→ t→) + θ(t→ t→)V → [q(t→)]) . (3.6)

From the above equation, we can see that the Jacobian determinant (3.5) equals the fermion de-

terminant (3.6), up to a constant. Therefore, supersymmetric theories can be formulated without

using anticommuting variables. This approach to supersymmetric quantum mechanics is simple

and special because the map (3.3) can be easily inferred from the action (3.1) and has a closed

form. However, in general, constructing such a map requires tedious derivation and often results

in an infinite series, making the verification of the transformation more complex.

18



Our focus here is on supersymmetric Yang-Mills theories. In this chapter, we will outline the

construction of Nicolai maps for supersymmetric Yang-Mills theories. We will explain this re-

sult (which for N = 1 super-Yang-Mills theory in four dimensions was obtained and proved

long ago in [16]) in simple terms by explicitly rederiving the map up to O(g2), and extending it

to all pure supersymmetric Yang-Mills theories. As a new result, using this approach, we will

recover the well-known relation of [26] that interacting pure supersymmetric Yang-Mills theo-

ries can exist only in space-time dimensions D = 3, 4, 6, 10.

We work here in Euclidean space, rendering upper and lower indices equivalent. However,

the Euclidean metric is not crucial to our discussion, as all of these results can be derived in

spacetime with a Lorentzian signature as in [18, 19]. Consider the pure N = 1 super Yang-

Mills in D dimensions that contains one spin field Aa
µ(x) and a spinor field ↽a(x) (spinor index

suppressed). The invariant part of D dimensional N = 1 super Yang-Mills is

Sinv =

∫
dDx

(
1

4
F a
µωF

a µω +
1

2
↽̄a⇀µDµ↽

a

)
.

The free scalar propagator is (with the Laplacian ↭ ↓ ↼µ↼µ)

C(x) =

∫
dDk

(2▷)D
eikx

k2
≃ ↭C(x) = →ϖ(x) . (3.7)

where ϖ(x) ↓ ϖ(D)(x) is the D-dimensional ϖ-function. For arbitrary D we have

C(x) =
1

(D → 2)D▷D/2
#

(
D

2
+ 1

)
(x2)1↑

D
2 ; (3.8)

in particular, for D = 4

C(x) =
1

4▷2 x2
. (3.9)

When writing ↼φC(x → y) ↓ (↼/↼xφ)C(x → y) ↓ ↼x
φC(x → y), the derivative by convention

always acts on the first argument. Careful track needs to be kept of the sign flips ↼x
φC(x→ y) =

→↼y
φC(x→ y) = +↼x

φC(y → x) = →↼y
φC(y → x),
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The free fermionic propagator is

⇀µ↼µS0(x) = ϖ(x) ≃ S0(x) = →⇀µ↼µC(x) , (3.10)

where the spinor indices are suppressed. This implies S0(x → y) = →S0(y → x). As discussed

in chapter 2, that the independent fermionic degrees of freedom (spinor components) will be

designated by r, and it depends on D including extra factors of 1
2 for Majorana or Weyl spinors,

and 1
4 for Majorana-Weyl spinors, respectively. For pure supersymmetric Yang-Mills theories,

the degrees of freedom matches for these case

D = 3, 4, 6, 10 ↘≃ r = 2, 4, 8, 16 . (3.11)

With Minkowskian signature, for D = 4 space-time, this corresponds to a Majorana spinor,

for D = 6 to a Weyl spinor, while for D = 10 we have one more factor of 1
2 because of the

Majorana-Weyl condition. For free theories, this equality follows trivially (see Appendix C)

∫
DA e

1
2A↭A ⇒ [det(→↭)]↑

D
2 ,

∫
DC DC̄ e

1
2 C̄↭C ⇒ [det(→↭)] ,

∫
D◁ e

1
2 ↽̄/↼↽ ⇒ [det(→↭)]

r
4 , (3.12)

by demanding the cancellation of the free determinants. It is just a consequence of the equality

of bosonic and fermionic degrees of freedom on-shell for free theories.

We shall rederive this constraint in section 3 without any use of anti-commuting objects.

3.2 Main theorem

Supersymmetric gauge theories can be formulated purely in terms of bosonic variables if the

gauge fields admit a non-linear and non-local transformation Tg of the Yang-Mills fields

Tg : Aa
µ(x) ⇑↗ A→ a

µ (x, g;A) ,
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that can be inverted perturbatively such that

1. The transformation Tg(A) when substituted in the free bosonic Lagrangian (Maxwell the-

ory) yields the full interacting bosonic Lagrangian (Yang-Mills theory).

S0[A
→(A)] = Sg[A] ↓

1

4

∫
dDx F a

µωF
a µω .

2. The map Tg preserves the gauge condition

Tg[G
a(A)] = Ga(A) .

3. The Jacobi determinant of Tg is equal to the product of the Matthews-Salam-Seiler (MSS)

determinant (or Paffian) [21, 22] obtained by integrating out the fermions and the Faddeev-

Popov (FP) determinant [23] (obtained by integrating out the ghost fields)

det

(
ϖA→ a

µ (x, g;A)

ϖAb
ω(y)

)
= ”MSS[A] ”FP [A] ,

at least order by order in perturbation theory.

3.3 The map at order g2

The ansatz for the transformation Tg A is

Tg A ↓ A→ a
µ (x) = Aa

µ(x) + g fabc

∫
du ↼φC(x→ u)Ab

µ(u)A
c
φ(u)

+
1

2
g2fabcf bde

∫
du dv ↼εC(x→ u)Ac

φ(u)

{
↼µC(u→ v)Ad

φ(v)A
e
ε(v)

↼φC(u→ v)Ad
ε(v)A

e
µ(v) + ↼εC(u→ v)Ad

µ(v)A
e
φ(v)

}
+ O(g3) ,

(3.13)

where the dimensional dependence in the measure is suppressed for convenience. The inverse

map can be found by inverting the transformation (3.13) perturbatively.
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3.4 Consistency tests of the map

We now perform the three checks of the main theorem (3.2) for our ansatz Tg(A) up to O(g2).

3.4.1 Gauge condition

In this chapter, we are working with the gauge Ga[Aµ] = ↼µAa
µ. We need to show that

↼µA
→a
µ = ↼µA

a
µ +O(g3) . (3.14)

Applying ↼µ to the terms of the map (3.13), we obtain

↼µA
→a
µ = ↼µA

a
µ + g fabc

∫
du ↼µ ↼φC(x→ u)Ab

µ(u)A
c
φ(u)

+
1

2
g2fabcf bde

∫
du dv ↼µ ↼εC(x→ u)Ac

φ(u)

{
↼µC(u→ v)Ad

φ(v)A
e
ε(v)

↼φC(u→ v)Ad
ε(v)A

e
µ(v) + ↼εC(u→ v)Ad

µ(v)A
e
φ(v)

}
+ O(g3) .

The derivatives in order g term are symmetric under the exchange of µ and ↽, but the gauge fields

are anti-symmetric due to the color index. Hence, the order g contribution vanishes. Similarly,

the O(g2) also vanishes due to the manifest anti-symmetry under the exchange of two space-time

indices.

3.4.2 Free action condition

Coming to the first statement of the main theorem, we show that the transformation satisfy

1

2

∫
dxA→a

µ (x) (→↭ ϖµω + ↼µ↼ω)A
→a
ω (x) =

1

4

∫
dx F a

µωF
a
µω . (3.15)

The second term on both the left and right side in the above equation can be ignored due to the

gauge condition. We plug the map (3.13) in the left-hand side of (3.15) and simplify order by

order. At the leading order, we obtain the kinetic term. For order g, we get

∫
dxA→a

µ (x)|O(g0) (→↭ ϖµω)A
→a
ω (x)|O(g) ,
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= →g fabc

∫
dx du Aa

µ(x)↭x ↼φC(x→ u)Ab
µ(u)A

c
φ(u) ,

= →g fabc

∫
dx ↼φA

a
µ(x)A

b
µ(x)A

c
φ(x) =

1

4

∫
dx F a

µωF
a
µω |O(g) . (3.16)

In the second line, we partially integrated ↼φ on the left gauge field and used the relation

↭xC(x→ u) = →ϖ(x→ u). At order g2, we have two contribution

→1

2

∫
dxA→a

µ (x)|O(g) ↭A→a
µ (x)|O(g) →

∫
dxA→a

µ (x)|O(g0) ↭A→a
µ (x)|O(g2) . (3.17)

We first solve for the left part in the above equation

= →g2

2
fabcfade

∫
dx du dv ↼φC(x→ u)Ab

µ(u)A
c
φ(u)↭x ↼εC(x→ v)Ad

µ(v)A
e
ε(v) . (3.18)

After partial integration and using the relation ↭xC(x→ u) = →ϖ(x→ u), we obtain

= →g2

2
fabcfade

∫
dx du Ab

µ(x)A
c
φ(x) ↼φ↼εC(x→ u)Ad

µ(u)A
e
ε(u) . (3.19)

We now simplify the second part of (3.17)

= →1

2
g2fabcf bde

∫
dx du dv Aa

µ(x)↭x ↼εC(x→ u)Ac
φ(u)

{
↼µC(u→ v)Ad

φ(v)A
e
ε(v)

↼φC(u→ v)Ad
ε(v)A

e
µ(v) + ↼εC(u→ v)Ad

µ(v)A
e
φ(v)

}
,

= →1

2
g2fabcf bde

∫
dx du ↼εA

a
µ(x)A

c
φ(x)

{
↼µC(x→ u)Ad

φ(v)A
e
ε(v)

↼φC(x→ u)Ad
ε(v)A

e
µ(v) + ↼εC(x→ u)Ad

µ(v)A
e
φ(v)

}
.

Using the fact that the equation is symmetric under exchange of a ⇓ c and µ ⇓ ↽. We can

rewrite the above equation as

= →1

4
g2fabcf bde

∫
dx du ↼ε(A

a
µ(x)A

c
φ(x))

{
↼µC(x→ u)Ad

φ(v)A
e
ε(v)

↼φC(x→ u)Ad
ε(v)A

e
µ(v) + ↼εC(x→ u)Ad

µ(v)A
e
φ(v)

}
,

=
1

4
g2fabcfade

∫
dx Ab

µ(x)A
c
φ(x) A

d
µ(x)A

e
φ(x)

+
1

2
g2fabcfade

∫
dx du Ab

µ(x)A
c
φ(x) ↼ε↼φC(x→ u)Ad

µ(u)A
e
ε(u)
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The blue color term from the above equation cancels against the (3.19). We, therefore, proved

the first condition of the main theorem that the transformation (3.13) maps the free bosonic the-

ory to a fully interacting Yang-Mills theory. We also found out that the fulfillment of action and

the gauge condition does not use the special value of D, and therefore work in all dimensions.

The most non-trivial requirement for the map is the matching of determinants. We now verify

the third statement of the main theorem for our ansatz (3.13).

3.4.3 Matching of determinants

For the (perturbative) computation of the relevant functional determinants (or rather their loga-

rithms), we use the standard formula

log det
(
1→X

)
= Tr log

(
1→X

)
= →

↔∑

n=1

1

n
TrXn . (3.20)

The Jacobi determinant corresponding to the transformation (3.13) is

det

(
ϖA→ a

µ (x)

ϖAb
ω(y)

)
= ϖµωϖ

abϖ(x→ y) + g fabc
{
↼φC(x→ y)Ac

φ(y) ϖµω → ↼ωC(x→ y)Ac
µ(y)

}

+
1

2
g2fadbfdgh

∫
dv ↼εC(x→ y)

{
↼µC(y → v)Ag

ω(v)A
h
ε(v)

↼ωC(y → v)Ag
ε(v)A

h
µ(v) + ↼εC(y → v)Ag

µ(v)A
h
ω(v)

}
+

+
1

2
g2fadcfdgh

∫
du dv ↼εC(x→ u)Ac

φ(u) ϖ(y → v)
{
↼µC(u→ v)

(
ϖφωϖ

gbAh
ε(v) + ϖεωϖ

hbAg
φ(v)

)

+ ↼φC(u→ v)
(
ϖεωϖ

gbAh
µ(v) + ϖµωϖ

hbAg
ε(v)

)

+ ↼εC(u→ v)
(
ϖµωϖ

gbAh
φ(v) + ϖφωϖ

hbAg
µ(v)

)}
+O(g3) .

Using the identity (3.20), and the fact that ↼εC(0) = 0 one can show that the contribution to the

Jacobian determinant at order g vanishes. At order g2, we have two contributions

log det

(
ϖA

↑a
µ (x)

ϖAb
ω(y)


O(g2)

= Tr


ϖA→

ϖA


O(g2)


→
(
2 · 1

2

)
Tr


ϖA→

ϖA


O(g)

ϖA→

ϖA


O(g)


. (3.21)
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The trace (Tr) is computed by putting µ = 0, b = a, y = x and integrating over x. Solving the

above equation and using the SU(n) identity fabcfabd = nϖcd, we obtain

log det

(
ϖA

↑a
µ (x)

ϖAb
ω(y)


= ng2

∫
dx dy

2D → 3

2
↼µC(x→ y)Aa

µ(y) ↼ωC(y → x)Aa
ω(x)

→D → 2

2
↼µC(x→ y)Aa

ω(y)↼µC(y → x)Aa
ω(x)


.

(3.22)

The path integral for pure N = 1 super Yang-Mills reads

Z =

∫
DAD↽DCDC̄ e↑Sinv(A,φ)↑Sgf(A,C,C̄) . (3.23)

We integrate out the fermionic variables using the standard Grassmann integral (see Appendix

C for details) and obtain the Matthews-Salam determinant

det

⇀µ

(
ϖab↼µ → gfabmAm

µ

) 1
2 = det (⇀µ↼µ)

1
2 · det(1→ Y )

1
2 , (3.24)

where the relevant function matrix is,

Y ab(x, y;A) = g fabm⇀µ⇀ω↼µC(x→ y)Am
ω (y) . (3.25)

The factor of 1
2 in the determinant accounts for the correct counting of physical fermionic degrees

of freedom (technically due to the Majorana or Weyl condition when performing the Berezin

integration). Using the identity (3.20), we get

1

2
log det

(
1→ Y

)
=

1

4
ng2 tr (⇀ϖ⇀φ⇀ϱ⇀ε)

∫
dx dy ↼ϖC(x→ y)Am

φ (y) ↼ϱC(y → x)Am
ε (x) .

(3.26)

Here again, the contribution at order g trivially vanishes, and the trace (tr) is associated with the

trace over spinor indices. The trace of four ⇀-matrices can be obtain from (2.18) and reads

tr (⇀ϖ⇀φ⇀ϱ⇀ε) = →r (ϖϖφϖϱε → ϖϖϱϖφε + ϖϖεϖφϱ) . (3.27)
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Plugging the trace formula in the (3.26), we get

log (”MSS[A]) = ng2
∫

dx dy
 r

2
↼µC(x→ y)Aa

µ(y) ↼ωC(y → x)Aa
ω(x)

→r

4
↼µC(x→ y)Aa

ω(y) ↼µC(y → x)Aa
ω(x)


, (3.28)

where r counts the number of off-shell fermionic degrees of freedom.

We also have contributions from Ghost determinants. The ghost fields are anti-commuting scalar

fields. We integrate them out similar to the fermion case and obtain the following determinant

det (↼µDµ) = det
(
ϖab↼µ → gfabmAm

µ


↼µ

)
= det(↭) · det(1→ Z) , (3.29)

where Zab(x, y;A) = gfabm↼µC(x→ y)Am
µ (y). The non-trivial contribution from ghost deter-

minant is

log det (1→ Z) =
1

2
ng2

∫
dx dy ↼µC(x→ y)Am

µ (y)↼ωC(y → x)Am
ω (x) + O(g3) ,

(3.30)

Our aim was to show that the ansatz (3.13) satisfies the third statement of the main theorem.

log det

(
ϖA→ a

µ (x, g;A)

ϖAb
ω(y)

)
= log ( ”MSS[A] ”FP [A] ) .

We take the product of fermion (MSS) (3.28) and ghost (FP) (3.30) determinants and equate

them to the Jacobi determinant of the transformation (3.22) that gives us the following two

relations

2D → 3

2
=

1 + r

2
, and

D → 2

2
=

r

4
, (3.31)

which gives

r = 2(D → 2) , (3.32)
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and are thus satisfied for

D = 3, 4, 6, 10 ↘≃ r = 2, 4, 8, 16 . (3.33)

We have discovered that the matching of determinants depends on the dimension of our field

theory, which imposes a constraint on the allowed values of space-time dimensions. We showed

that the supersymmetric Yang-Mills theories can only exist in D = 3, 4, 6, 10 dimensions. This

result was first obtained in [26] using the closure of supersymmetry transformation and the spe-

cific Fierz identity. We were able to recover this classic old result without requiring the closure

of supersymmetry algebra. This means that one can formulate supersymmetric Yang-Mills the-

ories entirely in D = 3, 4, 6, 10 space-time dimensions without using anti-commuting variables.

We have confirmed that our ansatz (3.13) satisfies all three conditions of the main theorem.

Additionally, we found that the map at order g2 does not require any use of gauge condition. This

map can be used to quantize the super Yang-Mills theory in terms of bosonic variables. A natural

question that arises is whether this derived transformation (3.13) can be used to compute objects

of interest like scattering amplitudes or correlation functions. The correlation function for N =

4 super Yang-Mills was computed in [27] using our map (3.13). Higher-loop computations

require a higher-order map in the coupling constant. In the next chapter, we will discuss the

systematic construction of a map at order g3 in the coupling constant.
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Chapter 4

Systematic construction of the map and its extension to g3

The material presented in this chapter is based on author’s publication [28].

In this chapter, we present the formal construction of the Nicolai map up to the third order in

the coupling constant for pure supersymmetric Yang-Mills theories in arbitrary dimensions. We

derive the infinitesimal generator R, a non-local and non-linear functional differential operator,

of the inverse Nicolai map. This operator serves as a starting point for constructing Nicolai maps.

We perform the checks for the map derived using R prescription and find that the existence of

map in space-time dimensions D = 3, 4, 6, 10 holds at the third order.

4.1 Introduction

Supersymmetric Yang-Mills theories can be developed in terms of bosonic variables using the

Nicolai map, which was initially constructed and studied through trial and error. For lower order

in perturbation theory, the map was simpler and easier to guess, as shown in (3). However, at

higher orders in the coupling constant, the form of the map gets complicated due to the rapid

increase in a number of terms (4.51). The work of Dietz, Flume, and Lechtenfeld [18–20] intro-

duced a new and systematic way of constructing the map.

In this chapter, we will show how to construct the R operator for any pure super Yang-Mills

theory. We will present the general construction of this operator valid for all on-shell supersym-

metric Yang-Mills theories in space-time dimensions D = 3, 4, 6, 10. The proof is largely based

on existing work [44], but we have generalized it for critical dimensions in the Landau gauge.

Our main goal in this chapter is to work out the infinitesimal generator R and use it to derive the

map at order g3. We will explain in detail how all the necessary conditions are satisfied.

We here work in Euclidean space and the on-shell action of N = 1 super Yang-Mills in D
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dimensions (2.21) that consists of a gauge-invariant part

Sinv = 1
4

∫
dx F a

µω(x)F
a
µω(x) + 1

2

∫
dx ↽̄a(x) ⇀µ(Dµ↽)

a(x) , (4.1)

and a gauge-fixing part

Sgf =
1

2ξ

∫
dx Ga(A)Ga(A) +

∫
dx C̄a(x)

↼Ga(A)

↼Ab
µ(x)

(DµC)b(x) . (4.2)

The full action Sinv + Sgf is invariant under the BRST (or Slavnov) variations

sAa
µ = (DµC)a , s↽a = →gfabc↽bCc , sCa = →g

2f
abcCbCc , sC̄a = →1

⇀ G
a(A) , (4.3)

for all positive ξ and an arbitrary gauge-fixing function Ga(A) (which for simplicity we assume

not to depend on g). In the remainder, we will specialize in the Landau gauge function Ga =

↼µAa
µ which can be obtained for ξ ↗ 0. For the ghost kinetic term, we obtain the standard form

∫
dx C̄a(x)

↼Ga(A)

↼Ab
µ(x)

(DµC)b(x) =

∫
dx C̄a(x) ↼µ(DµC)a(x) . (4.4)

The n-point correlation function of a set of operators Oj(xj) in super Yang-Mills theory is

〈〈
O1(x1)....On(xn)

〉〉
=

∫
DAD↽DC DC̄ e↑Sinv [g,A,φ]↑Sgf [g,A,C,C̄] O1(x1)....On(xn) .

(4.5)

The operators O1(x1)....On(xn) are bosonic in nature, and we integrate out the fermions and

ghosts, and obtain purely bosonic expectation value

〈
O1(x1)....On(xn)

〉
=

∫
DAe↑Sg [A] ”MSS[A]”FP [A] O1(x1)....On(xn) . (4.6)

In the next section (4.2.2), we will show how one can express correlation functions of fully in-

teracting theory in terms of free bosonic correlators.

We state below the revised version of the main theorem [15].
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4.1.1 Main theorem

Supersymmetric gauge theories are characterized by the existence of a non-linear and non-local

transformation Tg of the Yang-Mills fields

Tg : Aa
µ(x) ⇑↗ A→ a

µ (x, g;A) ,

which is invertible, at least in the sense of a formal power series such that

1. The Yang-Mills action without gauge-fixing terms is mapped to the bosonic abelian action,

S0[A
→] = Sg[A] , (4.7)

where Sg[A] =
1
4


dxF a

µωF
a
µω is the Yang-Mills action with gauge coupling g.

2. On the gauge surface Ga[A] ↓ ↼µAa
µ = 0, the Jacobi determinant of Tg is equal to the

product of the MSS 1 and FP determinants

det

(
ϖA→ a

µ (x, g;A)

ϖAb
ω(y)

)
= ”MSS[A] ”FP [A] , (4.8)

at least order by order in perturbation theory.

3. The gauge fixing function

Ga[A] is a fixed point of Tg. (4.9)

In the next section, we will show the derivation of the R operator and how to obtain the map Tg

from it. In this chapter, we won’t outline the proof of the main theorem using the properties of

the R operator. Our focus here is on the construction of the R operator and on the properties

of the map. For more details on the R prescription and the main theorem proof, please refer to

[28, 45].
1With the understanding that !MSS is really a Pfaffian for Majorana fermions.
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4.2 Introduction to R prescription

The construction of the R operator is based on the concept that the derivative of action with re-

spect to coupling constant g can be expressed as a super variation of some fermionic functional.

This idea was first given by Zumino in proof of the vanishing of vacuum energy of supersym-

metric theories [1].

Consider X be a functional of the bosonic fields Aa
µ, the linear response of its vacuum expecta-

tion value to a change in the coupling constant is given by

d

dg

〈
X
〉

=
d

dg

〈〈
X
〉〉

=


dX

dg


→


d(Sinv + Sgf)

dg
X


=:

〈
R X

〉
. (4.10)

Here, the vacuum expectation values
〈〈
· · ·

〉〉
and

〈
· · ·

〉
were defined in (4.5) and (4.6), and we

have dropped subscripts g or ξ for simplicity of notation.

The R operator is a functional differential operator defined as the generator of infinitesimal shifts

of the coupling constant g of the theory. We use the supersymmetry to rewrite the right-hand

side in terms of a derivational operator R. We introduce

”ϖ = → 1

2r
fabc

∫
dx

(
⇀εφ↽a(x)

)
ϖ
Ab

ε(x)A
c
φ(x) , (4.11)

and use the standard supersymmetry variations (with supersymmetry parameter stripped off)

ϖϖ↽
a
ϱ = 1

2(⇀
µω)ϱϖF

a
µω , and ϖϖA

a
µ = →(↽̄a⇀µ)ϖ , (4.12)

to compute

ϖϖ”ϖ = 1
2f

abc

∫
dx F a

µω(x)A
b
µ(x)A

c
ω(c) + D↑1

r fabc

∫
dx

(
⇀µ↽a(x)↽̄b(x)

)
ϖϖ
Ac

µ(x) , (4.13)

so that

dSinv

dg
= ϖϖ”ϖ +

(
1
2 →

D↑1
r

)
fabc

∫
dx ↽̄a(x)⇀µ↽b(x)Ac

µ(x) . (4.14)
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Notice that ϖϖ anticommutes with other anticommuting operators. With

dSgf

dg
= fabc

∫
dx C̄a(x) ↼µ

(
Ab

µ(x)C
c(x)

)
, (4.15)

we arrive at

d

dg
⇔X↔ =


dX

dg


→


(ϖϖ”ϖ)X



+

(
D↑1
r → 1

2

)
fabc

∫
dx ↽̄a(x)⇀µAc

µ(x)↽
b(x) X



→

fabc

∫
dx C̄a(x) ↼µ

(
Ab

µ(x)C
c(x)

)
X


.

(4.16)

We want to rewrite

〈〈
(ϖϖ”ϖ)X

〉〉
=

〈〈
”ϖϖϖX

〉〉
+

〈〈
ϖϖ(”ϖX)

〉〉
. (4.17)

We use the supersymmetry ward identity [45]

〈〈
ϖϖY

〉〉
=

〈〈
(ϖϖSgf)Y

〉〉
. (4.18)

Employing the BRST transformations (4.3) we find that

ϖϖSgf = →s

∫
dx C̄a(x) ϖϖ

(
↼µAa

µ(x)
)
. (4.19)

Thus, the Ward identity becomes

〈〈
ϖϖY

〉〉
=

∫
dx C̄a(x) ϖϖ

(
↼µAa

µ(x)
)
s(Y )


. (4.20)

In (4.17) we can see that Y = ”ϖX , and from s(”ϖX) = s(”ϖ)X →”ϖs(X) we also require

the BRST transformation of ”ϖ. Using the Jacobi identity, we get

s (”ϖ) =
1

r
fabc

∫
dx

(
⇀εφ↽a(x)

)
ϖ
↼εC

b(x)Ac
φ(x) . (4.21)
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Subsequently, we can put everything back together,

d

dg

〈
X
〉

=


dX

dg


→

〈〈
”ϖϖϖX

〉〉
+

∫
dx C̄a(x) ϖϖ

(
↼µAa

µ(x)
)
”ϖ s(X)


+

〈〈
Z X

〉〉
,

(4.22)

with

Z = →
∫

dy C̄a(y) ϖϖ
(
↼µAa

µ(y)
) 1

r
f bcd

∫
dx

(
⇀εφ↽b(x)

)
ϖ
Ac

ε(x) ↼φC
d(x)

+
(
D↑1
r → 1

2

)
fabc

∫
dx ↽̄a(x)⇀µAc

µ(x)↽
b(x) → fabc

∫
dx C̄a(x) ↼µ

(
Ab

µ(x)C
c(x)

)
.

(4.23)

We want the R operator to be manifestly distributive. From (4.22), we can see that the first three

terms act like derivative operators. The fourth term
〈〈
Z X

〉〉
does not behave like a derivative,

so to keep the operator distributive, we need to show that the fourth term vanishes.

As it stands, and up to this point, the above derivation is valid for all values of the gauge pa-

rameter ξ. We can, therefore, take the limit ξ ↗ 0, for which all contributions containing ↼µAa
µ

simply vanish (recall that physical quantities anyway cannot depend on ξ). We will show in the

next subsection (4.2.1) that under these conditions the multiplicative contribution disappears,

lim
⇀↗0

〈〈
Z X

〉〉
⇀
= 0 for

D → 1

r
→ 1

2
=

1

r
, (4.24)

and thus only in the critical dimensions D = 3, 4, 6 and 10, where r = 2(D→2) indeed.

Note that for off-shell supersymmetric theories with the rescaled fields, the operator R is mani-

festly distributive. The construction holds for all general gauges in four dimensions [31].

The generator R then can be obtained from (4.22) by integrating out the fermions

RX =
dX

dg
+ ϖϖX ·”ϖ +

∫
dx C̄a(x) ϖϖ

(
↼µAa

µ(x)
)
”ϖ s(X) , (4.25)

where the contractions signify fermionic (gaugino or ghost) propagators in the gauge-field back-

ground. For N = 1 super Yang–Mills theory this result was first derived in [18], see also [17].
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A key role in the R operator is played by the fermionic propagator Sab(x, y;A) in a gauge-field

dependent background characterized by Aa
µ(x), with

⇀µ (DµS)
ab (x, y;A) ↓ ⇀µ


ϖac↼µ + gfadcAd

µ(x)

Scb(x, y;A) = ϖabϖ(x→y) . (4.26)

The limit g = 0 gives us the free fermionic propagator Sab
0 (x). We also require the implementa-

tion of the ghost propagator Gab(x, y;A), obeying

↼µ(DµG)ab(x, y;A) ↓
[
ϖac↭+ gfadc ↼

↼xµ
Ad

µ(x)

]
Gcb(x, y;A) = ϖabϖ(x→y) , (4.27)

where the differential operator acts on everything to its right.The free ghost propagator satisfies

↭Gab
0 (x) = ϖabϖ(x) ≃ Gab

0 (x) = →ϖabC(x) , (4.28)

and the full ghost propagator expands as

Gab(x, y) = Gab
0 (x, y) → g

∫
dz Gac

0 (x, z)f cde↼µ
z

(
Ad

µ(z)G
eb
0 (z, y)

)
+ · · · . (4.29)

It is important to note that not only Gab(x, y;A) depends on g and the background field Aa
µ(x)

but that (DµG)ab(x, y;A) does so as well

→(DµG)ab(x, y;A) = ϖab↼µC(x→y) + gfacb

∫
dz $µω(x→z)Ac

ω(z)C(z→y) + O(g2) ,

(4.30)

with the abelian transversal projector

$µω(x→z) ↓
(
ϖµω →

↼µ↼ω
↭

)
ϖ(x→ z) ↖ ϖµωϖ(x→z) + ↼µC(x→z) ↼z

ω , (4.31)

where ↖ means equality in the sense of a distribution. We will later see that the terms of O(g)

in (4.30) become relevant for the map Tg from order g3 onwards.
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We use the background-field dependent propagators defined in (4.26) and (4.27).

↽a(x) ↽̄b(y) ↓ Sab(x, y;A) , and Ca(x) C̄b(y) ↓ Gab(x, y;A) . (4.32)

to rewrite (4.25). Here ↽a(x) are the gaugino fields (prior to their elimination via the MSS

determinant), and Ca(x) and C̄a(x) denote the ghost and anti-ghost fields.2 For the Landau

gauge function (2.26) the R operator is then represented by the functional differential operator

R =
d

dg
→ 1

2r

∫
dx dy Tr

(
⇀µS

ab(x, y;A) ⇀εφ
)
f bcdAc

ε(y)A
d
φ(y)

ϖ

ϖAa
µ(x)

→ 1

2r

∫
dx dz dy (DµG)ae(x, z;A) ↼ω Tr

(
⇀ωSeb(z, y;A) ⇀εφ

)
f bcdAc

ε(y)A
d
φ(y)

ϖ

ϖAa
µ(x)

.

(4.33)

Notice that the first part of the R operator (first line on the r.h.s. of (4.33)) is gauge independent,

whereas the second line does depend on the choice of the gauge-fixing function via the ghost

propagator. The gauge field Aa
µ(x) does not depend on g, and the first action of R to Aa

µ(x) is

straightforward. For all higher orders, we also need

dSab(x, y)

dg
= →

∫
dz Sac(x, z) f cmdAm

µ (z) ⇀
µSdb(z, y) , (4.34)

and

ϖSab(z, y)

ϖAm
µ (x)

= →g Sac(z, x) f cmd⇀µSdb(x, y) , (4.35)

as well as

dGab(x, y)

dg
=

∫
dz Gac(x, z) f cmd↙→↼µz Am

µ (z)G
db(z, y) , (4.36)

and

ϖGab(z, y)

ϖAm
µ (x)

= g Gac(z, x) f cmd↙→↼µx Gdb(x, y) . (4.37)

These equations are obtained from (4.26) and (4.27). After iteratively computing Rn for any
2Not to be confused with the propagator C(x), which carries no indices.
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desired n, we set g = 0, which in particular maps Sab(x, y) to the free propagator Sab
0 (x→y)

and Gab(x, y) to the free propagator Gab
0 (x→y). This operator then serves as starting point for

construction of (T ↑1
g A)aµ(x) at O(gn).

In section (4.2.2), we will prove that the Rn operator is the infinitesimal generator of the inverse

Nicolai map. Once the R operator is constructed, one can systematically derive the Nicolai map.

Before jumping into the map, we present below the proof of distributivity of the R operation.

4.2.1 Distributivity of the R operation

In this subsection, we generalize the argument from [18] in order to prove that (4.24) holds for

any bosonic functional X . Integrating out the gauginos and ghosts yields

Z =
1

r

∫
dy

(
C̄a(y)

)(
↼y
ε ↽̄

a(y)⇀ε
)
ϖ
f bcd

∫
dx

(
⇀µω↽b(x)

)
ϖ
Ac

µ(x) ↼
x
ωC

d(x)

+
(
D↑1
r → 1

2

)
fabc

∫
dx ↽̄a

ϖ(x)⇀
µ
ϖϱA

b
µ(x)↽

c
ϱ(x) → fabc

∫
dx C̄a(x)Ab

µ(x)↼
µ
xC

c(x) .

(4.38)

We use the identity ⇀µω = 1
2 (⇀

µ⇀ω → ⇀ω⇀µ) = →⇀ω⇀µ + ϖµω and reorder the contracted terms

so as to identify any contraction with a fermion or ghost propagator (in the presence of the

gauge-field background) to get

Z = →1

r
f bcd

∫
dx dy Tr

(
↼x
ωG

da(x, y)⇀ε⇀ω⇀µ↼y
εS

ba(x, y)
)
Ac

µ(x)

+
1

r
f bcd

∫
dx dy Tr

(
↼x
ωG

da(x, y)⇀εϖµω↼y
εS

ba(x, y)
)
Ac

µ(x)

→
(
D↑1
r → 1

2

)
fabc

∫
dx Tr (Sca(x, x)⇀µ)Ab

µ(x) + fabc

∫
dx ↼µ

xG
ca(x, x)Ab

µ(x) .

(4.39)

We use the following Schwinger–Dyson identities,

Sba(x, y) = Sba
0 (x→y) + gf emn

∫
dz Sbe

0 (x→z)An
ω (z)⇀

ωSma(z, y) ,

⇀ω↼x
ωG

da(x, y) = Sda
0 (x→y) + gf emn

∫
dz Sde

0 (x→z)An
ω (z)↼

ω
zG

ma(z, y) ,
(4.40)
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and the relation ⇀ω↼x
ωG

da
0 (x→y) = Sda

0 (x→y). Integrating by parts and using ⇀ε↼y
εS

da
0 (x→y) =

→ϖdaϖ(x→y) together with Tr 1 = r, this gives

Z = →1

r
f bca

∫
dx Tr

(
⇀µSba(x, x)

)
Ac

µ(x)

→ g

r
f bcdf emn

∫
dx dy dz Tr

(
Sde
0 (x→z)An

ω (z)↼
ω
zG

ma(z, y)⇀µ↼y
εS

ba(x, y)⇀ε
)
Ac

µ(x)

→ facd

∫
dx ↼µ

xG
da(x, x)Ac

µ(x)

+
g

r
f bcdf emn

∫
dx dy dz Tr

(
↼µ
xG

da(x, y)Sbe
0 (x→z)⇀ωAn

ω (z)↼
y
εS

ma(z, y)⇀ε
)
Ac

µ(x)

→
(
D↑1
r → 1

2

)
fabc

∫
dx Tr (Sca(x, x)⇀µ)Ab

µ(x) + fabc

∫
dx ↼µ

xG
ca(x, x)Ab

µ(x) .

The pure fermion loops (first and fifth term) cancel, provided (3.32) holds with D = 3, 4, 6 or 10,

as advertised. The pure ghost loops (third and sixth term) cancel independently of dimension.

Finally, we use Sbe
0 (x→z) = →Sbe

0 (z→x) to cancel the two remaining terms,

Z = →g

r
f bcdf emn

∫
dx dy dz Tr

(
Sde
0 (x→z)An

ω (z)↼
ω
zG

ma(z, y)⇀µ↼y
εS

ba(x, y)⇀ε
)
Ac

µ(x)

+
g

r
f bcdf emn

∫
dx dy dz Tr

(
↼µ
xG

da(x, y)Sbe
0 (x→z)⇀ωAn

ω (z)↼
y
εS

ma(z, y)⇀ε
)
Ac

µ(x)

= 0 .

Therefore, we proved that the R operator (4.25) is distributive

R(X1X2) = RX1 X2 +X1RX2 . (4.41)

and the proof only holds true for Landau gauge.

4.2.2 Relation between the map and R operator

In this section, we show that the R operator plays a key role in our construction of Nicolai maps.

For some bosonic operator X[A], the coupling flow equation is

d

dg

〈
X
〉

=
〈
R X

〉
, (4.42)

where the action of RX[A] is given in (4.25). Physically, the R operator can be interpreted as

the generator of flow in the physical coupling constant. The above equation can be viewed as a
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diffusion equation with coupling constant acting as a time parameter [19].

To get a finite shift in the coupling constant, we take higher derivatives of the vacuum expectation

value of X[A] and obtain the full expectation value as

〈
X[A, g]

〉
=

〈
X[A→]

〉
g↑=0

+
↔∑

k=1

gk

k!

dk

dg→k
〈
X[A→]

〉
g↑=0

=
↔∑

k=0

gk

k!

〈
Rk(g→)X[A→]

〉
g↑=0

,

=
〈
exp (gR)X[A→]

〉
0
=

∫
DA→ e↑

1
2 (↼µA

↑)2
↔∑

k=0

gk

k!
RkX[A→]


g↑=0

, (4.43)

where
〈
....

〉
0

denotes the average with free measure.

To relate the above equation to the inverse of the Nicolai map, we start with the correlation

function of gauge field A (suppressing color and space-time index) and using (4.5), we get

〈〈
A1(x1)....An(xn)

〉〉
=

∫
DAD↽DC DC̄ e↑S [A,φ,C,C̄] A1(x1)....An(xn) . (4.44)

Integrating out the fermions and ghost field yields

〈
A1(x1)...An(xn)

〉
=

∫
DAe↑Sg [A]”MSS[A]”FP [A] A1(x1)....An(xn) . (4.45)

Consider the transformation Tg of the bosonic field that obeys all three conditions of the main

theorem (4.1.1). We perform a change of variables in the above equation using the inverse of the

transformation Tg and obtain

〈
Tg

↑1[A→
1](x1)...Tg

↑1[A→
n](xn)

〉
0
=

∫
D0A

→ e↑S0[A↑] Tg
↑1[A→

1](x1)....Tg
↑1[A→

n](xn) ,(4.46)

where the Jacobian of the inverse transformation cancels the product of fermion and ghost de-

terminants, and we obtain the following relation

〈〈
A1(x1)....An(xn)

〉〉
=

〈
Tg

↑1[A→
1](x1)...Tg

↑1[A→
n](xn)

〉
0
. (4.47)

Therefore, any bosonic correlation function of the fully supersymmetric theories can be com-

puted in terms of the free bosonic correlation function using the inverse map. This statement
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also holds for fermionic correlators [27, 45].

Take equation (4.43) and replace the product of bosonic operator X[A] with A1(x1)....An(xn).

Comparing (4.43) and (4.45), we get

A(x, g, A→) = T↑1
g A→ ↓

↔∑

k=0

gk

k!
RkA→


g↑=0

, (4.48)

the inverse Nicolai map that relates the interacting theory to a free theory at a finite value of the

coupling constant. The actual map Tg can then be obtained order by order in g by inverting the

above power series. Let us assume the following form for the map

TgA =
↔∑

n=0

gn

n!
TnA . (4.49)

Expanding T ↑1
g Tg = 1 in powers of g and matching coefficients we readily obtain

T0A = A ,

T1A = →RT0A

g=0

,

T2A = →R2T0A

g=0

→ 2RT1A

g=0

,

T3A = →R3T0A

g=0

→ 3R2T1A

g=0

→ 3RT2A

g=0

.

(4.50)

One can now systematically derive the Tg map. We present below the explicit expression for

(Tg A)aµ(x).

Note that the Tg map can be constructed using an alternate but equivalent construction devised

by Lechtenfeld and Rupprecht in [46, 47]. It follows from an old work of Lechtenfeld [44]. The

central idea of this construction is to derive directly the Tg map from the coupling flow equation

(4.42). In this approach, instead of working with the functional differential operator, one works

with the path-ordered integral equation (eq (43) in [46]) to construct the Nicolai map directly

without computing the inverse map first.
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4.3 Result and discussion

We now present the main new result, which is the explicit formula for Tg to cubic order O(g3) 3

(TgA)
a
µ(x) = Aa

µ(x) + g fabc

∫
dy ↼εC(x→ y)Ab

µ(y)A
c
ε(y)

+
3g2

2
fabcf bde

∫
dy dz ↼εC(x→ y)Ac

φ(y)↼[εC(y → z)Ad
µ(z)A

e
φ](z)

+
g3

2
fabcf bdef cmn

∫
dy dz dw ↼εC(x→ y)

↑ ↼φC(y → z)Ad
φ(z)A

e
ϑ(z)↼[εC(y → w)Am

µ (w)A
n
ϑ](w)

+ g3fabcf bdefdmn

∫
dy dz dw ↼εC(x→ y)Ac

φ(y)

{

+ 2 ↼[εC(y → z)Ae
ϑ](z)↼[φC(z → w)Am

µ (w)A
n
ϑ](w)

→ 2 ↼[φC(y → z)Ae
ϑ](z)↼[εC(z → w)Am

µ (w)A
n
ϑ](w)

→ ↼ϑC(y → z)Ae
ϑ(z)↼[εC(z → w)Am

µ (w)A
n
φ](w)

→ 2 ↼[ϑC(y → z)Ae
µ](z)↼[εC(z → w)Am

φ (w)A
n
ϑ](w)

+ ↼[εC(y → z)Ae
µ(z)↼|ϑ|C(z → w)Am

φ](w)A
n
ϑ(w)

}

+
g3

3
fabcf bdefdmn

∫
dy dz dw

{

+ 2 ↼εC(x→ y)Ac
[ε(y)↼µ]C(y → z)Ae

φ(z)↼ϑC(z → w)Am
φ (w)A

n
ϑ(w)

→ ↼µC(x→ y) ↼ε
(
Ac

ε(y)C(y → z)
)
Ae

φ(z)↼ϑC(z → w)Am
φ (w)A

n
ϑ(w)

}

→ g3

3
fabcf bdefdmn

∫
dy dz Ac

µ(x)C(x→ y)Ae
ε(y)↼φC(y → z)Am

ε (z)A
n
φ(z)

+ O(g4) .

(4.51)

The first two lines above correspond to the result obtained in (3). The last two lines are the new

terms arising from the g-dependence of (DµG)ab in (4.27); they are crucial for the fulfillment

of the conditions in the main theorem. While the result up to O(g2) was originally obtained by

trial and error in [16, 24], this becomes tricky at higher orders because the number of terms is
3The terms in the map are written in the compact notation: e.g. [ab] = 1

2 (ab→ ba).
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significantly larger at O(g3) than below. In addition, from the last term we see that new struc-

tures appear which could be difficult to guess. In the following section we will verify that this

result indeed satisfies all three statements of the main theorem (subsection 4.1.1) simultaneously,

providing a highly non-trivial test.

4.4 Checks of the map

A general all order proof of the statements in the main theorem is given in [28, 45]. The checks

of the main theorem that we performed up to O(g2) can be found in (3). Thus, we only present

here the calculations at third order in g.

4.4.1 Gauge condition

We start with the third statement of the main theorem (4.1.1) and verify that ↼µA→ a
µ (x) =

↼µAa
µ(x) + O(g4). The action of ↼µ to the terms of order g3 in (4.51) and removing all terms

that are manifestly anti-symmetric under the exchange of indices µ and 1 yields

↼µA
→ a
µ (x)


O(g3)

= g3fabcf bdefdmn

∫
dy dz dw ↼µ↼εC(x→ y)Ac

φ(y)

{

+ 2 ↼[εC(y → z)Ae
ϑ](z)↼[φC(z → w)Am

µ (w)A
n
ϑ](w)

→ 2 ↼[ϑC(y → z)Ae
µ](z)↼[εC(z → w)Am

φ (w)A
n
ϑ](w)

}

→ g3

3
fabcf bdefdmn

∫
dy dz dw

↑↭C(x→ y) ↼ε
(
Ac

ε(y)C(y → z)
)
Ae

φ(z)↼ϑC(z → w)Am
φ (w)A

n
ϑ(w)

→ g3

3
fabcf bdefdmn

∫
dy dz

↑ ↼µ
(
Ac

µ(x)C(x→ y)
)
Ae

ε(y)↼φC(y → z)Am
ε (z)A

n
φ(z) .

The first two terms cancel each other. In the third term we use ↭C(x → y) = →ϖ(x → y). It is

then easy to see that

↼µA
→ a
µ (x)


O(g3)

= 0 . (4.52)
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4.4.2 Free action

The first statement in the main theorem states that the transformed gauge field must satisfy

1

2

∫
dx A→ a

µ (x) (→↭ ϖµω + ↼µ↼ω)A
→ a
ω (x) =

1

4

∫
dx F a

µω(x)F
a
µω(x) + O(g4) . (4.53)

Note that, the fulfillment of this condition does not require any special value of dimension D.

We can ignore the second term on the l.h.s. and the corresponding term on the r.h.s. of this

equation due to the Landau gauge condition. The order g2 calculation, is given in detail in (3).

At third order, (4.53) has two contributions which must cancel each other:

0
!
=

∫
dx

(
A→ a

µ (x)

O(g3)

↭A→ a
µ (x)


O(g0)

+ A→ a
µ (x)


O(g2)

↭A→ a
µ (x)


O(g1)

)
. (4.54)

To check this we collect all the terms to obtain

∫
dx

(
A→ a

µ (x)

O(g3)

↭A→ a
µ (x)


O(g0)

+ A→ a
µ (x)


O(g2)

↭A→ a
µ (x)


O(g1)

)

= → g3

2
fabcf bdef cmn

∫
dx dy dz dw ↼εC(x→ y)

↑ ↼φC(y → z)Ad
φ(z)A

e
ϑ(z)↼[εC(y → w)Am

µ (w)A
n
ϑ](w)↭Aa

µ(x)

+ g3fabcf bdefdmn

∫
dx dy dz dw ↼εC(x→ y)Ac

φ(y)

{

+ 2 ↼[εC(y → z)Ae
ϑ](z)↼[φC(z → w)Am

µ (w)A
n
ϑ](w)↭Aa

µ(x)

→ 2 ↼[φC(y → z)Ae
ϑ](z)↼[εC(z → w)Am

µ (w)A
n
ϑ](w)↭Aa

µ(x)

→ ↼ϑC(y → z)Ae
ϑ(z)↼[εC(z → w)Am

µ (w)A
n
φ](w)↭Aa

µ(x)

→ 2 ↼[ϑC(y → z)Ae
µ](z)↼[εC(z → w)Am

φ (w)A
n
ϑ](w)↭Aa

µ(x)

+ ↼[εC(y → z)Ae
µ(z)↼|ϑ|C(z → w)Am

φ](w)A
n
ϑ(w)↭Aa

µ(x)

}

+
g3

3
fabcf bdefdmn

∫
dx dy dz dw

{

+ 2 ↼εC(x→ y)Ac
[ε(y)↼µ]C(y → z)Ae

φ(z)↼ϑC(z → w)Am
φ (w)A

n
ϑ(w)↭Aa

µ(x)

→ ↼µC(x→ y) ↼ε
(
Ac

ε(y)C(y → z)
)
Ae

φ(z)↼ϑC(z → w)Am
φ (w)A

n
ϑ(w)↭Aa

µ(x)

}
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→ g3

3
fabcf bdefdmn

∫
dx dy dz

↑ Ac
µ(x)C(x→ y)Ae

ε(y)↼φC(y → z)Am
ε (z)A

n
φ(z)↭Aa

µ(x)

+
3g3

2
fabcf bde

∫
dx dy dz dw ↼εC(x→ y)Ac

φ(y)↼[µC(y → z)Ad
φ(z)A

e
ε](z)

↑ ↭
(
famn↼ϑC(x→ w)Am

µ (w)A
n
ϑ(w)

)
.

(4.55)

It is easy to simplfiy the above expression. We first perform integration by parts on each term

such that the Laplacian acts on the C(x→ y), which gives a ϖ-function and we obtain

∫
dx

(
A→ a

µ (x)

O(g3)

↭A→ a
µ (x)


O(g0)

+ A→ a
µ (x)


O(g2)

↭A→ a
µ (x)


O(g1)

)

= →g3

2
fabcf bdef cmn

∫
dx dz dw ↼εA

a
µ(x)

↑ ↼φC(x→ z)Ad
φ(z)A

e
ϑ(z)↼[εC(x→ w)Am

µ (w)A
n
ϑ](w)

+ g3fabcf bdefdmn

∫
dx dz dw ↼εA

a
µ(x)A

c
φ(x)

{

+ 2 ↼[εC(x→ z)Ae
ϑ](z)↼[φC(z → w)Am

µ (w)A
n
ϑ](w)

→ 2 ↼[φC(x→ z)Ae
ϑ](z)↼[εC(z → w)Am

µ (w)A
n
ϑ](w)

→ ↼ϑC(x→ z)Ae
ϑ(z)↼[εC(z → w)Am

µ (w)A
n
φ](w)

→ 2 ↼[ϑC(x→ z)Ae
µ](z)↼[εC(z → w)Am

φ (w)A
n
ϑ](w)

+ ↼[εC(x→ z)Ae
µ(z)↼|ϑ|C(z → w)Am

φ](w)A
n
ϑ(w)

}

+
g3

3
fabcf bdefdmn

∫
dx dz dw

{

+ 2 ↼εA
a
µ(x)A

c
[ε(x)↼µ]C(x→ z)Ae

φ(z)↼ϑC(z → w)Am
φ (w)A

n
ϑ(w)

→ ↼µA
a
µ(x) ↼ε

(
Ac

ε(x)C(x→ z)
)
Ae

φ(z)↼ϑC(z → w)Am
φ (w)A

n
ϑ(w)

}

→ g3

3
fabcf bdefdmn

∫
dx dy dz

↑↭Aa
µ(x)A

c
µ(x)C(x→ y)Ae

ε(y)↼φC(y → z)Am
ε (z)A

n
φ(z)

+
3g3

2
fabcf bdefamn

∫
dx dz dw

↑ Ac
φ(x)↼[µC(x→ z)Ad

φ(z)A
e
ε](z)↼ε↼ϑC(x→ w)Am

µ (w)A
n
ϑ(w) .

(4.56)
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We notice that we can replace any ↼εAa
µ(x)A

c
φ(x) by 1

2↼ε
(
Aa

µ(x)A
c
φ(x)

)
if the full expression

is symmetric under simultaneous exchange a ⇓ c and µ ⇓ ↽. This allows us to integrate the

respective terms by parts again and most terms cancel. Subsequently, we obtain

∫
dx

(
A→ a

µ (x)

O(g3)

↭A→ a
µ (x)


O(g0)

+ A→ a
µ (x)


O(g2)

↭A→ a
µ (x)


O(g1)

)

=
g3

2
fabcf bdefdmn

∫
dx dw ↼εA

a
µ(x)A

c
φ(x)A

e
ϑ(x)↼[φC(x→ w)Am

µ (w)A
n
ϑ](w)

+
g3

3
fabcf bdefdmn

∫
dx dz dw

{

+ ↼εA
a
µ(x)A

c
ε(x)↼µC(x→ z)Ae

φ(z)↼ϑC(z → w)Am
φ (w)A

n
ϑ(w)

→ ↼εA
a
µ(x)A

c
µ(x)↼εC(x→ z)Ae

φ(z)↼ϑC(z → w)Am
φ (w)A

n
ϑ(w)

→ ↼µA
a
µ(x) ↼ε

(
Ac

ε(x)C(x→ z)
)
Ae

φ(z)↼ϑC(z → w)Am
φ (w)A

n
ϑ(w)

}

→ g3

3
fabcf bdefdmn

∫
dx dy dz ↭Aa

µ(x)A
c
µ(x)C(x→ y)Ae

ε(y)↼φC(y → z)Am
ε (z)A

n
φ(z) .

The first term vanishes by the Jacobi identity, i.e.

g3

2
fabcf bdefdmn

∫
dx dw ↼εA

a
µ(x)A

c
φ(x)A

e
ϑ(x)↼[φC(x→ w)Am

µ (w)A
n
ϑ](w)

=
g3

6

(
fabcf bde + f ebaf bdc + f cbef bda

)
fdmn

∫
dx dw

↑ ↼εA
a
µ(x)A

c
φ(x)A

e
ϑ(x)↼[φC(x→ w)Am

µ (w)A
n
ϑ](w) = 0 .

(4.57)

The second, third and fourth term in (4.57) can be integrated by parts and after removing the

terms that are anti-symmetric under the exchange of two indices, we get

∫
dx

(
A→ a

µ (x)

O(g3)

↭A→ a
µ (x)


O(g0)

+ A→ a
µ (x)


O(g2)

↭A→ a
µ (x)


O(g1)

)

= →g3

3
fabcf bdefdmn

∫
dx dz dw

{

+ ↼µ↼εA
a
µ(x)A

c
ε(x)C(x→ z)Ae

φ(z)↼ϑC(z → w)Am
φ (w)A

n
ϑ(w)

→↭Aa
µ(x)A

c
µ(x)C(x→ z)Ae

φ(z)↼ϑC(z → w)Am
φ (w)A

n
ϑ(w)

→ ↼µ↼εA
a
µ(x)A

c
ε(x)C(x→ z)Ae

φ(z)↼ϑC(z → w)Am
φ (w)A

n
ϑ(w)

}
.

(4.58)

Thus, the condition (4.53) holds up O(g3). Notice that the very existence of a non-local field

transformation mapping one local action to another local action is a remarkable fact in itself,
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independently of supersymmetry but in the absence of supersymmetry, locality would be spoilt

by the Jacobian.

4.4.3 Determinants consistency test

Finally, we need to perturbatively show that on the gauge surface the Jacobian determinant is

equal to the product of the MSS and FP determinants. This is done order by order in g by

considering the logarithms of the determinants rather than the determinants themselves; since

the relevant checks up to O(g2) were already performed in Chapter 3, we can here concentrate

on the third order, viz.

log det

(
ϖA→ a

µ (x)

ϖAb
ω(y)

) 
O(g3)

!
= log


”MSS[A] ”FP [A]


O(g3)

. (4.59)

Of the three statements in subsection 4.1.1 this is the most complicated condition to verify.

Moreover, it is the only condition that depends on the dimension of our field theory and will

impose the constraint (3.32) on the latter.

The ghost determinant is computed from the functional matrix (3.29)

X
ab(x, y;A) = g fabcC(x→ y)Ac

µ(y)↼
y
µ , (4.60)

using the well-known equation

log det (1→X) = Tr log (1→X) . (4.61)

Up to O(g3) this yields

log det (1→X) =
1

2
n g2

∫
dx dy ↼µC(x→ y)Aa

ω(y)↼ωC(y → x)Aa
µ(x)

+
1

3
g3 fadmf bemf cde

∫
dx dy dz

↑ ↼µC(x→ y)Ab
ω(y)↼ωC(y → z)Ac

ε(z)↼εC(z → x)Aa
µ(x) .

(4.62)

For the MSS determinant (3.24) we have

Y
ab
ϖϱ(x, y;A) = g fabc↼εC(x→ y)

(
⇀ε⇀φ

)
ϖϱ

Ac
φ(y) . (4.63)
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We include an additional factor of 1
2 to correctly account for the Majorana (or Weyl) condition

and we get

1

2
log det (1→Y) =

1

4
n g2 Tr(⇀ε⇀φ⇀ϑ⇀ϖ)

∫
dx dy ↼εC(x→ y)Aa

φ(y)↼ϑC(y → x)Aa
ϖ(x)

+
1

6
g3 fadmf bemf cde Tr(⇀ε⇀φ⇀ϑ⇀ϖ⇀ϱ⇀⇁ )

∫
dx dy dz

↑ ↼εC(x→ y)Ab
φ(y)↼ϑC(y → z)Ac

ϖ(z)↼ϱC(z → x)Aa
⇁ (x) .

(4.64)

The fermion and ghost determinant have no contribution at O(g) and the results at O(g2) are

presented in (3.4.3) . Evaluating the trace in (4.64) and multiplying the two determinants subse-

quently yields the right hand side of (4.59)

log (”MSS[A] ”FP [A])

O(g3)

= fadmf bemf cde

∫
dx dy dz

{

→ r ↼µC(x→ y)Ab
µ(y)↼εC(y → z)Ac

φ(z)↼εC(z → x)Aa
φ(x)

+
r + 1

3
↼µC(x→ y)Ab

ε(y)↼εC(y → z)Ac
φ(z)↼φC(z → x)Aa

µ(x)

+
r

2
↼µC(x→ y)Ab

ε(y)↼εC(y → z)Ac
µ(z)↼φC(z → x)Aa

φ(x)

→ r

6
↼µC(x→ y)Ab

ε(y)↼φC(y → z)Ac
µ(z)↼εC(z → x)Aa

φ(x)

+
r

2
↼µC(x→ y)Ab

ε(y)↼φC(y → z)Ac
µ(z)↼φC(z → x)Aa

ε(x)

}
.

(4.65)

We thus end up with a total of five independent structures; we use color coding to help us iden-

tify the corresponding terms in the Jacobian determinant.

At O(g3) the logarithm of the Jacobian determinant schematically consists of three terms

log det

(
ϖA→ a

µ (x)

ϖAb
ω(y)

) 
O(g3)

= Tr


ϖA→

ϖA


O(g3)


→

(
2 · 1

2

)
Tr


ϖA→

ϖA


O(g2)

ϖA→

ϖA


O(g1)



+
1

3
Tr


ϖA→

ϖA


O(g1)

ϖA→

ϖA


O(g1)

ϖA→

ϖA


O(g1)


.

(4.66)

and the final trace is done by setting µ = 0, a = b, x = y and integrating over x.
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The computation is straightforward and we find

1

3
Tr


ϖA→ a

µ (x)

ϖAb
ω(y)


O(g1)

ϖA→ a
µ (x)

ϖAb
ω(y)


O(g1)

ϖA→ a
µ (x)

ϖAb
ω(y)


O(g1)



= fadmf bemf cde

∫
dx dy dz

{

→ 3→D

3
↼µC(x→ y)Ab

ε(y)↼εC(y → z)Ac
φ(z)↼φC(z → x)Aa

µ(x)

+ ↼µC(x→ y)Ab
ε(y)↼εC(y → z)Ac

µ(z)↼φC(z → x)Aa
φ(x)

→ 1

3
↼µC(x→ y)Ab

ε(y)↼φC(y → z)Ac
µ(z)↼εC(z → x)Aa

φ(x)

}
.

(4.67)

The second term gives

→
(
2 · 1

2

)
Tr


ϖA→ a

µ (x)

ϖAb
ω(y)


O(g2)

ϖA→ a
µ (x)

ϖAb
ω(y)


O(g1)



= fadmf bemf cde

∫
dx dy dz

{

+
1→D

2
↼µC(x→ y)Ab

µ(y)↼εC(y → z)Ac
φ(z)↼εC(z → x)Aa

φ(x)

+
1

2
↼µC(x→ y)Ab

ε(y)↼εC(y → z)Ac
φ(z)↼φC(z → x)Aa

µ(x)

→ 3→D

2
↼µC(x→ y)Ab

ε(y)↼εC(y → z)Ac
µ(z)↼φC(z → x)Aa

φ(x)

+
1

2
↼µC(x→ y)Ab

ε(y)↼φC(y → z)Ac
µ(z)↼φC(z → x)Aa

ε(x)

}
.

(4.68)

Finally, the first term gives

Tr


ϖA→ a

µ (x)

ϖAb
ω(y)


O(g3)



= fadmf bemf cde

∫
dx dy dz

{

+
7→ 3D

2
↼µC(x→ y)Ab

µ(y)↼εC(y → z)Ac
φ(z)↼εC(z → x)Aa

φ(x)

→ 3→ 2D

6
↼µC(x→ y)Ab

ε(y)↼εC(y → z)Ac
φ(z)↼φC(z → x)Aa

µ(x)

→ 3→D

2
↼µC(x→ y)Ab

ε(y)↼εC(y → z)Ac
µ(z)↼φC(z → x)Aa

φ(x)

+
3→D

3
↼µC(x→ y)Ab

ε(y)↼φC(y → z)Ac
µ(z)↼εC(z → x)Aa

φ(x)

(4.69)
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→ 5→ 2D

2
↼µC(x→ y)Ab

ε(y)↼φC(y → z)Ac
µ(z)↼φC(z → x)Aa

ε(x)

}

→ 2

3
faemf bdef cdm

∫
dx dy Ab

µ(x)A
c
ε(x)C(x→ y)↼εC(x→ y)Aa

µ(y)

+
1

3
fadmf bcefdem

∫
dx dy dz Aa

µ(x) (↼εC(x→ y))2 ↼φC(y → z)Ab
φ(z)A

c
µ(z)

→ 1

3
fadmf bcefdem

∫
dx dy C(0)Aa

µ(x)↼εC(x→ y)Ab
ε(y)A

c
µ(y) .

(4.70)

There are two special features about this part of the Jacobian determinant. First, we have to use

the gauge condition Ga[A] ↓ ↼µAa
µ = 0 to eliminate two terms. Secondly, we find terms that

do not match any of the five structures from the fermion and ghost determinants and, hence,

must cancel among themselves. However, before addressing those terms, let us first analyze the

color-coded terms. Imposing the equality (4.59) yields the following conditions

→r =
1→D

2
+

7→ 3D

2
= 4→ 2D

r + 1

3
= →3→D

3
+

1

2
→ 3→ 2D

6
=

2D → 3

3
r

2
= 1→ 3→D

2
→ 3→D

2
= D → 2

→r

6
= →1

3
+

3→D

3
=

2→D

3
r

2
=

1

2
→ 5→ 2D

2
= D → 2 .

(4.71)

Happily, all five equations are satisfied with r = 2(D → 2), so we recover the result (5.16)

D = 3, 4, 6, 10 ↘≃ r = 2, 4, 8, 16 , (4.72)

thus extending the result of (3) to cubic order. It remains to be shown that the remaining (black)

terms from (4.70) vanish. Using the Jacobi identity in the first term and fabcfabd = n ϖcd in the

latter two yields

→ n

3
fabc

∫
dx dy Ab

µ(x)A
c
ε(x)C(x→ y)↼εC(x→ y)Aa

µ(y)

+
n

3
fabc

∫
dx dy dz Aa

µ(x) (↼εC(x→ y))2 ↼φC(y → z)Ab
φ(z)A

c
µ(z)

→ n

3
fabc

∫
dx dy C(0)Aa

µ(x)↼εC(x→ y)Ab
ε(y)A

c
µ(y) .

(4.73)
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The second term is rewritten using the identity

↭
(
C2(x→ y)

)
= →2C(0)ϖ(x→ y) + 2 ↼εC(x→ y)↼εC(x→ y) , (4.74)

with a formally divergent piece C(0) which can be appropriately regulated. This simplifies the

expression above to

→ n

3
fabc

∫
dx dy Ab

µ(x)A
c
ε(x)C(x→ y)↼εC(x→ y)Aa

µ(y)

+
n

3
fabc

∫
dx dy dz Aa

µ(x)C(0)ϖ(x→ y)↼εC(y → z)Ab
ε(z)A

c
µ(z)

+
n

6
fabc

∫
dx dy dz Aa

µ(x)↭
(
C2(x→ y)

)
↼εC(y → z)Ab

ε(z)A
c
µ(z)

→ n

3
fabc

∫
dx dy C(0)Aa

µ(x)↼εC(x→ y)Ab
ε(y)A

c
µ(y) .

(4.75)

Integrating by parts the above terms and they cancels in pairs.

Thus, (4.59) is satisfied. Note that we had to make use of the Landau gauge condition (2.26)

to achieve this equality. The map at order g2 did not require the use of the gauge condition for

matching determinants (2.26). This feature, which arises only from O(g3) onwards, is entirely

due to the g-dependence of the ghost propagator in (4.27). The dependence of the map and the

R operator on the gauge condition is an artifact of working with on-shell supersymmetry. It was

shown in [31] that while working with off-shell supersymmetry with rescaled fields, the map

and the prescription can be derived for arbitrary gauges.

In this chapter, we extended the map and the framework to the third order in the coupling con-

stant. We found that the number of terms in the map increases exponentially for higher order in

the coupling constant. It was shown in [27] that the correlation functions can be obtained in this

formalism in terms of free bosonic expectation value using the inverse Nicolai map. A natural

and interesting direction in this context would be to establish a direct connection between the

map and amplitudes. While working on the order g3 map, we discovered a different map that

satisfies all conditions of the main theorem in six dimensions. We will discuss the construction

of this map and its properties in the next chapter.
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Chapter 5

An alternate six dimensional map and uniqueness

The material presented in this chapter is mostly based on the author’s publication [29].

We focus here on a stand-alone result—a new map, also to third order in the coupling constant,

but works only in six dimensions. The map was derived by trial and error by starting with an

educated guess. This map is simpler than the one in [28] and highlights a potential ambiguity in

the R operator formalism and was also discussed in [48, 49]. We also examine the uniqueness

of this approach and comment on how the maps can be related to each other. At the end, we

outline an algorithmic approach to determine the map recursively.

5.1 Introduction

We present here a new and simple expression for the map at order g3. We discovered this simpler

map while working on the calculations of the third-order map presented in (4). We started with

an educated guess and arrived at the correct map by demanding that the ansatz satisfies all three

statements of the main theorem only in D = 6.

We work here in Euclidean space using the Landau gauge1.

Ga[Aµ] = ↼µAa
µ . (5.1)

The results presented below may be adapted to other gauges (the light-cone gauge being of

particular interest given potential links to [50–52]). The free scalar propagator is (↭ ↓ ↼µ↼µ)

C(x) =

∫
dDk

(2▷)D
eikx

k2
≃ →↭C(x) = ϖ(x) . (5.2)

1The gauge surface restriction will prove unnecessary for this particular map
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The free fermion propagator is (spinor indices suppressed)

⇀µ↼µS0(x) = ϖ(x) ≃ S0(x) = →⇀µ↼µC(x) , (5.3)

S0(x→ y) = →S0(y → x). In a gauge-field dependent background

⇀µ(DµS)
ab(x) ↓ ⇀µ


ϖac↼µ → gfacdAd

µ(x)

Scb(x) = ϖabϖ(x) . (5.4)

To avoid redundancy, we do not state the main theorem again in this chapter. We will refer to

the statements of the main theorem (4.1.1) from the last chapter.

5.2 A simple six-dimensional map

The new result in this chapter is the following explicit expression for Tg to O(g3).

(TgA)
a
µ(x) = Aa

µ(x) + g fabc

∫
dy ↼φ C(x→ y)Ab

µ(y)A
c
φ(y)

+
3

2
g2 fabc f bde

∫
dy dz ↼ε C(x→ y)Ac

ϑ(y) ↼[ε C(y → z)Ad
µ(z)A

e
ϑ](z)

+
3

2
g3 fabc f bde fdmn

∫
dy dz dw ↼ε C(x→ y)Ac

φ(y)

{

+ ↼φ C(y → z)Ae
ϑ(z) ↼[µ C(z → w)Am

ε (w)A
n
ϑ](w)

+ ↼µ C(y → z)Ae
ϑ(z) ↼[ϑ C(z → w)Am

ε (w)A
n
φ](w)

+ ↼ε C(y → z)Ae
ϑ(z) ↼[ϑ C(z → w)Am

φ (w)A
n
µ](w)

}

→ g3 fabc f bde fdmn

∫
dy dz dw ↼ε C(x→ y)Ac

φ(y)

{

+ ↼ϑ C(y → z)Ae
ϑ(z) ↼[µ C(z → w)Am

φ (w)A
n
ε](w)

+ ↼ϑ C(y → z)Ae
ε(z) ↼[ϑ C(z → w)Am

φ (w)A
n
µ](w)

+ ↼ϑ C(y → z)Ae
µ(z) ↼[ϑ C(z → w)Am

ε (w)A
n
φ](w)

+ ↼ϑ C(y → z)Ae
φ(z) ↼[µ C(z → w)Am

ε (w)A
n
ϑ](w)

}
, (5.5)

where [µ01] = 1
6 [µ01→ µ10 + 01µ→ 0µ1+ 1µ0 → 10µ].

It is important to note that this result differs from the six-dimensional map (4.51) derived using

52



rigorous R prescription. The maps (4.51) and (5.5) agrees up to order g2. All terms above

have the base structure ↼CA ↼CA ↼CAA at O(g3), while the map in (4.51) also includes the

structures ↼C ↼CAA ↼CAA, A CA ↼CAA and ↼C ↼(AC)A ↼CAA.

Further, terms that overlap with those in (4.51), appear here with different coefficients. As a

consequence, the expression above is not a subset of the result in (4).

Finally, while the result in Chapter 4 was valid in all the critical dimensions, we will see that the

result (5.5) constitutes a map only in six dimensions.

5.3 Consistency checks of the map

In this section, we prove that expression in (5.5) satisfies all three requirements, (4.7), (4.8) and

(4.9), necessary for it to be a map. The calculations up to O(g2) are identical to those presented

in Chapter 3, so the focus here will be on O(g3).

5.3.1 Gauge condition

We begin with the third requirement, listed in (4.9). We need to show that ↼µA→ a
µ (x) = ↼µAa

µ(x)+

O(g4). We apply ↼µ to the terms of order g3 in (5.5). This gives us a symmetric ↼µ ↼ε at the be-

ginning of the expression, so we eliminate all terms that are anti-symmetric under the exchange

µ ⇓ 1 and find

↼µA
→ a
µ (x)


O(g3)

=
3

2
g3 fabc f bde fdmn

∫
dy dz dw ↼µ↼ε C(x→ y)Ac

φ(y)

{

+ ↼µ C(y → z)Ae
ϑ(z) ↼[ϑ C(z → w)Am

ε (w)A
n
φ](w)

+ ↼ε C(y → z)Ae
ϑ(z) ↼[ϑ C(z → w)Am

φ (w)A
n
µ](w)

}

→ g3 fabc f bde fdmn

∫
dy dz dw ↼µ↼ε C(x→ y)Ac

φ(y)

{

+ ↼ϑ C(y → z)Ae
ε(z) ↼[ϑ C(z → w)Am

φ (w)A
n
µ](w)

+ ↼ϑ C(y → z)Ae
µ(z) ↼[ϑ C(z → w)Am

ε (w)A
n
φ](w)

}
.

(5.6)

The first two terms cancel each other under the exchange of µ and 1. Similarly, the other two

terms also cancel out confirming that ↼µA→ a
µ (x) = ↼µAa

µ(x) +O(g4) .
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5.3.2 Free Action to full action

We now move to the first requirement in (4.7) which states that the transformed gauge field must

satisfy

1

2

∫
dxA→ a

µ (x) (→↭ ϖµω + ↼µ↼ω)A
→ a
ω (x) =

1

4

∫
dxF a

µω(x)F
a
µω(x) + O(g4) . (5.7)

Because of the invariance of the gauge function, we ignore the second term on the l.h.s. and the

corresponding term on the r.h.s. of this equation [28]. At third order, (5.7) has two contributions

0
!
=

∫
dx

(
A→ a

µ (x)

O(g3)

↭A→ a
µ (x)


O(g0)

+ A→ a
µ (x)


O(g2)

↭A→ a
µ (x)


O(g1)

)
. (5.8)

This expression reads

∫
dx

(
A→ a

µ (x)

O(g3)

↭A→ a
µ (x)


O(g0)

+ A→ a
µ (x)


O(g2)

↭A→ a
µ (x)


O(g1)

)

=
3

2
g3 fabc f bde fdmn

∫
dx dy dz dw ↼ε C(x→ y)Ac

φ(y)

{

+ ↼φ C(y → z)Ae
ϑ(z) ↼[µ C(z → w)Am

ε (w)A
n
ϑ](w)↭Aa

µ(x)

+ ↼µ C(y → z)Ae
ϑ(z) ↼[ϑ C(z → w)Am

ε (w)A
n
φ](w)↭Aa

µ(x)

+ ↼ε C(y → z)Ae
ϑ(z) ↼[ϑ C(z → w)Am

φ (w)A
n
µ](w)↭Aa

µ(x)

}

→ g3 fabc f bde fdmn

∫
dx dy dz dw ↼ε C(x→ y)Ac

φ(y)

{

+ ↼ϑ C(y → z)Ae
ϑ(z) ↼[µ C(z → w)Am

φ (w)A
n
ε](w)↭Aa

µ(x)

+ ↼ϑ C(y → z)Ae
ε(z) ↼[ϑ C(z → w)Am

φ (w)A
n
µ](w)↭Aa

µ(x)

+ ↼ϑ C(y → z)Ae
µ(z) ↼[ϑ C(z → w)Am

ε (w)A
n
φ](w)↭Aa

µ(x)

+ ↼ϑ C(y → z)Ae
φ(z) ↼[µ C(z → w)Am

ε (w)A
n
ϑ](w)↭Aa

µ(x)

}

+
3

2
g3 fabc f bde

∫
dx dy dz dw ↼ε C(x→ y)Ac

φ(y) ↼[ε C(y → z)Ad
µ(z)A

e
φ](z)

↑ ↭
(
famn↼ϑC(x→ w)Am

µ (w)A
n
ϑ(w)

)
.
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We simplify the r.h.s. to obtain

=
3

2
g3 fabc f bde fdmn

∫
dx dz dw ↼ε A

a
µ(x)A

c
φ(x)

{

+ ↼φ C(x→ z)Ae
ϑ(z) ↼[µ C(z → w)Am

ε (w)A
n
ϑ](w)

+ ↼µ C(x→ z)Ae
ϑ(z) ↼[ϑ C(z → w)Am

ε (w)A
n
φ](w)

+ ↼ε C(x→ z)Ae
ϑ(z) ↼[ϑ C(z → w)Am

φ (w)A
n
µ](w)

}

→ g3 fabc f bde fdmn

∫
dx dz dw ↼εA

a
µ(x)A

c
φ(x)

{

+ ↼ϑ C(x→ z)Ae
ϑ(z) ↼[µ C(z → w)Am

φ (w)A
n
ε](w)

+ ↼ϑ C(x→ z)Ae
ε(z) ↼[ϑ C(z → w)Am

φ (w)A
n
µ](w)

+ ↼ϑ C(x→ z)Ae
µ(z) ↼[ϑ C(z → w)Am

ε (w)A
n
φ](w)

+ ↼ϑ C(x→ z)Ae
φ(z) ↼[µ C(z → w)Am

ε (w)A
n
ϑ](w)

}

+
3

2
g3 fabc f bdefamn

∫
dx dz dw

Ac
φ(x) ↼[ε C(x→ z)Ad

µ(z)A
e
φ](z)↼ε↼ϑC(x→ w)Am

µ (w)A
n
ϑ(w) .

This can be simplified with some re-writing [for example, ↼εAa
µ(x)A

c
φ(x)↗ 1

2↼ε
(
Aa

µ(x)A
c
φ(x)

)

based on the symmetries a ⇓ c and µ ⇓ ↽]. The r.h.s. simplifies to

=
3

4
g3fabcf bdefdmnAa

µ(x)A
c
φ(x)A

e
ϑ(x)↼ [ϑC(x→ w)Am

φ (w)A
n
µ ] (w) . (5.9)

There is a symmetry to these terms: the ↼CAA blocks are invariant under a cyclic permutation

of the Lorentz indices. This motivates re-writing the term as

1
4 g

3fabcf bdefdmn

Aa

µ(x)A
c
φ(x)A

e
ϑ(x) + Aa

ϑ(x)A
c
µ(x)A

e
φ(x) + Aa

φ(x)A
c
ϑ(x)A

e
µ(x)



↑ ↼ [ϑC(x→ w)Am
φ (w)A

n
µ ] (w) (5.10)

= 1
4 g

3

fabcf bde + f ebaf bdc + f cbef bda


fdmnAa

µ(x)A
c
φ(x)A

e
ϑ(x)

↑ ↼[ϑC(x→ w)Am
φ (w)A

n
µ](w) .
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The above term vanishes by invoking the Jacobi identity. Note here that for the first time in this

computation, we required Jacobi identity for some simplification.

fabcf bde + f ebaf bdc + f cbef bda = 0 . (5.11)

Thus (5.7) holds up to O(g3).

5.3.3 Jacobians, fermion and ghost determinants

We now turn to (4.8), the second condition of the main theorem. As discussed before, this is the

most constraining of the three requirements, demanding that the bosonic Jacobian determinant

equal the product of the MSS and FP determinants. Again, this check up to O(g2) was performed

in Chapter 3 allowing us to concentrate here on O(g3).

log det

(
ϖA→ a

µ (x)

ϖAb
ω(y)

) 
O(g3)

!
= log (”MSS[A] ”FP [A])


O(g3)

. (5.12)

It is this non-trivial requirement which results in a dimensional dependence. We prove that the

map in (5.5) satisfies (5.12) only for D = 6.

Fermion determinant

The fermion determinant was computed in detail in (4). The result obtained in (4) holds true for

our case. We therefore just state the result (4.64) here

g3 fabm f bcn f cap

∫
dx dy dz

{

→ r ↼ε C(x→ y)Am
ε (y) ↼φ C(y → z)An

ϑ(z) ↼φ C(z → x)Ap
ϑ(x)

+
r

3
↼ε C(x→ y)Am

φ (y) ↼φ C(y → z)An
ϑ(z) ↼ϑ C(z → x)Ap

ε(x)

+
r

2
↼ε C(x→ y)Am

φ (y) ↼φ C(y → z)An
ε(z) ↼ϑ C(z → x)Ap

ϑ(x)

→ r

6
↼ε C(x→ y)Am

φ (y) ↼ϑ C(y → z)An
ε(z) ↼φ C(z → x)Ap

ϑ(x)

+
r

2
↼ε C(x→ y)Am

φ (y) ↼ϑ C(y → z)An
ε(z) ↼ϑ C(z → x)Ap

φ(x)

}
,(5.13)

where r represents the number of spinor components.
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Ghost determinant

The same holds true for the ghost determinant computation also. The deteminant reads (4.62)

+
1

3
g3 fabm f bcn f cap

∫
dx dy dz

↼ε C(x→ y)Am
ε (y) ↼φ C(y → z)An

φ(z) ↼ϑ C(z → x)Ap
ϑ(x) . (5.14)

Bosonic Jacobian

The map (5.5) differs from the six-dimensional map (4.51). We, therefore, explicitly compute

the Jacobian determinant.

At O(g3), the logarithm of the Jacobian determinant schematically consists of three terms

log det

(
ϖA→ a

µ (x)

ϖAb
ω(y)

) 
O(g3)

= Tr


ϖA→

ϖA


O(g3)


→

(
2 · 1

2

)
Tr


ϖA→

ϖA


O(g2)

ϖA→

ϖA


O(g1)



+
1

3
Tr


ϖA→

ϖA


O(g1)

ϖA→

ϖA


O(g1)

ϖA→

ϖA


O(g1)


,

(5.15)

and the final trace involves setting µ = 0, a = b, x = y and integrating over x.

All terms at O(g3) are of the form ↼CA ↼CA ↼CAA. The functional derivative on the very first

field, in this structure, vanishes trivially (3.4.3). The functional differentiation of the field in

the middle block produces the structure ↼CA ↼C ↼CAA not seen elsewhere. These terms also

vanish by applying integration by parts and exploiting the structural properties.

Therefore, the only non-trivial contribution to the Jacobian comes from functional differentia-

tion of either field from the last block, and it is of the same structure as those from the fermion

and ghost contributions. The table below offers a summary of the various contributions to the

Jacobian from (5.15).
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Jacobian table

In the table, columns 2 → 5 capture bosonic contributions, summed up in column 6. Column

7 contains the sums of the fermion and ghost contributions. The detailed breakdown for the

bosonic contributions is as follows: Column 2 contains the contributions from O(g) terms when

“cubed". Column 3 lists contributions from O(g) ↑ O(g2). Column 4 has contributions from

the 9 terms in the bosonic result (first three lines of O(g3) from (5.5)). In column 5, we present

contributions from the next four lines of (5.5) (12 terms).

Group (g)3 (g)↑ (g2) 9 Terms 12 Terms Boson MSS+FP

1 0 1↑D
2

5↑2D
2

2
3 (3→D) 30↑13D

6 →r

2 D↑3
3

1
2

D↑3
2 0 5D↑12

6
r+1
3

3 1 D↑3
2

1
2

D↑3
3

5D↑6
6

r
2

4 →1
3 0 0 3↑D

3
2↑D
3 → r

6

5 0 1
2

D↑3
2

2D↑6
3

7D↑18
6

r
2

In column 7, we now set (3.32)

r = 2(D → 2) . (5.16)

The main result is that Columns 6 and 7 are equal only for D = 6.

This completes our proof of (4.7), (4.8) and (4.9). It is curious that we have not had to invoke

the gauge condition, which was needed in Chapter 4, in this proof.
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5.4 Uniqueness of the map

In this chapter, we discovered a different six-dimensional map (5.5) which is simpler than one

obtained in Chapter 4. The simpler map has 21 terms as compared to 34 terms in (4.51). These

two maps cannot be related at the level of the transformation by performing any partial integra-

tion. We notice that the product of the fermion and ghost determinant for both the maps is the

same, and they both satisfy the determinant matching condition. Therefore, the extra contribu-

tion comes only from the Jacobian side.

The form of the guessed map usually depends on how the Lagrangian is written. We know that

we can always rewrite the Lagrangian with some partial integrations, so the guess for the map

will change accordingly. The statement (4.9) of the main theorem is the non-trivial requirement

for any field transformations to be the Nicolai map. This condition pertains to the derivative of

the map, not the map itself, which is why non-uniqueness arises at the level of the map.

We found out that if we add terms proportional to D → 6 to the Jacobian determinant (columns

4 and 5) of the map (5.5), we obtain the Jacobian determinant (4.70) (colored terms) of the map

(4.51). Therefore, the two maps (5.5) and (4.51) can be related to each other at the level of the

Jacobian determinant. We discovered this equality while working on the light-cone Nicolai map

presented in Chapter 6.

5.5 A potential algorithm to generate the map to third order

and beyond

In this section, we outline an algorithmic approach to determining the map Tg. This involves

perturbatively generating higher-order expressions in a manner reminiscent of that in [19]. How-

ever, the approach presented here comes with the potential advantage of leading to the map

directly instead of generating the inverse map T↑1
g .

As mentioned already below equation (5.5), the structure of the map presented in this paper is

simpler than that in (4). The entire map in (5.5), at order g3, involves a single structure. We

present below an algorithm that generates exactly this structure suggesting a simple all-order
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generalization of our results.

We start by noting that the “base" structure - the order g result - has the form: ↼CAA. Our claim

is that there exists a realization of the map Tg, to all orders, generated entirely by linking a series

of ↼CA factors to this base structure.

We illustrate this first at order g2. The map, at this order, would necessarily involve one ↼CA

block in addition to the base structure.

T (g2) ⇒ g2 ↼CA ↼CAA .

We are now guided by the following algorithm.

• Sprinkle Lorentz indices on the base ↼CAA block, such that the indices are all distinct.

A set of three terms having the same “external" structure but with the three indices on the

base-block permuted cyclically constitute a “triplet".

• Choose the two Lorentz indices on the first “block" to be different, for example we can

choose them to be 1 and ↽ respectively.

• Discard all terms with µ on the ↼ of the first block (Note that Aµ ↭ acting on such terms,

from the left, would trivially vanish).

Focussing on order g2

T (g2) ⇒ g2 ↼CA ↼CAA , (5.17)

We assign Lorentz indices to the ↼CAA block. At this level, we have three sets of indices: 1 and

↽ (summed over) and µ (the free index). There is a single "triplet" configuration at this level,

with µ, 1, and ↽ all distributed on the final block. Therefore, the algorithm yields three terms in

the map Tg:

Tg : g
2 ↼εCAφ ↼[εCAφAµ] . (5.18)

Moving to order g3, our procedure asks that we add two ↼CA structures to the base structure.

60



So we have

O(g3) = g3 ↼CA ↼CA ↼CAA . (5.19)

We again distribute Lorentz indices on the ↼CAA block. At this order, we have four sets of

indices to work with: 1, ϱ, ↽ all summed over and µ which is free. There are 4 ways of selecting

3 different indices (triplets) from the available set. Without loss of generality, we choose the

Lorentz indices on the first block to be 1 and ↽ respectively. This leaves us with two indices and

two slots, which is two arrangements for each triplet, except for one, where we have the same

index (ϱ in this convention), and hence only one arrangement. This gives us seven triplets, or 21

terms at order g3, and the map

Tg : g
3 ↼εCAφ↼φCAϑ↼[µCAεAϑ]

↼εCAφ↼ϑCAφ↼[µCAεAϑ]

↼εCAφ↼µCAϑ↼[ϑCAεAφ]

↼εCAφ↼ϑCAµ↼[ϑCAεAφ]

↼εCAφ↼εCAϑ↼[ϑCAφAµ]

↼εCAφ↼ϑCAε↼[ϑCAφAµ]

↼εCAφ↼ϑCAϑ↼[µCAφAε] , (5.20)

exactly matching the structures that appear in (5.5). We note that while this algorithm does not

determine the overall constants, it does generate the terms in sets that conveniently satisfy the

gauge constraint. It is fairly straightforward to write down the structures expected at order g4

although performing the relevant checks (particularly of the determinants) is technically more

involved.

* * *

We conclude that (5.5) represents an alternate Nicolai map [28] in six dimensions, up to O(g3),

distinct from the map in (4). This raises the possibility that a dimension-dependent map exists

that differs for each critical dimension. However, we note that the checks to this order for this
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particular map do not guarantee its validity at higher orders2. The result in (4) is different be-

cause it is derived using the R-prescription and is limited to O(g3) only because the procedure

becomes technically involved at higher orders. However, this prescription can be used to derive

maps for all orders, which in the usual sense will not have any non-uniqueness. Ambiguities

in constructing Nicolai maps have been previously flagged [28] and studied more recently in

[48, 49].

The non-uniqueness of the map, its dependence on the gauge condition, and the complicated

structure at higher points naturally raise the question of whether there are better variables that

can help us avoid these issues. We believe that light-cone variables might provide a better

understanding of these issues. In the next chapter, we will study the characterization of super-

symmetric theories without fermions in the light-cone gauge.

2If this map survives to higher orders, the gauge condition may become necessary, in keeping with Chapter 4.
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Chapter 6

Nicolai maps and quadratic forms in the light-cone gauge

The material presented in this chapter is mostly based on author’s publications [30, 52].

This chapter discusses the formulation of supersymmetric Yang-Mills theories without fermions

in the light-cone gauge. We compute the map, in terms of the physical degrees of freedom, to

second order in the coupling constant and then extend it to all critical dimensions. We demon-

strate the existence of two maps in four dimensions and address the uniqueness of these maps

in this approach. Using the simpler map, we compute the scattering amplitudes in terms of the

free bosonic correlator. The Hamiltonians for the pure and maximally supersymmetric theo-

ries in the light-cone gauge in four dimensions can be written as quadratic forms. We briefly

review the construction of quadratic forms for arbitrary spin theories and comment on the possi-

ble connections between the Nicolai map and quadratic form structures found in the light-cone

Hamiltonians of Yang-Mills theory.

The chapter is organized as follows: In section (6.1), we review the formulation of the N = 1

super Yang-Mills theory in the light cone gauge. In section (6.2), we construct the map in D = 4,

in the physical degrees of freedom, to second order in the coupling constant. In section (6.3),

we generalize the map to arbitrary D and establish its connection with the already found map in

general gauges [31]. In section (6.4), we comment on the uniqueness of the light-cone Nicolai

map in D = 4. In section (6.5), we compute three-point and four-point tree-level gluon scat-

tering amplitude (correlation function) using this approach. In the last section (6.6), we show

the construction of quadratic forms for arbitrary spin theories and discuss the possible connec-

tion between the Nicolai map in the light-cone gauge and mathematical structures like quadratic

form that one finds in the light-cone Hamiltonian.

Note: This chapter contains some overlapping results with [53].
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6.1 Notations and conventions

Take a gauge theory with bosonic field (Aµ) and fermionic field (φ) in the adjoint representa-

tion. Here, we work in the light-cone gauge in D dimensional space-time. The Nicolai map

formalism, in particular the matching of fermion and Jacobian, will fix the allowed dimensions

where the supersymmetric Yang-Mills theories can exist. These dimensions are also known as

the ‘critical dimensions’ [28].

The light-cone coordinates were introduced in chapter 2. In this chapter, we will stay in Minkowski

space-time and the light cone coordinates are

x± =
(x0 ± xD↑1)⇐

2
. (6.1)

The transverse coordinates are given by xi where i = 1, ...D → 2. The derivatives with respect

to the light-cone coordinates are denoted by ↼± (→↼↘) while those with respect to the transverse

coordinates are denoted by ↼i.

Gamma matrices satisfy {⇀µ , ⇀ω} = →2ωµω where ωµω is the light-cone metric. The ⇀± are

defined as

⇀± =
1⇐
2

(
⇀0 ± ⇀D↑1

)
. (6.2)

They satisfy

⇀± 2 = 0 , ⇀+ †
= ⇀↑ ,

{
⇀± , ⇀i

}
= 0 ,

{
⇀+, ⇀↑

}
= 2 . (6.3)

The gamma matrices satisfy the following trace identity

Tr (⇀µ ⇀ω) = →r ωµω ,

Tr (⇀µ ⇀ω ⇀ε ⇀ϑ) = →r(ωµω ωεϑ → ωµε ωωϑ + ωµϑ ωεω) , (6.4)

where r = 2
[D]
2 and it counts the number of off-shell fermionic degrees of freedom.
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We introduce two hermitian projection operators

P+ =
1

2
⇀↑⇀+ , P↑ =

1

2
⇀+⇀↑ which satisfy P 2

±
= P± , P+P↑ = P↑P+ = 0. (6.5)

We start with the action (2.21)

S =

∫
dDx

(
→1

4
F a
µωF

µω a +
i

2
φ̄a ⇀µ (Dµφ)

a

)
, (6.6)

where F a
µω = ↼µA a

ω → ↼ωA a
µ + gfabcA b

µA
c
ω , φ̄ = φ†⇀0 and Dµ = ↼µϖac + gfabcAb

µ . The fabc are

the structure constants of the gauge group SU(n).

Here, we will not explicitly distinguish between Majorana, Weyl, and Majorana-Weyl spinors

to keep notations simple. Note that this is justified because our calculations require only basic

Clifford algebra and the trace relations (6.4).

The equation of motion corresponding to the gauge field is

DµF
µω a → i

2
gfabcφ̄b ⇀ωφc = 0 . (6.7)

We make the gauge choice Aa
↑
= 0 which renders 0 = + in (6.7) as a constraint equation and

we get

Aa
+ = → 1

↼+
(↼iA

i a)→ gfabc 1

↼+2
(Ab

i↼
+Ai c)→ i

2
gfabc 1

↼+
(φ̄a

+⇀
+φa

+) , (6.8)

The operator 1
↼+ is an artifact of the light-cone gauge. It is formally defined as

1

↼+
f(x↑) = →

∫
dy↑ θ(x↑ → y↑) f(y↑) , (6.9)

where θ(x↑ → y↑) is the step function. The operator acts like an integral operator, not a differ-

ential operator. In momentum space, the operator has a well-defined pole prescription [9].

The equation of motion for the fermion field is given by ⇀µDac
µ φc = 0. The fermion field φ can
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be decomposed into φ± using the projection operators

φ± = P±φ , φ̄± = φ̄P↘ and φ = φ+ + φ↑ , φ̄ = φ̄+ + φ̄↑ . (6.10)

Acting P+ and P↑ on the equation of motion, we get the following two equations

Dac
↑
φc
↑
= →1

2
⇀+⇀i Dac

i φc
+ i = 1, .....D → 2 , (6.11)

Dac
+ φc

+ = →1

2
⇀↑⇀i Dac

i φc
↑

i = 1, .....D → 2 . (6.12)

Since (6.11) is a constraint so we solve for φa
↑

and we obtain

φa
↑
=

1

2
⇀+⇀i 1

↼+
Dac

i φc
+ . (6.13)

Expanding the fermion term in terms of φ± (and its conjugate) and substituting the constraint

equations (6.8),(6.11) in (6.6), we obtain the Lagrangian in the light-cone gauge

L =
1

2
Aa

i↭Aa
i → gfabc

(
↼i
↼+

Aa
i ↼

+Ab
jA

c
j + ↼iA

a
jA

b
iA

c
j

)

→g2fabcfade

(
1

4
Ab

iA
c
jA

d
iA

e
j +

1

2

1

↼+

(
↼+Ab

iA
c
i

) 1

↼+

(
↼+Ad

jA
e
j

) )

+
i

2
φ̄a
+ ⇀+

(
D ad

+ → 1

2
⇀iD ac

i

1

↼+
⇀jD cd

j

)
φd
+

→1

8
g2fabcfade 1

↼+

(
φ̄b
+⇀

+φc
+

) 1

↼+

(
φ̄d
+⇀

+φe
+

)
.

(6.14)

The last term of (6.14) is a four fermion interaction term that was absent in the original action.

This is a feature which distinguishes the light-cone formulation of the theory from other gauges.

We now restrict to four dimensions and introduce the transverse coordinates

x =
(x1 + ix2)⇐

2
, x̄ = x↓ , (6.15)

and their derivatives ↼̄ , ↼ respectively.
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We also introduce the helicity field

Aa =
Aa

1 + iAa
2⇐

2
, (6.16)

and its conjugate Āa.

The fermion fields in D = 4 satisfy the Majorana condition φ = Cφ̄T where the charge conju-

gation matrix C is

C =



iϱ2 0

0 →iϱ2



 . (6.17)

The fermion field φa(x) takes the form

φ =





↼̄
↼+ ◁̄

→◁̄

◁

↼
↼+◁





. (6.18)

The Lagrangian (6.14) can now be simplified and written purely in terms of the physical fields

(Aa, Āa,◁a, ◁̄a) as

L = Āa↭Aa → 2gfabc

(
↼̄

↼+
Aa↼+ĀbAc +

↼

↼+
Āa↼+AbĀc

)

→2g2fabcfade 1

↼+

(
↼+AbĀc

) 1

↼+

(
↼+ĀdAe

)

+
i⇐
2
◁̄a

( ↭
↼+

ϖac → 2gfabc 1

↼+
(↼Āb + ↼̄Ab) + 2gfabc ↼̄

↼+
(Ab + 2gfabcĀb ↼

↼+

)
◁c

+i
⇐
2 g2fabcf bde ◁̄a 1

↼+2
(Ad↼+Āe + Ād↼+Ae)◁c → i

⇐
2 g2fabdf bec◁̄aĀd 1

↼+
(Ae◁c)

+g2fabcfade 1

↼+
(◁̄b◁c)

1

↼+
(◁̄d◁e) .

(6.19)

where ↭ = (→2↼+↼↑ + 2↼↼̄) and the fabc are the structure constants of the gauge group.
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6.2 Light-cone Nicolai map in four dimensions

The statement of the Nicolai map in our context is the following: there exists a non-linear and

non-local transformation Tg(A) which satisfies the following three properties:

1. The transformation Tg(A) when substituted in the free bosonic Lagrangian (Maxwell theory)

yields the full interacting bosonic Lagrangian (Yang-Mills theory).

2. The Jacobian of the transformation is equal to the fermion determinant (in the light-cone

gauge there are no ghosts, they decouple from the path integral).

3. The transformation preserves the gauge choice.

Essentially, this means that one works with a free bosonic theory to compute correlators in a

supersymmetric gauge theory - through the inverse transformations T ↑1
g (A

↑
) [27].

6.2.1 The transformation

Consider a field transformation for the physical fields Aa and Āa, obtained through trial and

error such that the Yang-Mills Lagrangian can be mapped to a free bosonic theory: Ā
↑ a↭A

↑ a.

We introduce a Green’s function through ↭C(x→ y) = →ϖ(4)(x→ y) to write such an ansatz up

to O(g2)

A
↑ a(x, g;A, Ā) = Aa(x) + 2gfabc

∫
dy ↼+C(x→ y)

↼̄

↼+
Ab(y)Ac(y)

→g2fabcf bde

∫
dy ↼+C(x→ y)Ac(y)

1

↼+2

(
↼+Ad(y)Āe(y)

)

→ 2g2fabcf bde

∫
dy dz

(
↼ C(x→ y)Āc(y)→ ↼+C(x→ y)

↼

↼+
Āc(y)

)

↑ ↼+ C(y → z)
↼̄

↼+
Ad(z)Ae(z) . (6.20)

Here dy , dz denote the four dimensional space-time measure. In this section, all measures and

delta functions will be assumed to be four-dimensional, and the dimension will be suppressed
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henceforth. The transformation for Ā↑ a is just the complex conjugate of the above.

The map in Landau gauge at order g2 (3.13) contains three terms of the form ↼ C A ↼ C AA

(with space-time indices and color indices suppressed), where all of them contribute to the Ja-

cobian (as shown in Chapter 3 ). In the light-cone Nicolai map at order g2, we find that there are

two kinds of terms: one is similar to the Landau gauge case, and the other has a single Green’s

function (line 2 of eq. (6.20)). The latter term produces the pure Yang-Mills quartic vertex (line

2 of eq. (6.19)) but does not contribute to the Jacobi determinant at order g2, as we show below.

The functional variation of the fields are

ϖAa(x)

ϖAb(w)
=

ϖĀa(x)

ϖĀb(w)
= ϖabϖ(x→ w) ,

ϖAa(x)

ϖĀb(w)
=

ϖĀa(x)

ϖAb(w)
= 0 . (6.21)

The Jacobi determinant of the map can be computed using the relation

log det(1 +X) = Tr log(1 +X) = TrX→ 1

2
TrX2 ± .. (6.22)

The Jacobi matrix1 of the above transformation (6.20) is

ϖA
↑ a(x)

ϖAm(w)
= ϖamϖ(x→ w) + 2gfabc

∫
dy

{
↼+C(x→ y)

↼̄

↼+
ϖbmϖ(y → w)Ac(y)

+ ↼+C(x→ y)
↼̄

↼+
Ab(y) ϖcmϖ(y → w)

}

→2g2fabcf bde

∫
dy dz

(
↼ C(x→ y)Āc(y)→ ↼+C(x→ y)

↼

↼+
Āc(y)

)

↑
{
↼+ C(y → z)

↼̄

↼+
ϖdmϖ(z → w)Ae(z) + ↼+ C(y → z)

↼̄

↼+
Ad(z) ϖemϖ(z → w)

}
,

(6.23)

where we have dropped all terms that vanish after taking the trace as they are proportional to

↼µC(0). We use (6.22) to compute the determinant order by order in the coupling constant.

1The matrix elements
ωA

→ a(x)

ωĀm(w)
and

ωĀ
→ a(x)

ωAm(w)
do not contribute to the trace at order g2.
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After partial integrations, taking the trace (by setting a = m and x = w), using fabcfabd = nϖcd

and integrating over x, the Jacobi determinant up to O(g2) reads

log det

(
ϖA→a

i (x)

ϖAm
j (w)

)
= 2ng2

∫
dx dy

{
↼̄ C(x→ y)Ab(y) ↼̄ C(y → x)Ab(x)

+ ↼+C(x→ y)
↼̄

↼+
Ab(y) ↼+C(y → x)

↼̄

↼+
Ab(x)

→ 2 ↼̄ C(x→ y)Ab(y)↼+C(y → x)
↼̄

↼+
Ab(x)

+
↼↼̄

↼+
C(x→ y)Āb(y) ↼+C(y → x)Ac(x)

→ ↼ C(x→ y) Āb(y) ↼+C(y → x)
↼̄

↼+
Ab(x)

→ ↼̄ C(x→ y)Ab(y) ↼+C(y → x)
↼

↼+
Āb(x)

+ ↼+C(x→ y)
↼

↼+
Āb(x) ↼+C(y → x)

↼̄

↼+
Ab(x)

}
+ c.c. .

(6.24)

Here i, j run over the transverse variables x, x̄.

6.2.2 The fermion determinant

The construction of the Nicolai map in the light-cone gauge is complicated due to the presence

of a four-fermion interaction term in (6.19). In [54], it was first shown how to compute the

Nicolai maps for theories with four fermion interaction terms. We explain here why this term

does not contribute to the fermion determinant at order g2.

As a simple example, let us start with D = 4. However, this analysis holds for any dimension

D. The path integral takes the form

Z =

∫
DAaDĀaD◁aD◁̄a exp

[
i

∫
d4xL1 +B

]
, (6.25)

where L1 contains all terms in (6.19) except the four fermion interaction term and B is the

four fermionic interaction. We now expand the exponent of B to the linear order (since we are
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working to order g2 and B is exactly of that order)

Z =

∫
DAaDĀaD◁aD◁̄a (1 + i

∫
d4xB) exp

[
i

∫
d4xL1

]
, (6.26)

Z = Z0 + Z1 . (6.27)

The fermion determinant can be evaluated in the term Z0. Let us denote this determinant by

”F (A, Ā, g). The form of Z0 is then

Z0 =

∫
DAaDĀa ”F (A, Ā, g) exp

[
i

∫
d4xLYM

]
, (6.28)

where LYM denotes the Yang-Mills Lagrangian. The term Z1 is the path integral Z0 with the

four fermion interaction term as an insertion. The term Z1 may be computed using the standard

technique of introducing sources by considering

Z0[J ] =

∫
DAaDĀaD◁aD◁̄a

exp
[
i

∫
d4xLYM +

i⇐
2

(
(◁̄a + J̄ bQ↑1 ba)Qac(◁c +Q↑1 cdJd)→ J̄aQ↑1 acJ c

)]
.

(6.29)

Here Qac denotes the quadratic operator in the fermionic part of the Lagrangian

Qac(x;A) =
↭
↼+

ϖac → 2gfabc 1

↼+
(↼Āb + ↼̄Ab) + 2gfabc ↼̄

↼+
(Ab + 2gfabcĀb ↼

↼+

+2 g2fabcf bde 1

↼+2
(Ad↼+Āe + Ād↼+Ae)→ 2 g2fabdf becĀd 1

↼+
(Ae ,

(6.30)

while Q↑1 ac denotes the fermion propagator in the presence of gauge field. A change of vari-

ables in the path integral from ◁a to ◁
↑ a = ◁a+Q↑1 acJ c and similarly for its complex conjugate

allows us to integrate the fermion fields and get a factor of ”F (A, Ā, g). By differentiating Z0[J ]

with respect to the sources and putting them to zero, we find the form of Z1 to be

Z1 =

∫
DAaDĀa ”F (A, Ā, g)G4(A, Ā, g) exp

[
i

∫
d4xLYM

]
. (6.31)
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Thus,

Z =

∫
DAaDĀa ”F (A, Ā, g)[1 +G4(A, Ā, g)] exp

[
i

∫
d4xLYM

]
. (6.32)

We can define ”→

F (A, Ā, g) = ”F (A, Ā, g)[1 + G4(A, Ā, g)] as the effective fermion determi-

nant. Note that G4 is a product of two fermion propagators. The fermion propagator in the

presence of a gauge field is an infinite series in the coupling g. Since Z1 is itself at order g2, we

must only consider the series’s leading term, which is nothing but the free fermion propagator

given by ↼+C(x→ y). But since all the four fermion fields are at the same space-time point, G4

vanishes as ↼+C(0) = 0. Thus, four fermion term starts contributing to the fermion determinant

from order g4.

We work here at order g2, so we receive contributions to the fermion determinant only from the

quadratic operator (6.30) contributions. The quadratic operator Qac relevant to order g2 (again

dropping terms which vanish after ‘trace-ing’), is

Qac(x;A) =
↭
↼+

ϖac → 2gfabc 1

↼+
(↼Āb + ↼̄Ab) + 2gfabc ↼̄

↼+
(Ab + 2gfabcĀb ↼

↼+
, (6.33)

which may be written as

Qac(x, y;A) =
↭
↼+

(
ϖac + 2gfabc

∫
dy ↼+C(x→ y)

1

↼+
(↼Āb(y) + ↼̄Ab(y))

→2gfabc

∫
dy ↼̄C(x→ y)Ab(y)→ 2gfabc

∫
dy ↼+C(x→ y)Āb(y)

↼(y)

↼+


.

(6.34)

As det(Q) = det(↭/↼+)↑det(1 + Y), we use (6.22) to compute the fermion determinant order

by order in g upto an overall constant det(↭/↼+). The fermion determinant to order g2 is

log det(1 + Y) = 2ng2
∫

dx dy

{
↼̄ C(x→ y)Ab(y) ↼̄ C(y → x)Ab(x)

+ ↼+C(x→ y)
↼̄

↼+
Ab(y) ↼+C(y → x)

↼̄

↼+
Ab(x)

→ 2 ↼̄ C(x→ y)Ab(y)↼+C(y → x)
↼̄

↼+
Ab(x)
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+
↼↼̄

↼+
C(x→ y)Āb(y) ↼+C(y → x)Ac(x)

→ ↼ C(x→ y) Āb(y) ↼+C(y → x)
↼̄

↼+
Ab(x)

→ ↼̄ C(x→ y)Ab(y) ↼+C(y → x)
↼

↼+
Āb(x)

+ ↼+C(x→ y)
↼

↼+
Āb(x) ↼+C(y → x)

↼̄

↼+
Ab(x)

}
+ c.c. .

(6.35)

Thus, we find that the Jacobi determinant of the bosonic transformation (6.24) exactly matches

the fermion determinant (6.35) upto O(g2). We, therefore, have shown that the transformation

(6.20) satisfies all the three statements of the main theorem.

6.3 Extension of the light-cone map to all critical dimensions

We now generalize our construction to the critical dimensions (6.36). The first step in this

process is to start with an appropriate Lagrangian in a non-helicity basis and then guess the form

of the Nicolai map. Note that the Lagrangian in a helicity basis, in four dimensions, is a special

case and is related to the little group SO(2).

6.3.1 The move away from a helicity basis

Consider the Lagrangian (6.14), gauge fixed and expressed in light-cone coordinates in non-

helicity basis. Note that the number of bosons and fermion for supersymmetric gauge theory

match only in d = 3, 4, 6, 10. We prove that for theories with interactions, the fermion and

the Jacobi determinant match only in the critical dimensions, establishing the old relation that

supersymmetric Yang-Mills theories exist in these critical dimensions.

We guess the field transformation for the physical fields Ai such that the pure Yang-Mills theory

(first two lines of equation (6.14)) can be expressed as 1
2Ai

→ a↭A→ a
i . In this section, all mea-

sures and delta functions will be d-dimensional (dimensions will get fixed using the determinant

matching). Again, we introduce ↭C(x→ y) = →ϖ(d)(x→ y) to write the map to order g2
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A
↑ a
i (x)= Aa

i (x) + gfabc

∫
dy

(
↼+C(x→ y)

↼j
↼+

Ab
j(y)A

c
i(y)→ ↼jC(x→ y)Ab

j(y)A
c
i(y)

)

→ g2

2
fabcf bde

∫
dy ↼+C(x→ y)Ac

i(y)
1

↼+2

(
↼+Ad

j (y)A
e
j(y)

)

+
g2

2
fabcf bde

∫
dy dz

{
↼jC(x→ y)Ac

k(y)

↑
(
↼iC(y → z)Ad

k(z)A
e
j(z) + ↼kC(y → z)Ad

j (z)A
e
i (z)

)

→ ↼iC(x→ y)Ac
j(y) ↼

+C(y → z)
↼k
↼+

Ad
k(z)A

e
j(z)

+ ↼+C(x→ y)
↼j
↼+

Ac
j(y) ↼

+C(y → z)
↼k
↼+

Ad
k(z)A

e
i (z)

+ 2 ↼iC(x→ y)Ac
j(y)↼kC(y → z)Ad

k(z)A
e
j(z)

→ 2 ↼+C(x→ y)
↼j
↼+

Ac
j(y) ↼kC(y → z)Ad

k(z)A
e
i (z)

+ ↼↑C(x→ y)Ac
k(y)↼

+C(y → z)Ad
k(z)A

e
i (z)

+ ↼+C(x→ y)Ac
k(y)↼

↑C(y → z)Ad
k(z)A

e
i (z)

→ ↼jC(x→ y)Ac
k(y)↼jC(y → z)Ad

k(z)A
e
i (z)

}
.

(6.36)

6.3.2 Jacobian

We calculate below the Jacobian of the transformation (6.36).

ϖA
↑ a
i (x)

ϖA p
m (w)

= ϖmi ϖ
apϖ(x→ w) + gfabc

∫
dy

{
↼+C(x→ y)ϖ(y → w)

(
↼j
↼+

ϖmj ϖ
bpAc

i(y)

+
↼j
↼+

Ab
j(y)ϖ

m
i ϖ

cp

)
→ ↼jC(x→ y)ϖ(y → w)

(
ϖmj ϖ

bpAc
i(y) + Ab

j(y)ϖ
m
i ϖ

cp
)}

+
g2

2
fabcf bde

∫
dy dz

{
↼jC(x→ y)Ac

k(y) ϖ(z → w)

{
↼iC(y → z)ϖmk ϖ

dpAe
j(z)

+ ↼iC(y → z)Ad
k(z)ϖ

m
j ϖ

ep + ↼kC(y → z)ϖmj ϖ
dpAe

i (z)

+ ↼kC(y → z)Ad
j (z)ϖ

m
i ϖ

ep

}
→ ↼iC(x→ y)Ac

j(y)ϖ(z → w)

↑
(
↼+C(y → z)

↼k
↼+

ϖmk ϖ
dpAe

j(z) + ↼+C(y → z)
↼k
↼+

Ad
k(z)ϖ

m
j ϖ

ep

)

+ ↼+C(x→ y)
↼j
↼+

Ac
j(y) ϖ(z → w) ↼+C(y → z)
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↑
(

↼k
↼+

ϖmk ϖ
dpAe

i (z) +
↼k
↼+

Ad
k(z)ϖ

m
i ϖ

ep

)
+ 2 ↼iC(x→ y)Ac

j(y) ϖ(z → w)

↑
(
↼kC(y → z)ϖmk ϖ

dpAe
j(z) + ↼kC(y → z)Ad

k(z)ϖ
m
j ϖ

ep
)

→ 2 ↼+C(x→ y)
↼j
↼+

Ac
j(y) ϖ(z → w)

↑
(
↼kC(y → z)ϖmk ϖ

dpAe
i (z) + ↼kC(y → z)Ad

k(z)ϖ
m
i ϖ

ep
)

+ ↼↑C(x→ y)Ac
k(y) ϖ(z → w)

↑
(
↼+C(y → z)Ad

k(z)ϖ
m
i ϖ

ep + ↼+C(y → z)Ae
i (z)ϖ

m
k ϖ

dp
)

+ ↼+C(x→ y)Ac
k(y) ϖ(z → w)

↑
(
↼↑C(y → z)Ad

k(z)ϖ
m
i ϖ

ep + ↼↑C(y → z)Ae
i (z)ϖ

m
k ϖ

dp
)

→ ↼jC(x→ y)Ac
k(y) ϖ(z → w)

↑
(
↼jC(y → z)ϖmk ϖ

dpAe
i (z) + ↼jC(y → z)Ad

k(z)ϖ
m
i ϖ

ep
)}

, (6.37)

where we have only written the non-trivial terms relevant till order g2. We know

log det(1 +X) = Tr log(1 +X) = TrX→ 1

2
TrX2 ± .. (6.38)

We take the trace by setting a = m, w = x and integrating over x. We also use the SU(n)

identity fabcfabd = nϖcd to obtain the Jacobi determinant up to O(g2)

log det

(
ϖA→a

i (x)

ϖAm
j (w)

)
= ng2

∫
dx dy (D → 2)

{
↼i C(x→ y)Ab

i(y) ↼j C(y → x)Ab
j(x)

+ ↼+C(x→ y)
↼j
↼+

Ab
j(y) ↼

+C(y → x)
↼i
↼+

Ab
i(x)

→ 2 ↼i C(x→ y)Ab
i(y)↼

+C(y → x)
↼j
↼+

Ab
j(x)

→1

2
↼i C(x→ y)Ab

j(y) ↼i C(y → x)Ab
j(x)

+
1

2

↼2
i

↼+
C(x→ y)Ab

j(y) ↼
+C(y → x)Ab

j(y)

}
,

(6.39)

where we have used the relation 2 ↼↑C(x→ y) = ↼2
i

↼+C(x→ y) + 1
↼+ ϖ(x→ y).
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6.3.3 Fermion Determinant

Similar to the (6.2.2) case, the presence of the four fermion interaction terms in (6.14) makes the

fermion determinant computation complicated. We follow the steps shown in subsection (6.2.2)

to get the fermion determinant, and its contribution at order g2 is trivial.

We simplify the quadratic operator in (6.14) by expanding the covariant derivatives and using

the constraint equation (6.8). We get

” = det

{
1

2

↭
↼+

ϖac → 1

2
gfabc ⇀i⇀j ↼i

↼+
(Ab

j → 1

2
gfabc ⇀i⇀jAb

i

↼j
↼+

→ gfabc ↼i
↼+

Ab
i

→ g2fabcf bde 1

↼+2

(
Ad

i ↼
+Ae

i

)
→ 1

2
g2fadef bcd⇀i⇀jAe

i

1

↼+
Ab

j

}
. (6.40)

The non-trivial part of the quadratic operator relevant to order g2 is

” = det

(
1

2

↭
↼+

)
· det

{
ϖac + gfabc⇀i⇀j

∫
dy ↼+C(x→ y)Ab

i(y)
↼j
↼+

+gfabc⇀i⇀j

∫
dy ↼iC(x→ y)Ab

j(y) + 2 gfabc

∫
dy ↼+C(x→ y)

↼i
↼+

Ab
i(y)

}
.

(6.41)

We now compute the fermion determinant perturbatively using (6.22)

log det(1 +Y) = ng2
∫

dx dy
r

4

{
2 ↼i C(x→ y)Ab

i(y) ↼j C(y → x)Ab
j(x)

+ 2 ↼+C(x→ y)
↼j
↼+

Ab
j(y) ↼

+C(y → x)
↼i
↼+

Ab
i(x)

→ 4 ↼i C(x→ y)Ab
i(y)↼

+C(y → x)
↼j
↼+

Ab
j(x)

→ ↼i C(x→ y)Ab
j(y) ↼i C(y → x)Ab

j(x)

+
↼2
i

↼+
C(x→ y)Ab

j(y) ↼
+C(y → x)Ab

j(y)

}
,

(6.42)

where r = Tr1 and it counts the number of off-shell fermionic degrees of freedom.
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6.3.4 Existence of map in critical dimensions

We see now that the Jacobian determinant (6.39) matches against the fermion determinant (6.42)

if and only if

r

2
= D → 2 ,

r

2
= D → 2 ,

→r = →2(D → 2) ,

→r

4
= →D → 2

2
,

+
r

4
=

D → 2

2
,

all implying that r = 2(D → 2) which happens for D = 3, 4, 6 and 10. The map (6.36) satis-

fies all three conditions of the main theorem listed in the section (6.2), hence confirming that a

Nicolai map exists for N = 1 supersymmetric Yang-Mills theory in the light-cone gauge for all

critical dimensions.

The construction of the Nicolai map was studied in general gauges (nµAµ = 0) in [31]. In

particular, the map up to order g2 was constructed in the axial (n2 = 1) and light-cone gauge

(n2 = 0) using the R operator. We can recover our map (6.36) (to order g2) from the one de-

rived in [31]. The following conditions need to be employed in equation (4.1) of ref. [31] : nµ is

chosen to be null. In the light cone coordinates, this means setting the components n+ = ni = 0

and n↑ = 1. The ghost propagator (in the light-cone gauge) is 1
↼+ . Using the above conditions

and the constraint equation (6.8) omitting the fermion term, we obtain our map (6.36) to order

g2. We also obtain extra pieces at order g2, which implies that our map is a subset of their map.

Note that we cannot recover our light-cone map (6.36) from the maps derived in Chapter 3 and

Chapter 4. Although, the map (3.13) up to order g2 does not require the use of the gauge condi-

tion to prove the main theorem, but the maps are structurally intrinsic to the Landau gauge and

do not have pieces that are proportional to ↼µAµ, which might be trivial in the Landau gauge but

will contribute in other gauges.
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6.4 On the issue of uniqueness

The map obtained in the preceding section (6.36) can be written in four dimensions in terms of

the helicity variables and fields. The map up to order g reads

A
↑ a(x, g;A, Ā) = Aa(x) + 2gfabc

∫
dy


↼+C(x→ y)

↼̄

↼+
Ab(y)Ac(y)

+ ↼+C(x→ y)
↼

↼+
Āb(y)Ac(y)→ ↼ C(x→ y)Āb(y)Ac(y) +O(g2)


.

(6.43)

This map is distinct from the one (6.20) obtained in section (6.2). This difference can be un-

derstood at the level of Lagrangian. The order g terms involving the gauge fields in (6.19) and

(6.14) are related by partial integrations in D = 4. However, the maps (6.20) and (6.43) to the

cubic order are not related by any partial integrations.

As discussed in the last chapter 5, we can, in principle, write distinct maps by writing the La-

grangian in different ways by performing partial integrations. Out of all three conditions of the

main theorem, the most complicated one is the determinant matching condition. In our case, we

have two maps at order g2 that satisfy all three conditions of the Main theorem (listed in section

2). The matching of the determinant is about the equality of the derivative (Jacobian) of the

map with the fermion determinant and not about the map itself, hence the non-uniqueness. The

issue of uniqueness can be fixed if one computes the map to higher orders. Notice that for any

finite order in a perturbation theory, one can always find the simplest map relevant to that order,

which will simplify the computation of correlation functions (scattering amplitudes). Therefore,

the non-uniqueness of the map can be helpful for computations of physical objects at a specific

order in the coupling (as shown below).

We showed in Chapter 5 that the Nicolai maps can be related at the level of the Jacobi determi-

nant. The existence of more than one map at a particular order in the coupling constant is due to

the freedom in writing the Lagrangian. In this chapter, we found two distinct four-dimensional

maps (6.20) and (6.43). We can relate the map (6.36) that works in all critical dimensions to

the simple four-dimensional map (6.20) at the level of the Jacobi determinant by adding and
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subtracting a term of the form 4ng2↼ C(x → y) Āa↼̄ C(y → x)Aa in (6.24). This implies that

when the Jacobian (6.39) is written in D = 4 in the helicity basis, there is a simplification as

some terms get canceled. The existence of a simpler map (6.20) in four dimensions is a direct

consequence of this simplification.

6.5 Scattering amplitudes

In this section, we present the computation of the correlation function of full supersymmetric

Yang-Mills theory using the Nicolai map. It was shown in [20, 27] that the correlation function

of interacting super Yang-Mills theory can be computed using the inverse Nicolai map. The idea

is that the information of supersymmetry is contained in the bosonic map, and the computation of

correlators using this approach precisely agrees with the standard quantum field theory method.

Also, the amount of labor required to determine the correlators is comparable. The n-point

Yang-Mills correlators can be computed as

〈〈
A1(x1)....An(xn)

〉〉
=

〈
Tg

↑1[A→
1](x1)...Tg

↑1[A→
n](xn)

〉
0
. (6.44)

The inverse transformation corresponding to (6.20) is

Tg
↑1A→a ↓ A a(x, g;A, Ā) = A

↑a(x)→ 2gfabc

∫
dy ↼+C(x→ y)

↼̄

↼+
A

↑b(y)A
↑c(y)

+ g2fabcf bde

∫
dy ↼+C(x→ y)A

↑c(y)
1

↼+2


↼+A

↑d(y)Ā
↑e(y)



+2g2fabcf bde

∫
dy dz

(
↼ C(x→ y)Ā

↑c(y)→ ↼+C(x→ y)
↼

↼+
Ā

↑c(y)

)

↑ ↼+ C(y → z)
↼̄

↼+
A

↑d(z)A
↑e(z) . (6.45)

The three-point correlation function can be computed using (6.44)

〈〈
Aa1 (x1) Ā

a2 (x2) Ā
a3 (x3)

〉〉
=

∫
DA→ e iĀ↑↭A↑

Aa1 (x1) Ā
a2 (x2) Ā

a3 (x3)

= →2gfa1bc

∫
dy ↼+C(x1 → y)

〈
↼̄

↼+
A

↑b(y)A
↑c(y) Ā

↑a2 (x2) Ā
↑a3 (x3)

〉

0

,
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where
〈
....

〉
0

is the expectation value for free correlator.

The two-point correlator for gauge fields is

〈
Ā

↑a1 (x1)A
↑a2 (x2)

〉
0
= ϖa1a2 C(x1 → x2) . (6.46)

Computing all possible free Wick contraction in (6.46) and then using (6.46), we get

〈〈
Aa1 (x1) Ā

a2 (x2) Ā
a3 (x3)

〉〉
= →g fa1a2a3

∫
dy

{
↼̄

↼+
C(y → x2)C(x3 → y) ↼+ C(x1 → y)

→ ↼̄

↼+
C(y → x3)C(x2 → y) ↼+ C(x1 → y)

}
.

(6.47)

We obtain the three-point correlation function of gauge fields in the light-cone gauge. To extract

the three-point amplitude, we take all external legs on-shell and perform the Fourier transform.

We get

M3(1
+, 2↑, 3↑) = →g fa1a2a3 p+

(
k̄

k+
→ l̄

l+

)
ϖ4(l + p→ k) . (6.48)

Using the spinor helicity variables [55, 56], we get (suppressing color and coupling constant)

M3(1
+, 2↑, 3↑) =

⇔23↔4
⇔12↔ ⇔23↔ ⇔31↔ , (6.49)

which matches with the standard three-point amplitude [57]. For the 4-point correlator, we get
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contributions from both order g and order g2 term of the inverse map (6.45)

〈〈
Aa1 (x1)A

a2 (x2) Ā
a3 (x3) Ā

a4 (x4)
〉〉

=

∫
DA→ e iĀ↑↭A↑

Aa1 (x1)A
a2 (x2) Ā

a3 (x3) Ā
a4 (x4)

= 4g2fa1bc fa3de

∫
dy dz

(
↼+C(x1 → y) ↼+C(x3 → z)

)

↑
〈

↼̄

↼+
A

↑b(y)A
↑c(y)A

↑a2 (x2)
↼

↼+
Ā

↑d(y) Ā
↑e(y)Ā

↑a4 (x4)

〉

0

+2g2fa1bc f bde

∫
dy dz

(
↼ C(x1 → y)→ ↼+C(x1 → y)

↼

↼+

)

↑ ↼+C(y → z)

〈
Ā

↑c(y)
↼̄

↼+
A

↑d(z)A
↑e(z)A

↑a2 (x2) Ā
↑a3 (x3) Ā

↑a4 (x4)

〉

0

+ g2fa1bcf bde

∫
dy ↼+C(x1 → y)

〈
A

↑c(y)
1

↼+2


↼+A

↑d(y)Ā
↑e(y)


A

↑a2 (x2) Ā
↑a3 (x3) Ā

↑a4 (x4)

〉

0

+ all possible contractions . (6.50)

Taking all possible Wick contractions, we get the four-point correlator. To obtain the amplitude,

we rewrite it in momentum space and take all external legs on-shell. We get

M4(1
+, 2+, 3↑, 4↑) =

⇔34↔4
⇔12↔ ⇔23↔ ⇔34↔ ⇔41↔ . (6.51)

One can similarly compute higher-point tree and loop level amplitudes by deriving the maps to

higher order in the coupling. We can also compute fermionic correlators using this approach.

6.6 Quadratic forms

The light-cone Hamiltonians for the pure and the maximally supersymmetric theories in four

dimensions can be expressed as quadratic forms [50–52]. In this section, we briefly show the

construction of quadratic forms for theories of arbitrary spin without supersymmetry. We then

discuss quadratic form structures for pure Yang-Mills theory. We then comment on the possible

connection between the Nicolai map in the light-cone gauge and the quadratic form.
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The light-cone Hamiltonian for arbitrary spin theories can be constructed by the closure of

Poincaré algebra [35, 36]. The idea is that Hamiltonian itself appears as an element of the

Poincaré algebra and can be fixed using the closure of Poincaré algebra.

H =

∫
d3x

(
↼ς̄↼̄ς→ g

φ∑

n=0

(→1)n
(
↽

n

)
ς̄ ↼+φ

[
↼̄φ↑n

↼+φ↑n
ς

↼̄n

↼+n
ς

]
+O(g2)


, (6.52)

As is well known, for odd ↽, non-trivial cubic vertices require the introduction of an antisym-

metric structure constant fabc.

In this section, we prove that the Hamiltonians in (6.52) are quadratic forms. Specifically, this

means they can be written using “covariant” derivatives as follows

H =

∫
d3x D̄ςDς̄ . (6.53)

The ansatz for covariant derivatives read

Dς̄ = ↼ς̄→ 2g
φ↑1∑

n=0

(→1)n
(
↽→ 1

n

)
↼̄n

↼+n+1

[
↼̄φ↑n↑1

↼+φ↑n↑1
ς ↼+φς̄

]
, (6.54)

D̄ς = ↼̄ς→ 2g
φ↑1∑

n=0

(→1)n
(
↽→ 1

n

)
↼n

↼+n+1

[
↼φ↑n↑1

↼+φ↑n↑1
ς̄ ↼+φς

]
, (6.55)

where g is the coupling constant (structure constants, relevant to odd spins, are not shown ex-

plicitly). To prove that the Hamiltonian defined as a quadratic form is equivalent to those in

(6.52) we need to examine the O(g) contributions from (6.53). These are

→2g
φ↑1∑

n=0

(→1)n
(
↽→ 1

n

)[
↼̄ς

↼̄n

↼+n+1

(
↼̄φ↑n↑1

↼+φ↑n↑1
ς ↼+φς̄

)]
, (6.56)

and its complex conjugate. We partially integrate this expression to obtain

→2g
φ↑1∑

n=0

(→1)φ+n+1

(
↽→ 1

n

)
ς̄ ↼+φ

[
↼̄n+1

↼+n+1
ς

↼̄φ↑n↑1

↼+φ↑n↑1
ς

]
. (6.57)
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We split (6.57) into two halves P and Q. In P , we shift n ↗ ↽→ n→ 1 and invoke the identity

(
↽→ 1

n

)
=

(
↽→ 1

↽→ 1→ n

)
. (6.58)

This yields

P = →g
φ↑1∑

n=0

(→1)n
(
↽→ 1

n

)
ς̄ ↼+φ

[
↼̄φ↑n

↼+φ↑n
ς

↼̄n

↼+n
ς

]
.

(6.59)

In the other half, Q, we shift n ↗ n→ 1 to obtain

Q = →g
φ∑

n=1

(→1)φ+n

(
↽→ 1

n→ 1

)
ς̄ ↼+φ

[
↼̄n

↼+n
ς

↼̄φ↑n

↼+φ↑n
ς

]
. (6.60)

Thus we have

H = P +Q =

{
→g

φ↑1∑

n=0

(→1)n
(
↽→ 1

n

)
ς̄ ↼+φ

[
↼̄φ↑n

↼+φ↑n
ς

↼̄n

↼+n
ς

]

→g
φ∑

n=1

(→1)φ+n

(
↽→ 1

n→ 1

)
ς̄ ↼+φ

[
↼̄n

↼+n
ς

↼̄φ↑n

↼+φ↑n
ς

]}
,

→ = g
φ∑

n=0

(→1)n
([(

↽→ 1

n

)
+

(
↽→ 1

n→ 1

)]
ς̄ ↼+φ

[
↼̄φ↑n

↼+φ↑n
ς

↼̄n

↼+n
ς

])
.

(6.61)

Using the Pascal triangle property

(
↽→ 1

n

)
+

(
↽→ 1

n→ 1

)
=

(
↽

n

)
, (6.62)

this is

H = P +Q = →g
φ∑

n=0

(→1)n
(
↽

n

)
ς̄ ↼+φ

[
↼̄φ↑n

↼+φ↑n
ς

↼̄n

↼+n
ς

]
, (6.63)

reproducing the structures in (6.52) and confirming that the higher spin Hamiltonians are indeed

quadratic forms.
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The focus of our thesis is on Yang-Mills theories and Nicolai map. We first rederive the quadratic

form structure form for spin-1 theory using our arbitrary spin result. We plug ↽ = 1 in (6.54)

and simplify, we get

D̄Aa = ↼̄Aa → gfabc 1

↼+
(Āb↼+Ac) , (6.64)

and DĀa is obtained by complex conjugation. The light-cone Hamiltonian for this theory may

be written as

H = 2

∫
d3xDĀaD̄Aa , (6.65)

We now propose an alternative way to express this Hamiltonian. We introduce new variables

A→a , Ā→a given by

A→a(x) = Aa(x)→ 2gfabc

∫
d2y ↼CT (x→ y)

1

↼↑
[Āb(x→)↼↑A

c(x→)] , (6.66)

where x→ = (x+, x↑, y, ȳ) and 2 ↼↼̄CT (x → y) = →ϖ2(x → y). In these new variables, the

Hamiltonian takes the form

H = →2

∫
d3x Ā→

a
↼↼̄A→a . (6.67)

Thus, (6.66) is a bosonic transformation that maps the Yang-Mills Hamiltonian to a free Hamil-

tonian. It is therefore of interest to explore whether this transformation (6.66) has a connection

with the Nicolai map (6.20). We believe that the expression (6.66) represents a good place to

begin an investigation of possible links between the Nicolai map and quadratic form.

* * *

In this chapter, we discussed the construction of the Nicolai map in terms of physical degrees of

freedom up to the second order in the coupling constant. We found two maps in four dimensions

that satisfy all three statements of the main theorem. The non-uniqueness of the maps can be

helpful in computing scattering amplitudes (correlation functions) to a particular order in the

coupling. In the end, we reviewed quadratic form structures in the light-cone Hamiltonian and

commented on the possible connection between the Nicolai map and quadratic forms.
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Chapter 7

Conclusion and Outlook

This section offers a synopsis of the results presented in this thesis. We highlight our findings and

discuss some interesting open problems and research avenues that we hope to work and explore

in the future. The thesis focuses on investigating aspects of supersymmetric Yang-Mills theories

purely with bosonic variables. We revisited earlier work from 1979, which involved quantizing

supersymmetric theories in an alternate way. The basic idea is that for supersymmetric theories

involving only quadratic fermions in the Lagrangian, there exists a transformation of the bosonic

fields which are non-local and non-linear in nature and it maps the interacting theory to a free

bosonic theory. This transformation is such that its Jacobi determinant equals the product of

fermion and ghost determinant (for gauge theories).

7.1 Summary of the results

We started with the on-shell supersymmetric Yang-Mills theory in the Landau gauge in chapter

3 and constructed the map up to order g2 through guess work. We found that our form of the

guess map (3.13) satisfies all three conditions of the main theorem (3.2). We discovered that the

determinant matching condition is dimensional dependent, and it constraints the allowed value

of space-time dimensions where super Yang-Mills theories can exist to be D = 3, 4, 6, 10. This

result was first obtained in [26]; we recovered this old classic result without requiring any clo-

sure of supersymmetry algebra.

To understand the map and its mathematical properties better, we needed the transformation to

a higher order in the coupling. We extended the map to the third order in Chapter 4. The form

of the map gets complicated at higher orders and the number of terms increases exponentially,

so we used an old method developed by Lechtenfeld, Dietz, and Flume [18–20] to construct the

map systematically. We re-derived the infinitesimal generator R of the inverse Nicolai map for

all on-shell supersymmetric Yang-Mills theories in space-time dimensions D = 3, 4, 6, 10. Us-

ing the R operator (4.22), we obtained the map (4.51) to order g3 that satisfies the main theorem
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(4.1.1). We found that starting from order g3, we require using the Landau gauge condition for

determinant matching.

While working on the order g3 map, we discovered a new simpler map that applies specifically in

six dimensions (5.5). In Chapter 5, we presented the map arrived at by guess work. We empha-

sized the uniqueness of this approach and determined that the two six-dimensional maps (4.51)

and (5.5) cannot be related to each other by partial integrations but can be connected through the

Jacobian determinant. Additionally, we outlined an algorithmic approach for recursively deter-

mining the map.

In Chapter 6, we studied supersymmetric Yang-Mills theories without fermion fields in the light-

cone gauge. We computed the map, in the physical degrees of freedom, to second order in the

coupling constant and generalized it to all critical dimensions. We identified two maps, (6.20)

and (6.36), in four dimensions that obeys the main theorem. The simpler four-dimensional map

(6.20) cannot be derived using the R prescription. We computed the tree-level three-point and

four-point correlation functions for Yang-Mills theory using the inverse map (6.5). The non-

uniqueness of these maps can provide insights into studying correlation functions (scattering

amplitudes). To establish the connection of quadratic forms with the Nicolai map, we first

derived the quadratic form structures for arbitrary spin theories. Subsequently, we discussed the

potential relationship between the Nicolai map and structures like quadratic forms that appear

in the light-cone Hamiltonian for pure Yang-Mills theory.

7.2 Future directions

This formalism (Nicolai map) presents several possible future research directions and we dis-

cuss a few of them below:

We presented two four-dimensional maps at order g2 in the light-cone gauge and two maps in six

dimensions at g3 in the Landau gauge. We found out that the non-uniqueness arises because the

determinant matching condition from the main theorem comments only about the derivatives of

the transformation (map) and not the map itself. To better understand the uniqueness, we need

a new condition that can impose more constraints on the transformation. Another step would be
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to study these maps at higher orders in the coupling. In particular, we plan to construct an order

g3 map in the light-cone gauge by taking the ‘simple’ four-dimensional map (6.20).

In quantum field theory, scattering amplitudes and correlation functions carry the physical infor-

mation. In this Nicolai map approach, they can be computed in terms of free bosonic expectation

value using the inverse map. Although this formalism does not offer any extra advantage for the

computation of correlators, we expect that this method might help us quantize supersymmetric

theories that cannot be quantized using the standard perturbative techniques. In this context,

supermembrane theories are of interest [58]. We aim to set up an integral path approach in terms

of the Nicolai map for calculating quantities of physical interest, which are expected to be vertex

operators [59].

The maximally supersymmetric Yang-Mills theory, N = 4 super Yang-Mills, in the planar limit,

has a lot of simplifying features: its scattering amplitudes are ultra-violet finite, exhibit novel

symmetries, and show surprising duality between scattering amplitudes and Wilson loops. The

proof of ultraviolet finiteness for N = 4 super Yang-Mills (by power counting) exists only in

the light-cone gauge [9, 10]. We aim to construct the map for N = 4 theory in light-cone su-

perspace and understand its finiteness properties in this mapped formalism. Our first task in this

program is to establish a direct connection between the Nicolai map and scattering amplitudes

in momentum space that we hope will offer new insights into understanding the surprising rela-

tions exhibited by N = 4 amplitudes at the level of Lagrangian.

N = 8 supergravity is a maximally supersymmetric theory of gravity. It shares many properties

with N = 4 theory, and at the level of scattering amplitude, they exhibit dualities such as BCJ

relations, KLT relations, and double copy. It has been shown to be finite up to five loops using

modern amplitude techniques and is hoped to be finite to all orders [60]. Our long-term aim is to

formulate supergravity theories without anti-commuting variables and understand the finiteness

properties within this approach.
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Appendix

A Spinors and the representation of Lorentz group

This section focuses on the spinor representations of the Lorentz group and its various char-

acteristics. The group is associated with symmetry transformations that keep the form of the

Minkowski metric intact (2.1.1). We briefly reviewed the representation of the Lorentz group

in chapter 2 and found that the representations of complex su(2) algebra can serve to study the

finite dimensional representation of the Lorentz group.

The idea is that two mutually commuting su(2) algebra is part of so(1, 3) algebra (2.5) and their

complex linear combinations are isomorphic to so(1, 3) algebra

so(1, 3) ⇒= su(2)↑ su(2)↓ , (7.1)

so the representations of Lorentz algebra can be labeled by pairs (n,m), which are representa-

tions of SU(2), and the spin of the representation can be identified with n+m and has dimension

(2n+ 1)(2m+ 1). Some examples of the simplest representations are

(a) (0, 0) with spin zero is the scalar representation.

(b) (12 , 0) denotes a left-handed spinor.

(c) (0, 12) describes a right-handed spinor.

(d) (12 ,
1
2) is for vector represenation.

These spinors (12 , 0), (0,
1
2) are two component objects and are called Weyl spinors. One can use

these representations and can generate any other representations by multiplying or adding them

together. For example (12 , 0)∝ (0, 12) = (12 ,
1
2) yields a spin 1 representation and is denoted as a

four-vector.

An alternate way to understand the spinors is via the relation between the Lorentz group and

SL(2,C). The latter is the group of determinant one 2 ↑ 2 complex matrices. Consider a point
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yµ in Minkowski space as a 2 by 2 Hermitian matrix

Y = yµϱ
µ =



 y0 + y3 y1 → iy2

y1 + iy2 y0 → y3



 , (7.2)

where ϱµ = (1, ϱi), and ϱi are the Pauli matrices. The matrix Y is Hermitian ( Y = Y †) and

determinant is equal to a Lorentz scalar yµyµ. Thus, there exists a one-to-one correspondence

between yµ and 2↑ 2 matrix Y .

Consider now an SL(2, C) transformation S that acts on Y as

Y ↗ Y → = SY S† . (7.3)

The transformation maintains the hermiticity of Y : (Y →)† = Y →, and also preserves the deter-

minant detY → = detY . This implies that the above transformation (7.3) must be a Lorentz

transformation. One simple way to check this is by counting the independent parameters: A

general complex 2↑ 2 matrix has four complex entries, and due to the determinant condition, it

reduces to three complex or six real parameters, which agrees with the three rotations and three

boosts parameters of Lorentz group . Additionally, since the transformation S and →S define Y

same way, this means that SL(2,C) is the double cover of SO(1, 3) and

SO(1, 3) ⇒=
SL(2,C)

Z2
. (7.4)

The above relation can be used to study the representation of SO(1, 3) in terms of SL(2,C).

Take a two-component, complex entity φϖ = (φ1,φ2) as the basic representation of SL(2,C)

that transform as

φϖ ↗ φ→

ϖ = Sϱ
ϖφϱ , (7.5)

where ϑ, ⇁ = 1, 2, the matrix S ′ SL(2,C) and from the classification of (7.1), the spinor φ

corresponds to (12 , 0) known as left-handed Weyl spinor.
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The complex conjugate representation φ̄ transform as

φ̄ϖ̇ ↗ (S↓)ϱ̇ϖ̇ φ̄ϱ̇ ϑ̇, ⇁̇ = 1, 2 , (7.6)

and it corresponds to (0, 12) known as right-handed Weyl spinor. To construct Lorentz scalars out

of these spinors, we introduce invariant tensors of SL(2,C)

εϖϱ = εϖ̇ϱ̇ =



 0 1

→1 0



 and εϖϱ = εϖ̇ϱ̇ =



0 →1

1 0



 , (7.7)

that enables the raising and lowering of spinor indices (example φϖ = εϖϱφϱ), just as we use

Minkowski metric to raise and lower vector indices. The only difference is that εϖϱ is anti-

symmetric because the spinors are anti-commuting Grassmann variables. An example of an

invariant is

φ◁ ↓ φϖ◁ϖ = εϖϱφϱ◁ϖ = →εϖϱφϖ◁ϱ = →φϖ◁
ϖ = ◁ϖφϖ = ◁φ . (7.8)

One can construct other representations of the Lorentz group using these spinors. The Dirac

spinor, a four-component, is an example that can be built using the two Weyl spinors. It is

denoted as

↽ =



φϖ

◁ϖ̇



 , (7.9)

and in four dimensions, it forms a reducible representation of the Lorentz group.
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B Construction of spinors in various dimensions

We here examine the Clifford algebra in different spacetime dimensions and explore its irre-

ducible representations and properties, which help us in finding spinors in allowed spacetime

dimensions. Spinors are integral to the construction of supersymmetric theories and the super-

charges transform as spinors under the Lorentz group. Thus, to study supersymmetry algebra,

one needs to understand the properties of spinors in arbitrary dimensions.

To introduce spinors, we start with Clifford algebra relation in D dimensions, involving a set of

⇀ matrices that adhere to the relation

{⇀µ , ⇀ω} = 2 ωµω I , (7.10)

where µ = 0, 1, 2, ....., D→1, I is the identity matrix, and the spinor indices ϑ, ⇁ are suppressed.

Gamma matrices in higher dimensions can be constructed by tensoring the product of sigma

matrices. For even dimensions, the representation of the gamma matrix has 2
D
2 complex de-

grees of freedom. For odd-dimensions, the representation is 2
D→1
2 dimensional and includes an

additional matrix ⇀D+1 = in ⇀0⇀1 ....⇀D↑1 that anti-commutes with all ⇀µ’s and squares to one.

Gamma matrices satisfy the following hermiticity properties

⇀†

0 = →⇀0 , ⇀†

i = ⇀i . (7.11)

A Clifford algebra in D + 2 dimension can be constructed using the D-dimensional Clifford

algebra. The Pauli matrices are given as

ϱ1 =



0 1

1 0



 , ϱ2 =



0 →i

i 0



 , ϱ3 =



1 0

0 →1



 , (7.12)

and the gamma matrix ⇀µ generates the Clifford algebra in D dimensions.
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The matrices that forms the (D + 2)-dimensional Clifford algebra can be constructed as

#µ = 1∝ ⇀µ ,

#D = ϱ1 ∝ ⇀D+1 ,

#D+1 = ϱ3 ∝ ⇀D+1 . (7.13)

Once we have the Clifford algebra, we can define the appropriate spinor. In even dimension, one

can use the matrix ⇀D+1 to project the spinor into left and right handed spinor components

↽L =
1

2
(1→ ⇀D+1)↽ , ↽R =

1

2
(1 + ⇀D+1)↽ . (7.14)

and this halves the number of independent spinor components. A second constraint that one can

apply to spinors is the Majorana condition.

↽̄ = (↽TC) , (7.15)

by choosing the appropriate representation of the gamma matrix, and it is consistent only in

dimensions D ↓ 1, 2, 3, 4mod 8 [61, 62]. We can have one more condition where the fermion

is both real and respects chirality, and it is called Majorana-Weyl spinor. They exists in D =

2mod 8, such as D = 2, 10 and so on. We outline below in the table the possible spinors in

various dimensions

Spinors/ dimensions 2 3 4 6 8 10
Majorana ∞ ∞ ∞ ∞ ∞

Weyl ∞ ∞ ∞ ∞ ∞
Majorana-Weyl ∞ ∞

The Majorana and Weyl spinors exist separately in four dimensions but not both simultaneously.

In supersymmetric theories, we will mostly use Majorana representation because it applies to

more dimensions. The six-dimensional case can be separately studied for the Weyl spinor.

For the case of the existence of Majorana spinors in Euclidean spacetime, we use the definition

proposed by Nicolai in [63, 64]. This approach keeps all the properties of the Majorana spinor

defined above intact, and one can easily rotate the correlation functions between Euclidean and

Minkowski spacetime.
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C Gaussian integrals

Gaussian integrals are fundamentally important in mathematics and physics, especially within

quantum field theory, where they present as infinite-dimensional integrals that are difficult to

solve. They come in two forms: those involving ordinary real or complex variables and those

involving Grassmann variables. We outline here how to solve both kinds of integrals

C.1 Gaussian integral with ordinary variables

An example of the simple Gaussian integral with an ordinary real variable is

I =

∫
↔

↑↔

exp (→1

2
ax2) dx =

√
2▷

a
, (7.16)

that can be generalized to a higher dimensional integral which frequently appears in the theory

of quantum fields. The generalization of the above integral in n dimensions is

∫
↔

↑↔

exp (→1

2
x
T
Ax) dx1 dx2.....dxn , (7.17)

where xT denotes a row vector, x refers to a column vector, and A is a n-dimensional symmetric,

non singular matrix. To solve the above integral, consider the following change of variables

x = Oy , dx = Ody ; dx1dx2...... = |O| dy1dy2.... (7.18)

where O is a special orthogonal matrix with detO = 1. Plugging the above transformation in

(7.17), we get

∫
exp (→1

2
y
T
O

↑1
AOy) dy1 dy2.....dyn , (7.19)

such that O↑1
AO is a diagonal matrix and the integral gives

∫
↔

↑↔

exp (→1

2

n∑

i=1

diy
2
i ) dy1 dy2.....dyn =

n∏

i=1

√
2▷

di
=

(2▷)n/2

(detA)1/2
. (7.20)

If n ↗ ∈, the numerator blows up, but in quantum field theory, this term comes as an overall

normalization constant so that it can be ignored. The functional determinant for the gauge theory
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can be computed using the above calculation, and it reads

∫
DA e↑

i
2

∫
dDx Aa

µM
µωAa

ω = [detM ]↑D/2 . (7.21)

where M is the quadratic operator, and the normalization is hidden.

C.2 Grassmann integrals

To understand the fermions better, we need to know the properties of anti-commuting variables

known as Grassmann numbers. Given any two Grassmann numbers φ,◁ their product anti-

commutes φ◁ = →◁φ and φ2 = ◁2 = 0.

Take a function f(θ) of Grasmann variable θ and expand it using the Taylor-series as f(θ) =

a + bθ. Note that the product of two Grassmann numbers acts like a regular number. To solve

the integral involving Grassmann numbers, we require the technique of Berezin integration [22].

The standard Berezin integral over θ is

∫
dθ θ = 1 ,

∫
dθ = 0. (7.22)

and the integral of f(θ) will be

∫
dθf(θ) =

∫
dθ (a+ bθ) = a

∫
dθ + b

∫
dθ θ = b . (7.23)

Generalizing this to a simple Gaussian integral involving two Grasmman variables gives

∫
dθ1dθ2 exp (→

1

2
a θ1θ2) =

∫
dθ1dθ2 (1→

1

2
a θ1θ2) =

1

2
a . (7.24)

Consider now a Gaussian integral involving n variables

In(B) =

∫
dnθ exp (→1

2
θθθTB θθθ) , (7.25)

where θθθT = [θ1, θ2....θn] and B is an anti-symmetric matrix. As an example, we first solve for

94



n = 4, where B is an antisymmetric 4 by 4 matrix

∫
d4θ exp (→1

2
θθθTB θθθ) =

∫
dθ1 .....θ4

[
1→ 1

2
θθθTB θθθ +

1

2!
(→1

2
θθθTB θθθ)2 + .....

]
. (7.26)

here only the second term survives after the Grassmann integration. The term θθθTB θθθ can be

simplified as


θ1 θ2 θ3 θ4







0 b12 b13 b14

→b12 0 b23 b24

→b13 →b23 0 b34

→b14 →b24 →b34 0









θ1

θ2

θ3

θ4





= 8 θ1θ2θ3θ4 (b12b34 → b13b24 + b14b23) , (7.27)

and this is equal to |B|1/2, so

∫
d4θ exp (→1

2
θθθTB θθθ) = (detB)1/2 , (7.28)

This can be generalized for any n, we get

∫
dnθ exp (→1

2
θθθTB θθθ) = (detB)1/2 . (7.29)

The above relation can be used to compute the functional determinant of Majorana fermions

∫
D↽ e↑

1
2

∫
dDx φ̄a Mφa

= (detM)1/2 . (7.30)

We can generalize the relation (7.29) for the case of complex Grassmann numbers. First, we

outline the variables

ω =
1⇐
2
(θ1 + iθ2) , ω̄ =

1⇐
2
(θ1 → iθ2) , (7.31)

and the integral

In(C) =

∫
dω̄1dω1 ...... dω̄ndωn exp (→

n∑

i,j=1

ω̄i Cij ωj) , (7.32)
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can be solved by Taylor expanding the above integral and using the steps similar to (7.27)

In(C) = (→1)n
∫

dω̄1dω1 ...... dω̄ndωn ω̄1ω1 .....ω̄nωn det(C)

= det(C) . (7.33)

The above formula can be used to compute the Fadeev-Popov determinant.
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