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Abstract

Precise inference of gene interaction networks is crucial for understanding
complex biological processes and disease mechanisms. Traditional methods
often rely on curated databases, which may overlook important but undis-
covered interactions. Various deep learning based approaches have been de-
veloped over the last two years to address this issue. However, most of
these method are either database specific or consider specific kinds of genes.
Therefore, a deep learning-based transformer model is introduced in this the-
sis to predict missing edges in gene interaction networks using the existing
databases. The proposed method integrates heterogeneous gene interaction
data with microarray expression data, leveraging the attention mechanisms
in transformer models to uncover intricate relationships.

In the first stage, the model processes a candidate gene’s one-hot encoding
and its microarray expression values, constructing a fully connected network
to generate individual embeddings, each of size d. These embeddings, con-
catenated into a vector of size 2d are passed through a standard transformer
encoder, which reduces them to d-dimensional embeddings to extract signifi-
cant information from both gene identity and expression. In the second stage,
these transformer-generated embeddings for gene pairs are used to train an
SVM classifier. The input to the classifier is the element-wise product of a
gene pair’s embeddings, along with their known interaction labels.

The performance of the proposed model is compared with the state of
the arts in terms of AUC-ROC and AUPR using seven standard datasets,
each corresponding to cell-type-specific ChIP-seq, Non-Specific ChIP-seq and
STRING dataset ground truth networks. The empirical analysis shows that
the proposed one outperforms the state of the arts, which indicates its poten-
tial for predicting new or undocumented interactions in biological networks.
in future, the performance and scalability of the model need to be tested on
various other types of reasonably large networks.
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Chapter 1

Introduction

The rapid progress of single-cell RNA sequencing (scRNA-seq), coupled with
the exponential growth of genomic data, has expanded the boundaries of
single-cell research and underscored the need for advanced computational
methods to decode gene interactions and regulatory networks.[1, 2]. Gene
regulatory networks (GRNs) capture these intricate interactions between
genes, typically involving transcription factors (TFs) and their target genes,
and play a crucial role in controlling gene expression within cells. Accu-
rately reconstructing GRNs is fundamental to understanding various cellu-
lar processes, such as gene expression mechanisms, cellular differentiation,
and research in disease pathology [3]. However, despite the promising op-
portunities presented by single-cell technologies, they also bring significant
challenges, such as the inherent noise and complexity of scRNA-seq data [4].
Recent progress in deep learning methods offers strong solutions to these
challenges by managing noisy data and combining different sources of infor-
mation. These methods help uncover complex relationships between genes
through feature extraction and optimization.[2, 5, 6, 7].

Several methods have been proposed to infer GRNs from single-cell data.
For example, SCODE uses ordinary differential equations (ODEs) to recon-
struct GRNs by treating pseudotime as time information during cell differen-
tiation [8]. Meanwhile, GENIE3 and GRNBoost2 employ tree-based machine
learning algorithms incorporated into the SCENIC pipeline to infer gene reg-
ulatory interactions [9]. These methods leverage boosting techniques to im-
prove performance but have significant limitations. For instance, SCODE
depends on pseudotime data and often oversimplifies complex biological pro-
cesses by using linear ODEs, while tree-based methods, such as GENIE3 and
GRNBoost2, involve high computational costs and poor scalability due to
their need to segment data into multiple models iteratively.
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To overcome these limitations, various deep learning-based methods have
emerged [2, 5, 6, 7]. DeepSEM employs a structural equation model (SEM)
combined with a beta-variational autoencoder and a neural network to in-
fer regulatory relationships [5]. However, this method depends heavily on
prior domain knowledge and SEM assumptions that may not always hold
in practice. Other methods, such as GNE [6], use multilayer perceptron
(MLP) architectures to infer GRNs from microarray data. These methods
utilize one-hot encoded gene ID vectors, but this approach suffers from in-
efficiencies due to the sparsity of the resulting feature vectors. Graph-based
methods, such as GENELink [7], use graph attention networks (GATs) to
capture the topology of gene networks, but they often emphasize local net-
work information at the expense of a global regulatory perspective, which
can lead to suboptimal feature representation. Single-cell Gene Regulatory
Embedding using Transformer or scGREAT[2] utilizes a robust transformer-
based architecture to infer GRNs from single-cell transcriptomics data along
with text-based BioBERT embeddings from gene names in order to overcome
the local neighbourhood emphasis in GENE Link. The scGREAT model con-
structs the gene dictionaries of embeddings and predicts the label over all the
pairs. However, the usage of hard negative sampling may make the model
biased and the usage of BioBERT results in heavy computation and litera-
ture dependence.

In order to address the limitations of the state of the arts for gene network
inference, GeneNet Transformer (GNT), a transformer-based deep learning
model is proposed here in the spirit of GNE [6] and ScGREAT [2]. GNT
leverages a standard transformer architecture with two encoding layers to
capture complex dependencies and relationships between genes [10]. Using
the embeddings learned from single RNA sequencing (scRNA-seq) data and
interaction network data [11], GNT transforms the interaction prediction
task into a link prediction task. The proposed framework for gene network
inference is developed in three phases.

The first phase consists of the proposed transformer architecture for gen-
erating gene embeddings, which is developed in three layers. The first layer
of the input layer contains the one-hot encoding of the gene and its cor-
responding expression values from scRNA-seq data. The dimension of the
one-hot encoding vector is a number of genes, say N, and the number of
expression values for a gene is E, say. Subsequently, both of these vectors
are individually transformed to a d (say) dimensional vector through a fully
connected layer following the GNE architecture [6] to reduce the dimension-
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ality. Therefore, in the third stage, a standard Transformer architecture is
used to develop gene embeddings. The transformer has two encoder layers,
which take the transformed vectors of length 2d as input and generate the
gene embeddings of dimension d.

Second phase generates the embeddings of the edges constituted by in-
dividual pair of gene embeddings from phase 1. In phase 3, a Support Vec-
tor Machine (SVM) classifier is trained using the edge embeddings and the
ground truths of gene interactions for predicting the interactions of new gene
pairs.

The thesis is organized as follows. Chapter 2 describes the related works.
The research gaps in this domain is discussed in chapter 3. Chapter 4 explains
the proposed method. The experimental evaluation is presented in chapter 5.
Finally, we discuss the merits, limitations and future scopes of the proposed
method in chapter 6.
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Chapter 2

Related work

Gene regulatory networks (GRNs) capture the intricate and multi-level regu-
latory interactions between transcription factors (TFs) and their target genes,
which are critical for understanding cellular processes and molecular func-
tions. Advances in single-cell RNA sequencing (scRNA-seq) now allow for
the inference of GRNs at a single-cell resolution, offering deeper insights into
gene regulation.

The rapid progress of scRNA-seq technologies, along with the boom in
genomic data, has highlighted the need for advanced computational tools
to better understand gene-gene/protein-protein interactions in detail. Gene
regulatory networks (GRNs), which show how molecules control each other,
are key to understanding gene behavior, such as how genes are expressed in
cells, and have many applications in disease research. Although single-cell
technologies are powerful, they also bring major challenges, especially due to
the complexity and noise in scRNA-seq data.

Deep learning-based approaches have proven effective in overcoming these
challenges by handling noisy data, integrating diverse knowledge sources, and
learning complex relationships through their feature extraction capabilities.
While several unsupervised and self-supervised models have been proposed
for GRN inference from bulk RNA-seq data, few are suitable for scRNA-seq
data due to issues such as low signal-to-noise ratios and dropout rates. The
increasing availability of transcription factor-DNA binding data (e.g., ChIP-
seq) enables supervised GRN inference, which we approach as a graph-based
link prediction problem, where the goal is to learn gene vector representa-
tions for predicting regulatory interactions.

Over recent years, numerous methods have been developed to infer GRNs,
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leveraging advances in machine learning, deep learning, and network theory.
Each method offers unique strengths while addressing specific aspects of gene
regulation, but they also exhibit limitations that hinder their broader appli-
cability and generalization to diverse biological contexts.

SCODE[12] (Single-Cell ODE) employs ordinary differential equations
(ODEs) to infer GRNs by treating pseudotime as a proxy for temporal in-
formation during the differentiation of cells. This approach assumes that
the pseudotime obtained from trajectory inference methods reflects the tem-
poral dynamics of gene expression, allowing SCODE to model changes in
gene regulation over time. SCODE has shown success in modeling GRNs
during cellular differentiation, particularly by leveraging the pseudotemporal
ordering of cells. In dynamic or pathological contexts where gene regulation
is inherently non-linear, the linear assumptions of SCODE tend to oversim-
plify the intricate regulatory dynamics, leading to suboptimal performance
in capturing the true nature of gene expression and differentiation.

GENIE3[12] (GeNet InferencE with Ensemble of Trees) and GRNBoost2[9]
are widely used machine learning algorithms for GRN inference. Both meth-
ods are based on decision trees and ensemble learning, with GENIE3 relying
on random forests and GRNBoost2 using gradient boosting. These meth-
ods identify regulatory relationships by learning the importance of genes
in predicting the expression of target genes, effectively iterating over the
gene set and leaving one gene out at a time. This iterative approach en-
ables the algorithms to capture potential regulatory interactions. GENIE3
and GRNBoost2 have been integrated into the SCENIC framework (Single-
Cell Regulatory Network Inference and Clustering), enhancing their utility in
large-scale single-cell analysis by enabling cell-type-specific GRN inference.
The boosting method used in GRNBoost2 further improves the performance
of tree-based approaches by refining the decision trees in successive itera-
tions.These methods require extensive segmentation of input data and build-
ing of decision trees iteratively which is expensive for larger datasets.

DeepSEM[13] (Deep Structural Equation Modeling) is a deep learning
approach designed to overcome some of the limitations of traditional statis-
tical models for GRN inference. It integrates a structural equation model
(SEM) with a beta-variational autoencoder ( β-VAE) to capture the under-
lying causal structure of gene regulatory interactions. DeepSEM models the
relationships between transcription factors (TFs) and target genes by assum-
ing that there is a latent causal structure driving gene expression patterns.
The β-VAE helps in learning latent representations of the regulatory relation-
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ships while accounting for noise in the data. DeepSEM has the advantage
of integrating causal modeling with deep learning, offering a more flexible
framework for inferring complex regulatory networks. DeepSEM’s reliance
on prior domain knowledge to define the causal structure of gene regulatory
interactions restricts its generalizability.This dependency on domain-specific
knowledge limits the model’s ability to infer GRNs in novel or under-explored
biological contexts, thereby reducing its overall utility.

GNE[6] is a deep learning-based method that utilizes a multilayer per-
ceptron (MLP) architecture for GRN inference. The key feature of GNE is
its use of one-hot encoding to represent gene identities, capturing the topo-
logical relationships between genes in the regulatory network. By employing
MLPs, GNE attempts to model the complex, nonlinear relationships in gene
expression data, particularly when applied to microarray data. The MLP
architecture used in GNE may not be well-suited for modelling the complex,
non-linear relationships inherent in GRNs, further limiting its effectiveness
in accurately capturing regulatory dynamics at scale.

CNNC[5] (Convolutional Neural Network for Co-expression) is a con-
volutional neural network (CNN)-based model designed to infer GRNs by
transforming co-expression data into images. The model first computes co-
occurrence values between genes and then normalizes these values into a
probability distribution function. The resulting normalized co-expression
data is converted into pixel values, effectively creating image representa-
tions of gene-gene interactions. CNNC applies convolutional filters to these
images to identify patterns of co-expression that correspond to regulatory re-
lationships. Although this method leverages the power of CNNs, which have
been highly successful in image processing tasks, transforming transcriptomic
data into image-based data for each gene pair introduces a substantial com-
putational burden, making the method less scalable for large datasets.The
process of converting transcriptomic data into image-based representations
for each gene pair introduces substantial computational complexity, making
the method less scalable for large datasets. This computational overhead,
combined with the fact that CNNC does not fully utilize end-to-end deep
learning capabilities, reduces the method’s overall efficiency and applicabil-
ity in large-scale GRN inference tasks.

GENELink[7] is a deep learning framework that utilizes graph attention
networks (GATs) to infer GRNs. GATs extend the capabilities of tradi-
tional graph convolutional networks by assigning different attention weights
to neighboring nodes in the graph, allowing GENELink to capture the im-
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portance of individual regulatory relationships. GENELink uses interaction
data to construct gene networks and then applies graph convolution and at-
tention mechanisms to model the regulatory interactions between TFs and
target genes. GENELink emphasizes the importance of nearby relationships
within the graph by focusing on local network structures. However, this local
emphasis presents a limitation in its ability to capture global regulatory dy-
namics across the entire network.GENELink’s reliance on high-quality node
features and sparse ground truth networks can hinder its performance in
contexts where the available data is incomplete or unreliable, particularly for
novel or poorly characterized genes.

scGREAT[2] (Single-cell Gene Regulatory Embedding using Transformer)
is a state-of-the-art method that utilizes a transformer-based architecture to
infer GRNs from single-cell transcriptomics data. The model builds upon re-
cent advances in natural language processing by employing a transformer to
learn regulatory interactions between TFs and target genes. scGREAT uses
gene expression data and biotext information (e.g., BioBERT embeddings) to
enhance the accuracy of its predictions. Unlike traditional methods that rely
solely on gene expression data, scGREAT incorporates textual information
from biomedical literature, allowing it to capture context-specific regulatory
relationships. The transformer architecture enables scGREAT to learn com-
plex, long-range dependencies between genes, making it highly effective for
GRN inference.

In conclusion, while each method offers valuable insights into gene regu-
latory networks, their limitations—ranging from computational inefficiency
and scalability issues to dependency on ground truth data and assumptions
about regulatory relationships—highlight the need for further innovation in
GRN inference
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Chapter 3

Research Gap

Despite the significant advancements in gene regulatory network (GRN) in-
ference, each method exhibits specific limitations that constrain its effective-
ness and scalability in certain biological contexts. Addressing these limita-
tions is critical for enhancing the accuracy, efficiency, and generalizability
of GRN models, particularly as single-cell transcriptomics and multi-omics
data grow in complexity and size.

The SCODE model [8], which relies on ordinary differential equations
(ODEs) and pseudotime data, faces challenges primarily due to its depen-
dence on accurate pseudotime information [2]. The DeepSEM model [5] relies
on prior domain knowledge to define the causal structure of gene regulatory
interactions, which restricts its generalizability, particularly in biological sys-
tems where the regulatory mechanisms are not well understood. The SEM
component assumes a predefined causal structure, and these assumptions
may not always hold in practice, especially in complex or poorly character-
ized systems [2]. GNE model [6] encounters limitations due to its use of multi
layer perceptron (MLP) technqiue for generating embeddings [2]. MLP is
a computationally expensive technique and many advanced techniques have
been developed in this spirit. GENELink technqiue [7] focus on local network
interactions, which is unable to capture global regulatory dynamics across
the entire network [2]. scGREAT’s [2] reliance on BioBERT embeddings for
gene representation introduces challenges when handling newly discovered
genes for which there is limited or no literature. Moreover, it employs hard
negative sampling of non interacting pairs, which can introduce bias, as the
model may overfit to non-interacting pairs, reducing its ability to accurately
distinguish between true regulatory interactions and non-interactions.

To our knowledge, there is no study in this direction to address these
limitations of the existing techniques for gene network inference.
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Chapter 4

GeneNet Transformer Model

In this spirit, a transformer-based model is proposed, which is named as
GeneNetTransfomer Model. The aim is to learn a lower-dimensional
embedding for genes. These lower-dimensional representations of genes can
be utilised for downstream tasks like link prediction. The proposed frame-
work for gene network inference is developed into the following three phases:

- Phase 1 consists of a feature transformation network followed by the
GeneNet Transformer architecture for generating gene embeddings.

- Second phase generates the embeddings of the edges constituted by
individual pair of gene embeddings from phase 1.

- In phase 3, a Support Vector Machine (SVM) classifier is trained using
the edge embeddings and the ground truths of gene interactions for
predicting the interactions of new gene pairs.

4.1 Phase 1: GeneNet Transformer

In the initial step in feature representation involves processing the data
through two distinct types of embeddings: one-hot encoding of genes and nor-
malized expression values obtained from single-cell RNA sequencing (scRNA-
seq) data. The one-hot encoding of each gene is transformed into a d-
dimensional vector, denoted as V

(id)
i , through a fully connected layer. The

weights associated with this transformation are represented by the matrix
W (id). Similarly, the normalized expression values from the scRNA-seq data
for each gene are also mapped to a d-dimensional vector, denoted as V

(att)
i ,

using a separate fully connected layer. The weights for the attribute vector
transformation of all genes are stored in the matrix W (att). After the sum of
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multiplication of V (att)
i with W (a) and V

(id)
i with W (b) we get a d-dimensional

vector. This process ensures that both the structural information (from one-
hot encoding) and the attribute information (from expression values) are
effectively reduced to a common d-dimensional feature space, facilitating in-
tegration and subsequent analysis.

This vector is fed forward into two transformer encoder layer. As the data
passes through the layers of the Transformer, the multi-head self-attention
mechanism dynamically weighs the interactions between nodes, combining
both the identity-based and attribute-based embeddings. The output of the
second Transformer Encoder layer, therefore, captures both the relational
information (neighbourhood dependencies) and biological expression values,
preserving both the structural identity of nodes (through attention mecha-
nisms) and their biological attributes (through attribute embedding). The
final output layer of transformer encoder is set to be d dimensional. This vec-
tor is transformed into a probability vector with the matrix W (out). Elements
in this vector represent the conditional probability of that gene connected to
all the other genes.

To train the model, the predicted logits are computed from the output of
the last Transformer Encoder layer using a fully connected output layer:

ŷ = softmax(WoZLayer2 + bo)

where ŷ ∈ RC is the predicted probability distribution over C classes.
The model is trained using Cross-Entropy Loss:

L = −
C∑
c=1

yc log(ŷc)

Output layer of second transformer encoder represents a rich latent space em-
bedding that encodes neighbourhood information alongside expression data,
which is then used to predict gene interactions or relationships in the out-
put layer. The final predicted values are compared with ground truth values
(gene interaction labels) using a loss function such as cross-entropy. This
process ensures that the model simultaneously learns from the structure of
the network (neighbourhood information) and the underlying biological data
(expression values), effectively capturing the complexity of gene interactions.
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4.2 Phase 2: Edge Embedding Generation
The given edge list is partitioned into training, validation, and test sets with
a ratio of 8 : 1 : 1. To create a balanced dataset, an equal number of negative
interactions are introduced and concatenated with the positive interactions.
This results in a final dataset that is balanced for model training. Gene
embeddings of dimension d are obtained from the GNT model, where n
embeddings are generated. For an edge connecting Gene Gi and Gj, we
create an edge embedding by the Hadamard product of their respective
embeddings, i.e. the elementwise multiplication of gene embeddings of Gene
Gi and Gj. The edge embeddings are also d dimensional.

4.3 Phase 3: Training SVM for Gene Network
Inference

Subsequently, using the same training data split utilized for training the GNT
model, an SVM classifier is trained over the edges to predict the interaction
labels between edge embeddings. The final output is the label predicted by
the SVM classifier over the embeddings of edges from the test dataset, i.e. 1
in case of a true interaction or 0 in the case of no/missing interaction.
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Figure 4.1: Proposed Methodology
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Chapter 5

Experimental Evaluation

5.1 Overview of Datasets

We assess the performance of GNT on seven distinct cell types derived from
scRNA-seq datasets provided by the BEELINE benchmark [11]. These in-
clude: (i) human embryonic stem cells (hESC), (ii) human mature hepato-
cytes (hHEP), (iii) mouse dendritic cells (mDC), (iv) mouse embryonic stem
cells (mESC), (v) mouse hematopoietic stem cells of the erythroid lineage
(mHSC-E), (vi) mouse hematopoietic stem cells of the granulocyte-monocyte
lineage (mHSC-GM), and (vii) mouse hematopoietic stem cells of the lym-
phoid lineage (mHSC-L)[7, 2]. Each of these datasets is paired with three
distinct ground-truth networks sourced from functional interaction data in
the STRING database[14], non-specific ChIP-seq data[15, 16, 17], and cell-
type-specific ChIP-seq data [18, 19, 20].

The preprocessing of each scRNA-seq dataset was performed following the
methodology outlined by Pratapa et al. (2020), with gene regulatory network
(GRN) inference restricted to interactions originating from transcription fac-
tors (TFs). For GRN inference, we selected the top 500 and 1000 most highly
variable genes in conjunction with TFs whose variance showed a Bonferroni-
corrected P-value below 0.01, as recommended by Pratapa et al. (2020).
The scRNA-seq datasets for the seven cell types are available through the
Gene Expression Omnibus, with the accession numbers GSE81252 (hHEP),
GSE75748 (hESC), GSE98664 (mESC), GSE48968 (mDC), and GSE81682
(mHSC)[7]. All single-cell datasets, along with four types of ground-truth
networks, can be accessed at https://doi.org/10.5281/zenodo.3378975.[11, 7]
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5.2 Data Preprocessing
The process of data splitting and the introduction of negative pairs in the
model training is a crucial aspect of preparing the dataset for effective and
unbiased machine learning. In this framework, the adjacency matrix rep-
resenting gene interactions is first converted into an edge list that contains
pairs of interacting genes, denoted as positive pairs. The process is followed
by the careful sampling of negative pairs, i.e., pairs of genes that do not ex-
hibit known interactions, and the partitioning of these positive and negative
pairs into training, validation, and test sets. The primary objective is to
ensure that the model is exposed to a balanced set of interactions (positive)
and non-interactions (negative), thereby improving its ability to generalize
beyond the training data.

The data splitting process begins by converting the adjacency matrix A,
representing the undirected graph of gene interactions, into an edge list. This
adjacency matrix A ∈ RN×N , where N is the number of genes, consists of
binary entries such that:

Aij =

{
1, if gene i interacts with gene j
0, otherwise

Self-loops, represented by diagonal elements, are removed, ensuring that
the adjacency matrix only reflects interactions between distinct genes.

5.2.1 Sampling Negative Pairs

Since the majority of potential gene pairs do not interact, negative pairs (i.e.,
non-interactions) must be explicitly sampled. Negative pairs are generated
by randomly selecting pairs of genes from the adjacency matrix where no
interaction is observed, ensuring no overlap with the positive pairs. These
negative pairs represent the absence of interaction between two genes and
serve as a counterbalance to the positive pairs.

Negative Pairs = {(i, j) | Aij = 0}

5.2.2 Balancing Positive and Negative Pairs

In most real-world biological networks, positive interactions are sparse, whereas
the number of potential non-interactions is exceedingly large. To address this
imbalance, an equal number of negative pairs is sampled to match the num-
ber of positive pairs. By doing so, the dataset becomes balanced, with an
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equal number of interacting (positive) and non-interacting (negative) pairs.
This is critical to prevent the model from becoming biased towards predict-
ing the majority class, which would predominantly be negative pairs in an
imbalanced setting. The sampled negative pairs and the positive pairs are
combined to form the full dataset.

5.3 Train, Validation, and Test Split

Once the positive and negative pairs are defined, they are split into training,
validation, and test sets. The typical split allocates 80% of the data to the
training set, 10% to the validation set, and the remaining 10% to the test
set. This ensures that the model is trained on a sufficient amount of data
while preserving enough data for validation and testing.

Training Set = {(i, j, k) | k ∈ {0, 1}, for 80% of data}

Validation Set = {(i, j, k) | k ∈ {0, 1}, for 10% of data}

Test Set = {(i, j, k) | k ∈ {0, 1}, for 10% of data}

Here, (i, j, k) refers to the gene pair (i, j) with label k, where k = 1 indicates
a positive pair (interaction), and k = 0 represents a negative pair (non-
interaction).

5.4 Experimental settings

5.4.1 libraries

In developing the GNT model, several key libraries were utilized:

• NumPy: Used for efficient numerical computation and array manipu-
lation, particularly for handling high-dimensional gene expression data
and tensor operations in the model.

• Pandas: Employed for data management and preprocessing, enabling
the organization and transformation of gene expression and interaction
datasets.

• PyTorch: Provided the deep learning framework for constructing and
training the transformer architecture, supporting dynamic computation
graphs and GPU acceleration.
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• Transformers: Integrated to implement pre-built transformer models,
enabling the GNT model to capture complex dependencies between
transcription factors and target genes.

• Scikit-learn: Used for splitting datasets, computing evaluation metrics,
and applying cross-validation to ensure robust model performance.

• SciPy: Supplemented numerical optimization and statistical analysis,
particularly in fine-tuning model parameters and conducting signifi-
cance testing.

• NetworkX: Utilized for visualizing and analyzing the topology of the
inferred gene regulatory networks, representing genes and interactions
as nodes and edges.

5.4.2 Parameters

The parameters used in the GNT (Gene Network Transformer) model define
key aspects of the architecture, training process, and optimization, ensuring
effective learning of gene regulatory interactions. Each parameter is care-
fully selected to balance model complexity, computational efficiency, and the
accuracy of inferred gene embeddings.

• id embedding size (128): This parameter specifies the dimensionality of
the embeddings used to represent gene identities. A size of 128 allows
the model to learn compact, informative representations of genes based
on their one-hot encoded identities.

• attr embedding size (128): This parameter controls the size of the
embeddings for gene attributes, such as biological features derived from
gene expression data. Similar to the identity embeddings, a dimension
is set to 128.

• representation size (128): This parameter defines the dimensionality of
the final gene representations output by the transformer encoder.

• alpha (1): The alpha parameter is a weighting of attr embedding vec-
tor over id embedding vector. We can modulate the contribution of
expression data to the training and final embedding.

• n neg samples (10): This parameter specifies the number of negative
samples generated for each positive interaction during training. Nega-
tive sampling helps the model learn to distinguish true gene regulatory
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relationships from random or spurious connections by presenting non-
interacting gene pairs.

• epoch (30): The number of epochs defines how many times the entire
dataset is passed through the model during training.

• batch size (256): This parameter determines the number of samples
processed in a single forward and backward pass during training. A
batch size of 256 strikes a balance between computational efficiency
and model convergence.

• learning rate (0.002): The learning rate controls the step size at each
iteration while optimizing the model parameters. A learning rate of
0.002 ensures steady convergence without overshooting the optimal so-
lution.

These parameters are crucial for the GNT model’s ability to learn low-
dimensional, meaningful representations of genes and accurately infer tran-
scription factor-target gene interactions. It was found that lower learning
rate might enhance feature learning in datasets with low number of genes.
But the results given in the subsequent sections uses the parameters set as
mentioned above.

5.5 Results and Analysis

We evaluated the AUC-ROC and AUPRC of GNT over 7 cell types and 3 net-
work types, with the most varying 500 and 1000 genes and compared with
the methods scGREAT[2], GENELink[7], GNE[6], DeepSEM[5], Pearson’s
correlation coefficient, Mutual information [5], SCODE[8], GRNBoost2[9],
GENIE3[12] epoch: 30, batch size: 256, learning rate: 0.002
The results of the Gene Network Transformer (GNT) model across vari-
ous datasets and transcription factor (TF) ranges demonstrate its significant
outperformance over existing methods, particularly scGREAT, the current
state-of-the-art (SOTA) model. In an interaction network generated from
cell-type specific ChIP-Seq data, with TF+500 most varying genes, GNT
shows remarkable success across all seven cell types. The average AUC-ROC
score of GNT in this scenario is 0.98, which surpasses scGREAT’s average
score of 0.89 by a margin of 0.09. The average AUPRC of GNT over seven
cell types is 0.97, whereas the AUPRC of SOTA is 0.76. This substantial
increase reflects GNT’s capability to infer more accurate gene regulatory in-
teractions across diverse biological environments. Table 5.1 and Tabel 5.2
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show that GNT outperforms the SOTA model in all datasets, highlighting
its robustness and scalability for TF+500 gene regulatory networks.

Method hESC hHEP mDC mESC mHSC-
E

mHSC-
GM

mHSC-
L

GENIE3 0.50 0.54 0.50 0.50 0.52 0.53 0.52
GRNBoost2 0.49 0.52 0.52 0.53 0.53 0.50 0.52
SCODE 0.50 0.47 0.53 0.51 0.52 0.53 0.45
MI 0.51 0.50 0.55 0.53 0.52 0.49 0.51
PCC 0.47 0.49 0.54 0.51 0.49 0.54 0.55
DeepSEM 0.58 0.55 0.51 0.50 0.51 0.53 0.54
GNE 0.67 0.80 0.52 0.81 0.82 0.83 0.77
GENELink 0.82 0.84 0.71 0.88 0.87 0.89 0.83
scGREAT 0.89 0.91 0.81 0.94 0.93 0.93 0.88
GNT 0.97 0.98 0.97 0.98 0.98 0.98 0.98
(proposed
methodology)

Table 5.1: AUC-ROC: Cell-type Specific ChIP-seq (TFs with most varying
500 genes)
Method hESC hHEP mDC mESC mHSC-

E
mHSC-
GM

mHSC-
L

GENIE3 0.15 0.39 0.05 0.31 0.56 0.53 0.50
GRNBoost2 0.15 0.38 0.06 0.32 0.57 0.52 0.50
SCODE 0.15 0.33 0.05 0.32 0.59 0.55 0.44
MI 0.15 0.35 0.05 0.33 0.57 0.50 0.49
PCC 0.14 0.35 0.06 0.31 0.56 0.53 0.52
DeepSEM 0.19 0.40 0.05 0.31 0.56 0.52 0.53
GNE 0.34 0.65 0.06 0.64 0.80 0.78 0.70
GENELink 0.50 0.70 0.11 0.75 0.89 0.89 0.83
scGREAT 0.63 0.86 0.21 0.89 0.95 0.94 0.88
GNT 0.97 0.98 0.96 0.97 0.98 0.98 0.97
(proposed
methodology)

Table 5.2: AUPRC: cell type Specific ChIP-seq (TFs with most varying 500
genes)

Further analysis using cell-type specific ChIP-Seq data with TF+1000
most varying genes reinforces GNT’s superior performance. The average
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AUC-ROC score of GNT remains at 0.98, which is 0.08 higher than the
0.90 average AUC-ROC of scGREAT. The average AUPRC of GNT is 0.97,
whereas the average AUPRC of SOTA is 0.76. we can see a gain of 0.2. As
summarized in Table 5.3 and Table 5.4, GNT consistently outperforms the
state-of-the-art across all seven cell types.

When applied to non-specific ChIP-Seq data with TF+500 most varying
genes, GNT shows its strength, outperforming scGREAT in all datasets ex-
cept for mESC. The average AUC-ROC score of GNT across all cell types is
0.94, compared to scGREAT’s 0.90, representing a 0.04 improvement. The
average APRC of GNT is 0.93, whereas the AUPRC of scGREAT is 0.32. As
presented in Table 5.5 and Table 5.6, this improvement indicates that GNT is
particularly effective in more generalized interaction networks, where speci-
ficity may be reduced. The only exception, mESC, suggests that some cell-
type-specific factors may influence GNT’s performance in certain datasets,
but the overall trend remains positive.

The performance of GNT is even more pronounced when Non-Specific
ChIP-Seq data with TF+1000 most varying genes is considered. As shown
in Table 5.7, GNT achieves an average AUC-ROC of 0.95 across the seven
datasets, outperforming scGREAT’s 0.89 by 0.06. As shown in Table 5.8,
the average AUPRC of GNT is 0.93; meanwhile, the average AUPRC of sc-
GREAT is 0.31. We can see a significantly low AUPRC of the other networks.

In contrast, when applied to STRING datasets with both TF+500 and
TF+1000 most varying genes, GNT’s performance is comparable to scGREAT,
rather than significantly superior. Table 5.9 shows that for TF+500 genes,
the average AUC-ROC of GNT is 0.94, while scGREAT achieves a score of
0.93. We can see a gain of 0.3 in average AUPRC in Table 5.10. The average
AUPRC of GNT is 0.94 whereas that of scGREAT is 0.60.

Similarly, in Tables 5.7 and 5.9, for TF+1000 genes, GNT’s average AUC-
ROC is 0.93, only marginally below scGREAT’s 0.945. However, we have to
note that this result was achieved after integrating bioBERT embeddings. If
we drop the BioBERT from scGREAT architecture, it will lose its benefit
over GNT. The average AUPRC of GNT is 0.94, whereas that of scGREAT
is 0.60. These results indicate that, while GNT performs well, scGREAT re-
tains a slight advantage in this dataset type, only in the case of AUC-ROC,
particularly in STRING interaction networks. However, the difference is in-
significant, and GNT remains competitive across all datasets.

In Tables 5.5 and 5.7, we observe a slight performance gap between
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Method hESC hHEP mDC mESC mHSC-
E

mHSC-
GM

mHSC-
L

GENIE3 0.49 0.54 0.52 0.50 0.50 0.51 0.52
GRNBoost2 0.48 0.52 0.53 0.53 0.51 0.49 0.53
SCODE 0.51 0.48 0.53 0.52 0.53 0.53 0.45
MI 0.51 0.49 0.57 0.55 0.49 0.50 0.54
PCC 0.47 0.49 0.54 0.49 0.48 0.54 0.55
DeepSEM 0.58 0.55 0.50 0.51 0.54 0.53 0.57
GNE 0.68 0.81 0.52 0.82 0.84 0.84 0.77
GENELink 0.83 0.85 0.74 0.90 0.90 0.90 0.84
scGREAT 0.89 0.91 0.84 0.95 0.94 0.94 0.89
GNT 0.98 0.98 0.97 0.98 0.98 0.98 0.98
(proposed
methodology)

Table 5.3: AUC-ROC: Cell-type Specific ChIP-seq (TFs with most varying
1000 genes)
Method hESC hHEP mDC mESC mHSC-

E
mHSC-
GM

mHSC-
L

GENIE3 0.15 0.38 0.05 0.31 0.54 0.53 0.48
GRNBoost2 0.14 0.37 0.05 0.32 0.54 0.52 0.48
SCODE 0.15 0.33 0.005 0.32 0.58 0.56 0.42
MI 0.15 0.34 0.05 0.34 0.53 0.51 0.49
PCC 0.14 0.34 0.05 0.34 0.53 0.51 0.49
DeepSEM 0.19 0.41 0.05 0.31 0.56 0.54 0.52
GNE 0.34 0.66 0.05 0.65 0.81 0.81 0.68
GENELink 0.50 0.71 0.12 0.76 0.90 0.91 0.81
scGREAT 0.64 0.86 0.18 0.90 0.95 0.95 0.88
GNT 0.98 0.98 0.92 0.97 0.98 0.98 0.98
(proposed
methodology)

Table 5.4: AUPRC: cell type Specific ChIP-seq (TFs with most varying 1000
genes)

GNT and scGREAT in STRING datasets with both TF+500 and TF+1000
genes. For TF+500 genes, GNT’s average AUC-ROC is 0.94, while scGREAT
achieves 0.945. For TF+1000 genes, GNT scores 0.93, slightly below sc-
GREAT’s 0.945. Despite this, the performance of GNT remains comparable,
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Method hESC hHEP mDC mESC mHSC-
E

mHSC-
GM

mHSC-
L

GENIE3 0.51 0.51 0.55 0.55 0.61 0.66 0.69
GRNBoost2 0.52 0.53 0.52 0.54 0.61 0.64 0.67
SCODE 0.51 0.53 0.48 0.51 0.50 0.52 0.60
MI 0.48 0.48 0.47 0.55 0.57 0.61 0.65
PCC 0.53 0.57 0.47 0.55 0.58 0.61 0.65
DeepSEM 0.55 0.57 0.57 0.55 0.58 0.60 0.63
GNE 0.66 0.69 0.67 0.65 0.53 0.56 0.64
GENELink 0.85 0.87 0.89 0.90 0.86 0.85 0.80
scGREAT 0.90 0.91 0.93 0.93 0.88 0.88 0.83
GNT 0.92 0.93 0.95 0.92 0.949 0.979 0.942
(proposed
methodology)

Table 5.5: AUC-ROC: NonSpecific ChIP-seq (TFs with most varying 500
genes)
Method hESC hHEP mDC mESC mHSC-

E
mHSC-
GM

mHSC-
L

GENIE3 0.09 0.09 0.04 0.07 0.15 0.17 0.10
GRNBoost2 0.09 0.09 0.04 0.07 0.15 0.17 0.10
SCODE 0.09 0.09 0.04 0.07 0.15 0.17 0.10
MI 0.04 0.05 0.04 0.07 0.12 0.23 0.10
PCC 0.04 0.05 0.04 0.07 0.15 0.23 0.10
DeepSEM 0.09 0.09 0.09 0.07 0.19 0.19 0.10
GNE 0.09 0.09 0.06 0.07 0.07 0.06 0.04
GENELink 0.17 0.18 0.30 0.21 0.29 0.31 0.09
scGREAT 0.25 0.29 0.44 0.35 0.34 0.35 0.23
GNT 0.92 0.92 0.93 0.90 0.94 0.98 0.94
(proposed
methodology)

Table 5.6: AUPRC: NonSpecific ChIP-seq (TFs with most varying 500 genes)

showing that it is able to keep up with scGREAT even in datasets where
STRING interaction networks are utilized.
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Method hESC hHEP mDC mESC mHSC-
E

mHSC-
GM

mHSC-
L

GENIE3 0.51 0.49 0.48 0.56 0.61 0.68 0.68
GRNBoost2 0.53 0.51 0.48 0.55 0.62 0.68 0.67
SCODE 0.54 0.53 0.45 0.52 0.53 0.55 0.58
MI 0.51 0.48 0.45 0.54 0.62 0.72 0.68
PCC 0.54 0.55 0.45 0.57 0.57 0.64 0.65
DeepSEM 0.56 0.57 0.52 0.56 0.57 0.59 0.62
GNE 0.67 0.65 0.62 0.69 0.54 0.60 0.61
GENELink 0.85 0.86 0.88 0.89 0.85 0.83 0.73
scGREAT 0.90 0.91 0.93 0.93 0.89 0.88 0.81
GNT 0.95 0.95 0.96 0.94 0.95 0.96 0.91
(proposed
methodology)

Table 5.7: AUC-ROC: NonSpecific ChIP-seq (TFs with most varying 1000
genes)
Method hESC hHEP mDC mESC mHSC-

E
mHSC-
GM

mHSC-
L

GENIE3 0.06 0.04 0.05 0.07 0.13 0.21 0.10
GRNBoost2 0.06 0.04 0.05 0.07 0.15 0.19 0.11
SCODE 0.06 0.04 0.05 0.03 0.05 0.07 0.06
MI 0.06 0.09 0.05 0.07 0.15 0.26 0.11
PCC 0.06 0.09 0.05 0.07 0.15 0.24 0.11
DeepSEM 0.12 0.09 0.08 0.07 0.18 0.19 0.11
GNE 0.12 0.09 0.08 0.07 0.05 0.07 0.04
GENELink 0.19 0.17 0.29 0.16 0.28 0.40 0.09
scGREAT 0.23 0.25 0.40 0.35 0.30 0.44 0.19
GNT 0.94 0.93 0.93 0.93 0.95 0.95 0.93
(proposed
methodology)

Table 5.8: AUPRC: NonSpecific ChIP-seq (TFs with most varying 1000
genes)
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Method hESC hHEP mDC mESC mHSC-
E

mHSC-
GM

mHSC-
L

GENIE3 0.65 0.64 0.64 0.64 0.69 0.78 0.73
GRNBoost2 0.62 0.61 0.57 0.61 0.68 0.78 0.74
SCODE 0.44 0.46 0.50 0.51 0.47 0.54 0.68
MI 0.65 0.62 0.51 0.67 0.65 0.72 0.82
PCC 0.61 0.70 0.54 0.64 0.72 0.81 0.74
DeepSEM 0.63 0.63 0.62 0.63 0.67 0.74 0.68
GNE 0.78 0.78 0.83 0.80 0.65 0.74 0.76
GENELink 0.91 0.92 0.94 0.93 0.90 0.91 0.82
scGREAT 0.95 0.96 0.96 0.96 0.94 0.94 0.85
GNT 0.93 0.95 0.97 0.94 0.95 0.89 0.97
(proposed
methodology)

Table 5.9: AUC-ROC: STRING (TFs with most varying 500 genes)
Method hESC hHEP mDC mESC mHSC-

E
mHSC-
GM

mHSC-
L

GENIE3 0.10 0.13 0.12 0.13 0.26 0.41 0.33
GRNBoost2 0.10 0.10 0.12 0.13 0.26 0.38 0.40
SCODE 0.05 0.04 0.10 0.09 0.06 0.06 0.13
MI 0.17 0.13 0.07 0.13 0.13 0.14 0.13
PCC 0.07 0.15 0.10 0.13 0.28 0.51 0.38
DeepSEM 0.12 0.10 0.17 0.16 0.34 0.43 0.42
GNE 0.12 0.10 0.22 0.16 0.09 0.11 0.08
GENELink 0.40 0.54 0.56 0.53 0.40 0.49 0.20
scGREAT 0.61 0.68 0.74 0.67 0.57 0.59 0.38
GNT 0.94 0.95 0.97 0.95 0.95 0.90 0.98
(proposed
methodology)

Table 5.10: AUPRC: STRING (TFs with most varying 500 genes)

5.6 Introduction of Negative Pairs and Their
Role

The introduction of negative pairs is a key step in binary classification prob-
lems such as this, where the task is to distinguish between interacting and
non-interacting gene pairs. By generating negative pairs and balancing them
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Method hESC hHEP mDC mESC mHSC-
E

mHSC-
GM

mHSC-
L

GENIE3 0.66 0.67 0.62 0.64 0.72 0.79 0.77
GRNBoost2 0.63 0.63 0.56 0.61 0.71 0.80 0.78
SCODE 0.45 0.48 0.80 0.55 0.49 0.54 0.72
MI 0.67 0.65 0.52 0.67 0.68 0.72 0.85
PCC 0.65 0.73 0.56 0.64 0.78 0.85 0.75
DeepSEM 0.65 0.65 0.59 0.63 0.67 0.73 0.74
GNE 0.78 0.80 0.81 0.83 0.67 0.73 0.77
GENELink 0.92 0.94 0.93 0.94 0.92 0.93 0.85
scGREAT 0.95 0.96 0.97 0.96 0.95 0.93 0.90
GNT 0.94 0.95 0.97 0.95 0.96 0.94 0.81
(proposed
methodology)

Table 5.11: AUC-ROC: STRING (TFs with most varying 1000 genes)
Method hESC hHEP mDC mESC mHSC-

E
mHSC-
GM

mHSC-
L

GENIE3 0.13 0.18 0.12 0.09 0.22 0.45 0.39
GRNBoost2 0.13 0.15 0.10 0.09 0.24 0.43 0.40
SCODE 0.06 0.07 0.07 0.05 0.04 0.07 0.21
MI 0.19 0.18 0.07 0.07 0.09 0.13 0.15
PCC 0.09 0.22 0.10 0.09 0.28 0.59 0.39
DeepSEM 0.16 0.15 0.12 0.12 0.28 0.43 0.41
GNE 0.16 0.18 0.19 0.12 0.07 0.11 0.10
GENELink 0.40 0.53 0.58 0.52 0.40 0.45 0.29
scGREAT 0.60 0.65 0.75 0.64 0.89 0.62 0.33
GNT 0.95 0.94 0.97 0.96 0.96 0.95 0.72
(proposed
methodology)

Table 5.12: AUPRC: STRING (TFs with most varying 1000 genes)

with the positive pairs, the model is provided with a more comprehensive
learning scenario, preventing it from overfitting to the more frequent nega-
tive class. Compared to hard negative sampling (HNS), our uniformly random
negative sampling approach presents several key advantages, particularly in
the context of biological networks and gene interaction prediction.
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While HNS focuses on making all the unknown interactions with label
0, providing more discriminative information, this strategy can introduce a
form of bias that may not always generalize well to unseen data. The ratio-
nale behind HNS is to make the model more sensitive to subtle differences
between positive and negative samples, which can indeed accelerate the train-
ing process and improve model convergence. However, in complex biological
systems, where the boundaries between interacting and non-interacting gene
pairs are often uncertain or noisy, relying heavily on hard negatives might
lead the model to overfit to specific challenging examples. This overfitting
could limit its ability to perform well on less distinct, real-world negative
pairs that might not share the same nuanced characteristics as the hard neg-
atives.

Our uniformly random negative sampling strategy avoids these potential
pitfalls by providing a more diverse and representative selection of negative
samples. This ensures that the model is not disproportionately influenced
by a subset of difficult negative pairs, which could skew its learning towards
specialized cases that may not be reflective of broader biological interactions.
By selecting negative pairs randomly, we enable the model to learn a more
generalized distinction between interacting and non-interacting genes across
a wider range of cases, leading to better overall generalization.

Furthermore, uniformly random negative sampling helps in maintaining
computational efficiency. HNS requires additional computational resources
to identify and maintain the set of "hard" negatives, which can increase
the complexity of the training process, especially in large-scale biological
datasets. Our approach, by contrast, reduces this overhead, allowing for a
more straightforward and scalable training procedure while still maintain-
ing robust performance. This is particularly beneficial in biological research,
where datasets often involve thousands of genes and interactions, necessitat-
ing computationally efficient solutions.

In conclusion, while HNS can offer benefits in certain scenarios by intro-
ducing more challenging learning tasks, our random sampling approach is
better suited for biological interaction prediction. It fosters broader gener-
alization, avoids overfitting, and remains computationally efficient, making
it more appropriate for handling the complexity and variability inherent in
biological networks. This might be the reason for the low value of AUPRC
of scGREAT even after using transformer architecture.
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5.7 Novel Interactions

5.7.1 False Positives

During the training and testing of the Gene Network Transformer (GNT)
model, coupled with the Support Vector Machine (SVM) classifier, the per-
formance of the model was evaluated on a test set of gene interaction pairs.
In this test, true gene interactions were labeled as 1 (indicating a positive
interaction), and non-interacting gene pairs were labeled as 0 (indicating a
negative or no interaction). Despite the overall success of the model, the
classifier produced a number of false positives—gene pairs that were labeled
as 0 (non-interacting) but were predicted as 1 (interacting) by the classifier.

5.7.2 literature validation

In order to investigate the validity of these false positives, we conducted
an extensive search through the PUBMED repository to find any existing
literature that could provide evidence of interactions for these gene pairs.
For several of these falsely classified interactions, we were able to identify
literature-supported evidence confirming their interactions, which had not
been included in the training dataset.

These findings are significant, as they suggest that the model might be
capable of uncovering previously unrecognized or poorly characterized gene
interactions. The literature-supported interactions, originally classified as
false positives, point towards the possibility that the model has predictive
power beyond the known interactions provided in the training set.

5.7.3 Evidence

During our exploration of the cell-type specific interaction network for the
mESC cell type (with TF+1000 most varying genes), we sought to validate
the predicted interactions using existing literature. We performed a com-
prehensive search of the PubMed repository for articles mentioning "Mus
musculus" and identified several gene pairs for which we found direct or indi-
rect evidence of interaction or comparative studies in biological experiments.

Some of these gene pairs were either shown to interact directly, affect
each other’s regulation, or be used in comparative studies. The following
table (Table 5.7) summarizes these newly validated interactions:
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From this analysis, we identified several previously unrecognized interac-
tions or regulatory relationships between gene pairs that had been classified
as non-interacting by the model but were predicted as interacting. Upon
reviewing the literature, we found supporting evidence for these interactions.
For instance, the pair RUNX3 and EZH2 was validated by evidence indicat-
ing that EZH2 negatively regulates RUNX3, as highlighted in [21]. Another
example is the interaction between MYCN and LIFR, where the literature
demonstrates the involvement of MYCN in regulating LIFR as part of a sig-
naling pathway, supported by [22]]. These findings enhance the credibility
of the model’s predictions and suggest that it may uncover interactions that
are not well-documented or underrepresented in current biological datasets.

By validating these gene pairs through existing research, we reinforce the
hypothesis that the model may identify potential novel regulatory interac-
tions, offering insights that can guide further experimental studies. This
highlights the model’s predictive power in generating biologically meaningful
hypotheses for further investigation.
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Gene Pair PubMed ID Evidence from Literature
RUNX3, EZH2 PMC5216711 “For instance, INK4B-ARF-INK4A,

p57, bone morphogenetic protein re-
ceptor 1B, MyoD and RUNX3 are all
negatively regulated by EZH2, which is
critical for tumor cell proliferation and
aggressiveness.”[21]

MYCN, LIFR PMC8427239 “MiR-9 is regulated by PDGFR,
MYC/MYCN, miR-7/c-Myc signal
and promotes metastasis via target-
ing STARD13, E-cadherin, FOXI1,
CYP4Z1, LIFR, PTEN and DUSP14
signal pathway.”[22]

CTCF, ARID5B PMC5337971 “This interval, anchored by CTCF
binding sites, forms a ‘loop domain’
which is expected to bring two regions
of RUNX3 binding, separated by a
linear distance of around 60Kb, into
physical contact close to the TSS of
ARID5B.”[23]

FOXO3, REST PMC6907729 “RE1-silencing complex (REST), a
major neuronal gene repressor in
non-neuronal cells, and the aging-
associated TF FOXO3 play important
roles in controlling neuronal gene ex-
pression and show differential activ-
ity between fetal and adult/old fibrob-
lasts, resulting in decreased conversion
efficacy in aged starting cells.”[24]

ETS1, REST PMC8096796 “REST promotes ETS1-dependent vas-
cular growth in medulloblastoma. In-
terestingly, REST elevation is also
associated with increased expression
of vascular endothelial growth factor
receptor-1 (VEGFR1) and the proan-
giogenic transcription factor, E26
oncogene homolog 1 (ETS1), in
CGNPs of RESTTG mice compared
with cells from WT cerebellar.”[25]

Table 5.13: Literature-supported validation of predicted gene interactions in
mESC (TF+1000 genes)
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Chapter 6

Conclusion

The primary objective of this research was to infer Gene Regulatory Net-
works (GRNs) with a focus on transcription factors (TFs) and their target
genes. GRNs represent the regulatory relationships between various molecu-
lar entities, such as transcription factors and their downstream target genes,
which ultimately control gene expression and cellular behaviour. The goal
was to develop a model capable of predicting novel TF-target interactions,
improving the understanding of regulatory mechanisms, and advancing the
discovery of new biological pathways.

The Gene Network Transformer (GNT) model was developed with the
intention of addressing limitations found in existing GRN inference meth-
ods, such as scGREAT, GENELink, GNE, and other methods. These tra-
ditional methods often rely on simplistic assumptions or computationally
expensive strategies, which hinder their scalability and accuracy.The GNT
model builds on the strengths of transformer-based architectures by learning
low-dimensional embeddings for genes, which represent their interactions and
regulatory potential. Unlike scGREAT, which uses text-based embeddings
(e.g., BioBERT embeddings), GNT directly learns embeddings from gene
expression data, making it more flexible and applicable to datasets where
text-based embeddings are unavailable or insufficient. GNT also avoids bi-
ases introduced by strategies like hard negative sampling, which are employed
in other models but can skew predictions in certain scenarios.

GNT consistently outperformed existing models in various experimental
datasets, particularly in cell-type specific and non-specific ChIP-Seq datasets,
as well as in STRING interaction networks, demonstrating its robustness in
capturing gene regulatory interactions. The model’s AUC-ROC scores in al-
most all test cases, both with TF+500 and TF+1000 most varying genes,
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consistently surpassed the state-of-the-art model scGREAT by a significant
margin.

This approach is particularly advantageous because it removes the need
for prior dependence over domain knowledge and can infer relationships di-
rectly from the data, making GNT applicable to a wide variety of datasets.
GNT successfully predicted TF-target interactions across a variety of datasets.
The model identified known interactions with high accuracy and uncovered
previously unrecognized interactions that were later validated through liter-
ature searches.

One of the key strengths of the GNT model is its ability to discover novel
gene interactions that were not explicitly annotated in the training datasets.
As noted during the evaluation process, several false positives—gene pairs
predicted to interact despite being labelled as non-interacting—were later
validated through extensive searches in the PubMed repository. For exam-
ple, gene pairs such as RUNX3 and EZH2[21], and MYCN and LIFR[22], ini-
tially classified as false positives, were confirmed through literature evidence,
showcasing GNT’s potential to predict biologically relevant interactions that
are not well-documented. These findings suggest that GNT can be used to
hypothesize new regulatory mechanisms, offering valuable insights for exper-
imental validation and further research. The evidence of novel interactions
discovered using the GNT model reinforces its utility in advancing biological
research. These interactions, many of which were previously unknown or
underreported, provide new avenues for experimental validation.

This model does not strictly infer causality in gene interactions. There
were plenty of interactions within false positives, which indicated analogous
behaviours between gene products in a biological pathway. By scanning
literature, we found direct and indirect regulatory effects between several of
these false positive pairs, indicating that the GNT model has the potential
to identify hidden regulatory connections that might otherwise go unnoticed.
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