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Abstract
Implementing the Floquet operator in a cold atoms system is a fascinating field of

research. This implication opens the path for the study of dynamical localization in the

quantum kicked rotor system. The quantum kicked rotor system provides a platform to

simulate analogue Anderson localization in both lower and higher dimensions, includ-

ing the observation of the Anderson insulator-metal transition in three dimensions. It is

also a unique tool to study quantum chaos. Since dynamical localization phenomena are

based on the destructive quantum interference of the atomic wave-function, this system

provides a platform for studying the exponential and non-exponential loss of coherence

by coupling the quantum system with an external bath in an arbitrary way.

The present aim of this thesis is to coherently control quantum interference by engi-

neering different dynamical phase evolution without introducing decoherence into the

system. As we know, the classical counterpart of the system is fully chaotic in nature.

Therefore, coherent control must be systematically engineered; otherwise, quantum in-

terference may be disrupted in the system, causing it to behave classically. This thesis

focuses on controlling dynamical localization in periodically kicked ultra-cold atoms

with a 1D optical lattice. Two methods are explored: periodic modulation of a control

parameter to induce competition between quantum diffusion and localization, leading

to enhanced in localization length of localized system. In second method, we demon-

strate a simple and intuitive method for controlling dynamical localization using a sin-

gle parameter with Bose-Einstein condensate. This coherent control approach, operates

through a single knob, enables systematic control over dynamical localization across a

wide range without introducing any decoherence into the system.

Further in this thesis, our study also investigates the asymmetric dynamical local-

ization and it’s stability, by launching the initial wave-function with varying recoil ve-

locities within periodically kicked optical lattices. Noteworthy velocity-dependent fea-

tures are observed in different time-evolution. Utilizing the velocity dependent feature

in early time dynamics, we created a method for direct measurement of micromotion

(100’s µm/s) of the Bose-Einstein condensate (BEC). This micromotion velocity is or-

der of magnitude less than the one recoil photon momentum, as well as mean velocity

associated with BEC temperature. By utilizing a feature coming from broken parity



symmetry due to the micromotion, measurement of such a small velocity is possible,

which is not significantly affected by velocity distribution of the BEC, that is a common

challenge in spectroscopy techniques. This approach offers a precise measurement of

micromotion without relying heavily on the time-of-flight method, which often requires

a substantial time for measurable movement, making it unfeasible in many systems.

The precise measurement of such low velocities of the BEC contributes significantly

to precision measurements, such as in atom interferometers for measuring rotation and

acceleration, helping nullify unknown shifts in measurements comes from the micro-

motion.
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Chapter 1
Introduction

This chapter begins by explaining the importance of studying quantum systems in atom-

optics, starting with a definition of quantum interference. It then reviews existing lit-

erature in this area. Following this background, the chapter outlines goals and plans in

thesis. The chapter closes with a summary, giving an overview of what follows in the

later chapters.

1.1 Quantum Interference

Quantum interference is a phenomenon when wave-functions associated with different

quantum states or paths interfere with each other. This interference of wave-functions

can be constructive or destructive, leading to an increased probability of a particular

outcome, or a decreased probability of an outcome respectively. Quantum interference

occurs when quantum particles, such as photons, electrons, atoms, and even molecules

that exhibit wave-like behavior and interfere with each other, leading to either construc-

tive or destructive interference patterns. Quantum interference is different from classical

interference mainly due to properties in higher-order correlation functions, especially

the second-order correlation function [1]. This function, either in spatial or temporal as-

pects, reveals distinctions between quantum (non-classical) and classical interference.

1
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1.2 Coherent Control of Quantum Interference
Coherent control over quantum interference is a very fascinating and active experimen-

tal and theoretical research [2]. Control over quantum interference is one of the pivots of

quantum technology, enabling the manipulation and utilization of quantum phenomena

for practical applications [3, 4]. Achieving control over this interference is essential for

quantum information processing, quantum communication, quantum sensing and for

studying fundamental physics. Researchers are developing innovative techniques and

pulse schemes to precisely manipulate the quantum states of particles, allowing for de-

sired outcomes. This control is crucial for the implementation of quantum algorithms,

quantum communication protocols like quantum key distribution, and the development

of ultra-sensitive quantum sensors. As advancements in quantum technology continue,

mastering control over quantum interference promises to unlock unprecedented capabil-

ities having far-reaching implications in fields ranging from computing to secure com-

munication and sensing. The different quantum evolution pathways can lead a quantum

system from the same initial to different desired final states [5], this quantum interfer-

ence between the routes leads to enhancement or suppression of the transition. Consider

Initial quantum system Desired quantum system

External control

Dynamical evolution

Figure 1.1: Coherent control. A simple illustration of coherent control. Similar to the use of a
musical instrument for producing a desired music.

a quantum system with multiple pathways to reach different states. Coherent control in-

volves skillfully manipulating the phases and amplitudes of these pathways (a simple
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illustration in the Fig. 1.1), much like adjusting the settings on a musical instrument to

produce a desired sound wave. By precisely tuning the phases of quantum interference

pathways, one can control the system to end up in a particular state, essentially forcing

the quantum dynamics to favor a predefined target state. This complex manipulation of

interference forms the core of coherent control, offering a powerful means to guide and

shape quantum outcomes.

1.3 Floquet Engineering for Coherent Control
Floquet engineering in the context of quantum systems refers to the deliberate manipu-

lation of periodic time-dependent Hamiltonian to achieve specific target objectives. Co-

herent control using Floquet engineering involves tailoring the properties of a quantum

system during the evolution by playing with the dynamical phase evolution. Identifying

the optimal form of an external control to effectively alter a system’s properties for a

preferential target behavior can also be expressed as an optimal control problem [6]. The

basic idea for Floquet engineering comes from Floquet theory. As we know Floquet the-

ory provides the solutions for time-dependent Schrodinger equation for a time-periodic

Hamiltonian [7]. For a time-periodic Hamiltonian, a single driving frequency provides

a straightforward solution and it’s numerically easier.

But, if a system is driven by multiple frequencies, along with other parameters be-

ing variable, the number of possibilities of outcomes explodes and the probability of

different outcomes increases. Solving such a system analytically and numerically is

challenging, as huge parameter space is required to consider variables and frequencies.

However, this difficulty can be overcome if we use some controllable quantum system

by exactly spanning the parameter space. The external control over parameters and di-

rect measurement with different evolution makes it faster and robust. This concept is

known as a quantum simulator [8]. Various quantum systems, including neutral atoms,

ions, molecules, electrons in semiconductors, superconducting circuits, NMR, and pho-

tons, have been suggested as candidates for quantum simulators.

Let’s consider a straightforward example known as a periodically kicked quantum

system. In the case of periodic kicks, the dynamics of the system can be precisely

understood and mostly solved using Floquet theory, resulting in a predictable outcome.
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Time-evolution of quantum system

Kick

Figure 1.2: Floquet engineering. The concept of Floquet engineering: random delta pertur-
bations sandwiching free evolution, that is used as a control parameter with the corresponding
Floquet operator.

Now, let’s extend this concept to a system that allows for variable control over the time

gap between kicks as shown in Fig. 1.2. Here l0, l1, ...ln are free parameters. The time

gap serves as a control parameter for dynamical phases, introducing more flexibility in

manipulating the quantum system to get desired output. The dynamics of the system is

essentially governed by the one step Floquet operator which is an ordered product of the

free evolution operator and the kick operator. The system complexity will grow if we

consider the strength of the kicks as a variable and extending system from 1-dimension

to higher dimensions.

In summary, Floquet engineering for coherent control entails purposefully manipu-

lating quantum systems through external control. The key condition for coherent ma-

nipulation is to attain the desired target state without introducing decoherence into the

system [9]. Such approach allows researchers to harness the principles of quantum

mechanics for specific applications, making it a valuable tool in the field of quantum

science and technology.

1.4 Atom-Optics System for Kicked Rotor and Quan-

tum Engineering
An atom-optics system refers to the experimental and theoretical exploration of the

interaction between matter waves and photons, typically in the form of laser-cooled
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atoms [10] and optical elements such as laser beams. This active field lies at the inter-

section of atomic physics and optics, and it has led to a variety of exciting developments

in both fundamental physics and practical applications. Particularly this field explores

the wave-like properties of matter, specifically focusing on the manipulation and control

of atomic matter waves [11–13]. Drawing inspiration from traditional optics that deals

with light waves, atom optics extends these principles to matter waves, treating atoms

as quantum particles with both particle and wave characteristics.

1.4.1 Bose-Einstein Condensate

The journey into the ultra-cold regime begins with the formation of a Bose-Einstein

Condensate (BEC), a remarkable state of matter predicted by Satyendra Nath Bose [14]

and Albert Einstein [15] in the early 20th century. In 1995, through advanced cooling

techniques such as laser cooling and evaporative cooling, a BEC was created by Eric

Cornell and Carl Wieman of the University of Colorado, Boulder using rubidium atoms

[16]; later that year, Wolfgang Ketterle of MIT produced a BEC using sodium atoms

[17]. In 2001 Cornell, Wieman, and Ketterle shared the Nobel Prize in Physics “for the

 0.5

 1.0

 2.5

 1.5

 2.0

 3.0

OD
Figure 1.3: BEC in our lab: Images show the transition from a thermal state to a Bose-Einstein
Condensate (BEC). Colormap is the optical density (OD) of the atomic cloud.

achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and for early
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fundamental studies of the properties of the condensates”. A transition to BEC is shown

in Fig. 1.3. This macroscopic coherence endows BEC with remarkable properties,

including long-range phase coherence, wave-like behavior, and sensitivity to external

fields at the quantum scale [18]. The lowest temperature achieved for a BEC is just 38

pico kelvins (pK) away from absolute zero [19].

The study of ultra-cold atoms provides a unique playground for investigating quan-

tum phenomena that were once confined to theoretical realms. This includes the obser-

vation of super-fluidity [20], critical quantum interference [21], and the exploration of

exotic quantum states such as, spinor BEC [22, 23], Vortices [24, 25], solitons, interac-

tive BEC etc. In atom-optics systems, a Bose-Einstein Condensate (BEC) plays a major

role due to its various applications. BEC is used for precision measurements, quantum

simulations of complex condensed matter systems, Anderson localization, and dynam-

ical localization. Additionally, it contributes to the exploration of fundamental physics,

such as black holes and dark matter [26]. I will go into the observation of Anderson

localization with BEC and its analogs, particularly emphasizing dynamical localization

in quantum kicked rotor, which is relevant to this thesis.

1.4.2 Anderson Localization in BEC System: Destructive Quantum
Interference

Localization of electronic wave-function in disordered crystals was first proposed by

Anderson in 1958 [27]. According to Anderson’s theory of Localization, electron wave-

function in a disorder go through quantum reflections and the interference of all these

reflections causes the localization of wave-function. In Anderson’s influential paper, he

showed that under sufficiently strong disorder, the localization of states would occur

irrespective of the dimensionality of the system (denoted by ’D’). Notably, the arti-

cle primarily focused on the phenomenon of localization, while aspects related to de-

localization and critical behavior were not extensively explored or analyzed. For the

dimension D=1 and D=2, localization will always happen no matter how small the dis-

order is, it just needs to be finite [28–30]. The first direct observation of Anderson

localization in 1D system was demonstrated in an Atom-optics system using BEC and

random disorder made by a laser [31] shown in Fig. 1.4. A very recent observation of
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2D-Anderson localization has been demonstrated with BEC using complex optics for

making 2D random potential [32], also shown in Fig. 1.4. 3D-Anderson localization

shows a transition from localized state to a diffusive state with increasing strength of

the disorder. It shows a phase transition from insulator (localized state) to metal (dif-

fusive state) and it’s called Anderson insulator-metal transition. Direct observation of

Anderson insulator-metal transition is experimentally challenging and has not yet been

observed in such a system [33, 34].

1D 2D

Figure 1.4: Anderson localization. Direct observation of 1D and 2D Anderson localization
using BEC. A random disorder can be seen as blue color in 1D and as spikes in 2D.

1.4.3 Dynamical Localization in Quantum Kicked Rotor

The majority of phenomena explained by quantum mechanics are connected to either in-

terference or the closely associated concept of coherence [1,35,36]. This is particularly

evident in the realm of quantum optics, which investigates and applies the interactions

between light and matter at the quantum level. Here, in an atom-optics based kicked

rotor, basically in laser cooled atoms, a coherent cloud of atoms is manipulated through

laser light to study the interference of matter waves and their dynamics [9, 37, 38]. The

quantum kicked rotor system is a great tool to study dynamical localization [39–41],

control over quantum system [5, 42–44] and quantum chaos [45–47].
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Hamiltonian for this simple system is:

Ĥ =
p̂
2

2
+K cos(x̂)

NX

n=1

�(t� n) , (1.1)

K is related with the strength of the kick and t ! t/T is scaled, where T is the period

(more details in next chapter). Now the coordinate to describe dynamics, like position

can be described by the angle x (defined by modulo 2⇡) and the associated momen-

tum p. Although, it is a strictly deterministic Hamiltonian system, it shows chaotic

motion beyond certain range of parameters. Controlling the chaos with modulation of

an external parameter, makes this Hamiltonian system a popular system for studying

chaos in classical and quantum regime. When we apply a periodic kick to an initial

wave-function of atoms, after a certain number of kicks, the energy growth of the sys-

tem freezes and the system becomes dynamically localized in momentum space. It is

analogues to Anderson localization in position space [48]. Observation of dynamical

localization [49–52] analogue to Anderson localization and Anderson metal-insulator

transition in 3D [53–55] has drawn much attention to study the localization in this sys-

tem. Quantum kicked rotor (QKR) system can be realized with cloud of laser cooled

atoms or a BEC subjected to periodic pulsing of an optical lattice [56]. Further investi-

gations in this field are the study from a state of dynamical localization (where energy

becomes frozen) to a delocalized state characterized by diffusive energy growth.This

transition has been observed through the introduction of various forms of noise, such as

variations of kick strength [57], phase noise [58], or introducing spontaneous emission

in the system [59]. All such systems shows an exponential loss of coherence in quantum

system, also a non-exponential loss of coherence has been studied theoretically [60] and

observed experimentally [56] by selected time sequence that follows a levy distribution.

Most of the above mentioned experiments are done with the cloud of cold atoms.

In recent years, there has been much interest in studying a QKR with Bose-Einstein

condensate [61, 62]. Very narrow initial momentum distribution of BEC is helpful in

resolving different momentum eigen states. Accurate phase imprint of lattice on BEC

for phase sensitive Hamiltonian, a tunable interaction for interacting quantum kicked

rotor and early observations of quantum correlations in dynamics make a BEC system
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great to study the localization phenomena.
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Figure 1.5: Dynamical localization. The left image shows the dynamical localization with
periodic kicks and the right image shows the diffusive nature with random kicks.

For a example, see the Fig. 1.5 right image, it shows the Dynamical Localization

(DL) with periodic kicks on a BEC. The left image shows the exponential loss of coher-

ence and diffusive behavior by applying random kick (not periodic). BEC based QKR

system provides the tunable interaction between the atoms by Feshbach resonance and

interaction effect on dynamical localization. The effect of interaction on DL is recently

observed in BEC based system [63,64]. It shows that Interaction driven dynamically lo-

calized to delocalized state are sub-diffusive in nature and this behavior is not classical

chaos but quantum anomalous diffusion. Further imprinting the phase of the lattice on

BEC also provides the different type of effect like on resonance quantum ratchet [65,66]

and quantum boomerang effect (QBE) [67–69]. On resonance quantum ratchets can be

controlled by preparing different initial superposition state of BEC and the phase dif-

ference [70]. Atomic current in such quantum ratchets is completely phase dependent

between superposition states. Similarly in the QBE, the time-parity reversal symmetry

determines the presence or absence of QBE in localized system [68, 71]. QBE also de-

scribes the quantum nature of dynamical localization in highly disordered system. BEC

based QKR system also has been utilized in coupled quantum rotors [61] where two

incommensurate optical lattices drive a quantum to classical transition by breaking dy-
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namical localization and the emergence of classical diffusion. Very narrow momentum

width of BEC also shows early time quantum diffusion because of strong quantum cor-

relation in time evolution [72]. A discrete time quantum walk has been also observed

in BEC based quantum kicked rotor [44]. Numerous studies have explored dynamical

localization and its breakdown in the quantum kicked rotor, but coherent control of dy-

namical localization without disruption has received limited attention. As dynamical

localization relies on destructive quantum interference, achieving control necessitates

manipulating this interference. Theoretical proposals for controlling quantum chaos ex-

ist [5, 73], but experimental implementation is challenging. Given the classical chaos

of the quantum kicked rotor, coherent control must be meticulously engineered using

external parameters to prevent the system from behaving classically. The main focus

of this thesis is to delve into this challenge, discussing coherent control over dynamical

localization without disruption, in subsequent chapters.

1.4.4 Ultra-cold Atoms in Optical Lattices:Quantum Simulator

Ultra-cold atoms trapped in optical lattices represent a powerful and versatile platform

for quantum simulation [8], an approach that harnesses one quantum system to emu-

late the behavior of another. This emerging field has huge potential to address complex

quantum many-body problems, simulate condensed matter phenomena, and uncover

novel insights into fundamental physics [74]. In this context, ultra-cold atoms confined

in optical lattices serve as quantum simulators, offering unprecedented control over pa-

rameters and enabling the emulation of diverse quantum systems in a highly controllable

environment [75, 76]. Let’s take a simple example of the Bose-Hubbard model,

ĤBH = �J

X

hi,ji

(â†i âj) +
U

2

X

i

n̂i(n̂i � 1)� µ

X

i

n̂i, (1.2)

Here, a†i and aj are the creation and annihilation operators, respectively, at the i-th site,

and n̂i(n̂i � 1) represents the number operator at the i-th site. J is the hopping pa-

rameter for nearest neighbor, it describes the kinetic energy, U is on-site potential and

µ is the chemical potential [77]. To mimic this Hamiltonian in an atom-optics system,

optical lattices are formed by superimposing laser beams to create a periodic potentials
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that traps ultra-cold atoms. The resulting lattice structure mimics the periodicity found

in crystalline solids, allowing researchers to investigate quantum phenomena associated

with Bose-Hubbard model. When U/J ⌧ 1, the system exhibits a super-fluid state,

characterized by the dominance of kinetic energy over interaction energy. This occurs

when the strength of interactions (U) is much smaller compared to the hopping parame-

ter (J), and a Bose-Einstein Condensate (BEC) in a 3D optical lattice displays coherent

flow without significant localization. Conversely, in the limit U/J � 1, achieved by

adiabatically increasing the lattice depth, the system undergoes a transition to a Mott

insulator phase. Here, strong interactions prevail over kinetic energy, leading to local-

ized atoms with a fixed number at each lattice site. In this phase, phase uncertainty

is high, causing a blurred interference pattern due to overlapping wave-packets from

different sites during free evolution. This contrasts with the super-fluid state, where

phase correlations result in a well-defined interference pattern under similar conditions.

It was first realized by the I. Bloch group [78]. Super-fluid to mott-insulator transition

has extensively studied till single atomic level [79–81]. Furthermore, BEC loaded into

a 1D optical lattice also provide a great opportunity to study periodically driven Hamil-

tonian. This platform is suitable for simulating tunneling and transport phenomena,

as well as shortcuts to adiabaticity for quantum optimal control and optimal Floquet

engineering [82, 83].

One more advancement in quantum simulator is the momentum-space lattice based

on ultra-cold atoms and multiple Bragg diffraction, first proposed by B. Gadway in

this paper [13, 84]. Arbitrary control over phases on each lattice site and individual

hopping parameters make the momentum-space lattice a great tool for simulating the

Bose-Hubbard model and exploring new topological materials. Momentum-space lat-

tice are based on multiple Bragg diffraction [85], each Bragg diffraction provide one

momentum synthesize lattice point and by using many Bragg diffraction, one can form

many lattices point. The phase and Rabi oscillation of each Bragg diffraction gives con-

trol over phases and hopping parameter over individual lattice sites. Momentum-space

lattice is robust and easy to construct in ultra-cold atoms. In this field, most of the exper-

iment is done by Gadway group. Their observation reveals the topological soliton state

in the Su-Schrieffer-Heeger model [86], Anderson insulator transition [87], Non-linear
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transport, generalized Aubry-Andre model [88] and other phenomena related to tight

binding model can be simulated.

1.4.5 Precision Measurement: Atom Interferometer as Quantum
Sensor

Laser-cooled atoms represent a groundbreaking advancement in precision measurement

technologies [89]. The precise control over atomic motion allows for unprecedented

levels of accuracy in measurements, particularly in the realm of atom interferometer,

timekeeping and frequency standards. The ability to manipulate and study ultra-cold

atoms paves the way for improved atomic clocks, gravimeters, and other high-precision

instruments that are vital for a diverse range of scientific and technological applications.

This remarkable precision, contributing to advancements in fields like metrology and

fundamental physics.

Atom interferometry is one of the application for precision measurement using laser

cooled atoms. As we know that wave-like properties of matter emerges as we go down

in temperature, like the light. Atoms, unlike light, are massive so theoretically, the

atom interferometer sensitivity is about 10 orders of magnitude larger than the optical

interferometer due to the mass of the interfering atoms compared to photons [90]. For

a simple understanding of an atom interferometry, first we will go through the optical

interferometer. In optical interferometry, first we split the laser beam for two different

path, light waves travel separate paths. Depending on the phase accumulation along

the two paths, either the light interferes constructively and gives a bright fringe or may

interfere destructively giving a dark fringe. In atom interferometry, atoms are laser-

cooled to just 100 nK away from absolute zero temperature. After the creation of matter

wave with laser cooling, one uses laser light to coherently manipulate the atoms. By

manipulating the state of the atoms, either in different momentum state through Bragg

diffraction [91] or in different internal state with Raman transition [92], one can split,

reflect and recombine the matter waves similar to light waves. Before the measurement,

atoms will be in superposition of the two states.
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Phase associated with the matter waves in an atom interferometer is given by [93]:

� = n(�1 � 2�2 + �3) = 2nk · gT 2
, (1.3)

where n is the order of diffraction in Bragg case. � is total phase gathered during inter-

ferometer. T is interferogram time, k and g are wave-vector and gravity respectively.

The fundamental concept of measuring gravity is to balance the phase difference im-

parted on the atoms by gravitational acceleration. As freely falling atoms experience

a time-dependent Doppler shift for the laser beam, by chirping the laser frequency to

balance the Doppler shift [94]. The overall phase shift can be obtained by scanning the

lattice acceleration around the local gravity, which becomes:

� = n(2k · g � 2⇡↵)T 2
, (1.4)

where ↵ is sweep rate. To determine the value of g, the value of ↵ (say, ↵0) will

balance the gravity, and the overall phase shift � will be zero, thus providing ↵0 =
1

⇡(k·g) . To determine the value of ↵0, one has to observe the interferometric signal for at

least three different interferogram time (T), and all those interferometric signals have a

common minima at ↵0 [95]. The technological advancement of the quantum gravimeter

is mature enough for field operations now, achieving a sensitivity of 50µGal/
p

Hz, with

a measurement frequency of 2 Hz. One such system is commercially available from

Muquans SAS.

1.4.6 Quantum Computation in Atom-optics System

To build a viable quantum processor, researchers are exploring diverse physical plat-

forms [96, 97]. Among these, manipulating arrays of single neutral atoms with light

beams [98] emerges as a potent and scalable technology for quantum registers, accom-

modating up to several thousand qubits possibilities [99]. Each qubit is encoded in the

two electronic states of an atoms [100]. The key advantage of a neutral atom quantum

processor lies in the inherent uniformity of these atoms, in contrast to artificial atoms

like superconducting circuits or Silicon spin qubits that demand meticulous manufac-

turing for minimal heterogeneity. This intrinsic uniformity offers a notable advantage,
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enhancing the potential for achieving low error rates during computations. Neutral atom

devices also present advantages such as extensive connectivity [101], flexible and dy-

namically re-configurable architecture and the native ability to implement multi-qubit

gates [98].

In neutral atoms based quantum computing, the advantage of controlling the interac-

tion strength between the atoms with the help of Rydberg atoms. Rydberg atoms are like

super excited atoms, reaching really high excited states with principle quantum numbers

as high as 100 [102]. These states are characterized by electrons orbiting the nucleus at

a much greater distance than in lower energy states. Named after Swedish physicist Jo-

hannes Rydberg, who extensively studied the spectral lines of hydrogen, Rydberg atoms

exhibit unique and intriguing properties. The large principal quantum number of Ryd-

berg atoms, which determines the size of their orbit. This leads to an enormous atomic

size, making these atoms highly sensitive to external electric and magnetic fields. The

long-range interactions between Rydberg atoms enables the creation of exotic quantum

phenomena, such as Rydberg blockade [103] and Rydberg dressing [104]. Rydberg

blockade occurs when the excitation of one Rydberg atom prevents the excitation of

neighboring atoms, paving the way for applications in quantum computing and quan-

tum simulation [98]. Rydberg dressing involves modifying the atomic energy levels

through external fields, offering opportunities for engineering new quantum states and

enhancing control over atomic interactions. The current state of the art two qubit gate

fidelity is 99.5% on 60 neutral atom qubit [101]. Neutral atom based quantum sim-

ulators are also leading in the field [8]. A significant industrial effort is underway in

the field of neutral atom quantum computers and simulators, with notable contributions

from companies such as QUERA, Pasqal, and Atom Computing.

1.5 Motivation and Objective of the Thesis

1.5.1 Motivation

As discussed earlier, numerous experimental and theoretical studies have been con-

ducted on dynamical localization and its destruction in the quantum kicked rotor. How-

ever, coherent control of dynamical localization without its destruction has received
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relatively limited attention. Since dynamical localization is a phenomenon rooted in de-

structive quantum interference, achieving control over dynamical localization requires

the ability to manipulate and modify these quantum interference. There are few theoret-

ical proposal for control over quantum chaos, but direct implementation in experiments

are challenging. It’s important to remember that since the classical counterpart of the

quantum kicked rotor is entirely chaotic, any attempt at coherent control over dynamical

localization in the quantum system must be carefully engineered using external control

parameters. Otherwise, making adjustments during the evolution may disrupt the sys-

tem, causing it to behave classically.

Quantum dynamics is also get affected by small motion, called micromotion of ini-

tial wave-function (BEC), it’s not get considered often in calculations. But the effect

of micromotion is inherently hidden in output of the dynamics. As micromotion plays

crucial role in precision measurement and imprint unwanted offset in the result for e.g.

in atom interferometry, developing a precise method to measure micromotion by ob-

serving features of the quantum kicked rotor would be a valuable tool. This motivation

provides a clear ground for investigating coherent control over dynamical localization

in the quantum kicked rotor system and utilizing it’s feature for precision measurements

sets the stage for the research that follows in the thesis.

1.5.2 Objective

One part of the present thesis focuses on addressing methods for controlling dynamical

localization and delves into the underlying physics of this control, using the periodically

kicked ultra-cold atoms with 1-d optical lattice. The first approach is a periodic modula-

tion of a control parameter during entire dynamical evolution. This periodic modulation

is selected in such a way that it creates a competition between quantum diffusion and

dynamical localization, causing the system to localize at higher localization length and

providing a control over it. Similarly, in our extended study, we introduce a simple

and more intuitive method for controlling dynamical localization using only a single

parameter. This single knob coherent control facilitates linear control over dynamical

localization across a broad range without introducing any decoherence into the system.

Further in this thesis, we focus on the asymmetric dynamical localization and it’s
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stability, by launching the initial wave-function with varying velocity. The initial wave-

function (BEC) is launched with varying recoil velocities within periodically kicked

optical lattices. Our observations reveal an asymmetric dynamically localized profile

characterized by a small initial current. We conduct our investigation in two scenarios:

when the BEC is in motion within the laboratory frame and when the optical lattice

is in motion in the laboratory frame. We found some interesting velocity-dependent

features. Furthermore, we utilize these velocity-dependent features for quantifying the

micromotion of the BEC. Our approach provides a direct measurement of the micro-

motion of the BEC rather than relying on a long wait time to measure the displacement

on a camera sensor with the time-of-flight method, which is not reliable in the exper-

imental setup. The micromotion velocity within a Bose-Einstein condensate (BEC) is

typically around 20 to 80 times smaller than the momentum of a single-photon recoil .

This velocity is orders of magnitude smaller than the mean velocity associated with the

BEC temperature. Our method enables precise measurement of this micromotion veloc-

ity, unaffected by Doppler broadening coming from the BEC temperature, a common

challenge in spectroscopy techniques. Accurate knowledge of micromotion is crucial in

precision measurements, as it helps nullify any unknown shifts in the measurements. In

short, the objectives of the thesis are as follows:

1. Interplay between quantum diffusion and localization in the atom-optics kicked

rotor.

2. Single knob coherent control of dynamical localization.

3. An asymmetric localization in BEC launched with varying recoil velocity in peri-

odically kicked optical lattice.

4. Measurement of micromotion of BEC below single recoil photon momentum by

quantum kicked rotor

I also led the reconstruction of our Rb setup. The experimental apparatus used for

my research underwent development and reconstruction by both myself and our team

as it experienced a shutdown after the COVID pandemic. We also improved the rate
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of the production of Bose-Einstein Condensate (BEC) by optimizing evaporation se-

quence through machine learning. However, I won’t go into the details of the experi-

mental setup. Instead, the thesis is more centered on the experiments conducted with

the established and robust BEC producing setup.

1.6 Organization of the Thesis
Chapter 2 discusses the theory of classical and quantum kicked rotor, important for

this thesis.

Chapter 3 presents the experimental setup used for production of laser cooled atoms

and interaction with optical standing wave.

Chapter 4 reports the observation of coherent control of dynamical localization and

explain the physics based on the competition between diffusion and localization.

Chapter 5 reports the single knob coherent control of quantum system and a linear

control over dynamical localization.

Chapter 6 observation of an asymmetric momentum distribution by launching the

BEC with a varying velocity and its utilization in the measurement of micro-motion.

Chapter 7 presents the conclusions and future outlook.
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Chapter 2
The Classical and Quantum Kicked
Rotor

In this chapter we will explore the classical and quantum kicked rotor. The classical

kicked rotor is a simple foundational model for understanding chaotic dynamics, while

its quantum counterpart dwells into the intriguing interplay between quantum mechanics

and chaos theory, shedding light on the transition from classical to quantum behavior

in a periodically driven system. The chapter aims to explain the key principles and

highlights the distinctive features characterizing these two realms of dynamical systems.

2.1 Hamiltonian for the Kicked Rotor

The 1-d kicked rotor (KR) is a textbook model system for studying chaos in classical

and quantum system [105, 106]. Lets take a very simple system, a pendulum attached

to a free rigid rod, periodically kicked with certain kick strength K. Now the coordinate

to describe dynamics, like position can be described by the angle x (defined by modulo

2⇡) and the associated momentum p, so the time dependent Hamiltonian for this system

can be written as follows,

Ĥ =
p̂
2

2
+K cos(x̂)

NX

n=1

�(t� n) , (2.1)

19
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where, n is the number of kick. Although, it is a strictly deterministic Hamiltonian

system, it shows chaotic motion after certain parameter range (especially K). Control-

ling the chaos with an external parameter makes this Hamiltonian system popular for

studying chaos in classical and quantum system [39].

2.2 The Classical Kicked Rotor and Phase Space

The dynamics of the classical kicked rotor can be evaluated using the standard map:

pn+1 = pn +K sin(xn)

xn+1 = xn + pn+1 .

The map described by the equations above is commonly known as the Chirikov map

[107]. These equations of motion may be slightly modified for an angular or linear

kicked rotor, but the underlying physical interpretation remains the same. The dynamics

of the classical kicked rotor is defined by a single stochastic parameter K. Changing

the range of K gives interesting phase-space diagrams. If K < 5, the trajectories in

the phase space are regular with well defined trajectories. For K > 5, the phase space

becomes fully chaotic [108]. Most of the research looks into the chaotic regime where

K > 5 for the study of classical and quantum chaos [39]. Fig. 2.1 shows the classical

phase space for K = 0.97 and for K = 5.

K = 0.97 K = 5

0 1
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x
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Figure 2.1: Phase space. Classical Phase space for stochastic parameters K = 0.97 and K = 5
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Figure 2.2: Modified phase space. A moving island is generated by an appropriate phase
modulation for K ⇡ 3.

2.2.1 The Classical Diffusion and It’s Manipulation in Phase-Space

In the case of fully chaotic system, the classical kicked rotor shows a random walk in

momentum space, even though it’s deterministic in nature. The diffusion rate, D =

K
2
/2, it only depends on the value K. The mean-square value of the momentum grows

as hp2i = 2Dn where n is the number of kicks [108,109]. Further, average energy grows

linearly with the kicks imparted on the system, hEi / n. The growth of the average

energy of the system can be controlled by manipulating the classical phase space. By

manipulating the classical phase space by means of generating transporting islands or

accelerators mode in chaotic phase space [110]. This can be done by modulating the

phase or stochastic parameter (K) as the dynamics evolve. Here, we have shown two

example of such phase space. In first case, a periodic phase change in cos(x̂ + an):

an = �n (mod 3), {�1,�2,�3} = {0, 2⇡3 , 0}, generates a particular islands [111] as

shown in Fig. 2.2. The system moves along these transporting islands faster in phase
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space and helps the rapid energy growth of the system. Energy growth of this system

with kicks as hEi / n
1.3 and it follows the power law. The effect of this classical phase

space in quantum kicked rotor is observed and well studied in reference [111]. In the

second example, a change of sign of stochastic parameter K to �K after every 2, 3 or 4

kicks creates transporting islands and help in faster energy growth. The corresponding

classical phase space is shown in Fig. 2.3. These transporting islands are small in phase

space and difficult to probe experimentally, but effect of these transporting islands can

be seen in energy growth [112].

0 2 4 60 2 4 60 2 4 6
0
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4

6

p

x

3.6 3.8 4

3

3.5(a) (b) (c)

Figure 2.3: Modified phase space. (a) Standard phase space (b) Transporting island by change
of sign of parameter K to -K after every 2 kick (c) Very small transporting island (not visible) in
case of a modulation after every 3 kick, in all cases, K = 5.

2.3 Quantum Kicked Rotor
Considerable focus has been directed towards investigating the quantum mechanical

counterparts of classically chaotic systems [113], to understand the quantum phenomena

within chaotic frameworks. People are interested in studying the quantum kicked rotor

(QKR) because it helps us in understanding how a transition to quantum domain affects

its chaotic behavior. This area of study is called ”quantum chaos.” In this thesis, we’re

mostly looking at the chaotic regime where things are unpredictable everywhere unless

we mention otherwise.

Model Hamiltonian for quantum kicked rotor is same as classical kicked rotor [49,
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114], only imposing the commutation relation for quantization. Let’s take a simple

example from experimental point of view, a laser cooled cloud of atoms are periodically

getting perturbed by 1D optical lattice. The full Hamiltonian for this system is:

H =
P

2

2M
+

~⌦2
⌧

8�L
cos(2kX)

NX

n=1

�⌧ (t0 � nT ) , (2.2)

Where, ⌦ is Rabi frequency, ⌧ is pulse time,�L is detuning and k is wave-vector. After

scaling it to dimensionless parameter as discussed here in details [108], we get same

Hamiltonian as discussed in previous section:

Ĥ =
p̂
2

2
+K cos(x̂)

NX

n=1

�(t� n) , (2.3)

[x, p] = i~eff , (2.4)

Here, ~e↵ = 8!rT and K = �d~e↵ , where !r is recoil frequency, T is period between

the kick and �d = ⌦2⌧
8�L

. As this Hamiltonian is invariant under time translation t !

t+T , so this is a time-periodic H(t) = H(t+T ) problem and Floquet formalism can be

utilized [115, 116]. This Hamiltonian can also be transformed into tight bonding model

to make a connection with Anderson localization, this analogue will be discussed later

in this section. A schematic of periodically kicked cloud of cold atoms, use to simulate

the QKR, is shown in Fig. 2.4.

2.3.1 Floquet Analysis and Floquet Engineering

The time evolution of the wave-function  (t), which is characterized by the Hamiltonian

H , is determined by the time-dependent Schrödinger equation:

H(t) (t) = i~eff
@ (t)

@t
. (2.5)

So the time evolution operator for Eqn. 2.3 can be written by the Floquet operator

[112, 117]:

U = U(T, 0) = exp

✓
�i

p
2

2~eff

◆
exp


�i

K

~eff
cos(x)

�
, (2.6)
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Figure 2.4: Experimental schematic for QKR. A periodically kicked cloud of cold atoms with
standing wave for experimental realization of quantum kicked rotor. The periodic turning on and
turning off of the optical lattice acts like strong periodic perturbations-leading to application of
kicks

by replacing: p to �i~eff
@
@x , we get:

F
KR = exp

✓
i~eff

2

@
2

@x2

◆
exp


�i

K

~eff
cos(x)

�
. (2.7)

The Floquet operator, as represented by Equation 2.6, is a fundamental concept in the

study of periodically driven quantum systems. It comprises two main components: the

kick operator and the free evolution operator.

Kick Operator: This term, exp
h
�i

K
~eff

cos(x)
i
, represents the effect of the external

perturbation or “kick” applied to the system. In the context of atom optics kicked rotor

systems, this kick typically arises from periodically switching on and off the optical
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potential, which affects the dynamics of the quantum particles.

Free Evolution Operator: The other term, exp
⇣
�i

p2

2~eff

⌘
, describes the free evo-

lution of the quantum state over a period T . This component represents the dynamical

evolution of the system in the absence of external perturbations.

Floquet engineering involves manipulating the parameters K and T to achieve spe-

cific desired outcomes in the dynamics of the system [5,118]. By adjusting these param-

eters, one can control the behavior of quantum systems and engineer various quantum

phenomena.

For instance, by varying the strength of perturbation K, one can influence the degree

of chaos or regularity in the system’s dynamics. Similarly, changing the free evolution

time T allows for the tuning of dynamical phases between different momentum states

of the system [53,56]. Overall, Floquet engineering provides a powerful framework for

understanding and controlling the behavior of periodically driven quantum systems.

For Floquet engineering, we can express Eqn. 2.6 for n steps, where each step

provides control to modify the parameters, in the case of control over free evolution,

~eff is not a good parameter to define, so we can just write in different free evolution for

simplicity:

U = U(T, nT )

=

⇢
exp [f(T1)] exp


�i

K1

~eff
cos(x)

��

⇥

⇢
exp [f(T2)] exp


�i

K2

~eff
cos(x)

��

⇥ . . .

⇥

⇢
exp [f(Tn)] exp


�i

Kn

~eff
cos(x)

��
,

(2.8)

Here (T1, T2...Tn) and (K1, K2...Kn) are control parameters. Particularly from an ex-

perimental standpoint, the control over the free evolution(T ) in a periodically kicked

rotor system provides very precise control, with a precision of nanoseconds. However,

control over K introduces an error of more than 5% [56]. So throughout this thesis,

I will be exploring the control over T , whether it involves periodic changes or single

changes. Further, multiple features are associated with T in quantum dynamics. Select-
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ing the value of T can provide resonances, anti-resonances, and irrational phase evolu-

tion (causing dynamical localization), which makes this parameter suitable for control.

I will discuss these features in the next section

2.3.2 Quantum Resonance and Quantum Anti-resonance

The time evolution described by the Floquet operator Eqn. 2.6, display many features

with T . To understand this, Consider a wave function of the system  (x, t) at any time

t. This can be expanded in the momentum basis as:  (x, t) =
P

m Amhx|mi, with Am

being the expansion coefficients. Now, we can apply free evolution Floquet operator on

momentum state |mi:

exp

✓
�ip

2

2~eff

◆
|mi = exp

✓
�im

2~eff

2

◆
|mi . (2.9)

We replace, p = m~eff, where m is integer. This is true because of periodicity of

potential or Bloch theory.

Now for resonance condition, a phase evolution of 2⇡ is required because it’s recre-

ate the initial wave-function [119]. We can calculate the time required for a phase

evolution of 2⇡:

exp

✓
�im

2~eff

2

◆
= exp(�i2⇡) = 1 . (2.10)

From solution of above equation: ~eff = 4⇡ , where, ~eff = 8!rT . So, T = TT =
⇡

2!r
= ~⇡

2Er
, where, 2Er is recoil energy. This time is called the Talbot time [117] and

it’s related to temporal Talbot effect, which is explained in detail in this section below.

Let’s take an example of a plane wave state with zero momentum denoted as |0i.

The wave-function immediately after the application of the first kicked rotor pulse:

| (t = 0+)i = exp


�i

K

~eff
cos(x)

�
|0i =

1X

m=�1
(�i)mJm

✓
K

~eff

◆
|mi . (2.11)

Bessel function comes from Bessel identity after solving the equation. For a evolution
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of pulse period of TT , the wave-function just before the second pulse is:

| (t = TT )i =
1X

m=�1
(�i)me�i2⇡m

Jm

✓
K

~eff

◆
|mi . (2.12)

From the above equation, it’s clear that the free propagation is unitary as m is an integer

for Talbot time evolution. This Talbot time evolution recreates the wave-function that

was just after the pulse.

| (t = TT )i =
1X

m=�1
(�i)me�i2⇡m

Jm

✓
K

~eff

◆
|mi = | (t = 0+)i . (2.13)

The phenomenon of wave-function revival following a period of free propagation is

recognized as the matter-wave Talbot effect [120]. It’s analogues to the optical Talbot

effect [121], where a similar revival of the interference pattern is observed in the vicinity

of a diffraction grating. Introducing a second pulse with equal kick strength amplifies

the phase modulation induced by the previous pulse, leading to a further increase in the

population of states. Applying two kick with Talbot time evolution is like adding kick

strength and replacing with single pulse.

| (t = TT
+)i =

1X

m=�1
(�i)mJm

✓
2K

~eff

◆
|mi . (2.14)

Similarly for N kicks:

| (t = (N � 1)TT
+)i =

1X

m=�1
(�i)mJm

✓
NK

~eff

◆
|mi . (2.15)

Now, the average energy growth of the system at Talbot time evolution with the kick

is quadratic:

hEi / n
2
. (2.16)

A plot of a simulation is shown in Fig.2.5a, considering an initial state as a plane

wave. Similarly, the distribution after 40 kicks is also shown in Fig. 2.5b, it shows
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Figure 2.5: Resonance in QKR. Quadratic energy growth at resonance and the momentum
distribution after 40 kicks

that the distribution grows symmetrically towards higher momentum states. This is

analogous to a quantum random walk [122].

Similar calculation can be done for anti-resonance [117, 123], where a phase evolu-

tion of ⇡ takes place between the neighboring states. From the solution of Eqn. 2.10:

TT
2
= ⇡

4!r
= ~⇡

4Er
. This time is called the half-Talbot time. The solution just after first

kicks will be the same as Eqn. 2.10. Solution just after two kicks is:

| (t = TT
2
)i = exp


i
K

~eff
cos(x)

�
exp


�i

K

~eff
cos(x)

�
|0i = |0i . (2.17)

In the case of a perfect plane wave with no external noise, a complete revival of the

wave-function occurs. An odd number of kicks will reproduce the wave-function ex-

actly as it was after one kick. Similarly, an even number of kicks will produce a distri-
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Figure 2.6: Anti-resonance in QKR. A energy growth showing the revival after even number
of kicks and the distribution after 40 kicks.

bution identical to the initial wave-function without any kick. An energy growth and a

distribution after 40 kicks is shown in Fig. 2.6a and Fig. 2.6b. Revival after even kick

can be seen in energy as well as in distribution after 40 kick. Till this point, it’s quite

clear that by tuning the parameters of free evolution, we can manipulate the dynamical

interference and the corresponding energy growth of the system. Such control is highly

precise in experiments, making it one of the most effective parameters for controlling

quantum systems. Also, to explain above theory, we have taken a zero momentum-

width of the initial wave-function. Results will change, if you consider finite momen-

tum width [123]. Further, as discussed in classical phase space, the creation of different

types of transporting islands can indeed influence the dynamics of a system, potentially

leading to the growth of energy. However, these transporting islands are highly sensi-
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tive to parameters, and their presence can result in uncontrolled energy growth, leading

to decoherence in the system [111, 124]. Therefore, they are not ideal parameters for

quantum control.

2.3.3 Dynamical Localization in Quantum Kicked Rotor System

In the quantum mechanical treatment of the kicked rotor, resonance and anti-resonance

arise when the time evolution matches 2⇡ or ⇡, respectively. A straightforward question

emerges: what happens when this phase evolution corresponds to an irrational multiple

of 2⇡? Let’s write a Floquet operator for this:

U = U(T, 0) = exp


�i

p
2

2~eff

�
exp


i
K

~eff
cos(x)

�
, (2.18)

Here, T =
p
3+1
2 TT , for this time evolution the phase difference between momentum

states will not be ⇡ or 2⇡ but it will be quasi-random phase evolution. Interesting dy-

namics emerge from this system for this irrational phase evolution when the stochastic

parameter K is greater than 5. As we discussed before, the classical phase space is fully

chaotic for K > 5 and energy growth is linear. The quantum counterpart exhibits a

fundamentally distinct behavior. For a given stochastic parameter(K, ~eff), initially, the

average energy of the system increases linearly, resembling classical behavior. How-

ever, after a certain period, it reaches a saturation point [125, 126]. Regardless of the

strength or number of kicks of external perturbations, the energy does not continue to

increase. This critical time, at which energy growth ceases, is termed the “quantum

break time,” marking the onset of dynamic localization within the system. The momen-

tum distribution after dynamical localization shows exponential distribution, shown in

Fig. 2.7. The quantum break time and localization length [127] can be calculated for

given parameters (K, ~eff),

Tbreak time '
K

2

4~2eff
, Pbreak time '

K
2

4~eff
(2.19)

In contrast to classical systems, where chaotic behavior is prevalent, quantum systems

follow the linear evolution dictated by the equations of quantum mechanics. Conse-

quently, chaos in the classical sense is not directly observable in quantum systems.
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Figure 2.7: Dynamical localization in QKR: Energy growth for K = 5.5 exhibiting the charac-
teristics of dynamical localization, with an inset showing an exponentially localized momentum
distribution after 1000 kicks.

Instead, the manifestation of chaos occurs through a phenomenon known as dynamical

localization [126], which shares strong connections with Anderson localization. Fol-

lowing the initial period of apparent classical motion (referred to as the “quantum break

time”), momentum diffusion becomes constrained, leading the system to reach a steady

state where no additional energy is absorbed. The first experimental demonstration of

dynamical localization was done by M. Raizen in 1995 [49] with atoms and optical lat-

tice. Simply, the dynamical localization occurs due to destructive quantum interference,

which arises from the periodic nature of the kicking potential and the discreteness of

quantum states. As the number of kicks increases, the quantum wave-function evolves

in a manner where destructive quantum interference takes place. Eventually, a strong

quantum correlation builds up [72], canceling out classical diffusion.



32 Chapter 2. The Classical and Quantum Kicked Rotor

2.3.4 Coherent Control of Quantum Chaos

As discussed above, a periodic kick with certain stochastic parameter, can lead to a

dynamical localization of a quantum system. Dynamical localization is defined by the

localization energy and localization length for a given fixed strength of perturbation,

and fixed period of the kick. The idea behind coherent control of quantum chaos is to

manipulate the final localized state, achieving desired energy and localization length,

solely through the manipulation of the dynamical phase, without introducing decoher-

ence into the system, for a given parameter K. Such an idea was briefly discussed in this

paper [5, 118]. An example is shown in Fig. 2.8. Starting with an initial state (shown

in blue on the left), periodic driving will lead to an exponentially localized distribution

(also shown in blue on the right). Coherent control involves finding a method to achieve

a desired state with higher energy and localization length while maintaining an expo-

nential localized distribution, as shown in green and red. Such control is achieved solely

through the manipulation of dynamical phases, without increasing the strength of per-

turbation or adding more energy to the system, while maintaining quantum coherence.

This makes it quite interesting. It’s important to note that as the classical phase space for

A possible pathways leading
to desired state

Figure 2.8: Coherent control of DL. A simple illustration demonstrating the concept of coher-
ent control of quantum chaos.

the Hamiltonian is fully chaotic, any alteration may not yield the desired state. Chaos is

highly parameter-sensitive, and any random external change may eventually lead to de-

coherence in the system, resulting in the loss of dynamical localization. Many proposed

scheme for coherent control explored either by initial state preparation or by periodic

phase modulation [128–130]. One experimental demonstration of coherent control was



2.3. Quantum Kicked Rotor 33

demonstrated in ref. [42] with molecular kicked rotor. We have explored the coherent

control through periodic phase modulation and through manipulation of initial state for

coherent control experimentally.

2.3.5 Anderson Localization vs Dynamical Localization

Let’s recall the Anderson model [27], the Hamiltonian for the Anderson model is:

H = t

X

hiji

â
†
i âj + w

X

hii

ciâ
†
i âi , (2.20)

Here, t is hopping parameter and w is strength of disorder, ci uniform random distri-

bution. This proposed model by Anderson, exhibits complete localization in position

space for one and two dimensions, for any finite disorder strength. In three dimensions,

it shows a transition from localized to delocalized state, also called Anderson insulator-

metal transition [34]. The localized wave-function will be  (x) ⇠ e
�x

` . A simple

illustration is shown in Fig. 2.9 (left), the red one shows the random disorder on each

lattice site and corresponding localized wave-function. Now let’s revisit the quantum

kicked rotor Hamiltonian:

Ĥ =
p̂
2

2
+K cos(x̂)

NX

n=1

�(t� n) . (2.21)

The Floquet operator is:

U = exp


�i

K

~eff
cos(x)

�
exp


�i

p
2

2~eff

�
= exp [�iV (x)] exp [�iH0] (2.22)

After a transform through Hermitian operator J :

e
�iV (x) =

1� iJ(x)

1 + iJ(x)
, J(x) = tan


V (x)

2

�
(2.23)

and applying the operator: F |�i = e
�i�

|�i gives

(1� iJ)ei� � iH0|�i = (1 + iJ)|�i , (2.24)
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Further solving it, we get

tan��
H0

2
|�i � J |�i = 0 . (2.25)

Now, using the momentum (p) representation (eigenvectors of the unperturbed system,

H0|ni =
n2

2M |ni), further: Jn = 1
2⇡

R 2⇡

0 dx tan
�
k cosx

2

�
e
�inx

,

✏n = tan
h
�
2 �

n2

4M

i
,'n = hn|'i, we get the following:

✏n'n �

X

m 6=n

Wn�m'm = E'n , (2.26)

with E = J0.
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Figure 2.9: Anderson vs dynamical localization . A graphical representation of Anderson and
dynamical localization

Eqn. 2.25 shows that the quantum kicked rotor Hamiltonian is exactly analogous

to the Anderson model, but in momentum space. A exact theory can be found in refer-

ence [48]. In quantum kicked rotor, the randomness arises from the dynamical phases

originating from irrational phase evolution. Fig. 2.9 (right) depicts a graphical repre-

sentation where there is no randomness in the strength of the perturbation.

In short, the randomness appears in the diagonal elements for both the Anderson

model and quantum kicked rotor Hamiltonian, causing them to behave in a similar way.

The quantum kicked rotor system is quite flexible for simulating the 1D, 2D, and 3D

Anderson model, allowing for experimental observation of Anderson transitions and

critical states [53, 131].
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2.4 Quantum Kicked Rotor in Moving Frame of Refer-

ence

In the kicked rotor Hamiltonian, either the lattice or the initial wave-function can be

moved from the laboratory frame to model the quantum kicked rotor in a moving frame

of reference. Let’s consider when lattice is in motion, the Hamiltonian of quantum

kicked rotor is expressed as follows in the laboratory frame [111, 132]:

H =
bp2

2
+K cos(2kbx� 2⇡↵t)

NX

n=1

�(t� n) , (2.27)

where p represents momentum and x denotes the position coordinate, K is the stochastic

parameter, k is wave vector and ↵ is a frequency difference between two lattice beams

that imparts a constant velocity to the optical lattice. Similarly, we can write the initial

wave-function as follows:

 (x) =
1

p
2⇡�w

exp(�
x
2

2�2
w

) exp(�ip0x) , (2.28)

Here, �w is the width of the wave-function and p0 is the initial launch velocity. If the

wave-function is in motion in the Hamiltonian with velocity p0 in lab frame, ↵ = 0 in

that case and if lattice is moving in lab frame, p0 = 0 in the wave-function. We consider

this for making things simple. As it’s clear that lattice potential and initial wave function

has point symmetry around some center. Consequently, either a moving lattice or atoms

with the same velocity in the lab frame should induce similar effects [65, 66].

Just for further clarification, in this section, we consider the initial wavepacket as a

Bose-Einstein condensate (BEC), where the momentum width of the BEC is two orders

of magnitude smaller than that of two-photon recoil momentum. The narrow initial

momentum distribution is helpful in resolving different momentum eigen states, easy to

quantifying many observables precisely, which is necessary for our idea [65–67, 123].

To develop the basic idea for numerical approach, we are taking an example of the lattice

moving in lab frame in our ease. Kicked rotor potential when lattice is moving in lab
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frame is written as,

V (x) = K cos(2kx� 2⇡↵t) , where K is constant. (2.29)

For a given ↵, the velocity (v) of the lattice is, v = �↵
2 , where � is the wavelength of

the optical lattice. A lattice moving with constant velocity creates a constant phase

difference in fixed interval. For a periodically kicked rotor with a kicking period of T,

phase difference between each kick is given by:

� = 2⇡↵T . (2.30)

and the phase evolution for any kick is given by,

� = (2⇡↵T )(n� 1) , (2.31)

where n is the number of kicks and considering the phase is zero for the first kick.

Through this straightforward calculation, it becomes evident that a constant phase differ-

ence exists between each kick. To understand the long term dynamics, we can analyze

early time features for this system. To illustrate, considering the first two kicks as an

example, the phase difference between them is given by 2⇡.↵.T. This phase difference

creates an in-homogeneity in position space and it causes an asymmetric momentum

distribution in early time [66]. To quantify this asymmetry, we measure the hpi, The hpi

just after two kicks is given by:

hp(t = 2T )i = c sin[4⇡(vT/�)] , (2.32)

where c is constant. This is oscillatory in nature as a function of the velocity of lattice.

It also shows that, any finite velocity jitter in lattice will give us an observable hpi for

quantifying those little velocity jitter.

2.4.1 Micromotion in Bose-Einstein Condensates

What we mean by micromotion of BEC in this system is the very small initial velocity of

BEC in the direction of lattice. This small velocity is challenging to measure accurately
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through conventional time-of-flight methods [133]. The quantum kicked rotor provides

us a technique to measure this small velocity which is of the order of 100µm/s. Going

through the same idea as moving lattice, a similar asymmetry in average momentum

will occur when the wave-function is in motion. Such asymmetry is quite interesting

for quantifying the initial micromotion of the wave-function. Let’s consider there is a

very small velocity jitter in the Bose-Einstein Condensate (BEC) in the direction of the

lattice. By applying two kicks, we should observe some asymmetric features in the mo-

mentum distribution, as quantified in Eqn. 2.32. However, there is an unknown constant

parameter c present. It’s quite challenging to provide a tunable constant velocity to the

BEC to fit it with Eqn. 2.32.

To overcome this challenge, we implemented a simple idea: since we know that the

velocity jitter of the BEC is small and fixed, we can precisely scan the lattice velocity

by adjusting the frequency difference (a feasible control in experiments). As soon as

the lattice velocity matches that of the BEC, we will observe a zero asymmetry in the

average momentum hpi. This method is quite helpful as it provides the zero-crossing

point by scanning around the BEC velocity. A detailed discussion with experimental

data and a broad motivation behind this work will be provided in the following chapter.

2.4.2 Asymmetric Dynamical Localization

As discussed above, oscillatory early time dynamics emerges when we move the lattice

or the atomic wave-function. This asymmetry also affects the long term dynamics. To

conclude the long-term dynamics, we know that phase difference between consecutive

kicks remains constant for a fixed lattice velocity, so whatever the asymmetry comes,

it from a given velocity in early time dynamics. This asymmetry settles down at some

value in long time dynamics due to dynamical localization and the nature of asymmetry

established by early time dynamics. An interesting observation is that, for certain values

of v, for a given kicking period T , if, vT/� = n/4 (where n is an integer), hpi = 0

implying an absence of asymmetry for specific choice of initial velocity and kick period.

To conclude, in the quantum kicked rotor in a moving frame, the nature of long-term

dynamics will be analogous to the early-time dynamics. If there is an asymmetry in

the early-time dynamics, it will also manifest in dynamical localization, avoiding some
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special cases like quantum boomerang effect [67], further asymmetry with cold atoms

is well studied [134–136].

2.4.3 Numerical Simulations

For numerical simulations, the standard split-operator method using discrete Fourier

transform [137] is commonly used to evolve the Hamiltonian of the kicked rotor [138–

140]. With the assumption that there is no dynamical phase evolution during a delta

kick, implementation of the Floquet operator makes the simulations easier. This method

involves two main components:

1. The kicked operator, which is diagonalized in position space.

2. The free evolution operator, which is diagonalized in momentum space.

Both of these have already been discussed in the theory section. Now, for a time

dependent Hamiltonian, we define evolution operator with a quite small time step,

exp
⇣
�iĤ

�t
~

⌘
, further we can split it in momentum and position operator, Ûp(�t) =

exp
⇣

ip̂2�t
2m~

⌘
and Ûx(�t) = exp

⇣
iV (x̂)�t

~

⌘
. After this, we apply this operator on an

initial wave-function and switch back and forth from momentum to position with the

help of discrete Fourier transform [141]. As operator x̂ and p̂ don’t commute, so an

error accumulates with the time of order of �t
2 [142], such error can be reduced by

applying Baker-Campbell-Hausdorff theorem. For delta pulses, we can safely drop the

time dependent part in potential which make simulation slightly easier. This technique

is a widely used approach for simulating the dynamics of the quantum kicked rotor.

To simulate the system when lattice is in motion in lab frame, we adjust the phase

before each kick. As we know the phase evolution with lattice velocity, and this assump-

tion is valid for delta pulse. Similarly, to simulate where the Bose-Einstein Condensate

(BEC) is in motion in the laboratory frame, we initialize the simulation with a wave-

function that already accounts for the motion from the beginning.

2.5 Conclusions
This chapter described the theoretical description of the classical and quantum kicked

rotor. The role of classical phase space in energy growth, as well as the free evolution pa-
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rameter in quantum systems for similar control, is discussed. Furthermore, we explored

how this parameter can be utilized for controlling dynamical localization, eventually

influencing quantum chaos. We also investigate the Hamiltonian in a moving frame and

develop a method to measure micromotion and cause of asymmetric dynamical local-

ization.
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Chapter 3
Experimental Setup

I will present the experimental setup used for the kicked rotor. The initial setup was

constructed by former students in the years 2012 and 2013 [143, 144]. However, dur-

ing the COVID-19 pandemic, the oven had passed its lifetime and the vacuum system

needed to be reconstructed with some modifications for enabling faster production of

BEC and better optimization.

I’ll provide a brief overview of each component, physics and techniques associated

with them, which serves as the foundation for conducting the kicked rotor experiments.

Finally, a brief discussion the implementation of machine learning and a novel cooling

technique that we demonstrated experimentally.

3.1 Laser Cooling and Trapping
Laser cooling is a sub-field of atomic physics for slowing down the motion of atoms

to extremely low temperatures [10, 145], typically just a 100 pK away from absolute

zero [19]. This process is crucial for various experiments, including the creation of

BEC and the study of quantum phenomena, matter-wave interference and new quantum

states.

The principle behind laser cooling relies on the interaction between atoms and laser

light. Atoms absorb and emit photons, which are packets of light energy. In laser

cooling, specialized lasers are used to target the electronic transition of atoms. As we

know, the absorption of photons by atoms is directional, but spontaneous emissions

41



42 Chapter 3. Experimental Setup

is random [146]. The momentum of atoms can be balanced by absorption, slowing

them down, and over many cycles of absorption and emission, the momentum through

spontaneous processes averages to zero. By carefully controlling the parameters of the

laser beams, such as their frequency, polarization, intensity and direction, one can slow

down atoms [147]. Atoms are slowed down in all directions, akin to the way molasses

slows down moving objects immersed in it. As a result, the temperature of the atoms

decreases [148]. Laser cooling techniques have several variations, including Doppler

cooling, magneto-optical trapping (MOT), and evaporative cooling. Doppler cooling is

the initial stage where atoms are first cooled down using laser light. Magneto-optical

trapping involves additional magnetic fields to confine the cooled atoms in a small re-

gion of space. Evaporative cooling, on the other hand, is a subsequent step used to

further reduce the temperature of the trapped atoms by selectively removing the hottest

atoms from the sample. The basic principle of laser cooling remains consistent across

most atoms. However, experimental difficulties arise depending on factors such as

wavelength requirements, line-width of the transition, and the electronic structure, like

whether the atom has one or two electrons in its outer shell. Due to these difficulties,

laser cooling techniques are only applicable to a limited number of atoms. Rubidium

(Rb), Sodium (Na), Potassium (K), Lithium (Li), Cesium (Cs), Strontium (Sr), Ytter-

bium (Yb), and Dysprosium (Dy) are famously used in laser cooling experiments.

I will go through the scattering force considering two level system, magneto-optical

trap and evaporation cooling for production of BEC.

3.2 Scattering Force
In a two-level system, such as atoms with simplified electronic structure, the scatter-

ing force arises due to the interaction between atoms and the incident photons. This

interaction can be understood through the process of absorption and emission.

When an incident photon interacts with atoms in the ground state (lower energy

level), it can induce a transition of the electron to an excited state (higher energy level)

through absorption. During this process, the photon imparts momentum to the system,

which leads to a change in its velocity [10,148]. This change in velocity corresponds to

a force acting on the system, known as the scattering force.
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The scattering force is given by:

Fscatt =
~~k
2

�

2

I/Isat

1 + I
Isat

+ 4
�

�
2�

�2 , (3.1)

Here, ~ represents the reduced Planck constant, ~k denotes the wave-vector of the inci-

dent light, � stands for the line-width of the atomic transition, I represents the intensity

of the incident light, Isat is the saturation intensity, and � signifies the detuning of the

incident light from the resonance.

The magnitude and direction of the scattering force depends on various factors, in-

cluding the intensity and polarization of the incident light, the transition probability be-

tween the energy levels involved, and the detuning of the incident light from the atomic

transition frequency.

3.2.1 Zeeman Slower

The utilization of the scattering force comes into play during the initial stage of slowing

down the velocity of atoms. Let’s take an example of Rubidium (Rb) atoms, first we will

go through the electronic structure of Rubidium. Rubidium has two isotopes naturally,
85Rb and 87Rb with a natural abundance of 72.2% and 27.8% respectively. Rubidium

has an electronic configuration of [Kr] 5s1. This means that it has one valence electron

in its outermost shell. The most common isotope of Rubidium is 85Rb, which has a

nuclear spin of I = 5
2 . Another stable isotope, 87Rb, has a nuclear spin of I = 3

2 . A

detailed electronic structure can be found in reference [149]. In our experimental setup,

we cool 87Rb for production of BEC.

Fig. 3.1, a Russel-Saunders plot for 87Rb which shows the quantum energy levels

of single valence electron. It gives the idea of frequency requirement to drive the tran-

sition, also polarization requirements with selection rule. Now for slowing down the

atoms which are coming from a hot oven of temperature 120�C and well-collimated. A

counter-propagating laser beam, large red-detuning from |F = 2i ! |F
0 = 3i, shown

in figure 3.1 as ZS is used. To maintain the resonance condition by balancing Doppler

shift, as atoms undergo the process of deceleration through opposite scattering force,

a spatially varying magnetic field [150] is maintained to keep the atoms on resonance
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Figure 3.1: Energy level diagram. A schematic representation of the energy level diagram for
the D2 line of 87Rb, featuring cooling and repumping lasers alongside the Zeeman slower (ZS).
The spectroscopy signal from saturation absorption spectroscopy is also shown, illustrating its
role in stabilizing the laser.

by using the Zeeman effect. Particularly, this setup is called a Zeeman slower(ZS).

This step effectively reduces the velocity of atoms from several 100m/s to less than

20m/s [151]. As we have taken example of 87Rb, a scattering force calculation can

be done by equation 3.1, for different laser beam intensity and detuning. More details

about this is available in previous thesis from our group [143]

3.3 Magneto-Optical Trap
The basic principle of a magneto-optical trap involves using six laser beams and mag-

netic fields to slow down and trap atoms [146, 152]. The process begins with a beam

of atoms, typically slowed by Zeeman slower [153], a good background vapor of atoms

is also used for MOT [154]. Particularly in our setup, Zeeman slowed atoms are intro-
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Figure 3.2: MOT. (Left) Working principle of MOT. (Right) Schematic for confining atoms
using six laser beams. The blue square in the middle of the laser beams is the glass cell main-
taining UHV.

duced into the MOT chamber.

In a magneto-optical trap (MOT), we use a magnetic quadrupole field and laser

beams with �+- �� polarization to create a situation where the energy level of atoms

changes depending on their position. This energy shift helps in trapping the atoms. An

illustration is shown in Fig. 3.2 (right).

We now elaborate on this mechanism for a simplified |J = 0i ! |J = 1i transition

considering 1D scenario. As depicted in Fig. 3.2(left), the degeneracy of the excited

state |J = 1i is perturbed by the magnetic field gradient, resulting in the splitting of the

state into three magnetic sub-levels: mJ = �1, 0,+1. Now using laser beams that are

”red-detuned” on an atomic transition where the energy levels get closer as the magnetic

field increases. To achieve selective absorption in the transitions |J = 0,mJ = 0i !

|J = 1,mJ = ±1i, pairs of orthogonal beams consisting of circularly polarized light

with opposite helicity are used. For simplification, consider a 1D scenario, if atoms

try to move to the right side of the B = 0 axis, the beam with �
� polarization is

preferentially absorbed and scattered compared to the �+ beam, primarily due to the

detuning of the �� beam being closer to the laser frequency as well as full-filling the

criteria of selection rule. This provides a force in the opposite direction of motion,

similarly if atoms try to move to the left, the force will push them back to the center of

magnetic field. The combination of these laser beams and the magnetic fields creates a
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force that slows down the velocity of atoms as well as provide a spatial confinement [10].

The total force in MOT system is:

FMOT = �↵v �
↵

k

gµB

~
@B

@z
z, where: ↵ = 4~k2 I

Isat

�
�
2�
�

�
h
1 +

�
2�
�

�2i2 (3.2)

For our experiment, The cooling transition |F = 2i ! |F
0 = 3i is used. From Eqn.

3.2, laser beams are kept red-detuned by �2�, where � is the natural linewidth of the

cooling transition (approximately 2⇡ ⇥ 6 MHz), and @B
@z is about 15 Gauss/cm. The

Doppler limited temperature comes from natural line-width (�) which is given by:

kBTD =
~�
2

. (3.3)

As our cooling cycle is not fully closed, atoms also undergo transitions to |F =

1i through finite spontaneous emission. Therefore, we also utilize an additional laser

known as the repumping laser. This laser beam brings the atoms back into the cooling

cycle through the |F = 1i ! |F
0 = 2i transition [144]. The typical loading process

for a Magneto-Optical Trap (MOT) runs for a duration of 3 to 5 seconds to capture

approximately 2⇥ 108 atoms.

To further cool and increase the phase space density of atomic cloud, we go through

a process called compressed MOT [155]. Ramping the magnetic field strength from 15

Gauss/cm to 20 Gauss/cm, also increasing the detuning linearly from �2� to �11�, we

reach a temperature of approximate 50µK and just loosing less than 15% of atoms.

3.4 Dipole Trap and It’s Evaporation

To further cool the atoms for producing the Bose-Einstein condensate, we transfer the

atoms in a tightly focused far-detuned optical dipole traps. Two single mode laser beams

of 1064nm in a crossed beam geometry, in a plane perpendicular to gravity is used to

confine the atoms in this potential [10, 156]. A schematic is shown in figure 3.3 of our

setup. For a Gaussian beam with waist w0 and peak intensity I0, the dipole trap potential

is given by:
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Udipole = �
~�2

8�

I

Is
e
� 2r2

w2
0 . (3.4)

The optical system of the dipole traps starts with a high-power laser, the Azurlight-

1064nm-50W, which is a single-mode laser. We utilize 20W from this laser, split by

a polarizing beam splitter and directed through two acousto-optic modulators (AOMs)

operating at frequencies of 110 MHz and 120 MHz, respectively. This setup allows us

to independently control the power and switching of each beam. Additionally, this con-

figuration prevents interference between the two beams, which could otherwise lead to

loss of atoms [157]. The beam size of the laser is initially 1mm. We expand it to ap-

beam du
sing lens

Dipole trap after absorption imaging

Figure 3.3: Schematic of the dipole trap. (Left) Tightly focussed crossed dipole trap in glass
cell. (Right) An absorption image of atoms captured in this trap

proximately 6 mm to create a tight trap at the focal point, achieved by passing it through

a 200 mm focal length lens. The trap depth is approximate 200µK in our setup, enough

to capture more than 2 ⇥ 106 atoms together in dipole trap. An absorption image of

atoms captured in dipole trap is shown in Fig. 3.3, after holding it for 50ms. The life-

time of atoms in dipole trap is more than 10 s, it provides enough time to evaporate to

reach BEC. Once the atoms are in the optical dipole trap, precisely lowering the poten-

tial energy of the dipole traps, the hottest atoms, typically those with the highest kinetic
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Figure 3.4: Evaporative cooling. (Left) Lowering potential adiabatically for evaporation.
(Right) A transition to BEC

energy escape from the trap [158, 159]. This selective removal process leads to a redis-

tribution of the remaining atoms’ energies, resulting in a lower average kinetic energy

because of continuous elastic collision and, consequently, a colder sample as shown in

top of the Fig. 3.4. To gain a deeper understanding of evaporation, one can adopt a

statistical perspective. Consider the analogy of many cycles of elastic collisions among

atoms: some atoms gain kinetic energy while others lose it. Continuously reducing the

potential depth is akin to lowering the threshold for escape. Consequently, atoms with

higher kinetic energy are more likely to surpass this threshold and ”evaporate” from

the system, while those with lower kinetic energy remain trapped, effectively leading to

cooling [160].

The key parameter controlling the efficiency of evaporative cooling is the trap depth,

which determines the energy threshold for atoms to escape the trap. By gradually reduc-

ing the trap depth over time, typically through reducing the laser power as shown in Fig.

3.4, the temperature of the atomic ensemble can be progressively lowered. For monitor-

ing the cooling and optimizing the evaporation, we measure the temperature and phase

space density after each time-step evaporation. This reduction in temperature can even-

tually lead to the formation of Bose-Einstein condensate (BEC) or quantum-degenerate

gas. In Fig. 3.4 (right), a time-of-flight image of our lab’s Bose-Einstein condensate

(BEC) is presented. The image distinctly shows the evolution from a thermal distribu-
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tion to a bimodal distribution, ultimately revealing the pure BEC state, the details are

available in this thesis [144].

3.4.1 Machine Learning for Production of BEC and Pulse-Width
Modulation for Evaporative Cooling

We used machine learning [161] to speed up the process of achieving Bose-Einstein

condensation (BEC) through evaporation cooling. After reconstructing our setup and

installation of a new high power laser, we managed to achieve BEC after few weeks of

manual optimization, but this didn’t guarantee the fastest production or finding the best

settings. Initially, manually optimizing evaporation took about 8-9 seconds to produce

the BEC. To improve this, we implemented machine learning by giving the control of

the system to machine learning. Basically, machine learning used to control the shape

of the evaporation cycle by controlling the laser power used for dipole trap, and took the

absorption image after 8 ms time-of-flight to process further and move to next parame-

ter. We fed data from these processes to the machine learning algorithm. Knowing that

the power reduction over time follows a higher-order polynomial equation, the machine

learning model adjusted the coefficients of this equation, essentially shaping the evap-

oration curve within a specified time frame [162, 163]. We provide a cost function to

machine learning which is related to higher optical density. By monitoring the optical

density of atoms during the time of flight and adjusting parameters using Gaussian op-

timization, the machine learning system learned and optimized the evaporation process.

Eventually, we achieved BEC with an evaporation time of just 5 seconds, reducing the

cycle time by more than 35%.

More detailed information about the algorithms and implementation of machine

learning on the experimental setup can be found in this paper, where we implemented

machine learning to increase the number of atoms in a strontium MOT [164].

We also implemented a new technique to cool the atoms during the evaporation pro-

cess using a time-averaged potential. As mentioned earlier, by decreasing the trap depth

through the reduction of laser power, one can effectively cool the atoms. This reduction

in laser power is achieved through the voltage variable attenuator (VVA) of the acousto-

optic modulators (AOMs) drivers. By adjusting two analog outputs corresponding to
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the VVAs and reducing the voltage, we can lower the power output. This is a traditional

method to implement for evaporation. We came up with an idea where we keep the

laser power fixed at its maximum available power, and we switch the laser on and off at

a rate of 1 MHz using a fast RF switch. Atoms perceive this rapidly switching potential

as static. By adjusting the duty cycle, which is achievable through pulse-width modula-

tion, we can control the average potential experienced by the atoms. Implementing this

technique involves controlling the duty cycle to gradually decrease the average potential

over time, thereby cooling the atoms until they reach a temperature of 2 µK. The time-

averaged cooling process is quite rapid, capable of cooling the atoms from over 100 µK

to 2 µK. However, reaching the BEC state using this method presents challenges due

to certain constraints. A detailed analysis of this method can be found in our paper[cite

later].

3.5 BEC Machine
A general overview of the experimental steps involved in making the BEC is shown in

Fig. 3.5.

After undergoing through this steps, where each step is crucial, we produce Bose-

Einstein condensate of 87Rb atoms, with over 75,000 atoms in the BEC. The production

rate ranges from 8 to 10 s, with MOT loading varying from 3 to 5 s, and evaporation

taking 5 s. A BEC setup without laser system and an image of fluorescent from MOT

loading is shown in Fig. 3.6.

3.5.1 Experiments with BEC Machine in Our Lab

We investigate the quantum kicked rotor Hamiltonian using cold atoms, where the cloud

temperature ranges from (2-8) µK . This study includes dynamical localization, control

over quantum chaos, and the investigation of exponential and non-exponential loss of

coherence in quantum systems [56, 112, 165]. Additionally, we utilize Bose-Einstein

condensates (BEC) to explore dynamical localization due to several advantages they of-

fer. The narrow initial momentum width of the wave function provided by BEC aids

in resolving different momentum states, facilitating precise calculations of sensitive ob-

servable. Furthermore, precise phase imprinting of lattices on BEC enables the study of
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Figure 3.5: Experimental sequence. A general overview of the steps involve in production of
BEC

phase-sensitive Hamiltonian and the observation of early-time quantum correlations.

Further, we utilize BEC for precision measurements by implementing atom interfer-

ometry (AI) to measure gravity [95,166]. Additionally, we study the formation of atom

lasers and their diffraction [167], investigate Talbot revival phenomena, and examine the

role of momentum width in BEC [123]. Our setup is also capable of producing spinor

BEC where spin collision and conservation can be studied under different conditions.

For this thesis, my main focus is on dynamical localization with cold atoms and

BEC. I’ll be presenting how we can control quantum systems coherently, especially in

relation to dynamical localization or quantum chaos. Additionally, I’ll present the inves-

tigations on asymmetric dynamical localization by launching BEC with initial velocity

in periodically kicked potential and developing a method to measure micromotion using

a sensitive observable.
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Figure 3.6: Experimental setup. BEC machine and a bright 87Rb MOT

3.6 Optical Lattice and It’s Interaction with Cold Atoms

A 1-D optical lattice is formed by two counter-propagating laser beams, where the in-

terference between the lasers forms a standing wave with a periodic intensity modula-

tion. The period of the optical lattice can be tuned by the wavelength or by changing

the angle between the beams’ wave-vectors. A detailed description of optical lattices

can be found in references [168, 169, 169]. In our experiment, we utilize two counter-

propagating laser beams with a wavelength of 780 nm. The cooled atoms reside in the

state |F = 1i. Our lattice laser is locked to |F = 2i ! |F
0 = 2i transition, resulting in

a detuning of 6.8 GHz. With the assistance of the optical lattice, a coherent momentum

transfer to the atoms becomes feasible. By periodically switching the lattice on and off,

we can transfer energy to the atoms to periodically perturb them, effectively making

a system for simulating the quantum kicked rotor. Now to characterize the interaction

of optical lattice with atoms, we consider a two level system, the Hamiltonian of the

system in the rotating wave approximation (RWA) [169–171] is given by,

H =
p
2

2M
� ~�|eihe|+ ~⌦(t) cos(2kx)(|eihg|+ H.c.) , (3.5)

Here, k is the wave-vector, � is the detuning and ⌦(t) is the Rabi frequency, here we

consider it as time independent as we are not doing any pulse shaping. Substituting a

linear solution | (t)i = e(x, t)|ei + g(x, t)|gi in Eqn. 3.5, we get two coupled equa-

tions of ground state and excited state. But under some realistic assumption, like the
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detuning being very large compared to the line-width of the transition, we can eliminate

the excited state safely, so the final equation is:

�i~ġ(x, t) = �
~2
2M

@
2
g(x, t)

@x2
+

~⌦2

�
cos2(kx)g(x, t) . (3.6)

Now after simplification, we can see the Hamiltonian of Eqn. 3.6 is periodic and we

can use Bloch theorem, and for constant ⌦ the solution will be Mathieu equation:

g(x, t) =
1X

m=�1
gm(t)e

imkx , (3.7)

m is the momentum state, further solving Eqn. 3.6 by introducing Eqn. 3.7, we get a

final equation:

�i~ġm = ~(!rm
2 + ⌦0)gm + ~⌦0

2
(gm+2 + gm�2) , (3.8)

Here, !r is recoil frequency !r =
~k2
2M and ⌦0 =

⌦2

2� . It’s clear from this equation that it

couples only even or odd momentum, we can continue with any one of them. A detailed

calculation is done in reference [170, 172]. Now we discuss about different regime in

Kapitza-dirac or Raman-Nath diffraction.

3.6.1 The Raman-Nath Regime

In the Raman-Nath regime, the interaction is for a very short time of the optical lattice

with atoms, during which we assume no movement of atoms. Therefore, we can safely

drop the kinetic energy term in Eqn. 3.8 and shifting the constant energy scale:

�i~ġm = ~⌦
2
(gm+2 + gm�2) . (3.9)

The solution of the above equation is a Bessel function:

g2m = �i
m
· Jm(⌦t) . (3.10)
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Figure 3.7: Diffraction of a BEC in different momentum states. Diffraction of BEC with a
pulsed optical lattice 87Rb MOT

Now the probability of finding the atoms in different momentum states 2m~k where, m

= ..-3,-2,-1,0,1,2,3..., is given by,

P2m(t) = J
2
m(⌦t) . (3.11)

At time t = 0, all the atoms will be in zero momentum state. With interaction time and

laser power, atoms will move to higher momentum states. By applying a short pulse

(less than 500 ns to maintain the condition for delta-kicked rotor in our system) and mea-

suring the atom’s distribution in different momentum states, we quantify the strength of

perturbation. An experimental distribution of BEC after applying a 500 ns optical pulse

with different laser power is shown in Fig. 3.7. Using this technique, we coherently

transfer energy to the system to simulate the quantum kicked rotor type Hamiltonian.

For the BEC, these momentum states get resolved due to quasi-momentum being ap-

proximately 100 times less compared to the momentum of two recoil photons. However,

with cold atoms, the momentum wave packets will not get resolved.

3.6.2 The Bragg Regime

In the Bragg regime, the interaction time is comparatively long, and we can not neglect

the kinetic energy term in Eqn. 3.8. Just to clarify, Bragg diffraction also requires a strict

resonance condition. To satisfy this resonance condition, we move the lattice with the
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momentum we want to populate, or such resonance is also possible if we can move the

atoms. Further if the atoms are initially at rest and the lattice is also static, it represents

just a phenomenon beyond the Raman-Nath regime [170]. A detailed mathematical

analysis is given in reference [172]. For the resonance condition to transfer atoms in m
th

momentum state, we can write a simple equation from energy-momentum conservation:

m~�! =
q
2

2M
+

~
M

~ki · ~q , (3.12)

Here, q = 2m~k and �! comes from frequency difference between lattice. By sat-

isfying the desired resonance condition and properly creating a frequency difference

between two lattices, we can induce Rabi cycles between momentum states. Bragg

diffraction proves to be a useful method for generating ⇡ (mirror pulse) and ⇡
2 (beam-

splitter pulse) pulses for atom interferometry with a Bose-Einstein condensate (BEC).

We utilize Bragg diffraction to launch the BEC with different recoil momentum into a

periodically kicked optical lattice, which will be discussed further. For a stationary BEC

0�� 2��

mirror pulse

beam-splitter pulse
(on time =  

(on time =  100��)

50��)

Figure 3.8: Bragg Diffraction. Bragg Diffraction of 87Rb BEC between 0~k and 2~k with
pulsed optical lattice

in the lab frame, ~ki = 0. Thus, for first-order Bragg diffraction, the frequency difference

turns out to be�! = 2⇡⇥15.07 kHz. In the experiment, we provide a frequency differ-
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ence between lattice beams of 15.07 kHz for the first order and 30.14 kHz for the second

order, and continue. A Bragg diffraction with 15.07 kHz frequency difference is shown

in Fig. 3.8, controlling the on-time of pulse we can either completely transfer the atoms

to the other momentum state or we can equally split depending on the requirements.

3.7 Conclusions
This chapter briefly described our experimental setup, which we reconstructed with

a few advancements following the COVID-19 pandemic. We incorporated machine

learning techniques for BEC production and developed a novel time-averaged cooling

method for evaporative cooling. After running the BEC setup for six years, I can say

it’s one of the most reliable setups out there with flexibility of experiments. It consis-

tently produces BECs without needing daily optical alignment or running into frequent

problems.
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This chapter has been published as:
”Interplay between quantum diffusion and localization in the atom-optics kicked rotor”

S. Sagar Maurya, J. Bharathi Kannan, Kushal Patel, Pranab Dutta, Korak Biswas, Jay

Mangaonkar, M. S. Santhanam, and Umakant D. Rapol, Phys. Rev. E, 106, 034207

(2022)

In this chapter, we present a modification to the kicked rotor model, both through ex-

perimental investigation and numerical analysis. By introducing half Talbot time delays

in the kicking sequence which is equivalent to reversing the kick strength, we estab-

lish a modified atom-optics kicked rotor system. Notably, the modified system exhibits

increased quantum mean energies with higher localization length in comparison to the

standard kicked rotor model. These results not only contribute to our understanding of

quantum chaos in the kicked rotor paradigm but also hold significant implications in

coherent control over quantum phenomena. The scheme also provides another route to

quantum control in the kicked rotor class of systems, particularly when such a control

arises from a competition between quantum diffusion and localization.

57
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4.1 Background and Definition of the Problem

The kicked rotor (KR) model has been extensively investigated as a paradigmatic model

of both classical and quantum chaos [39, 173]. The atom-optics based kicked rotor

(AOKR) is an experimentally realizable analog of the KR model in which an ensemble

of cold atoms are periodically kicked by sinusoidal potentials formed by a counter-

propagating standing wave of light [49, 52, 59, 114]. The classical limit of AOKR is

chaotic for sufficiently strong kick strengths and exhibits intrinsic stochasticity in its

dynamics. In this limit, KR behaves similar to a random walk. As the kicks impart en-

ergy to the system, diffusive growth of mean energy is observed. In contrast, the quan-

tum regime entirely suppresses the classical diffusive growth beyond a short break-time

due to destructive quantum interference [39]. This is the regime of dynamical localiza-

tion and is the momentum-space analogue of Anderson localization in real space. This

shows up as wave-functions localize in the momentum space,  p ⇠ e
�p/⇠, where p la-

bels discrete momentum basis states and ⇠ is the localization length. Further, AOKR and

its variants are studied in other fields – condensed matter physics [48, 174], molecular

physics [175, 176], and quantum information [177, 178] – to explore quantum corre-

lations to many-body localization. See Ref. [39] for a recent review of variants and

applications of kicked rotor system.

For many applications in the emerging areas of quantum technologies, it is important

to be able to control the quantum effects. In the context of AOKR, the ability to control

localization length and the energy of localized states can be useful [42]. Dynamical lo-

calization is generally destroyed by the addition of noise through decoherence processes

and does not provide a means of quantum control. For example, it has been shown that

decoherence in the form of noise [179–181], coupling with rotor [182], and quantum

measurements [177] can destroy dynamical localization. However, surprisingly, it was

shown experimentally that Levy noise added to kick sequences of AOKR could control

the decoherence rate and even the mean energy of localization, the Levy parameter in

the noise distribution acting as the control parameter [56]. More conventional routes to

exercise control is by manipulating the phases of the initial wave-function. For instance,

it was shown previously that quantum-chaotic diffusion can be enhanced or suppressed
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by controlling the phases of the initial states [128, 129]. However, in order to control

the localization length, the unitary evolution operator that evolves the initial state needs

to be changed and is not achievable by just controlling the phase of the initial state. In

one such novel control scheme, introduced by Gong and Brumer [119], the phase of the

kicking field is flipped periodically. By changing the sign of the kicking potential after

M kicks (corresponds to introducing a phase shift among rotor momentum states), a

significant change in the dynamical localization and quantum diffusion was observed.

This variant of AOKR is different from the amplitude-modulated KR systems [125], in

which the kick strength is varied. Quantum control in the context of AOKR has been ex-

perimentally realized by phase modulation [58, 111] and also in laser-kicked molecular

rotors using time delay [42].

In the work, we experimentally realize a protocol of quantum control (similar in

spirit to the one introduced in Ref. [119]) of diffusive and localized phases by appropri-

ate modulation of the perturbations. Effectively, the sign of the kick strength in the KR

system is periodically flipped. This is achieved using periodic time delayed kicks after

a certain number of standard kicks that induce dynamical localization. Quite remark-

ably, this simple modification of kick sequences in AOKR does not destroy localization

but leads to an enhancement of quantum energy at which localization takes place. In

contrast to the earlier work [119] that depend on presence of classical transporting is-

lands in phase space for energy enhancements, we show that enhancements arise from

a competition between two time periodic sequences in the AOKR system.

4.2 Modified Atom-Optics Kicked Rotor
Just to point out, we emphasize the crucial differences between the standard KR and

AOKR. AOKR is a system of kicked atoms moving on a line, while the standard KR can

be visualized as rotors moving on a circle. With a sufficiently broad initial distribution

of momenta, the dynamics of AOKR involves the play of different quasi-momenta �,

while for the standard KR it is generally restricted to � = 0. Due to these differences,

the modified kicked rotor (MKR) is presented as a motivation and a benchmark for the

main ideas. All the experimental results are compared, not with MKR but, with the

simulations of the floquet operator of the AOKR averaged over quasi-momenta �.
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We start with the modified kicked rotor model (MKR), and the modified atom-optics

kicked rotor (MAKR) presented at the end of this section. The experimental and simu-

lation results are reported in subsequent sections.

The system of interest is a modified form of kicked rotor given by [119],

H =
p
2

2
+K cos(x)

X

n

fM(n) �(t� n), (4.1)

where p and x denote the dimensionless momentum and position respectively, K is the

chaos parameter, and time t is scaled by the pulse period T such that t ! t/T . If

fM(n) = 1, then Eqn. 4.1 is just the standard KR. In this work, |fM(n)| = 1, and

fM(n) changes sign after every M kicks. In rest of this paper, Eqn. 4.1 will be referred

to as the modified kicked rotor (MKR) model, and it can be thought of as a specific

realization of a generalized KR model in Ref. [183]. By discretizing the Hamilton’s

equation of motion corresponding to Eqn. 4.1, a formal map connecting the position

and momentum variables at time n and n+ 2M with M � 1, can be written down as

xn+2M = F1(xn, pn), pn+2M = F2(xn, pn). (4.2)

In this, F1(, ) and F2(, ) are the map functions. In general, these map functions are

sufficiently simple for the standard kicked rotor, but can get increasingly cumbersome to

write down explicitly for M � 2. However, numerical determination of the stroboscopic

map is straightforward.

In Fig. 4.1 the classical stroboscopic section of KR (a), MKR with M = 2 (b) and

with M = 3 (c) for kick strength K = 5 is shown. As evident in Fig. 4.1(a), the

phase space is largely chaotic with a few regular islands. An ensemble of initial con-

ditions launched from these islands will remain bound to these islands. In the case of

MKR with M = 2, special non-chaotic structures called transporting trajectories exist

in phase space, as seen in the inset of Fig. 4.1(b). Transporting islands are present

in many periodically driven dynamical systems, e.g., standard map [184], Hamilto-

nian ratchets [185], atomic KR [46, 186] and are usually referred to as the accelerator

modes because they support ballistic classical diffusion, i.e., hEin / n
2, where n is the

no of kicks. The quantum accelerator modes have been realized in cold atom experi-
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ments [187–189]. In the MKR, anomalous diffusion is observed in which hEin / n
�

with 1 < � < 2. Physically, this situation arises due to the ”stickiness” of the boundary

between the transporting trajectories and the chaotic sea. In contrast, the phase space

is chaotic for M = 3 (Fig. 4.1(c)) and leads to normal diffusion. The classical en-

ergy hEic growth versus the number of kicks is shown in Fig. 4.1 (d), for various M

values. Due to the presence of transporting islands, it is clear that the classical energy

growth is enhanced for M = 2 when compared to that for other values of M . It also

exhibits anomalous diffusion compared to other values of M , which shows linear diffu-

sion. The transporting islands play a significant role in quantum dynamics even though

their area in the phase space is tiny [119]. The presence of these transporting trajectories

is ambiguous for MKR with larger values of M [119]. Now let us explore the quantum

dynamics of MKR in the parameter space where transporting trajectories are present in

their classical phase space of MKR with M = 2 as seen in Fig. 4.1 (b) and compare

it with the properties of KR. The quantum dynamics of MKR can be obtained by solv-

ing the time-dependent Schrödinger equation corresponding to the MKR Hamiltonian.

The split evolution technique is implemented to evolve the initial state according to the

Schrödinger equation [184].

To build the quantum dynamics of MKR, let us consider the period-1 Floquet oper-

ator corresponding to the standard kicked rotor bF±
KR for which fM(n) is a constant, i.e.,

fM(n) is either +1 or �1 for all n.

Thus, the required operator is

bF±
KR = exp

✓
i
~e↵
2

@
2

@x2

◆
exp[⌥i

K

~e↵
cos(x)], (4.3)

where ~e↵ = T~ is the scaled Planck’s constant, �d = K/~e↵ denotes the strength

of phase modulation imparted by the kicks. Using this as the building block, the Flo-

quet operator for MKR can be constructed as M application of bF+
KR followed by M

applications of bF+
KR. Thus, for MKR, we obtain

bFMKR =
⇣
bF�
KR

⌘M ⇣
bF+
KR

⌘M

(4.4)

To implement this Floquet Hamiltonian in an atom-optics experiment, the sign of
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Figure 4.1: Phase portraits and classical energy growth. Phase portrait’s of the standard
(M = 0) and modified kicked rotor (M > 0). The parameters are kick strength K = 5 and
(a) M = 0, (b) M = 2 and (c) M = 3. The regular islands in the chaotic sea in (a) are non-
transporting whereas those in (b) are transporting in nature, albeit much smaller in size. The
inset in (b) shows an enlarged view of one of these islands. No regular structures are visible in
(c). The classical energy hEic growth for various vales of M at K = 5 is shown in (d).
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the phase modulation must change with periodicity M as dictated by Eqn. 4.4. The

kicking scheme of Eqn. 4.4 is shown in Fig. 4.2(a) and simulated time evolution of

mean quantum energy hEiq is shown in Fig. 4.2(b) for KR and MKR with M = 2.

The inset in Fig. 4.2(b) represents the momentum distribution. However, this type of

Hamiltonian is difficult to realize in experiments since it involves abrupt sign change

of the kicking potential after M kicks. An alternative method to realize MKR is by

introducing controlled time delays after every M kicks [119]. Consider a wave-function

of the system  (x, t) at any time t. This can be expanded in the momentum basis as:

 (x, t) =
X

m

Amhx|mi, (4.5)

with Am being the expansion coefficients. The flipping of sign of K can also be thought

of as shift in spatial coordinate by ⇡, since K cos(x + ⇡) = �K cos x. Hence, it is

convenient to use x ! x + ⇡ instead of K ! �K. Now, to see its effect on the

momentum basis states, let us consider

 (x+ ⇡, t) =
X

m

Amhx+ ⇡|mi =

X

m

Am exp i(x+ ⇡)m =
X

m

(�1)mAmhx|mi. (4.6)

It is clear that the change of sign of kicking strength effectively introduces a phase

difference of ⇡ between the neighboring states. This phase difference can also be gen-

erated by introducing time delays in the system. To see this, consider the action of a

free-evolution operator of MKR for t = T acting on a momentum state:

exp
�
ip

2
T/2~

�
|mi = exp

�
im

2~T/2
�
|mi (4.7)

From this, we can estimate the duration of free evolution Td required to obtain a phase-

difference of ⇡ between neighboring momentum states. For a phase difference of ⇡, the

condition to be satisfied is exp{i~Td[(m + 1)2 �m
2]/2} = exp(i⇡), and from this we

get the time duration to be

Td =
2⇡

~ =
2⇡T

~e↵
. (4.8)
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Figure 4.2: Kicking scheme and quantum energy growth. (a) Pulse scheme for the regular
and modified kicked rotor at k = 5 and ~eff = 1 (K = 5). For M = 2, the sign of K is
flipped alternatively. (b) Simulated energy evolution of KR (dashed line) and MKR with M = 2
(solid line). The quantum energy hEiq for M = 2 localizes at a higher energy. Inset plots (in a
semi-log scale) the momentum distribution of for the same at t = 1000.
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This delay corresponds to half Talbot time and has the same effect as flipping the sign

of the kick strength between the pulses [119]. Fig. 4.4(a) shows the kicking scheme for

MAKR with M = 2, 3 and 4. including the delay time Td. Due to the presence of two

periods, the system is no longer periodic with time period T , but has an effective period

of T (M �1)+Td. Thus, the Floquet operator for the modified atom-optics kicked rotor
bFMAKR is given by:

bFMAKR =

⇢
exp


�i

~Td

2
(p̂+ �)2

�
exp


�i

K

~eff
cos(x̂)

��

⇥

⇢
exp


�i

~eff

2
(p̂+ �)2

�
exp


�i

K

~eff
cos(x̂)

��M�1

= bFKR bFM�1
KR .

(4.9)

where p̂ = �i
@
@x and � is the quasi-momentum. In this, bFM�1

KR denotes M � 1 appli-

cations of bFKR for time duration T , and F̂KR denotes the application of kicked rotor

Floquet operator with a free propagation time of Td. The existence of two time periods,

T and Td in the atom-optics version of the kicked rotor system makes it different from

the standard KR system.

It is worth pointing out that when studying resonance phenomena for a finite-temperature

cloud, we should take into account � 6= 0 since all the quasi-momentum sub-spaces

are initially populated. The Floquet operator governing the dynamics in each quasi-

momentum subspace is explicitly dependent on � [see Eq.(4.9)]. This leads to the over-

all dynamics exhibiting significant differences when compared to the case of standard

QKR in which case the dynamics are restricted to the � = 0 subspace. At anti-resonance

AOKR exhibits a significant momentum spread and a diffusive growth of the particle en-

ergy, whereas the energy of the standard QKR is localized [117]. In a thermal cold atom

cloud, atoms have a non-negligible initial velocity relative to the standing wave poten-

tial, and this non-integer “quasi-momentum” determines the behavior under half-Talbot

time kicking. Before the results are discussed, a brief review of experimental procedure

is in order. The experiment begins with a brief description of the optical lattice for-

mation, achieved through the precise arrangement of counter-propagating laser beams.

This lattice serves as the foundational framework for the subsequent interactions with
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atoms considering it’s detuning from resonance transition and it’s power. Mainly, I will

discuss the Kapitza-Dirac diffraction in Raman-Nath regime, this is the way we transfer

the energy to the atoms. Moreover, a critical aspect of the experimental process involves

quantifying the strength of perturbation directly related to K. Measuring K properly in

experiment is important, K suffers from approximately 10% error in experiment, we

also discuss the measurement of K utilizing BEC.

4.3 Atom-Optics Experimental Setup
First, we discuss the experimental setup. The variables and parameters of kicked rotor

system and AOKR are related as follows: x ! 2kx, p ! 2kTp/m, and ~e↵ = 8!rT

where k,m and !r are the wavenumber of the optical lattice beam, mass of the atoms

and recoil frequency respectively. The amplitude modulation depth or the kick strength

is �d = ⌦2
⌧/8�, where ⌦, � and ⌧ are the resonant Rabi frequency, the detuning of

the light used to create the optical lattice potential and the pulse duration respectively.

The experimental setup is the same as described in Ref. [56]. We create a cold thermal

ensemble of 87Rb consisting of 2 ⇥ 105 atoms every 12 seconds (our old setup) in a

crossed optical dipole trap. The temperature of the thermal cloud is about 5 µK. The

optical standing wave is formed with two counter propagating laser beam(shown in Fig.

4.3) as the atoms are present in |F = 1,mF = �1i state. The laser used for realizing

the standing wave is locked to the |5 S1/2, F = 2i ! |5 S3/2, F
0 = 2i D2 transition at

780 nm and is thus 6.8 GHz red-detuned from the atom’s accessible transition. With

the help of optical lattice, we transfer the energy to the atoms by switching it on and

off according to model Hamiltonian. To synthesize the MKR Hamiltonian, the off-time

between the delta pulses is adjusted. The on-time ⌧ of the standing wave is kept as 100

ns.

The quantum AOKR is governed by two dimensionless parameters: ~e↵ and K.

The scaled Planck constant (~e↵) is directly proportional to period of the kicks and

K = �d~e↵ . To keep K fixed, �d is adjusted for different values of ~e↵ . To calibrate

the kick strength �d, we use Raman-Nath diffraction (as discussed in Section 3.6.1) on

an almost ideal zero-momentum state i.e., a Bose-Einstein Condensate. The number

of atoms in the m
th momentum state after undergoing diffraction is a Bessel function
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Figure 4.3: Standing wave and lattice laser. The left image is showing the optical lattice
formed by two counter propagating laser beam and diffraction of the atoms. The right image is
showing the lattice laser frequency and it’s detuning from atoms energy level

J
2
m(�d). Thus,�d can be accurately determined by measuring the distribution and fitting

it to this Bessel distribution [123]. As mentioned before, for MKR, we use a time delay

of half Talbot time (⇠ 33.17 µs for 87Rb and 2⇡/k = 780 nm) to introduce appropriate

phase relations between the diffracted wave-packets.The timing error fluctuations are

of the order of picoseconds ensuring good control over tuning this phase according to

Hamiltonian. The optical lattice is arranged in a retro-reflected configuration, making it

more stable against vibrational phase noise.

4.4 Evolution of Mean Energy
In experiments, the initial state consists of an ensemble of atoms with a finite momentum

spread. In order to model a thermal cloud of cold atoms, numerical simulations are

performed using Eqn. 4.9 operating on a Gaussian distributed momentum state.

| (t = 0)i =

Z 1/2

�1/2

d�

1X

p=�1
Dp(�)

1/2
|p+ �i, (4.10)

where p 2 Z, and Dp(�) = 1
w
p
2⇡

exp
h
�

(p+�)2

2w2

i
is the Gaussian momentum dis-

tribution with zero mean and standard deviation w as a function of quasi-momenta

� 2 (�1/2, 1/2) [117]. In practice, the summation over p in this equation is carried
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Figure 4.4: Kicking scheme of MKR and mean energy growth. (a) Kicking scheme for
MAKR with M = 2, 3, 4. This scheme also shows the delay time Td. (b) Mean quantum energy
hEiq evolution for different values of M at K = 5 and ~e↵ = 1. The solid lines and markers
indicate the numerical simulation and the experimental data respectively.
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out over only a finite set of momentum basis states.

4.4.1 M = 2 case

The kicking scheme for MKR is shown in Fig. 4.4(a). The time evolution of mean

quantum energy from the numerical simulations of MKR using Eqn. 4.4 is shown in

Fig. 4.4(b). For the standard KR, the mean energy displays the expected linear in-

crease for short times (within break-time tb of order K2
/2). For t > tb, the quantum

effects become significant and dynamical localization is realized. For the same set of

parameters as that for KR, except that M = 2, a pronounced enhancement in the sat-

urated energy is evident in this figure. Dynamical localization occurs for M = 2 as

well. In case of MKR, with M = 2 and K = 5, transporting trajectories are present

in phase space as seen in Fig. 4.1(b). Thus, as argued in Ref. [119], in the quantum

regime, the mean energy corresponding to MKR is enhanced with respect to the stan-

dard KR. Further, the width of momentum distribution (shown as inset in Fig. 4.2(b)) is

also significantly enhanced for MKR compared with KR. For other parameters as well,

transporting islands lead to an enhancement in quantum energy upon depending on the

size of the island [119]. In this paper, due to experimental constraints, we will work

with the parameters used in Fig 4.2 along with M = 3, 4.

Now, we will compare this phenomenon with the experimental results. Fig. 4.4(a)

shows the kicking scheme for MAKR with M = 2, 3, 4 including the delay times Td.

Figure 4.4(b) displays the corresponding results for mean energy evolution from our

atom-optics experiment. This figure shows both the experimental data (solid symbols)

as well as the numerical simulations (lines) of MAKR obtained using the Floquet oper-

ator in Eq. 4.9. A good agreement is observed between the experimental and numerical

simulations. At first sight, it is tempting to attribute the energy enhancement seen in

the experiment to entirely the presence of transporting islands. However, these islands

exist in phase space only over a small range of K. In the experiment, the value of kick

strength K suffers from approximately 10% error that washes out most of the contri-

bution arising from transporting islands. Further, the quantum contribution depends on

the value of effective Plancks constant ~e↵ relative to the classical phase space structure

whose effect is being probed [190]. In our case, the values chosen for ~e↵ are large
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Figure 4.5: Momentum distribution and absorption image. (a) Momentum distribution pro-
files for M = 0, 2, 3 and 4 at the parameters K = 5 and ~e↵ = 1. The markers and solid
lines denote experimental and simulated momentum profiles respectively. M = 2 clearly shows
enhanced localization length. (b) Absorption images for different values of M with ~e↵ = 1 and
K = 5.
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relative to the small area of transporting islands. Hence, the quantum contribution of

these island structures is not very significant. Bulk of the enhancement arises due to

the presence of two time scales T and Td in the MAKR system. An interesting inter-

play between the two time periods T and Td is seen. The time evolution with a pulse

period of T along with the kick strength �d is arranged such that it induces localiza-

tion in the system. For an initial state with significant momentum spread (w & 1) a

pulse period corresponding to half Talbot time Td leads to a linear diffusive growth in

energy [114, 117]. The dynamics of MAKR is governed by the competition between

these contrasting behaviors of localization and diffusion.

In our experiments, the MAKR system can be evolved only up to 60 kicks due

to constraints of the experimental arrangement. For a finite number of total kicks N

applied to the atomic cloud, the number of (diffusion inducing) free evolution phase

with time period Td is Nd = N/M . Number Nl of localization-inducing evolution

phase with time period T is Nl = (M � 1)Nd. Thus, if M � 1, then Nl � Nd. In this

scenario, localization effects dominate and diffusion is suppressed. This corresponds

to the standard KR limit (the lowermost curve (red curve) in Fig. 4.4(b)). In the other

limit, as M ! 1, diffusive growth of energy is strongly favoured over localization. The

competition between these processes determines the enhancement of saturated energy

in MAKR system. In a short time scale, the localization is destroyed by anti-resonance,

but eventually localization sets into the system due to destructive interference in the

momentum space. In particular, the contribution of classical transporting islands is

not very significant. For M = 1, diffusion is dominant and localization is completely

suppressed. For M = 2, we get Nd = Nl. Hence, we can anticipate localization as well

as diffusive phase. Consistent with this constraint, both the experiment and numerics

(blue color in Fig. 4.4(b)) show an enhancement induced by the diffusive phase as well

as localization in the form of saturated mean energy.

In particular, we emphasize that the contribution of classical transporting islands is

not very significant for M = 2. This argument presented above also implies that the

enhancement in saturated energy should be seen for M = 3, 4 as well even though

classically no transporting islands are present in phase space (see Fig. 4.1(c)). We shall

consider these cases in the next section.
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4.4.2 case of M > 2

For M > 2, Nl > Nd. This guarantees that localization can be seen for all M > 2.

However, since Nd decays as M increases, the diffusive phase weakens. Hence, at any

given number of kicks, the highest energy reached for M > 2 will always be lesser

than that for M = 2. Figure 4.4(b) displays quantum energy hEiq against the number

of kicks for K = 5 and ~e↵ = 1 for MAKR for M = 3 and M = 4. Even for

M = 3, 4, a significant enhancement in the energy is seen. This is purely attributed to

the half Talbot time evolution’s Td in the kicking sequence, as the classical phase space

is completely chaotic. As argued in the previous section, two competing effects are at

play – localization induced by the evolution over time-period T and diffusion due to time

delay Td. The long-time behavior of MKR would exhibit complete localization [119],

even though it is not apparent in Fig. 4.4(b) due to the small number of kicks in the

experiment.

From Fig. 4.5(a) of the momentum distribution in semi-log scale for KR and MAKR

with M = 2, 3, 4 deduced from absorption images shown in Fig. 4.5(b). It is clear that

the width of the distribution is larger for M = 2, 3, 4 as compared to that of standard

KR. a This is also visible in the absorption images that carry more weight in the higher

momentum states. After many kicks, numerical simulations begin to deviate from ex-

perimental data in Fig. 4.5 due to errors in deducing the number of atoms in the higher

momentum states via absorption imaging. The experimental momentum distribution

for M = 2, 3, 4 are qualitatively similar and show a non-exponential profile. Hence, the

localization length is not a good measure to quantify the extent of localization.

For a wave-function (in momentum representation) hm| i, one of the commonly

used localization measures is the inverse participation ratio (IPR), define as [191, 192]

ID =
DX

m=1

|hm| i|
4
, (4.11)

where D is the dimension of the Hilbert space in which hm| i resides. A localized

wave-function will have ID ⇠ 1, while for a completely delocalized wave-function

ID / 1/D. Smaller values of ID correspond to wave-functions spread over larger
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set of basis states. As evident in Fig. 4.6, the IPR for M = 2, 3, 4 all have a much

Figure 4.6: Calculation of IPR. IPR for experimental data as a function of M for different val-
ues of ~e↵ while maintaining the kick strength constant at K = 5. Errors bars for experimental
data lie within the marker, hence, they are not shown here.

lower value compared to the KR, implying the spread in the momentum distribution

and energy enhancement compared to KR. But ID for M = 2, 3, 4 are very close to

each other, indicating that the spread is almost the same for all of them. As transporting

islands of significant size are only present in the case of MKR with M = 2 (K = 5),

one would expect to have a maximum energy enhancement and momentum distribution

spread for M = 2 [119]. But in our case, we observe the momentum distribution to be

very close to each other for all the M = 2, 3, 4. This implies that the enhancement in the

localization length or momentum distribution spread arising from transporting islands

for M = 2 is less significant in MAKR. The dynamics is largely determined through the

interplay of two time periods in the system. It has been shown that very small changes

to the system parameters (�d and ~e↵) can lead to the destruction of transporting islands

present in the classical phase space and non-exponential shape of quantum momentum

distribution [119]. This change in the line shape for dynamical localization even occurs
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without causing an obvious difference in energy absorption behavior. A similar type

of enhancement of dynamical localization length and energy absorption is observed for

various values of M and for a range of parameters �d and ~e↵ in the MKR model. The

only requirement being that �d should be sufficiently large for dynamical localization to

take place in the system. As in the standard KR, the experimental data in Fig. 4.5 shows

that for a fixed M , a decrease in ~e↵ is associated with broadening of the wave-function

profile. Hence, ID increases as ~e↵ ! 0.

4.5 Conclusions
In this work, we have studied a modified kicked rotor model as well as its experimental

implementation in an equivalent atom-optics based testbed. The model considered here

is the modified atom-optics kicked rotor model, in which the sign of the kick strength

(in the standard KR) is flipped after every M kicks. In the experiment, the modified

atomic kicked rotor is realized by introducing appropriate time delays (equal to half

Talbot time) in the kicking sequence, which is equivalent to flipping the sign of the kick

strength. Introduction of periodic time delays in the KR system creates drastic changes

in the dynamics as a result of two competing effects – one is the localization effects

induced by periodic kick sequences of time period T and the other is the diffusive ef-

fects induced by sequences with delay time Td equal to the half Talbot time. It is shown

that the modified atom-optics kicked rotor system with M = 2, 3, 4 shows enhanced

quantum mean energies when compared to the standard kicked rotor model. The com-

petition between the two time periods, T and Td, explains the observed mean energy

dynamics and it is not dependent on the presence or absence of the transporting islands

in classical phase space. While quantum mean energy enhancement can be engineered

by taking advantage of the presence of transporting islands in classical phase space,

it provides a somewhat restrictive framework. In contrast, this work emphasizes that

quantum mean energy enhancement is possible without replying on classical features in

atom-optics kicked rotor. This is shown through numerical simulations of AOKR and

in the experiments.

These results are of intrinsic interest in the quantum chaos of kicked rotor, but also

in the broader context of quantum control. Techniques to control the quantum systems
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with classically chaotic behavior has become an active area of research interest over

the years. Through this work, we have demonstrated a control over the best-known

phenomenon experimentally in quantum chaos. The dynamical localization can be en-

hanced over a wide range of parameters provided the system is classically chaotic. Apart

from the atom optics realization of KR and MKR, it would also be interesting to explore

the dynamics of a molecular version of KR and MKR, i.e., diatomic cloud periodically

kicked by strong microwave fields. Another promising direction to look at is the ex-

perimental realization of KR and MKR in a square-well potential [193]. Along this

direction, an interesting model (which is very different from the one discussed here)

has been proposed for the study of classical and quantum anomalous diffusion [194].

These efforts might lead to a broader understanding of diffusion and localization in

time-dependent chaotic quantum systems.
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Chapter 5
A single Knob Coherent Control of
Dynamical Localization

Coherent control over any quantum system opens a vast area of applications which

include quantum computation, quantum communication, control over reactants in quan-

tum chemistry, coherent control of semiconductor’s properties and molecular rotation.

Motivated by some recent works [42, 73, 195], we focused on coherent control over

dynamical localization by tuning a single dynamical phase of the system as dynami-

cal localization is a phenomena based on quantum interference. By adjusting a single

dynamical phase, we achieve systematic control over the localization length of the quan-

tum system without introducing decoherence. This control mechanism is effective both

at the beginning of the dynamics and in deeply localized states. Our findings demon-

strate that if the system maintains high coherence, any alteration in the dynamical phase

propagates throughout the system, facilitating control over quantum interference.

5.1 Theory and Scheme for Single Knob Coherent Con-

trol
The theoretical description follows what was described in Section 2.3.1. It’s like starting

with the Talbot effect to control how the wave-function spreads out in the beginning. By

doing this, we can see how it affects dynamical localization. This helps us to control the

behavior of localized systems. As we discussed in the theory section for anti-resonance

77
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and resonance, where a phase difference between alternative momentum states is either

⇡ or 2⇡, creates a revival or spread of initial wave-function. Revival is now almost

identical to the initial wave-function for anti-resonance with limitations primarily aris-

ing from the momentum width of the BEC. However, the spread becomes extreme in a

resonance condition. By scanning the time delay from anti-resonance to resonance, we

can create different initial wave-function where the phase between alternative momen-

tum states can be scanned from ⇡ or 2⇡. Such differing initial states will affect the final

localized state due to the high phase coherence between momentum states. This ini-

tial phase difference propagates thoughout the dynamics during periodic kicking where

the kick period is an irrational multiple of Talbot-time. It provides a good systematic

control by imprinting the initial phase from ⇡ or 2⇡.

We explored two schemes: The first one is about preparation of the initial wave-

function to control the dynamical localization. For the second method, the system is in

a localized state with a good phase coherence and we add an external control-phase to

restart the dynamics and to shift it to a new desired localized state. First scheme for the

pulse sequence is as shown in Fig. 5.1.

t
K TT'

periodic kicksingle knob

Figure 5.1: Pulse scheme. Kick sequence for single knob coherent control

With this kick sequence, we can write the Floquet operator for the first two kicks

and the evolution with a control period T
0 followed by periodic kicks of time interval T :

U =

⇢
exp [f(T 0)] exp


�i

K

~eff
cos(x)

��

⇥

⇢
exp [f(T )] exp


�i

K

~eff
cos(x)

�� (5.1)

The time delay between the first two kicks T 0, will imprint the control phase between
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the momentum states. In detail, the wave-function after 1 kick,  (x, t)can be expanded

in the momentum basis as:  (x, t) =
P

m Amhx|mi, with Am being the expansion

coefficients. Now, we can free evolution Floquet operator on the momentum state |mi:

exp

✓
�ip

2

2~eff

◆
|mi = exp

�
�im

24!rT
0�
|mi . (5.2)

From Eqn. 5.2, for the QKR, the initial wave-function will not be just zero momentum

state (|0i) but a comb with a control phase difference between them. It will work as

an initial wave-function for QKR. To demonstrate the coherent control, we simulate the

kicking scheme shown in Fig. 5.1.

Here, we measure the normalized population of the zeroth momentum state by vary-

ing the control parameter from ⇡ to 2⇡. In the periodic case, after dynamical localiza-

tion, the normalized population of the zeroth momentum state saturates close to max-

imum level and and mean energy close to minimum level after a quantum break time.

Since we are using Bose-Einstein condensates (BEC), where momentum states are well-

defined, precise calculation of the population of the zeroth momentum state provides

comprehensive information, eliminating the need for energy calculations. Moreover, as

we are not exploring localized to diffusive phenomena, we can rely on the population

of the zeroth momentum state. To control the localization length and the mean energy,

we measure the population of the zeroth momentum state. Lower population implies

higher energy and increased localization length, as atoms redistribute to higher momen-

tum states, adhering to the conservation of atom numbers.

5.2 Demonstration of Single Knob Coherent Control of

Dynamical Localization

As we have explored two schemes, first we will go through the initial observation where

we manipulate the initial wave-function to control the dynamical localization. Further,

we will control an already localized wave-function to achieve a desired new localized

state with same scheme.
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5.2.1 Coherent Control by Preparing Different Initial State

First, we show the simulation results of the first scheme shown in Fig. 5.1. We scan T
0

from (0 - 266 µs), which corresponds to a phase evolution of (0 - 8⇡). For simulation

and experiment, the Talbot time (TT ) is 66.6 µs, providing a phase evolution of 2⇡.

The time gap between the periodic kicks is 24.3 µs. The stochastic parameter(K, ~eff)

is (5, 4.6), fixed for this experiment to keep the system in deep chaotic regime. We

apply 60 periodic kicks by changing the time gap of control knob for a long range to

find the systematic control regime. Simulation results are shown in Fig. 5.2. From

Fig. 5.2(a), we can clearly find a parameter regime where we can control the population

of zeroth momentum state (denoted as f(0) ) in turn the the dynamical localization.

These regions lie on both sides of periodic kicks and we choose a range of T 0 = 33.3

µs to T
0 = 66.6 µs. A simulation result for this control region is shown in Fig. 5.2(b).

Experimental results are shown in Fig. 5.3. Initially, we measure the population of

� 2�
 Control regimea) b)

Figure 5.2: Simulation result. (a) The normalized population of the zeroth momentum state
f(0) is shown as a function of T 0 over an extended range (0-4⇡) after 60 kicks (b) Shows the
actual control regime which lies in the ⇡ to 2⇡ region or 0 to ⇡ region. Maximum population is
when this time gap matches with periodic kick.

the zeroth momentum state with the number of applied kicks by varying the control

parameter T 0 from ⇡ to 2⇡, it’s shown in Fig. 5.3(a). A saturation in f(0) is observed

with increasing kicks after quantum break time, indicating dynamical localization and
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maintaining phase coherence.

a) b)

Figure 5.3: Experimental results. (a) The normalized population of the zeroth momentum state
f(0) is shown as s function of applied kicks, showing the feature of dynamical localization. (b)
Demonstration of coherent control by varying single knob T 0
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Figure 5.4: Localized distribution. Momentum distribution profile after 60 kick by varying
the control knob from ⇡ to 2⇡. It clearly shows the control enhancement of localization length.
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For each case, we get dynamically localized wave-packet with enhanced localization

length and drop in the value of f(0). Value of f(0) is shown in Fig. 5.3(b) after 60 kicks

for different control parameter T 0. The behavior of the simulation results in Fig. 5.2(b)

and experimental results in Fig. 5.3(b) are quite similar and show a similar control

nature. Just the periodic kicks and or applying a delay of ⇡ shows quite similar behavior

because of revival of wave-function by ⇡ delay. The choice of using a BEC helps us

to observe a systematic large control over dynamical localization by simply changing a

single knob with such a small step in phase of 0.15⇡.

Fig. 5.4 shows the momentum distribution after 60 kick with different control knob,

taken from absorption images. It is clear that the width of the distribution is increasing

from ⇡ to 2⇡. This is also visible in the absorption images that carry more weight in

the higher momentum states. Our observations also reveal that after a time delay of

t

K

T

T'

periodic kick periodic kick
single knob

Figure 5.5: Kicking sequence. A pulse scheme for control over localized wave-function

2⇡, we lose systematic control as dephasing occurs during long periods of free evolu-

tion, making proper phase imprinting difficult. Here, there is an opportunity to explore

how phase coherence is maintained when periodic kicks are applied, compared to the

dephasing that occurs when the system is isolated and freely evolving.

5.2.2 Coherent Control of Dynamically Localized State

As we know a dynamically localized wave-function maintains it’s phase coherence, our

single knob coherent control scheme should work for such localized states as well. To

explore this, first we apply 20 periodic kick to create a localized state, as break time is

less than 10 kick for our parameter. A kick scheme is shown in Fig. 5.5
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� 2�
 Control regime

Figure 5.6: Simulation result. (a) The normalized population of the zeroth momentum state
f(0) is shown as a function of T 0 (b) Actual control regime which lies in the ⇡ to 2⇡ region.
Maximum population is when this time gap matches with periodic kick.

a) b)

Figure 5.7: Experiment result. (a) The normalized population of the zeroth momentum state
f(0) is shown as a function of T 0 over an extended range (0-4⇡) after 60 kick, (b) It is showing
the actual control regime which lie in ⇡ to 2⇡ region or 0 to ⇡ region. Maximum population is
when this time gap matches with periodic kick

Our simulation results are shown in Fig. 5.6, in same manner as discussed in pre-

vious section. Here too, we find quite a good control over f(0) by tuning the control

knob. The experimental results are shown in Fig. 5.7. We observe systematic control,

but it saturates as we move from ⇡ to 2⇡. It is challenging to imprint phase on a local-

ized wave-function where some momenta are already occupied and have gone through
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dynamical localization. Therefore, the effectiveness of any control decays due to de-

phasing and which directly depends on the value of f(0) before adjusting the control

knob. Despite these challenges, our scheme remains effective, as the system maintains

good coherence during dynamical localization. Moreover, our scheme demonstrates

that we can control dynamical localization at any time during the dynamics simply by

adding the desired phase to the system.

5.3 Conclusions
In summary, our utilization of Bose-Einstein condensates allowed us to demonstrate

systematic and coherent control over dynamical localization. By encoding a relative

phase between superposing momentum states through a single time evolution, acting as

the initial wave-function, we effectively governed the QKR dynamics in the absence of

noise and decoherence. This control enabled us to adjust a single parameter, leading to

desired changes in the momentum distribution of the final dynamically localized state.

As we quantify the control by measuring the normalized population (f(0)), the maxi-

mum degree of control in f(0) is more than 90% with a freedom of tunability. We also

showcase that such control is even effective for deeply localized states, because local-

ized states also maintain a good coherence. It’s worth noting the significance of our

results, especially considering the fully chaotic nature of the classical phase space for

our parameters and its highly sensitivity to initial conditions. Despite these conditions,

our ability to control over quantum chaos shows the dominance of quantum coherence

over chaotic dynamics. This suggests promising avenues for manipulating quantum

systems with precision and efficacy.



Chapter 6
Asymmetric Dynamical Localization
and Precision Measurement of the
Micromotion of a Bose-Einstein
Condensate

In this experimental investigation, we launch a Bose-Einstein condensate (BEC) with

varying recoil velocity into a periodically kicked optical lattice to study its effect on

dynamical localization. Our observations reveal an asymmetrically localized moving

distribution with a small initial current. We conduct our investigation under two scenar-

ios: when the BEC is in motion within the laboratory frame and when the optical lattice

is in motion in the laboratory frame. Notably, we explain that such asymmetric features

arise in early-time dynamics and settle down as dynamical localization stabilizes. By

utilizing this asymmetric behavior in early-time dynamics, we measure the micromo-

tion of a Bose-Einstein condensate (BEC). Micromotion, in this context, refers to the

extremely low initial velocity of the BEC along the lattice direction. This small velocity

originates from jitter during the turning off of the hybrid trap potential, and such mi-

cromotion adds systematic shift and uncertainty in light-pulse atom interferometer. By

employing a quantum kicked rotor system with a BEC and a moving optical lattice, we

measure the asymmetry in early-time dynamics to precisely characterize and quantify
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the micromotion phenomena in the quantum system.

6.1 Background and Definition of the Problem
Precision measurement with light-pulse atom interferometers has opened nup tremen-

dous applications in quantum sensing [91, 196, 197]. Atom interferometers are suc-

cessfully utilized in gravimeters [91, 92, 94], rotation sensing [198, 199], and magne-

tometers [200], allowing for the determination of photon recoil [201]. Particularly

for precision rotation sensing and gravimetry, nullifying systematic shifts and mea-

surement errors coming from Coriolis effect [202] in phase shifts necessitates precise

knowledge of the initial velocity [133, 198, 203]. This velocity may arise from exter-

nal launch velocities or micromotion coming from small movements after turning off

the trap potential. In the rotation sensor, such phase shift is called Sagnac phase shift:

�� = 2⌦(vm ⇥ keff ) · T 2 [202]. The phase shift is in the range of tens of milliradians

(mrad) for a velocity of 100 µm/s over an interferogram time of hundreds of millisec-

onds (ms). The velocity range of the micromotion can lie in the range of (100-1000)

µm/s, which is much smaller compared to the velocity of a two-recoil photon (⇡ 1

cm/s). The measurement of such small velocities is challenging and requires huge time-

of-flight in standard absorption imaging, or a very precise spectroscopy to measure the

Doppler shift through Bragg or Raman spectroscopy [133, 204, 205].

Other aspects of this micromotion arise when atoms are trapped in periodically

driven optical lattices [206, 207], the oscillation of atoms within lattice site. The mi-

cromotion is not considered in such cases because of a time-averaging performed on

this degree of freedom, resulting in a time independent Hamiltonian [208, 209]. Find-

ing a measurable observable, which gets affected by this micromotion is difficult and

thus difficult in quantifying the micromotion. In the recent study, the feature of mi-

cromotion is revealed by measuring asymmetric momentum distribution [210, 211] in

time-of-flight by modulation of the trap frequency of the optical lattice. In analogy to

micromotions described by the oscillation of atoms in a trap, we present the measure-

ment of micromotion described in velocity space [212, 213], which arises from turning

off the trapping potential and which is very small in the experiment.

In recent years, there has been much interest in studying a quantum kicked ro-
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tor (QKR) in Bose-Einstein condensate with and without tunable interaction [61–64].

Further the ease of imprinting the lattice phase on BEC also provides different types

of effects like on-resonance quantum ratchet [65, 66] and quantum boomerang effect

[67, 68, 214]. BEC based QKR system has also been utilized in coupled quantum ro-

tors [61] where two incommensurate optical lattices drive a quantum to classical tran-

sition by breaking dynamical localization. A discrete time quantum walk has also been

observed in BEC based system [44].

In the current chapter, we present the experimentally demonstrated localized mo-

mentum profile by launching the BEC with varying recoil velocity or by inducing lattice

motion. A constant phase evolution of the launched wave-function or the lattice motion

creates an asymmetric distribution. Furthermore, we illustrate that the asymmetric na-

ture of the distribution can be easily controlled by adjusting the launch velocity, rather

than altering the direction of the launch velocity. In contrast to previous studies [135]

with cold atoms where such asymmetry arises from pulse-shape effects and are typi-

cally observed after long time, here we demonstrate that such asymmetry arises in early

time dynamics [66,67]. This asymmetry gets settled as the dynamical localization takes

place. An asymmetry in localized states has been reported in BEC by a single phase

change in the beginning and their reversal in reference [67]. By utilizing this asymmet-

ric behavior in early time dynamics, we present a method to measure the micromotion

of BEC in AOKR. The AOKR is already utilized for measurement of gravity through

survival resonances [215,216]. We demonstrate that even this micromotion of the Bose-

Einstein condensate (BEC) can induce early-time asymmetry in the momentum distri-

bution. This asymmetry directly quantifies the velocity of the micromotion, aligning

with the primary focus of the current study [123, 210, 211].

6.2 QKR in Moving Frame of Reference
The QKR is a fundamental model of quantum chaos [184] extensively explored for its

chaotic dynamics and for demonstration of dynamical localization [39, 40]. The classi-

cal kicked rotor, when strongly kicked by an external field, can display chaotic dynamics

accompanied by diffusive growth of mean energy with time. Over extended time scales,

quantum interference effects inhibit classical diffusive dynamics, a phenomenon in mo-
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mentum space analogous to Anderson localization [48]. Since the first realization of

the QKR using cold atoms [49], it has spurred numerous experimental investigations to

explore a variety of scenarios that manipulate localization [112, 217, 218]. Physically,

the standard kicked rotor describes a particle subjected to periodic kicks imparted by the

stationary optical lattice created by counter-propagating laser beams. However, in this

work, we consider a kicked rotor system in which the optical lattice moves at a constant

velocity in the laboratory frame. The Hamiltonian of QKR in a moving lattice is given

by [111]

H =
bp2

2
+K cos(2kbx� 2⇡↵t)

NX

n=1

�(t� n), (6.1)

where, bp and bx represent the momentum and position operators respectively. They

obey canonical commutation relation [bx, bp] = i~e↵ , where the effective Planck con-

stant (~e↵ = 8!rT ) can be tuned in the experiment with pulse period T . Further, K is

the stochastic parameter, k is the wave vector, !r is the recoil frequency, and ↵ is the

frequency difference between two lattice beams that make up the optical lattice. The

lattice velocity arising from the frequency difference between the counter-propagating

beams is v = �↵
2 , where � is the wavelength of the optical lattice. Throughout this work,

parameters will be chosen so that the classical analogue of QKR displays chaos, with

K � 5. This parameter choice ensures that the localization effects we observe are of

quantum origin.

As the quantum kicked rotor is time-periodic, the quantum dynamics can be conve-

niently analyzed through the period-1 Floquet operator

U = exp

✓
�i

bp2

2~e↵

◆
exp


�i

K

~e↵
cos(2kbx� 2⇡↵t)

�
(6.2)

This evolves an initial state  (x, t = 0) over one kick period T , i.e.,  (x, T ) = U (x, 0)

with the initial state chosen as a coherent state in position space given by

 (x, t = 0) =
1

p
2⇡�w

exp

✓
�

x
2

2�2
w

◆
exp(�ip0x), (6.3)

and is consistent with the initial distribution of BEC. Here, �w characterizes the width

of the wavefunction in position space, while p0 is the initial velocity, typically arising
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BEC is in motion. Lattice is in motion.
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Figure 6.1: This experimental schematic shows the moving BEC (left side) with velocity v and
periodically kicked 1D optical lattice. This relative motion between BEC and lattice provides
asymmetry in momentum distribution which we quantify by measuring hpi. Same asymmetry
with opposite nature arises when lattice is in motion, shown in right side. Micromotion is mea-
sured by scanning lattice velocity (see Fig. 6.5 for details). Further, dynamical localization sets
in for larger number of kicks.

from launched velocity or micromotion. Generally, in our experiments, when BEC is

launched with initial momentum p0, the lattice velocity is stationary and vice versa. In

general, either moving the lattice or the BEC in same direction are expected to induce

similar effects in early time dynamics with exactly opposite asymmetric momentum

distribution [66, 219]. The experimental protocol is illustrated in Fig. 6.1.

For numerical simulations, we use the standard split-operator method to evolve an

initial state of the kicked rotor. This method consists of two primary components: the

kick operator, which is diagonal in position space, and the free evolution operator, which

is diagonal in momentum space. To simulate scenarios where the lattice is in motion

in the lab frame, we imprint the phase just before each kick. Similarly, to model the

situation in which BEC moves in the laboratory frame, a wavefunction is initialized
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incorporating the motion right from the outset.

Asymmetric Dynamical Localization and Micromotion

If the lattice is moved with constant velocity, then the kick potential (in the lab frame)

V (x) = K cos(2kx � 2⇡↵t) induces a path difference at each kick. Consequently,

the phase difference between successive kicks is � = 2⇡↵T and this breaks the parity

symmetry. The total phase difference accumulated after n kicks is �n = 2⇡↵T⇥(n�1),

assuming that the phase is initialized to zero for the first kick. The accumulated phase

difference �n over short timescales induces an inhomogeneity in position space due to

broken parity symmetry, leading to an asymmetric momentum distribution [66]. This

asymmetry can be quantified through hp(t = 2T )i immediately following n = 2 kicks.

In the experiments, the lattice velocity v is controlled by tuning ↵ and subsequently

measuring hp(t = 2T )i. Based on physical consideration and since phases are unique

only upto 2⇡, we posit that the average momentum after two kicks to have a form

hp(t = 2T )i = c sin[4⇡(vT/�)], (6.4)

where c is a constant. Exactly the same expression holds good for moving BEC with

opposite sign in average hpi. Further, Eq. 6.4 implies that if vT/� = n/4 (where n

is an integer), hpi = 0 implying an absence of asymmetry for specific choice of initial

velocity and kick period. In the long time limit of n � 1, the initial asymmetry accu-

mulated in the short-time limit eventually freezes due to the emergence of dynamical

localization. Hence, the early-time dynamics dictates the long-term behavior and the

onset of asymmetrical dynamical localization in the system.

To gauge micromotion accurately, the optical lattice is precisely moved with fre-

quency difference of the order of 100Hz, aligning it with the scale of micromotion.

Upon achieving a velocity for the lattice that corresponds precisely to the micromo-

tion, we observe that hp(t = 2T )i equals to zero. This alignment establishes a direct

correspondence between the velocity of the lattice and the velocity of micromotion.
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6.3 Experimental Setup for QKR
The QKR setup we have used for this work is similar to the one described in Ref. [112].

However, instead of cold atoms, we utilize a BEC of 87Rb every 8 seconds, through

forced evaporative cooling. The atoms are initially prepared in the |F = 1,mF = �1i

state, with a BEC temperature of 80 nK and a population of approximately 40, 000

atoms. This BEC serves as the initial wave function for our experimental investigations.

The optical standing wave is produced using two independent laser beams, which are

generated by a single laser passing through two separate acousto-optic modulators. The

frequency difference between lattice beams and their switching can also be controlled.

Switching time and laser power provide us control over scaled Planck constant ~e↵ and

stochastic parameter K.

This work comprises two main components: probing asymmetric dynamical local-

ization and measuring micromotion. To investigate localization phenomena, we im-

plement the Bragg diffraction technique to launch the Bose-Einstein condensate with

varying recoil momentum, as outlined in Ref. [220]. By adjusting the frequency dif-

ference between the lattice beams and the on-time of the lattice beam, we achieve a

good transfer of atoms to different momentum states. In our apparatus [95], a frequency

difference of 15 kHz results in 2 photon recoil momenta, while a frequency difference

of 30 kHz provides 4 photon recoil momenta to atoms, both have a fixed on-time of

approximately ⇠ 66.6 µs. For a given frequency difference, optical lattice moves with

half of the speed of diffracted wave-packets. After the creation of the initial wave func-

tion of BEC with different velocities, we apply the usual kicked rotor pulse sequence

to study the dynamical localization. In our QKR experiments, we maintain the stochas-

tic parameter at K = 5 and effective Planck constant at ~e↵ = 4.6 to ensure that the

corresponding classical dynamics remains in the chaotic regime [63].

For the motion of the optical lattice, we generate a frequency difference ranging

from 0 to 75 kHz between the lattice beams. This frequency range corresponds to a

velocity range:

v =
↵

15kHz
.
~k
MRb

, (6.5)

where, ~k is single photon recoil momentum. We ensure that the kick strength remains
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constant across higher frequency regimes. The advantage of employing a moving lattice,

rather than a moving BEC, lies in the flexibility to assign precise arbitrary velocities

to the optical lattice from the laboratory frame. It also does not create any residual

atoms in zeroth momentum state like in Bragg diffraction. Leveraging this control over

micromotion, we scan the lattice velocity in a frequency range of �3 to 3 kHz with

increments of 100 Hz, enabling precise measurement of micromotion BEC by balancing

the relative motion.

6.4 Asymmetric Dynamical Localization in Moving Frame

of Reference
In this section, we will consider two scenarios – (a) BEC launched with an initial mo-

mentum in a stationary lattice (called case-I), (b) BEC launched with zero initial mo-

mentum in a moving lattice (called case-II).

Case I: BEC Moving in Lab Frame

In our experiment, BEC is launched with various recoil velocity, vn = 2n~k/MRb (

n 2 Z ), using Bragg diffraction, where ~k/MRb is single photon recoil velocity. This

is achieved by applying a pulse of length approximately 66.6 µs to transfer all the pop-

ulation to the required momentum state, and appropriately adjusting the lattice power.

Subsequently, free evolution period of approximately 66.6 µs is allowed, corresponding

to the Talbot time of the system [120]. This ensures recreation of the initial wave-

function without any unintended phase accumulation [70]. Once the wavefunction with

different velocities is created, it is subjected to periodic kicks to observe dynamical lo-

calization. The period of these kicks is set at T = 24.3 µs, corresponding to a scaled

Planck constant of ~e↵ = 4.6. The stochastic parameter is K = 5 corresponding to a

classical phase space that is almost fully chaotic [63, 112]. These parameters remain

consistent throughout the paper unless stated otherwise.

Bose-Einstein Condensate is launched with initial velocity of v0 = 0, 2~k/MRb and

4~k/MRb. The momentum distributions observed after 30, 40, and 50 kicks are depicted

in Fig. 6.2(a-c) respectively in the left panel. In Fig. 6.2(a), standard symmetric dynam-

ical localization pattern is observed for initial velocity v0 = 0. Figure 6.2(b), illustrates
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(a)

(b)

(c)

Figure 6.2: Wavefunction profile for different launch velocity shown at 30, 40 and 50 kicks.
In all the cases, dynamical localization has set in for initial velocity corresponds to momenta
(a) 0~k/MRb, (b) 2~k/MRb, and (c) 4~k/MRb. In all cases, in left side, symbols are obtained
experimental data. In right side, symbols are obtained from kicked rotor simulations with 50
kicks.
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an asymmetric dynamically localized momentum distribution when BEC is launched

with v0 = 2~k/MRb (peaked at 2~k, shifted to zero for better comparison). Similarly,

in Fig. 6.2(c), dynamical localization is slightly asymmetric for a launch velocity of

v0 = 4~k/MRb( peaked at 4~k, shifted to zero for better comparison). Asymptotically,

as n � 1, the system remembers the initial velocity v0 since the maxima of the steady-

state distribution occurs at p = |p0|. In Fig. 6.2(b), hpi with reference to initial given

velocity v0, is moving in the direction of the launched velocity (left direction), while in

Fig. 6.2(c), small hpi is moving in the opposite direction of the launched velocity. As

for the velocity of v0 = 4~k/MRb, hpi is small from the beginning, difficult to observe

the asymmetry in localized state.

The right panel in Fig. 6.2 shows the corresponding results obtained from QKR

simulations. The simulation results confirm the emergence of dynamical localization

and evidently it is asymmetric for the case when BEC is launched with v0 = 2~k/MRb

and v0 = 4~k/MRb. For v0 = 2~k/MRb, the more population lies in the direction of

the launched velocity and for v0 = 4~k/MRb, it lies in opposite direction with little

asymmetry, matching with the experimental result. This asymmetry feature in early-

time dynamics will be discussed further in upcoming section. The experimental profile

in the vicinity of the peak value, in an average sense, is slightly elevated compared to

simulation results (in both Figs. 6.2-6.3) in due to presence residual thermal atoms.

Case II: Optical Lattice Moving in Lab Frame

In this section, we discuss the dynamical localization by moving the lattice in the lab

frame by inducing a constant frequency difference ↵ in the range of 0� 75 kHz, which

spans almost 5 recoil velocity. After creating the BEC, 100µs time-of-flight is allowed,

and subsequently periodic kicks are applied. As seen in Figs. 6.3(a-c), dynamical lo-

calization is observed for various lattice velocities. For a direct comparison with case-I,

the lattice has been moved in same direction, the observed distribution in this case has

been flipped as discussed in Eq. 6.4 . The optical lattice is moved with velocity ~k/MRb

and 2~k/MRb and 4~k/MRb in the left direction. The resulting steady-state momentum

distribution after 50, 60 and 70 kicks is displayed in Figs. 6.3 (a-c). The asymmetry in-

duced by the lattice motion is visible for ~k/MRb, 2~k/MRb and 4~k/MRb; for ~k/MRb

in Fig. 6.3(a) the asymmetric wave packets are moving in the opposite direction as
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(a)

(b)

(c)

Figure 6.3: Dynamically localization for three different lattice velocity: (a) ~k/MRb, (b)
2~k/MRb and (c) 4~k/MRb. (left side) experimental data shown as symbols for three differ-
ent kick numbers, (right side) simulation results shown as symbols at 70th kick.
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lattice (left direction), for 2~k/MRb in Fig. 6.3(b), the asymmetric wave packets are

moving in the same direction as lattice (left direction), and for 4~k/MRb in Fig. 6.3(c),

small asymmetric wave packet is moving again in the opposite direction as lattice.

The right panel in Fig. 6.3 shows the corresponding localization pattern obtained

from QKR simulations. The simulation results confirm the emergence of asymmet-

ric dynamical localization when the optical lattice is moved by velocities of ~k/MRb,

2~k/MRb and 4~k/MRb.

6.5 Measurement of Early Time Dynamics
To understand asymmetry induced by relative motion between the atomic cloud and the

optical lattice, early-time dynamics after two kicks is analyzed. The optical lattice is

moved by creating a frequency difference between two laser beams, ranging from 0 to

5~k/MRb. Subsequently, two kicks are applied separated by time interval T = 24.3

µs for different initial velocity v of lattice and hpi is measured after a 10 ms time-of-

flight. Remarkably, pronounced oscillations in hpi are observed, consistent with Eq.

6.4. This is shown in Fig. 6.4, and suggests that hpi exhibits a linear relationship in the

limit of v ! 0. This linearity provides a promising avenue to measure the micromotion

discussed in Section 6.6. Fig. 6.4 also shows simulation results (blue line), which

agrees with the experimental results in the limit v ! 0. For the large v, where the

lattice velocity is high, experiment deviates from the simulation due to finite pulse time.

Another intriguing feature observed in Fig. 6.4 is the difference in the sign of hpi

for ~k/MRb and 2~k/MRb. The opposite signs for hpi in the early-time dynamics is

a consequence of the asymmetric distribution observed after long-time evolution, as

demonstrated in Section 6.4. In general, short time asymptotic carry the signature of the

long-term behavior at other velocities as well. In particular, for velocities that are integer

multiples of 1.37~k/MRb (observed 1.35~k/MRb from Fig. 6.4), asymmetry is absent

in the distribution. This corresponds to the condition vT/� = n/4, when asymmetry

is expected to vanish. Irrespective of the speed of lattice, if the velocity is an integer

multiple of 1.37~k/MRb, no asymmetry is expected to manifest in the distribution, as a

consequence of Eq. 6.4.
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Figure 6.4: Oscillatory behavior of hpi as a function of lattice velocity. In this experiment, hpi
is measured after two kicks

6.6 Measurement of Micromotion of BEC

Measuring the micromotion of the BEC poses a challenge due to its very small mag-

nitude in the direction of the lattice [221]. This small magnitude of the velocity is

difficult to measure accurately using conventional time-of-flight methods, which typ-

ically require long time-of-flight duration. One such measurement is performed in

Ref. [133] through a 225 ms time-of-flight. To address this challenge and accurately

measure micromotion, early-time measurements are conducted by systematically tun-

ing ↵ (frequency difference) of the lattice. A single-shot measurement can also measure

micromotion if the lattice phase is stable. In these measurements, two different time

delays, T = 24.3µs and T = 50µs, between two kicks, are employed. The BEC

micromotion is measured by tuning the lattice velocity in steps of 0.017~k/MRb corre-
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Figure 6.5: Measured hpi as a function of lattice velocity by changing the frequency difference
↵ for two different time delays. Micromotion of BEC is measured by scanning over a range of
lattice velocity. See text for details.

sponding frequency difference of 250 Hz, as illustrated in Fig. 6.5. The phase evolution

induced by micromotion is effectively balanced by the lattice motion. When the net

average momentum hpi = 0, the BEC micromotion velocity can be deduced from the

corresponding lattice velocity by linear fit. The calculated lattice velocity at points of

hpi = 0 are (0.039 ± 0.003)~k/MRb, corresponding to BEC micromotion velocity of

(230 ± 17) µm/s for T = 24.3 µs, and (0.043 ± 0.002)~k/MRb, corresponding to a

velocity of (254 ± 10) µm/s for T = 50 µs. The micromotion can also be obtained

by measuring asymmetry, keeping the lattice velocity at v = 0, if the proportionality

constant c of Eq. 6.4 is known. However, the former method is favoured as it offers a

direct and precise measurement of the micromotion.
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6.7 Conclusion
This work gives insights about the nature of dynamical localization under two scenarios;

(i) when a wave packet is launched with initial momenta p0 6= 0 in the lab frame, and

(ii) when the optical lattice is moved in lab frame. In both scenarios, after a short dif-

fusive timescale, the wavepacket is localized in momentum space with an asymmetric

distribution profile. This asymmetry emerges during the early time dynamics – driven

by the breaking of parity symmetry due to the motion of the wavepacket or the lattice.

This feature is employed for precisely measuring the micromotion of the BEC. For the

parameters of the experimental system we employed, velocity measurements yielded

(230 ± 17) µm/s for T = 24.3 µs and (254 ± 10) µm/s for T = 50 µs in our sys-

tem. This micromotion measurement is crucial for precision instruments such as atom

interferometers and atomic gyroscopes, to correct for systematic shifts and uncertain-

ties. The micromotion velocity is an order of magnitude smaller than one recoil photon

momentum, as well as comparable to mean velocity associated with BEC temperature.

The broken parity symmetry induced by the micromotion is utilized to measure such

small velocity. Further, it might not be significantly affected by velocity distribution

of the BEC, a common challenge in spectroscopy technique. This work contributes to

our understanding of the precision measurement techniques using BEC-based quantum

kicked rotor models.
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Chapter 7
Conclusion and Future Outlook

7.1 Summary
In summary, this thesis has explored the Floquet engineering for coherent control of

chaotic system in periodically kicked optical lattice. It provides a precise control over

quantum interference for tuning dynamical localization in the quantum kicked rotor

(QKR) system. Additionally, the QKR system serves as a unique tool for probing

quantum chaos, strength of quantum coherence over exponentially sensitive classically

chaotic systems.

The journey of this thesis began with the task of rebuilding our 87Rb BEC setup,

which had stopped working during the COVID-shutdown for almost six months. Af-

ter reconstructing our robust setup with some modifications and simplifications in the

ultra-high vacuum system, implementing homemade control electronics, and creating a

flexible LabVIEW program for easy integration with an external Python program, we

employed machine learning for optimized evaporation to achieve BEC. Additionally,

we also developed a new ‘pulse-width modulation technique’ to cool the atoms through

time-averaged potential. Ultimately, we rebuilt a robust BEC setup that produces a BEC

with 8⇥ 104 atoms and temperature around 70 nK, with an overall production cycle of

8 seconds.

The primary goal of this thesis has been to achieve coherent control over quantum

interference without introducing decoherence. Through systematic engineering, two

methods have been investigated for controlling dynamical localization in periodically

101
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kicked cold atoms: periodic modulation of a control parameter and a single knob coher-

ent control using Bose-Einstein condensates.

In the first problem, we have investigated a modified kicked rotor model and its

experimental implementation using an equivalent atom-optics based test bed. By intro-

ducing periodic time delays in the kicking sequence, we effectively flipped the sign of

the kick strength after every M kicks, leading to drastic changes in the dynamics with

competing effects between localization induced by periodic kick sequences and diffu-

sion induced by sequences with delay times equal to the half-Talbot time. Our findings

reveal enhanced quantum mean energies in the modified atom-optics kicked rotor sys-

tem compared to the standard model, regardless of the presence of transporting islands

in classical phase space. Notably, we demonstrate that quantum mean energy enhance-

ment can be achieved without relying on classical features in the atom-optics kicked

rotor system, as evidenced by numerical simulations and experimental results. These

findings contribute to our understanding of quantum chaos and have broader implica-

tions for quantum control.

In the second problem, we utilized BEC for the quantum kicked rotor experiment

due to the high phase coherence between momentum states resulting from the narrow

quasi-momentum distribution of BEC. Through the proper encoding of relative phase

between momentum states via a single time evolution, we effectively steered the QKR

dynamics, maintaining robust coherence in the absence of noise and decoherence. This

control paradigm allowed for precise adjustments of a single parameter, facilitating tar-

geted alterations in the momentum distribution of the final localized state. We have also

demonstrated that such control remains effective even when the system is in a localized

state by applying periodic kick, as it maintains quite good coherence. Our quantifi-

cation of control, measured by the normalized population of zeroth momentum state,

showcased an impressive degree of manipulation exceeding 90%, with systematic tun-

ability.

In the final problem, our investigation into the asymmetric localization of momen-

tum distribution in a BEC launched with varying recoil velocities into a periodically

kicked optical lattice has yielded valuable insights. We explored this phenomenon in

two scenarios: when the BEC is in motion in the laboratory frame and when the op-
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tical lattice is in motion. Our findings reveal that this asymmetric behavior emerges

during the early-time dynamics and stabilizes as dynamical localization sets in. The

early time asymmetry comes from breaking of the parity symmetry due to motion of the

wave-function or lattice, so this velocity-dependent features leading to the development

of a method for measuring micromotion of BEC. We measure the velocity of the BEC

(230± 17) µm/s in our system. This micromotion measurement, unaffected by Doppler

broadening, offers precise velocity measurements crucial for precision instruments like

atom interferometer and atomic gyroscope.

7.2 Future Outlook:
This thesis has focused on studying Floquet engineering in the Quantum Kicked Rotor

(QKR) system to achieve coherent control over quantum chaos. Additionally, we have

utilized the kicked rotor system for precision measurements of micromotion. The results

obtained from these investigations open up possibilities for further experiments in both

directions, depending on the goals of the research.

The other aspect involves utilizing Bose-Einstein condensate (BEC) setups with cer-

tain modifications to explore momentum-synthesized lattices and BEC loaded into pe-

riodically driven optical lattices. These experiments hold promise for advancing our

understanding of quantum systems and exploring novel quantum phenomena related to

tight-binding model, quantum random walk and Bose-Hubbard Model with arbitrary

freedom over parameter space.

Some possibilities for these experiments include:

• Utilizing the QKR system for coherent control of quantum chaos suggests the

possibility of extending this approach for optimal coherent targeting. In classical

phase space, it’s conceivable to connect two points with arbitrary precision, as

first discussed in Ulam’s conjecture. Can we implement a similar idea in quan-

tum chaotic systems, where tailored perturbations can effectively lead us from one

point in phase space to another? Challenge is managing the dynamical spreading

of the evolving quantum state and necessitate a delicate balance by tailored per-

turbation. The QKR system may be an ideal candidate for addressing such a

problem, as discussed in a recent theoretical paper [73, 195].
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• The measurement of micromotion techniques opens a path for nullifying system-

atic shifts in precision measurements. The advantage lies in the direct utilization

of micromotion pulse schemes in BEC based atom interferometers without the

need to change any optical alignment. The concept can be implemented by first

applying two delta pulses of moving optical lattices for the measurement of mi-

cromotion. Subsequently, ⇡
2 �⇡�

⇡
2 pulses are applied for the atom interferometer

(AI). Choosing a higher order or opposite order for the AI ensures that it does not

get mixed up with the micromotion signal, making it feasible. Additionally, using

two delta pulses for micromotion measurement maintains very high fidelity (typ-

ically more than 80%, depending on the strength of micromotion) in the zeroth

momentum state for the AI. This simultaneous implementation of micromotion

measurement and AI has the potential to significantly improve precision mea-

surements.

• The most exciting physics can be explored by utilizing BEC setup for Momentum-

Synthesized Lattice (MSL). 1D-MSL has already been utilized as a quantum sim-

ulator for single-particle tight-binding Hamiltonians, featuring nearly arbitrary

arrangements of tunneling terms, artificial gauge fields, and controllable on-site

energy. However, there are many open problems in 2D-MSL and 3D-MSL sys-

tems that have not yet been explored by any group.

A 2D-MSL may open the path for cross-tunneling and cross-hopping in-plane,

providing a more logical implementation for exploring artificial gauge fields and

kinetic frustration. Similarly, 3D-MSL opens the path for synthesized Weyl ma-

terials, dimensionality-dependent localization phenomena, and the possibility to

couple the internal states of atoms, as spin, for spin-dependent coupling in MSL.
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[45] H.-J. Stöckmann, Quantum Chaos: An Introduction. American Association of

Physics Teachers, 2000.

[46] R. M. Steck DA, Oskay WH, “Observation of chaos-assisted tunneling between

islands of stability,” Science (New York, N.Y.), vol. 293, Jul 2001.

[47] C. Eltschka and P. Schlagheck, “Resonance-and chaos-assisted tunneling in

mixed regular-chaotic systems,” Phys. Rev. Lett., vol. 94, no. 1, p. 014101, 2005.



110 BIBLIOGRAPHY

[48] S. Fishman, D. R. Grempel, and R. E. Prange, “Chaos, quantum recurrences, and

anderson localization,” Phys. Rev. Lett., vol. 49, pp. 509–512, Aug 1982.

[49] F. L. Moore, J. C. Robinson, C. F. Bharucha, B. Sundaram, and M. G. Raizen,

“Atom optics realization of the quantum �-kicked rotor,” Phys. Rev. Lett., vol. 75,

pp. 4598–4601, Dec 1995.

[50] I. Manai, J.-F. m. c. Clément, R. Chicireanu, C. Hainaut, J. C. Garreau, P. Szrift-

giser, and D. Delande, “Experimental observation of two-dimensional anderson

localization with the atomic kicked rotor,” Phys. Rev. Lett., vol. 115, p. 240603,

Dec 2015.

[51] R. C. Kuhn, C. Miniatura, D. Delande, O. Sigwarth, and C. A. Müller, “Local-

ization of matter waves in two-dimensional disordered optical potentials,” Phys.

Rev. Lett., vol. 95, p. 250403, Dec 2005.

[52] J. Ringot, P. Szriftgiser, J. C. Garreau, and D. Delande, “Experimental evidence

of dynamical localization and delocalization in a quasiperiodic driven system,”

Phys. Rev. Lett., vol. 85, pp. 2741–2744, Sep 2000.
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dynamics in a BEC based atom optics Î´-kicked rotor,” Journal of Physics B:

Atomic, Molecular and Optical Physics, vol. 53, p. 235502, nov 2020.

[124] L. Wang, G. Benenti, G. Casati, and B. Li, “Ratchet effect and the transporting

islands in the chaotic sea,” Phys. Rev. Lett., vol. 99, no. 24, p. 244101, 2007.

[125] D. L. Shepelyansky, “Some statistical properties of simple classically stochastic

quantum systems,” Physica D: Nonlinear Phenomena, vol. 8, no. 1-2, pp. 208–

222, 1983.

[126] F. Haake, Quantum signatures of chaos. Springer, 1991.

[127] B. V. Chirikov, F. M. Izrailev, and D. L. Shepelyansky, “Dynamical stochasticity

in classical and quantum mechanics,” Sov. Sci. Rev. C, vol. 2, no. 4, pp. 209–267,

1981.

[128] J. Gong and P. Brumer, “Coherent control of quantum chaotic diffusion,” Phys.

Rev. Lett., vol. 86, pp. 1741–1744, Feb 2001.

[129] J. Gong and P. Brumer, “Coherent control of quantum chaotic diffusion: Di-

atomic molecules in a pulsed microwave field,” The Journal of Chemical Physics,

vol. 115, no. 8, pp. 3590–3597, 2001.

[130] J. Gong, H. J. Woerner, and P. Brumer, “Coherent manipulation of quantum

�-kicked dynamics: Faster-than-classical anomalous diffusion,” Phys. Rev. E,

vol. 68, no. 2, p. 026209, 2003.
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