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Abstract 

Cell dimensions are defined for each species. Several cellular pathways guarantee faithful 

duplication of cell during binary fission. However, phenotypic heterogeneity has been observed 

in genetically homogenous populations. Advanced scientific studies have proved such 

fluctuations crucial in the development, for they have been associated with phenomena like 

division of labour and rise of survivors under harsh environmental situations.   

Thesis provides an insight into possible mechanisms for the origin of variations in cell lengths 

of clonal E. coli populations. Series of experiments helped assess an elongation in Escherichia 

coli cells and its effect on the population length distributions.  

In our studies with E. coli batch cultures, we observed a linear increase in cell length variation 

above growth rate 1 generation per hour. On the other hand, below this threshold phenotypic 

heterogeneity was observed to be reduced but it stayed almost constant for all the growth rates. 

‘The point of inflection’ in the cell length variation was identified and correspond to the growth 

rate at which multi- fork replication is triggered in a bacterial cell. Molecular analysis of RecA 

dynamics showed increased occurrence of replication fork stalling events at high growth rates. 

We inferred that stochastic arrest in the replication increases multiplicatively at higher growth 

rates because of multi- fork replication in E. coli cell which in turn, increases the probable halts 

in cell division through SOS response, producing non- genetic cell length variation in an 

isogenic population.  

Deviation from defined cell dimensions has previously been assigned to the fluctuations in 

gene expression. Ergo, next step was to probe the effect of replication stochsticity on genetic 

expression and connect it with phenotypic noise in isogenic populations of E. coli MG22. By 

examining hydroxyurea treated populations at different growth rates, we detected that the total 

gene expression noise can be modulated by the population growth rate. Growth rate dependent 



 

dissection of the noise showed that intrinsic noise dominates in genetic circuitry, at higher 

growth rates. In recovered cells, intrinsic noise was observed to be linear with increasing stalls 

in DNA replication till HU concentration hits 13 mM but then it surprisingly drops 

monotonously for higher HU concentrations, breaching the connection. Extrinsic gene 

expression noise takes over at slower growth rates. We predict that at sub- lethal HU dosages, 

replication fluctuations, in highly proliferating populations can cause phenotypic variability 

through elevated intrinsic gene expression noise. 

On a slightly different note, analysis of E. coli elongation, revealed the presence of inherent 

asymmetry in growth of an individual cell. We found that, an asymmetry in growth introduces 

difference in the cell division time of two sisters born at same time. Inspection of MreB 

dynamics showed bias in the distribution of MreB molecules along cell length, suggesting 

possible role of MreB cytoskeleton in growth bias. Though, its connection with phenotypic 

variation is not clear, we report a new finding as opposed to the classical description of E. coli 

growth. 

The work combined with published data, sets a new paradigm for growth in an Escherichia 

coli cell.    

 

Key words: Cell length, multi- fork replication, phenotypic variability, RecA, stochastic gene 

expression, asymmetric growth, MreB.    
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Identical appearances of bacterial cells in an isogenic population, belies the fate of an individual 

cell. Environment dependent fluctuations in the phenotype have been observed for many 

populations. Studies show that though genetically identical, response of an each bacterial cell 

to the various signals from “unpredictable” niche is found to be variable.  

In recent years phenotypic variations in the clonal populations have received tremendous 

attention. Rise of persisters, for instance, under selective growth conditions, has been attributed 

to inherent phenotypic heterogeneity in clonal populations. Phenotypic switch from growing 

state to dormant state takes place only for certain proportion of the population, while others 

either resume their growth or terminate their life cycle as the consequence of environmental 

changes1,2. Clear presence of sub- populations with identical genomic DNA has been 

hypothesized to serve two purposes. It saves the genetic material which can later on rejuvenate 

in optimal growth conditions3. Programmed death of the population serves as a nutrient source 

to the growing cells and thus, ensure their propagation4. Survivors of drastic environmental 

conditions often pose the problem of antibiotic resistance5. Cellular differentiation can also be 

studied through phenotypic variations. It is been proposed that phenotypical fluctuations 



  

generate division of labour in the clonal population of pathogenic bacteria. That confers the 

advantage of evading the host as well as producing more bacteria at the same time6.  

Random fluctuations in the genetic circuit are considered as a prominent reason for phenotypic 

variations. Variable activity of the promoter or the regulatory proteins, may result into the loss 

of coordinated gene expression within the genetically identical populations6. Noise in gene 

expression facilitates physiological difference within identical cells, which in turn, exhibit 

differential response to growth conditions.  

Segregation of various sub- cellular components, found in limited copies, can be error- prone. 

Hence, apparent symmetric division can create two cells with different molecular 

composition7,8. Moreover, bacterial cells are known to corner most of the damage in a cell 

bearing the oldest pole. The process is termed as aging9. The “oldest mother” cell tends to show 

different phenotypic characters, like elongation10. Thus, a bias in segregation contributes to 

phenotypic noise among identical sister cells.     

This thesis explores the phenotypic variability in wild-type populations of Escherichia coli, 

from three different perspectives. In particular, cell size was the phenotype of choice and we 

studied variation in the cell lengths with reference to the modulation in growth rates, noise in 

gene expression and growth asymmetries. In an attempt to understand an effect of phenotypic 

heterogeneity on the spatial arrangement of the community, we extended our studies to 

compete two different strains of E. coli with difference in the extent of population cell length 

variation. Objectives divide thesis in following four parts:  

(a) Threshold effect of growth rate on cell length variability. 

(b) Correlation between stochastic DNA replication process and gene expression noise in 

growth rate dependent manner. 

(c) Asymmetric growth of single E. coli cell.     



  

(d) Colony competition and spatial patterns in isogenic populations growing from a central 

“homeland”. 

 

Chapter 3: Threshold effect of growth rate on cell length variability 

Population growth rate greatly influences cell size as well as cell physiology in E. coli11. This 

section revolves around the connection between growth rate and phenotypic noise. In batch 

cultures of E. coli, we altered population generation time either by allowing growth under 

different temperatures or by changing growth media to modify the nutrient supply. Cell sizes 

were measured for mid- log phase populations and cell length variability is estimated in terms 

of coefficient of variation. Plot of cell length variability against population growth rate showed 

two distinct regimes, separated by a threshold corresponding to growth rate of 1 generation per 

hour. Cell length variability increases monotonously with growth rates greater than 1 

generation per hour, while it is reduced and remains constant for cultures with growth rates 

slower than the threshold.   

We identify the inflection point as trigger for multi- fork replication in E. coli12. We 

hypothesize that increased replication stall events at higher growth rates hold cell division on 

through SOS response pathway in an individual cell, which in turn, causes size variation in the 

population. 

We supported our hypothesis by elevating per cell frequency of replication fork stalling with 

hydroxyurea treatment. We observed increase in cell length variation as a function of 

hydroxyurea dosage only in populations proliferating with high growth rate. We used 

colocalization of RecA loci with the bacterial DNA as a proxy for replication stall and 

correlated it with population cell length variability. As expected, we obtained linear 

relationship between two, in growth rate dependent manner. Our results were further buttressed 



  

by an assessment of synchronous live cells grown in microfluidic device and on agar surface, 

which also enable us to study the effect at single cell level.   

Thus, we propose stochastic replication arrest as a possible non- genetic mechanism for 

phenotypic fluctuation in an isogenic population of Escherichia coli. 

 

Chapter 4: Correlation between stochastic DNA replication process and gene expression noise 

In continuation with our findings, we delve into the link between DNA replication stall events 

and gene expression noise. We analysed isogenic populations of E. coli MG22 strain for this 

study. E. coli MG22 has been constructed in Elowitz lab (2001) and possesses single copy of 

CFP and YFP gene each on either arm of E. coli circular DNA, such that each gene copy is 

equidistant from OriC and is expressed under Plac 
13. We measured the failure of correlation in 

the expression levels of two genes when replication arrest is frequented. We quantified average 

intensities per cell for CFP and YFP as an equivalent to the extent of an expression of respective 

genes, while variation in population cell lengths was considered as an output for replication 

halt.  

We observed growth rate dependence in gene expression noise. At higher growth rate, 

fluctuations in the genetic circuit was increased, while at slower rated they were reduced in 

recovered cells. Interestingly, we found that growth rate also controls sub- component of the 

noise that contributes the most to total gene expression. Intrinsic noise influences total gene 

expression noise at high growth rates. Extrinsic noise dominates in the gene circuitry at slower 

growth. More importantly, an intrinsic noise responds linearly to the replication stall events 

only at sub- lethal hydroxyurea concentrations (< 10 mM) and hence correlates positively with 

cell length variation at higher proliferations, while extrinsic noise remains unaffected.   



  

We conclude the chapter by postulating that random fluctuations in chromosomal replication, 

at sub- lethal HU concentrations, increase noise in gene expression within an individual cell, 

which in turn, promotes non- genetic phenotypic noise in an individual organism. 

 

Chapter 5: Asymmetric growth of single E. coli cell   

Chromosomal segregation associated with cell growth decides the placement of cytokinetic 

ring in E. coli14. In other words, expansion of E. coli cell not only affects the fidelity of the 

segregation of sub- cellular entities but also, can be the determinant in the generation of 

physiologically different daughters. This section dissects E. coli single cell to study its growth 

pattern. In order to increase the reliability of the results, we observe growth of E. coli surface 

and its membrane. Experiments were reinforced by analysing the segregation of nucleoids and 

correlating it with cell growth.  

Our results showed a distinct difference between the growth in two cellular halves of a single 

cell. We further correlated it with MreB localization in the cell. We found that higher MreB 

content in cell half correlates with high speed of growth at the nearest pole. Growth asymmetry 

was found to be inheritable from one generation to other. Fast growing end continues to grow 

with higher speed in daughter generation, while daughter that inherits slow growing pole from 

mother develops a new pole which leads the growth. Interestingly, it gives rise to the time lag 

between the divisions of two sisters. Daughter cell with fast growing end from the earlier 

generation divides earlier than its sister which receives slow growing end.  

We sum up this section with a novel finding that E. coli cell grows asymmetrically, as opposed 

to the classical description of its growth. However, we could not investigate the link between 

growth asymmetry in a single cell and population cell length variability.  

 



  

Chapter 6: Colony competition and spatial patterns in isogenic populations growing from a 

central “homeland” 

Cell size and shape are unique to every specie of bacteria and they determine the structure of 

the colony by arranging the cells in a particular pattern15. In this section we tried to explore the 

effect of size fluctuations on the colony make- up.  

Experimental set up includes the growth of a culture consisting of two sub- populations, each 

expressing different molecular reporter, on agar surface. Result of the competition among two 

sub- populations was measured in terms of the proportion of area occupied by each population 

in colony. We compete isogenic populations of E. coli MG1655 transformed either with peGFP 

or with pmCherry. We also studied E. coli DH5α population under identical experimental set- 

up. However, due to the lack of an appropriate control and because of inconclusive results, 

experiment was suspended. In future, non- motile strains can be used for the competition, as a 

control experiment. Also, to arrange an even competition, cells can be made to express protein 

other than mCherry, as it hampers the growth in mutants.  

 

In conclusion, work reviews the growth in an individual cell of an E. coli and quantitatively 

connects the fluctuations in it to the phenotypic heterogeneity found in the population.        
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Chapter 1 

Introduction 

 

1.1 Growth and division in Escherichia coli 

Bacteria like Escherichia coli offer an excellent model to study the cellular physiology. This 

gut commensal has rod shaped cell which is gram negative in nature. In other words, cell is 

surrounded by a lipopolysaccharide (LPS) layer, called as outer membrane. Periplasmic space 

separates outer membrane from cell membrane. A single layer of peptidoglycan (PG) resides 

in the peripalsmic space (Fig. 1.1)9. Peptidoglycan layer, made up of glycan strands connected 

by pentapeptides, is elastic in nature and remodelling of its layer is essential in the maintenance 

of the rod shape as well as the growth and division of an organism9,10.  

 

 

Fig. 1.1: Cell wall structure of gram negative microorganisms (Reprinted form Brown et al., 

2015 with permission11. Copyright obtained from Springer/ Nature Publishing Group 

(Appendix E, C1)). 
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Growth and division in E. coli cell is a sequential interplay between two cytoskeletal proteins. 

A new- born E. coli cell elongates laterally till it reaches the division length which is 

approximately twice as that of new- born length. Elongation is driven by an actin homologue, 

MreB. Helical cables of MreB polymers run throughout the length of an E. coli cell, providing 

a template as well as the direction for the cell wall synthesis12,13. Growth control is switched to 

FtsZ, a tubulin equivalent, during septum formation. This cytoskeletal protein polymerizes into 

the ring at mid- cell and thus forms a scaffold for the recruitment of cell wall synthesizing 

machinery14. Gradual constriction of the Z- ring guides the partition of the two daughters by 

septum (Fig. 1.2).  

 

      

Fig. 1.2: Cytoskeleton machinery in Escherichia coli. Purple boxes represent short directed 

patches of MreB filaments arranged helically and are involved in the growth of the cell at side 

walls. FtsZ and FtsA polymers are indicated by blue and green boxes respectively. Z- ring 

formed at the mid- cell, is tethered to the membrane and thus stabilized by an actin homologue, 

FtsA (Reprinted from Juarez and Margolin, 2012 with permission13. Copyright obtained from 

John Wiley and Sons (Appendix E, C3)).           
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These two cytoskeletal components instruct the synthesis of murein sacculus. However, the 

mode of synthesis differs depending on the enzyme involved in the process. MreB interacts 

with PBP 2 through RodA in order to insert a new strand in existing PG layer, while, FtsZ 

employs PBP 3 to trigger the addition of new building blocks, required for constriction9. 

Recently, ‘three- for- one’ mechanism has been proposed to explain the addition of PG blocks 

during the elongation as well as the division of the cell (Fig. 1.3). Model postulates that three 

new strands of peptidoglycan are synthesized per one old strand called as ‘docking strand’ in 

murein sacculus. These strands are connected covalently to the strands (stress bearing strands) 

which are adjacent to the docking strand through transpeptidation. Cleavage of docking strand 

results in its replacement with newly synthesized peptidoglycan and subsequent expansion of 

the murein layer15,16. Model, thus, also considers the ‘make- before- break’ strategy proposed 

by Arthur Koch, in 1985 for the growth of rod shaped organisms17. 
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Fig. 1.3: Three- for- one mechanism of cell wall synthesis. Hatched circle indicates docking 

strand which is replaced by three new strands (white circles). Black circles stand for stress 

bearing strands (Reprinted from Sceffers and Pinho, 2005 with permission16. Copyright 

obtained from American Society of Microbiology (Appendix E, C4)).   

 

Mode of construction slightly deviates during cytokinesis18. PG strand above the constriction 

site is considered as a docking strand to add three new strands. The process then propagates, 

each time generating newer and newer docking strands. The segregation happens by an action 

of transamidases that cleave docking strands (Fig. 1.4). 
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Fig. 1.4: Three- for- one mechanism in elongation (A) and constriction (B) events (Reprinted 

from HÖltje, 1998 with permission18. Copyright obtained from American Society of 

Microbiology (Appendix E, C4)).  

 

Support for the model comes from discovery of multienzyme complex (Fig. 1.5). It consists of 

(a) bifunctional transpeptidase- transglycosylases: PBP 1A, PBP 1B and PBP 1C, (b) 

monofunctional transpeptidases: PBP2 or PBP 3 (based on the mode of synthesis), (c) lytic 

transglycosylases: Slt 70, MltA and MltB, (d) D, D- endopeptidases: PBP 4 and PBP 7. Since 

the complex includes enzymes of two opposite classes, it is named as ‘yin- yang’ complex15.  
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Fig. 1.5: Holoenzyme synthesizing the cell wall (Reprinted from HÖltje, 1998 with 

permission18. Copyright obtained from American Society of Microbiology (Appendix E, C4)). 

 

1.2 Cell length homeostasis E. coli population 

Various models have been proposed to explain the maintenance of cell size in an organism. 

Two major paradigms were accounted for the observed homeostasis in population cell sizes. 

‘Sizer’ mechanism predicts cell division of an organism after a threshold cell length is attended. 

In other words, ‘Sizer’ mechanism states that the size of a cell at division is independent of its 

birth size. Mechanism was shown to work using Schizosccharomyces pombe as model system 

by Peter Fentes, in 197719,20. Later on in 2014, model was shown to fit the cell length 

homeostasis in E. coli populations21. Other mechanism named as ‘Timer’ explains that cell 

division occurs after a constant elapsed time and assumes that the generation time of a cell 

remains constant irrespective of its birth length22.       

However, observation of an individual E. coli cell growth refutes above mechanisms. 

Experimental evidences show that in an Escherichia coli cell doubling time is negatively 

correlated with new- born cell size, thereby ruling out ‘Timer’ model. Though average new- 
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born cell volume of population is exponentially dependent on population growth rate, single 

cell data systematically deviate from the growth law. The phenomenon cannot be explained 

with ‘Sizer’ mechanism23. In 2015, a new model was devised for cell size conservation. It can 

be explained in the context of E. coli cell cycle. The life cycle of Escherichia coli progresses 

thorough three consecutive phases: B or birth period, C or chromosomal duplication period and 

D or division period (Fig. 1.6). B period varies based on the growth rate of the cell, while C 

and D periods last for 40 and 20 minutes respectively. A complete E. coli cell cycle takes place 

within 60 mins24. Per division cycle the cell synthesizes a constant volume, irrespective of its 

initial new- born volume or size (shown as Δ in Fig 1.6).  

 

 

Fig. 1.6: BCD cell cycle of E. coli (Derived from Cooper and Helmstetter, 1968 and Taheri- 

Arighi et al., 201524,23). 

 

Strategy, known either as constant Δ model or as an ‘adder principle’ eventually helps converge 

population cell sizes within two- fold range of 2 µm and thus, maintains the homeostasis (Fig. 
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1.7)23. It highlights that a single new- born cell adds a constant volume (Δ) per cell cycle and 

then divides in the mid- plane, regardless of its birth size as well as generation time. And hence 

the respective birth cell length gradually tends to the modal value of the population size 

distribution. Thus, though model does not addresses the random occurrence of elongated cells 

in the clonal populations, it explains the strategy employed by an individual cell that exhibit 

the size deviation to attain size homeostasis.  

 

 

Fig. 1.7: Graphical representation of adder model (Reprinted from Taheri- Arighi et al.,  

2015 with permission23. Copyright obtained from Elsevier (Appendix E, C5)). 

 

Rise of filamentous cells can be associated with cellular tendency to maintain the viability of 

the population through generations, under variable environmental conditions. Under optimal 

laboratory conditions, however, time required to complete one cell cycle is reduced to less than 

60 mins and for the integration of replication and division within one life cycle, OriC is fired 

in earlier generations. Thus, as a result, an individual cell, at higher growth rate, encases 6- 8 

actively progressing replication forks24,25. Situation demands tight regulation to maintain the 

temporal fidelity of the replication as well as cell growth. E. coli cell employs array of proteins/ 
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pathways to ensure the temporal coupling between the DNA replication and segregation as well 

as cell growth and division.  

 

1.3 Coupling between DNA replication and cell division 

Major pathways that link DNA replication and cell division cycle in E. coli cell comprise 

nucleoid occlusion and SOS response26,27. Both of them target the polymerization of FtsZ, an 

initiator of cell division, over chromosomal DNA.  

Nucleoid occlusion directly links chromosomal DNA with the placement of the septum within 

the cell. In E. coli, process of nucleoid occlusion employs a TetR family protein ‘SlmA’. Two 

third region near OriC of E. coli genomic DNA, harbours approximately 21 binding sites for 

SlmA protein which accelerates the GTPase activity of FtsZ destabilizing Z- ring. Formation 

of septum across unsegregated chromosome is, thus, prevented by nucleoid occlusion (Fig. 

1.8)28–30.  

 

 

Fig. 1.8: Coupling between DNA replication and cell division in E. coli through nucleoid 

occlusion (Reprinted from Cho et al., 2011 with permission29. Copyright obtained from PNAS 

(Appendix E, C6)).  
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On the other hand, SOS response pathway delays division until the genetic material is being 

repaired. Replication fork is stalled at breached sites, an event which facilitates binding of DNA 

repair protein, RecA at nicked site31. Later event initiates SOS response not only to repair 

chromosomal DNA, but also to withhold cell division. RecA upon binding to processed 

ssDNA32 undergoes conformational changes and activates the auto- cleavage activity of LexA, 

a repressor of SOS box proteins. Degradation of the repressor leads to the expression of SOS 

response proteins. SulA, one of the SOS proteins sequesters the monomer of FtsZ in its dimeric 

form and stops its polymerization33–35. Entire pathway has been summarized in Fig. 1.9.   

 

 

Fig. 1.9: Coupling between DNA replication and cell division in E. coli through SOS response 

pathway (Derived from D’Ari and Huisman, 1981,1984 and Chen et al., 2012 33–35). 

 

1.4 Cell size variations in genetically identical populations 

Though the cell cycle is tightly regulated in order to produce viable cells of average 2 µm size, 

length distribution of new- born wild- type cells extends up- to 10 µm (Fig. 1.10)36 . 
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Fig. 1.10: Cell length distribution in the new- born populations of E. coli MG1655 (Reprinted 

from Cullum and Vincente, 1978 with permission36. Copyright obtained from American 

Society of Microbiology (Appendix E, C4)).  

 

Sources that introduce phenotypic noise in the clonal populations of E. coli have been studied 

in the thesis. Growth conditions play decisive role in the cell size determination of an organism. 

Growth rate is known to shift the average of the population cell size. Fast growing cells are 

observed to be longer than the slower growing bacteria37. In addition, cell size also shows 

strong dependence on carbon availability in the niche38. For instance, in Bacillus subtilis, UgtP 

enzyme moonlights to keep check on the growth of an organism in nutrient dependent manner. 

Enzyme participates in well conserved pathway of glucolipid synthesis and can function as a 

sensor for carbon availability, which can directly be transduced to the divisome in order to 

regulate the division. Process thus, modulates the size of an individual cell at a given growth 

rate37. In E. coli, glucosyltransferase (OpgH) have been shown to connect the cell size with 

metabolic pathways in a growth rate dependent manner39. Apart from this, in batch cultures, 

growth phase dictates the physiology of bacterial cells. Difference in metabolisms specific to 

the growth phases, in turn, influence cell size of bacteria. Upon entry of the cells into stationary 

phase, an event called “reductive cell division” in triggered in bacteria so that already initiated 
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rounds of DNA replication and cell division are completed without any further growth. It 

results in the shift of  average cell size towards left40.  

Phenotype of an organism is the culmination of complex interactions within genetic wiring. 

Temporal or spatial variations in the coordination of two or more genes can lead to the changes 

in phenotype. Noise in gene expression has been proposed to be advantageous under stress 

conditions by creating non- heterogeneity in genetically homogeneous population41,5,42–44.  

Huh and Paulsson, in 2001 has proposed that the fluctuations in the segregation of sub- cellular 

molecules result in the production of two daughters that quantitatively differ in their molecular 

composition, though superficially they look identical and hence give rise to the variations in 

the phenotypes45,46.  

Thesis addresses subcellular mechanisms that give rise to the cell length heterogeneity in the 

clonal populations of E. coli. We have focused our review majorly on the role of the population 

growth rates, fluctuations in the gene expression of a bacterium and the asymmetry observed 

during the division of the mother. Our approach uses the quantitative and molecular analysis 

of E. coli single cell and comparing it across the population.    

 

1.5 Experimental approaches  

Microscopic examination of an E. coli cell has a major share in this study. Fixed E. coli cells 

were imaged for the quantification of its length, on the other hand, live E. coli cell was captured 

for temporal studies of different cellular molecules. We generated fixed images of E. coli cells 

using DIC so that the cell size can automatically be measured by counting the pixels covered 

by the shadow of the cell. Confocal optical settings were used for recording temporal changes 

in an individual E. coli cell.   

1. Differential Interference Contrast (DIC) microscopy: 
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DIC microscopy proves to be useful in capturing images of unstained samples. Optical set- up 

for DIC, enhances the contrast at the interfaces of the sample and the medium (Fig. 1.11). 

Resultant monochromatic virtual image has three dimensional effect. Minimal set up consists 

of a polarizer to produce plane- polarized light, which then enters the condenser. Light then 

passes through Wollaston prism, where it is split into two orthogonal wavefronts that penetrate 

into the sample. Optical density of the sample decides an extent of the retardation of these two 

wavefronts, which when recombined by second Wollaston prism, construct an interference 

pattern that highlights the boundaries of the sample creating an illusion of 3D image47,48.    

 

 

Fig. 1.11: Optical set- up of DIC microscopy (Reprinted from Rosenthal, 2009 with 

permission48. GNU free documentation license (Appendix E, C2)). 

 

2. Confocal Laser Scanning microscopy: 

Confocal laser scanning microscopy provides an improved image resolution. Classical 

fluorescence microscopy floods the sample with the light. Detector also collects the emission 
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that comes from unfocused part of the sample. Basic confocal configuration introduces pinhole 

between the light source and the sample, controlling an illumination of sample to the point (Fig. 

1.12). Second pinhole, located between the sample and the detector, excludes out- of- focus 

flare before emitted light enters the detector. In order to amplify the signal, confocal set up uses 

photomultiplier tube as detector. Thus, confocal microscopy provides lateral and axial 

resolution49,50.  

 

 

Fig. 1.12: Optical configuration of confocal laser scanning microscope (Reprinted from 

Rossetti, 2013 with permission51. Copyright obtained from INTECH open (Appendix E, C7)). 

 

For microscopic time lapse observation, we grew E. coli cells either on agar pads or in 

continuous culture using ‘mother machine’. 

 

3. Lab- on- Chip: 
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Soft lithography technique has recently gained popularity in the field of quantitative 

microbiology. Technique is utilized to create microstructures that match the dimensions of 

bacteria and can confine them spatially during the time lapse imaging.  

Standard procedure for creating microstructure involves spin coating of a photoresist on a 

silicon wafer. After the mask of desired micropattern is placed on the uniform coat of the 

photoresist, assembly is illuminated with UV light. Exposed part of the photoresist is cross-

linked, while photoresist protected by the mask is washed away with the help of an organic 

solvent. Silicon wafer can then be used as a template to bake PDMS membranes, which when 

stuck to the glass surface make a microfluidic device (Fig. 1.13)52.  

   

 

Fig. 1.13: Schematic of microfabrication (Reprinted from Weibel et al., 2007 with 

permission52. Copyright obtained from Springer/ Nature Publishing Group (Appendix E, C1)). 

 

We imprinted agar pad with micro- pattern using an epoxy wafer. It created grooves, 2 µm 

deep and 1- 5 µm in the width. E. coli cells spread on such surface were confined into the 
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indentations. It helped in the restricted alignment of the cell and also reduced their spatial 

movement during the growth.  

Growth of E. coli cells in microfluidic device was helpful to assess the population phenotype 

in continuous culture. Design has been described in Wang et al.,201053 and schematic has been 

shown in Fig. 1.14. However, we customized it by withdrawing nutrients from the source 

through the device (Chapter 2; Section 2.4). Modification was important to subject the same 

population to various environmental changes and analyse the changes in the cell size.   

 

 

Fig. 1.14: Design of ‘Mother machine’(Reprinted from Wang et al., 2010 with permission53. 

Copyright obtained from Elsevier (Appendix E, C5)). 

 

4. Image Analysis 

Analysis of an image was automated by using in- house MATLAB programme, which takes 

an advantage of shadow of the cell produced because of the DIC optics. Algorithm maps the 

image for the ‘gradient’ that exists because of the brighter object and its adjacent shadow54. 

Programme was useful in analysing over thousands of E. coli cells in the population which 

increased the reliability of our interpretations (Fig. 1.15).  
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Fig. 1.15: Analysis of E. coli MG1655 populations for cell length using ‘Gradient detection’ 

code. Left image is raw DIC image of E. coli cell, while right image shows the corresponding 

cell contours (yellow lines) extracted and overlapped on the cell by an algorithm. Scale bar- 2 

µm. (Adapted from Athale and Chaudhari, 201154). 

   

With our experiments we correlate growth rate with cell size fluctuations in isogenic 

populations of Escherichia coli. We further succeeded to link gene expression noise with cell 

length variation in growth rate dependent manner. Our single cell studies showed the presence 

of an asymmetry during the growth of an E. coli.  
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Chapter 2 

Materials and methods 

 

2.1 Bacterial strains and plasmids 

Study has used various strains derived from E. coli K12. Although MG1655 (CGSC 6300) cells 

have been studied in major portion of this work, phenotypic variation in the populations of 

ΔrecA (JW26691), ΔsulA (JW09411), ΔslmA (JW56411) and MG1655 with genomic copy of 

recA replaced with recA- gfp4 (Gift from Dr. G. P Manjunath. Construction of the strain is 

based on the work done by Steven Sandler group) have also been considered. For correlation 

studies between gene expression noise and cell length variation E. coli MG225 was used (Gift 

from Dr. Michael Elowitz). We also used E. coli mreB- yfp6 (CGSC SX1466) and E. coli 

RP4373 (CGSC 12122) to assess growth asymmetry and motility respectively in E. coli cell.  

Plasmids were constructed for ectopic expression of RecA. These were derived from pGFP 

(Clontech, USA) and pBAD24 backbones respectively (Appendix B). Both the plasmids 

possess ampicillin resistance as marker. Expression of pBAD24- recA was induced with 

arabinose (0.2%. SRL, Mumbai, India). Nucleoid movement was tracked with extra- 

chromosomal expression of pBAD24- hupA- gfp8 induced with 0.2 % Arabinose (Gift from 

Dr. Josette Rouviere-Yaniv). peGFP and pmCherry plasmids were backbone modifications of 

pGFP plasmid (Appendix B).    

 

2.2 Growth conditions 

Except for growth rate modulation experiments, secondary cultures of all E. coli strains, were 

inoculated at 1% concentration and grown at 37°C, 180 rpm in LB (HiMedia, Mumbai, India), 

till the population reaches mid- log phase.  



52 | P a g e  

 

 

Population growth rates were manipulated by changing either temperatures or nutrient source. 

In temperature modulation experiment 100 ml of bacterial cultures, with 1% inoculum in LB 

were grown either at 22°C or at 30°C or at 37°C or at 42°C, under constant sharing at 180 rpm. 

We chose six nutrient sources: LB, Yeast extract broth (YEB = 0.5% w/v yeast extract + 1% 

w/v NaCl), Tryptone broth (TB = 1% w/v tryptone + 1% w/v NaCl), M9 + Glucose (0.4% w/v), 

M9 + Succinate (0.9% w/v) and M9 + Acetate (0.5% w/v)55. All the minimal media were 

supplemented with thymidine (4 µg/ ml). Temperature of the experiment was maintained at 

37°C with constant shaking at 37°C. All the media were made in deionized water and pH was 

ensured to be at 7. Growth was monitored and cells were harvested at every 0.5 hr, by 

measuring the optical density of the culture at 600 nm, till population entered the stationary 

phase.  

 

2.3 Fixed cell imaging 

Cells were washed with PBS and processed with 4% (w/v) PFA (Sigma- Aldrich, USA) in 

order to fix them. Except for E. coli MG22, all the cells were stained with 0.1 µg/ml DAPI 

(Sigma- Aldrich, USA) to observe nucleoids54. We used Axio- vision plan apochromat upright 

epifluorescence microscope (Carl Zeiss, Germany) or LSM 780, inverted confocal microscope 

(Carl Zeiss, Germany) to visualize the cells. Following microscope settings were used to image 

the different strains:
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Strain Objective Channels 

MG1655  40X/ NA 1.5  

(Epifluorescence) 

DIC and DAPI 

ΔrecA 40X/ NA 1.5 

(Epifluorescence) 

DIC and DAPI 

ΔsulA 40X/ NA 1.5 

(Epifluorescence) 

DIC and DAPI 

ΔslmA 40X/ NA 1.5 

(Epifluorescence) 

DIC and DAPI 

MG1655 + pRecA- 

mCherry 

40X/ NA 1.5 

(Epifluorescence) 

DIC, DAPI and dsRed 

ΔrecA + pRecA- mCherry 40X/ NA 1.5 

(Epifluorescence) 

DIC, DAPI and dsRed 

MG1655 + pBAD24- recA 40X/ NA 1.5 

(Epifluorescence) 

DIC and DAPI 

ΔrecA + pBAD24- recA 40X/ NA 1.5 

(Epifluorescence) 

DIC and DAPI 

MG1655- recA- gfp 100X/ NA 1.5, oil 

(Epifluorescence) 

DIC, DAPI and GFP 

MG22 63X/ NA 1.4, oil 

(Confocal) 

1. CFP laser: excitation: 430 

nm, emission: 454- 516 nm 

2. YFP Laser: excitation: 514 

nm, emission: 514- 621 nm 

3. DIC is coupled with CFP 

laser 
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4. Detector used: GASP  

MG1655- mreB- yfp 63X/ NA 1.4, oil 

(Confocal) 

1. YFP laser: excitation: 514 

nm, emission: 514- 621 nm 

2. Detector used: GASP 

 

Table 2.1: Microscope settings used for fixed cell imaging. 

 

2.4 Microfabrication of mother machine   

Micropattern for mother machine device was adapted from the published work from Suckjoon 

Jun’s group53, and was designed using CleWin software (WieWin Web, Netherlands). It was 

fabricated by using a ~100 nm layer of gold (for aligning the second layer) followed by spin-

coating a 2 μm layer SU8-2 negative photoresist (Microchem, USA) onto a SiO2 wafer using 

a spin coater model WS- 400B- 6NPP LITE (Laurell Tech. Corp., USA). Photoresist was cured 

by UV exposure with a mask (EVG, Austria) corresponding to trench and dead-end channels. 

Un-exposed photoresist was washed and a 20 μm layer of SU8-20 negative photoresist 

(Microchem, USA) spun and exposed to UV corresponding only to the trench, for curing.  

 

2.5 Development of epoxy replica for microfluidics 

To prepare PDMS membrane silicone elastomer and curing agent were mixed in 10 : 1 (w/w) 

proportion (Sylgard 184, Dow-Corning, USA). Mixture was then degassed for 1 hr, poured on 

silicon wafer and baked at 80°C for another 2 hrs. Cured PDMS membrane was used as a 

template to make epoxy replica of silicon wafer. 

Mixture of resin and hardener (BondTite, Resinova, India) taken in the proportion of 8 : 10 

(w/w) was degassed for 3 hrs. It was spread uniformly on the surface of PDMS membrane and 

incubated at 60°C, till the resin solidified. PDMS membrane was then separated from epoxy 
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surface. After confirming the conservation of the dimensions of the micropattern, the epoxy 

replica was used for microfluidic experiments.  

 

2.6 Continuous cultures using microfluidic device 

Cleaned PDMS membrane was bonded to the coverslip (22 X 22 mm2), by plasma cleaning. 

Plasma was created from air at the vacuum pressure at 1 mbar (Emitech K050X, Quorum 

Technologies, U.K.). Device was passivated using 10 mg/ml of BSA (Sigma-Aldrich, Mumbai, 

India) for 1 hr, at 37°C, followed by an introduction of log- phase cells into the device by 

diffusion at 37°C for 1 hr. Fresh nutrients were flown in and the cells trapped in the channels 

were incubated with it for next 1 hr, before the device was attached with tubing (C- flex, ID = 

0.020 cm, OD = 0.083 cm; Cole- Parmer, USA) and assembled on inverted confocal 

microscope. Nutrients were withdrawn from appropriate nutrient source, heating at 37°C, using 

syringe pump (PHD Ultra, Harvard Apparatus, USA) at the flow rate of 0.3 ml/hr. Following 

microscopic settings were used for continuous cultures of different strains. Images were taken 

at the interval of 2 mins.  

 

Strain Objective Laser used Growth 

Medium  

Time of the 

treatment 

(hr) 

MG1655 63X/ 1.4NA 

Oil 

488 nm laser with DIC 

coupled to it. 

LB 3 hr 

MG1655 63X/ 1.4NA 

Oil 

488 nm laser with DIC 

coupled to it. 

M9 + 

succinate 

3 hr 

63X/ 1.4NA LB 1 hr 
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MG1655 + 

peGFP 

Oil 488 nm laser with DIC 

coupled to it. 

LB + HU 1 hr 

LB 2.5 hr 

ΔrecA + peGFP 63X/ 1.4NA 

Oil 

488 nm laser with DIC 

coupled to it. 

LB 1 hr 

LB + HU 1 hr 

LB 2.5 hr 

 

Table 2.2: Microscope settings used for continuous cultures. 

 

2.7 Agar pad imprinting   

The agar was embossed with micropattern using an epoxy replica. The molten agar (LB + 2% 

bacteriological agar + inducer + selection) was poured on epoxy surface and allowed to 

solidify. Log phase cells were spread on the agar surface, and incubated a 37°C for 1 hr before 

the imaging. Following microscopy arrangements were used for different strains. Cells were 

scanned at the end of every 2 mins using inverted confocal microscope. 

Strain  Objective Laser used 

MG1655 + pBAD24-hupA-

GFP 

63X/ 1.4 NA, Oil 488 nm laser with DIC 

coupled to it 

MG1655 + pBAD24-hupA-

GFP, stained with FM4- 64 

63X/ 1.4 NA, Oil 1. 488 nm laser to image the 

nucleoid 

2. 633 nm laser to image the 

cell membrane 

 

Table 2.3: Microscope settings used for live cell imaging on agar pad surface.  
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2.8 Immunoblotting and densitometry to quantify cellular RecA levels  

To detect the cellular levels of RecA in MG1655, before and after hydroxyurea (HU) treatment, 

cultures harvested prior drug treatment and after the recovery in LB, YEB and TB media. After 

equating optical densities of the cultures by appropriate dilutions, cultures were pelleted down 

and resuspended in 40 µl of 1X PBS and 10 µl of 5X SDS loading dye (250 mM Tris- Cl, pH 

6.8, 10% SDS, 50% glycerol, 0.5% Bromophenol Blue and 500 mM DTT ). Cells were lysed 

by heating the samples at 95°C for 10 mins with constant shaking at 700 rpm. Processed 

samples were centrifuged and supernatant was ran on 10% SDS gel at 120 V (BIO- RAD, 

USA). Samples were transferred to PVDF membrane (Immobilon-P transfer membrane, EMD 

Millipore Cooperation, USA). 5% milk powder in TBST buffer (Tris-Cl buffered saline, pH 

7.4 and 0.1% Tween-20) was used to avoid non- specific reaction between primary antibodies 

and membrane surface. Membrane was incubated with anti-RecA antisera56 (1:12000 dilution) 

at 4°C overnight. To increase the specificity of the reaction, anti- sera diluted to 12000 in 

blocking agent (5% milk powder in TBST buffer) was incubated with 100 ml of cell lysate of 

ΔrecA culture for 12 hrs at 4⁰C. Next step was to obtain the cell lysate. ΔrecA population was 

grown to OD600nm ~2.0, centrifuged and resuspended in PBST. Cells were burst opened by 

subjecting them to pulse sonication (ON: 1 sec, OFF: 3 secs, 30 cycles) for 2 mins. Anti-rabbit 

antibodies conjugated with horseradish peroxidase (Jackson ImmunoResearch, USA) were 

used at the concentration of 1:10000 to detect primary antibodies on the surface. Antibody was 

detected using luminol (Luminata™ Classico Western HRP substrate, EMD Millipore 

Cooperation, USA) by incubating it with the membrane and the luminescence measured (LAS 

4000, GE healthcare, USA). Loading control was set by running the same samples on SDS gel 

and comparing their intensities. To analyse the blot in ImageJ, horizontal ROI was selected 

approximately at 38 kDa (Chapter 3, Fig. 3.8) and band density was obtained, in terms of area 

under the peaks, by using ‘plot profile’ function. Percent area of each band (Iband) estimated by 
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using ‘label peaks’ function, was normalized with respect to the maximum value Imax, as shown 

in equation 1. The resultant densities (Inorm) were plotted and compared for different growth 

conditions. 

𝐼𝑛𝑜𝑟𝑚 =  
𝐼𝑏𝑎𝑛𝑑

𝐼𝑚𝑎𝑥
                                                                                                               Equation 1 

 

2.9 Bulk fluorimetry for RecA- GFP expression    

5 ml cultures of MG1655- recA- gfp were grown in LB, YEB and TB for 1, 1.5 and 2 hrs 

respectively. After withdrawing 1 ml culture, rest of the cells were subjected to 30 mM 

hydroxyurea treatment for the time equivalent to 3 generations, followed by recovery in the 

same medium for another 3 generations. Sample populations were collected from all the media 

after recovery. Cultures thus, obtained were subjected to fluorimetric analysis in order to assess 

the cellular levels of RecA- GFP as response to hydroxyurea treatment. Culture density was 

measured at OD600nm. Recovered cultures were diluted in order to match their density with 

cultures taken prior to the treatment. 50 µl of each culture was used to measure the fluorescence 

in 96- well, half- area, round bottom, black- plate (Corning USA). Samples were excited at 480 

nm and fluorescence was measured at 520 nm using Varioskan Flash multifunctional plate 

reader (Thermo Scientific, USA). To correct for autofluorescence, fluorescence values 

recorded for MG1655 culture of similar density (negative control) in LB, YEB and TB were 

deducted from measured fluorescence of MG1655- recA- gfp samples in respective media. Per 

cell fluorescence was quantified by dividing corrected fluorescence with total number of cells 

in 50 μl. 
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2.10 Marking the cell centre by photobleaching  

Repeated photobleaching was used to mark the cell midpoint of the cells membrane tagged 

with FM4- 64 (2 µg/ml, Invitrogen, USA), by increasing the laser (514 nm) intensity to 100% 

for 250 iterations (corresponding to 90 seconds) in an ROI approximately 0.3 µm wide (along 

the long-axis) at the mid-plane of the cell and perpendicular to the longitudinal axis of the cell, 

to reduce the fluorophore intensity to 0%. Images were acquired approximately for 10- 30 mins 

every 2- 4 seconds, and bleaching procedure repeated before the fluorescence recovery. 

Though 63X oil immersion was used for recording images, magnification was further increased 

by using optical zoom to varying scales for different fields of interests. 

 

2.11 FRAP measurements of MreB- YFP  

E. coli cells expressing MreB- YFP were bleached with 514 nm laser (100% intensity) at either 

of the cellular poles with 50 iterations for 1 sec, till the fluorophore intensity in the ROI drops 

to 0%. Images were recorded for next 10 mins at the interval of 1 sec in YFP as well as DIC 

channels. As a control for observational photobleaching of YFP, identical conditions were used 

to image same strain without intentional bleaching. Intensity values thus, acquired were used 

as reference values to correct the recovered intensities in bleached regions. 

 

2.12 Drug treatment in batch cultures  

E. coli cultures were grown either in LB or in M9 supplemented with succinate for 3 

generations (1 hr for LB and 3 hrs for M9 + succinate) at 37°C, 180 rpm. Cells were then 

treated with an appropriate drug for next 3 generations. For MG22 cultures 2 mM of IPTG was 

added along with the drug, in order to induce the culture. Also, only for MG22 cultures, half 

of the culture volume was withdrawn right after the treatment and other half was subjected to 
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the similar growth conditions as that of the other E. coli strains. Cells were washed with PBS 

and were subjected to recovery under identical incubation conditions, after adding fresh growth 

medium (with or without required inducer) for 3 generations. Cells were harvested, fixed and 

imaged. Following are the details about the various drug treatments carried out for different E. 

coli strains.    

 

Strain Drug  Concentration(s) 

MG1655 Hydroxyurea 0 mM 

10 mM 

30 mM 

70 mM 

100 mM 

ΔrecA Hydroxyurea 0 mM 

10 mM 

30 mM 

70 mM 

100 mM 

ΔsulA Hydroxyurea 0 mM 

10 mM 

30 mM 

70 mM 

100 mM 

ΔslmA Hydroxyurea 0 mM 

10 mM 
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30 mM 

70 mM 

100 mM 

ΔrecA + pRecA- mCherry Hydroxyurea 0 mM 

10 mM 

30 mM 

70 mM 

100 mM 

MG1655- recA- gfp Hydroxyurea 30 mM 

ΔrecA + pBAD24 recA Hydroxyurea 30 mM 

MG1655 Trimethoprim 1 µg/ml 

MG22 A22 1 µg/ml 

MG22 Cephalexin 10 µg/ml 

MG22 Chloramphenicol 10 µg/ml 

MG22 Rifampicin 1 µg/ml 

MG22 Hydroxyurea 1 mM 

  6.6 mM 

  13.2 mM 

  20 mM 

  26 mM 

 

Table 2.4: Drug concentrations used to treat the batch cultures of E. coli (Chapter 3 and 4).  
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2.13 Motility analysis  

5 µl drop of polystyrene beads and log- phase cultures of RP437, DH5α, MG1655, ΔrecA, 

ΔsulA, ΔslmA was placed in a motility chamber which was devised by sticking double- back 

tape cut in the centre on a glass slide. After the suspension was put inside, chamber was sealed 

using glass coverslip. Assembly was observed and recorded using epifluorescence microscope 

(Carl Zeiss, Germany), under 40X/ 1.5 NA in DIC channel at the interval of 500 msecs for 2 

mins. 

 

2.14 Colony competition assay  

E. coli cultures transformed either with peGFP or with pmCherry were mixed together at the 

cell density of approximately 106, in the proportion of 50 : 50. 2 µl of the mixed culture was 

placed on the surface of LB agar (2.5% LB + 2% bacteriological agar) to form a “homeland 

region” of approximately 1 mm of size. Growth of the colony was then observed under 

stereoscope (Olympus, Japan) under 0.63X magnification in GFP, RFP channels and in the 

Bright field at the end of every 12 hrs. To maintain the continuity in the orientation of colony 

while imaging, base of the petri plate was marked with a cross, which was then matched with 

the cross wires in the ocular piece of the microscope, as explained in Fig. 2.1.    



63 | P a g e  

 

 

 

Fig. 2.1: Orientation of an E. coli colony in the field of view. 

 

2.15 Data analysis and statistics  

1. Bacterial growth measurements 

Growth rates as well as doubling time of the batch cultures of E. coli MG1655 under different 

growth conditions were retrieved by fitting the population density measurements to the logistic 

function.  

2. Cell length analysis and estimation of heterogeneity in the cell lengths 

DIC images of the cells were analysed for cell length estimation, using in- house developed 

MATLAB ‘gradient detection program’54. Cell length distribution, obtained, was then fit to 

log- normal function to extract mean, variance of the distribution in MATLAB (Mathworks 

Inc. MA, USA), with ‘lognpdf’ and ‘lognstat’ functions (Appendix D, D.1). Validity of the test 

was tested statistically by Kolmogorov- Smirnov (KS) test for number of bins, n = 44 and 

significance level, α = 0.01. The test statistics D (α, n) is given as57,   

𝐷(𝛼,𝑛) =  √
− ln(𝛼/2)

2𝑛
                                                                                                     Equation 2 

Difference dmax, between cumulative distribution function of the fit and data was compared. 

Goodness of the fit holds true only if dmax > D (α, n)
57. Cell length variability of the population 
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measured as the ratio of the mean cell length to the standard deviation in the length, which is 

also termed as the coefficient of variation. 

3. ImageJ based analysis of the cells 

Lengths of the cells grown in microfluidic device as well as MG1655- recA- gfp were analysed 

interactively in ImageJ (v1.5f)58 from their respective DIC images, by drawing LOI along cell 

contour. For MG1655- recA- gfp strain, same contour was imposed on corresponding images 

in DAPI and GFP channels. Only those intensity peaks that showed overlap, upon merging the 

cell intensity profile in both channels were counted as a confirmation of colocalization between 

genomic DNA and RecA foci.  

Kymographs of peGFP transformed cells in ‘mother machine’ were made in ImageJ using 

‘multiplekymograph plugin’. LOI was drawn along selective channel lengths, in order to 

represent cellular dynamics over time. 

4. Estimation of noise in the gene expression in MG22 populations 

Images were processed and analysed in ImageJ (v1.50f) to determine the noise in gene 

expression as well as in the cell lengths of MG22 population. Images acquired in YFP channels 

were translated linearly by 1 pixel in X and Y directions to correct the offset between CFP and 

YFP channels. Cell contour was manually extracted from DIC images and then overlaid on 

corresponding CFP and YFP images. Grey value of each pixel covered by cell contour was 

measured and average intensity of CFP and YFP molecules within the cell was calculated. 

Length of the contour was assumed to be equal to the cell length. Intensity as well as cell length 

values, thus, obtained were used to calculate Variation in the gene expression and cell lengths 

in the population.  

5. Analysis of growth asymmetry in E. coli MG1655 cells using MATLAB 
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Modified ‘gradient detection programme’ developed in MATLAB (by Prangya Mishra, 

unpublished data) was used to detect the contours of DIC images of E. coli cells and track down 

their ends through the time. XY coordinates of the ends were used to calculate the total as well 

as cumulative growth of each end, using ‘Euclidean distance formula’. Cumulative distance 

thus obtained against time was fit to exponential function to find the growth rate of each end. 

6. Assessment of distribution of MreB loci along the cell length    

A macro was developed in ImageJ to automate the measurement of area occupied by MreB 

foci in each cell half. Code processes DIC image to extract an outline of the cell, which is 

divided into half and superimposed on corresponding image of MreB puncta in YFP channel. 

Puncta are then detected and their area is estimated by ‘Analyse Particle’ module. Macro 

outputs the ratio of sum area of MreB foci to the area of a cellular half in which foci have been 

detected (Appendix C, Appendix D, D.2). 

For the analysis of FRAP, intensities corresponding to first 50 time points (50 secs) were 

considered. To correct for extensive fluorophore photobleaching observed during image 

acquisition, an exponential function was fit to experimental intensity values of reference ROI 

to obtain a decay rate of -0.005 AU/sec, which was then used to back- calculate the corrected 

intensity values for FRAP ROI, by dividing the acquired intensities with exponential decay 

rate. Corrected intensity values were normalized and fit to single exponential function to 

calculate mobile fraction and half recovery time of MreB molecules in bleached ROI. 

Corresponding DIC images of the cell were used to assess the growth near the poles using 

‘MultipleKymograph’ plugin and ‘tsp050706’ macro in ImageJ. 

7. Statistical analysis 

GraphPad Prism 5 (GraphPad software) was used to apply an ‘unpaired t test’ to affirm the 

difference between the two distributions.  
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8. Motility analysis in various strains of E. coli   

For motility analysis of E. coli cells, DIC time series was processed using ImageJ (v1.5f) 

‘Particle Tracker’ plugin. Difference between the X and Y coordinates at two consecutive time 

points, was considered as the distance covered in a single step. Distribution of such 

displacements was fit to Gaussian distribution (Appendix D, D.3) to extract the average 

displacement (µ) and the standard deviation (σ). Later was then used to compute the coefficient 

of diffusion.
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Results 

 

Genesis of phenotypic diversity in Escherichia coli populations that occurs independently of 

variations in genetic make- up has been the focus of this thesis. To outline the possible reasons 

leading to the phenotypic heterogeneity, we made an attempt to assess the fluctuations in the 

cell lengths of a model organism Escherichia coli. 

Each section in the ‘result’ part represents a different point of view used to investigate into the 

problem. We considered the effect of growth environment, genetic fluctuations and random 

segregation of sub- cellular molecules during cytokinesis. Though they seem to be three 

independent studies, we further set out to bridge them together. These chapters are as follows:  

Chapter 3: Threshold effect of growth rate on the cell size distribution of an isogenic 

population of Escherichia coli MG1655 

Chapter 4: Stochasticity in DNA replication process modulates the intrinsic noise in the 

genetic circuit of Escherichia coli MG22   

Chapter 5: Asymmetric growth of an Escherichia coli cell 

 

Last section is our venture into understanding the consequences of deviation in the cell size of 

an individual cell on the population. Preliminary studies that review the changes in the colony 

patterning due to size variations have been explained in: 

Chapter 6: Colony competition and spatial patterns in isogenic populations growing from 

a central “homeland” 
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Chapter 3 

Threshold effect of growth rate on the cell size distribution of an isogenic population of 

Escherichia coli MG1655  

 

3.1 Motivation 

Though, diverse shapes and sizes have been observed in prokaryotic kingdom, each micro –

cell is programmed to maintain and replicate its unique, shape as well as size through the 

generations. A typical rod shaped E. coli cell, for instance, elongates during its growth phase 

while approximately maintaining a constant cell diameter, before it divides symmetrically 

around its mid- plane into two rod shaped daughter cells59. Size of a new- born Escherichia 

cell, in abundance of nutrients, averages around 2 µm60. Cell recruits various checkpoints to 

preserve its cell size. When E. coli cell extends by a constant mass in each cell cycle23, these 

checkpoints control the spatio- temporal configuration of the septum within mother cell and 

generate two daughters of identical lengths. 

MinCDE is the prominent system that protects the cell poles from FtsZ polymerization, thus 

minimizing the risk of formation of mini- cell or ghost cells in the population61–63. Nucleoid 

occlusion impedes untimely Z- ring polymerization in mid- cell before the genomic DNA is 

segregated, thus ensuring an unbiased distribution of genetic material between two sisters29,64.  

Temporal coupling between DNA replication and cell division is achieved with the help of 

SOS response. RecA, an initiator of SOS pathway, plays a pivotal role not only in repairing the 

DNA anomalies, but also it puts the cell division on hold till the DNA is repaired. After RecA 

molecules polymerize at break site on DNA, conformational changes in the protein enables it 

to interact with LexA and evoke its auto- protease activity33,34. LexA functions as a repressor 

for the expression of SOS box proteins. Drop in its cellular levels, triggers the manufacture of 
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proteins that are involved in DNA repair as well as blocking cell division. SulA, is a well-

known inhibitor of cell division, sequesters of FtsZ monomers, thus shifting the equilibrium 

towards the depolymerisation of Z- ring 35. 

Despite of several checks on cell partition, isogenic E. coli population shows occasional 

occurrences of elongated cells. Cell length distribution of wild- type E. coli cells growing under 

standard laboratory conditions, is always right- skewed log- normal function and extends to 10 

µm36, suggesting the episodes of random events in an individual cell, that makes cell escape 

the cytokinesis. 

Filamentation occurs when cell growth goes uninterrupted without cell division. Several 

untimely events can cause hindrance to the septation. Observations of most of the elongated 

cells have shown the presence of unsegregated nucleoids that pauses the division and results in 

filamentation65. Deletion of nucleoid segregation protein, MukB leads to the similar effect66. 

Percent filamentous cells increase in the population when DNA repair system if frustrated. For 

instance, our earlier work with clonal population of E. coli DH5α and HB101 revealed that the 

cell size of an organism can reach upto 20- 25 µm (Fig. 3.1)54. Both organisms are known 

laboratory strains, popularly used for cloning. To avoid any genetic modifications in foreign 

DNA, both strains harbour genetic copy of mutated recA gene (recA1) that expresses disabled 

RecA protein, incompetent to repair damaged DNA. However, the protein can hinder the cell 

division through SulA mediated inhibition of FtsZ polymerization and eventual cell division. 

Division cycle skip, thus, ends up in the generation of an elongated cell. 
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Fig. 3.1: Cell length distribution in E. coli populations with mutant copy of recA (Reprinted 

from Athale and Chaudhari, 2011 with permission54. Copyright obtained from Oxford 

University Press (Appendix E, C8)). 

 

Apart from this, disturbed stoichiometry of numerous proteins involved in the cell division can 

postpone the septation. Studies have shown that modulation of the ratio of FtaZ : FtsA 

molecules within a cell, can suspend cytokinesis resulting in filamentation of an organism67,68.       

In classical microbiology, filamentation of bacterial cells has been seen as organismal response 

to environmental insults69. Recent focus on host- pathogen interactions have discovered that 

filamentation can be provide a great getaway to uropathogenic Escherichia coli cells from 

innate immunity70. Development of elongated phenotype has been suspected to promote the 

survival. In Burkholderia pseudomallei, for example, higher rate of survival is found to be 

coupled with higher incidents of filamentation in the population71. In Proteus mirabilis 

elongated cells could swarm easily to evade host defence system72. Though torrent of data have 

pinned environmental cues as a reason for switch of microorganisms to filamentous form, 

underlying molecular mechanisms are still uncovered. The chapter aims at unveiling the 

molecular dynamics that tune environmental modulations with occurrence of filamentation 

together in genetically identical population. 
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In 1958, Schaechter et al; device a growth law that implicated growth rate of an organism as a 

controller of the new- born cell volume73. Recent experiments have affirmed that changes in 

the growth rate of an organism, which in turn, has a great impact in its cell size23. 

This section probes into possible relationship between growth rate and cell length variations in 

the clonal populations.  

 

3.2 Cell size distributions in E. coli batch cultures 

For pilot experiments the clonal population of wild- type E. coli was grown in batches, under 

various growth conditions. We reviewed the fluctuations in the cell phenotype, when growth 

rate is changed through the modulation of physical factors like temperature and nutrient 

sources. Analysis stands as a starting point for further experiments in which we have attempted 

to introduce more complex growth conditions and test their effects on cell length distribution 

in bacterial community.  

3.2.1 Population growth rate modulation   

We proposed to change the population growth rate by tweaking the physical factors. Wild- type 

populations growing in LB were subjected to four different temperature conditions, for 

increasing temperature accelerates the rate of the biochemical reactions and hence the growth 

of the cell. In another set of experiments, nutrient source (carbon source) was changed in order 

to modulate the growth rate (Fig. 3.2 A and B). Microbial growth was followed over time till 

it hits the maximum carrying capacity (K) of the media and data was fit to the logistic growth 

equation (Equation 2) to extract the growth rate74,75: 
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𝑁(𝑡) =  
𝑁(0)∗𝐾

𝑁(0)+(𝐾−𝑁(0))∗𝐸𝑥𝑝(−𝑟∗𝑡)
                                                                                  Equation 3 

Where, N(0) is an initial population density and N(t) is the population density at time t. Growth 

rate is indicated by r, while K stands for the carrying capacity of the medium. Doubling time 

(td) was then computed simply as the inverse of growth rate, r10. 

𝑡𝑑 =  
1

𝑟
                                                                                                                      Equation 4 

Proliferation of the cells were higher at 42°C. While LB, being the rich source of nutrients 

accelerated the growth of bacteria to the maximum (Table 3.1 and 3.2).  

 

Temperature (⁰C) Carrying capacity Growth rate 

(generation/ hr) 

Doubling time 

(min) 

22 3.194 0.8986 66.77 

30 3.011 1.604 37.41 

37 2.918 2.067 29.03 

42 2.48 2.01 29.85 

 

Table 3.1: Growth rate of MG1655 populations at different temperatures.
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Medium Carrying capacity Growth rate 

(generation/ hr) 

Doubling time 

(mins) 

LB 2.934 1.814 33.11 

Yeast Extract 2.593 1.505 39.87 

Tryptone 2.515 1.049 57.2 

M9 + Glucose 3.028 0.9504 63.13 

M9 + Succinate 2.464 0.4546 131.98 

M9 + Acetate 1.43 0.2195 273.35 

 

Table 3.2: Growth rate of MG1655 populations in different nutrient media.
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Fig. 3.2: Growth rate modulation of E. coli. The logarithmic growth of MG1655 population 

(A) grown in LB at different temperatures and (B) in different media has been plotted as a 

function of time on linear abscissa. Encircled time points on each growth curve represent mid- 

log phase from which cells were sampled for further analysis.    

 

3.2.2 Effect of temperature changes on cell length variability 

Cell lengths of isogenic populations were compared across the mid- log phase cultures to 

decouple results from the effect of growth phase on cell size. DIC snapshots of these cells were 

analysed for cell lengths by in- house ‘Gradient Detection Programme’ developed in 

MATLAB54. Cursory observations revealed that the cell length distribution of the population 

grown in LB medium extends up to 10 µm, which is consistent with earlier reports36. 

Interestingly, the trend was found to be similar across all the temperatures, in spite of change 

in the population growth rates. We further, characterized the distributions by fitting the data to 

log- normal function (Appendix D, D.1). We retrieved similar values for average cell lengths 

as well as its variance at four temperatures (Fig. 3.3).  
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Fig. 3.3: Population cell size distribution at different temperatures. Cells grown at four different 

temperatures were harvested in the mid- log phase, fixed and imaged in DIC. Scale bar- 5 µm. 

The respective population cell length distribution fit to the log- normal function (solid red line) 

have been shown next to each image.  
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Phenotypic fluctuations were measured in terms of coefficient of variation for an individual 

population, which is a ratio of the standard deviation (σ) in population cell lengths to the 

average cell length (µ).  

𝐶𝑒𝑙𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝜎

𝜇
                                                                                    Equation 5 

Cell length variability in wild- type population, as validated by statistics, was similar across all 

the temperatures, which was reflected in the plot of cell length variability against population 

growth rate at four different temperatures (Fig. 3.4 A and B). 

 

 

Fig. 3.4: Cell length variability across the temperature. (A) Coefficient of variation of 

population cell sizes is calculated for the populations grown at 22°C (red), 30°C (blue), 37°C 

(black), 42°C (green). Error bars- standard deviation. (B) Cell length variability in wild- type 

populations has been plotted with respective population growth rates. Error bars- standard 

deviation.      
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3.2.3 Effect of changes in nutrient availability on the cell size variation 

When nutrient source was changed we found apparent decrease in average cell size with 

decrease in the growth rate. Observation was consistent to the earlier studies76. More analysis 

of the cell lengths by comparing them against log- normal equation (Appendix D, D.1) showed 

a gradual decrease not only in the average but also in the variance of the distribution with 

decrease in the growth rate (Fig. 3.5). For further detailed analysis, coefficient of variation was 

determined for each population propagated in different media and was correlated with 

respective growth rates. 

 

 

Fig. 3.5: Population cell size distribution in different growth media. Cells collected from mid- 

log phase were fixed and imaged in DIC for each nutrient condition. Scale bar- 5µm. Their 

respective cell length distribution was fit to log- normal distribution (solid red line), which has 

been validated statistically by KS- test. 
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Cell length analysis of the populations grown in different nutrient media showed two distinct 

regimes separated by a threshold corresponding to the growth rate of 1 generation per hour (red 

solid line). Cell length variability showed monotonous increase in the region corresponding to 

the growth rate greater than 1 generation per hour. However, cell length variability evaluated 

for the populations growing slower than the threshold growth rate was found to be similar (Fig. 

3.6). Results clearly suggested the nutritionally imposed growth rate dependence of cell length 

variability. Assessment of steady- state batch cultures however, face major set- back in that 

cells lack synchronous growth. Asynchrony in an individual cell cycle introduces the cell cycle 

dependent noise in the lengths. Hence, we decided to examine variations in the cell lengths in 

more controlled environment.   

 

 

Fig. 3.6: Growth rate dependence of cell length variability. Population cell length variability 

measured in terms of coefficient of variation has been plotted as a function of respective growth 

rates in different nutrient media (C). Error bars- standard deviation. 
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3.3 Noise in the cells of the similar age 

To study phenotypic heterogeneity in synchronous cultures, we assessed (a) micro- colonies 

originated from single E. coli mother cell and (b) individual cells at the time of division or 

birth. Analysis served to estimate the variations in E. coli cell lengths independent of the cell 

cycle stage. 

3.3.1 Analysis of micro- colonies 

Micro- colony spawned from single mother, consists of sisters with identical genomic DNA as 

well as cells in similar period of life cycle. Wild- type E. coli cells were grown on LB agar pad 

and their proliferation was captured at regular time intervals using confocal set- up. Though 

isogenic in nature, cells proliferated with different pace (Fig. 3.7 A and B). Distribution of cell 

lengths pooled from the analysis of 13 micro-colonies was similar to that of batch- cultures in 

LB and hence, was consistent to our previous results. Cell lengths of the population range 

between 1.5 µm to 8 µm. Modal value resided around 2.5 µm, while mean cell length was 

found to be 3.25 µm, with variance of 0.7688 (Fig. 3.7 C). Individual micro- colony was 

subjected to an interactive analysis for their cell lengths. Coefficient of variation estimated 

from the data was then compared with reference to the colonial growth rate (Fig. 3.7 D). 

Consistent with our previous data, growth rate of 1 generation per hour coincides with an 

inflection point, which implies that micro- colonies with high growth rate show more 

phenotypic fluctuations, while micro- colonies with slower proliferation had cells of similar 

sizes. Our results underlined that cell size variations show strong correlation with growth rate 

and also is independent of cell cycle phase.
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Fig. 3.7: Analysis of micro- colony. (A) Representative images of micro- colony proliferated 

from a single mother has been shown in DIC. Scale bar- 5µm. (B) End points of three colonies 

growing at different growth rates have been shown. Scale bar- 5 µm. (C) Frequency distribution 

of cell lengths pooled from over 13 micro- colonies was fit to log- normal function (solid red 

line) (D) Noise in cell lengths estimated for an individual micro- colony has been plotted as a 

function of its respective growth rate.
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3.3.2 Analysis of continuous cell cultures  

Further evidence came from continuous cultures of MG1655 cells. Measurement of the cell 

sizes either at birth or before cytokinesis, helped calculate noise in populations of identical age 

(Fig. 3.8 A and B). In two different experiments, we supplemented cells with LB and M9 + 

succinate. Fast growing cells show wider distribution of the birth lengths that extended from 2 

µm to 5 µm. While, the distribution of the division lengths spread from 3 µm to 10 µm. Cell 

length distributions of cells grown in minimal media, were more compact at both the life events 

with considerable decrease in the average values as compared to the cells in LB (Fig. 3.8 C and 

D). Moreover, coefficient of variations, evaluated for each conditions, were in agreement with 

the values reported from batch cultures (Table 3.3).  

 

Media Event Mean (µm) Coefficient of 

variation 

LB Birth 2.729 0.3178 

LB Division 5.2694 0.3115 

M9 + Succinate Birth 1.4913 0.1567 

M9 + Succinate Division 3.2352 0.1393 

 

Table 3.3: Cell length variability of MG1655 in continuous culture. 

 

Thus, having established the correlation between cell size variation and population growth rate 

we moved on to search for an underlying mechanism.
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Fig. 3.8: Continuous cultures of E. coli cells. (A) Cells of MG1655 were grown in a 

microfluidic device and imaged in DIC (scale bar- 10 µm) (B) Cells growing in the channels 

are measured interactively for their lengths at the event of cytokinesis (dotted blue line) and at 

the birth of two daughter cells (dotted green and red lines) in ImageJ. (Scale bar- 5 µm). 

Population length distributions of MG1655 cells grown continuously either in LB or in M9 

supplemented with succinate have been shown for (C) birth and (D) cell division and were fit 

to the log- normal distribution (solid red line).  
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3.4 Correlation between cell length variability and DNA replication 

Growth rate determines the relative rate of DNA synthesis in an individual cell. Single cell 

proliferating at higher growth rate fires replication round more than once in order to 

compensate for reduced time for completing the cell cycle. Thus, cell with a doubling time less 

than 60 mins, harbours 4- 6 replication forks at a given time24. In other words, with increase in 

the growth rates, there is an increase in the relative rate of DNA synthesis as well as the 

genomic content of per cell. We quantified the genomic content of the cell (G) using a formula 

proposed by Cooper and Helmstetter based on multi- fork replication model of an E. coli cell24. 

𝐺 =  
𝜏∗(2

(𝐶+𝐷)
𝜏⁄ −2

𝐷
𝜏⁄ ) 

𝐶∗𝑙𝑛2
                                                                                                  Equation 6 

Values of C and D are taken to be constant and are 40 mins and 20 mins respectively. Doubling 

time of the culture retrieved from different experiments was substituted in place of τ, in order 

to compute the genomic content (G).  

As predicted, plot of genomic content against population growth rate showed a trend similar to 

that of cell length variation (Fig. 3.9 A). Moreover, correlation between cell length variability 

and estimated genomic content of the cell for respective population growth rates, was revealed 

to be linear (Fig. 3.9 B), implying the role of replication process in the existence of phenotypic 

noise in isogenic populations.
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Fig. 3.9: Correlation between cell length variability and per cell genomic content (A) Cell 

length variability (black solid line) and genomic content of an individual cell (blue solid line) 

have been plotted as a function of growth rate. Red line corresponds to the growth rate of 1 

generation per hour. Error bars- Standard deviation. (B) Cell length variation (black filled 

circles) plotted against genomic content per cell was fit to the linear function (red solid line).
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In bacteria, the process of DNA duplication is tightly coupled with cell division. Hence, random 

fluctuations in earlier process can put later on the halt. Multifork replication increases the 

probability of stochastic replication fork stalling, which in turn, adds up in the events that lead 

to the cell division delay. These fluctuations at single cell level, can cause cell length variation 

in population. 

We then proceeded to test the hypothesis, with the help of genomic mutations and 

environmental perturbations. 

 

3.5 Estimation of cell size variation in genetically mutated populations 

In E. coli, cell division is tightly coordinated with DNA replication. Mechanisms that couple 

these two events comprise SOS response pathway and nucleoid occlusion27. Stalled replication 

fork is repaired by RecA which also promotes expression of SulA, by inducing auto- cleavage 

of LexA, repressor protein for SOS box. SulA, an effector of SOS pathway, delays cell division 

by sequestering FtsZ molecules34,35. On the other hand, nucleoid occlusion pathway involves 

SlmA that evokes disassembly of Z- ring over DNA molecules, thereby preventing septation 

across genomic DNA29. Absence of any of these proteins can disrupt the coordination between 

replication and division. We characterized the populations of genetically disabled cells in order 

to check the effect of replication stochsticity on occasional filamentation in clonal population. 

3.5.1 Cell length variability in deletion mutants of E. coli 

Since, size variation was reckoned with presence of defective copy of RecA in our previous 

studies54, perusing of SOS mutants became the prime focus of our studies. Cell length 

distributions of mid- log phase cultures ΔrecA and ΔsulA strains were compared with that of 

the wild- type. Deletion of recA gene was observed to cause increase in the frequency of 

elongated cells in culture. Also, cell length distribution extended to 15 µm, though there is no 
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significant shift in the mean cell length, as tested by log- normal function. Cell length 

distribution in ΔSulA populations, however, was found to be more compact than MG1655 (Fig. 

3.10 A). Coefficient of variation scored for the population cell lengths showed that cell length 

variability in recA deletion mutants is higher than the wild- type, while it was minimized in the 

populations with zero SulA molecules to inhibit cell division (Fig. 3.10 B). 

 

 

Fig. 3.10: Cell length variation in mutant populations. (A) Cell length distributions for isogenic 

populations of MG1655, ΔrecA and ΔsulA harvested in the logarithmic phase of the growth, 

were fit to the log- normal distribution (red solid line). (B) Cell size variation in each population 

has been estimated in terms of coefficient of variation. 
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3.5.2 Rescue of ΔrecA phenotype using ectopic expression of RecA        

RecA is an initiator of SOS response pathway. Hence, its absence mitigates the ability of the 

cell to recuperate the stalled replication fork. Incompletely replicated as well as segregated, 

nucleoids, in that case, put the cell division on hold and cell continues to elongate into 

filamentous morphology. Hence, as a next step, we took a glance at the population length 

distribution of ΔrecA strain overexpressing RecA either as RecA- mCherry or as native RecA 

protein. Our objective was to observe for reshaping of size distribution, when RecA is provided 

externally to the system with deactivated RecA expression. In the populations harvested from 

mid- log phase, distribution of the cell lengths extended till 10 µm, similar to the populations 

of MG1655 expressing either RecA- mCherry or RecA ectopically (Fig. 3.11 A). Note that 

RecA- mCherry expression, though controlled by Plac, did not require an addition of an inducer 

to the medium, owing to the leaky nature of the promoter (Appendix B). On the contrary, 

expression of RecA under the control of PBAD, required addition of arabinose to the medium. 

Coefficient of variations calculated for cell sizes of four individual populations were found to 

be comparable (Fig. 3.11 B). Results were suggestive of involvement of RecA mediated SOS 

repair pathway of DNA replication in cell size variation.  
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Fig. 3.11: Rescue of phenotype in ΔrecA populations by ectopic expression (A) Cell length 

distribution of log phase populations of MG1655 and ΔrecA transformed either with pRecA- 

mCherry or with pBAD24- recA plasmid were fit to the log- normal equations (red solid line) 

(B) Coefficient of variations measured for the same have been shown. 

 

Further validation for this hypothesis was received by cataloguing the changes in size 

distribution in various E. coli populations, upon ameliorated frequency of replication halts. 

According to our plan, accelerated replication cease per cell, might highlight the effect of 

random replication stalls on cell size. Observation, when coupled with the analysis of deletion 

mutants would help confirm the molecular players in non- genetic size heterogeneity.    
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3.6 Effect of replication stalling on cell lengths 

Hydroxyurea (HU) inhibits the penultimate step of de novo synthesis of dNTPs in bacterial 

cell, by blocking ribonucleotide reductase enzyme77, though recent report has suggested that 

HU directly damages DNA rather than to interfere with RNR function78. Nevertheless, the 

strategy was used to increase the events of replication fork stalling to study the occurrence of 

filamentation in batch as well as continuous cultures. Results enabled us to connect random 

fluctuations in the replication process with phenotypic variation in the clonal populations.   

3.6.1 Effect of hydroxyurea on batch culture population 

Hydroxyurea treatment was carried out at two different growth rates achieved by growing cells 

in two different media, viz., LB and M9 + succinate. Size variation was studied with respect to 

the increasing concentrations of hydroxyurea. Four different strains, viz., ΔrecA, ΔslmA, ΔsulA 

and ΔrecA bearing pRecA- mCherry plasmid were chosen for these studies and were compared 

against wild- type strain for cell length variability. Except for ΔsulA cells, all other strains when 

grown in LB, respond to the treatment, with linear increase in the size variation till hydroxyurea 

concentration reached to 30 mM. For slow growing cells, cell length variation was minimal 

and did not change with an increase in hydroxyurea concentration. Fast growing ΔrecA 

populations showed the highest fluctuations in the size, while ΔSlmA culture exhibited the trend 

exactly similar to that of wild- type. Trend of size fluctuations in ΔrecA mutants was restored 

to that of MG1655, upon overexpression of pRecA- mcherry protein in the cell (Fig. 3.12 A).  

Moreover, treatment of MG1655 populations with trimethoprim increases the cell length 

variations at high growth rates (Fig. 3.12 B). Considering the inhibition of Dihydrofolate 

reductase and subsequent reduction in dNTP pool by trimethoprim79, the results upheld our 

proposition that the random fluctuations in the replication as a possible mechanism for non- 

genetic size variation in clonal populations. We buttressed the observation further by observing 

similar effect in continuous cultures.
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Fig. 3.12: Effect of replication stalling on population variation of cell length (A) Variations in 

the cell lengths in the populations of MG1655, ΔrecA, ΔslmA, ΔsulA and ΔrecA transformed 

with pRecA- mCherry grown either in LB (black solid lines) or in M9 + succinate (red solid 

lines) are plotted as the function of hydroxyurea concentration. Error bars- standard deviation. 
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(B) Cell length variations of wild- type populations are compared for the trimethoprim (red) 

and hydroxyurea (blue) treatments. 

 

3.6.2 Effect of hydroxyurea on continuously growing populations     

Continuous cultures provide an advantage of examining the phenotypic variations in live cells 

under experimental conditions. MG1655 and ΔrecA strains were chosen for this set- up. 

Analysis of MG1655 cells help conclude the effect of replication stops on cell size in wild type 

populations, while use of ΔrecA populations not only help authenticate our observations in 

wild- type populations but also supply an evidence for the possible role for SOS response in 

cell length variability. Both the populations (in different microscopy arrangements) were 

allowed to grow continuously in LB for 1 hour. Growth was followed sequentially by 

hydroxyurea treatment for 1 hr and recovery for 2.5 hr. Differential response to the 

hydroxyurea in isogenic populations was observed. In some of the microchannels, cells 

continued the growth to generate healthy cells of around 2 µm size (Fig. 3.13 A and C), while, 

other bacterial cells start elongating during recovery phase. However, not all the cells in 

channels elongate, contributing to the size variation (Fig. 3.13 B and D). In many other micro- 

channels, we observed that filamentous cells divided asymmetrically giving rise to two 

daughters, during their recovery. One of daughter cells continued growing normally, while in 

other daughter cell, division remained arrested, leading to the population size variation. 

Experiment, thus, supports our hypothesis which predicts the role of stochastic replication 

arrests in length heterogeneity. Moreover, it set the precedence for investigating into the 

molecular mechanism.
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Fig. 3.13: Effect of hydroxyurea treatment on continuous cultures (A) and (B) represent two 

separate microchannels in mother machine device used to grow MG1655 temporally. While, 

(C) and (D) represent the growth of ΔrecA cells in microfluidic device through the time. 

Kymograph scale bar: Horizontal scale bar- 2 µm, Vertical scale bar- 100 secs. Montage scale 

bar: 2 µm.
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3.7 Correlation between cell length variability and the frequency of replication fork 

stalling             

RecA is known to get recruited at stalled replication forks to launch DNA repair mechanism 

termed as SOS response31. It makes RecA, an excellent marker to locate stalled replication 

fork. MG1655 cells expressing RecA- GFP endogenously, were grown in three different 

nutrient media (Fig. 3.14). We scored all the three populations for number of cells with RecA- 

GFP puncta coinciding with DAPI stained genomic DNA.  Estimated proportion of population 

with RecA and nucleoid colocalization was found to be linear with growth rate. Treatment with 

hydroxyurea, indeed, increased the occurrence of such cells in growth rate dependent manner 

(Fig. 3.15 A and B). We further tested the proportion of the cells with reference to the cell 

length variation in respective populations. A linear correlation between the cell length 

variability and the replication fork stalling events (Fig. 3.15 C) was detected. It thus, establishes 

the molecular link between replication stochsticity and cell size variation in E. coli populations.
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Fig. 3.14: Colocalization of RecA with the nucleoid. MG1655 expressing RecA- GFP 

endogenously was grown either in LB or in YEB or in TB. Mid- log phase culture was 

visualized in DIC, GFP and DAPI channels. First two columns show the control populations, 

while the two rightmost columns indicate the effects of hydroxyurea on bacterial populations. 

Scale bar- 5 µm.
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Fig. 3.15: Correlation of replication stalling and growth rate. Proportion of population with 

RecA colocalized with nucleoid was quantified for the control populations (black) as well as 

the hydroxyurea treated populations (red) and has been plotted as the function of respective 

growth media (A), population growth rate (B) and population cell length variation (C).   

 

3.8 Expression of RecA as a response to increased DNA breaks  

Relationship was further confirmed by measuring intracellular RecA levels after the 

introduction of hydroxyurea into the system and comparing them with RecA expression prior 

to the treatment. Fluorimetric analysis of MG1655 expressing endogenous RecA- GFP showed 

marginal increase in GFP signal after HU treatment at all the growth rates (Fig. 3.16 A). 

Fluorescence ratio of treated samples to that of untreated averaged around 1 (Fig. 3.16 B).  

However, GFP is not a native protein to E. coli. We considered a possibility of retention of the 

tag in the cell, after the destruction of native part of the fusion by proteases. It might have 

interfered with our readings and hence cellular RecA levels in MG1655 cells subjected to 

identical growth conditions (Fig. 3.16 C) were probed, using rabbit anti- sera developed against 

E.coli RecA56. We observed that the RecA expression almost doubled up (Fig. 3.16 D), after 

HU treatment, while the levels of other cellular proteins, as analysed by Coomassie blue 

staining, were exactly comparable under both the conditions (Fig. 3.16 E and F). 
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In addition to this, endogenous RecA- GFP levels in MG1655- recA- gfp strain grown in LB 

were also analysed. (Fig. 3.16 G). Result obtained were comparable to RecA levels in wild- 

type strain. Both the organisms showed 2.5 times increase in RecA expression, upon HU 

treatment (Fig 3.16 H). Consistent with our earlier observations, expression of other proteins 

remain unaltered after changes in growth conditions (Fig. 3.16 I and J).  

Experiment attests RecA as one of important molecular players in cell size heterogeneity in an 

isogenic populations, mediated by inherent stochasticity present in DNA replication process.
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Fig. 3.16: Changes in the expression of recA gene after HU treatment (A) Fluorimetric analysis 

of RecA molecules by counting the GFP signal. The cells with endogenous recA-gfp gene under 

the native control were grown in LB, YEB and TB. Black bars represent untreated populations, 

while red bar stand for the population treated with hydroxyurea (B) The ratio of GFP signal in 

untreated cells to that in treated cells have been shown for LB, YEB and TB media (C) 

Immunoblot to probe RecA protein in HU  treated and untreated populations grown either in 

LB or in YEB or in TB. Yellow box indicates the approximate positions for 38 KDa, while 

green and red represent the positions for 70 KDa proteins on the blot. (D) Densitometric 

quantification of an Immunoblot has been shown (E) Identical samples were analysed for 

protein load on SDS gel stained with Coomassie Blue. Random horizontal lanes (black, yellow 

and green) were selected, quantified and their averages have been shown in (F). Error bars- 

standard deviation (G) Western blot analysis of RecA- GFP levels in MG1655- recA- gfp strain 

prior HU treatment and after HU treatment. Yellow box represents the approximate position of 

70 KDa protein on the blot (H) Quantification of the blot has been shown (I) The samples were 

analysed on SDS gel for loading control (J) Three lanes selected (black, yellow and green) 

were estimated for their intensity. Error bar- standard deviation.   
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3.9 Discussion 

Diverse mechanisms bring robustness into the cell size of E. coli. Pathways regulate the cell 

division spatio- temporally, thereby maintaining the cell size of a new- born cell. For instance, 

MinCDE system oscillates between the two poles of an E. coli cell and prevent the 

polymerization FtsZ at the polar region. Process ensures the localization of septum away from 

the pole and forbids the formation of the mini- cells or the cells with different lengths61–63,80–

82. SlmA mediated nucleoid occlusion inhibits the aggregation of divisome machinery in 

nucleoid occupied area29. Mechanism controls the cytokinesis spatio- temporally and connects 

it with the growth of the cell.  

An average cell size of E. coli is determined by nutrient- imposed growth rate. At higher growth 

rate the cells have been found to be longer as compared to the cell growing slowly76. However, 

effect of growth rate on the population length distribution has not been discussed before. Here, 

we showed that the extent of deviation from average cell length, in wild- type populations of 

E. coli depends on the growth rate determined by the carbon source in an immediate 

environment. Cell length variability is biphasic with reference to the population growth rate. 

Variation in population lengths is proportionate with growth rates that demand the multi- fork 

replication in an individual cell. On the other hand, its value reduces but remains more or less 

constant when the cell proliferation time is long enough to easily accommodate one round of 

DNA replication per generation. Results obtained with batch cultures were further buttressed 

by studying cell length variation in a micro- colony as well as in the population growing 

continuously in microfluidic device. Fact that, micro- colony is originated from a single 

mother, gave us an advantage of studying isogenic cells with similar cellular age. Similarly, 

evaluation of cell lengths in new- born as well as dividing mother cells, help eliminate the noise 

that might be contributed by age dependent inconsistencies across the population.  
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Cellular filamentation has its close correspondence with DNA related metabolic process.  

Growth rate directs the extent of DNA synthesis in E. coli cell. Inspection of the connection 

between rate of DNA synthesis and size heterogeneity was obvious next step. We made two 

important observations: (a) the genomic content quantified per cell increased with the 

population growth rate, which, in fact, was in accordance with established reports24,25 and (b) 

trend of increase in genomic DNA with population growth rate was similar to that of cell length 

variability, which was then construed as probable contribution to the size variation from DNA 

metabolism. 

In E. coli, DNA replication is coupled to the cell division through two major pathways. One of 

them is nucleoid occlusion. The other is RecA mediated SOS response pathway. RecA is a 

well- known recombinase in prokaryotes, which repairs the DNA upon replication stalling31. 

During the repair process, it delays the cell division by activating SulA mediated FtsZ 

sequestering35. In the absence of cell division, cell resumes its growth governed by MreB83 and 

becomes filamentous.  

Our hypothesis proposes the probable multiplicative increase in the frequency of stochastic 

stalling of replication fork due to multifork replication at higher growth rates, postpones cell 

division event and gives rise to the elongated cell. Stochasticity is innate to the replication. 

Progression of replication fork can be stalled for various reasons. Replication process is slowed 

down at certain chromosomal loci due to the protein barriers which may include operator 

proteins or proteins that are associated with terminal sequences on the DNA. In certain 

situations, replisome may experience head- on collisions with RNA polymerase complex, 

which can cause pause in the replication. Another reason for replication fork stalling is an 

unavailability of building blocks or enzyme components. Considering basal level noise exists 

in all metabolic processes in a cell, there can be occasional stoichiometric imbalance in the 

numbers of enzymes that are part of replisome complex or biomolecules like dNTPs that are 
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substrate for DNAP. It can transiently stop DNA replication. DNAP processivity causes 

episodic dissociation of DNAP from DNA. These events may not contribute to the cell length 

variability, as recovery of replication pace in this cases, is immediate and hence does not 

require cell division to be postponed. However, RecA mediated recovery of replication fork, 

which has been arrested due to the occurrence of DNA nicks, plays significant role in the 

generation of cell length variability in isogenic populations, for SOS response thwarts cell 

division, while DNA repair takes place in a cell. Though the process happens in an individual 

cell, at population level it begets the heterogeneity in the lengths.  

Hypothesis was tested by (a) disabling the DNA repair system and (b) Increasing the stop 

frequency of the replication fork. Idea was to observe an upsurge in the instances of halt in cell 

division in major proportion of the population, when the replication is paused frequently in a 

single cell. 

We found increase in the percentage filamentation in the populations of ΔrecA mutant, which 

is reflected in its cell length variability. Coefficient of variation of this population was higher 

as compared to the wild type population. We noticed exactly the opposite effect when sulA 

gene was deleted from the genome, as cell length variability showed a slight decrease. 

According to the recent report HU treatment transiently halts DNA replication, recovery of 

which does not require RecA78. However, the stock of HU used in this experiment was 

previously sterilized and stored at 4⁰C. It might have led to the degradation of HU into 

intermediates that damage DNA. Under such circumstances the recovery of the stalled 

replication fork needs RecA78. Loss of RecA protein, attenuates the recovery of the stalled 

replication in a cell. Replication arrest for prolonged time compels the cell elongate into the 

filamentous form. We predict the presence of mechanism(s) other than SOS response and 

nucleoid occlusion that fetter(s) the cell division back. Live cell imaging of ΔrecA cell, with 

nucleoid tagged by HupA- GFP on LB agar, clearly showed the presence of unorganized 
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nucleoids occupying most of the cell volume in an elongated cell, as opposed to a healthy cell 

that possessed compact DNA foci. Our result is in compliance with the discovery in 2013 by 

James Walker group. It states that incompletely replicated and segregated nucleoid at division 

site can inhibit the polymerization of FtsZ, without the help from Min system, SOS response 

and SlmA84. When SulA is knocked out from the system, cytokinesis is resumed even when 

DNA is being repaired by RecA. Since, nucleoid occlusion protects only region around the 

chromosomal DNA, rest of the cell except poles are prone to Z- ring formation in the absence 

of SulA. Thus, occurrence of filamentation are reduced in ΔsulA populations and its cell length 

distribution is more compact than MG1655.  Moreover, phenotype of recA deletion mutant was 

rescued when RecA was overexpressed in the cell. Cell length distribution in these populations 

was comparable to that of wild- type. Note that we did not examine cell length variability in 

lexA mutants. However, ΔlexA mutation has been reported to be lethal85. In addition to this, 

lexA3 (Ind-) mutations (non- cleavable variant)86 could have been considered for these studies. 

Though LexA molecules, being unresponsive to RecA mediated auto- cleavage, can show 

similar trend as that of ΔsulA mutants, under optimal conditions. But, upon HU treatment, LexA 

molecules will shut down SOS response, resulting in a trend similar to ΔrecA. Hence, we are 

not sure studies of lexA3 populations will support our results. Nevertheless, use of genetic 

mutants thus, (a) highlighted that replication fork stalling, indeed, engenders the cell size 

variation and (b) paved the path for further investigate into the molecular mechanism that links 

the replication stochasticity with population cell length variability.  

Increased stall events per cell linearly increased the cell length variability in wild- type 

populations at high growth rates, validating our hypothesis. More importantly, phenotypic 

variation was further elevated in genomic knock- out of recA, which is subsequently reduced 

to the wild- type level by extra- chromosomal expression of RecA. While, sulA deletion makes 

the population unresponsive to the treatment. Importantly, cells responded to the drug treatment 
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at higher growth rate, while at slower growth rates cell length variability did not change with 

HU concentration. Multifork replication at high growth rate also multiplies the events of 

probable replication arrest per cell, upon DNA damage. While, at slow growth rates there are 

only two replication forks per cell, which does not alter the probability of replication stall even 

after the drug treatment. Here, we would like to mention that we did not check the functional 

efficacy of extra- chromosomally expressed RecA in E. coli cells. Scoring the survival rate of 

transformed ΔrecA populations and comparing it with that of its parent population after HU 

treatment or UV exposure could have enabled us to understand the functional integrity of the 

protein. Also, the extent of LexA cleavage after similar treatments could have been a nice way 

to probe the RecA function. These experiments not only could have increased the reliability of 

our data, but also could have backed up our assumption that SOS pathway connects stochastic 

DNA replication with size heterogeneity, with substantial evidences. Nevertheless, we filled 

this gap by observing the cell elongation pattern in continuous cultures under the influence of 

HU treatment as well as alignment of RecA foci with reference to genomic DNA at different 

growth rates. 

Analysis of live cells growing in a microfluidic device, perhaps, was the crucial experiment in 

that, it provided us with a sense of the events that lead to the length variations in clonal 

population. In both the strains of E. coli, few cells getting elongated after the introduction of 

hydroxyurea into medium. Rest of the population, nonetheless, kept dividing. It causes 

significant increase in the standard deviation, with slight increase in average cell length. As a 

result, an increase in phenotypic fluctuations estimated in terms of coefficient of variation was 

seen for an isogenic populations. Moreover, experiment also spotlights the randomness of the 

process. Though all the cells were equally exposed to the drug, only selective cells chose to 

respond for the reasons that are not clear, currently. Propensity of the population to exhibit 
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differential response to the identical environment can be due to innate stochasticity in different 

biochemical pathways including DNA replication that are influential in scheduling the division.  

Results can further be bolstered by the introduction artificial replication impediments on DNA 

through FROS. It will involve cloning of tetO sequences (array of 100- 500 sequences) at 

desired places on DNA. Tight association of tetR with these operator sequences will result into 

cease in the fork progression. This event, then can easily be studied with reference to the 

elongation of the cell into filamentous form.      

Effect of stochastic replication on cell size variation was further accentuated with molecular 

study that evidently associated replication stalls with phenotypic fluctuations. Events of 

colocalization of RecA with chromosomal DNA were counted as the incidents of replication 

fork arrest. We observed increased occurrence of cells with RecA- DNA colocalization with 

the growth rate. Increase in such proportion in E. coli population also increased cell length 

variability linearly. The befitting experiment to understand the involvement of SOS response 

pathway in phenotypic noise would have been molecular probing of SulA and its correlation 

with cell length variation, as the expression of SulA is completely dependent on the activation 

of SOS response4,87. Nonetheless, our molecular quantification of cellular levels of RecA 

turned out to be useful. A distinct boost in RecA expression upon induced replication breach 

was noticed. It in turn, certified that the inhibition of cell division due to replication arrest 

happens through SOS response pathway.  

Study, thus, facilitates the conclusion that the stochastic fails in DNA replication process can 

introduce non- genetic phenotypic fluctuations in the clonal populations of Escherichia coli.   

Ramification of the cell size variations in MG1655 populations are not clear from currently 

available data. However, we assume that cell length variability in isogenic E. coli populations 

is a manifestation of variation in the response to the stalled replication fork across the cells. It 
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was best illustrated when we treated continuously growing E. coli cells with HU. A distinct 

difference in the responses exhibited by two sisters was observed. Such behaviour brings about 

scores of queries pertaining the disparity that lies underneath of seemingly identical cell bodies. 

In addition to that, it also encourages to gauge the tuning between gene expression and 

phenotypic heterogeneity after arrested replication fork disrupts the routine.  
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Chapter 4 

Stochasticity in DNA replication process modulates the intrinsic noise in the genetic 

circuit of Escherichia coli MG22 

 

4.1 Motivation 

Fluctuations in the gene expressions have been postulated as the mechanism that actuates the 

phenotypic variability in an isogenic population41,5,42–44,88. Series of biochemical pathways 

define gene expression. Though these biochemical reactions are hard- wired and are expected 

to be deterministic in nature, they are prone to subtle and random changes owing to in- vivo 

crossovers between two different pathways and/ or involvement of more than one enzymes at 

a time. Stochastic fluctuations in the circuit, vital for protein synthesis, can end up in the 

variable protein levels over the time or across the cells in the populations. These unavoidable 

fluctuations, commonly referred as ‘noise in the gene expression’ result into the quantitative 

difference in protein function and hence causes difference in the physical appearance as well 

as the behaviour of a single cell in the population, in spite of their identical genomic DNA and 

niche. With recent developments in science, noise in gene expression has increasingly been 

appreciated for its crucial role in the complex multi- cellular organizations in the community. 

Gene expression noise has been suspected to have evolutionary significance, as it generates 

division of labour in a clonal population. Numerous experiments provide evidence in the 

support of this proposition. In Salmonella typhimurium, gene encoding for flagellar protein was 

replaced with GFP expressing gene and then allowed to express under native promoter. 

However, fluorescence intensity differed from cell to cell in a micro- colony generated from a 

single mother, which in turn, was parsed as the presence of fluctuations at the promoter of the 

gene (Fig. 4.1). Variations in the promoter activity, is thought to introduce variations in the 

expression of flagellum on the cell surface. It culminates into the formation of two sub- 
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populations in Salmonella community. Section of the population that expresses flagella is 

employed in the host tissue invasion, while the population with suppressed flagellar expression 

has been suspected to be involved in the propagation of the pathogen in the host41. Noise 

present in the functioning of E. coli chemosensory system, through stochastic expression of the 

chemotactic proteins can be another example. Though the cell has evolved feedback loops for 

the filtration of the noise in the motility signals, theoretical model suggests that complete 

removal of the noise reduces the efficiency of the cellular motility. Stochasticity in the process 

has been believed to create phenotypic diversity, thereby increasing the chances of survival in 

the natural environment of an organism88. 

 

 

Fig. 4.1: Fluctuations in the expression of flagellar gene (measured in terms of GFP expression) 

in Salmonella micro- colony (Reprinted from Freed et al., 2008 with permission41. Copyright 

obtained from PLOS (Appendix E, C9)). 

 

In 2002, stochasticity in the gene expression in an E. coli cell was analysed and compared 

across the population as well as through time.  For these studies, YFP and CFP encoding genes 

on either arms of circular DNA of E. coli under the control of lactose and/ or IPTG. Both the 

genes were equidistant from OriC (Fig. 4.2)5. 
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Fig. 4.2: Cartoon depicting the genomic DNA of E. coli MG22 (Reprinted from Elowitz et al., 

2002 with permission5. Copyright obtained from the American Association for the 

Advancement of Science (Appendix E, C10)). 

 

Considering the bidirectional replication in E. coli, equal number of copies for both the genes 

were expected in the cell. Intensity output for total CFP and YFP molecules in the cell was 

counted as an indirect measure for the expression of respective genes. It was observed that in 

the absence of an inducer, expression of CFP and YFP genes varied from cell to cell in the 

cultures of MG22 as well as RP22. The noise was reduced significantly when IPTG was added 

to the medium (Fig. 4.3). Interestingly, in recA deletion mutants the loss of correlation in the 

expression of two genes was further amplified even in the presence of an inducer (Fig. 4.3, 

subsection C, highlighted with red box). Authors predicted the absence of RecA, which is an 

essential protein in the rescue of the stalled replication fork, varies the copy number of genes 

in different parts of DNA, owing to the discontinued DNA replication and that might mirrored 

as the variation in the intensities5. 
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Fig. 4.3: Gene expression fluctuates in an isogenic populations of E. coli RP22. Red box 

highlights the effect of deletion of recA gene from the genome on the gene expression in the 

presence of an inducer (Reprinted from Elowitz et al.,2002 with permission5. Copyright 

obtained from The American Association for the Advancement of Science (Appendix E, C10)).  

 

Two colour reporter assay decomposed gene expression noise into two distinct components. 

An intrinsic noise in genetic circuit is defined as an extent to which two copies of the gene, 

under identical control and environment fail to correlate their expression. For instance, in a cell 

the expression levels of CFP and YFP may vary with time. It introduces noise in the genetic 

circuit of the population (Fig. 4.4 A). On contrary, an extrinsic gene expression noise refers to 

the fluctuations in the expression of a gene from one cell to other. In other words, the expression 

of YFP and CFP can be correlated temporally within a cell. However, the correlation pattern 

may differ from one cell to another in population (Fig. 4.4 B)5. 
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Fig. 4.4: Illustration of (A) an intrinsic noise and (B) an extrinsic noise in gene expression 

(Reprinted from Elowitz et al., 2002 with permission5. Copyright obtained from The American 

Association for the Advancement of Science (Appendix E, C10)). 

 

Experiment implements a statistical idea known as ‘the law of total variance’89, which 

decomposes the variance in a random variable ‘X’, as average component variance 

(unexplained variance) and variance of component averages (explained variance), as illustrated 

in Fig. 4.5. In probability theory, law of total variance89 states that if X and Y are random 

variables on the same probability space and the variance of X is finite, then 

𝑉𝑎𝑟(𝑋) =  𝐸[𝑉𝑎𝑟(𝑋|𝑌)] +  𝑉𝑎𝑟(𝐸[𝑋|𝑌])                                                                Equation 7 

Term ‘𝑉𝑎𝑟(𝐸[𝑋|𝑌])’ on right hand side of equation 7 is described as ‘explained variance’, for 

it measures the proportion to which a mathematical model accounts for variation in given data 

set. Whereas, ‘𝐸[𝑉𝑎𝑟(𝑋|𝑌)]’, denotes the fraction of the variance in a dependent variable ‘X’ 
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that cannot correctly be predicted by explanatory variable ‘Y’ and hence is termed as 

‘unexplained variance’89. 

 

 

Fig. 4.5: Illustration of law of total variance. It depicts the marginal density plot and each colour 

represents constituent Gaussian density. The expectation and the variance of ‘X’ has been 

broken down by conditioning ‘Y’. 

 

In biological context, ‘X’ represents gene expression or output and ‘Y’ stands for extracellular 

inputs/ signals. Variation in ‘X’ can be generated due to the fluctuations in ‘X’ (gene 

expression) or variations in ‘Y’ (extracellular growth conditions). In a single cell, we can study 

the distribution of ‘X’ by keeping ‘Y’ fixed. Thus, an expectation of 𝑉𝑎𝑟(𝑋|𝑌) gives us the 

stochasticity present in the process of sensing the environmental signals and is termed as 

‘intrinsic noise’. In population, extracellular signal ‘Y’ depends upon the micro- environment 

as well as the growth stage of the cell and hence varies from cell to cell. Since, 𝐸[𝑋|𝑌] is an 

average output for given input, variance of 𝐸[𝑋|𝑌] impersonates the extent to which each cell 

in the population responds to the signal. Thus, the last term in equation 7, denotes ‘extrinsic 

noise’90–92.  
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It, thus, makes an attractive model for vetting cell length variations in microbial populations, 

sharing common genomic DNA. We showed that stochastic DNA replication can cause non- 

genetic variations in E. coli phenotype (Chapter 3)93. Our work combined with present facts 

motivated us to study the nexus between gene expression noise and stochasticity in DNA 

replication. We used cell length variation in E. coli MG22 populations, as an indirect measure 

for the extent of replication arrest per cell, generated by treating the cells with increasing dosage 

of hydroxyurea. Cell length variation was then compared with gene expression noise and its 

sub- components to find the link.  

             

4.2 Correlation between the gene expression of CFP and YFP genes in E. coli MG22 cells 

under optimal growth conditions 

As a preliminary test, degree of correlation between CFP and YFP expression in the population 

propagated in LB at optimal laboratory conditions was examined. Cells were grown at 37⁰ C, 

with constant shaking at 180 rpm. Expression of both fluorescence genes were induced by 

adding 2 mM IPTG to the medium. We analysed fixed images of MG22 cells in DIC and CFP, 

YFP channels to extract cell lengths and intensity values respectively (Fig.4.6). Experiment 

was, particularly, of importance, as it assisted us to understand (a) the trend of cell size 

distribution and cellular intensities of CFP and YFP in MG22 populations at control growth 

conditions and (b) whether the trend exhibited by MG22 was comparable with that of MG1655 

(wild- type). 
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Fig. 4.6: Analysis of fixed images of E. coli MG22 using ImageJ. DIC image is used as a 

template to draw the cell contour (red line = 5 pixel) which is then superimposed on the 

respective images in YFP and CFP channel to extract raw mean intensity along the cell length. 

Scale bar- 10 µm.  
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Cell length distribution had an average of 2.188 µm and extended to 6 µm. Coefficient of 

variation for population cell lengths was calculated to be 0.302 and was comparable to our 

previous results (Fig. 4.7 A). YFP and CFP intensities in an individual cell were normalized 

with respect to the respective maximum intensities observed in the population. Though the 

population distributions of CFP and YFP intensities do not have same shape, their averages 

were similar (Fig. 4.7 B and C). Per cell average value for CFP (Ri) and YFP (Gi) is used to 

determine Mander’s overlap coefficient, r94 (equation 8). Though modal value of the 

distribution was 1, shape of the distribution was negatively skewed and reached to 0.8 (Fig. 4.7 

D).  

𝑟 =  
∑ 𝑅𝑖𝑖 ∗ 𝐺𝑖

√[∑ (𝑅𝑖)2∗ ∑ (𝐺𝑖)2
𝑖𝑖 ]

                                                                                                   Equation 8   

Analysis provided a starting point for further assessment, as it was suggestive of variation in 

the expression of CFP and YFP genes (a) in a single cell and (b) across the population. With 

this primary knowledge, we proceeded to perturb the growth environment and its subsequent 

effects on the gene expression noise in MG22 populations.      
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Fig. 4.7: Correlation of CFP and YFP expression in MG22 under ordinary growth conditions 

(A) Depicts the still image of MG22 in DIC (left panel) and the distribution of their cell lengths 

(right panel). (B) and (C) Corresponding fluorescence images in CFP and YFP are shown in 

left panels and their population intensity distributions have been represented in the right panels 

(D) Left panel indicates the merge of CFP (red) and YFP (green) channels. Mander’s 

coefficient (Equation 8) between the two colours was evaluated and its distribution has been 

shown in right panel. Scale bar (snapshot)- 5 µm.  
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4.3 Introduction of noise in genetic network using drug treatment 

Cells were grown either in LB or in M9 supplemented with succinate to attune the doubling 

time of the populations. Cells in LB, grew with the doubling time of 20 mins, while in minimal 

media, cells complete one round of life cycle in 70 mins. Following the drug treatment for the 

time equivalent to three generations in each medium, cells were fractionated into two aliquots. 

One of them was fixed to observe the changes in the cell after treatment, while other was 

allowed to recover for another three generations. Thrust of the experiment was to assess the 

quantitative relationship between stochastic replication fork stalling and gene expression noise 

in clonal population across the threshold growth rate of 1 generation per hour. Variation in cell 

lengths as well as gene expression in the population was calculated using following formulae: 

𝐶𝑒𝑙𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝐶𝑉2 =  
𝜎𝐿

2

𝜇𝐿
2                                                                          Equation 9  

Where, σL is standard deviation in the population cell lengths and µL is average cell length. The 

gene expression noise is calculated using formulae dictated in Elowitz’s work5: 

𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑛𝑜𝑖𝑠𝑒, 𝜂𝑖𝑛𝑡
2 ≡  

〈(𝐶𝑖 −𝑌𝑖)2〉

2〈𝐶𝑖〉〈𝑌𝑖〉
                                                                              Equation 10 

𝐸𝑥𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑛𝑜𝑖𝑠𝑒, 𝜂𝑒𝑥𝑡
2 ≡  

〈𝐶𝑖𝑌𝑖〉− 〈𝐶𝑖〉〈𝑌𝑖〉

〈𝐶𝑖〉〈𝑌𝑖〉
                                                                       Equation 11 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜𝑖𝑠𝑒, 𝜂𝑡𝑜𝑡
2  ≡  

〈𝐶𝑖
2+ 𝑌𝑖

2〉 −2〈𝐶𝑖〉〈𝑌𝑖〉

2〈𝐶𝑖〉〈𝑌𝑖〉
                                                                        Equation 12 

Ci and Yi represent the average intensity in an individual cell in population.   

Hydroxyurea treatment was used to increase the episodes of replication fork stalling. We used 

five different concentrations of HU ranging from 1 mM to 26 mM, as cell length variability 

shows linear trend in that regime (Chapter 3; Fig. 3.12). We also, set several controls to 

compare the effects of hydroxyurea on cell length variability and gene expression. Control cells 

underwent drug treatments that impeded either protein expression or cell division, so that we 

could assess the effect of replication stall on gene expression noise more reliably. Rifampicin 
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and chloramphenicol are known to impede transcription and translation respectively95,96. Since, 

both the processes are vital in the synthesis of proteins, disturbance in them can perturb the 

gene expression. Hence, rifampicin and chloramphenicol were used at the sub- lethal 

concentrations to induce an increase in total gene expression noise. Defects in nucleoid 

segregation can also lead to the fluctuations in gene expression. It was achieved by dismantling 

MreB cytoskeleton using A2297–99, as MreB skeleton has been shown to play a crucial role in 

the nucleoid segregation66,100. Cephalexin inhibits FtsI, a protein acting downstream to FtsZ 

during cytokinesis and its treatment serve a good control for the changes in the cell size101,102. 

Concentrations of these antibiotics used in experimental set- ups, have been specified in 

Chapter 2, table 2.10. 

4.3.1 Study of ‘noise’ after the treatment 

Preliminary inspection of the fixed images right after treatment gave an impression that the 

noise in treated populations is comparable to that in the control populations. ImageJ based 

quantification of the images reflected the observations. In addition, we also observed uniform 

reduction in cell density in case of cultures grown in M9 + succinate, though the optical 

densities of the cultures were recorded to be similar to that of LB grown populations. Reason 

for the difference in the cell densities is not clear to us (Fig. 4.8).  

Cell length variability heterogeneity scored for all the experimental set- ups revealed that 

irrespective of the type of drug treatment, coefficient of variation for cell sizes was higher at 

high proliferation rates and is minimal when cells are growing at slower pace (Fig. 4.9 A). It 

was consistent with our earlier observations with MG1655 populations (Chapter 3, Fig. 3.12 

A). However, we observed an abnormal hike in cell length variation estimated for control 

populations at higher growth rate. Because of it, length heterogeneity in control appeared to be 

comparable with that of cephalexin treated cells and higher than phenotypic noise obtained for 

populations treated either with A22 or with chloramphenicol or with rifampicin or with range 
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of hydroxyurea concentrations. Upon going through the data, we noticed a presence of a 

filamentous cell in control populations. Its length was measured to be 60 μm. Consequently, 

addition of this data point caused rightward shift in average cell length as well as it increased 

the standard deviation in population cell length in the data pool, inclusion of which in final 

quantification across three population inflated cell length variation. Cell length variability, in 

respective growth media was found to be the highest for cephalexin treated cells. While, cell 

length variations in the populations treated with A22 or chloramphenicol or rifampicin or 

different concentrations of HU were found to be comparable. Trend was observed to be same 

in both at both the growth rates (Fig. 4.9). Surprisingly, total gene expression noise was similar 

at both the growth rates and did not exhibit any peculiar pattern across the different 

experimental set- ups (Fig. 4.9 B). Dominance of the component noise in the genetic wiring, 

however, was found to be growth rate dependent. Intrinsic noise contributed significantly to 

the total noise, when the cells were propagating with higher rates in LB (Fig. 4.9 C). On the 

other hand, cells cultured in minimal medium had variation in the gene expression, mainly 

because of the introduction of an extrinsic noise (Fig. 4.9 D). Nevertheless, no particular trend 

was observed for intrinsic as well as extrinsic noise across the populations cultivated in 

different environmental conditions. Moreover, we noticed elevation in error bars (standard 

deviation) in population intrinsic as well as extrinsic noise in control growing in LB (Fig. 4.9 

C and D). Though this anomaly appears to be similar to the one observed in case of cell length 

variability, its origin is not clear to us. 

It was clear from the results that the cells did not exhibit the effect of drug after 3 generations 

of treatment. Our previous experience with HU treatment showed cell elongation during 

recovery phase (Chapter 3, Fig. 3.13) and hence, it was necessary to scrutinize recovered 

populations for phenotypic as well as genotypic noise. 
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Fig. 4.8: Snapshots of E. coli MG22 grown either in LB (upper panel) or in M9 + succinate 

(lower panel) after drug treatment. Corresponding images in CFP (red colour) and YFP (green 

colour) were merged to represent the noise in cell lengths as well as gene expression in (A) 

control cells and (B) cells treated with increasing concentrations of hydroxyurea. Scale bar- 5 

µm. 
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Fig. 4.9: Quantification of ‘noise’ in E. coli MG22 treated with drugs. MG22 populations 

grown in LB (white bars) or in M9 + succinate (red) were analysed to assess (A) population 

cell length variability (B) total noise in gene expression (C) intrinsic noise in gene expression 

and (D) extrinsic gene expression noise. Error bars- standard deviation.     
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4.3.2 Study of ‘noise’ after the recovery 

Recovered MG22 cells (Fig. 4.10 A and B) were analysed interactively for (a) cell length 

variability (b) total gene expression noise (c) intrinsic gene expression noise and (d) extrinsic 

gene expression noise. Unlike the noise evaluated for the cells withdrawn right after the 

treatment, we observed significant increase in both phenotypic as well as total genotypic noise 

for cells growing with high growth rate than that for the cells grown in minimal medium (Fig. 

4. 10). This section details the assessment of drug- recovered cells, harvested from control 

experiments. 

Cell length variability was similar for control cultures growing at two different growth rates. It 

can be attributed to the design of an experiment. Cells harvested after recovery are in the late 

log phase. At higher densities, physiology of the cell differs from the physiology of the cell in 

the mid- log phase. An individual cell becomes smaller and more uniform in the size, owing to 

the switch into stationary phase physiology40. Hence, cell length variability decreases as the 

culture approaches the stationary phase. As expected, in cephalexin treated populations size 

heterogeneity was highest at both the growth rates. Variation in the cell lengths was same for 

the cultures treated either with A22 or with chloramphenicol or with rifampicin and was 

comparable to the size variation in untreated cells (Fig. 4.11 A). 

Untreated population showed no significant difference in total gene expression noise, when 

grown in LB and minimal medium. Similar values were quantified for cephalexin treated 

populations at both the growth rates. However, fast growing cells showed higher disturbance 

in gene expression, upon A22 or chloramphenicol or rifampicin treatment. Cells with slower 

proliferation rates had gene expression noise similar to that of control (Fig. 4.11 B).  

Interestingly, in recovered cells also, growth rate determines the component that contributes 

the most to total gene expression noise. At higher growth rates, intrinsic noise forms major 
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proportion of genotypic noise, and extrinsic noise dominates at lower growth rates. Result, 

thereby, confirmed our earlier observations.  

In LB, intrinsic noise as well as total gene expression noise were the highest for 

chloramphenicol and rifampicin treated populations, followed by the populations treated with 

A22. Extrinsic noise, was however, similar across all the populations (Fig. 4.11 C and D). After 

we evaluated the controls, we examined the effect of replication stall events on gene expression 

noise.
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Fig. 4.10: Snapshots of recovered E. coli MG22 cultures grown either in LB (upper panel) or 

in M9 + succinate (lower panel) after drug treatment. Corresponding images in CFP (red 

colour) and YFP (green colour) were merged to represent the noise in cell lengths as well as 

gene expression in (A) control cells and (B) cells treated with increasing concentrations of 

hydroxyurea. Scale bar- 5 µm. 
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Fig. 4.11: Response of E. coli MG22 population to drug treatment. E. coli MG22 population 

was grown either in LB (white bars) or in M9 medium supplemented with succinic acid (red 

bars) and treated with different drugs. Effect of drug treatments on (A) Phenotypic noise, (B) 

Total gene expression noise, (C) Intrinsic gene expression noise and (D) Extrinsic gene 

expression noise has been shown. Error bars- standard deviation.   
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4.4 Effect of replication fork stalling on the gene expression 

MG22 cells were treated with increasing concentration of hydroxyurea ranging from 1 mM to 

26 mM for 1 hour, to frequent the replication fork stalling. Based on the results obtained from 

control cells (Section 4.3), we decided to analyse the cells which were allowed to recover for 

3 generations after drug treatment (Section 2.12, table 2.10). Consistent to our previous results, 

cell length variability (black solid line) increased as a function of increasing hydroxyurea 

dosage at higher growth rates, while remained unaffected for slow growing cells. We observed 

that in LB grown cells, intrinsic noise (blue solid line) increased till hydroxyurea concentration 

hits 13 mM and then showed monotonous dip. At lower growth rates, intrinsic noise was found 

to be at the basal level. Extrinsic noise (red solid line), however, did not show the correlation 

with increasing instances of replication fork arrests, in LB as well as in minimal medium. Total 

genotypic fluctuation (green solid line) followed exactly the same pattern as that of its 

constituent noise that contributed the more (Fig. 4.12 A and B). Based on our results we 

propose one more possible mechanism in which random replication stalls influence the intrinsic 

gene expression noise and might result in non- genetic phenotypic fluctuations in an isogenic 

population of E. coli.
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Figure 4.12: Effect of increased frequency of replication stall on genotypic and phenotypic 

noise. Variations in cell length (left axis) and gene expression (right axis) are plotted as a 

function of increasing concentration of hydroxyurea in MG22 populations grown either in (A) 

LB or in (B) M9 medium supplemented with succinic acid. Error bars- standard deviation.  

 

4.5 Discussion 

Genetic wiring and its fine tuning is of paramount importance for an existence of the life. A 

tight controller mechanism, hence, employed to ensure an efficiency of the gene expression. In 

recent years, however, it has been established that despite of the recruitment of barrage of 

molecules for the maintenance of the fidelity, gene expression can never be a deterministic 

process. Substantial noise is introduced in the genetic circuitry through ever fluctuating levels 

and activities of the biomolecules involved in the gene expression. Existence of noise in genetic 

circuit then subsequently can result in different physical appearances of genetically identical 

cells. These differences can also shepherd the cellular decision as well as their fate that 

eventually influence the structure of the community.     

Initial efforts were mainly focused on the mathematical representation of noise as well as 

theoretical prediction of its sources. Nevertheless, in recent years attempts are made to assign 
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functional significance to the noise in gene expression. Here, we undertake the study in order 

to detail the role of the random replication stalls in genetic fluctuations and its resultant outputs. 

We analysed MG22 populations5, which under optimal growth conditions express CFP and 

YFP encoding gene. Though the strain has modification in its genomic DNA, its population 

cell length distribution is comparable with MG1655. Thus, we confirmed that the genetic 

modifications do not contribute to the cell size variation. Shape of intensity distribution for 

CFP and YFP molecules were different from each other, however, their averages were 

comparable. It implied the presence of noise in the genetic circuit under common 

environmental growth conditions. It was further confirmed by the left- skewed shape of 

distributions drawn for Mander’s coefficient estimated for levels of CFP and YFP molecules 

in individual cell in the population.   

Primary results, then drove us to our principle objective, which was to assess the genetic noise 

with changes in the growth rate as well as extent of replication stalls. Though growth rate 

appeared to have significant contribution in drug mediated effects on E. coli cultures, we also 

observed that the population response to the various drug treatments has a lag period. ‘Noise’ 

in the test populations was within the standard deviation of that of the control populations after 

treatment. Significant difference in the noise values appeared only when cells were allowed to 

recover for three generations. Results were in consent with our earlier experiments with 

continuous cultures of MG1655 which were subjected to hydroxyurea treatment. Filamentation 

was observed during recovery and not during the introduction of drug into the media93.  We 

suspect that the time duration designed for the treatment and the subsequent recovery of the 

cells accounts for such behaviour. Since, the sub- lethal concentrations of antibiotics have been 

used, we predict that an individual cell take some time to accumulate the required concentration 

of the drug and exhibit the effect. From our experiment we realise that this time amounts to 

that of required to complete 6 generations and therefore the actual effect of the chemical is seen 
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after recovery. When treated cells are resuspended into fresh media, lag in the recovery denotes 

the time needed for the dilution of the drug in a cell because of cell divisions. 

Noise in gene expression as well as cell sizes was comparable for untreated populations. We 

assigned this to the experimental design. Untreated cells are in early stationary phase. Increased 

population density reduces the cellular growth rate. Population growth rates are found to be 

similar for both the growth media and hence the noise levels are also found to be similar.   

Our experiment decomposed the gene expression noise in growth rate dependent manner. In 

cells recovered from the drug treatment, the total gene expression noise was higher at higher 

growth rates, while it was reduced in a population with slower growth. In addition to this, in a 

fast growing population intrinsic noise was higher in the gene circuit. At the slower rate 

extrinsic noise takes over. Extrinsic noise is due to the cell to cell variability of the gene 

expression in the populations. It stems from the cell to cell differences in the enzyme levels or 

the cell volume or the cell age103. Lower levels of extrinsic noise in our experiment suggests 

that the total gene expression noise is independent of the physiological state of the cell at higher 

propagation rates.  However, what conditions the growth rate dependent behaviour in gene 

expression noise is not clear from our results. 

When replication halts were amplified in fast growing E. coli cells, an increase in the cell length 

variability after recovery was observed, indicating increased replication defects. Intrinsic noise 

showed proportionate increase with an increase in the probability of replication stalls. 

However, when plotted as a function of hydroxyurea dosage, intrinsic noise hits the maxima at 

HU concentration of 13.2 mM and then decreases linearly, as opposed to the cell length 

variation that increases monotonously.  

Detailed analysis of population intensities and cell lengths pointed that at higher HU 

concentrations, average difference between CFP and YFP intensities decreases without a 
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significant change in the average per cell intensities of CFP and YFP molecules. Also, we 

observed comparable average cell lengths accompanied by gradual rise in the standard 

deviation with an increase in HU dosage. It generates linear decline in an intrinsic noise at 

greater HU concentrations, while phenotypic noise increases linearly. Hence, the correlation 

between an intrinsic noise and cell length variability is abolished for HU concentration above 

13.2 mM.     

Though the reason behind this strange trend in intensity values is not clear, we suspect that at 

lethal HU doses (>10 mM)77, population starts eliminating the selective cells that harbour 

greater fluctuations in the genetic circuit, which in turn dampens the intrinsic gene expression 

noise in population by reducing the average difference between CFP and YFP intensities per 

cell. In addition, elimination of selective elongated cells adds on to the standard deviation 

without significant changes in the average of the length distribution. It results in the increase 

in the ratio of ‘standard deviation to the average cell lengths’, which has been used as a measure 

to determine the cell length variability in the population. Our interpretations, however, require 

further validation from single cell studies in continuous cultures as well as theoretical 

calculations. 

In conclusion, we propose that the frequent arrest in the DNA replication process, may create 

the difference in the genomic copies of CFP and YFP gene. Difference is then propagated into 

the downstream processes like transcription and translation which is mirrored as a difference 

in the number of copies for CFP and YFP molecules within a single cell. It may end up with 

introducing variation in the abundance in the molecules required for the completion of cell 

cycle. At the same time, DNA repair system shuts down the cytokinesis93. Both the events lead 

to the non- genetic phenotypic diversity in the clonal population. 
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Work reiterates the role of fluctuations in the origin of phenotypic variation that are 

independent of genetic differences. Most importantly, it poses availability of essential 

biomolecules as one more aspect to study. Substantial variations in the levels of cellular 

molecules propagate noise not only across the population but also through the generations. 

Study of existence of asymmetries in growth and division in a single cell, thus, become 

necessary to understand the localization of sub- cellular entities in two compartments of mother 

cell. Asymmetric distribution of sub- cellular molecules in mother prior to its division gives 

birth to the twins that might differ in the molecular composition, thereby existing different 

physical appearance during the course of their respective cell cycle.   
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Chapter 5 

Asymmetric Growth of Escherichia coli cell  

 

5.1 Motivation 

Asymmetric growth and division in eukaryotic cells are known to help create two cells which 

are physically as well as functionally different without undergoing genetic manipulations. 

Progenies that are generated from such division, survive different fates, which in turn, marks 

the beginning of complex developmental process104–108. Thus, asymmetry has been proved to 

be an integral part in the process of growth as well as division in eukaryotes. 

Though micro- organisms were thought to assume simple life- style, recent discoveries have 

associated complex cellular organizations with microbial colonies109. Moreover, numerous 

bacteria have evolved their distinct asymmetric morphological forms which are then used for 

their own survival and propagation in the habitat they live.   

For instance, Caulobacter crescentus, an alpha- proteobacterium gives rise to two different 

cells viz. stalk cell and swarmer cell. Stalk cell remains attached to the substratum, while 

swarmer cell explores the niche110. Asymmetric segregation, thus, helps not only in finding the 

places with abundance of nutrient and hence the survival, but also in sequestering the damage, 

as stalk cell retains the older cell components and newly synthesized biomaterial is directed 

into the swarmer cell110. The strategy is used to propagate healthy progenies.  

Asymmetric growth is accountable for survival in seemingly symmetric cells, in some other 

cases. Asymmetric division for spore formation in Bacillus species plays a prominent role in 

the conservation of species in drastic environments111. Sometimes, asymmetry is not apparent 

during growth. However, the molecular composition of the two cellular halves differs 

significantly, as one of them is relatively old and confers asymmetry to the cytokinesis, giving 
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rise to daughter cells that may exhibit differential response to the environmental cues.  

Mycobacterium tuberculosis has been studied for unipolar growth. Though the organism 

undergoes symmetric cell division, the two daughters are known to differ in the susceptibility 

to the antibiotics112. Another rod shaped microorganism, Rhizobium, is known to extend at one 

of the poles113. Unipolar growth in Rhizobium and Mycobacterium has been attributed to the 

lack of MreB mediated cell wall construction, because of which poles remain active regions of 

growth resulting into asymmetric growth of an organism114.  

In many microorganisms, though, asymmetric growth has not been reported, random 

segregation of subcellular biomolecules can chance produce different daughters sharing 

identical genomic DNA as well as superficial appearance. Inherent stochasticity in essential 

processes that determine the extent of gene expression evidently, affect the abundance of 

protein molecules among two progenies. Alterations in the availability of such molecules, 

further magnifies noise in the downstream biochemical reactions culminating into the 

generation of two or more sub- populations with different fates.  

In E. coli, too, deviation in the placement of the septum from mid- plane has been observed 

many cells in the population115. Localization of nucleoids in the cellular sub- compartments is 

believed to dictate the site of septation in an E. coli cell116–119. Here, we analysed the growth 

of an individual E. coli cell in order to understand if there exists growth fluctuations that affect 

the compartmentalization of biochemical molecules and nucleoids which, in turn, alters the site 

of division giving rise to two rod shaped cells with different dimensions.    

 

5.2 Growth measurements of DIC time lapse images 

We began our studies with processing time- lapse series of DIC images of an Escherichia coli 

cell. Studies help understand the surface expansion pattern over time. 
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5.2.1 Spatial restriction of E. coli cells on agar pad  

Major setback of agar pad analysis is the change in the spatial coordinates of the cell, due to 

cellular movement. To cancel possible translation of the cell on agar surface and correct our 

growth measurements, cells were confided in space, by imprinting agar pad with 1 µm width 

(Fig. 5.1 A and B). E. coli cells with nucleoids labelled ectopically with histone- like HupA, 

were grown in the indentations (Fig. 5.1 C). Absence of cellular movement was confirmed by 

measuring the angle between cell contour and abscissa of an image frame for three different 

time points separated by an interval of 22 mins. GraphPad Prism 5 (GraphPad software) used 

to verify the significance returned the p value as 0.1304 when distribution at t = 0 mins was 

compared against t = 22 mins. Similarly, p values quantified for the comparison between t = 0 

mins and t = 44 mins as well as t = 22 mins and t = 44 mins were 0.5029 and 0.1982 

respectively.  Averages of corresponding distribution of angles, thus, were comparable as tested 

by an ‘unpaired t test’, validating minimal or no movement of the cell on the agar surface, 

during its growth (Fig. 5.1 D).
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Fig. 5.1: Agar pad imprinting. (A) Front (CS1) and lateral (CS2) cross- section of epoxy resin 

used for embossing agar pad (B) Micro- patterned agar pad has been shown. Scale bar- 500 µm 

(C) Growth of E. coli MG1655 transformed with pBAD24- hupA- GFP at three different time 

points at the interval of 22 mins in DIC (first row) and GFP (second row) channels have been 

shown. Scale bar- 5 µm (D) Distribution of cell angles at corresponding time points have been 

shown. Error bars- standard deviation. 

 

5.2.2 Use of in-house detection code to estimate the growth at each cellular end         

Growth was followed by in- house MATLAB algorithm (developed by Prangya Mishra, 

unpublished), which tracks down XY coordinates of two ends of the cell contour through time, 

as a proxy for growth in each half of the cell (Fig. 5.2 A). Validity of the software was tested 

by using it to estimate the movement of beads on agar surface and imaged under identical 

experimental conditions and found to be negligible which is around 0.6 µm for 22 mins  (Fig. 

5.3 A and B). Growth of an each pole at the end of a time interval was determined with 

reference to the initial time point (t = 0 mins), in terms of Euclidean distance and named as 

cumulative growth. Cumulative growth of the two cellular ends was determined till the 

cytokinesis take place and then fit to exponential function to extract growth rates at two ends. 

(Fig. 5.2 B). We found significant difference, as supported by ‘unpaired t test’, between growth 

rates of two ends of the bacterium, with an average of 0.0179 µm/ min (Fig. 5.2 C and D).
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Fig. 5.2: Analysis of E. coli DIC image using MATLAB program (A) DIC time-series of a 

single E. coli cell (left) was tracked over time. Results were overlaid on first time- frame with 
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(middle) cell contour (red line) and poles (green asterisk) marked for first time- point. Tracks 

of pole movement (yellow) and the cell centroid movement (blue) over time (right). Scale bar- 

5 µm (B) Growth of each pole at every interval from initial time point was measured (filled 

circles) and fit to an exponential function (solid lines), which in essence, estimated C value as 

0.2419 and 0.1288 as well as growth rate, r as 0.0695 and 0.05117 µm/ min for fast growing 

end (red filled circles) and slow growing end (black red circles) (C) Distributions of pole 

growth rate are compared and the significant difference between their respective averages have 

been validated using unpaired t test (n = 9; df = 16; p = 0.0081). Error bars- standard deviation. 

(D) Distribution of the difference between the growth rates of the two cellular ends with 

average value of 0.0179 µm/ min has been depicted. Error bars- standard deviation.
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Fig. 5.3: Quantification of bead displacements using MATLAB programme (A) Time lapse 

images of 1 µm beads at the end of every 11 mins, Scale bar- 2 µm. (B) Trajectories of beads 

(blue) have been superimposed on the first time lapse image of the beads (left). Their respective 

displacements (black bars) and the average displacement (white bar) have been shown. Error 

bars- standard deviation. 

 

5.3 Evidence from membrane analysis to support the presence of bias in the of growth an 

E. coli cell     

Escherichia coli cell does not have natural visible surface marker, which virtually makes it 

symmetric in nature. We created a marker at mid- plane of the cell, by repeatedly bleaching 

cell membrane labelled with FM4- 64, before fluorescence intensity in dark region equilibrates 
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with that of rest of the membrane (Fig. 5.4 A and B). Temporal representation of such 

membrane clearly showed asymmetry in the growth of an E. coli cell. More interestingly, an 

apparent dislocation of bleached mark towards opposite direction of the growing end could be 

seen, indicating generation of newer geometric centre of the cell with time due to growth 

asymmetry (Fig. 5.4 C). Estimated slopes for two edges of the kymograph between two 

consecutive bleach pulses were distinct from each other. Quantification confirmed our 

observations (Fig. 5.4 D). Difference in two distributions of growth rates of the ends was 

statistically significant. And its average was found to be 0.0628 µm/ min. Result not only helps 

provide an evidence of presence of growth bias in E. coli cell, but also eliminates the possibility 

of apparent growth asymmetry in the cell due to the interactions with neighbouring cells, as we 

observed similar trend in cells physically associated with their neighbouring cells  (Fig. 5.5).      
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Fig. 5.4: E. coli surface expansion is asymmetric across its mid- plane during growth (A) Cell 

membrane of E. coli cell were labelled using FM4-64 (inverted image) and a line of interest 

was used to generate kymographs for each side across the major axis of the cell. Scale bar- 5 

µm. (B) FM4- 64 intensity in the bleached region is plotted as a function of time. Grey regions 

represent the time elapsed during bleach pulses (C) In the kymograph (inverted) dark region 

marks the labelled poles and the bright gap in the middle the bleach-mark. Bleach duration has 

been indicated with horizontal white line. Solid yellow arrows specify the LOI to evaluate the 

pole growth between two consecutive bleaching cycles and solid red line denotes the 

progression of bleached region over time. Horizontal scale bar- 2 µm; vertical scale bar: 150 

secs (D) Growth rates of each end of the cell between two consecutive bleach pulses have been 

shown. Red and black bars represent poles with slow and high growth rate respectively (E) 

Pair- wise growth rates obtained from the kymographs are sorted based on the pole with more 

(grey) and less growth (white). The mean ± S. D. of pole growth rates were found to be 

significantly different  by applying an unpaired t-test (n = 18; df = 34; p < 0.001) (F) 

Distribution represents the difference between the instantaneous growth rates of a pair of 

cellular ends in a time period between cumulative bleaching of the mid- cell (n = 18). Error 

bars- Standard deviation
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Fig. 5.5: Observed growth asymmetry in the cell is not because of force applied by the other 

cell in the vicinity (A) Representative images of E. coli cell stained with FM4- 64 (inverted) 

have been shown for t = 0 mins and t = 35 mins. Scale bar- 5 µm (B) Kymographs (inverted) 

generated for both the sides of the cell around its major axis have been depicted. (Horizontal 

scale bar- 2 µm; vertical scale bar- 100 secs).   

 

5.4 Effects on the movement of sub- cellular molecules  

Asymmetry in growth introduces bias in the movement of two separating intracellular objects 

during cytokinesis. Displacements of two sister nucleoids were found to be significantly 

different (Fig. 5.6 A, B and C). Image analysis for pole growth revealed that the nucleoid near 

to the fast growing pole, displaces more than its duplicate (Fig. 5.6 A and D). Difference 

between segregation rates of two nucleoids forms a linear relationship with the difference 

between the growth rates of the two poles. Slope of the linear function is near 1 (Fig. 5.6 E), 

implying that the extra distance covered by the nucleoid is contributed by the biased growth of 

the cell towards its nearest pole. Thus, after confirming the asymmetric growth in E. coli cell, 

we proceeded to find the molecular mechanism underneath. 
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Fig. 5.6: Sister nucleoids segregate to different distance prior to cell division  (A) Images of E. 

coli cells membrane- stained with FM4- 64 and with GFP labelled HupA (first row) are overlaid 

with their respective trajectories with open blue circles as their start point (second row).  Scale 

bar- 2 µm (B) Distributions of the segregation rates of two sister nucleoids vary significantly 

in their average values, as tested by unpaired t test (n = 13; df = 24; p = 0.001). Error bars- 

standard deviation (C) Figure depicts distribution of difference in the displacement rates of two 

sister nucleoids. Error bars- standard deviation (D) Pole growth rates are plotted as a function 

of segregation rates of their nearest nucleoids. Black and red filled circles categorized cell poles 

based on their growth rates in a pair. Data was fit with linear function (blue solid line). Inset 

depicts two linear functions (solid black and red lines) fit to individual set of pole growths 

(black and red filled circles) (E) Difference in growth rates of poles in a pair was plotted against 

the difference in segregation rates of sister chromosomes and fitted to a linear function (red 

solid line).  

 

5.5 Molecular basis for asymmetric growth 

MreB cytoskeleton plays central role in governing the synthesis of new cell wall as well as the 

maintenance of the cell shape83,120,121. We proposed to study MreB localization within the cell 

as a possible mechanism for asymmetry in E. coli cell. We analysed distribution of MreB 

molecules in fixed as well as live E. coli cells, expressing MreB- YFP under the control of 

native promoter6.  

We developed an ImageJ macro that can divide DIC image of the cell into two halves and use 

those ROI to detect and determine the sum area of MreB loci in each cell half from 

corresponding YFP image (Fig. 5.7 A, Appendix C, Appendix D, D.2). Analysis of 15 cells 
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showed the significant difference in MreB area distribution in two halves of the cell (Fig. 5.7 

B and C).
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Fig. 5.7: Spatial distribution of MreB loci shows bias toward one of the cellular halves (A) Still 

image of E. coli cell bearing YFP tagged MreB in DIC (left panel) and YFP (middle panel) 

channel. Scale bar- 2 µm (B) DIC image was processed to obtain the cell outline (pink solid 

line) and geometric centre (white solid line) which were overlaid on YFP image to detect and 

quantify the total area occupied by MreB puncta in each cell half (right panel). Scale bar- 2 

µm (C) Colourmap used to illustrate the difference in the area occupied by MreB in either 

halves of the cell (n = 9), the frequency distributions of which have been shown in (D). 

Difference in two distributions is tested by unpaired t test (n = 15, df = 28, p = 0.0306). Error 

bars- standard deviation.
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Data was further bolstered by bleaching an area near one of cellular ends and observe recovery 

of MreB- YFP molecules for next 50 seconds (Fig. 5.8 A and Fig. 5.9 A). Our outputs faced an 

error because of an unintentional bleaching of fluorophore during the image capture. In order 

to cancel the errors in the measurements, we estimated intensity decay rate, λ, for experimental 

time, t, by fitting intensity data (I) collected from the reference cell to an exponential equation.  

𝐼𝑟𝑒𝑓
𝑡 = 𝐼𝑟𝑒𝑓

0 ∗ 𝑒(−𝜆𝑡)                                                                                                     Equation 13 

Decay rate was then used to back- calculate the corrected intensities (Icorrect) from the raw 

intensities (IFRAP) at time ‘t’, in the bleached area (Fig. 5.9 B, C and D and Fig. 5.10).  

𝐼𝑐𝑜𝑟𝑟𝑒𝑐𝑡
𝑡 =

𝐼𝐹𝑅𝐴𝑃
𝑡

𝑒(−𝜆𝑡)
⁄                                                                                                Equation 14 

Corrected intensities were subjected to the full scale normalization122.  

𝐼𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒
𝑡 =  

(𝐼𝑐𝑜𝑟𝑟𝑒𝑐𝑡
𝑡 − 𝐼𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑏𝑙𝑒𝑎𝑐ℎ )

(𝐼𝑐𝑜𝑟𝑟𝑒𝑐𝑡
𝑝𝑟𝑒𝑏𝑙𝑒𝑎𝑐ℎ

− 𝐼𝑐𝑜𝑟𝑟𝑒𝑐𝑡
𝑏𝑙𝑒𝑎𝑐ℎ )

                                                                                 Equation 15 

Where, 𝐼𝑐𝑜𝑟𝑟𝑒𝑐𝑡
𝑏𝑙𝑒𝑎𝑐ℎ  represents the intensity of ROI after bleaching, while, 𝐼𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑝𝑟𝑒𝑏𝑙𝑒𝑎𝑐ℎ
 stands for ROI 

intensity before bleaching. 

Normalized intensities were fit to the single exponential function (Fig. 5.8 C and Fig. 5.10) to 

retrieve the values of mobile fraction (a) as well as half recovery time (thalf) of MreB molecules 

in the bleached area.  

𝑓(𝑥) = 𝑎 ∗ (1 − 𝑒𝑥𝑝(−𝑏 ∗ 𝑥))                                                                                  Equation 16 

Half recovery time was calculated as follows: 

𝑡ℎ𝑎𝑙𝑓 =  −
ln (0.5)

(−𝑏)
                                                                                                         Equation 17 

Distribution of mobile fractions showed existence of two populations, with 43% of the cells 

showing the value of mobile fraction greater than 0.5 in the bleached region. Remaining cells 

had mobile fraction of MreB equal or less than 0.5 (Fig. 5.8 D). Measurements of the growth 
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rates at the end nearest to the bleaching area showed that the mobile fraction of MreB is more 

at the ends that have higher growth rates end, while slow growing ends have less MreB 

molecules (Fig. 5.8 B and E, Table 5.1). Half recovery time of the intensities, ranged from 5 

mins to 50 mins. It showed linear relationship with mobile fractions and was proportional with 

growth rate of the nearest pole (Fig. 5.11 A, B and C). 

Though the results need further confirmations from more experiments, we predict the function 

of MreB in creating growth bias in E. coli cell.  
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Growth rate of the 

bleached end 

(µm/min) 

Growth rate of the 

opposite end 

(µm/min) 

Mobile fraction of 

MreB YFP 

Half recovery 

time (secs) 

0.063 0.005 0.8490 29.27 

0.063 0.007 0.5846 19.23 

0.021 0.056 0.3034 14.2 

0.007 0.049 0.4779 20.64 

0.021 0.059 0.4539 14.85 

0.07 0.028 0.6082 18.67 

0.063 0.007 0.5794 18.64 

0.077 0.014 0.8844 46.21 

0.021 0.047 0.3216 18.39 

0.011 0.058 0.4025 9.2 

0.016 0.053 0.4523 20.0 

0.016 0.063 0.4623 15.19 

0.0527 0.095 0.649 20.45 

0.016 0.037 0.4962 16.03 

 

Table 5.1: Correlation between pole growth rates and mobile fraction of MreB in E. coli.  
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Fig. 5.8: MreB dynamics shows positive correlation with the growth rate with the nearest pole 

(A) E. coli cell with endogenous MreB YFP (lower left panel) was bleached near one of the 

poles (lower middle panel) and observed for fluorescence recovery (lower right panel) in YFP 

and in DIC (upper panel) channels. Scale bar- 2 µm (B) Kymographs were created from DIC 

images of E. coli cell. Slope of its edge (solid red line) was used to estimate the pole growth 

rate. Red solid arrows underline the fact that growth rate of the pole closest to the bleached 

ROI. Horizontal scale bar- 2 µm; Vertical scale bar- 50 secs (C) Normalized YFP intensities 

were fit to single exponential function to determine mobile fraction (mf) and half recovery time 

of MreB molecules in bleached region (Equation 16). Each colour refers to an individual E. 

coli cell (n = 14) (D) Frequency distribution of MreB mobile fractions from regions near pole 

show two distinct groups. (E) Growth rates of bleached poles have been plotted against their 

respective MreB mobile fractions. Difference between growth rates (vertical error bar) and 

mobile fractions (horizontal error bar) of the resultant two populations was verified by an 

unpaired t test. (Growth rate: n = 14, df = 12, p < 0.0001; Mobile fraction: n = 14, df = 12, p = 

0.0004). Error bars- standard deviation.
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Fig. 5.9: Intensity values for post- bleaching period were corrected for YFP photo- bleaching 

(A) Intensities from bleached region (red), unbleached region (blue) of the cell and from 

background (black) have been plotted for first 50 secs of the experiment (B) Intensity values 
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from reference region were plotted as function of a time. Inset shows the DIC as well as YFP 

snapshots of the representative reference cell (indicated by arrowhead) at t = 0 secs. Reference 

region has been marked with cyan boundaries. (C) Average intensities obtained from 11 

reference cells were fit to an exponential decay equation (Equation 13) to calculate the decay 

rate (0.005 s-1) (D) Normalized intensities of bleached region before correction (black) and 

after correction (red) were plotted for first 50 secs and fit to single exponential function 

(Equation 16).



155 | P a g e  

 

 

 

Fig. 5.10: Analysis of fluorescence recovery in bleached ROI. Corrected intensities of bleached 

regions were tested against single exponential function (Equation 16) to extract the values of 

mobile fraction of MreB molecules (a) and half recovery time (thalf).
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Fig. 5.11: Half recovery time of MreB YFP molecules is independent of their mobile fraction 

(A) Distribution of half recovery time of MreB YFP molecules obtained after bleaching E. coli 

cell (n = 14) has been depicted (B) Half recovery time has been plotted as the function of 

corresponding mobile fractions of MreB- YFP molecules in the bleached cellular end (n = 14) 

and are fit to the linear function (solid red line) (C) Half recovery time has been plotted against 

the growth rate of their nearest pole (n = 14).
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5.6 Inheritance of growth asymmetry 

Next, we studied the propagation of asymmetry through generations. Main aim of the analysis 

was to explore the connection of the cellular aging with growth asymmetry. 

5.6.1 Analysis of two consecutive generations   

Cells were labelled with FM4- 64 and the poles fluorescing with the highest intensity were 

tracked with an ImageJ ‘particle tracker plugin’. Since, FM4- 64 dilutes out with each cell 

cycle, only two consecutive generations could be analysed. Asymmetry was inherited from 

mother to its daughters (Fig. 5.12 A). However, we found a peculiar pattern. Fast growing end 

of the mother continues to be the fast growing pole in daughter also. On the other hand, 

daughter that inherits slow growing end from its mother, develops new pole that grows with 

higher rate (Fig. 5.12 B).
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Fig. 5.12: Growth asymmetry is inherited from one generation to the next (A) Inheritance of 

the poles from mother E. coli cell labelled with FM4- 64 to its two daughters has been 

elucidated (B) Sum normalized growth at each end of the cell was estimated and has been 

illustrated in the figure along with the pole inheritance for two consecutive generations. Black 

filled circles signify high growth, while red filled diamonds stand for slower growths (n = 7).
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5.6.2 Analysis of micro- colony generated from single mother   

Bias in cellular growth was found to introduce a difference in cell division time of two identical 

daughters (Fig. 5.13 A and B). Cellular growths were assessed in six micro- colonies spawned 

from single mother cells for four generations. A schematic has been used to explain the 

inheritance of the poles from parental generations to the progenies. Number assigned to each 

end designates its age (Fig. 5.13 C). We observed the association of fast growing pole with less 

generation time in a pair of sisters. In other words, daughter that receives fast growing end 

from the mother divides earlier than its twin sister with slow growing end from its mother. 

Trend was found to be propagated in future generations also (Fig. 5.13 D and E), though it was 

found to be declined with time (Fig. 5.13 F) which was reflected in the asymmetry ratio which 

is nothing but the sum normalized difference in the doubling times in a pair of sisters.  

𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 𝑟𝑎𝑡𝑖𝑜 =  
(𝑡𝑑𝑚𝑎𝑥− 𝑡𝑑𝑚𝑖𝑛

)

(𝑡𝑑𝑚𝑎𝑥  + 𝑡𝑑𝑚𝑖𝑛
  )

                                                                        Equation 18 

Where 𝑡𝑑𝑚𝑎𝑥
 is the division time of the slow growing sister, while 𝑡𝑑𝑚𝑖𝑛

 represents doubling 

time of fast growing sibling. 

 

Average asymmetry ratio showed a linear decrease with generations. Moreover, the ratios 

obtained for various pairs of the sisters became more and more clustered around the average 

value with increase in time. (Fig. 5.13 G).       
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Fig. 5.13: Single cell generation time for two sisters differs because of asymmetric growth of 

the mother cell (A) DIC time series of growth of E. coli cell shows that Daughter cell that 

inherits fast growing pole (d1) from mother divides earlier (marked by red arrow) than its sister 

that inherits slow growing pole (d2) from the mother cell. Scale bar- 2µm. Blue arrows indicate 

the generation of new poles after division event in mother cell (B) Time taken to complete one 

cell cycle is different for two sister E. coli cells membrane stained with FM4- 64 dye. Scale 

bar- 2 µm (C) Schematic of pole inheritance in an E. coli micro- colony has been shown for 

four generation. Black and red coloured poles denote an inheritance of mother cell (indicated 

as M) poles into daughter (indicated as D) generations, while new poles formed as a result of 

cell division are shown by blue colour. Numbers near the pole indicate the age of the 

corresponding poles in the micro- colony (D) Montage of growing colony at different time 

point depicts the variation in the generation times of the two sisters. Scale bar- 3 µm (E) 

Association of an inheritance of the growth asymmetry (horizontal lines) with division time 

asymmetry between two sister cells has been shown with the analysis of a microcolony 

sprawled from one mother. Black solid line represents inheritance of fast growing end. Slow 

growing end is shown with red solid line, while blue solid lines represent the inheritance of 

newly developed ends after division. Vertical solid lines denote the division events, while black 

vertical discontinuous lines joins two siblings generated from same mother (F) Average 

doubling time of two daughters in each generation has been shown. Black and red bars denote 

the doubling time of the cells inheriting fast growing and slow growing ends respectively. 

Significance in the difference between the doubling times of the two sisters was tested using 

unpaired t test. Error bars- standard deviation (G) Difference between the generation times of 

two sisters has been presented as asymmetry ratio (ratio of difference between the two doubling 

times to the addition of two doubling times) and plotted against its corresponding generation 

(no. of micro- colonies analysed- 6). 
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5.7 Discussion 

Though E. coli exhibits perfectly symmetrical rod shape, molecular studies show asymmetric 

distribution of damage towards the older pole of the cell123. Division of this cell gives rise to 

the daughters with different fates. Stochasticity in the partition of sub- cellular components has 

been postulated as the source of heterogeneity in an isogenic population124.  

In this section we studied single cell growths in E. coli and observed the bias in the growth 

distribution in two halves of the cell. Since, our findings are contradictory to the classical 

microbiology description of an E. coli cell growth we increased the reliability of our 

observations through the experimental settings as well as by studying the growth of the cell 

with reference to the temporal changes in (a) cell surface (b) cell membrane and (c) nucleoid 

segregation.      

Pole growth was mapped as an indicator for growth in the two cell arms. Pole growth is not to 

be misconstrued as the presence of active growth regions at poles. From different experiments, 

we found that the average growth rate of fast growing end or leading end in E. coli is between 

0.05- 0.08 µm/ min, while growth rate of slow growing end or lagging end ranges from 0.01- 

0.04 µm/ min. Asynchronous cells showed asymmetric growths, irrespective of their growth 

rates on agar surface. Hence, we inferred that the growth asymmetry is independent of the 

growth rate of an individual cell.  

Preliminary analysis of the cell growth was done using in- house MATLAB programme. In 

order to remove spurious tracking the lateral coordinates of the cell were confined on the agar 

surface by etching it with micro- patterns. Bead movement was tracked to validate MATLAB 

programme. We expected bead displacement equal to or around 0 µm/ min, as exhibited by 

inanimate object under thermal noise. E. coli cell, in its native form, does not have surface 

markers which can be used as a guide to dissect its growth. Hence we created a marker by 
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bleaching the FM4- 64 tagged membrane at the geometric centre of the cell. Over the time, an 

apparent translation of the mark on E. coli surface was observed. We attribute this to the 

creation of newer mid- planes with the growth biased towards one of the halves. This 

experiment is of importance, in that we observe asymmetry in the growth irrespective of the 

presence of any structure or inconsistencies in agar surface in immediate vicinity of an 

organism. Growth bias was more evident when asymmetry was noticed in the displacement of 

the nucleoids during the segregation. Due to asymmetric growth, destined locations for 

segregated chromosomes are spaced unevenly from the site of chromosomal replication. And 

hence the segregation bias is introduced into the displacements of two sister nucleoids.     

Rod shaped cells like Mycobacteria and Rhizobia which exhibit asymmetric growth lack 

MreB113,114. In these organism, poles retain active growth. On the contrary, MreB is an 

important protein in maintenance of rod shape and governance of cell wall synthesis in E. 

coli83,121. Our analysis of fixed as well as live cells showed polarization of MreB localization 

in the cell. In order to eliminate the risk of interpreting the data limited by resolution capacity 

of microscope, MreB dynamics was examined in live cells with the help of FRAP. Upon 

quantifying the recovery of MreB molecules in the bleached polar regions of various cells, we 

could clearly categorized them into two distinct populations. 6 out of 14 cells analysed, showed 

higher fluorescence recovery as compared to other cells. Higher mobile fraction in FRAP 

region implied higher concentration of MreB in nearby region. As more MreB molecules flow 

in, fluorescence in that region is almost recovered. It confirmed our conclusions drawn from 

fixed cell images. Moreover, a strong correlation between the growth rate of each end and the 

mobile fraction of MreB molecules could be seen. Leading end always had mobile fraction of 

MreB greater than 0.5, while lagging end of the cell possessed mobile fraction less than 0.5. 

Result suggested the plausible role of MreB in the generation of asymmetry. However, as 

mentioned earlier, our experiments faced the drawback of resolution limit as well as stability 
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of MreB- YFP molecules, as experiments suffered from quick loss of YFP fluorescence during 

imaging. Super- resolution imaging accompanied with stable construct of MreB will be useful. 

“Sandwich” construct described in earlier studies, in which mTomato encoding gene was 

introduced within the reading frame of genomic copy of mreB gene125, can be considered as 

suitable for these studies, as it has been proven to be stable with time. Since, the construct is 

stable it can help to follow MreB dynamics and its possible contribution in growth asymmetry 

in the growth through more than two generations.       

Unipolar growth in Mycobacteria generates two daughters which have different susceptibility 

towards antibiotic treatment112. Hence, we probed into the inheritance of growth asymmetry 

and its effect on E. coli population. Inheritance of asymmetry in E. coli was found to be 

different than that in Mycobacterium. Leading end continued to grow with higher rate in 

subsequent generations, while cell inheriting lagging end of the mother, developed a new 

leading end. We observed that it created time lag between the divisions of two sisters in initial 

generations on agar surface. But, as time progressed, time lag decreased. Similar phenomenon 

observed in Mycobacterial cells is known to give rise to the daughter cells that differ in their 

antibiotic susceptibility112. In E. coli, the cell cycle is governed by ‘adder principle’ of 

homeostasis23, as opposed to the ‘timer’ model in Mycobacterium. According to the principle, 

cell does not proceed to cytokinesis before it adds up constant mass. Hence, we reasoned that 

the time lag in the division cycle of the twins does not necessarily lead to the cell length 

variability.   

However, with current studies we are unable to comment on the significance of asymmetric 

growth on the cellular physiology. Follow up experiments are required to conclude its utility 

in the cell. Though study of the cells through several generation can give us a clear picture, 

current experimental set up is not suitable for such observations. Tracking cellular ends 

becomes tedious as well as increasingly unreliable in the colony speedily spreading on the agar 
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surface. A careful design of microfluidic device will extremely be helpful in such scenario. 

Microfluidic experiments can be combined with fluorescence tracking of the poles by tagging 

polar proteins in E. coli. It will help enhance accuracy of the results. Simultaneous studies of 

aging pattern in the cells will be a nice extension to these. 

Results received from these suggested experiments in association with existing conclusions 

will help revise the concept of the growth for a single cell of Escherichia coli.  

Growth dynamics undoubtedly turns out to be of utmost importance in the maintenance of cell 

dimensions. Any alterations in it, can affect the shape of an organism. Nonetheless, it is more 

important to understand its subsequent effects on the population.       
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Chapter 6 

Colony competition and spatial patterns in isogenic populations growing from a central 

“homeland” 

 

6.1 Motivation 

Morphology of microorganisms range right from simple rounds to complex helical 

shapes126,127. These shapes have been known to be evolved as an adaptation to particular 

environments128. For instance, the crescent shape of Caulobacter crescentus gives organism an 

advantage of propagating younger populations more efficiently and successfully in the fresh 

water129. Modern bacteria can change their morphology as a response to the environmental 

changes in their habitat69,130. These changes can be nutritional, in which case, bacilli like 

bacteria metamorphosed into durable and long- lasting spores111. Environmental cues also 

decide the patterning of the populations. Myxococcus xanthus population, for example, has 

cells aligned parallel to each other along the long axis, in the process called ‘rippling’, 

important for predation of the prey colony131.  

In their natural niche, however, different species of microorganisms share the same space132. 

Such biofilms consists of different organisms with different shapes. How cell shape and size 

determine the structure of the colony is one of unresolved questions in microbiology. 

Understanding of the dynamics of these biofilms has become necessary as they play cardinal 

role in many chronic diseases, formation of human commensal microbiome, development of 

antibiotic resistance and bioflueling.   

In this section we attempted to extend our previous work with cell length variability to shed 

light on the connection between cell sizes and colony morphology. 
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We investigated it using “colony competition assay” devised by Hallatschek et al in 2007133. 

In the original set up, two populations of E. coli DH5α expressing either YFP or RFP were 

mixed together to form a homeland region. Resultant colony was sectioned with every sector 

distinctly segregating the two “sub- populations”. This genetic de- mixing in the colony was 

attributed to the random fluctuations that occur at the smaller scale. Changes in the cells that 

are present at the expanding front can leave its signature in terms of specific cellular 

arrangements within the colony as colony progresses away from the homeland region (Fig. 

6.1).  

 

 

Fig. 6.1: Formation of defined sectors in a mixed culture of E. coli DH5α growing on agar 

surface (Reprinted from Hallatschek et al., 2007 with permission133. Copyright obtained from 

PNAS (Appendix E, C6)).  

 

In other words, composition of the homeland region can influence the choreography of an entire 

community. It formed the basis of our study where we tried to introduce phenotypic noise in 

the homeland region and study its effect on the colony structure. 
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6.2 Experimental design 

Experiment was broken down in two parts. First part involved determination of motility of E. 

coli strains under study, whereas in second part was planned to deal with the competition 

between two different E. coli strains. 

1. Determination of the motility 

Motility of the various strains of E. coli was recorded as explained in section 2.13 of chapter 

2. Time lapse sequence thus obtained for each strain was then analysed using ImageJ (v1.50f). 

Background of these recorded DIC images was removed by subtracting ‘a constant number’ 

from every pixel of every frame of the film. Though the value of the constant varied from one 

movie to another, it was same for all the frames in one movie. Processing gave the images false 

appearance of fluorescence images in which only those pixels covered by cell body had highest 

intensity. Processed images when fed to ‘particle tracker’ plugin in ImageJ, centroid of the cell 

was detected and traced over time to return the values of its X and Y coordinates in every 

frame. Euclidean distance covered by different cells at every time interval was then fit to 

Gaussian function, after the data was sum normalized. Use of ‘pdf’ function in MATLAB 

helped to calculate a fit, when its average value was fixed at ‘0 µm’ for non- motile strain. 

Instantaneous displacements were fit to the Gaussian using ‘free mean’, for motile cells 

(Appendix D, D.3). Standard deviations calculated accordingly, were then, in turn, used to 

determine the diffusion coefficient for different E. coli strains.  

2. Colony competition assay 

E. coli strains differed in the marker plasmids were competed with each other as described in 

section 2.14, chapter 2. Growth of the colony from ‘homeland region’ was captured in GFP, 

RFP and bright field channel of a stereoscope at the interval of 12 hours. Primary analysis 

included mapping of percent area occupied by each strain in a colony in order to understand 
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whether phenotypic heterogeneity confer any (dis)advantages to the strain. Image analysis was 

carried out in ImageJ (v1.50f). Bright field images were processed in order to extract area of 

the colony, while images in GFP and RFP channels gave area occupied by different strain in 

the colony. After applying ‘Otsu thresholding’, the area was quantified using ‘Analyze particle’ 

module in ImageJ. Assessment of the competition was based on the increase or decrease in the 

percentage area of any of the strain over time.   

 

6.3 Determination of motility of E. coli strains 

Motility is one of the dominant strategies that has been evolved to help organism explore the 

niche for food as well as for shelter. It grants cell survival advantage over other non- motile 

cells. Hence, in our experiments, it was necessary to determine the chemotactic ability of each 

E. coli strain under consideration, so that we could avoid the competition between motile and 

non- motile strain. Analysis, thus, helped us to eliminate the possibility of outgrowth of the 

motile strains over other non- motile bacteria because of their ability to surf the surface.    

Movements of circular beads (Diameter: 1 µm), E. coli DH5α and E. coli RP437 were 

examined as experimental controls. Motion studied in bead solution reflected the random 

movement of inanimate objects due to thermal activities. DH5α served control for non- motile 

bacteria. RP437 is a bonafide strain that shows motility3 and was analysed as a control for 

directed movement of bacteria (Fig. 6.2 A). 

Single step taken by objects in ‘X’ and ‘Y’ directions were calculated (Section 6.2) and their 

frequency distributions were tested for Gaussian function (Appendix D, D.3) to find average 

displacements (µ) as well as standard deviation (σ).  
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𝑓(𝑥) =  
1

𝜎∗√2∗𝜋
∗  𝑒

−( 𝑥− 𝜇)2

2∗𝜎2                                                                                           Equation 19 

The later was substituted in the formula: 𝐷 =  
𝜎2

2𝑡
,                                                    Equation 20  

to estimate the coefficient of diffusion for each strain for the duration of an experiment (t)134. 

Distance covered by beads and DH5α in a single step was averaged at 0 µm, while for RP437 

showed average movement of 0.173 µm in both the directions. As expected, RP437 was 

reckoned with the highest coefficient of diffusion. On the other hand, beads and DH5α had 

diffusion coefficient of 0.1 and 0.03 µm2/ sec, (Fig. 6.2 B). We verified the reliability of our 

results by comparing the diffusion coefficient of beads extracted from the experiment with the 

diffusion coefficient (D) computed for an object of 1 µm diameter (Fig. 6.2 C), using Stokes- 

Einstein equation134:  

𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 𝐷 =  
𝐾𝑇

6∗𝜋∗𝑟∗𝜌
                                                                      Equation 21 

K denotes Boltzmann’s constant, T is the temperature. The radius of the object and the viscosity 

of the medium has been presented by r and ρ respectively.    
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Fig. 6.2: Motility analysis of control E. coli strains (A) Time lapse images of beads (upper 

row), RP437 (middle row) and DH5α (lower row) have been shown. The rightmost column 

represents the trajectories of respective object overlaid on the first time frame. Scale bar- 5 µm 

(B) Sum normalized frequency distribution of a distance covered by bead (upper row), RP437 

(middle row), DH5α (lower row) in a single step taken in X (left column) and Y (right column) 

direction have been indicated. Except for RP437, the Gaussian fit were calculated by fixing the 

average at ‘0 µm’ for Beads and DH5α. For RP437 (motile strain) average of the fit was 

optimized by MATLAB algorithm (C) Diffusion coefficient of beads obtained from an 

experiment is compared with diffusion coefficient of an object of 1 µm size (D) X, Y plots of 

two dimensional movement of beads and E. coli RP437 and DH5α strains have been shown. 

Solid lines stand for no. of cells considered for the studies. Solid lines stand for no. of cells 

considered for the studies.    
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Once, we established our controls, we then, analysed motility in MG1655, ΔrecA, ΔsulA and 

ΔslmA strains. Time lapse images showed that MG1655 is a motile strain, while others were 

non- motile (Fig. 6.3 A). Analysis of the distributions of their displacements were in accordance 

with it (Fig. 6.3 B). In addition, 2 D plots of X and Y movements of MG1655, ΔrecA, ΔsulA, 

ΔslmA and their comparison with that of beads, RP437 and DH5α, also corroborated our 

observations. XY trajectories of non- motile strains tend to return to the same location before 

they were directed away from the origin, as opposed to the XY trajectories of motile strains 

which were directed and progressively moved away from the origin with time (Fig. 6.2 D and 

Fig. 6.3 C). Our observations when translated into the estimation of diffusion coefficient 

associated with each strain, revealed that the diffusion coefficient of MG1655 is comparable 

to that of RP437. All the non- motile strains have diffusion coefficient ranging between 0.3- 

0.5 (Fig. 6.4, Table 6.1). 
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Fig. 6.3: Motility analysis of E. coli strains (A) Temporal presentation of movements exhibited 

by MG1655 (first row), ΔrecA (second row), ΔsulA (third row) and ΔslmA (fourth row) have 

been depicted. Their respective trajectories have been shown in fourth column. Scale bar- 5 

µm (B) Sum normalized distribution of instantaneous displacements of MG1655, ΔrecA, ΔsulA 

and ΔslmA strains have been represented. For motile strain (i.e. MG1655), a default average 

value given by an algorithm was used to calculate the Gaussian fit. On the other hand, average 

value was fixed to 0 µm, for rest of the non- motile strains (C) X, Y plots of two dimensional 

movement of beads and different E. coli strains have been shown. Solid lines stand for no. of 

cells considered for the studies.    
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Fig. 6.4: Diffusion coefficient of beads and different E. coli strains.
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Sr. 

no 

E. coli strain Diffusion coefficient in x 

(µm2/ sec) 

Diffusion coefficient in y 

(µm2/ sec) 

1 Bead (Diameter = 1 

µm) 

0.1008 0.0931 

2 RP437 3.0700 2.7674 

3 DH5α 0.0351 0.0379 

4 MG1655 2.7390 3.2923 

5 ΔrecA 0.0349 0.0402 

6 ΔslmA 0.0458 0.0520 

7 ΔsulA 0.0560 0.0814 

 

Table 6.1: Diffusion coefficient of different strains of E. coli in LB were obtained by tracking 

their displacements in ImageJ and testing the distribution of instantaneous displacements 

against Gaussian function to retrieve the statistical deviation for each strain.
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Once, we determined the motility of the strains we decided the pairs of competitors as follows: 

 

pmCherry peGFP 

MG1655 MG1655 

DH5α DH5α 

ΔrecA ΔrecA 

ΔsulA ΔsulA 

ΔslmA ΔslmA 

ΔrecA ΔsulA 

ΔrecA ΔslmA 

ΔslmA ΔsulA 

 

Table 6.2: Pairs of competitors for colony competition assay. 

 

6.4 Competition between E. coli MG1655 (green) vs. E. coli MG1655 (red) 

First competition was set up between MG1655 transformed with pGFP and MG1655 

transformed with pmCherry. Though it is motile, analysis of E. coli MG1655 gave us 

preliminary idea of growth pattern in co- cultures of wild- type. Colony growth was followed 

at the end of every 12 hrs using bright field microscopy. Fluorescence was recorded in GFP 

and RFP channels (Fig. 6.5 A and B). Growth of the colony was linear till 36th hr and then 

remained stationary (Fig. 6.5 C). A distinct spatial pattern of growth for two strains could be 

observed. Though, GFP fluorescence did not sustain for more than 24 hrs, growth of the cells 

expressing mCherry showed the segregation of two strains, as colony sprawled away from the 

homeland region (Fig. 6.5 A). Estimated red fluorescing area in the colony always resides near 
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50% (Fig. 6.5 B). Our experiment showed (a) In wild- type motile bacteria, each sub- strain 

occupies half the colony area (b) The expression of pGFP plasmid reduces with time and hence 

needs modification similar to that of pmCherry. 
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Fig. 6.5: MG1655 vs. MG1655 (A) Growth of the co- culture of E. coli MG1655 transformed 

either with pGFP or with pmCherry was followed at the interval of 12 hrs in GFP and RFP 

channels. Scale bar- 1 mm (B) An approximate periphery (yellow circles) of the colony at the 

end of each interval was extracted form corresponding bright field images at each time point 

(explained in section 6.2) and overlaid on the 48th hour image of mCherry expressing cells. 

Scale bar- 1 mm (C) Growth of the colony has been shown as a function of the time (D) Percent 

area occupied by cells bearing pmCherry has been plotted against time.
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6.5 Competition between E. coli DH5α (green) vs. E. coli DH5α (red) 

General problem using pGFP for expression of GFP in cell, was that one needs to incorporate 

IPTG in media, in order to activate the promoter. That puts temporal limitations on the 

expression as well as on experiment. On the contrary, modification in pGFP in order to convert 

it into pmCherry plasmid, made mCherry expression constitutive, as major portion of operator 

element was removed in the process (Appendix B, Section B.1). We used pmCherry backbone 

to ensure constitutive expression of GFP beyond 12 hrs (Fig. 6.6 A). mCherry gene was 

substituted with that of eGFP. New plasmid was named as peGFP (Appendix B, Section B.1). 

E. coli DH5α cells were transformed either with pmCherry or with peGFP plasmids and mixed 

together in 50 : 50 proportion in their log phase. Linear growth of the colony from homeland 

region was observed at every12 hrs (Fig. 6.6 A, B and C). At initial time points, we observed 

segregation in two colours. However, as time progressed, GFP signal took over almost all the 

area in colony, while growth of the cells bearing pmCherry was compromised (Fig. 6.6 A). In 

addition to this, we also noticed the spread of GFP expressing cells in Z- direction, instead of 

the growth restrained only in XY plane. Experimental outcomes were reflected in the percent 

area calculated for both the sub- strain. Percent area covered by green cells (green solid line) 

was near to 100%, while percent area for red cells (red solid line) decreased linearly with time 

(Fig. 6.6 D).
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Fig. 6.6: DH5α vs.DH5α (A) Mixed culture of DH5α expressing either eGFP or mCherry was 

observed at the interval of 12 hrs. Scale bar- 1 mm (B) An image of E. coli cells transformed 

with pmCherry taken at the end of 48th hour was overlaid with outlines of the same colony 

extracted from bright field images (explained in section 6.2) at earlier time points. Scale bar- 1 

mm (C) Colony growth has been plotted as a function of the time (D) Proportion of area 

covered either by eGFP signal (green solid line) or by mCherry signal (red solid line) has been 

plotted as a function of the time.          

 

6.6 Discussion 

Shape of an organism patterns the colony or the biofilm in its niche135. In an experiment carried 

out by Hallatschek et al, in 2007, it was revealed that the sectoring of two sub- strains of the 

populations bearing two different colours can be traced back to the arrangement of the two 

cells in the home- land region133. Crux of our experiment was to analyse an influence of 

population cell size variation on the arrangement of a single cell within homeland region, which 

can affect the patterning of the colony. We planned to change the cell length distribution of an 
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inoculum by mixing the two E. coli strains with different genetic background, such that the 

homeland region would be noisier as far as cell lengths are considered. Experiment was carried 

out in two successive steps. In the first part, we determined the motility of E. coli strains with 

an objective of deciding the pair for competition, as non- motile strain competing against motile 

strain involves a risk of motile strain outgrowing non- motile partner. Our analysis showed us 

that MG1655, also a wild- type strain, is motile, while other strains like ΔrecA, ΔsulA and 

ΔslmA are non- motile. Distributions of instantaneous displacements by E. coli DH5α have 

modal value near 0 µm. We attribute this to the no. of cells that have been tracked over time. 

Only six DH5α cells were analysed. In addition, it is evident from two- dimensional XY plots 

that DH5α cells wandered at the same place, before they showed a movement away from their 

original location. We could find some of the cells taking small steps during the motion, which 

is why instantaneous displacements reside near 0 μm. This behaviour was not observed for rest 

of the non- motile strains like E. coli ΔsulA. This observation can further be strengthen by 

analysing the movement of more E. coli DH5α cells.             

Second step of the experiment, however, suffered from a drawback of not having non- motile, 

wild- type population. Spatial spread of motile cells is different from non- motile populations. 

That changes the construction of colonies of respective strains. Hence, motile MG1655 cells 

does not provide with valid control to analyse the colonies formed by other non- motile strains 

under identical experimental conditions.  Also, the constitutive expression of mCherry protein 

in high copies in mutant cells like DH5α cost the cell its fitness. Growth of DH5α transformed 

with pmCherry in suspension was slower than DH5α cells bearing peGFP. We predict that the 

observed outgrowth of eGFP expressing cells over pmCherry transformed cells can be 

attributed to the slower growth rate of mCherry expressing population. We propose that growth 

of DH5α with pmCherry plasmid in batch cultures needs to be recorded systematically and 
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compare with growth in parent strain (DH5α) as well as DH5α with peGFP in order to confirm 

the growth defects.   

In future experiments, mCherry can be replaced with other variant of fluorescence proteins viz. 

CFP or RFP so that balanced and healthy growth of both the competitors can be achieved in 

the proliferating colony. Use of microfluidic experiments, can allow to subject the community 

to different environments sequentially, thereby mimicking the natural habitat an organism.  

In conclusion, though preliminary, these studies open opportunity to fathom the relationship 

between shape variations and the communal behaviour in lower organisms. 



190 | P a g e  

 

 

Chapter 7 

Conclusion and Outlook 

Classical microbiology describes E. coli cell growth as bidirectional and symmetric across the 

mid- plane10. Plane of division exactly coincides with the mid- cell, giving rise to the twins 

with identical genetic as well as phenotypic make- up. However, it fails to explain the variation 

in the external appearance or the occasional changes in the behaviour of a single cell in an 

isogenic population136. Nevertheless, Phenotypic heterogeneity in the clonal population has 

been shown to reckon with cell differentiation and formation of persister population137,138. Non- 

genetic fluctuations in phenotype creates sub- populations that co- exist together and exhibit a 

differential response to the surroundings139. 

In previous studies, stochastic fluctuations in the genetic circuits of an organism have been 

implicated in the genesis of phenotypic variations43,140. In addition to this, errors in the 

segregation of sub- cellular contents in twin sisters can serve as the source of phenotypic 

heterogeneity45,46. Thesis reviews the extension in an E. coli cell as well as the mechanisms 

that cause fluctuations in it. Our approach extends from a single cell to the clonal populations 

of E. coli.  

Our work connected stochastic halts in replication process with population cell length variation 

in growth rate dependent manner. Analysis of micro- colonies generated from single mother as 

well as study of cell sizes in continuous cultures showed that cell length variability is 

independent of the cell age. We also provided with the molecular links. Our analysis of RecA 

dynamics in E. coli before and after HU treatment showed us that stochastic temporary 

suspensions in DNA replication pauses cell division through SOS response pathway. Cell that 

skips the division cycle, elongates into the filamentous form. We propose that the random 

occurrence of these events in an individual lead to the skewed cell length distribution extending 
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beyond the two- fold of average cell length of E. coli. We further, investigated the relationship 

between replication stochasticity with gene expression noise. Correlation between intrinsic 

noise and the extent of replication arrest could be observed at sub- lethal dosage of 

hydroxyurea. The relationship was breached after hydroxyurea concentration was increased 

beyond 13 mM. We also noticed the effect of the growth rate on the noise components of gene 

expression. Fast growing cell exhibit high levels of intrinsic noise, while in slow growing 

cultures extrinsic noise dominates the genetic network. We concluded that stochastic 

replication process can also generate phenotypic variations in an isogenic population by 

elevating intrinsic noise levels in genetic circuitary. 

When we tested the growth of an individual cell in wild- type population, asymmetry in the 

growth distribution across the cell length was observed. We confirmed asymmetry with help 

of various assays. Asymmetry was found to be propagated through consecutive generations 

and follows a peculiar pattern. Asymmetry generates the time differences in the division cycle 

of the two identical sisters. More importantly, it was revealed from our FRAP studies that 

bacterial cytoskeleton (MreB) may be instrumental in generating a bias in the growth of an 

individual cell. However, we predict that it does not contribute to the population cell length 

variation.      

As a future step, studies can be extended into quantifying an effect of phenotypic variability on 

a microbial community. Colony competition assay could serve the same purpose. Higher 

occurrence of cell filamentation in the ‘homeland region’ can affect the arrangement, which 

ultimately will change the boundaries of the sectors.  

In addition to this, our studies can be extended to understand the fate of the filamentous cell. 

Division in naturally occurring elongated cells can be followed spatio- temporally. Molecular 

tags to proteins relevant in cell division or nucleoid segregation can help not only in 
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understanding the future of an elongated cell but also in finding the probability of filamentation 

in an offspring. 

Filamentation can be investigated with reference to the aging of the cell. The studies can give 

us insight into whether there is any correlation between segregation of cellular damage and 

probability of filamentation, at a single cell level. Moreover, in our experiment, only a certain 

proportion of the cells in the population respond to the drug treatment, while others continue 

their division cycle and propagate. This observation can be supported with aging studies or by 

following the pattern that corners the cellular damages to understand the generation and the 

importance of phenotypic heterogeneity. In addition, the elongation pattern of a single cell can 

be extrapolated to study its interaction with the neighbouring cells and the arrangement of their 

successors either in the colony or in the biofilm.    
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Appendix 

 

A. Selection of growth media 

Propagation rate of E. coli cells were modulated by changing the nutrient supplement. Though 

minimal medium supported with different carbon source was the choice, the doubling time 

achieved was below 60 mins. In order to attain the growth rate that necessitates the cell to fire 

replication multiple times, following media compositions were considered: 

(a) Decomposition of Luria- Bertani broth into two different broths 

(b) Supplement M9 medium with variable glucose concentrations as a sole carbon source 

 

A.1 Deriving media from Luria- Bertani medium 

Luria- Bertani is a nutrient rich complex medium which has been designed for optimized 

laboratory growth of bacterial cultures as follows (Hi- media laboratories, M1245): 

Ingredient Grams/ Litre  

Yeast extract 5 

Tryptone  10 

Sodium chloride 10 

Final pH (at 25°C) 7.5 ± 0.2 

 

Table A.1: Composition of Luria- Bertani broth (cited from Hi- Media laboratories, M1245).  

 

Doubling time of E. coli MG1655 in LB at 37°C with constant aeration at 180 rpm has been 

shown to be around 30 mins (Chapter 3, Table 3.1 and 3.2).  We proposed to segregate yeast 

extract and tryptone so that the nutrient value of the medium will be lowered affecting the 
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growth rate of the population. We postulated following two compositions and named them as 

yeast extract broth (Table A.2) and tryptone broth (Table A.3). 

Ingredient Grams/ Litre  

Yeast extract 5 

Sodium chloride 10 

Final pH (at 25°C) 7.5 ± 0.2 

 

Table A.2: Composition of yeast extract broth. 

 

Ingredient Grams/ Litre  

Tryptone  10 

Sodium chloride 10 

Final pH (at 25°C) 7.5 ± 0.2 

 

Table A.3: Composition of tryptone broth. 

 

Doubling time of E. coli MG1655 in these two media was tested using plate reader assay. We 

used 96 well plate (UV transparent, flat bottom, Costar, Corning, USA) that can accommodate 

maximum volume of 400 µl per well. In order to avoid the media spill out of the well during 

the course of experiment, we fixed the volume of the system to 200 µl. The media was 

inoculated with E. coli MG1655 at 1% concentration. Evaporation of the medium was avoided 

by covering its surface with 20 µl of sterile mineral oil (Sigma- Aldrich, USA). Growth was 

measured for the culture at 37°C with constant shaking at 600 rpm, at the interval of 10 mins 

for 3 hrs till the saturation was observed. Growth was monitored at 600 nm, using plate reader 

(Varioskan, Thermo Fisher Scientific, USA). Growth in yeast extract broth (YEB) and tryptone 

broth (TB) was compared against the growth in LB. Temporal changes in the culture density 
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were fit to logistic equation (Fig. A.1) to extract the growth rate of the population in YEB as 

well as in TB (Table A.4). Cells grown in YEB and TB doubled with growth rate of 1.2324 

and 0.8634 generations per hour respectively (Table A.4). Growth rate is surely less than that 

in LB and triggers the multi- fork replication in the cell.  

 

Fig. A.1: Growth measurement of E. coli MG1655 in LB, yeast extract broth and tryptone broth 

respectively. 

 

Medium Carrying capacity Growth rate 

(generation/ hr) 

Doubling time 

(mins) 

LB 0.4347 1.719 34.9 

Yeast Extract 0.2518 1.2324 48.7 

Tryptone 0.2460 0.8634 69.5 

 

Table A.4: Estimated E. coli population growth rates in yeast extract broth and tryptone broth. 

 

In bulk experiments, when system was scaled up to 100 ml, growth rate was observed to 

increase further and doubling time reduced to 39 and 57 mins when the cells are cultured in 

yeast extract and tryptone broth respectively (Chapter 3, Table 3.2). This difference can be 

attributed to the small system as well as the presence of mineral oil layer that may cut off the 
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oxygen, thus limiting its availability. Small volume, moreover, also amounts for decreased 

carrying capacity. However, the experiment confirmed that the use of yeast extract or tryptone 

as a sole source of energy can support the microbial growth, with the growth rates in the regime 

of multi- fork replication. Hence, both the media were then employed in the growth modulation 

experiments. 

 

A. 2 Supplementing minimal medium with different concentrations of glucose 

In addition to our attempt of devising new media, we also tweaked the percent glucose 

supplement to minimal media. Concentration of glucose was ranged from 0.1- 1%. While, 4 

µg/ ml of thymidine was added to compensate for the mutation in pyrimidine synthesising 

pathway of E. coli MG1655. Cultures were grown and monitored in exactly the same way, 

described in earlier section. Growth rate (Table A.5) was retrieved for each of the nutrient 

condition by fitting the growth with logistic function (Fig. A.2 A). We observed no significant 

change in the growth rates when cultures were supported with different concentrations of 

glucose (Fig. A.2 B). It was in the range of 0.4- 0.5 generations per hour. 
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Fig. A.2: E. coli growth in minimal media containing different concentrations of glucose. (A) 

Growth measurements of E. coli MG1655 at different glucose concentrations have been plotted 

as a function of time (B) Population growth rates at different glucose concentrations have been 

shown.
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Medium Carrying capacity Growth rate 

(generation/ hr) 

Doubling time 

(mins) 

M9 + 0.1% glucose 0.5974 0.50922 117.8 

M9 + 0.2% glucose 0.5218 0.47622 126 

M9 + 0.3% glucose 0.8266 0.45864 130.8 

M9 + 0.4% glucose 0.3885 0.47928 125.2 

M9 + 0.5% glucose 0.5011 0.43932 136.6 

M9 + 0.6% glucose 0.5315 0.43922 136.6 

M9 + 0.7% glucose 0.6977 0.4206 142.7 

M9 + 0.8% glucose 0.3961 0.4923 121.9 

M9 + 0.9% glucose 0.5515 0.4383 136.9 

M9 + 1.0% glucose 0.4234 0.51204 117.2 

 

Table A.5: Growth rates of E. coli MG1655 in minimal media supplemented with different 

glucose concentrations.  

 

Since, the growth of E. coli in yeast extract broth or tryptone broth distinctly changes the 

doubling time as compared to M9 supplemented with various concentrations of glucose we 

used YEB and TB to alter the population growth rates and observe the effect on the cell length 

variability.    
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B. Construction of Plasmids 

Following plasmids were constructed for the purpose of these studies: 

1. pmCherry 

2. peGFP 

3. pRecA- mCherry 

4. pBAD24-recA 

 

B.1 Construction of pmCherry and peGFP plasmids: 

Plasmids were constructed in order to express either GFP or mCherry proteins in E. coli cells 

and make the cell visible while imaging. Plasmids were derived from a commercial pGFP 

plasmid (Clontech, USA)141–144, with PUC19 origin and ampicillin resistance gene (beta 

lactamase, bla) as a marker. GFP expression is controlled by Plac, located 110 bp upstream to 

the ORF of gfp. The plasmid has two ‘Multiple Cloning Sites’ at N- as well as C- termini of 

the gfp gene. To repress the expression of the gene O1 and O2 sites have been introduced to 

downstream and upstream of the lac promoter, respectively. While, 5’ MCS site acts as a 

putative O3 operator sequence.  

pmCherry plasmid was constructed by replacing gfp gene with that of mCherry. The later was 

amplified from pmCherry- N1 plasmid (Clontech, USA). The following primers were used in 

Taq polymerase (Bangalore Genei, India) mediated PCR (Table B.1).
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Primer Orientation RE site Sequence (5’- 3’) 

 mCherry_f Forward SalI AAAGTCGACAAAAATGGTGAGCAAGGGC 

 mCherry_r Reverse EcoRI CGGGAATTCCTACTTGTACAGCTCG 

 

Table B.1: Sequence of the primers used to amplify pmCherrry and peGFP genes in 5’- 3’ 

direction.  

 

Purified amplicon and the pGFP plasmid were digested sequentially by EcoRI and SalI (NEB, 

USA) at 37°C for 5 hrs each. Digested fragments were gel extracted (QIAquick Gel Extraction 

Kit, Qiagen, USA) and ligated together in a system containing vector : insert ratio equal to 1 : 

6, using T4 DNA ligase (Bangalore Genei, India). Ligation mixture was transformed into E. 

coli DH5α competent cells and scored for the ampicillin resistance on agar plates145.  

Initial screening of the colonies involved growth in LB for 2 hrs, followed by induction with 1 

mM IPTG at 37⁰C and 180 rpm, though later on it was noticed that mCherry expression in 

DH5α cells was constitutive or independent of IPTG induction. Cells were harvested, fixed and 

observed under upright epifluorescence microscope (Carl Zeiss, Germany) for fluorescence 

using dsRed filter (Fig. B.1 A and B). 
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Fig. B.1: pmCherry construction (A) Plasmid map of pmCherry (B) E. coli DH5α cells, induced 

with 1 mM IPTG, express mCherry. Scale bar- 10 µm.  

 

In the making of peGFP plasmid, the ORF of mcherry was deleted from pmCherry plasmid 

and was replaced with eGFP ORF. eGFP gene was amplified using mcherry primers (Table 

B.1) from a commercial plasmid peGFP- N1 plasmid (Clontech, USA). pmCherry plasmid and 

eGFP gene was digested sequentially with EcoRI and SalI at 37°C, for 5 hrs each, and then 

ligated in the ratio of 1 : 6. Cells transformed with ligation mixture were selected for ampicillin 

resistant. Plasmid was confirmed by observing the fluorescence in the transformed cells when 

excited at 488 nm under microscope (Fig. B.2 A and B).
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Fig. B.2: peGFP construction (A) plasmid map of peGFP (B) E. coli DH5α cells flooded with 

eGFP. Scale bar- 10 µm.  

 

B.2: Construction of pRecA- mCherry plasmid: 

Another modification in pmCherry plasmid involves an introduction of recA gene at the N- 

terminal of mCherry gene. recA gene was amplified from genomic DNA of E. coli MG1655146 

using these two primers, with Taq polymerase (Table B.2).   

Primer Orientation RE site Sequence (5’- 3’) 

 RecA- 

mcherry_f 

Forward HindIII GCTAAGCTTATGGCTATCGACGAAAA 

 RecA- 

mcherry_r 

Reverse SalI GCAGTCGACATAAAATCTTCGTTAGTTTCT 

 

Table B.2: Sequence of the primers used to amplify recA gene in 5’ to 3’ direction.  
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Amplicon and plasmid, both were digested sequentially with HindIII (NEB, USA) and SalI at 

37°C, 5 hrs each. Digested vector and insert were ligated together in the ratio 1 : 6. Transformed 

colonies were scored for ampicillin survival and confirmed by visualizing induced cells under 

dsRed filter for RecA foci along the cell length (Fig. B.3).  
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Fig. B.3: pRecA- mcherry construction (A) Plasmid map of pRecA- mcherry (B) E. coli DH5α 

cells expressing RecA- mcherry. 

 

Expression of pmCherry plasmid or other plasmid derived from pmCherry was constitutive 

and independent of IPTG induction. We attribute this to (a) Destruction of putative O3 site due 

to digestion at SalI. This might result into reduced suppression by lac operator protein and 

hence increase in the promoter activity. (b) Reduction in the distance between the promoter 

seqΔuence and the ORF from 110 bp to 82 bp due to the restriction digestion.
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B.3 Construction of pBAD24-recA plasmid: 

recA amplification from E. coli genomic DNA was carried out using following two primers 

(Table B.3).  

Primer Orientation RE site Sequence (5’- 3’) 

 pBAD24- 

recA_f 

Forward NheI AAA GCT AGC ATG GCT ATC GAC GAA AA 

 pBAD24- 

recA_r 

Reverse XbaI GCC TCT AGA TTA AAA ATC TTC GTT AGT 

TT 

 

Table B.3: Sequence of the primers used to amplify recA gene in 5’ to 3’ direction. 

 

pBAD24 plasmid was cut open by digesting it with NheI and XbaI at 37°C, 3 hrs. Similar 

treatment digested recA gene. The insert and the vector was mixed in the proportion of 6 parts 

to 1 part. Colonies were selected using LB agar containing ampicillin (Fig. B.4). Colony PCR 

served as the confirmation for selected transformed colonies. Following primers were used for 

colony PCR (Table B.4). 

Primer Orientation Sequence (5’- 3’) 

 pBAD24- f Forward GAC GCT TTT TAT CGC AAC TCT CTA CTG 

TTT CT 

 pBAD24- 

recA_r 

Reverse GCC TCT AGA TTA AAA ATC TTC GTT AGT 

TT 

 

Table B.4: Sequence of the primers used for the colony PCR in 5’ to 3’direction.
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Fig. B.4: pBAD24-recA construction. Plasmid map of pBAD24- recA.
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C. Development of ImageJ macros for analysing fluorescent puncta in cellular halves 

Macro was originally programmed to analyse the sum area occupied by MreB foci in each half 

of an E. coli cell. Macro operates in three steps.    

DIC image of an E. coli cell as well as the corresponding image of MreB puncta in YFP 

channels are opened in ImageJ 

Part I: Divide cell into two halves 

Macro selects the DIC image window, process it to obtain the coordinates of the two halves of 

the cell. 

1. Image is enhanced contrast (0.4%, normalization) 

2. Filter: ‘Unsharp mask’147 is applied twice; Parameters: radius – 5 and mask – 0.9 

3. Image is then thresholded using ‘Otsu method’148. The step helps extract cell shape and area. 

The later parameter is estimated using ‘Analyse particle’149 

4. Image undergoes post- threshold processing in following sequence: (i) Fill holes (ii) Erode 

(iii) Dilate 

5. Image is then skeletonized  

6. Line joining the end points of the skeleton is drawn 

7. Perpendicular bisector for this line is calculated in order to divide the skeleton into two equal 

parts 

8. Additional six coordinates are calculated on each sides of perpendicular bisector using its 

slope 

9. Two different polygons covering each half of the cell were synthesized and their ROI were 

saved and overlapped on YFP image  
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Part II: Overlay of selected ROI on fluorescence image 

Macro then selects YFP window in order to process it as well as overlay it with ROI obtained 

from DIC image. 

1. Filter ‘Unsharp mask’ is applied on YFP image. Parameters: radius – 5, mask – 0.9 

2. Otsu thresholding 

3. Overlay ROI separately and duplicate the area 

4. Select each duplicated image window separately and apply ‘Analyse particle’ to detect and 

quantify the area of MreB focus 

 

Part III: Evaluation of area 

1. Area of the particles detected in each half is added together and divided by the area of the 

cell 

2. Numbers are displayed in the result window
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D. Source codes 

Study uses various algorithms in order to make image analysis as well as statistical 

interpretation of data, more objective and accurate. Following sub- sections provide source 

codes for the programs developed during the course of these studies, either in MATLAB or in 

ImageJ.   

 

D.1 Fitting Log- normal function to the population cell length distribution 

The code, designed in MATLAB, fits the cell length distributions of E. coli populations to log- 

normal function to return the values for average cell length and variance in the distribution 

(Chapter 3) and then statistically validates it by calculating goodness- of- fit. For the later part, 

an algorithm employs a non- parametric ‘Kolmogorov- Smirnov statistical test’ (Chapter 2, 

Section 2.15)57. Code accepts text files and displays the figure in which distribution fit to log- 

normal equation.   

File name: LognormalFitMG.m 

%Manasi Gangan, IISER Pune 

%20140927: Modified Chaitanya Athale, IISER Pune 

 

close all; clear all; 

%read in the data 

a=importdata('FileName.txt'); 

N = length(a)%no. of samples 

%plot the experimental data based on a histogram 

x=linspace(1,15,44); %x-vals 

%experimental data freq. distr 

[p,q]=hist(a,x); 

p1=p./max(p); %max normed 

p2=p./sum(p); %sum normed 

%figure(1),hold on, subplot(1,2,1), bar(q,p1,'b'),title('max normed') 

figure(1),bar(q,p2,'b')%,title('sum normed') 

 

 

%== FIT 

%create an x-axis range of lengths for the fit based on the min-max of 

data 

b=linspace(min(a),max(a),500); 

%fit a lognormal distribution 

pd=fitdist(a,'lognormal'); 
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%generate the pdf of the fit 

y=lognpdf(q,pd.mu,pd.sigma);%plot the pdf as a function of the x-vals 

y2= y./sum(y);%sum normed (area under curve = 1) 

%extract the logn parameters (mu, var) 

[M,V]=lognstat(pd.mu,pd.sigma) 

 

 

%figure(1), hold on, subplot(1,2,1),plot(q,y,'-

r'),legend('Expt','Fit'), 

%xlabel('length'),ylabel('freq'); 

 

figure(1), hold on, plot(q,y2,'-r')%,legend('Expt','Fit'), 

%xlabel('length'),ylabel('freq'); 

xlim([0,10]) 

ylim([0,0.55]) 

 

%cumulative sum used to calculate chi-square statistic 

p3=cumsum(p2); 

%figure(2), plot(q,p3,'-ob');% O: observed 

 

%cumulative sum of the fit 

y3=cumsum(y2); 

%hold on, plot(q,y3,'-xr');% E: expected 

%legend('Observed','Expected') 

%text(4,1.2,sprintf('No. of observed classes: %i',length(q))); 

%here n=no. of classes 

%hence: df = n - 1 

 

%chi-square statistic 

SSD = sum((((p3-y3).*N).^2)./(N.*y3)); 

SSD; 

df = length(q)-1; %degrees of freedom 

 

 

%KS- test statistics 

F1=N*p3; 

F2=N*y3; 

 

d=F1-F2; 

max(d) 

 

D=sqrt((-log(0.001/2))/2*N)
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D.2 Finding mid- plane of the cell 

Macro has been developed in ImageJ, in order to divide the cell image at the mid- point of the 

cell and estimate the total area occupied by the molecule of interest in either halves of the cell. 

Macro also extracts the values for cell length as well as cell area (Chapter 5 and Appendix C).  

Macro is applied to the copped images of the cell in DIC and YFP channels. It first processes 

DIC image to return the cellular dimensions and then relates the derived ROIs with 

corresponding fluorescence image of the cell (Appendix C). 

  

File name: CellMIdPlaneDetection.ijm 

//This macro divides the cell in two halves and counts area of the 

particles in each half. 

//Requires plugin "Measure ROI" to be installed. 

//Requires v1.5a. 

//Developed by Manasi Gangan, IISER Pune on 2016/01/09. 

 

//Extracts cell shape. 

selectWindow("DIC_ImageName.tif"); 

getDimensions(width, height, channels, slices, frames); 

run("Enhance Contrast...", "saturated=0.4 normalize"); 

run("Unsharp Mask...", "radius=5 mask=0.90"); 

run("Unsharp Mask...", "radius=5 mask=0.90"); 

setAutoThreshold("Otsu dark"); 

//run("Threshold..."); 

//setThreshold(128, 255); 

setOption("BlackBackground", false); 

run("Convert to Mask"); 

run("Convert to Mask"); 

run("Fill Holes"); 

run("Erode"); 

run("Dilate"); 

//run("Erode"); 

//run("Dilate"); 

//run("Erode"); 

//run("Dilate"); 

run("Analyze Particles...", "size=750 pixel add"); 

 

//finds width, length and area of the cell and divides it into two 

halves. 

newImage("Output_1", "8-bit black", width, height, 1); 

selectWindow("Output_1"); 

roiManager("Select", 0); 

run("Invert"); 

run("Make Binary"); 

run("Median...", "radius=5"); 

run("Skeletonize"); 

run("Analyze Particles...", "size=0 add"); 
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roiManager("Select", 1); 

List.setMeasurements; 

  x1 = List.getValue("FeretX"); 

  y1 = List.getValue("FeretY"); 

  length = List.getValue("Feret"); 

  degrees = List.getValue("FeretAngle"); 

//print(degrees); 

  if (degrees>90) 

     degrees -= 180;  

  angle = degrees*PI/180; 

  x2 = x1 + cos(angle)*length; 

  y2 = y1 - sin(angle)*length; 

m1= (y1- y2)/(x1- x2); 

m2 = -1/ m1; 

m3 = atan(m2); 

m4 = atan(m1); 

 

roiManager("Select",0); 

run("Measure Roi"); 

w = getResult("Roi_Width", 0);  

l = getResult("Roi_Length", 0);  

//print(w,l); 

selectWindow("Results");  

run("Close"); 

 

List.setMeasurements; 

  //print(List.getList); // list all measurements; 

  xC = List.getValue("X"); 

  yC = List.getValue("Y"); 

  

x3 = xC + (w/2)*cos(m3); 

y3 = yC + (w/2)*sin(m3); 

x4 = xC - (w/2)*cos(m3); 

y4 = yC - (w/2)*sin(m3); 

 

x5 = x3 - (l/2)*cos(m4); 

y5 = y3 - (l/2)*sin(m4); 

x6 = x4 - (l/2)*cos(m4); 

y6 = y4 - (l/2)*sin(m4); 

 

x7 = x3 + (l/2)*cos(m4); 

y7 = y3 + (l/2)*sin(m4); 

x8 = x4 + (l/2)*cos(m4); 

y8 = y4 + (l/2)*sin(m4); 

 

makePolygon(x3, y3, x4, y4, x6, y6,x5,y5); 

roiManager("Add"); 

makePolygon(x3, y3, x4, y4, x8, y8,x7,y7); 

roiManager("Add"); 

 

//Quntifies the area of the fluorecesent puncta in each half of the 

cell. 

selectWindow("FluorescenceImageName.tif"); 

roiManager("Select",2); 

run("Duplicate...", " "); 

run("Subtract...", "value=50"); 

run("Unsharp Mask...", "radius=5 mask=0.90"); 

setAutoThreshold("Otsu dark"); 
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//run("Threshold..."); 

//setThreshold(109, 255); 

run("Convert to Mask"); 

run("Convert to Mask"); 

run("Analyze Particles...", "size=0.07 display clear"); 

N = nResults; 

selectWindow("Results"); 

N=0; 

total_area_Left=0; 

for (a=0; a<nResults(); a++) { 

    total_area_Left = total_area_Left + getResult("Area",a); 

} 

//print (total_area_Left); 

 

selectWindow("Results"); 

run("Close");  

 

selectWindow("Image2.tif"); 

roiManager("Select",3); 

run("Duplicate...", " "); 

run("Subtract...", "value=50"); 

run("Unsharp Mask...", "radius=5 mask=0.90"); 

setAutoThreshold("Otsu dark"); 

//run("Threshold..."); 

//setThreshold(109, 255); 

run("Convert to Mask"); 

run("Convert to Mask"); 

run("Analyze Particles...", "size=0.07 display clear"); 

N = nResults; 

selectWindow("Results"); 

N=0; 

total_area_Right=0; 

for (a=0; a<nResults(); a++) { 

    total_area_Right = total_area_Right + getResult("Area",a); 

} 

//print (total_area_Right); 

 

selectWindow("Results"); 

run("Close"); 

 

 

selectWindow("Image2.tif"); 

roiManager("Select",0); 

run("Measure"); 

A = getResult("Area", 0); 

//print(A); 

selectWindow("Results"); 

run("Close");  

run("Measure Roi"); 

w1 = getResult("Roi_Width", 0);  

l1 = getResult("Roi_Length", 0);  

//print(w1,l1); 

selectWindow("Results");  

run("Close"); 

 

LR1 = total_area_Left/A; 

RR1 = total_area_Right/A; 
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LR2 = total_area_Left/l1; 

RR2 = total_area_Right/l1; 

 

setResult("Area", 0, A); 

setResult("Width", 0, w1); 

setResult("Length", 0, l1); 

setResult("Left", 0, total_area_Left); 

setResult("Right", 0, total_area_Right); 

setResult("LRatio1", 0, LR1); 

setResult("RRatio1", 0, RR1); 

setResult("LRatio2", 0, LR2); 

setResult("Rratio2", 0, RR2); 

 

selectWindow("Image2.tif"); 

makeLine(x3, y3, x4, y4);
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D.3 Fitting Gaussian function to the distribution of instantaneous displacements 

An algorithm has been programmed in MATLAB, in order to fit Gaussian function to 

instantaneous displacements recorded for beads and different strains of E. coli in order to 

determine the average displacement and the deviation in its value exhibited by respective strain. 

It was used to calculate the diffusion coefficient for the object under experiment in a media 

with viscosity equivalent to that of water (Chapter 6, Fig. 6.2).  

 

File name: GaussianFunction.m 

% This code fits gaussian function to the sum- normalized distribution 

of instantaneous displacements 

% and returns the value for "standard deviation", based on chosen 

average of the distribution 

% Developed by Manasi Gangan, IISER pune on 8th July 2016 

 

close all; clear all; 

 

a = importdata('FileName.txt'); %call the data 

 

[p,q] = hist(a,20); 

p2 = p./sum(p); %sum normalization of the frequency  

 

%Calculations of the parameters 

mu1 = mean(a) %for motile strains 

mu2 = 0; %for non- motile strains 

sigma = sqrt(sum((a- mu(1/2)).^2)/length(a)) %mu1 or mu2 is chosen 

based on the nature of the strain  

 

%Defining fit  

x = linspace(-2,2,300); 

y = pdf('normal', x, mu(1/2), sigma); 

y2 = y./sum(y); %sum normalization 

 

 

%Figure 

bar(q,p2,'w'); 

hold on 

plot(x3, y2,'r','Linewidth',1.5); 

 

xlabel('Instantaneous displacement (/um)'); 

ylabel('Frequency'); 

title('Displacement'); 
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A long-standing question in biology is the effect of growth on
cell size. Here, we estimate the effect of Escherichia coli growth
rate (r) on population cell size distributions by estimating
the coefficient of variation of cell lengths (CVL) from image
analysis of fixed cells in DIC microscopy. We find that the
CVL is constant at growth rates less than one division per
hour, whereas above this threshold, CVL increases with an
increase in the growth rate. We hypothesize that stochastic
inhibition of cell division owing to replication stalling by a
RecA-dependent mechanism, combined with the growth rate
threshold of multi-fork replication (according to Cooper and
Helmstetter), could form the basis of such a threshold effect. We
proceed to test our hypothesis by increasing the frequency of
stochastic stalling of replication forks with hydroxyurea (HU)
treatment and find that cell length variability increases only
when the growth rate exceeds this threshold. The population
effect is also reproduced in single-cell studies using agar-pad
cultures and ‘mother machine’-based experiments to achieve
synchrony. To test the role of RecA, critical for the repair
of stalled replication forks, we examine the CVL of E. coli
�recA cells. We find cell length variability in the mutant to
be greater than wild-type, a phenotype that is rescued by
plasmid-based RecA expression. Additionally, we find that
RecA-GFP protein recruitment to nucleoids is more frequent
at growth rates exceeding the growth rate threshold and is
further enhanced on HU treatment. Thus, we find growth rates
greater than a threshold result in increased E. coli cell lengths
in the population, and this effect is, at least in part, mediated
by RecA recruitment to the nucleoid and stochastic inhibition
of division.

2017 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.
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1. Introduction
The size and shape of a cell is considered a characteristic feature of a given cell type, and quantifying its
variability in a population provides information about the effect of fluctuations on a complex phenotype.
Escherichia coli cells have typically been described as spherocylinders of length 2 µm and width 1 µm.
Differences in sizes are primarily owing to cell length (L) and not so much the width [1–3]. Cell
length frequency distributions show a positive skew owing to the presence of long cells (L > 8 μm),
the proportion of which is increased by environmental factors such as low bacterial density at 22°C
and 37°C or a shift to richer media [4]. In Salmonella, growth rate (r) alone has been shown to correlate
with increased cell size and multiple nucleoids [5], but a microscopic study on E. coli has shown that
cells grown at 22°C are shorter than at 37°C [4]. The effect of temperature and growth medium on
cell size appears thus to suggest that growth rate might primarily regulate the cell size. However, the
quantitative relationship and molecular mechanism by which growth could affect cell sizes remains
unclear.

The growth rate of bacteria, in particular, E. coli, is regulated by numerous pathways that typically
connect growth to nutrient availability [6–8]. Many genetic factors that link nutrient sensing to
cell size regulation have been identified [9–11]. These pathways, however, link growth rate via
pathways independent of replication to cell size. If DNA replication fails to complete and the bacterial
nucleoid does not segregate, the nucleoid ‘occlusion’ response results in cell elongation [12–14].
Based on the BCD—birth (B), chromosome replication (C) and division (D)—cycle [15], growth rates
exceeding one doubling per hour (doubling time, td = 60 min) result in insufficient time for the
completion of the chromosome replication (C-period approx. 40 min) and cell division (D-period approx.
20 min). Cooper and Helmstetter postulated and experimentally demonstrated that E. coli undergoes
simultaneous rounds of replication, multi-fork replication [16] to overcome the shortening of td in
rapid growth. However, the role of multi-fork replication in cell size regulation has not yet been
investigated.

Recent improvements in light microscopy image analysis have allowed quantification of bacterial
morphology and growth dynamics with subpixel accuracy [17–19]. Combined with fluorescence
microscopy of subcellular components [20,21], it has become possible to address single-cell dynamics
of the bacterial cell division cycle. These advances now allow us to address the effect of population sizes
and physical factors and probe the mechanisms that control cell sizes and cell size variability.

Theoretical studies have suggested that asymmetric cell division [2], lognormal distribution of
growth rates [22] or stochastic partitioning of molecular components at cell division [23] could lead
to a heterogeneity in cell sizes in the population. Recent single-cell bacterial growth kinetic data [19]
combined with theoretical modelling have reopened the debate of whether cell-size robustness is
determined by a ‘timer’ or ‘sizer’ mechanism [24] and currently the ‘incremental’ or ‘adder’ model
appears to explain all available data [25,26]. However, the effect of molecular regulatory networks on
cell size and the correlation of cell size variability with growth rate remain unclear.

RecA is a central regulator of the SOS response pathway, and deletion mutants of E. coli for the
recA gene experience enhanced replication fork stalling [27]. Additionally, a recA1 mutation is known
to result in asynchronous replication and a reduction in the expected genome-copy numbers [15].
In previous work, we had found that a recA1 mutation phenocopies typical cell septation defects,
resulting in elongated cells containing multiple nucleoids and increased cell length variability [28]. While
replication fork stalling and repair are important for DNA replication, as reviewed by Cox et al. [29],
the artificial induction of replication stalling results in increased cell lengths [30]. The repair of stalled
replication forks by RecA protein assembly on DNA [31] also triggers SulA-mediated cell division
inhibition [32] via the SOS response pathway [33–35]. At the same time, the population growth rate
affects the number of replication forks per cell in a step-wise manner [16]. As a result, the number of
replication stalling events could be multiplicatively increased by growth rate and thus affect cell division.
Therefore, we hypothesize that RecA might provide the molecular link between E. coli growth rate and
cell length.

Here, we measure the correlation between cell length variability and growth rate from steady-state
cultures, and test our method against single-cell agar-pad and microfluidic growth assays. We find
that cell size variability remains unchanged for slow-growing cultures, but increases above a threshold
growth rate. By increasing replication fork stalling with hydroxyurea (HU) in multiple mutant strains,
we demonstrate that DNA replication fork dynamics can affect population cell size distributions in a
RecA-dependent manner. From the growth-rate-dependent recruitment of RecA to the genome, we infer
a molecular mechanism that links growth rate to cell size.
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2. Material and methods
2.1. Bacterial strains and plasmids
Multiple E. coli strains were used: MG1655 (6300, CGSC), ΔrecA (JW26691, CGSC), ΔsulA (JW09411,
CGSC), ΔslmA (JW56411, CGSC) and E. coli MG1655 with a GFP-tagged genomic copy of recA (recA-
GFP) was grown in the presence of 25 µg ml−1 kanamycin as described previously [36] (gift from Dr G.P.
Manjunath). Nucleoid segregation dynamics were followed in E. coli MG1655 with a pBAD24-hupA-gfp
plasmid with 100 µg ml−1 ampicillin [37] (gift from Dr Josette Rouviere-Yaniv). We constructed two recA
expression plasmids (i) mCherry tagged and (ii) arabinose-inducible, untagged. Two primer sets were
used with complementary regions to the genomic RecA sequence and overhangs for restriction digestion
for the p-recA-mCherry and pBAD-recA constructs (electronic supplementary material, table S1). The
recA gene was PCR-amplified (Mastercycler proS, Eppendorf, Germany) using Taq polymerase and
dNTPs (Bangalore GeNei, India) in recommended buffers. The template DNA, E. coli MG1655 genomic
DNA, was extracted by a rapid extraction method that avoids polysaccharide contamination [38]. The
recA amplicon for mCherry tagging and the p-mCherry plasmid were sequentially digested with SalI
and HindIII. The fragments were separated on an agarose gel, column-purified (QIAquick, Qiagen,
Germany) and ligated using a T4 DNA Ligase (Bangalore GeNei, India). The plasmid p-mCherry was
constructed by replacing the GFP sequence in a pGFP plasmid with mCherry from p-mCherry-N1 (both
plasmids from Clontech, USA) by directional cloning using the restriction enzymes SalI and EcoRI. The
recA amplicon for arabinose-inducible expression was purified, and both the amplicon and pBAD24
digested sequentially by NheI and XbaI, and ligated as before. Plasmids were transformed using the
CaCl2 method [39] in E. coli DH5α cells. Plasmids were isolated using a spin column-based method
(Miniprep Kit, Qiagen GmbH, Germany).

2.2. Growth media
For rapid growth, cells were grown in Luria–Bertani (LB) broth (HiMedia, Mumbai, India), while reduced
growth rate was achieved using the reduced media yeast extract broth (YEB): 0.5% (w/v) yeast extract in
1% (w/v) solutions of NaCl and tryptone broth (TB): 1% (w/v) tryptone in a 1% (w/v) solution of NaCl.
Additionally, M9 minimal salts medium [40] supplemented with 4 µg ml−1 thymidine were reconstituted
with three different carbon sources (to result in successively slower growth rates): 0.4% (w/v) glucose or
0.9% (w/v) succinic acid or 0.5% (w/v) sodium acetate (all sugars from Sigma-Aldrich). All broths and
media were made in deionized water and the pH was adjusted to 7.

2.3. Batch culture and growth rate estimation
Cells were grown at 37°C with shaking at 180 r.p.m. (Forma, ThermoScientific, USA) in 100 ml LB, YEB
and TB using a 1% overnight inoculum. Identical conditions were used to grow E. coli MG1655 in
M9 + sugars. Cell density was estimated by converting 1 OD600 nm = 8 × 108 cells ml−1 [41]. To estimate
the growth rate (r), the averaged OD with time curves were fit to the solution to the logistic equation by

N(t) = N(0) · K
N(0) + (K − N(0)) · e−r·t , (2.1)

where N(0) is the population at the time of inoculation, r is the growth rate (h−1), K is the carrying
capacity and t is time (electronic supplementary material, figure S1). Doubling time is td = 1/r [42].

2.4. Continuous cell culture
A PDMS-based microfluidic device was used to grow E. coli MG1655 culture continuously based on
the ‘mother machine’ design [19]. The device was designed as a two-layered micro-pattern mask in
CleWin (WieWin Web, The Netherlands) and fabricated by using an approximately 100 nm layer of
gold (for aligning the second layer) followed by spin-coating a 2 µm layer SU8-2 negative photoresist
(Microchem, USA) onto a SiO2 wafer using a spin coater model WS-400B-6NPP LITE (Laurell Tech.
Corp., USA). The photoresist was cured by UV exposure with a mask (EVG, Austria) corresponding
to the trench and dead-end channels. Unexposed photoresist was washed and a 20 µm layer of SU8-20
negative photoresist (Microchem, USA) spun and exposed to UV corresponding only to the trench, for
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curing. The PDMS device was made by mixing elastomer : curing agent of 10 : 1 w/w (Sylgard 184, Dow-
Corning, USA) and coating the wafer and heat-curing it in an oven at 60°C (Raut Scientific, Maharashtra,
India) for 2 h. The cured PDMS membrane was cleaned with pentane (Sigma-Aldrich, Mumbai, India)
and washed with acetone (Fisher Scientific, Mumbai, India). The air-dried device was then bonded
in air using a plasma cleaner (Emitech K050X, Quorum Technologies, UK) under RF power of 70 W,
washing time of 30 s and 1 mbar vacuum (Edwards Pumps, UK). The PDMS-glass device was integrated
and channels passivated by passing 10 mg ml−1 of BSA (Sigma-Aldrich, Mumbai, India) for 1 h. E. coli
MG1655 cells were infused into the device (OD ∼ 1.0) and allowed to diffuse into the channels for 1 h at
37°C using a syringe pump (PHD Ultra, Harvard Apparatus, USA). The device was washed by flowing
in either fresh LB medium or M9 + succinate at a constant flow rate of 0.3 ml h−1. Cell growth and
division were observed in DIC microscopy. To measure the effect of HU treatment in continuous culture,
E. coli MG1655 and �recA strains expressing eGFP from a plasmid were introduced in the microfluidics
device as before. Cells were grown under continuous flow in LB for 1 h (approx. three generations),
followed by a change of the medium to the corresponding medium supplemented with 30 mM HU for
1 h (‘treatment’). Subsequently, the medium without any drug (no HU) was once again replaced for 2.5 h
of ‘recovery’. Fluorescence time-lapse images were acquired in the GFP channel and analysed.

2.5. Hydroxyurea and trimethoprim treatment
Overnight cultures were grown from a single colony of E. coli MG1655, �recA, �sulA, �slmA and
�recA + pRecA-mCherry. The cultures were diluted 1 : 100 (1% inoculum) into 5 ml of fresh LB and
M9 + 0.9% succinate and grown at 37°C with shaking (180 r.p.m.). E. coli MG1655 with genomic RecA-
GFP was similarly grown in LB, TB and YEB at 37°C with shaking. At OD600 nm ∼ 0.2, the cultures were
incubated in 10–100 mM HU containing growth medium for three generations corresponding to 1 h in LB,
1.5 h in TB, 2 h in YEB, 3 h in M9 + succinate. Subsequently, cells were allowed to recover for another three
generations. Similarly, E. coli MG1655 cells grown in LB and M9 + succinate were exposed to 1 µg ml−1

trimethoprim (Sigma-Aldrich, India) and allowed to recover for 1 and 3 h, respectively. After recovery,
all cultures (treated and untreated) were washed, fixed and imaged.

2.6. Western blotting
Escherichia coli MG1655 and �recA cells grown in LB, YEB and TB media were grown for three generations
and treated with HU as above. The OD at 600 nm was measured before treatment and after recovery,
and 1 ml cell suspensions were diluted to result in comparable cell densities (electronic supplementary
material, table S2). The cells were pelleted, washed in phosphate-buffered saline (PBS), resuspended
in 50 µl of lysis buffer consisting of 10 µl of 5× SDS loading dye (250 mM Tris–Cl (pH 6.8), 10% SDS,
50% glycerol, 0.5% bromophenol blue and 500 mM DTT) and 40 µl PBS, heated to 95°C for 10 min
with constant shaking at 700 r.p.m. (ThermoMixer, Eppendorf, Germany), and samples were centrifuged
before loading on a 10% SDS–PAGE gel run at 120 V (Bio-Rad, USA). Proteins were transferred onto
a PVDF membrane (Immobilon-P transfer membrane, EMD Millipore Corporation, USA) and the
membrane blocked with 5% milk powder in TBST buffer (Tris–Cl-buffered saline (pH 7.4) and 0.1%
Tween 20). Rabbit antiserum raised against E. coli RecA [43] (a gift from Dr K. Muniyappa) was diluted
to 1 : 12 000 in blocking agent (5% milk powder in TBST buffer) and incubated with 100 ml of cell lysate
of E. coli �recA for 12 h at 4°C to immunodeplete non-specific antibodies. The lysate was prepared
by growing E. coli �recA cells to OD600 nm approximately 2.0, resuspending the pellet in PBST (PBS
with 0.05% (v/v) Tween 20) and lysis by pulse sonication for 2 min, 30 cycles. The membrane was
incubated with this pre-treated serum at 4°C overnight, washed and hybridized with the secondary
HRP-conjugated anti-rabbit antibody, 1 : 10 000 diluted (Jackson ImmunoResearch, USA). The blot was
developed using a reagent Luminata Femto (Millipore Corporation, USA) and luminescence images
acquired (LAS 4000, GE Healthcare, USA).

2.7. Cell immunostaining
Escherichia coli MG1655 were grown to the mid-log phase and cells fixed with 1.6% paraformaldehyde
(PFA) and 0.01% glutaraldehyde, incubated for 1 h and washed three times with PBST. The cells were
treated with GTE (50 mM glucose, 25 mM Tris–Cl, 10 mM EDTA) containing 5 µg ml−1 lysozyme and
incubated at 37°C for 45 min, followed by 3× wash with PBST. The cell suspension was spread on poly-L-
lysine-coated coverslips and air-dried for 1 h. Coverslips were washed three times with PBST, incubated
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with 2% BSA (blocking agent) for 1 h, washed with PBST and incubated with the rabbit anti-RecA serum
(1 : 1000 diluted in PBS) at 4°C for approximately 12 h. The coverslip was then incubated at 37°C for 1 h
with Alexa647 conjugated anti-rabbit antibody (Thermo Fisher Scientific, USA) and mounted on slides.

2.8. Fluorimetry
E. coli recA-GFP was grown in 5 ml of LB, TB and YEB (1% inoculum) with 25 µg ml−1 kanamycin at
37°C with constant shaking. The cultures were treated with 30 mM HU as above. Cell suspensions
(1 ml) were sampled at pre-treatment (pt) and recovery (r) stages, and r-samples were diluted in the
respective growth medium based on the ratio of OD recovery : pre-treatment samples (LB: pt 0.23, r 1.3;
YEB: pt 0.195, r 0.92; TB: pt 0.193, r 0.819). All samples were pelleted and resuspended in 50 µl PBS and
fluorescence measured in a 96-well half-area round bottom black plate (Corning, USA) using 480 nm
excitation and 510 nm emission in a Varioskan Flash multifunctional plate reader (Thermo Scientific,
USA). Measurements were blank-subtracted by measuring E. coli MG1655 of the same density grown in
LB, YEB and TB. Fluorescence per cell was estimated by dividing by the total cell numbers in 50 µl by
using the conversion 1 OD600 nm = 8 × 108 cells ml−1 as before.

2.9. Microscopy
Cells were sampled (200 µl) from the batch cultures at the mid-log phase and fixed in 4% PFA, stained
with 0.1 µg µl−1 of DAPI (Sigma-Aldrich, India) and mounted, as has been described previously [28].
Fixed cells of E.coli MG1655 recA-GFP and E. coli �recA expressing RecA-Cherry were acquired using
the 100× (Plan Apochromat N.A. 1.4, oil) objective of a Zeiss Axio Imager Z1 (Carl Zeiss, Germany)
microscope in fluorescence and DIC channels. For live-imaging, cells were grown on 2% agar pads
with 100 µg ml−1 ampicillin and induced for 2 h by 0.2% Arabinose (Sisco Research Labs, Mumbai,
India) to express HupA-GFP and imaged on a Zeiss LSM780 confocal microscope (Carl Zeiss, Germany)
simultaneously in fluorescence (Diode laser 405 nm, beam splitter MBS 405, pinhole 126.5 corresponding
to 1 airy unit) and DIC modes using a 63× lens (Plan Apochromat NA 1.40, oil). Multiple positions
were scanned as 512 × 512 pixel images (0.264 µm per pixel) with an image acquired every 2 min
for approximately 2 h and at 37°C.

2.10. Image analysis
Cell lengths were automatically analysed from DIC images of fixed cells using a previously developed
algorithm [28] in Matlab R2014b (MathWorks Inc., MA, USA). The source code has been released on a
GPL basis and can be downloaded from a Github repository (https://github.com/athale/ecolilenDIC).
The birth lengths and the division lengths of E. coli cells in the ‘mother machine’ and RecA puncta were
interactively estimated using IMAGEJ (v. 1.50f) [44]. Kymographs of E. coli cells expressing plasmid-
based eGFP grown in the ‘mother machine’ were generated by using ‘multiplekymograph’ plugin in
IMAGEJ [44] based on a line of interest drawn along the growth channel. RecA puncta were quantified by
selecting a segmented line corresponding to the length of the E. coli cell in DIC and used to generate an
intensity profile in the RecA-GFP and DAPI channels. Co-localized peaks were used to score cells in the
population and calculate the percentage cells showing such co-localization of RecA on the nucleoid.
To follow the dynamics of nucleoid segregation, intensity profiles from timeseries of pHupA-GFP-
transformed cells were plotted as a matrix to produce a kymograph (space–time plot), using the imagesc
function in Matlab R2014b (MathWorks Inc.). Western blot intensity analysis was performed using ‘gel
analyser’, an IMAGEJ plugin. The protein band area was obtained by using the ‘label peaks’ function
and maximum normalized for comparison.

2.11. Data analysis
Cell frequency distributions were normalized by the sum of the area under the curve, fit to a lognormal
distribution to obtain lognormal mean (µ) and variance (v) using fitdist, lognpdf and lognstat functions
using Matlab with the Statistics Toolbox (MathWorks Inc.). The Kolmogorov–Smirnov (KS) test statistic
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was calculated for the number of bins (n = 44) and significance level (α) of 0.01 to arrive at a test statistic
(D (α,n)) given by [45,46]

D(α,n) =
√− ln(α/2)

2n
. (2.2)

The cumulative distribution function (CDF) of observed and fit data was calculated for each bin
(i) from the length–frequency distribution. The difference |di| = |Fi − F̂i| between the observed (Fi) and
expected (F̂i) values of the CDF was evaluated, and the maximum (dmax) was found. The hypothesis that
the fit to the data was good was accepted if dmax < D(α,n). Variability in cell lengths was quantified by
the coefficient of variation (CVL) using the expression CVL = σL/μL, where σL and μL are the standard
deviation and mean of cell lengths, respectively.

3. Results
3.1. Growth rate affects population cell length distributions of Escherichia coli MG1655
With the aim of measuring the effect of growth rate, r, on cell size, E. coli MG1655 cells were grown in LB,
YEB, TB and M9 supplemented with glucose, succinate and acetate. As expected, the growth of cells was
the fastest in LB and decreased for all other media with the slowest growth observed in M9 supplemented
with acetate (figure 1a). Doubling time (td) values were obtained from logistic function (equation (2.1)) fit
to the growth curves (electronic supplementary material, figure S1) and ranged between 33 and 273 min
(table 1). Cells sampled from the mid-log phase of each culture (figure 1a) were imaged, analysed and
the frequency distributions of cell lengths fit to a lognormal function (figure 1b). The goodness of the
fit was validated based on the KS non-parametric test (electronic supplementary material, table S3).
The number of cells analysed in each sample ranged between 102 and 103 cells, comparable to previous
microscopic studies on population cell size distributions [2,47]. Corresponding to the decrease in growth
rate, the cell length distributions also decreased in spread. The spread of the distribution was maximal
in samples grown in LB and minimal in M9 + acetate, with intermediate growth rates (in YEB, TB,
M9 + glucose, M9 + succinate), resulting in an intermediate spread of cell lengths. The growth rate thus
appears to alter the quantitative nature of the cell length distribution, while leaving the qualitative nature
(lognormal) unchanged. Dynamic imaging of a population of E. coli MG1655 cells expressing HupA-GFP
to label the DNA demonstrated that most cells divided normally, whereas elongated cells arose rarely
and were accompanied by hampered DNA segregation (electronic supplementary material, video S1).
This hints at cell division failure and DNA replication–segregation coupling as a potential cause for the
observed variability of cell lengths. However, because the population distributions analysed from fixed
cell microscopy are taken from unsynchronized bulk cultures, we proceeded to examine if the cell-cycle
stage does indeed affect our analysis, using live cells in continuous culture.

3.2. Single-cell analysis of lengths of newborn and dividing cells in microfluidics
The ‘mother machine’ microfluidics device described previously by Wang et al. [19] is ideally suited
for single-cell analysis of rod-shaped cell growth dynamics. We capture birth and division events and
estimate cell lengths (figure 2a) from timeseries of cells grown in LB (electronic supplementary material,
video S2) and M9 + succinate (electronic supplementary material, video S3) at 37°C. The frequency
distribution of the cell lengths from single-cell analysis also fit a lognormal distribution (figure 2b–e),
similar to the fixed-cell data, with the goodness of fit validated by the KS Test (electronic supplementary
material, table S3). While the variance of cell lengths in LB showed a difference between newborn
cells (figure 2b) and cells just prior to division (figure 2c), the mean cell length of newborn cells was
also smaller (μ= 2.7 µm, v = 0.9 µm2) than dividing cells (μ = 5.28 µm, v = 3.29 µm2). As a result, the
normalized variability measured by the coefficient of variation of cell lengths (CVL) remained constant
for cells grown in LB—0.3188 for newborn cells (arithmetic mean 2.73 µm, s.d. 0.87 µm) and 0.3129
for dividing cells (arithmetic mean 5.27 µm, s.d. 1.65 µm). This suggests that population cell length
variability is independent of cell growth stage, based on the two extreme cases, i.e. newborn and dividing
cells in the same growth medium. Compared with LB, cell length distributions of cultures grown in
M9 + succinate have a narrower spread in data from both newborn (figure 2d) and dividing (figure 2e)
cells. The CVL of these cells is 0.156 (newborn) and 0.139 (dividing), twofold smaller than those measured
in LB, confirming the qualitative impression. This suggests that the cell length variability as measured
by CVL from single-cell experiments is independent of the cell-cycle stage in a given medium, while
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Figure 1. Growth rate and cell size distributions. (a) The growth (log10 cell density) of E. coli MG1655 cells was measured as a function
of time in the following growthmedia: LB (black), yeast extract broth (YEB) (red), tryptone broth (TB) (green), M9media supplemented
eitherwith glucose (blue), succinate (brown) or acetate (purple). Samples taken from themid-log phase (circles) (b) (left)were examined
inDICmicroscopy (scale bar, 5 µm)and (right) the cell length distribution (bars) plotted. The distributionwas fit to lognormal (red)where
μ: mean cell length, v, variance; n, total number of cells. dmax is the Kolmogorov–Smirnov test value evaluated for the fit.

Table 1. The doubling times and growth rates of E. coli MG1655 were estimated from fitting the logistic equation to average (n= 3) OD
measurements with time. Cultures were grown at 37°C with constant shaking.

growth medium doubling time, td (min) growth rate, r (h−1)

LB 33.11 1.814
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

yeast extract broth 39.87 1.505
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

tryptone broth 57.2 1.049
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M9+ 0.4% glucose 63.13 0.9504
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M9+ 0.9% succinate 131.98 0.4546
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M9+ 0.5% acetate 273.35 0.2195
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

changing growth rates lead to measurable differences in the CVL. To validate this finding, we also
examine the growth of microcolonies, which form natural populations.

3.3. Growth-rate dependence of cell size variability in microcolonies
Agar-pad-based single-cell dynamics are routinely used to examine cell division dynamics in E. coli.
We followed the growth dynamics of single cells, as they formed microcolonies at 37°C on LB agar
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Figure 2. Cell length distribution of wild-type E. coli in continuous culture. (a) Representative DIC images of E. coliMG1655 cells grown in
continuous culture in a ‘mothermachine’ devicewith LBwere recordedat 0, 40and 100 min (also electronic supplementarymaterial, video
S3). Scale bar, 10µm. Inset: a representative channel ismarked to indicate amother cell (black line),which grows in 30 min (blue line) and
divides into two daughter cells at 32 min (green and red lines). The cell length distributions of cells grown in two growth media: (b,c) LB
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(red)withparametersµand v and thegoodness of fitwasmeasuredbydmax (evaluated for theKS test, electronic supplementarymaterial,
table S1).
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Figure 3. Population cell size variability in a microcolony. (a) The growth from a single cell to a microcolony at the end of 140 min is
depicted. (b) Multiple microcolonies originating from a single cell after 140 min of growth are of different sizes, indicating differences
in growth rates. Scale bar is 5 µm. (c) The cell length frequency distribution (bar) pooled from 13 microcolonies is fit by a lognormal
distribution (red).μ, mean; v, variance; n, number of cells analysed, dmax, the KS test statistic measure. (d) The variability of cell lengths
in a microcolony measured by the CV is plotted as a function of the average microcolony growth rate (h−1). The dotted vertical line
indicates a growth rate of rmf = 1 h−1.

for 140 min (figure 3a; electronic supplementary material, video S4). Consistent with previous reports
of growth rate heterogeneity in single cells [48], we find that growth rates vary in the range of 0.6–
2.3 h−1 in the population (figure 3b). Each colony examined originates from a single cell, and hence at
the end of 140 min when microcolony sizes vary, the cell–cell variation in growth rates is confirmed.
The population cell length distribution of these microcolonies also fit a lognormal function (figure 3c),
with the goodness of fit evaluated using the KS test (electronic supplementary material, table S3). To
our surprise, the CVL from individual microcolonies appeared to increase with increasing growth rate
(figure 3d). Because the sample size in each CVL measurement of a single microcolony is very small, and
the growth-rate difference between single cells is difficult to control and is possibly the result of intrinsic
stochastic variability, we instead proceeded to modulate average growth rate by the nutrient medium
and analyse cell size variability in fixed cell microscopy, to take advantage of better population statistics.

3.4. Cell length variability affected by a combination of growth rate, recA and hydroxyurea
Cell length variability was quantified in the mid-log phase of cells grown in media resulting in growth
rates ranging between 0.2 and 1.81 h−1 by using LB, the reduced media YEB, TB and M9 supplemented
with sugars, to modulate growth rates (table 1). We find that cells grown in M9 supplemented with
glucose, succinate and acetate are less variable (CVL < 0.25), and the variability increases gradually
with increasing growth rate (figure 4a). When the growth rate (r) exceeds 1 division per hour (in TB,
YEB and LB), the CVL appears to enter a second phase of a steeper increase. This inflection point also
correlates with the growth rate threshold for multi-fork (mf) replication (rmf = 1 h−1) [16]. Because multi-
fork replication changes the genomic content per cell (G), we used a previously developed expression
relating G with the BCD cycle [49] and doubling times, to estimate it as

G = td · (2(C+D)/td − 2D/td )
C · ln 2

, (3.1)
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Figure 4. Effect of growth rate and replication stochasticity on cell lengths. (a) The cell length variability from the mid-log phase
of cultures (y-axis) is plotted as a function of the growth rate (x-axis). The growth rate of rmf = 1 h−1 (red line) is the multi-fork
replication threshold based on Cooper & Helmstetter [16]. Error bars indicate s.d. (b) The measured cell length variability (y-axis) is
plotted as a function of the expected total cellular DNA (x-axis) based on the model of Zaritsky et al. [49] (equation (3.1)). (c) Cell length
variability of E. coli (y-axis) with increasing hydroxyurea (HU) concentration (x-axis) was estimated for the following strains: MG1655
(dots),�recA (asterisks),�slmA (circles),�sulA (x) and�recA+ pRecA-mCherry (open squares). Cultures were grown either in LB
(black) orM9+ succinate (red). (d) The cell length variability of E. coliMG1655populations (y-axis) grown in LBorM9+ succinate (black)
and compared with cells grown in the same medium but treated with 1µg ml−1 of trimethoprim (TM) (red) or 30 mM HU (blue).

where td is the doubling time, C is the period of chromosome (DNA) replication and D is the time for
cell division (septum formation). We combine the experimentally measured doubling times for different
growth media (table 1) with an assumed C-period of 40 min and D-period of 20 min [16,50]. We find that
the measured CVL is positively correlated to increasing values of the estimated average genome content
(G) per cell (figure 4b). This correlation demonstrates that genome content and cell size regulation could
be coupled.

Because the genome content dependence of CVL does not, however, reproduce a biphasic, threshold
dependence in cell length variability (figure 4a), we examined whether perturbing replication dynamics
below and above the presumptive growth rate threshold could be used as a test of replication
stochasticity as the underlying mechanism. HU is known to induce stochastic replication fork
stalling [51,52] and the RecA protein is critical for restarting stalled replication forks [31]. Expectedly,
cells mutant for recA have a reduced ability to recover stalled replication forks [35]. To our surprise, on
treatment with HU, both wild-type and �recA cells showed an increase in CVL when grown in LB, but
not when grown in M9 + succinate (figure 4c and electronic supplementary material, figure S5). Thus,
slow growth appears to protect cells from the cell-division defects of HU, but rapid growth induces an
increase followed by saturation in cell length variability. E. coli �recA mutants, however, differ from wild-
type, because the difference of CVL between LB and M9 + succinate was more pronounced. On the other
hand, minimal medium-grown cells lacking sulA, ‘the effector’ of RecA, are less variable when compared
with wild-type and do not respond to HU treatment. The treatment of LB and minimal medium-grown
�slmA and �recA cells expressing RecA-mCherry cells results in variability comparable to MG1655. The
‘rescue’ of the wild-type phenotype by expression of RecA in a mutant background and the variability of
�sulA mutant suggest the specificity of the RecA-SulA mechanism for growth-rate-dependent regulation
of cell size. Additionally, the increase and saturation of cell size variability on treatment with HU of wild-
type cells only during rapid but not slow growth further validate the threshold growth rate dependence
of cell length variability. The growth-rate-dependent increase in cell length variability with trimethoprim
treatment (figure 4d), a drug known to increase replication fork stalling [53], reinforces replication
stochasticity as a mechanism regulating cell size. Based on this, we hypothesize that, in addition to
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Figure 5. Effect of hydroxyurea (HU) on E. coli strain expressing eGFP grown in the ‘mother machine’. (a,c) Images of E. coli MG1655
and (e,g) E. coli�recAmutants were both grown at 37°C in the ‘mother machine’ with three phases in the nutrient supplied I: LB (‘pre-
treatment’), II: LB+ 30 mM HU (‘treatment’) and III: LB (‘recovery’). Scale bar is 2 µm. (b,d,f,h) Kymographs of the preceding timeseries
are used to follow cell division. The yellow horizontal lines mark the three phases. Time is in minutes. Horizontal scale bar is 3 µm
and the vertical scale bar is 25 min.

its previously known roles, RecA recruitment to replication fork stalls [54] could mechanistically relate
growth rate with cell size variability.

3.5. Single-cell dynamics of Escherichia coli MG1655 and�recAwith hydroxyurea treatment
Based on this evidence from fixed cells, we expect that HU treatment should affect single-cell dynamics
in a manner similar to the effect at a population level. To test this, E. coli MG1655 cells expressing
eGFP from a plasmid were grown in the ‘mother machine’ in LB with the medium changed in three
stages: 1 h pre-treatment (stage I), 1 h 30 mM HU treatment (stage II) and 2.5 h recovery from HU (stage
III). Most cells continued to divide normally (figure 5a) and a few appeared to undergo moderate
filamentation (cell lengths approx. 7 µm) at the end of the ‘recovery’ period (figure 5c). The kymographs
suggest that the division of some cells is unaffected (figure 5b), while a few undergo filamentation
(figure 5d). Most E. coli �recA cells continued to divide normally after recovery from treatment (figure 5e),
whereas others became prominently filamentous, resulting in cell lengths of approx. 12 µm (figure 5g).
The kymographs confirmed regular divisions of most cells (figure 5f ), while a failure of division in
some resulted in cell filamentation (figure 5h). This qualitatively corroborates our observations from
population measurements that (i) cell division failure results in elongated cells, (ii) cell filamentation
is probabilistic and (iii) the extent of cell filamentation is greater in �recA cells owing to a more
extreme filamentation phenotype, when compared with E. coli MG1655. From population and single-
cell dynamics, we hypothesize that cells that rapidly divide and are treated with HU are expected to
have a higher frequency of filamentation and greater variability owing to increased RecA recruitment to
the DNA. We proceed to test this hypothesis using microscopy.

3.6. Nucleoid localization of recA corresponds to increased cell length variability
To test the hypothesis of growth rate-dependent recruitment of RecA to the genome, an E. coli MG1655
strain expressing an endogenous RecA-GFP protein [36] was grown in three different media: LB, YEB
and TB, to modulate growth rates as before. RecA foci co-localization with the nucleoid (labelled
with DAPI) appeared to increase when cells were grown in LB when compared with YEB and TB
(figure 6a). Treatment with HU resulted in increased co-localization when compared with untreated
cells grown in the same growth medium (figure 6a). The proportion of cells with co-co-localization of
the RecA protein on the nucleoid is low (less than 15% cells with RecA-DNA co-localization) during
slow growth (TB), intermediate (approx. 15%) for cells in YEB and high (approx. 30%) in LB during
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Figure 6. Growth rate dependence of RecA co-localization with nucleoids. (a) Mid-log cultures of E. coli expressing RecA-GFP (genomic)
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Themerged image of DAPI (red) and GFP (green) fluorescence with co-localization (yellow) is shown. Scale bar, 5µm. (b) The proportion
of E. coli cells in which RecA foci co-localize with nucleoids (y-axis) is plotted against three growthmedia (x-axis) with (red) and without
(black) HU, growth rate (h−1) (x-axis) and cell length variability (x-axis). (c)Mean (±s.d. from three samples) RecA-GFP fluorescence/cell
from fluorimetry of liquid cultures is plotted as a bar chart for untreated (black) and HU-treated (red) cells grown in three media: LB, YEB
and TB. (d) The ratio of RecA-GFP fluorescence of HU treated to untreated cells grown in LB, YEB and TB are compared.

rapid growth (figure 6b). The co-localization percentages are further increased on HU treatment. This
is evidenced by the percentage cells with co-localized RecA-GFP and DNA increasing linearly with
growth rate for untreated cells, with a 1.4-fold increase in the slope for HU-treated cells (figure 6b).
The percentage co-localization of treated and untreated cells correlates positively with CVL, consistent
with our previous results of increasing cell length variability with growth rate and HU treatment. As
before, the variability of HU-treated cells is higher for the same growth medium, when compared
with untreated cells. To test if the co-localization of RecA with the nucleoid was not the result of
an artefact of GFP tagging of RecA, the native RecA protein was immunostained in fixed cells of
E. coli MG1655 and analysed for co-localization with DNA by DAPI staining in multiple fields of view
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(electronic supplementary material, figure S6a). The percentage cells with RecA co-localized on the
nucleoid matched the values from the RecA-GFP co-localization (electronic supplementary material,
figure S6b). In addition, the measured cell length variability from the DIC images was also comparable
between the RecA-GFP-expressing strain and the immunostained samples (electronic supplementary
material, figure S6c). Alternatively, we also imaged the localization of RecA-mCherry protein expressed
from a plasmid in E. coli �recA cells grown in LB (electronic supplementary material, figure S7a)
and found the RecA-nucleoid co-localization to be comparable to anti-RecA and RecA-GFP-based
quantification (electronic supplementary material, figure S7b). The CVL of all three samples remained
comparable (electronic supplementary material, figure S7c), suggesting that RecA protein tagging did
not result in artefacts in either localization or cell length variability. To test if the increased co-localization
could have resulted from RecA protein abundance instead of recruitment, we measured the RecA-
GFP concentration per cell in fluorimetry and found that HU-treated cells had a slightly increased
(approx. 1.25-fold) RecA-GFP expression per cell, for all three growth media tested (figure 6c). Western
blotting using anti-RecA antiserum of cells grown in LB, YEB and TB with and without treatment
also appear to show increased protein in cell lysates on HU treatment, independent of the growth
medium (electronic supplementary material, figure S8a). Quantification showed an approximately 1.5-
to threefold increase in RecA (electronic supplementary material, figure S8b) and RecA-GFP intensity
after HU treatment, in all growth media tested, not owing to loading artefacts (electronic supplementary
material, figure S8c,d). Additionally, the expression of RecA-GFP from the genomic locus also increased
by 2.5-fold on HU treatment (electronic supplementary material, figure S8e,f ), with non-specific protein
content remaining comparable (electronic supplementary material, figure S8g,h). Taken together, the
results suggest that RecA recruitment to the nucleoid could serve as one of multiple mechanisms that
drive growth rate-dependent cell size variability in clonal populations, independent of RecA protein
abundance.

4. Discussion
While the study of average values of cell size [55,56] and single-cell studies [19,26,48] have demonstrated
that cell size is robust to environmental changes, understanding the population distribution remains
important to the ecology of microbes and their survival in changing environments [57,58].

Here, we have examined the population variability of clonal cell sizes and their link to growth rate.
We demonstrate that at a fixed growth rate, the cell length variability is constant and independent of
the cell-cycle stage using a microfluidics-based continuous culture system. Additionally, the growth
rate of microcolonies on an agar pad appears to correlate with cell-cycle synchronized variability in cell
lengths. However, in our analysis, quantitative fixed cell microscopy from bulk cultures results in better
statistics and a more robust control over growth rates. We find increasing growth rates increases the
population variability in cell lengths in a bi-phasic manner, with the two phases separated by a growth
rate threshold, rmf (the growth rate of multi-fork replication). HU treatment, known to induce DNA
replication fork stalling, increases the cell length variability of only those cells which are undergoing
rapid growth. This HU-induced variability is further enhanced in a �recA mutant when compared with
wild-type. The linear increase in RecA co-localization on the nucleoid with growth rate and cell length
variability suggests the involvement of the RecA protein in coupling increasing growth rates to higher
cell length variability.

In general, stochastic partitioning of subcellular components has been shown to be a major source
of cell phenotypic variability in a study combining theory and experiment [23]. Our observations on
the role of stochastic replication dynamics potentially add to the potential contributors to phenotypic
variability or ‘noise’. We expect stochastic DNA replication–segregation effects on cell size, should result
in cell elongation owing to incomplete segregation of DNA. In agar-pad growth experiments in DIC
and fluorescence of E. coli MG1655 with nucleoids labelled by HupA-GFP, most cells divide to produce
newborn cells with typical birth lengths of approximately 2 µm after successfully segregating their
nucleoids in approximately 20 min (electronic supplementary material, figure S4a and video S1). On the
other hand, rare cells become approximately 40 µm long, after their nucleoids fail to segregate even after
50 min (electronic supplementary material, figure S4b and video S1). Growing wild-type and mutant
strains in multiple growth media with HU and trimethoprim, we show that cell length variability is
greater when replication processivity is perturbed, depending on the growth rate.

Cell size is a complex phenotype and is influenced by multiple pathways such as nutrient sensing
[9–11,59], the division site selection by the minCDE proteins [60,61], nucleoid occlusion to sense
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Figure 7. A proposed model of RecA recruitment and cell length regulation. (a) The stalled DNA-replication forks (red) result in the
recruitment of RecA (dark blue) to the DNA and trigger SulA expression (light blue). The transition of recovered (green) and stalled
replication forks is stochastic (determined by the frequency of stalling, f s) and reversible (determined by the frequency of recovery, f r).
RecA filament assembly promotes increased recovery (f r). (b) In normal cell division, replication forks are in a recovered state and FtsZ
assembles at the septum. Recruitment of RecA results in SulA-based inhibition of division and cell filamentation (long cell).

incomplete replication [51,62] and the SOS response pathway [34,35]. However, this is the first study,
to the best of our knowledge, that proposes a mechanism connecting growth rate with cell length
variability based on multi-fork replication. It remains to be seen if a more direct method of replication
fork tracking [30] can be used to test this proposed mechanism.

In previous studies on mammalian cell size regulation, the statistics of fixed cells were used to estimate
the ‘variability’ [63]. While many older studies on bacterial cell length regulation [2,64] made use of such
an approach, the advent of single-cell approaches have improved the robustness and accuracy of E. coli
cell size and division measurements [18,19]. However, in the process, the population effects have been
ignored. In this work, we attempt to bridge this gap. Additionally, we test our method of population
variability measurement for artefacts that could result from a lack of cell cycle stage synchronization of
the population. Indeed by measuring the growth of populations under different growth conditions, we
find that the growth rate dependence of cell size variability is related to genome copy numbers per cell
and is independent of synchronization.

We find the genome-copy number per cell, driven by growth rate, appears to positively correlate with
cell size distributions in the population. An analogous study in yeast has examined the effect of the
ploidy of specific genes on cell size regulation [65]. In the case of this study, while the genome copies per
cell increase cell size variability, we have not estimated the possible role of specific genes and their ploidy
on cell sizes. Additionally, our microcolony analysis once more reveals growth rate differences between
clonal individuals under identical conditions (figure 3d). While these differences are not addressed in our
study, it would be useful to extend our current analysis to the possible role of specific genes and proteins
in single-cell growth rate variability.

The RecA protein, examined in this study for a relationship with growth-rate-dependent cell size
variability, is an SOS response pathway protein. It has previously been shown to enhance the recovery
of stalled replication forks [29,66]. At the same time, when RecA is recruited to DNA, it activates SulA,
which sequesters FtsZ monomers [34], thus acting as a cell division inhibitor. Fast-growing E. coli are
also known to initiate multiple replication forks [16,67]. DNA replication fork progression is known to
be stochastic [68]. The increase in cell length variability that we observe as a function of growth rate
in wild-type E. coli can thus be explained by a model where RecA recruitment to stalled replication
forks (figure 7a) leads to an increase in the proportion of elongated cells owing to cell-division inhibition
(figure 7b). The cause for the onset of this process during rapid growth, we hypothesize, results from
the probabilistic replication fork stalling (figure 7a) and the multiplicative effect owing to multi-fork
replication [16]. While a computer simulation of multi-fork replication in the E. coli cell cycle exists [49],
an explicit model of replication stochasticity coupled to multi-fork replication dynamics could help
further test our hypothesis.

Our observations of the role of RecA in cell size variability have two parts: (i) the effect of a functional
copy of recA and (ii) the effect of a recA deletion. (i) We observed population cell length variability
of E. coli to increase with growth rate (figures 1–3) and tested the hypothesis that increasing RecA
localization on the genome with increasing growth rate correlated with this growth rate dependence
(figure 6). We find that RecA-SulA-mediated cell division inhibition increases cell length variability in
rapid growth in wild-type cells (figure 4). Additionally, in rapidly growing cultures of the wild-type
(LB, 37°C), overexpression of the RecA protein from the pRecA-mCherry (electronic supplementary
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material, figure S9a) and arabinose-inducible pBAD24-RecA constructs (electronic supplementary
material, figure S9b) did not affect cell length variability (electronic supplementary material, figure S2a,b).
In cells missing a copy of recA, treatment with 30 mM HU increased the variability of cell lengths
(electronic supplementary material, figure S3a). The overexpression of plasmid-based copy of recA
in these cells from pRecA-mCherry and pBAD24-recA plasmids reduced the spread of cell lengths
to levels comparable to untreated MG1655 (electronic supplementary material, figure S3b). (ii) As
reported previously, in the absence of RecA, the function of DNA replication fork stall rescue is
hindered [31], resulting in replication defects [66] which are not repaired owing to the inability of
the cell to induce an SOS response through LexA cleavage [69]. This results in cell division inhibition
potentially owing to nucleoid occlusion [70,71] and additional RecA-independent pathways that detect
incomplete replication [51]. However, distinct from previous work, we find greater variability in cell
lengths in a �recA strain when compared with hydroxyurea-treated wild-type cells in LB (figure 4c). We
also demonstrate that the phenotype can be rescued by plasmid-based expression of the RecA protein,
both with and without a fluorescent tag (figure 4c and electronic supplementary material, figure S2a,b).
In future, our data could form the basis of a mathematical model, extending a previously developed
model of recA gene expression dynamics during UV-based damage [72], focusing instead on the effect of
growth rates.

HU treatment increases replication fork stalling and slows down DNA replication [73] and also
results in cell division failure. Stalled replication forks that are not repaired, result in incomplete
DNA replication [29] and result in elongated cells owing to cell division inhibition [12,13]. A direct
measurement of replication fork dynamics of a population of dividing bacteria based on methods used to
study the single molecule replication dynamics [30,74] could be used to potentially test our predictions
at a subcellular level. Additionally, recently developed artificial ‘replication roadblocks’ in E. coli [30] and
Bacillus subtilis [62] could be used in future to generate known number of replication fork stalling events
and quantify their effect on population cell lengths, as a further test of the model.

The role of small proportions of outliers or ‘tails’ in phenotypic variability of a population has been
shown to confer advantages to ‘persister’ cells, when the population undergoes selection [57,58,75].
However, a clear functional role for cell lengths is yet to be unambiguously determined. Suggestive
evidence from clinical isolates of uropathogenic E. coli have implied that filamentous cells are harder for
immune cells to clear than those of normal length [76]. In future, a study of the possible role of cell size
and shape of not just E. coli in their natural environment could shed more light on the possible role in
cell survival.

Our results suggest that an increased genome copy numbers in E. coli increases cell size heterogeneity.
This is consistent with single-cell measurements in E. coli [30], but in contrast with S. cerevisiae, which
shows that increased genome copy numbers lead to reduced ‘noise’ in cell size distributions [65]. To
infer general principles from these results, the distribution of DNA replication origins in yeast and the
concurrent nature of replication in bacteria will need to be taken into account. It can be presumed that the
effect we report will only occur in organisms where rapid growth entails multiple simultaneous rounds
of DNA replication.

5. Conclusion
In conclusion, we find that cell length variability of wild-type E. coli increases with increasing
growth rate in a non-monotonic manner above a growth rate threshold for multi-fork replication
(rmf). This variability is independent of cell-cycle stage synchronization of the population. Increasing
HU concentrations to modulate replication stochasticity only changes the cell length distributions of
populations undergoing rapid growth, an effect amplified in �recA cells. The rescue of increased cell
length variability by RecA expression in deletion mutants, the effect of replication stalling induction on
cell lengths and recruitment of RecA to the DNA, all indicate a model of stochastic multi-fork replication
involving SOS response proteins. This could provide a mechanistic explanation of how growth rate
affects population cell length variability in E. coli.
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Abstract

Kymographs or space-time plots are widely used in cell biology to reduce the dimensions of

a time-series in microscopy for both qualitative and quantitative insight into spatio-temporal

dynamics. While multiple tools for image kymography have been described before, quantifi-

cation remains largely manual. Here, we describe a novel software tool for automated multi-

peak tracking kymography (AMTraK), which uses peak information and distance minimiza-

tion to track and automatically quantify kymographs, integrated in a GUI. The program takes

fluorescence time-series data as an input and tracks contours in the kymographs based on

intensity and gradient peaks. By integrating a branch-point detection method, it can be used

to identify merging and splitting events of tracks, important in separation and coalescence

events. In tests with synthetic images, we demonstrate sub-pixel positional accuracy of the

program. We test the program by quantifying sub-cellular dynamics in rod-shaped bacteria,

microtubule (MT) transport and vesicle dynamics. A time-series of E. coli cell division with

labeled nucleoid DNA is used to identify the time-point and rate at which the nucleoid segre-

gates. The mean velocity of microtubule (MT) gliding motility due to a recombinant kinesin

motor is estimated as 0.5 μm/s, in agreement with published values, and comparable to esti-

mates using software for nanometer precision filament-tracking. We proceed to employ

AMTraK to analyze previously published time-series microscopy data where kymographs

had been manually quantified: clathrin polymerization kinetics during vesicle formation and

anterograde and retrograde transport in axons. AMTraK analysis not only reproduces the

reported parameters, it also provides an objective and automated method for reproducible

analysis of kymographs from in vitro and in vivo fluorescence microscopy time-series of

sub-cellular dynamics.

Introduction

Kymographs, or space-time plots, have been extensively used to analyse sub-cellular micros-

copy time-lapse data with improvements in microscopy. It has been used in the past to

characterize organelle transport, cell division and molecular motor motility as reviewed by

Pereira et al. [1], and the wide-range of applications could be the result of the reduced spatial
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dimensions of complex microscopy time-series. Most often however, kymography has been

used as a qualitative readout of movement or dynamics. In studies where kymographs have

been quantified, most often this has been manual, as seen in the Multi Kymograph plugin for

ImageJ [2]. Most of the existing tools such as the automated kymography tool [3] and ‘guided’

kymography [1] focus on automating the process of kymograph building. Few methods for the

automated quantification of kymographs exist, such as ‘Kymomaker’ [4] and a curvelets based

tool [5]. Both these tools automate quantification, but cannot deal with merging and spitting

events. Despite the ubiquitous nature of merging and splitting events in typical sub-cellular

processes, none of the existing tools for the automated quantification of kymographs include a

feature to handle budding and coalescence.

Genome segregation is conserved across cellular systems and has been extremely well stud-

ied in the rod-shaped Gram-negative bacterium Escherichia coli [6,7]. However microscopic

analysis of DNA segregation has only recently been made possible with improvements in

microscopy and image-analysis [8–10]. Given the almost 1D geometry of segregation of the

genome along the long axis of the cell, kymography is a convenient way to analyze the process

of nucleoid DNA segregation. Recent studies using explicit 3D over time tracking have found

compaction waves are associated with E. coli genome segregation [11]. Based on a reduction in

dimensions to 1D over time, a quantitative kymograph-based analysis could be used to screen

for changes and defects in segregation, without the need for more complex datasets and their

analysis.

The process of microtubule transport by molecular motors reconstituted in vitro, referred

to as a ‘gliding assay’ has been extensively used to examine the fundamental nature of multi-

molecular transport of actin and microtubule filaments by motors [12–15]. Recent studies

have also used ‘gliding assays’ to address microtubule mechanics based on the bending of fila-

ments while undergoing transport [16]. Kymography of cytoskeletal filaments in vivo has been

used to follow actin contractility and microtubule buckling dynamics [17]. However in most

cases the use of kymography has been limited to visualizing the time-series in a single-image,

as a compact form of data representation. A general tool that could use this information to

objectively extract the measures of motility would hence be of some use to these multiple

applications.

The assembly of proteins by ‘recruitment’ to structures is fundamental in multi-protein

complex formation. The assembly of vesicles by budding off membranes and their fusion is

critical for cellular function. For the assembly of coated pits with clathrin for endocytosis the

site of assembly [18], sequence of binding events [19] and interactions of other proteins [20] is

considered to be critical. Microscopy of in vitro reconstituted membrane bilayers has become

a powerful tool to study the dynamics of protein assembly during vesicle formation [21,22].

Proteins such as epsin, which were reported to accelerate clathrin ‘recruitment’ [23] have been

examined using kymography of the fluorescently labelled clathrin and the effect of mutant

epsins on the process [24]. While such an approach lends itself to high-content screening, the

analysis of the kymograph has been manual. Many other such ‘recruiment’ dynamics studies

could benefit from an automated routine to quantify the kinetics of assembly through intensity

measurements coupled to kymography.

Neuronal vesicles are transported in axons by the action of molecular motors. Microscopy

of in vitro reconstituted [25] and the in vivo transport in cultured cells [26,27] has provided

insights into both the components and forces regulating transport. Recent technical develop-

ments have allowed whole animal in vivomicroscopy of sub-cellular vesicle movements in

neurons [28]. In this and comparable studies, quantitative statistics have been obtained using

manual detection of kymographs. This is possibly due to the complex nature of the time-series

with cross-overs and the crowded in vivo environment. An approach that uses objective
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criteria and automates the process of quantification could provide valuable improvements to

our understanding of fundamental nature of vesicle transport as well as aid in the process of

modeling vesicle transport.

Here, we have developed a novel tool to automatically quantify kymographs from fluores-

cence image time-series. We proceed to demonstrate the utility of the automated multi-peak

tracking kymography (AMTraK) tool by quantifying dynamics from diverse sub-cellular fluo-

rescence microscopy data sets. These include bacterial genome-segregation, microtubule (MT)

motility of 1D filaments and 2D radial asters, membrane protein assembly dynamics and vesi-

cle transport in axons.

Algorithm and workflow

The automated multi-peak tracking kymography (AMTraK) is open source software based on

an algorithm that combines peak detection and distance minimization based linking to quantify

dynamics of fluorescence image time-series. The source code has been released with a GPL

license and can be accessed from: http://www.iiserpune.ac.in/~cathale/SupplementaryMaterial/

Amtrak.html and https://github.com/athale/AMTraK

The program has a GUI front-end and is accompanied by a detailed help file. The algorith-

mic workflow (Fig 1A) is divided broadly into three steps:

1. Making the kymograph

2. Peak detection and tracking

3. Statistics

These steps in the workflow are reflected in the graphical user interface (GUI) layout (Fig

1B). The functioning of each of these steps is briefly described as follows:

(a) Making the kymograph. The user chooses an input image time-series with the “Open

File” button. Image time-series are assumed to be uncompressed, multi-page TIF files (inde-

pendent of bit depth). The user can choose to process either the whole or a subset of frames

using the “Frame nos.” text box. For example entering “2:2:8” will now result in only frames 2,

4, 6 and 8 being processed for further analysis. The text box “Save as sub-folder” takes a num-

ber input (default “1”) indicating where the outputs will be stored (e.g.: “./amtrak-1”). The

drop-down menu “Apply LOI” allows the user to either choose a line of interest (LOI) using

the mouse (“Interactive”) or apply a pre-existing LOI on a different channel (color) of the

image time-series (“From file”). Once an interactively drawn LOI is selected, it is stored in the

output sub-folder as “LOIselection.txt” (S1 Data). This LOI can subsequently be applied, to

another channel or the same region of another dataset (e.g.: microfluidics channels) using the

“From file” mode. For this, the user is required to load a separate TIF time-series using “Open

File” and change the sub-folder number in order to prevent overwriting old data. The “LOI

width (pixels)” allows a user to choose the width of the LOI, to compensate for occasional drift

of the object, in a direction orthogonal to the LOI orientation. The choice widths- 1, 3 and 5

pixels- is centered around the selected LOI pixels, similar to that implemented in the ImageJ

Multi Kymograph plugin [2]. The drop-down menu “Units” allows the user to select distance

and time units, and the text boxes “Scaling factor” and “Time interval” are used to provide

conversion factors per pixel and frame respectively. This results in scaling the pixels and

frame numbers to physical units. The button “Make Kymograph” produces a maximum inten-

sity projection image of the input time-series, if the user had chosen the “Interactive” mode

(default) in the “Apply LOI” menu. The user is required to select the line of interest by drag-
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clicking the mouse. Double-clicking ends the selection, and throws a dialog box, which

prompts the user to choose to either select more LOIs or continue with the processing of the

Fig 1. Algorithm workflow and user-interface. (A) The workflow of the algorithm involves three steps (1) kymograph generation, (2) peak

detection and tracking and (3) quantification and the functions invoked by each part are elaborated. (B) The GUI is organized to reflect this

workflow.

doi:10.1371/journal.pone.0167620.g001
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one already selected. This generates file one or more “LOIselection.txt” files in the sub-folders.

If the “From file” mode was selected, the program allows the user to select a pre-existing “LOI-

selection.txt” from the directory structure. The program then generates kymographs based on

these LOIs and stores the matrices corresponding to the LOIs in sub-folders numbered accord-

ing to the sequence of LOI selection (e.g.: “/amtrak-1/”, “/amtrak-2/” etc.).

(b) Peak detection and tracking. Detecting peaks: The button “Subfolder” allows the user

to choose the kymographs to be processed using “Add”, which adds the subfolders created ear-

lier to the active list. Using this feature, a user can either process a single kymograph at a time,

or process multiple kymographs using the same parameters. The kymograph is segmented

row-wise using Otsu’s method [29] and the resulting binary image is processed for “Peak

detection”. The user can choose between three alternative methods: (i) findpeaks [30] and (ii)

watershed [31] to find central peaks, while (iii) Canny edge detection [32] is useful if the edge

information is the most reliable descriptor of the dynamics. Typically findpeaks and watershed

are ideal for spherical objects.

Linking: The list of peaks P(t) for each time point t is linked resulting in tracks, based on

user input parameters of “Peak search radius” (λ1) and “Min. track length” (λ2). Peaks are

linked if the minimal pair-wise distance dj(t,t+τ) between every jth peak in successive rows (t, t
+τ) satisfies the condition min(dj(t, t+τ))� λ1, iteratively for the jth peak in every subsequent

time step (t+τ). If two or more peaks are equidistant, the peak that makes the largest angle (0

to π) with the existing track is chosen, similar to our previously developed branch detection

method [33]. For the peaks in t = 1, the angle criterion does not hold true and equidistant

peaks are resolved by user-input. Tracks are eliminated from further analysis if their number

of peaks linked len(P)� λ2, to avoid artifacts due to very short tracks.

Remove redundant: If the checkbox “Remove redundant tracks” is selected, each ith track

with ηi coordinates, is tested for intersections using the inbuilt intersect function. If the number

of common coordinates ηc satisfies the condition ηc� ηi/3, it is eliminated as a redundant

track.

Splitting and joining tracks: If the checkbox “Splitting events: Link tracks” is selected, events

where two tracks merge are identified by a two-step process. First, all peaks (I(x,t)) are evalu-

ated for the condition I(x,t) = (dte� ω1) AND (dxe� ω2), where dte is the distance on the

time-axis (t) and dxe is the distance on the spatial (x) axis. Then, a peak with the minimal

(Euclidean) distance is minimized for the distance to the end-point (e) coordinate Jm. The

time and distance thresholds are set by the user in the text box for ω1 (frames) and ω2 (pixels)

respectively.

The button “Detect Peaks” then outputs an image of the kymograph with the peaks overlaid

in color, while invoking the button “Make tracks” links the peaks based on the input parame-

ters. Lastly the button “Quantify” produces a text file corresponding to each track (S2 Data, S3

Data and S4 Data).

(c) Statistics. This section of the code produces both text-file outputs and plots of the

dynamics estimated from the kymograph. The frequency distribution of “Instantaneous Dis-

placement”, “Total Displacement”, “Instantaneous Velocity”, “Speed” and “Tortuosity” (i.e.

directionality) are plotted if the button “Plot” corresponding to these variables is pressed.

Additionally the mean and standard deviation (s.d.) of these variables are also generated in the

text boxes. Pressing the “Track Intensity” button plots the normalized (0–1) grey value inten-

sity of each track as a function of the time. The button “Track orientation” triggers a recoloring

the tracks in the kymograph based on the net direction of movement along the X-axis- blue

(-ve, left), red (+ve, right) and green (stationary, neutral).

The outputs of the analysis are stored in multiple tab-delimited text files: “LOIselection.txt”

with the LOI coordinates (S1 Data), “USER_TrackStats.txt” which reports track-wise mean
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values (S2 Data), “USER_InstStats.txt” which reports the time-dependent statistics (S3 Data),

“Tracklist.txt” which stores the grey-value intensities as a function of track number and time

(S4 Data) and “Branchpoints.txt” which stores the position and time coordinates of detected

branches (S5 Data). The user-inputs to AMTraK in terms of files, directories and parameters

are all stored in “All_Parameters.txt” (S6 Data), to enable reproducible analysis.

Materials and Methods

Simulated test images

Simulated images of static beads were generated by creating 8 bit images with a black back-

ground (intensity: 0) with equally spaced single white pixels (intensity: 255) in MATLAB

(MathWorks Inc., USA). To simulate bead motion, a simple 1D random-walk was imple-

mented where each bead was moved randomly in each frame, with displacement drawn from

a normally distributed random number with mean m = 0 and standard deviation (s). The stan-

dard deviation is a measure of the mean speed of motion. Both the static and mobile bead

image time-series were filtered with a 5x5 disk filter and smoothed using a 3x3 averaging filter.

The resulting convolved circular objects (S1A Fig) have intensity profiles that resemble point

sources of fluorescence signal (S1B Fig). The time-series were saved as a multi-page TIF files.

Noise was added to individual time-series in order to simulate increasing levels of image-noise

using a Gaussian filter with increasing standard deviation (0–100) using ImageJ [34].

Bacterial growth and microscopy

E. coli MG1655 (CGSC, Yale, USA) expressing the pBAD24-hupA-GFP [35] were cultured in

Luria Bertani (LB) medium (HiMedia, Mumbai, India) with 100 μg/ml Ampicillin (Sigma-

Aldrich, Mumbai, India) at 37˚C with shaking at 170 rpm (Forma, ThermoScientific, USA).

Nutrient ‘agar-pads’ with 0.2% arabinose (Sisco Research Labs, Mumbai, India) and 100 μg/ml

ampicillin were imaged on a glass-bottomed Petri dish (Corning, NY, USA) at 37˚C using an

inverted Zeiss LSM780 confocal microscope (Carl Zeiss, Germany) with a Plan Apochromat

63x (N.A. 1.40, oil) lens in DIC and fluorescence (excitation by 405 nm diode laser with a

beam splitter MBS 405 and the emission collected between 487–582 nm) modes. Images were

corrected for drift using the rigid body transformation in the StackReg plugin [36] for ImageJ.

Microtubule gliding assay

A 1:4 ratio of TRITC-labeled bovine and unlabeled porcine tubulin (Cytoskeleton Inc., USA)

at a concentration of 20 μM were used to prepare taxol stabilized MT-filaments in general

tubulin buffer as described by the supplier (Cytoskeleton Inc., USA). Into a double backed

tape chamber, we sequentially flowed in 4.1 μg/μl of a 67 kDa recombinant human kinesin

(Cytoskeleton Inc., USA), blocking buffer (5 mg/ml Casein) and MT filaments. The chamber

was then washed with a casein-containing buffer and the reaction was started with 1 mM ATP

with anti-fade mix (0.05 M glucose, 1% sucrose, 0.5 mg/ml catalase, 0.5 mg/ml glucose oxidase,

0.5% beta-mercaptoethanol (Cytoskeleton Inc., USA)). Time-series images were acquired

every minute for 30 minutes on an upright epifluorescence microscope with a 40x (N.A. 0.75)

EC Plan Neofluar lens mounted on a Zeiss Axio Imager.Z1 (Carl Zeiss, Germany) using filters

for excitation (563 nm) and emission (581 nm) and an MRC camera (Carl Zeiss, Germany).

Image processing

The acquired time-series and movies taken from published data were converted to uncom-

pressed TIF time-series using ImageJ (Schneider et al., 2012) and online converters for MOV
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files. MT-gliding assay images were de-noised using a median filter in ImageJ. For manual

analysis of kymographs of MT-gliding, a program was written in MATLAB (MathWorks Inc.,

USA) to generate a kymograph from the time-series, interactively draw a segmented line along

the edges and extract coordinates to calculate velocities. The automated multi-peak tracking

kymography (AMTraK) code was implemented in MATLAB R2014b (MathWorks Inc., USA)

in combination with the Image Processing (ver. 7.0) and Statistics (ver. 7.3) Toolboxes and

tested on Linux, Mac OSX and Windows7 platforms. Vesicle transport image time-series in C.

elegans from supporting material of published work [28] were calibrated based on the width of

the axon from the same report.

Data analysis

All data analysis and plotting was performed using MATLAB 2014b (MathWorks Inc.,

USA). Fitting of custom functions was performed using either the Levenberg-Marquardt non-

linear least square routine or the Trust-Region method, implemented in the CurveFitting

toolbox (ver. 3.5) of MATLAB.

Results

Accuracy of detection

To test the positional detection accuracy of the algorithm, we have created simulated image

time-series of circular objects that represent typical fluorescence images of circular objects (Fig

2A), comparable to images of sub-cellular structures in pixels (S1A Fig). Since the time-series

consists of the same image, the objects are perfectly static as seen in the resulting kymograph

(Fig 2B) output from running AMTraK on the data. Intensity variations are a result of the

noise from the spatial filter (s.d. 40). The difference between the position of the detected tracks

(xD) and the simulated position (xS) is used as an estimate of the limit of accuracy in position

detection, Δx = |xS-xD|. The normalized frequency distribution of Δx can be fit to an exponen-

tial decay function to obtain a mean accuracy<Δx> = 1/b from the fit, in pixel units (Fig 2C).

For all images with noise of s.d.< 40, the mean error (from fit) in detection hΔxi<1 pixel. For

higher values appears to saturate between 2–3 pixels (Fig 2D). Using the arithmetic mean as an

estimate of the accuracy for a given noise s.d. appears to result in an underestimate that does

not change with increasing noise s.d. (Fig 2D), and hence the mean from the exponential decay

of the frequency of Δx was taken to be more representative of the central tendency. To test if

motility affected the positional accuracy, we also evaluated the positional accuracy of particles

undergoing a random walk (as described in the Materials and Methods section) with a fixed

image noise (noise s.d. 30). By increasing the s.d. of the random walk we estimated the effect of

increasing velocity on Δx (Fig 3A). The accuracy of positional detection using both the arithme-

tic and exponential mean error (<Δx>) as before, is less than 1 pixel for the chosen range of

velocities of the random walk (Fig 3B). At higher velocities, the tracking errors accumulate, sug-

gesting image noise is the major limiting factor for the positional accuracy of detection, inde-

pendent of particle motility. Thus, while AMTraK analysis can result in sub-pixel accuracy of

position detection, it is essential that the input data have low-noise. We proceeded to test our

method on the multiple experimental datasets to examine the utility of this program involving

bacterial DNA segregation, microtubule motility and vesicle assembly and transport dynamics.

Detecting splitting events in bacterial DNA-segregation

A time-series of growing E. coli is acquired in fluorescence (Movie A in S1 Video) and DIC

(Movie B in S1 Video) to follow the nucleoid segregation dynamics of HupA-GFP labeled
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DNA (Fig 4A). Using the maximum intensity projection produced from AMTraK, the LOIs

are chosen (Fig 4B) and used to generate and analyze two kymographs (Fig 4C and 4D). The

segregation of the genome is captured by the branched structures of the tracks marked in

the kymographs. Additionally we can evaluate both the instantaneous velocity for time-

dependence (Fig 4E) and average statistics (Fig 4F). The mean nucleoid transport velocity is

0.103±0.12 μm/min (arithmetic mean ± standard deviation). Based on the form of the fre-

quency distribution of instantaneous velocities, we also fit an exponential decay function to

obtain the exponential mean velocity vex = 0.104 μm/min. These values of nucleoid move-

ment speed from E. coli MG1655 (wild-type) cells are comparable to a previous report in

which nucleoids were tracked in 3D over time [11]. While nucleoids form a diffraction-lim-

ited spot in microscopy images, un-branched cytoskeletal filaments form typical 1D struc-

tures and dynamics of transport on them and of the filaments themselves, are ideally suited

for kymography.

Fig 2. Estimating positional accuracy. (A) A single frame of a 2D image time-series of static spheres (with a peak intensity of 1) with Gaussian noise

(mean = 0, s.d. = 40) is analyzed using AMTraK (B) resulting in a kymograph. (C) The frequency distribution of the error in position detection (Δx) by

AMTraK (bars) is fit by an exponential decay (red). The mean error obtained is 0.75 pixels (goodness of fit R2 = 0.95) for a representative time-series with

noise s.d. = 40. (D) The mean error of detection (y-axis) from the exponential fit <Δx> = 1/b (black) is compared to the arithmetic mean (blue) in pixel units,

plotted as a function of increasing noise s.d. (x-axis). The noise generates random intensities drawn from a Gaussian distribution with mean 0 and the

specified s.d. being added to the image (based on the “Specified Noise” function in ImageJ).

doi:10.1371/journal.pone.0167620.g002
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Microtubule transport: filament edges, centers and time-dependence of

velocity

The transport of microtubule (MT) filaments by surface-immobilized molecular motors in the

presence of ATP and buffers is referred to in the literature as ‘gliding assay’ or ‘collective trans-

port assay’. Here, we analyze the gliding motility of MT on kinesin, as described in the meth-

ods section, using AMTraK. The analysis of a representative kymograph using either peak-

(Fig 5A) or edge-detection (Fig 5B) successful traces the centroids and edges respectively. The

mean velocity estimates for collective motor transport show variations between individual fila-

ments. The centroid and edge velocity estimates of multiple MT filaments (n = 10) are strongly

correlated as evidenced by the straight line fit with slope ~ 1 (Fig 5C and 5D), as expected.

However, the linear correlation of edge-based velocities has a slope of ~0.9 (Fig 5E), suggesting

small deviations from the ideal slope, within the range of the average positional detection error

(Fig 2C). While typical kymograph analysis of cytoskeletal transport averages the edge infor-

mation (movement of the tips over time), correlating edge-velocities could potentially be used

to estimate small alterations in the filament geometry such as bending and length change. The

mean velocity of 0.5 μm/min obtained from our analysis of the assay (Fig 5F) is consistent with

previous reports for the same construct [37,38]. While the transport of effectively 1D MT fila-

ments lends itself to kymography, we proceeded to investigate if 2D radial MT structures or

asters can also be analyzed by kymography.

Fusion of MT asters

In recent experiments by Foster et al. [39] they examined the spontaneous contraction dynam-

ics of radial MT arrays or asters labeled with Alexa647-tagged tubulin, in Xenopus egg extracts.

We have taken a time-series of such asters from published data (kindly shared by the author

Peter J. Foster) and analyzed coalescence events using AMTraK (Fig 6A) The projection of the

time-series for selecting the LOI enables us to reduce the complex movements of such 2D

Fig 3. Positional accuracy of tracking simulated motility. (A) Kymographs of time-series of spheres undergoing a 1D random walk with Gaussian noise

(s.d. = 30) were tracked. The colors indicate the detected tracks. (B) The arithmetic mean (blue) and exponential mean (black) of error in position detection

(Δx) (y-axis) over 3 iterations of the time-series is plotted for increasing velocity of the random-walk (x-axis) as inferred from the standard deviation (s.d.).

doi:10.1371/journal.pone.0167620.g003
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Fig 4. Nucleoid segregation dynamics of E. coli. (A) Image time-series of E. coli MG1655 grown on agar pads and imaged in DIC (left) and

fluorescence based on HupA-GFP (right) are analyzed using AMTraK. (B) AMTraK generates a maximum intensity projection on the basis of which

user-selected lines of interest (red lines) are used by the program to generate kymographs. The kymographs based on (C) LOI 1 (k1) and (D) LOI 2 (k2)

were tracked resulting in branched tracks (colored lines). (E) The instantaneous velocities of nucleoids 1 and 2 (n1, n2) from kymographs 1 (k1) and 2

(k2) are plotted as a function of time (colors indicate nucleoids n1, n2 each from the kymographs k1, k2). (F) Mean velocities are estimated using both

the arithmetic mean (±s.d.) and vex, the mean of the exponential decay (y = e-1/vex) that was fit (red line) to the frequency distribution of instantaneous

velocity (bars). Scale bar 4 μm.

doi:10.1371/journal.pone.0167620.g004
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Fig 5. Microtubule (MT) gliding motility on kinesin motors. MTs gliding on kinesin (images acquired every 1 minute for 30

minutes) were analyzed using AMTraK by either detecting (A) the centerline (red) or (B) the two edges the filament, edge 1 (red)

and 2 (cyan). Color bar: gray scale image intensity normalized by the maximal value for the bit-depth. (C, D) The velocity

estimates from the centroid-based velocity estimates and the two edges and (E) the velocity estimated from each edge are

correlated. (F) The frequency distribution of the instantaneous velocity estimates using the centroid (blue) is compared to edge-

based estimates. r2: goodness of fit, y/x: slope of the linear fit. Number of filaments analyzed, n = 10.

doi:10.1371/journal.pone.0167620.g005
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structures to a 1D over time process. The movement of the smaller aster as it merges with the

larger one is rapid. The fluorescence intensity following the merger fluctuates, but does not

increase, which we interpret to mean tubulin density at the center of the new aster does not

increase (Fig 6B). While the coalescence appears not to result in a compaction of the aster, it

demonstrates the utility of the code for 2D MT array transport. On the other hand, intensity

measurements are expected to change during processes such as molecular ‘recruitment’ of

sub-cellular structures, so we proceed to test the tool on this process, which had previously

been studied using manual kymography.

Kinetics of clathrin assembly during in vitro vesicle formation

We proceed to quantify the assembly kinetics of clathrin on membranes from an in vitro
reconstitution assay of clathrin assembly on vesicle precursors reported previously by Holkar

et al. [24]. This process has been analyzed using kymography due to its effectively 1D spatial

extent and the multiple simultaneous events of assembly. The published time-series of fluores-

cently labeled clathrin assembly kinetics in the presence of wild-type epsin (supplementary

movie 3 in [24]) and L6W mutant epsin (supplementary movie 5 in [24]) in the form of 16 bit

TIF images were provided by the authors (Sachin Holkar, personal communication). AMTraK

was used to analyze this data without any pre-processing, resulting in tracked kymographs of

assembly kinetics with wild-type (Fig 7A) and mutant epsin (Fig 7B). The software outputs a

text-file of grey-value intensities normalized by the bit-depth (maximum normalized, between

0–1) (S4 Data), which when multiplied by the bit-depth of the input images, produced inten-

sity profiles of clathrin assembly in grey-values with time in the presence of wild-type (Fig 7C,

S3A Fig) and mutant epsin (Fig 7D, S3B Fig). These intensity profiles were fit to a single phase

exponential function y = a+(b-a)�(1-e-c�t), where y is the intensity which increases with time t,

and depends on three fit parameters, a, b and c, the same function as used by Holkar et al.

[24]. A large proportion of the assembly events were successfully tracked and most showed

Fig 6. MT aster coalescence. (A) A time-series of MT asters undergoing fusion (time-series taken from previous work by Foster et al. [39])

was analyzed using AMTraK. The grey scale bar indicates normalized fluorescence intensity of Alexa-647 labeled tubulin. (B) The relative

intensity over time of the two coalescing asters is plotted.

doi:10.1371/journal.pone.0167620.g006
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Fig 7. Dynamics of clathrin assembly. (A, B) Microscopy time-series taken from Holkar et al. [24] of fluorescently labeled

clathrin assembly in the presence of (A) wild-type and (B) mutant epsin were analyzed using AMTraK. Colored lines in the

kymographs indicate detected tracks. (C, D) The change in intensity as a function of time based on AMTraK detected tracks from

(C) clathrin + w.t. epsin and (D) compared to clathrin + (L6W) mutant epsin. The intensity kinetics plots are fit to a single-phase

exponential function, y = a+(b-a)*(1-e-c*t) to obtain the time constant of assembly τ = 1/c (red). R2: goodness of fit. (D) The mean

values (error bar represents s.d.) of the time constant of assembly of clathrin (τ) in the presence of wild-type and mutant epsin are

compared.

doi:10.1371/journal.pone.0167620.g007

Automated Quantitative Kymography

PLOS ONE | DOI:10.1371/journal.pone.0167620 December 19, 2016 13 / 22



saturation kinetics that were fit by curves with R2>0.7 (S3 Fig). While the parameters a and b
are scaling factors, c determines the characteristic clathrin polymerization time, τ = 1/c. In our

analysis the clathrin assembly time in presence of wild-type epsin is<τ> = 71.49±44.09 s

while with mutant epsin <τ> = 70.16±29.89 s. In our estimate of the mutant assembly time is

indistinguishable from wild-type, consistent with the previous report, which used manual

quantification of the kymograph [24]. We proceed to examine if our tool, which appears to

work successfully on in vitro data with low background noise, can also be used for the quantifi-

cation of in vivo dynamics inside the crowded environment of an intact cell.

Axonal vesicle transport: Characterizing directional switching

Synaptic vesicles in Caenorhabditis elegans mechanoreceptor neurons labeled with GFP-Rab3

have been recently studied by Mondal et al. in a whole-animal microfluidics device, providing

retrograde and anterograde vesicle transport statistics [28]. Such in vivo data is complex, in-

volves multiple crossovers and has many objects close to each other. AMTraK based analysis

of the published data could detect up to 17 different tracks (Fig 8A). Vesicles that were not

detected have typically low intensity or were out of focus and were not segmented. The spread

of the distribution of instantaneous velocities (left-ward: negative, anterograde; right-ward:

positive, retrograde, non-motile: paused) shows that the GFP-Rab3 vesicles are equally likely

to be anterograde and retrograde in their transport (Fig 8B). Based on the shape of the fre-

quency distribution of the non-zero velocities in anterograde (Fig 8C) and retrograde (Fig 8D)

directions, an exponential decay fit to the frequency distribution was used to estimate mean

velocities (goodness of fit, R2 = 0.99). To enable comparison with the arithmetic means re-

ported in literature [28], we also estimate the average. The mean velocity from the exponential

fits of anterograde transport is 0.625 μm/s (n = 425, arithmetic mean±s.d.: 0.77±0.53 μm/s)

while the mean retrograde velocity is 0.714 μm/s (n = 540, arithmetic mean±s.d.: 0.854±0.67

μm/s). In this case, both means are comparable since only non-zero values were the analyzed.

Velocities in both directions are of comparable order of magnitude to the published values

obtained by manual detection [28], but 1.5-fold lower, due to a (non-zero) threshold velocity

used by the authors to define pauses (as personally communicated by the author, Sudip Mon-

dal). Thus, AMTraK can be reliably used to quantify transport and assembly dynamics from

both in vitro and in vivo fluorescence microscopy data, as seen from the quantification, which

is consistent with literature.

Discussion

In this report, we have described a novel tool for automatic detection and quantification of

kymographs from fluorescence microscopy time-series. Using simulations we have demon-

strated sub-pixel position detection accuracy of our proposed method, in conditions of low

Gaussian noise. The program quantifies position, motility, and brightness intensity of fluores-

cence signal and fusion/splitting events. The utility of the code is tested on in vitro and in vivo
fluorescence time-series ranging from in vitro assays of MT gliding assays with kinesin, coales-

cence dynamics of MT-asters, clathrin assembly kinetics on lipid tethers to in vivo axonal syn-

aptic vesicle transport. The measures of average transport and kinetics of these diverse data

types are consistent with published data and provides opportunities for improved statistics of

individual events from a dynamic time-series, which were not as easily accessible with current

methods.

Manual quantification of kymographs [2] depends typically on reliable edge detection. As a

result, quantification varies between individuals and requires prior information or experience

[40]. Yet, manual kymography is widely reported in cell-biological literature for the analysis of
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dynamic processes, possibly due to the heterogeneity of the data types and the absence of a sin-

gle standard method or even criterion, which to make the process less interactive. While devel-

oping AMTraK, we tested global (whole-image) methods of edge-segmentation (contour-,

watershed- and gradient-based), but found them to be inadequate for the task. Possible reasons

include the time-dependent brightness and contrast changes of the sample resulting from

either bleaching or intrinsic dynamics. We find that for some applications such as vesicle

transport and protein recruitment, the detecting and tracking peaks is ideal, while for microtu-

bule gliding assays edge detection is better. As a result our code allows the user to choose

Fig 8. Analysis of synaptic vesicle transport. (A) GFP-Rab3 tagged vesicles from posterior touch cell neurons in C. elegans (experimental data from

taken from supporting movie S1 Movie from [28]) were analyzed using AMTraK. Colored lines with index numbers indicate tracks. (B) The frequency

distribution of instantaneous velocities of the vesicles (n = 1592) is plotted using AMTraK (mean: 0.49 μm/s, s.d. 0.88). (C, D) The frequency distribution

of non-zero velocities are fit with an exponential decay function y = A*e-x/m (red line), where A: scaling factor and m: mean. (C) The mean anterograde

velocity from the fit is 0.625 μm/s with arithmetic mean 0.77±0.53 μm/s (n = 425) and (D) the mean retrograde velocity from the fit is 0.714 μm/s with

arithmetic mean 0.854±0.67 μm/s (n = 540). Arithmetic means are reported ± standard deviation (s.d.). R2 indicates the goodness of the fit.

doi:10.1371/journal.pone.0167620.g008
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amongst three different methods of segmentation based on the nature of their data (a) peak

detection by findpeaks and (b) watershed and (c) edge detection using the Canny edge

detector.

Typical problems in peak or edge detection arise when the data has poor signal to noise.

This is also seen in our error analysis with increasing noise amplitude (Fig 2D). One solution

is to background subtract the image, which can be easily done in multiple tools. The occasional

loss of some particles in a time-series such as synaptic vesicles (Fig 8A), despite being visible to

the eye, results from a failure in detection or a ‘pruning’ step used to remove spurious and

redundant tracks. Such pruning however was found to be necessary to ensure robustness of the

code for handling multiple data types and is simple to trouble-shoot due to the limited number

of adjustable parameters. While intensity matching did not improve the percentage vesicles

tracked, in future additional features like those used in pattern-matching for tracking [41] could

be used further improve the detection percentages. Our test with increasing Gaussian random

image noise (Fig 2) also suggests that increases of fluorescently tagged proteins (for instance

due to expression level increases in vivo), could result in reduced spatial contrast. Such data

would then be difficult to automatically quantify using AMTraK. The data would require pre-

processing with something similar to an anisotropic diffusion filter [42] to preserve edge infor-

mation but reduce non-specific signal. In future, multiple data pre-processing routines could be

implemented in a separate module, to add to the functionality of the program.

Our quantification of the frequency distribution of synaptic vesicle transport in anterograde

and retrograde directions (Fig 8C and 8D) suggests the instantaneous velocities are exponen-

tially distributed. While the arithmetic mean suffices for comparison with experimental reports

[28], the quantification of the precise nature of the distribution of velocities could be used as a

test of theoretical models. Such a comparison has been made in previous work on synaptic vesi-

cle precursor trafficking [43]. Such models are relevant for both neurophysiology as well as

understanding of collective effects in molecular-motor driven vesicle transport in vivo [44,45].

The collective motor velocity of human kinesin driven gliding of MTs has been well charac-

terized in previous work [12,46,47]. Many of these studies have shown that the MT length and

kinesin density do not affect the mean speed. However, the time-series of individual filaments

show small time-dependent variations (Fig 4A and 4B), possibly a result of the local inhomo-

geneity of motor distributions. This information could be of some use when mixed-motor

populations are used [48]. Recent studies of filament motility have used a filament-tracking

approach based on a MATLAB program FIESTA [49], with a positional accuracy of 30 nm.

We find the distribution of time-averaged velocity of gliding calculated using AMTraK match

closely the distribution obtained from analysis using FIESTA (S2 Fig). This suggests that while

complex transport dynamics in 2D are indeed better analyzed using tracking tools, for those

data sets that are amenable to kymography analysis, AMTraK results are comparable to those

obtained from tracking tools with sub-pixel accuracy.

While the dynamics of multiple particles can be simultaneously quantified using AMTraK,

the selection of LOIs remains manual. However, once an LOI has been selected, the program

can also be used in the “From file” mode to apply a pre-existing LOI to quantify kymographs

in other channels (e.g.: bright field, fluorescence) and other fields of view with similar sample

geometries. Potentially, LOIs could be generated independent of AMTraK too, provided they

are compatible with the input format. The multiple bright-field and fluorescence correlative

analysis tools for bacterial image analysis [10,33,50,51] are an example in case. More recent

developments in image-analysis software to systematically extract data from microfluidics

experiments automatically output channel information [52], which could also form the basis

for the LOIs for multiple fields of view. These approaches could in future further increase the

throughput our analysis tool.
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Multiple software tools for kymography have been described in the recent past in literature

and their features are summarized in Table 1 for comparison. While most tools including this

one, require user inputs for the process of kymograph generation, only AMTraK and Kymograph

Direct [53] automates the detection and connection. However, certain features of AMTraK make

it unique, being absent in other comparable tools, such as automated branch-point detection, an

integrated quantification module and sub-pixel positional accuracy accessible with an easy to use

GUI front-end. In addition, since the code is open source and written in MATLAB, it is more

likely to be used in an existing microscopy analysis workflow, due to the increasing spread of

MATLAB as a data analysis platform in quantitative cell-biology research [54,55]. Thus, AMTraK

could serve as a tool for the rapid quantification of image time-series of transport and assembly

kinetics from microscopy. This has become particularly relevant in the context of high-content

screening [56], where the spatial interaction patterns are becoming just as important as bulk

kinetics measured in traditional high throughput screens.

We have developed an automated tool for the quantification of kymographs. Our approach

detects peak and edge information and utilizes a distance minimization approach to link them.

We demonstrate the wide utility of our tool by quantifying microtubule transport dynamics,

clathrin polymerization kinetics and vesicle transport. Combined with a user-friendly inter-

face, objective detection criteria and open source code, we believe AMTraK can be used to

extract more and reproducible statistics from microscopy of sub-cellular dynamics.

Supporting Information

S1 Data. The LOI coordinates generated are stored in the file “LOIselection.txt” when the

user chooses the “Interactive” mode of LOI selection at the stage of generating a kymo-

graph. This provides the 2D image coordinates (X and Y) in pixel units, as indicated by the

columns labels.

(TXT)

S2 Data. The average statistics for all trajectories are stored in a file “USER_TrackStats.

txt”. It reports in a column-wise manner the track number, time over which it is tracked (in

Table 1. A comparison of features in kymography tools described in literature and commonly in use for cellular and sub-cellular scale images.

Feature / Tool AMTraK Multi-

kymograph

Makekymograph Icy-

Kymograph

Tracker

Kymomaker Points from

Kymograph

Kymograph

mt2

KymographClear and

KymographDirect

LOI selection Manual Manual Semi-automated Manual Manual No Manual Manual

Multiple LOIs Yes Yes Yes Yes Yes No No No

Automated track

detection

Yes No No Semi-

automated

Yes Semi-

automated

No Yes

Quantification Yes Separate No Separate No XY-

coordinates

No Separate

No. of

adjustable

parameters

8 1 1 7 13 - - -

Split and merge

detection

Automatic No No No No No No Manual

Open source Yes Yes Yes Yes No Yes Yes Yes

Programming

language

MATLAB ImageJ

macro

Java (ImageJ

plugin)

Plugin for Icy - Java (ImageJ

plugin)

Java (ImageJ

plugin)

ImageJ macro and

LabView

Reference This

report

[57] [58] [5] [4] [59] [60] [53]

doi:10.1371/journal.pone.0167620.t001
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user-provided units), speed, net-velocity (displacement/time), tortuosity (displacement/path-

length), average of instantaneous velocity and the standard deviation of the average instanta-

neous velocity. All column headers are labeled for clarity.

(TXT)

S3 Data. The instantaneous (time-dependent) statistics of each track are stored in “USER_-

InstStats.txt” with track number, time interval to the previous frame in units provided by

the user, displacement magnitude, positive/negative displacement (leftwards: negative,

rightwards: positive), instantaneous velocity (displacement/time interval), signed-velocity

(leftwards: negative, rightwards: positive), and cumulative time (adding up time intervals

in units provided by the user). All column headers are labeled for clarity.

(TXT)

S4 Data. The file “Tracklist.txt” stores the time-dependent intensity statistics of each

track. This provides the track number, position in distance from the origin (upper-left corner)

in pixels, time-frame (frame number), normalized grey-value intensity (divided by the bit-

depth of the image) and normalized time-frame (setting the first time-frame to 0). All column

headers are labeled for clarity.

(TXT)

S5 Data. The branch-points detected by the code are stored in a file “Branchpoints.txt”

which is generated when the user chooses to detect “Splitting events” (check-box) with an

appropriate parameter choice. It contains the track-number that splits off from or joins

another track, the 1D distance (from the origin at the left edge) and it’s time point both in

terms of user-provided units. The column headers describe the variables.

(TXT)

S6 Data. User provided values are stored in “All_Parameters.txt”. This includes the name

and path of the input TIF image time-series, scaling factors (distance, time) and parameters

for the detection, tracking and splitting-events.

(TXT)

S1 Fig. The simulated image. (A) The simulated bead image used to estimate the accuracy of

the code. A profile through the image (yellow line) is used to generate (B) an intensity profile

through the three beads.

(PDF)

S2 Fig. Comparing kymography to filament tracking. The frequency distribution of instan-

taneous velocities obtained after analyzing time-series of MTs gliding on kinesin using

AMTraK (red bars) and the high-precision filament-tracking tool, FIESTA (blue bars) are

plotted.

(PDF)

S3 Fig. Kinetics of clathrin endocytosis. The fluorescence intensity in grey values (colored

circles) as a function of time in seconds estimated from multiple detected tracks after AMTraK

analysis (Fig 7A and 7B) of clathrin assembly kinetics in the presence of (A) wild-type and (B)

mutant (L6W) epsin (based on data from Holkar et al. [24]). A single-phase exponential func-

tion (the same as in Fig 7C and 7D) is used to fit the data (black line) and the parameters are

listed for each fit, with τ indicating the time-constant of assembly in seconds.

(PDF)

S1 Video. Time-series of division and genome-segregation in E. coli MG1655 is followed (A)

in fluorescence with nucleoids labeled by HupA-GFP (grey) and (B) DIC is used to follow cell
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morphology. Scale bar: 4 μm. Time indicated in minutes.

(ZIP)
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