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An ode to reality

The solidified isle is the realm of physical reality,
Whose edges alone are probed by the restless waves of Thought and Reason,
Aided in the foreground by the floral sense of beauty,

Whilst the All-Knowing Sun of Intuition shines brightly above
[NMuminating all realms, even those recondite noumenal recesses
Unknown and Unknowable to Thought and Emotion,

Where you reign supreme, Oh Reality! !

FiEAe] aral faaTa FafdeH faard sradifd|

[What is it, (lord), which being known, everything else (in a context) becomes known]

==MUNDAKA UPANISHAD (1.1.3)|

Yet, nature is made better by no mean
But nature makes that mean: So, over that art,
Which you say adds to the nature, is an art
That nature makes. °

LComposed by Prof. R. Srikanth. For the source,

2An excerpt from ‘A winter’s tale’ by William Shakespeare


http://poornaprajna.org/srik/srir.htm
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Abstract

There are various generalizations of Einstein’s theory of gravity (GR); one of which is the
Einstein- Cartan (EC) theory. It modifies the geometrical structure of manifold and relaxes the
notion of affine connection being symmetric. The theory is also called U, theory of gravitation;
where the underlying manifold is not Riemannian. The non-Riemannian part of the space-time
is sourced by the spin density of matter. Here mass and spin both play the dynamical role. We
consider the minimal coupling of Dirac field with EC theory; thereby calling the full theory as
Einstein-Cartan-Dirac (ECD) theory. In the recent works by T.P Singh titled “A new length
scale in quantum gravity [4]”, the idea of new unified mass dependent length scale L. has been
proposed. We discuss this idea and formulate ECD theory in both - standard as well as this new
length scale. We found the non-relativistic limit of ECD theory using WKB-like expansion in
Vii/c of the ECD field equations with both the length scales. At leading order, ECD equations
with standard length scales give Schrodinger-Newton equation. With L., in the low mass
limit, it gives source-free Poisson equation, suggesting that small masses don’t contribute to
gravity at leading order. For higher mass limit, it reduces to Poisson equation with delta
function source. Next, we formulate ECD theory with both the length scales (especially the
Dirac equation which is also called hehl-Datta equation and Contorsion spin coefficients) in
Newman-Penrose (NP) formalism. The idea of L.s suggests a symmetry between small and
large masses. Formulating ECD theory with L., in NP formalism is desirable because NP
formalism happens to be the common vocabulary for the description of low masses (Dirac
theory) and high masses (gravity theories). We propose a conjecture to establish this duality
between small and large masses which is claimed to source the torsion and curvature of space-
time respectively. We therefore call it “Curvature-Torsion” duality conjecture. In the context
of this conjecture, Solutions to HD equations on Minkowski space with torsion have been found
and their implications for the conjecture are discussed. Three new works which we have done
in this thesis [Non-relativistic limit of ECD theory, formulating ECD theory in NP formalism
and attempts to find the solution to non-linear Dirac equation on U] are valid for standard
theory and also the theory with L.;. The conjecture to establish the Curvature-torsion duality

is formulated in the context of idea of L.
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Chapter 1

Introduction

1.1 Introducing four broad ideas to establish the grounds
for this thesis

1.1.1 Einstein-Cartan theory

Einstein’s theory of gravity, more commonly called as “General theory of relativity” (GR),
published in 1915 is one of the most important works of 20" century. It has been described
as the most beautiful of all the existing physical theories [1]. In GR, Gravity is described
as a geometric property of space-time continuum; thereby generalizing special relativity and
Newton’s law of universal gravitation. In GR, background space-time is Riemann manifold
(denoted as Vj) which is torsion less. Affine connection coincides uniquely with levi-civita
connection and geodesics coincides with the path of shortest distance.

There are few possible modifications of Einstein’s theory of gravity (GR) [consistent with
the principle of equivalence]; one of which is the Einstein- Cartan (EC) theory. It modifies
the geometrical structure of manifold and relaxes the notion of affine connection being sym-
metric. The theory is also called U, theory of gravitation; where the underlying manifold is
not Riemannian. The non-Riemannian part of the space-time is sourced by the spin density
of matter. Mass and spin both play the dynamical role. Torsion, as an antisymmetric part
of the affine connection was introduced by Elie-Cartan (1922) [8]. In May 1929, He wrote a
letter to Albert Einstein suggesting that his studies on torsion might be of physical relevance
in General Relativity. The local Minkowskian structure of space-time (which is the essential
constraint on manifold if it has to describe physically plausible space-time) is not violated in
the presence of torsion. So a manifold with torsion and curvature [with an essential constraint
that non-metricity = 0 [2]] can very well describe physical space-time. It is called Riemann-
Cartan (Uy) manifold. Since the works of E.Cartan, many people like D. Scima, Kibble, F.Hehl,
Trautman etc. have studied the theories of gravity on a Riemann-Cartan space time Uy over
last century. The basic framework of EC theory was laid down by D.Scima (1962, 1964) [9],
[11] and Kibble (1961) [10]. Hence the theory is called Einstein-Cartan-Scima-Kibble (ECSK)
theory. Modern review on the subject of ECSK theory is by F.Hehl et.al (1976) [2]. It is titled

“General relativity with spin and torsion: Foundations and prospects”. In a recent work of



Trautman [53], he suggests, “It is possible that the Einstein—-Cartan theory will prove to be a
better classical limit of a future quantum theory of gravitation than the theory without tor-
sion”. It is worth asking the question that why don’t we observe torsion in the universe around
us. We note that torsion becomes comparable to curvature only at length scales smaller than
the Einstein-Cartan radius r. = (A\.L%)"* and at densities higher than m/r? where A, and
L, are Compton wavelength and plank length respectively. For nucleons, the Einstein-Cartan
radius is about 10727 cms, and the density above which torsion becomes important is about
10°4 gms/cc [52]. These scales are beyond current technology, and since GR is in excellent
agreement with observations, it is said that torsion can be safely neglected in today’s universe.
Literature on Einstein-Cartan theory in the context of cosmology and early universe can be
refereed in [50], [51] and the references therein. [306]

When we minimally couple Dirac field on Uy, we get Einstein-Cartan-Dirac (ECD) theory.
There are 2 independent geometric fields (metric, torsion) in this theory and one matter field
1. We get 3 equations of motion. Dirac equation on U; becomes non-linear and is then called
Hehl-Datta equation [3]. Einstein-Cartan theory and its coupling with Dirac field has been
discussed in details in chapter (2). Uy theory has also been discussed in details in book by

Gasperini [29]. We have used some results from this book.

1.1.2 The Schrodinger-Newton equation

The Schrodinger equation describes the evolution of the wave-function over time. Born’s
probability rule gives a connection between the wave-function and the physical world. However
the process of wave-function collapse is one of instantaneous nature and its mechanism is not
explained via any acceptable theory. Broadly, this is often called “Quantum-measurement
problem”. A brief review of various interpretations which revolve around this problem can be
looked up in section I.B of [15] and the references therein.

The Schrodinger-Newton equation came first into the discussions within the scientific liter-
ature due to Ruffini and Bonazzola in their work [25]. Diosi et.al in their works [21] proposed
this equation as a model of wave function collapse; more specifically as a model of gravita-
tional localization of macro objects. Roger Penrose developed this idea further and proposed
that Schrodinger-Newton equation describes the basis states for the scheme of gravitationally
induced wavefunction collapse. This can be looked up in his works [37], [22]. In deriving
Schrodinger-Newton equation, we primarily observe the self-gravity of a quantum mechanical
object; that is we observe the modification of Schrodinger’s equation due to the gravity of the
particle for which the equation is being written. Here, matter is taken to be of quantum nature
while gravity is still treated classically. Here we assume the fact that, to leading order, the
particle produces a classical potential satisfying the Poisson equation, whose source is a density

proportional to the quantum probability density.

V3¢ = 4rGm|y|? (1.1)

The Schrodinger equation is then modified to include this potential and we get the Schrodinger-



Newton equation,

) 12

ih—¢éz’ b _ — SV, 1)+ mév (1.2)
aY(r, h? P s

Zh% = —%VQw(r;t> — Gm2 / %ds?ﬁ w(rvt) (13)

Equations (A.12), (A.13) and (A.14) together is called “Schrodinger-Newton” system of equa-
tions. By many people, this system of equations was taken as hypothesis to be put to test
by experiments, whether there are any observational consequences (Ex. in molecular interfer-
ometry etc.) Work by Giulini et.al [20] analyzed the quantitative behavior of Gaussian wave
packets moving according to Schrédinger-Newton equation and proved that wave packets dis-
perse due to their own gravitational field significantly at mass scales around 10'%u (for a width
of 500nm.) This is just 10® orders of magnitude more than masses which are envisaged in the
future molecular interferometry experiments. Some works [38], [23] propose that this equation
sheds some light on the question of necessity of quantum gravity.

Main paper of our interest in this thesis is [19]. Its a recent study by Guilini and Grossardt
aimed at knowing whether this equation can be understood as a consequence of known princi-
ples and equations. They found that Schrédinger-Newton equation is the non-relativistic limit
of self -gravitating Klein-Gordon and Dirac fields. Here the gravity is the classical gravity
described by GR (on Vj manifold).

1.1.3 Tetrad formalism, Spinor formalism, Newman-Penrose (NP)

formalism

1) Tetrad formalism in GR

The usual method in approaching the solution to the problems in General Relativity was to

use a local coordinate basis é¢* such that ¢ = 0,. This coordinate basis field is covariant
under General coordinate transformation. However, it has been found useful to employ non-
coordinate basis techniques in problems involving Spinors. This is the tetrad formalism which
consists of setting up four linearly independent basis vectors called a ‘tetrad basis’ at each
point of a region of spacetime; which are covariant under local Lorentz transformations. [One
of the reason of using tetrad formalism for spinors is essentially this fact that transformation
properties of spinors can be easily defined in flat space-time]. Tetrads are basically basis vectors
on local Minkowski space. Detail account of tetrad formalism in GR can be found in Appendix
[B.1].
2) SL(2,C) Spinor formalism

4-vector on a Minkowski space can be represented by a hermitian matrix by some transfor-

mation law. Unimodular transformations on complex 2-Dim space induces a Lorentz trans-
formation in Minkowski space. Unimodular matrices form a group under multiplication and
is denoted bySL(2,C) - special linear group of 2 x 2 matrices over complex numbers. By a
simple counting argument, it has six free real parameters corresponding to those of the Lorentz
group. The levi-civita symbol €45 acts as metric tensor in C2, which preserves the scalar prod-

uct under Unimodular transformations. Spinor P4 of rank 1 is defined as vector in complex

7



2-Dim space subject to transformations € SL(2,C). Similarly higher rank spinor are defined.
Analogous to a tetrad in Minkowski space, here we have a spin dyad (a pair of 2 spinors (g4
and (1)) such that ((O)AC(’?) = 1.

3) Newman-Penrose (NP) formalism

NP formalism was formulated by Neuman and Penrose in their work [35]. It is a special case

of tetrad formalism; where we choose our tetrad as a set of four null vectors viz.
[T 1 7 oo p
€(0) =", ey =n", o =m' e =m (1.4)

", n# are real and m*, m" are complex. The tetrad indices are raised and lowered by flat

space-time metric

01 0 0
" 10 0 0

o O0) = 1.5

MG =1 00 0 1 (1.5)
00 -1 0

and the tetrad vectors satisfy the equation g,, = eg)el(,j )n(i)(j). In the formalism, we replace
tensors by their tetrad components and represent these components with distinctive symbols.
These symbols are quite standard and used everywhere in literature. A brief review of NP
formalism can be found in chapter (5).

Now, it can be shown that there is a natural connection between spin dyads and null
tetrads [6], [31]. A null tetrad can be associated with a spin dyad by certain identification.
This connection is explained in details in Appendix [B.2]. Equations of motion involving
spinorial fields (Ex. Dirac field) can be expressed in NP formalism. Dirac equation on Vj
has been studied extensively in [6]. Many systems in gravitational physics are also studied in
NP formalism [6]. NP formalism happens to be the common vocabulary between physics of

quantum mechanical spinor field systems and classical gravitational field systems.

1.1.4 Unified length scale in quantum gravity L., and curvature-

torsion duality

In the recent works of Tejinder P. Singh [4], [5], it has been argued, why and how Compton
wavelength (\/hic) and Schwarzschild radius (2GM/c?) for a point particle of mass ‘m’ should
be combined into one single new length scale, which is called Compton-Schwarzschild length
(Lcs). The idea of L. is more coherent in the framework of Uy. Action principle has been
proposed with this new length scale and Dirac equation and Einstein GR equations are shown
to be mutually dual limiting cases of this underlying modified action. More details can be
looked up in chapter (3). It has been proposed that for m < my, the spin density is more
important than mass density. Mass density can be neglected and spin density sources the
torsion (coupling is through /). Whereas, m > m,,;, mass density dominates spin density. spin
density can be neglected and as usual, mass density sources the gravity (coupling is through
G). In this manner there exists a symmetry between small mass and large mass in the sense
that small mass is the source for torsion and large mass is the source for gravity. [5]. Since

both small masses and large masses give same L.s (which is the only free parameter in the
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theory), there is a sort of duality between solutions to small masse and that of large mass. We
call such a duality “Curvature-torsion” duality. We will explain this duality more in chapter
(6) and [18]

1.2 Goals and objectives of the Thesis

1.2.1 Finding Non-relativistic limit of ECD theory

As discussed in the section (1.1.2), recent work by Giulini and GroBardt [19] derived the
non-relativistic limit of self-gravitating Klein-Gordan and Dirac fields. They used WKB-like
expansion of Dirac Spinor and metric in (1/c) (as discussed in [26]) and found that, at leading
order, the non-relativistic limit gives Schrodinger-Newton equation. This work considers:

# Spherically symmetric gravitational fields

# Background space-time is Riemannian (V})

As a sequel to this study and to the study by TP Singh [5](where ECD equations are mod-
ified with the unified length scale L.s), we aim for the following:

# Consider the generic metric (with no assumptions of symmetry) and find the non-relativistic
limit of Einstein-Dirac system. This would generalize their work. We hypothesize that It will
also be possible to find the underlying role of symmetry in the metric (in the context of non-
relativisic limit).

# If we consider gravitational theories with torsion; especially Einstein-Cartan-Dirac (ECD)
theory discussed in section (1.1.1), it is worthwhile seeing whether the effects of torsion (viz.
non-linearity in Dirac equation and correction to the gravity equation by spin-density) modify
the Schrodinger-Newton equation in its non-relativistic limit. If it doesn’t, next question we
can ask is - At what order in 1/c, does effects due to torsion start getting manifested in the
non-relativistic limit. This is important from the point of view of experimental studies in the
detection of torsion and also to study the implications of the ECD theory at low energies.

# Find the non-relativistic limit of ECD equations with modified length scale L.;. We wish to

analyze the underlying limit at leading order for limiting cases of large mass and small mass.

1.2.2 Formulating ECD theory in NP formalism

Dirac equation has been studied extensively in NP formalism on Vj. It’s detail account can

be seen in this celebrated book “The mathematical theory of black holes” By S. Chandrasekhar
[6]. We wish to formulate ECD theory in NP formalism. More specifically;
# We know that Contorsion tensor is completely expressible in terms of components of Dirac
spinor. We want to find an explicit expression for Contorsion spin coefficients (in Newman-
Penrose) in terms of Dirac spinor components. We will express this in both length scales -
standard and unified length scale L

# Dirac equation on V} is presented in equation (108) of [6]. We aim to modify these equations



on U,. We will express this in both length scales - standard and unified length scale L.,

There are 2 independent reasons for doing this:

1) Many gravitational systems in the literature (especially having some specific symmetries
explained in details in chapter (5) are formulated in NP formalism. But the space-time back-
ground in all those cases don’t have torsion (V}). It is worthwhile seeing the change in equations
when we have torsion in the picture. Most of the important and physically relevant geomet-
rical objects/ identities (Ex. Riemann curvature tensor, Weyl tensor, Bianchi identities, Ricci
identities etc.) on Uy have been formulated in NP formalism in the work [34]. In the context
of ECD theory, however, there are 2 important aspects which are not yet accounted viz. Dirac
equation on U, (Hehl-Datta equation), canonical EM tensor etc. Some works [47], [41], [40]
attempt to do that but have not provided explicit corrections to standard NP variables due
to torsion. Also, there are notational and sign errors in them. We wish to modify the equa-
tions/ physical objects as a sequel to Chandra’s work in [6] which is on Vj. In the case of
vanishing torsion, our equations/ formulations should boil down to standard equations on Vj
as given in [6]. With this objective, we formulate the equations of ECD theory (which has 3
primary equations on Uy, - Dirac equation, Gravitational equation relating Einstein’s tensor and
canonical EM tensor, Algebraic equation relating torsion and spin) with standard length scale.
Especially we would like to analyze the Contorsion spin coefficients and thereby
use Chandrasekhar’s approach to modify Dirac equation.

2) As explained in section (1.1.4), the idea of L. in the context of Uy theory provides a sym-
metry between small and large mass. There is a duality in the solution to large and small mass
(we attempt ton establish it through a conjecture explained in next section). Dirac theory
dominates for small masses and gravity dominates for large masses. In order to establish such
a duality, its desirable to have a common mathematical language (provided by NP formalism)
for dealing with both the domains [4]. To this aim, we formulate the ECD theory in NP

formalism with unified length scale L.

1.2.3 Testing Curvature-torsion duality conjecture

As discussed in section (1.1.4), the idea of L., proposed in [4] hints at a symmetry between
small and large masses. Solution to small mass is dual to the solution to large mass in the sense
that both have same L., which is the only free parameter in the theory. The motivation for such
a “curvature-torsion” duality has been discussed in [5]. However, we need to make this duality,
both qualitatively and mathematically, more evident. To this aim, we propose a conjecture
called “Curvature-torsion duality conjecture” in chapter (6). Further, this chapter discusses
the ways in which such a conjecture can be put to a test. After going through arguments
presented in this chapter, we find that if a solution to ECD equations on Minkowski space with
torsion exists, which make a tensor “T-S” (defined in 6) vanish, existence of such a solution
supports the conjecture. So, the last few sections of this chapter are devoted at finding solutions
to Hehl-Datta equations on Minkowski space with torsion and test the duality conjecture. A

more detailed account of curvature-torsion duality as an idea can be looked up in [18].
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1.3 Brief outline of the Thesis

’Chapter 2 and 3‘ are theory chapters. In |chapter 2|, we have explained Einstein-Cartan-

Dirac theory in details starting from first principles. |Chapter 3| discusses the idea of unified
length scale called Compton-Schwarzschild length scale (L) in the theories which attempt to

unify quantum mechanics with gravity. This chapter is mainly based on [4] and [5]. | Chapter 4
is dedicated at finding Non-relativistic limit of ECD theory with standard as well as unified

length scale. One can directly go to summary section of this chapter to know some new
results. In | Chapter 5|, we have formulated the ECD theory in NP formalism with standard

as well as unified length scale. One can find its summary in | section 5.3 | In |chapter 6| we
attempt to establish a duality between curvature-torsion via a conjecture and solve ECD equa-

tions on Minkowski space (metric flat) with torsion. | Chapter 7|is reserved fro presenting con-
clusions, outlook and future plans. All the important calculations relating to Non-relativistic

limit of ECD equations can be looked up in . ECD equations in NP formalism in

Appendis D)
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Chapter 2

Einstein-Cartan-Dirac (ECD) theory

Albert Einstein Elie Cartan P.A.M Dirac

2.1 Brief Review of classical theories of gravity

Huge strides were made in the European world of 13/14/15 and 16th century about nature of
motion seen in the physical world. It took ingenious arguments and efforts of Aristotle, Keplar,
Ibn Sina, T. Brahe, Copernicus, Galileo, Leibniz etc. to come up with a coherent, highly
falsifiable, internally consistent (that is requiring no additional assumption beyond physical
observables), highly predictable and reproducible model/ ontology of the nature of motion. the
idea of ” conservation of momentum” was an important paradigm shift in our thinking about the
ontology of motion. The law also gave a mathematically characterizable notion to the inertia. It
stated that the product of ” That property of matter which characterizes inertia” (called inertial
mass M;) and ”velocity” remains conserved and such a hypothesis (extensively supported by
empirical evidences) is sufficient for any type of motion to take place as such; abandoning the
idea of “unmoved mover” of Aristotle. Issac Newton in 16" gave (the then universal) law of
gravitation. The masses which appear in this law is the attribute of “gravitational mass M,”.
This formalism triggered the huge developments in classical physics. Surprisingly, M; and M,
happened to be numerically exactly the same. It suggested that “acceleration imparted to a
body by a gravitational field is independent of the nature of the body”. This motivated Einstein
to generalize his special theory of relativity to include general coordinate transformations and

non-inertial observers. He found that equivalence between inertia and gravity naturally leads
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to his theory of gravity called as general theory of relativity (GR). It is a classical theory of
gravity. In GR, space-time is curved and the amount of curvature is determined by the Energy

distribution on space-time. GR can be summed up in the following equation:

Gp,u = KT;LV (21)

Where G, is Einstein’s tensor which characterizes the curvature of space-time manifold and
T,, characterizes the energy distribution on space-time. Gravity is described as a geomet-
ric property of space-time continuum. In GR, background space-time is Riemann manifold
(denoted as V}) which is torsion less. Affine connection coincides uniquely with levi-civita con-
nection and geodesics coincides with the path of shortest distance. It is also called Vj theory
of gravitation. Max Born describes GR as (in his own words) “GR seemed and still seems to
me at present to be the greatest accomplishment of human thought about nature; it is a most
remarkable combination of philosophical depth, physical intuition and mathematical ingenuity.
I admire it as a work of art.” GR has survived 100 years of challenges, both by experimental
tests and by alternative theories. It is the basis for the Standard Model of physical cosmology.
The review of GR and cosmology w.r.t its unsolved problems and future directions can be
looked up in [54]

2.2 Field theory for first quantized Dirac-field

Under the coordinate transformations, x — x’ = Ax, the field ¢ can transform actively
or passively as ¢ — ¢'. Active transformation of a generic field is governed by the equation:
@' (x) = La¢(A'x) where Ly are the elements of representation of a group of rotations [e.g.
if ¢ real scalar field, then Ly = I, if ¢ is real vector field on 3D space, then Ly = R where R
represents a 3x3 orthogonal matrix. If ¢ is vector field on 4D space-time, then Ly = A where
A represents a 4x4 matrix of Lorentz transformation. ¢ is spinor field on 4D space-time, then
L = S[A] where S[A] is a spinor representation of Lorentz group]. We denote real tensor fields
by ¢ and spinor fields by v. We define 2 types of variations - functional variation and total
variation and adopt following notation henceforth [7]

*Functional variation in ¢: d¢ = ¢'(z#) — ¢(x#) and
*Total variation in ¢ : A¢p = ¢'(2™) — ¢(at) = 6¢ + (0,0)dz*.

2.2.1 Generalized Noether theorem and conserved currents

Let ¢(z#) traces out 4-D region R in a 5-D space (¢,x,y,z,t). Initial and final space-like
hyperspace; sliced at times t = ¢; and t = t5 forms a boundary JR of region R. Under the
condition that the variation of ¢ and z* vanish on the boundary OR we get, the FEuler-Lagrange

equation of motion for this field ¢ as follows:

oL oL
% =0 = (555) .
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Now we vary action S on a classical trajectory and state Noether’s theorem as follows: Suppose
action is invariant under a group of transformations on 2 and ¢ [whose infinitesimal version
is given by Ax* = XFlow” and A¢ = P,0w” and which are characterized by infinitesimal
parameter dw*], then there exist one or more conserved quantities which remain invariant under
the transformations. For Lagrangian, the condition is that it should either remain invariant or
at the most change by total derivative. We will exploit this freedom om Lagrangian later, We

will now establish this theorem mathematically. Variation of action over classical trajectory

yields:
5S = / [wucpy - @f,;x{j Sw’ do,;  OF = (19, — LY (2.3)
SR
Now, if the transformations make 05 = 0 and since dw" is arbitary, we can write equation 2.3
as follows:
/ Jido, = 0;  J = [wucpy - @gxﬁ] (2.4)
SR
Using Gauss’s theorem;
/ Jtdo, =0 = / OpJid'e =0 = 9,J" =0 (2.5)
SR R

We therefore have a conserved and divergence-less current J/ whose existence follows from
the invariance of action under the given (generic) set of transformations. Integrating above

equation over t = const hyperspace and by using Gauss’s theorem we get

Q.
;i =0 (Q,,: /v J‘jd%) (2.6)

where @), is Noether’s Charge.

2.2.2 Noether’s theorem applied to Real Tensor and spinor fields

Ex.1: Translational invariance for real tensor fields

Under the requirement that the laws of physics are to be translationally invariant i.e., using

¢, = 0 and X/ = 6/ we get J/' = —OF; which, using 2.6 gives conserved four-momentum of
the field
oL . oL
, = [ %Pz, :/ —¢— L d?’:zc:/?-[d?’x:H:P; Z-:/ —0;0)d®x = P,
-/ = (Gpo-r)tr= [ i @= [ (500)
(2.7)

Where, H is the Hamiltonian density and H is the Total Hamiltonian of the system. Also,
Q. = P, and the fact that 0,(Q,) = 0 suggests that invariance of translations conserve the
4-Momentum P,. Here the conservation law is 9,0, = 0. We observe that the Noether
theorem’s claim (Action remaining invariant) doesn’t specify ©* uniquely. The conservation

law specifies ©% upto addition of divergence of an antisymmetric tensor field 'f” as follows:
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T = O 4 N (P =) 9T =0 (2.8)

Owing to Gauss’s divergence theorem, such an addition of ’f” doesn’t change the physical
observables viz. Energy and Momentum.

Ex.2: Rotational invariance for real tensor fields We characterize infinitesimal Lorentz

transformations by an antisymmetric tensor e/ such that e*” = —e”#. Under a requirement that

the action should be invariant under Lorentz group i.e. under the infinitesimal transformations

A¢ =0 and Az* = dx*; which is given by following equation:

o, — b,
2

using equation (2.3) to find Noether’s current; we obtain a 3 component Noether’s current J#7

Bo— gV — XK PO b
oxt = e x¥ = X e’ X =

(2.9)

as follows: ] 1
J,uzz(r — _7 (@#an' o @/Joxl/); aHJI»WU — _7 (@UV — @VU) (210)

©*, is the EM tensor representing 4-Momentum density. Hence RHS in the above expression
represents density of angular momentum. Indeed, as we expect from the analogy with classical
mechanics, invariance under Lorentz’s rotation conserve the angular momentum of the system.
The question now is: Does it remain conserved for any ©*,7 As we see in the second equation
of equation (2.10), only for symmetric ©#,, conservation law seems to hold. We will investigate
it in the next section.

Ex.3: Rotational invariance for Spinor fields (this is of our interest) We know that a

Spinor field transforms as

Wy S

v (x) — ¢ (x) = S[A]%07 (A7 e); Sl =1+ (2.11)
Corresponding functional and total variation in 4 is then given by
« 1 v @ B « v 1 v v 1
5[¢ (l’)] = (§ww/5’# ) ﬁw (x)_auw (x)w“,,x ) A¢ = QWM S,wa = \D,uuw'u ; \Ij;w - §S/ww
(2.12)
And the total variation in z* is as given in eqn (2.9). Then, by Noether’s theorem, the conserved
current is:
JI =", — ' X (2.13)
1 0L 1
= -8 __<@M , — O V) 2.14
3555 5 (@~ O (214

©#, is the EM tensor representing 4-Momentum density. Hence the second term in above
expression represents density of orbital angular momentum. Therefore J#  can be recognized
as the total angular momentum density of the matter provided the first term represents the
intrinsic spin density of matter field. We take v, o up, define spin density of the matter by a 3

component tensor S*? and rewrite the above equation as follows:
1oL

39,0 SR (2.15)

1
J,uucr — S,uz/a . 5 (@'W/ZEU o @,ucrle>; S;wo
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2.2.3 Symmetrization of EM tensor by Belinfante-Rosenfeld trans-

formation

We find that, unless ©7” is symmetric (which need not be the case always), we don’t have
a truly conserved angular momentum density current. But we know that Noether conserved
currents are arbitary upto addition of divergence-less fields (refer equation 2.8). We can exploit
this possibility to modify ©* to T*” such that it is a symmetric tensor. The antisymmetric
tensor field f*** which makes T symmetric is called Belnfinte tensor B*¥. It respects the
fact that 0,7"" = 0 and the fact that new symmetric tensor 7},, defines the same physical

observable (namely, energy-momentum) of the field.

T = OM + 9\BM” (BM = —BMV) (2.16)

Is the existence of such a Balinfante tensor (which makes T* symmetric) guaranteed? Fol-
lowing theorem proved by Belinfante in [14] gives necessary and sufficient conditions on the
existence of BM¥. [We state the converse of the original theorem statement here]

Theorem A [33]: 3 asymmetric stress-energy tensor [equivalently 3 Belinfante tensor B*|

iff the anti-symmetric part of the conserved canonical EM tensor is a total divergence.
Theorem B [33]:  Given a tensor H* such that ©M = —%GAH MY - one can explicitly

construct a Belinfante tensor BM¥ such that TH = ©* + 9,BM¥ is symmetric. The explicit

construction is as follows:
Auv 1 % A VA
B :§<H“ + A" — H “) (2.17)

Such a transformation of ©# to TH is called ” Belinfante-Rosenfeld transformation”.

Einstein’s general theory of relativity requires EM tensor in its field equations to be sym-

metric. G* = kTH* Here TH is called 'Dynamic EM tensor’ and is constructed as
T = \/_—_%%. It is symmetric by construction. We now state an important theorem.
nv

Theorem C[33]: The symmetric EM tensor obtained by Belinfante-Rosenfeld transforma-

tion using Belinfante’s tensor on matter field is the same as dynamic EM tensor which appears

on the RHS of field equations of general theory of relativity.

2.2.4 Applying above machinery to Dirac Lagrangian

Lagrangian density pf Dirac field in given by

_ihe

L, 5

(70t — Outhy h) — mc*p (2.18)

The EM tensor and its antisymmetric part is given by

the — — o
Oij = 7[¢7iaj¢ — 00iv] Opij) = O S* (2.19)
Belinfante tensor is BMY = —SMv 4 —GivA 4 GvM - Hence, according to B-R transformations,
QMY __y TH — QW _ a)\ [S)\;u/ + S;UJ)\ o SV)\M] (220)
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And with the Lagrangian density defined in 2.18, the explicit expression for S is given by:

—ihe -
. L (221)

[Note = Up till now, we have used Latin symbols and Greek symbols interchangeably. We will

define an unambiguous convention for their usage later]

2.3 Einstein-Cartan (EC) theory: Modifying Einstein’s
GR to include torsion

First we ask the question - Why consider a modified theory of gravity when General theory
of relativity works out beautifully well and has stood all the experimental tests within the
limits of the domain of validity of the theory. To understand this, we must realize that GR was
formulated to describe gravitational interactions between macroscopic bodies. It is a classical
theory of gravity. It is strongly suspected that at very high energies where the gravitational
interaction becomes comparable to other quantum interactions and at very small length scales,
the current formulation of gravity would not hold. There were (and still under investigation)
many attempts to reconcile gravity with other fundamental interactions. One of the approach to
do this is to expand the domains of validity of ordinary GR (validity in terms of micro/macro
extent of matter) and to modify it so as to accomodate the new physical principles/ new
experiments offered by the expanded domain of validity.

The Einstein-Cartan theory (EC) or also known as Einstein-Cartan-Sciama-Kibble (ECSK)
theory [First published in [9], [11] and extensively reviewed in [2]] is one such attempt which
”extends” the geometrical principles and concepts of GR to the certain aspects of
micro-physical world. In ordinary GR, matter is represented by Energy-Momentum tensor,
which essentially provides the description of mass density distribution on space-time. However,
when we delve into the microscopical scale we see that particles obey the laws of quantum
mechanics and special relativity. At such length scales, the ’spin’ (along with mass) of the
particle has to be taken into account. Just like mass (which is characterized by EM tensor), it
is a fundamental and independent property of matter . In macro physical limits, mass adds
up because of its monopole character, whereas spin, being of dipole character, usually averages
out in absence of external forces; hence matter in its macro physical regime can be dynamically
characterized only by the energy-momentum tensor. If we wish to extend GR to include micro
physics, we must take into account, therefore, that matter is dynamically described by mass
and spin density, and since mass is related to curvature via EM tensor in framework of GR,
spin should be related, through spin density tensor, to some other geometrical property of
space time in the spirit of geometric theory of gravity. This requirement is satisfied by EC or
ECSK theory.

EC theory removes the restriction for the affine connection to be symmetric which was con-
sidered in GR. The antisymmetric part of the affine connection commonly known as "torsion’((),, B“ ),
transforms like a third rank tensor and is known as Cartan’s torsion tensor. It is seen that

torsion couples to the intrinsic spin angular momentum of particles [2] just as the symmetric
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part of the connection (which gets expressed completely in terms of metric and its derivatives)
couples to the mass. Since torsion is a geometrical quantity, spin modifies space-time and the
resultant space-time is known as 'Riemann-Cartan’ space-time (Uy) The field equations that
follow are known as Einstein-Cartan field equation. The (U;) manifold is also metric compat-
ible (See section explained below) and hence can describe physical space-time in agreement
with equivalence principle.

Physically, torsion is related to the translation of vector like curvature is related to rota-
tion, when a vector is displaced along infnitesimal path on U, manifold. Hence torsion allows
for translations to be included and converts the local lorentz symmetry group of GR to the
Poincare’ group [2]; which is essential because, in microscopic regime, elementary particles are
the irreducible representations of Poincare’ group, labeled by mass and spin. A detailed ac-
count of this motivation to include torsion can be looked in [2]. Another motivation is that in
the absence of external forces, the correct conservation law of total angular momentum arises
only if torsion, whose origin is spin density, is included into gravitation [?],

First we define a connection I', ;** on a general affine manifold (A4) to allow for the parallel

transport of tensorial objects. We define a torsion tensor out of this connection and it is given
by,

1
Q" =T = 50" =T 222

It is a third rank tensor that is antisymmetric in its first two indices and has 24 independent
components. It can be shown that the general connection I' g " on (A,) can be expressed in

terms of metric, torsion tensor, and tensor of non metricity (Nog, = V,0as)

W
" = {aﬁ} S L (2.23)

where {:B} is the Christoffel symbol, K ;" = —Q_ ;" — Q" 5 + Q4" is the contorsion tensor

1
and V ;" = E[Naﬁ” — N5 — N,",] is the definition of V .

Einstein-Cartan manifold (U,) is a particular case of a general affine manifold in which the

metric tensor is covariantly constant.

Nogy = Vpgap =0 (2.24)

This condition, which preserves scalar products (and then the invariance of lengths and an-
gles) under parallel displacement is called metricity postulate. It secures the local Minkowski
structure of space-time in agreement with principle of equivalence. The connection satisfying
the condition of eqn (2.24) is called metric compatible connection. The connection of Riemann

Cartan manifold (Uy) is then written as:

T," = {a’;} — K" (2.25)

Other quantities such as covariant derivative, Riemann tensor, Ricci tensor and Einstein tensor
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are defined in a similar fashion as in GR, the only difference being that the Christoffel symbols

are replaced by the total connection as defined in equation (2.25),

AP = G AP 4T, P A (2.26)
v v v v A v A
Raﬁ,u - aarﬁu - 86]?‘&“ + FO&)\ FB:LL - Fﬁ)\ FQ;L (227)
R =R,,,° (2.28)
1
G;w = R,u,z/ - §guuR (229)

However it must be noted that R, and G, are no longer symmetric. Riemann Tensor has 36
independent components. The Bianchi identities can be defined in a similar way; following the

usual definitions. It is worth investigating the anti-symmetric part of G,,. We can show that

Gy = By = VaT,,* +2Q.T,," = Vo T,,° where Vo =Va+2Q,  (2.30)

where T),* = Q2 + 67Q, — 0;Q, is called as the modified torsion tensor (This is a very
important quantity which, as we will see appears in filed equations of EC theory) and the

quantity @, is the trace of torsion, given by Q, = @, *. G*” can also be expressed as [2],

GM(T) =G ({}) + Va[T"® 4 T — T (2:31)

(8

1
v afBv af v v B
T 4 2TPP Ty = T, ¥ — ~ g (4T] |

We adopt an important convention henceforth:

e The symbol V is used to indicate total covariant derivative. The symbol {} is used to
indicate christofell connection. So, V8 would mean covariant derivative w.r.t christofell

connection.

e Whenever there is a bracket like ({}) this in front of any object, it indicates the value of
object calculated using Christoffel connection. We would also call it “Riemann part of
the object” often.

Hence G*({}) is the Riemann part of Einstein’s tensor (the one occurring in GR). By definition,
it is symmetric. However it doesn’t capture the full symmetric part of total G*”. Hence all the

additional part to G*({}) is asymmetric.

2.4 Lagrangian and the corresponding Field equations
of EC theory

The field equations for the Einstein-Cartan theory may be obtained by the usual procedure
where the action is constructed and then varied w.r.t. the geometric and matter fields in
the Action. Lagrangian of EC theory will have matter lagrangian and a kinetic term for the

gravitational field. We apply minimal coupling procedure, where Minkowski metric 7, is
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replaced by world metric g, and partial with covariant derivatives of EC theory (defined later
in next section). We keep £, = R as in normal GR. We justify this by knowing the fact that
in the limit of vanishing torsion, the original field equations of GR are obtained. The action is

given by:
4 1
S = / d'or/=g| L0, Vi, 9) - 5 R(9.99.Q) (2.32)

Here X = Sg—f and L, denotes the matter Lagrangian density and describes the distribution
of matter field. The second term on the RHS represents the Lagrangian density due to the
gravitational field. There are 3 fields in this Lagrangian viz. ¢ (matter field), g,, (metric field)
and K,g, (Contorsion field)

varying w.r.t the matter field ¢

0v=9Lm) ';jw =0-—-———- E.O.M for matter field. (2.33)

Varying w.r.t. the metric field,

L o(V=gR) _ 2 0(V=9Lw) _ pyu (2.34)

V=9X 09w V=9 09w

Varying w.r.t. Contorsion field,

L 0V=gR) _ 2 d(V=9Lm) _ gupa (2.35)

vV —9X 5Koz,8,u B vV — g 5Kaﬁu

These are the generic field equations of Einstein-Cartan theory. 7}, on the RHS of eqn (2.34)
dynamical Energy-Momentum Tensor. Similarly, S#%¢ on the RHS of eqn (2.35) is the dynam-
ical spin density tensor defined in equation (2.21)

Therefore we notice that, just as mass/energy density of the matter is coupled to the

Riemann curvature of space-time via T),,, the spin of matter is coupled to torsion of the space

iz
time via S,3,. Using the definition of the curvature tensor and torsion tensor defined in the

earlier section, we obtain:

1 4(v/—gR) S
= G — N [TH 4 T — Vo) = 5 TH 2.36
NC | = x (230
L OWZ9R) _ puge _ | guse (2.37)

vV —4g (5Ka5#

Equation (2.36) and (2.37) can be together written as,

GH = XTH + NV o[TH® 4 T — T"] (2.38)
— T 4+ YV [SHe 4 gonw _ gron] (2.39)
GH = D (2.40)
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Where, ¥* is the canonical energy momentum tensor. Field equations of EC theory can be

summarized below [2], [3], [29].

GH = X3 (2.41)
THve = xgHe (2.42)
5( _g[’m)
J=ml ) 2.43
e (2.43)

We now find th explicit expression for G*({}) using equations (2.31), (2.41), (2.42).
G ({}) = XT™ + X>7" = xo; ot =T + X7 (2.44)
where
T = (45‘“[55”5&] — 25MPGY 5+ SUS Y + %g‘“’(élsf 5 ST g+ Saﬂvsaﬁw)) (2.45)

We again note an important point here though o** defined above is symmetric by definition,
it doesn’t capture the full symmetry of /.

This term on RHS of equation (2.44) is completely dependent on the spin of the particle.
Some important observations can be made from above field equations. eqn (2.42) is an algebric
equation; suggesting that torsion can’t propogate outside matter field in the EC theory. It is
confined to the region of matter fields. However, Spin of the matter fields modifies the Energy
momentum tensor as given by eqn (2.44), which in turn modifies the metric, which propogates
upto infinity. The spin content of the matter can influence the geometry outside the

matter, though indirectly (through metric) and very weakly.

2.5 Coupling of EC theory with Dirac field: Einstein-
Cartan-Dirac (ECD) theory

We will consider particles with spin-1/2, described by the Dirac field. The matter La-
grangian density for Dirac field is given by ,

_ ihe

Ly, 5

(VY'Y b = Vo) — me?ap (2.46)

Here 1 is a spinor. Transformation properties of Spinors are defined in a flat Minkowski
space; locally tangent to the Uy manifold. We know that, at each point, we have a coordinate
basis vector field é# = 0,. This coordinate basis field is covariant under General coordinate
transformation. However, a spinor (as defined on flat Minkowski space-time) is associated with
the basis vectors which are covariant under local Lorentz transformations. To this aim, we
define at each point of our manifold, a set of 4 orthonormal basis field (called tetrad field),
Given by é'(x). These are 4 vectors (one for each p1) et every point. This tetrad field is governed

by a relation é'(x) = ¢/ (z)é" where trasformation matrix €, is such that,
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Vel = G (2.47)

The detail account of Tetrad formalism is given in Appendix [B.1]. Here we will use some
results and definitions from this section. Trasformation matrix e,(f) allows us to convert the
components of any world tensor (tensor which transforms according to general coordinate
transformation) to the corresponding components in local Minkowskian space (These latter
components being covariant under local Lorentz transformation). Greek indices are raised or
lowered using the metric g,,,, while the Latin indices are raised or lowered using 7). paren-
thesis around indices is just a matter of convention.

We adopt an important conventions for the remainder of paper

e Greek indices e.g. a, (,0 refer to world components (which transform according to gen-

eral coordinate transformation).

e Latin indices with parenthesis e.g. (a) or (i) refer to tetrad index. (which transform

according to local Lorentz transformation in flat tangent space).

e Latin index without parenthesis e.g. i,j,b,c would just mean objects in Minkowski space

(which transform according to global Lorentz transformation).
e 0,1,2,3 indicate world index and (0),(1),(2),(3) indicate tetrad index.

e The symbol V is used to indicate total covariant derivative. The symbol {} is used to
indicate christofell connection. So, V# would mean covariant derivative w.r.t christofell

connection.

e The symbol comma (,) is used to indicate partial derivatives and the symbol semicolon (;)
is used to indicate Riemannian covariant derivative. So for tensors, (;) and V1 are same,
but for spinors (;) would have partial derivatives and riemannian part of spin connection

(7) as described below.

Just as we define affine connection I' to facilitate parallel transport of geometrical objects
with world (greek) indices, we define Spin connection w for anholonomic objects (those having
latin index). As affine connection I' has 2 parts- riemannian ({}) part coming from christofell
connection and torsional part (made up of contorsion tensor K), similarly, spin connection w
also has 2 parts - Riemannian (denoted by «) and torsional part (again made up of contorsion

o

tensor K). v, 7v° and K are related by following equation. These symbols and notations ae

taken from [34]. All the mathematics is explained in Appendix [B.1].

(@) (k) — o (@) (k) _ K, (k) (@) (2.48)

(*)(@)

T

(@)(k)

Here, 7, is riemannian part and K, is the contorsion (torsional part)

The relation between spin conection and affine connection is as follows
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7, D0 = (DR o _ ), o0

uv
2.4
_ e(z’)eu(k){ a } e B _ gy o0 (249)
« v 7 r=v

From above two equations, one can obtain the following crucial equation for Riemannian part

of spin connection, entirely in terms of Christoffel symbols and tetrads.[29]

a « o 7 et A
{uu} = efyevwrn O + efy0uel) (2.50)

Using all the results mentioned above, we define covariant derivative (CD) for Spinors on Vj
and U4

1
Vi = O + T aiey(e Oy — — — - CDon [V4]  (2.51)

t
Vb = 8,0 + 7o w——fﬁx yyOnylyy — — — — — — CDon [U)]  (2.52)

Substituting this into eqn (2.46), we obtain the explicit form of Lagrangian density; which we

vary w.r.t. ¢ as in eqn (2.43) to obtain Dirac equation on Vj and Uj.

Z"V'uqu);u -

: l . me :
iy, + ZK(“)(I’)( )'y )y (B @)y — —7,0 =0-——-———-- Dirac Eqn on [U,] (2.54)

Yy =0-—————— Dirac Eqn on [V] (2.53)

We next obtain gravitational field equations on both V; and Uy using eqn (2.41) and Lagangian
density defined in eqn (2.46).

G*({}) = SZGTW ——————————————— Gravitation Eqn on [Vy]  (2.55)
2
G*"({}) = 87TGT‘“’ ; <8:4G> gWSaﬁASag,\ — — — —Gravitation Eqn on [Uy] (2.56)

Here, T"" is the dynamical EM tensor which is symmetric and defined below:
ther - - - _
T = E(/W)({}) = e [¢7u¢;v + w%ﬂ/’;# - w;;ﬁu¢ - ¢;V7u¢] (2‘57)

Equations [2.53 and 2.55] together form a system of equations of Einstein-Dirac theory.

We now aim to establish the field equations of Einstein-Cartan-Dirac theory. First let’s

define Spin density tensor using Lagrangian density defined in eqn (2.46)

zhc

oo = T lrely (2.58)
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Using equations (2.58) and (2.42), eqn (2.54) can be simplified to give us the Hehl-Datta
equation [2], [3] ("Lp;” being the Planck length). This, Along with equation (2.56) and the
equation which couples modified torsion tensor and spin density tensor together define the
field equations of:

Einstein-Cartan-Dirac (ECD) theory; as summarized below

, 3 5 — “ mc
Wy, = +§L%l¢757(a)¢757( )@D + 720 (2.59)
, 87G,. 1(8xG\* .
60 = T2 = 5 () 5 (2:60)
e
e — e — 2T guve (2.61)
C
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Chapter 3

Introducing unified length scale L s in

quantum gravity

3.1 Brief review of quantum theories of gravity

This section is mainly based upon the review article titled “Conceptual Problems in Quan-
tum Gravity and Quantum Cosmology” by Claus Kiefer [15]. According to our present knowl-
edge; strong, weak, electromagnetic and gravitational interactions are the four fundamental
interactions in nature. The first three are described by standard model of particle physics
(whose framework is of Quantum field theory) and fourth one is described by GR (whose
framework is classical). Though no empirical evidence goes against GR; from purely theoreti-
cal point of view, the situation is not satisfactory. The main field equation of GR (2.1) would
no longer have the same form if we consider the quantum nature of fields in 7),,. The ‘semi-
classical Einstein equations’ with 7}, replaced by its expectation value ‘< 9|T,,|¢p >’ leads
to problems [23]. In the 1957 Chapel Hill Conference, Richard Feynman gave the argument
suggesting that ‘It is the superposition principle of QM which strongly points towards the need
for quantizing gravity [55]’. Apart from this, ‘unavoidable presence of singularities in GR [57]’
and ‘problem of time in QM [58],[45]  forms the motivation for quantizing gravity amongst
few other motivations. On a side note, it should be noted that the idea of ‘emergent gravity’
by Padmanabhan [59] is an alternative to the approach of direct quantization of gravitational
fields. In brief, we can divide the approaches to quantum gravity in 4 broad groups [61],[60]:
1) Quantize general relativity [2 methods are used in this approach -covariant and canonical
quantum gravity.] 2) ‘General-relativise’ quantum theory [trying to adapt standard quantum
theory to the needs of classical general relativity]. 3) General relativity is the low-energy limit
of a quantum theory of something quite different [The most notable example of this type is
the theory of closed superstrings|. 4) Start ab initio with a radical new theory. [Both classical
general relativity and standard quantum theory ‘emerge’ from a deeper theory that involves a
fundamental revision of the concepts of space, time and matter.] We will now introduce the

idea of unified length scale (L) in quantum gravity.

25



3.2 The idea of L,

Einstein’s theory of gravity (GR) and relativistic Quantum mechanics (Ex: Dirac theory
for spin-1/2 particles) are the 2 most successful theories of the description of Universe at micro
and macro level (in terms of mass ‘m’ which is being described). Given a relativistic particle
of mass ‘m’, we can associate 2 length scales to it- characterizing its quantum and relativistic
behavior. Quantum nature of the particle is associated with its Compton wavelength; given
by Ac = (h/mc) and the relativistic nature is associated to the Schwarzschild radius given by
Rs = (2GM/c?). Tt is through these length scales, that the mass ‘m’ enters the equation of
description of their motion. Example, mass enters Dirac equation through Ao and it enters
GR equations through Rg. Also, It is important to note that neither Ao (having A and ¢
as fundamental constants) nor Rg (having G and ¢ as fundamental constants) could be used
individually to define mass (or units of mass).

Both Dirac theory and general relativity claim to hold for all values of m and it is only
through experiments that we find that Dirac equation holds if m < m, or A\¢ > [, while
Einstein equations hold if m > m, or Rg > [,. “From the theoretical viewpoint, it
is unsatisfactory that the two theories should have to depend on the experiment
to establish their domain of validity” [4]. If we assert the fact that plank length is the
smallest physically meaningful length, then it makes no sense to talk of Rg < L, when m < my,
and to talk of A\¢ < L, when m > m,,. Instead it is more reasonable to think of universal
length scale which remains above L,; for all masses and whose limiting cases give A¢ for small
mass and Rg for large mass. One such way to define a universal length scale is given in [4] as

follows

L 1/2
SLAPE (_m + %> := cosh z (3.1)

% 2\m, 2m

. where z = In i@—’z These ideas are discussed in details in the recent works of Tejinder P. Singh
[4], [5]. The dynamical process for mass ‘m’ now involves L., (mass enters the dynamics through
Lcs). An action principle has been proposed with this new length scale and Dirac equation
and Einstein GR equations are shown to be mutually dual limiting cases of this underlying
modified action. The proposed action for this underlying gravitation theory, which gives the
required limits is as follows

Lzzﬂ 4 7 2 7

25 = [ dtay=glR - (D Lasit + Lsbin0,0 32

Generalizing this on a curved space-time, the action is:

L2
%ZS: /d4x\/—_g

R— %chﬁw + mhiL? g (@V“Vﬂw — V“@Wzﬁ)] (3.3)

If V and ‘R’ are taken on V}, the system is called 'Einstein-Dirac’ system. In such a system , for
small mass limit, couping to EM tensor in Einstein’s equation is through A and not G. Hence
we expect gravity to vanish. This creates an unpleasant situation for Einstein’s equations.

Because vanishing of gravity makes LHS 0; but RHS is non-zero (it is EM tensor coupled
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Tosion Dominated |  Gravity Dominatgd

Figure 2 — Plot of the scaled Compton-Schwarzschild Length %ff = cosh(z) as a function of the
logarithmic mass z = In(2m/m,). The CS length Lo attains the minimum value 2[, at z = 0, i.e.
at m = myp/2. For z = 0,ie. m > my/2, Lcs increases with increasing mass: this is the gravity
dominated regime. For z < 0, i.e. m < m,/2, Lyg increases with decreasing mass: this is the torsion
dominated regime. For any given value of Lcs, two values of m, say m, and m,, are possible, and
they are related as mgm, = mif 4. This figure has been taken from [1]

Figure 3.1: L.s Vs. mass behavior and its description [4]

through #). This compels us to introduce torsion in the theory. Because it would now add
torsion field in the LHS and then it couples to EM tensor via h. Further arguments can be
looked up in [5]. So the idea of L.s is more coherent with the framework of Einstein-Cartan
manifold (U, manifold). For m < m,,, the spin density is more important than mass density.
Mass density can be neglected and spin density sources the torsion (coupling is through h).
Whereas, m > my,;, mass density dominates spin density. spin density can be neglected and as
usual, mass density sources the gravity (coupling is through G). Spin density and torsion
are significant in micro-regime; whereas gravity and mass density are important in
macro-regime. In this manner there exists a symmetry between small mass and large mass
in the sense that small mass is the source for torsion and large mass is the source for gravity.
The solution for small mass is dual to the 'wave-function collapsed’ solution for large mass in
the sense that both the solutions have same value for L., which is the only free parameter in
the theory.[5]

3.3 ECD equations with L

The set of ECD field equations with the Lsg incorporated in them are obtained by varying
the Action (3.3) w.r.t all the 3 fields (Here we have also given gravity equation with riemannian
part of Einstein tensor.)[5]
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_ 8l

GMV - hC Z,uu (34)
8w L? 1(871L26\° .a
GIW({}) = hCCST/w - 5 ( hCCS) g;wS BASaﬁ/\ (35)
87 L2
THra cs Qura 36
he (3.6)
| 3, - , |
" = G LV AT+ G =0 (3.7)

A note on length scales: We use [ to denote a length scale in the theory. For standard ECD
theory, the typical scales that can be considered are the Planck length [y = Lp; = %’, half
the Compton wavelength Iy = ’\f = 2—516 For the modified ECD theory, we take [y = I, = L¢g,
in terms of the new unified length scale.
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Chapter 4

Non-relativistic limit of ECD field

equations

4.1 Theoretical background and notations/ representa-

tions used in this chapter

4.1.1 Notations, conventions, representations

e Greek indices e.g. «,(, 0 refer to world components (which transform according to gen-

eral coordinate transformation).

e Latin indices with parenthesis e.g. (a) or (i) refer to tetrad index. (which transform

according to local Lorentz transformation in flat tangent space).

e Latin index without parenthesis e.g. i,j,b,c would just mean objects in Minkowski space

(which transform according to global Lorentz transformation).
e 0,1,2,3 indicate world index and (0),(1),(2),(3) indicate tetrad index.
e The Lorentz Signature used in this report is Diag(+, -, -, -).

e We use Dirac basis to represent the gamma matrices. These are basically matrix repre-
sentation of clifford algebra Cl; 3[R]

I 0 . 0 o 1 o 0 I 4 4 0

0 __ _ 2 i 5 i j kAl 2 7 )
= = s = . s = —€;; = , o = = .
V=5 (0 H2> v ( i o) 7 = ey <H2 0) By (Uz

4.2 Non-relativistic limit of the Einstein-Dirac equations

4.2.1 Ansatz for the spinor and the metric

Ansatz for Dirac spinor: We need to choose an appropriate expansion ansatz for the spinor

1S(x,t)h (

so as to obtain the non-relativistic limit. We expand ¢ (x,t) as ¢(z,t) = e which can
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be done for any complex function of x and t). We can either expand S as a perturbative
power series in the parameter v/ or (1/c¢) and obtain the semi-classical or non-relativistic
limit respectively, at various orders. The scheme for non-relativistic limit has been employed
by Kiefer and Singh [26]. Giulini and Grossardt in their work [19], combine both these schemes

and construct a new ansatz using the parameter v/i/c as follows:

W(r,t) = 5 i (@)nan(r,t) (4.2)

c
n=0
where S(r,t) is a scalar function and a,(r,t) is a spinor field. We use this ansatz in our
calculations, and by taking the limit ¢ — oo arrive at the non-relativistic limit.
Ansatz for metric: We first express the generic form of the metric in a power series with

same parameter as that used to expand the spinor viz. \/ﬁ/ c

Gu(T,1) = Ny + Z ( ) (r,t) (4.3)

where g[ ]( ) are infinitely many metric functions indexed by n. In the non-relativistic scheme,
gravitational potentials cannot produce velocities comparable to ¢ - they are weak potentials.
Therefore we assume that the leading function g}?,l(w) = - With this, we get the following

generic power series for tetrads and spin coefficients and Einstein tensor

(VI )
= 0 + Z( ) el Vam© =Y (7) Towe — (44)

n=1
(i) _ <@ i)[n o - \/ﬁ " n
— n=1
where e(z()") [gl[ﬁj]] (l) ] [QB?/]] 7([n])(b)(c) [g;[ﬁ,] and GW are infinitely many tetrad, spin coefficient
and Einstein tensor functions indexed by n. They are functions of metric functions g,[w and

their various derivatives.

4.2.2 Analyzing Dirac equation with above ansatz

We will now expand the Dirac equation on V} as given in eqn (2.53) with the above ansatz.
We also note that 7@, ) = e&a)e’(’a)'y“@b;y = 0y, =y,

. mc
. { o
= "0 + 77w 7N + 7 0at + 7 Dy iy Oy Ny — —1/) =0 (47

We separate spatial and temporal parts. Substltutlng appropriate expansions from (4.4), (4.5)

into above equations and multiplying by 7(%¢ on both sides yields:

> \/E " ol | . 1c = \/E " oln c
R e 5[5 e

n=1

aln Y \/ﬁ n oln . 5m02
[1 i Z ( ) Lca Vo 4 a( 7 {; (T) %[)(}b)(c)} Oy — 5 =0
(4.8)
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Dividing both sides by [1 +> (@) e(()([)gl]] , we obtain
() Vh " o[n] 00 Vh " aln]
ic [anl ( c ) 7(0)(17)(0)1 {1 + 2 < c ) ‘) ]
- Oy - —ica.Vi—
[e'S) 0[n [e's) O[n

o9 vh " o[n]
i G [2"21 (_) v (b)(c)l [(5) 1 (€)]
I an[}77w+ i\ om] R
{1 + D e (TH) €(0) ] {1 + 2 (TE) €(0) ]

2

Zatw

(4.9)

We consider the terms of order ¢, ¢, 1 and neglect the terms having order of O<Cin>; n >1.
This is sufficient to get the behaviour of the functions in the spinor ansatz. It will turn out
later that this is also sufficient to get the equation which is followed by leading order spinor
term ay. We obtain the following equations:

VA Wi

i) + =1 Y+ dca VY + _O‘(.)Wa[)gb)(cﬂ[( 1y

2
—a—wm”;f o om| () = ] v =0

Substituting the spinor ansatz i.e. eqn (4.2) in equation (4.10), the various terms are evaluated

(4.10)

as follows:
Term 1
’LC2 > h "
100 = 10y [e " (i) an]
c
n=0
ic? 2 = h " ~
= ieTs% HZ:O (\/T_) [an_Q + iSan]
ws & o (VRN . g
=€ h WZ (T) |:— San_l —|—Zan_3:| (411)
Term 2
Z\/_ Z\/ﬁ ic2s > \/ﬁ "
[(0) 1 ()], — 4 2V oll] [(6) ~ ()] vy
=7 TN = = [6 " Z( . ) an] (4.12)
n=0
ic2s ¢ - \/7_7/ " . o[1] b) A (c
n=0
Term 3
- ’LC2 > h "
ica’ 0,1 = icd - ? [e m Z (\/T—) an]
n=0
ic2 2 > h "
—icd [0S () (50, + Fan)]
c

. a i (?)n [ VA - VSay, +iVAA - ?an_g] (4.14)
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Term 4

Z\/ﬁ ) o \/ﬁ o c ic?s = \/ﬁ "
—I-TOZU ’Y([)lg )(C)'Y[(b'Y M = +T04(])’Y([)1% )(6)7[(1))’7( ) [6 f Z (T) an} (4.15)
n=0
ic?S C3 > \/ﬁ " - o c
:ehhw§:Q7>[¢% ¢%@¢%m%ﬁ} (4.16)
n=0
Term 5
mc? Me? s — \/ﬁ "
SO =T Z<—> n
ws & o= (VRY"
= hﬁ§5§:(77)(—5mm%g (4.17)
n=0
Term 6
me o, gme o[ s g (VR ] 118
+5\/ﬁe(0)w +5\/ﬁ€(o) ¢ ;( o ) Gn (4.18)
ic2s 03 > \/_ "
= () [ o @
n=0
Term 7

2 2 5 oo n
o) el LD o
=0
2

:‘;féﬂ ( km<
) 1

€
After substituting equations (4.11), (4.12), (4.14), (4.15), (4.17),

and sorting by powers of n we get,

0[2]
0) (0) Ap—3 (421)
(

4.18) and (4.20) into (4.10)

e#i i (@)” [( —Vha - ?S)an - (S + 6m>an_1 + (Z\/ﬁﬁ . ? + Bm e?é§]>an_2

3/2
h/n:O c

o c . ] o c 2
+id,_3 + (zx/_v N 17Oy +@\/ﬁa(3)v(};gb)(0)v[(b) N Bm(( ) ?£§]>>an_3] =0

(4.22)

At order n = 0 the equation reduces to,
VS =0 (4.23)
which implies the scalar ‘S’ is a function of time only i.e., S = S(¢). Dirac spinor is a

4-component spinor a, = (an1,0n2,0n3,0na). We split it into two two-component spinors

a; = (an1,an2) and a; = (a3, a,4). For order n = 1, the equation is (S + ﬁm) = 0; which

can be written as following two equations:
(m+S)ag =0 (4.24a)
(m — S)ag =0 (4.24D)



This implies that either S = —mt and a5 = 0 or S = +mt and a5 = 0. The wave function at
this order is ¢ = eiwgc It represents the particles of positive energy (lower sign) and negative
energy (upper sign) at rest. We will restrict to the former case i.e. S = —mt and a5 = 0,
which represents positive energy (lower sign) solutions. It has been implicitly assumed that 2
cases (of positive and negative energies) can be treated separately. We digress at this point
and analyze the metric energy-momentum tensor now with the results obtained in equation

(4.23) and the fact that ag = 0.

4.2.3 Analyzing the Energy momentum tensor 7}, with above ansatz

The dynamical Energy momentum tensor given in equation (2.57). Lets consider the " kTp,”
component.

Analyzing kTp (after raising the index on gamma matrices):

4z7rGh

k’TOO =

¥y’ <8t¢+2[73@)(]*)7[(“70)1]@/)) <8t"¢’+ oy YO W) %] (4.25)

4inGh VA o) | - .
= kToo = 27;4 (1 + Z (T) 6%;) [@/’7(0) <8t@/) + - [%(z NOR [( Q”W)
n=1

(4.26)
- (&:@H 8y @7 ) )@D]

After putting spinor anstaz eqn (4.2) in eqn (4.25), we obtain following power series for k7q.

We have given expression for the leading order only.

- (5 (Y () o]

(4.27)
2 <N | v -
(S 07) [t )(S (7)) 20 ()
Explicit expression for leading order is obtained by considering (n + m = 0) as follows:
ArGli | .
KT = — {z( m)agtaz +i(—m)a;'a; } ZO( 2) (4.28)
8rGm |a0
kT = ;3 O<Cn) (4.29)
Analyzing kTj,:
227TGh 1 - 1 N
KTy, = b0 (D + 0 v 1) + b (80 + 7 7))

-1 N ey — -1 N —
C(@M + Z['YZ(i)(j)’Y[(Z)’Y(])]W>’Yo¢ - C(aow + Z[”Yg(i)(j)’Y[(Z)’Y(J)]?ﬂ])’Yu¢]
(4.30)
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We will first find the coefficient of the term of order c% which is the leading order of Tjy.
Now, all the terms containing spin coefficients v,,;)(;) have leading order of cig So it will not

contribute at the order . So what we get is (here, index on gamma matrices is raised):

KTy = 200 590,00 — i O — 0,7 + caoww] (4.31)
—2itGh > " om _ —
_mnGhy > (ﬁ) ) [wo)am - @W%] (4.32)

QWGH (1 + < > [S”) [@%(“)w - iv(“)aﬂ/}]
1

n=

There are two types of terms in equation above. One having coefficient 2”;%‘1 and other with co-
efficient 21:# We call them term 1 and 2 respectively. We analyze both of them independently.

Term 1 gives

_ ico(:in; C (4.33)
(term 2) HZC:;G{ (i (‘/77_:‘) " ) 0@ ( ; (ﬁ) " [i8an + QD
+ (nio (\/T_)n [z’S’aL - aL_Q] ) a® g (g‘)mam) } + ; O(Cin)
_ 4”5”1(@*@(%0) + 2 O(Cin)
4nGm

= 1
- O(—) 4.34
> 0(= (4.34)
So we find, in both term 1 and 2, terms of the O(é) are zero. Hence

KTy, = Z O (in) (4.35)

Analyzing kT,

2mGh

1
kKT, = +1m( O + ~ [ e ’W”%/J])W%( 0t + 7 o *y’”z/f])

(4.36)
_ - 1 Ny —
( u¢ + h/u @)Y 2 (j ¢])7u¢ - (aﬂw + Z[75(1)(])7[(1)7(])]w]>71/1/}]
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Here also, we will first find the coefficient of the term of order > which is the leading order of

kETho. All the terms contalmng spin coefficients ,.;(;) have leadlng order of . So it will not

contribute at the order . So what we get is (here, mdex on gamma matrlces is raised):
227TG7"‘L Y Y

KL = ——5—| = "0 — 07" 9, + 000" + Dby ¢]

_ 227;3Gh (1 n i (@)n u[n> W @y b — O wT a)¢]
n=1
+ 2“;? : (1+ i (@) %) [ o — a9
n=1
_ 2ZZ::,G " i (@)n<e7a)alla(“)0uan2 — eyl ol + e al, V0,00, — €fydual, 0 )a’”)
‘ (4.37)
_ i 0( Cin > (4.38)

n=3

From order analysis of components of the metric energy-momentum tensor, summarized in

equations (4.29) , (4.35) and (4.38), we have proved a crucial result viz.

T T
|Tool <1 |Too|

| Tos] 7 T 2

1
<1, k[Too| ~ O(—) ;i,5 € (1,2,3) (4.39)
c
Owing to Einstein’s equations, the same relation then exists amongst the components of Ein-
stein tensor as well viz.

|Goo |Gool
< 1,
|Goil |Gij

1
<1 |Gl ~O(5) ie (1,23 (4.40)

4.2.4 Constraints imposed on metric as an implication of above

analysis

We proved an important fact in the previous two sections viz. |Ggo| ~ O (c%) and all other
components of G are of higher order. For a generic metric ansatz, G, has been explicitly
calculated in appendix [A.1]. At this point, we make an important assumption — the metric
field is asymptotically flat. This fact suggests the following important constraints on metric
components [proved in appendix (A.2)]

1) GEZ], = 0 (Vu,v) and non-allowance of solutions which don’t respect asymptotic flatness of

metric gives following result for metric and other quantities :
1 i 1 .
ngll = 07 6?1[)} = Oa eL)[l] = 07 ’7([1,)}@)(]9) =0 v v, ka V€ (07 17 27 3) (441)

This is proved in appendix (A.2.1)
2) We also have GLQ,], = 0 (except for 4 = 0 and v = 0). This imposes different kind of
restrictions on g,[“l We see that the form which g[ ) can take is g/[“], = F(r,t)d,, for some field

F(r,t). This is proved in appendix (A.2.2). The full metric is then given by:
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[l [ o] (0]

1 0 0 0 F 0 0 0 Joo Y01 Yo2 Yos

0 -1 0 0 A\ |0 F 0 0 (VRN g gl gl gl

_ 910 Y911 Y912 Y13
Gu(r,t) = +\ = tHZ - ] [n] [ [n]
0 0 —1 0 c 0 0 F 0 =\ c 920 Go1 U35 Y33

00 0 -1 00 0 F gl gl gl gl

(4.42)

where g = gif = g8 = g3 = F(r, 1)
With this form of metric, all the other objects (tetrads, spin coefficients etc.) have been
calculated in Appendix sections [A.3], [A.5], [A.4] and [A.6]. We have used these results in the

next section.

4.2.5 Non-Relativistic (NR) limit of Einstein-Dirac equations

Dirac equation: Equation (4.22) becomes the following

ic2 3 > " F
e < Z (ﬁ) [m Ap_1+ 1Qp_3 + iha - ?&n_g — Bma,_1 — ﬁwan_g] =0

c 2
(4.43)

We have already used the results from analysis of this equation for n =0 and n = 1. We now

analyze it for n = 2 and n = 3. At order n = 2 the equation (4.22) results in

(sgm sin)(al >—z\/’<70€ 7(-7)(22:):0 (4.44)

The first of these is trivially satisfied. The second one yields an expression for ay in terms of
ag ?
—ivVhT -
ag = VATV (1.5

2m
At order n = 3,

S +m 0 as 7? o
( 0 S—m><a2)_l\/_<?€ 0 ><a1<>
om0 %\ _

_< 0 i@ﬁw)(@)—o (4.46)

Upon using equation (4.45), the first branch of (4.46) yields,

A

dag h? mhF(r,t
28 Iy, AP (447

Einstein’s equations: Next, we go to Einstein’s equations. Gg is evaluated in Appendix
[A.6]. We equate it with kT and obtain:

hVQF ZO<Cn) _ 87rG7:2!a§!2 n go(ci"> (4.48)
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Equating the functions at order C%, we obtain:

8rGm |ag|?

VPE(r,t) = —

(4.49)

If we recognize the quantity M

as the Newtonian potential ¢, then we get Schrodinger-
Newton system of equations Wlth m¢ as the gravitational potential energy and m |ag|? as mass
density p(r,t). The physical picture, which this system of equations suggests, has been given

in the introduction.

2
ag; = —h—v2 > L mo(r,t)ad (4.50)
V2p(r,t) = 47er lag|? = 47Gp(r,t) (4.51)
. 8@5 _ h? 2 |a0(r t)|2 3170

This completes the derivation of the Schrodinger-Newton equation from the Einstein-Dirac

equations, in the non-relativistic limit.

4.3 Non-relativistic limit of Einstein-Cartan-Dirac equa-

tions

Dirac equation on Uy (which is also known as the Hehl-Datta equation) is given by equation
(2.59)

3 mce
iy ., — ngﬂ/f’Y Yy >y D — =0 (4.53)

We have already evaluated first and the last term after putting ansatz for spinor (4.2) and
metric (4.42). The second term (arising because of torsion) induces non-linearity into the
Dirac equation. We now evaluate this term by following similar procedure as we did for the
other two terms. First we multiply the mid-term by «°c as done while getting equation (4.8)
from (4.7) and get the following:

3¢ o — o 3Cy s (o~ (VRN (VRN N o~ (Vh
YOS LR ¥y = =l (Z (7) GL)%)(Z (T) az>75’y( )<Z (_

7))

(4.54)
Next, we divide it by [1 + >0 (ﬁ) e?[n]] as done while getting equation (4.9) from (4.8).

=0

c 0)
This is equivalent to dividing by [1 — hF ”) + 3, O< ﬂ or equivalently multiplying by
[1 ERy LA Yo, O( ﬂ as given in (A.4). We get the following:

2c2
3G > VA" .
?( Z <7> aLl_ﬂaanQ,ﬂ% angk) (4.55)

The non-linear term:
ni,n2,n3=0

s 3 hE(r,t) & 1
SRNETE [H 202 +ZSO<C_”>
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where n = n; 4+ ny + n3. This term modifies Equation (4.43) as follows

s & " N , mE(r,t
eTSW Z (%) [m A1+ 1Qp_3 + VR - Van_g — Bma,_1 — B#an_g
n=0

+%( > (@) allﬂaanz_ﬂf’v“ang_kﬂ =0

n1,m2,n3=0
where n = ny + ns + n3,7 + j + k = 5 and, whatever value of 7, 7, k, ny, ng, n3 is chosen from
(0,1,2,3,4,5) the fact that i < ny, j < ny and k < ng is to be respected. We find from the above
expression that the non-linear term with starts contributing finitely from n = 5 onwards. So,
the analysis for n = 0,1,2,3 as given in Appendix remains as it is and we obtain Schrodinger
8a0 SR Ve e mhI;(r,t) a.

Next, we go to Elnstem’s equations (gravitation equation of ECD theory). The equations
of interest here are as given by eqn (2.60) as G, ({}) = XTI, — %X2gu,,5a6’\505,\. The tensors

G, and T}, are already analyzed in above section. We will analyze the second term on the

equation for ag viz. ih=%

right hand side, which is (—%ngwSo‘ﬁ)‘Sam). It contains the products of spin density tensor
which is given by eqn (2.58). We consider only first term in the expansion of metric because

other terms combined with the coupling constant are already higher orders.

—XZgooS P Sapr = —goo——5— QWQGW i (Z Z aiy 7%“7”) ( Z Z Y a7 nm) Z O(w)

=0 k=0 I=0 m=0 n=0 n=6

(4.57)

We find that this addition doesn’t contribute at the order 1/c? on the RHS of equation (2.60).

Hence we get back Poisson equation. Recognizing the quantity w as the potential ¢, at
leading order, we find that ECD theory also yields Schrodinger-Newton equation. Torsion does

not contribute at leading non-relativistic order.

4.4 Non-relativistic limit of ECD field equations with

new length scale L

The motivation for introducing a new length scale [?] in the ECD theory is as follows. Given
a relativistic particle of mass m, it could satisfy either the flat space-time Dirac equation, or the
Einstein equations for a point mass, or the ECD equations which couple the Dirac field to its
self-gravity and torsion. How are we to know which of these three equations does the dynamics
satisfy? There is no mass scale in the equations to determine this. To resolve this problem,
we introduced a new length scale Lgg in the ECD equations, with the following properties:
for m > mp;, Lcs = 2Gm/c?; for m < mp; = h/2mc; for m = mp;/2, Lcs = 2Lp;. In other
words, for large masses the length scale in the problem is Schwarzschild radius, and for small
masses the length scale is half of the Compton wavelength [4, 5, 18]. An example of a function
which can satisfy these properties is

L 1 /2
o8 =2 (_m + m—Pl> := cosh z (4.58)

2L,1 2 \mpl 2m
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where z = In2m/mp;. We desire that the field equations with this Lcg should reduce to
Einstein equations for large masses, and to the Hehl-Datta equation for small masses. An

action which yields such equations is

L? i— i
;:ls /d433 V= { R — 5 Les ¢¢ + L {51”7“ VW - i(vu¢)7u¢} } (4-59)
The ECD field equations following from this action, with L., incorporated in them, are the
following:
3
Vo = A2 LY Y0y Y + s (4.60)
8 2Lcs
8w L2 1 /8mL%o\2
GHv CST/W — _<—CS) VSO‘B)‘Sa 4.61
(1)) = Tl (T8 )y, 5000, (1.61)
8w L2
THYO — _ fCHve cs 108 gura 4.62
- (4.62)
Here we analyze the non-relativistic limit of these equations.
4.4.1 Analysis for lower mass limit of L
Lower mass limit of L. is )‘20 = % The Dirac equation in the Riemann-Cartan spacetime

with new length scale L¢g in its lower mass limit is given by (4.60):

. 3h2
e, = 3 Qm Yy ¥V* Y +

2Lcs¢ (4.63)

We have already evaluated first and the last term after putting ansatz for spinor (4.2) and
metric (4.42). The second term (arising because of torsion) induces non-linearity into the
Dirac equation. We now evaluate this term by following similar procedure as we did for the
other two terms. First we multiply the middle term by 7°c as done while getting equation (4.8)
from (4.7) and get the following:

3¢, — > " 0 n\! >0 2\
i 00 (5 () (5 () oo (5 (2 )
n= [=0 m=0

(4.64)
Next, we divide it by {1 + >0 (ﬁ) e%?]] as done while getting equation (4.9) from (4.8).

This is equivalent to dividing by 1 — hF rd) 4 P O(%) as given in (A.4) or multiplying by
1+ M;(Cl;’t) +> O(%) We get:

hE(r, 1) 1y | 3032 = VR\" .
b 2¢? +ZO<c_n>] 32m?2 Z e ab, Valny 7Y s, | (4.65)
n=3

ni,n2,n3=0

ic2s 03
R
€" e

where n = ny + no + n3,7 + j + k = 4 and, whatever value of 7, j, k, ny, ng, n3 is chosen from
(0,1,2,3,4) the fact that i < ny, j < ny and k < ny is to be respected. We find from the above
expression that the non-linear term with Lgog starts contributing finitely from n = 4 onwards.
So, the analysis for n = 0,1, 2,3 as given iearlier remains as it is and we obtain Schrodinger

. . 0ad 2 B (xt
equation for ay viz. ih=0 = —2-V?q5 + %(r’)a&.
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Now, the gravitational equation of ECD with L. in its lower mas limit is given by (4.61).
We will consider terms only up till second order in (1/c). So we stick to equation for 00
component. We neglect the 2nd term om the right hand side of (4.61) because it is of higher

order. The equation for 00 component is:

kN ik
Goo = <T727,7;C3> (Z C) [2¢70¢0 — 2, 07074 (4.66)
h2
Goo = 6(()0) (::LT > {"‘N(aﬂﬂ) (aﬂ/ﬁ)wl (4.67)

After substituting spinor ansatz (4.2), we obtain following equation for the right hand side:

Goo = (%) [(i (@)%LL) (i <@)n[%2 + iS’an]> (4.68)
(

n=0

)t (55 ()|
This implies that |

hV;F +§:o<cin) = %(%ﬂamz) +C_12<2W23/2[ > 1 g*@]) +Zo( L) (4.69)
n=3

This leads us to conclude that ag = 0 and hence

VIF=0= V=0 (4.70)

With this new length scale, there is no contribution to gravity in the small mass limit, at
the leading order. This makes the theory different from the standard ECD theory. Another
possible interpretation of the modified Poisson equation (4.69) might be to write it at order
1/c% as

4
Vip = WSm (!(1512 + K'/? [a>Ta0> + aﬁ%ﬂ) (4.71)

where o = 4Gm?/kc is the dimensionless gravitational fine structure parameter. Further

implications of this equation are at present under investigation.

4.4.2 Analysis for higher mass limit of L

The high mass limit of L., is 2Gm/c®. We have shown elsewhere that in the large mass
limit these equations reduce to Einstein equations for a point mass. The non-relativistic limit
will then inevitably be the Poisson equation for a point mass.

This can also be seen as follows. The Einstein equation in the Riemann-Cartan spacetime
with new length scale Lgg is given by (4.61). We neglect terms higher order in Lcg because it
is easy to deduce from the fact that L2 in higher mass limit is already fourth order in (1/c).
So only first term of right hand side is significant. We consider the ”00” component of the

above equation
8m Lt

he

Goo = Too (4.72)
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The stress tensor is given by (2.57). Its "00” component is given by [we neglect orders greater
than 1/¢?].

Too = T2 20700 — 2070 (4.73)

The Dirac equation with L., in its higher mass limit is given by (4.60). Now, for large masses
(m > mp;), amplitude of state v is negligible (except in a very narrow region where mass
m gets localized). This is possible if we assume the localization process. In such a case, the
kinetic energy term can be neglected and we obtain the following equations

3. — " 7
Yo = —gwoL%sWS’yawv Y — w

; (4.74)
Vb = iLEs (VU7 1y ") + —Wvo
8 2Lcs
Substituting above equation (4.74) in eqn (4.73) and neglecting higher order terms in Log we
get,
87 L2
CSTOO = drLos (7)) (4.75)

Substituting for Log in the large mass limit in eqn (4.75) |

8rGma

SwL2 T,
——C5 8 = drLes($14'P) = a2 (4.76)

hc

In the localization process we replace 1) with a spatial Dirac delta function [5]. Substituting
equation (4.76) and Ggy from Appendix [A.44] in equation (4.72) and equating at order =,
we get the Poisson equation as the non-relativistic weak field limit of the modified Einstein

equation in the large mass limit,

8tGm

V2F(r,t) = -

§(r) (4.77)

h

As earlier, we recognize as Newtonian potential ¢ and hence, we get

V2¢ = 4rGmd(r) (4.78)
The large mass non-relativistic limit with this new length scale is not the Schrodinger-Newton

equation, but the Poisson equation for a classical point mass.

4.4.3 Some comments on analysis for intermediate mass

For an intermediate mass, L. is given by equation (4.58). With this, the ECD equations

become:
2G'm h 1
" L
by = 8( 2 ch) VY@ Y + (402m+ h>w (4.79)
2G'm h \2 3212 12Gm h \4
- _ afA
Gl = o (P + 5 ) T = s (5 ) 05 S (4.80)

First we will analyze HD equation The three non-linear terms appear in this equation with

3G2m2 3L
2ct 4 32 2 c2’

coeflicients

We have already done the order analysis of all these terms
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and shown to be higher order; not contributing to the equation at leading order. So we neglect
them. What we get is:

‘ 1 maey 1
., = Y = 5 4.81
0 <4me X mic> h (1 + %) (4.81)
2l me
— |1 —+ —5 Zvuw;u — hw (482)
pl

This is a very interesting equation. If mass m is too small compared to m,;, we can neglect
the second term on left hand side and this basically gives Schrodinger’s equation. On the
other hand, if mass is too large, we neglect the first term on the left hand side, and then the
equation becomes such that we can safely assume the localization process. [basically it justifies

eq. (4.74)]. We plan to investigate the intermediate mass case more rigorously in the future.

4.5 Summary of important results

e At leading order, non-relativistic limit of self-gravitating Dirac field on V; (commonly
called as Einstein-Dirac system) is Schrodinger-Newton equation with no assumption of

symmetry on metric.

e Non-relativistic limit of self-gravitating Dirac field on Uy (commonly called as Einstein-

Cartan-Dirac system) is also Schréodinger-Newton equation at leading order.

e Non-relativistic limit of ECD theory with L., in its low mass limit produces a source-free

Poisson equation. This will be interpreted in chapter (7).

e Non-relativistic limit of ECD theory with L. in its higher mass limit produces Poisson

equation with delta function source. This will be interpreted in chapter (7).

The work in this chapter is based on the paper titled “The non-relativistic limit

of the Einstein-Cartan-Dirac equations” which is "under preparation" [10]
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Chapter 5

Brief review of Newmann-Penrose
(NP) formalism and formulation of

ECD equations in NP formalism

There has been a variety of different (physically and mathematically equivalent) ways of
writing the field equations of General theory of relativity. Initially, it was formulated in stan-
dard coordinate-basis version using the metric tensor components as the basic variable and
the Christoffel symbols as connection. Later various methods like that of differential forms
developed by Cartan (Lovelock and Rund, 1975), the space-time (orthonormal) tetrad version
of Ricci (Levy, 1925) and the spin coefficient version of Newman and Penrose (Newman and
Penrose, 1962; Geroch et al, 1973; Penrose, 1968; Penrose and Rindler, 1984; Penrose and
Rindler, 1986; Newman and Tod, 1980; Newman and Unti, 1962) are developed. All references
in parenthesis are taken from Scholarpedia article titled “Spin-Coefficient formalism”.

Dirac equation on V; has been studied extensively in NP formalism. It’s detail account
can be seen in [6]. From this chapter onwards, we follows the notations/ representations/
conventions and symbols of this celebrated book “The mathematical theory of black holes” By

S. Chandrasekhar [6]. Our aim in this chapter is as follows

e We know that Contorsion tensor is completely expressible in terms of components of
Dirac spinor. We want to find an explicit expression for Contorsion spin coefficients (in

Newman-Penrose) in terms of Dirac spinor components.

e Dirac equation on Vj is presented in equation (108) of [6]. We aim to modify these

equations on Uy.

We will first present a brief review of NP formalism and then formulate ECD equations in NP

formalism.

5.1 Newman-Penrose formalism

NP formalism was formulated by Neuman and Penrose in their work [35]. It is a special

case of tetrad formalism (introduced in Appendix [B.1]); where we choose our tetrad as a set
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of four null vectors viz.
=mt, ey =m" (5.1)

I, n* are real and m*, m* are complex. The tetrad indices are raised and lowered by flat

space-time metric

01 0 0
o 10 0 0
o 06) = 59
n)G) =1 00 0 1 (5.2)
00 -1 0

and the tetrad vectors satisfy the equation g,, = e,(f)e(yj )

Ny)- In the formalism, we replace
tensors by their tetrad components and represent these components with distinctive symbols.
These symbols are quite standard and used everywhere in literature. It was Hermann Bondi
who first suggested the use of null-tetrads for the analysis of electromagnetic and gravitational
radiation since they propogate along these null directions. Some important features of NP
formalism are can be jot down as follows: (these are partially also the reasons why we adopted

this formalism to represent our equations)

e With NP formalism, equations can be partially grouped together into sets of linear equa-
tions (Newman and Unti, 1962)

e All are complex equations; thereby reducing the total number of equations by half

e [t allows one to concentrate on individual ’scalar’ equations with particular physical or

geometric significance.

e It allows one to search for solutions with specific special features, such as the presence
of one or two null directions that might be singled out by physical or geometric consid-
erations. Ex. it turns out to be a very useful tool in solving problems involving massless
fields etc.

e Newman and Penrose also showed that their formalism is completely equivalent to the

SL(2,C) spinor approach. [We are gonna follow SL(2,C) spinor approach]

e In NP formalism, equations are written out explicitly without the use of the index and

summation conventions.

e While dealing with Spinors on curved space-times, it becomes very easy to establish
the knowledge of physical/ geometric properties of complicated space-times (e.g. space-
time around Kerr black hole etc.) and the knowledge of various properties of Spinors
simultaneously in a common vocabulary of NP formalism. Various commonly occurring
space-times have been formulated in NP formalism in [6]. This point is the main reason

why we adopt this formalism.

The orthonormality condition on null tetrads imply I.m = l.m = n.m =n.m =0, [.[ =
n.n =m.m =m.m =0 and [.n = 1 and m.m = —1. The Ricci rotation coefficients (defined in

appendix [B.1]) for null tetrads are called spin coefficients and are defined as follows
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VW m)0) = () €(m) Vv €Du (5.3)

The covariant derivative defined in the above equation can be taken w.r.t both V, and U,

manifold. We are here interested in U,. Spin coefficients are denoted by following symbols
1

=000 P00 €= 50000 T70e)0)
1
c=20@  E=Emee 7= 50000 Freeo) 5.4
: .
A=1mee  TErR0n o= 50006 TrRe)
1

r=rmem  T=rme0 A= 50000 Hreee)

These are 12 complex spin coefficients, corresponding to 24 real components of v. We separate
the Riemann part and the torsional part from the covariant derivative of equation (5.3). The

result is

VD)) = €(n)€lomy V€M (5.5)
v W o Q o
— e(n)e(m) {(&&, — {MV} + KV# :|€(l)a
=0 m)m) + Kwm

In terms of the symbols (defined in equation (5.4)), we adopt notation of [34] where k = K°+ K
and so on for all the 12 spin coefficients. xk° denotes Riemann part and and x; denote torsional
part. The torsional part of spin coefficients (which distinguishes it from V}) is called Contorsion
spin coefficients. The spin coefficients and contorsion spin coefficients are given in the figure
(5.1).

The directional derivatives w.r.t these null tetrads are given by

D:”%w AZH“%% Fm“%:@ seml ey (56)
xr xr e

5.2 ECD equations in NP formalism

5.2.1 Notations/ representations and spinor analysis
e The Lorentz Signature used in this chapter is Diag (+ - - -)

e The 4 component Dirac-spinor is
PA
Qp

where P4 and Qp are 2-dim complex vectors in C? (also called spinors) Please see section

Y= (5.7)

for details. We use following notations for Dirac spinor components (consistent with the
notations of Chandra’s book [6]) P = F}, P! = [, Q' = G; and Q¥ = —Gs.
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k="mhy,l,

p=m'm"y,l,
o=m'mty, I,

T=n'mty,l,

e=1 PVl - m*7,my,)
EmP(n v,0, - mH,my)

%m“[n‘“ﬁ‘u!“ - m*V,my)

]

p
v =20y, 1, - mET,m,)

n=-m"y,n,
A=-mmty,n,
p=-m'm*vun,

p=-n' Y,

Ky =Kh“,;f?‘m“1”

py =Ky mh1”

oy =Ky mmt1”

Ty = Ky gyt m* 1"

€1 = 1 Ky IN(n1Y - m¥m")
a; = L Ky um™(nt1” - m*m")
By = 4 K putt™ (" - i*mi®)
7 =+ Ky (n* 1" - m*m")
m =—K;.Uwf?“ﬁ“n"

A

Ay ==Ky it n®

= Ko m#n”

vy = —KM,n""E'“n"

Figure 5.1: 12 complex spin coefficients their ‘torsional’ parts

e We define 4 null vectors (and their corresponding co-vectors) on Minkowski space

# = L 1,0,0,1), m® = —(0,1,4,0), m® = —=(0,1,4,0), n® = ——(1,0,0,—1)
= —=4LU Y y M- = —=\Y, 1, =1, , M- = —=\U, 1,1, , o= —F=(1,U,U,—
V2 V2 V2 V2
(5.8)
L = ——(1,0,0,—1) L 0.21,,0), iy = —2(0, -1, i, 0) L 1.0,01)
a— =L U U —=1), Mg = —=U, —1,17, y Mg = —=\Y, =1, =1, y Mg = —={1L,U, U,
V2 V2 V2 V2
(5.9)
We also define, what is called as Van der Waarden symbols as follows:
@ a a G
aa_\/il_ m] &“_\/5[”_ m] (5.10)
me no —mo @

e We use following representation of gamma matrices [its the complex version of Weyl

or chiral representation]

[0 @y
! ‘[w)* 0

] (a=0,1,2,3) where 7" = [0 H] , 7= [( O } (_gz)*] (5.11)

I 0 o)

The reason for choosing complex Weyl representation is the fact that the spinor and gamma
matrix defined in equation (5.7) and (5.11) gives us equation (97) and (98) of section (103)

given in Chandra’s book [6].

We want to keep everything in accordance with [6] as

a standard reference. (Equation (99) is the complex version of what we will get). For

representing equations or physical objects having spinors and gamma matrices on a curved

space time, we adopt Tetrad formalism. Using tetrads, we follow the prescription described

briefly in [31]. We summarize and comment on it as follows:-



Given a curved manifold M with all conditions necessary for the existence of spin structure.
Let U be a chart on M with coordinate functions (z®), then the prescription for representing
spinorial objects (objects with spinors and gamma matrices) is as follows:-

1) choose an Orthonormal tetrad field ef,,(2%) on U

2) Define the Van der Waarden symbols (the ¢(® and (@) in this tetrad basis exactly as
defined on Minkowski space in equation (5.10). Choose a representation of gamma matrix (we
will stick to the one chosen above in equation (5.11))

3) The o’s in local coordinate frame are obtained through following equation:-

mt  nt —mt ]

JZ M H o
au(xa):e5a)(xa)g<a>:¢§[ m] 5u:e@)5<a>¢§[” T] (5.12)

and similar transformation for and gamma matrix. So components of any world object
which is indexed by the components of gamma matrices or Spinors is now a func-
tion of chosen orthonormal tetrad. It is defined a-priori in a local tetrad basis [whose
components are exactly the same as defined on a flat Minkowski space] and then carried to
curved space via tetrad. (This is unlike a normal world objects which are first defined naturally
at a point on a manifold and then carried to local tangent space via tetrad).

Dirac equation on Vj has been studied extensively in NP formalism. It’s detail account can
be seen in [6](Dirac equation on V} is presented in equation (108)). We aim to modify these
equations on Uy. To this aim, we want to modify section 102(d) of Chandra’s book [6] to
include torsion in the theory and modify Dirac equation accordingly on U,. For calculating
covariant derivative of spinor, we require the spinor affine connection coefficients. They are
defined through the requirement that € 45 and ¢’s are covariantly constant. The whole analysis
remains as it is up till eqn (91) of Chandra’s book except, everywhere, the covariant derivative

would now be evaluated on U;. The covariant derivatives are defined as:

V. P*=0,P*+ TP (5.13)
V.QY =0,QY +T:5 Q" (5.14)

Here T" terms are the terms that add to the partial derivative while calculating the full
derivative of spinorial objects on Uy. Their values can be determined completely in terms of
Spin coefficients and we now evaluate its tetrad components. Using Friedman’s lemma
(proved on page 542 of Chandra’s book [6]), we can express various spin coefficients I'(q)(s)(c)(a)
in terms of covariant derivative of basis null vectors (which we had defined earlier viz. 1,n,m,m).
The covariant derivative here is exactly the same as defined in equation equation 3.3 (and
explicitly written in eqn 3.5) of [34]. We have also defined in (5.5). Using this covariant
derivative, it can be easily seen how equations (95) and (96) will get modified. For instance,
Chandra’s equations (95) and (96) gets modified as T'gooor = k° + k1 and T'y1010 = p° + 1.
Here the subscript 0 in x° and p° is just used to indicate the original x and p defined on Vj

as in, those original equations of Chandra’s book. Likewise, 12 independent spin coefficients
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are calculated in terms of covariant derivatives of null vectors and defined in tabular equation
(5.15).

00 01 or 10 11

00’ KO+ K1 | €+e | T+
Lo = : : ! (5.15)
10 po + £1 o’ + oy O + )\1
01’ 0% +o | B2+ B | u°+
11 T4+ | Y+ | v+

We note that, for generic case, all the 12 terms will have Contorsion spin coefficients.

5.2.2 Contorsion spin coefficients in terms of Dirac spinor compo-

nents

The spin density tensor of matter (S#**) can be written as a world tensor in U; made up

of the Dirac spinor, its adjoint, and gamma matrices:

—1he -
QHre 1 wv[ﬂfyl’va}w (516)

The ECD field equations show that T#* = kS** where T*" is the modified torsion tensor
defined in Eq. 2.3 of [2]. It can be shown that, for Dirac field, TH* = —K** = ES** as in

Eq. 5.6 of [3]. Here, k is a gravitational coupling constant containing the length scale 1, i.e.,
87er
The

following:

For the standard theory, l; = Lp;. Substituting (5.16) in the field equations, we obtain

KMo = kS = iy liyryoly) (5.17)

where the 7*’s are those defined in (7?), generalised with world indices using orthonormal
tetrads. We subsequently rewrite K#**® (of which only four independent components are excited

by the Dirac field) in the NP formalism; i.e., in the null tetrad basis, as follows:
KiG)k) = @mueiwera™ (5.18)

where e, = (I, ny, my,my,) for i = 0,1,2,3 To calculate the contorsion spin coefficients, we
need to evaluate the contorsion tensor with world indices as defined in (5.17). Consider the

product Y*+A~*, which is defined as:

a Bam
T <<aa>*<&ﬂ>*<o~>* 0

The explicit form of this matrix is fairly expansive, and a full treatment is given in Ap-
pendix A. Eventually, we substitute in for the Dirac bispinor (as defined in [6]), and obtain the
expressions for the contorsion spin coefficients in terms of the spinor components. We have,
for example, for p —

p=—Koye = —2V2rl}[FF — GG (5.20)
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All the contorsion spin coefficients can be found in a similar fashion. After evaluating those,
the eight non-zero spin coefficients excited by the Dirac spinor given in (??) — of which four

are independent — are as follows:
T = =201 = Koz = 2\/52'7?[%(172}71 + GoG)) (
™ = =20 = K3 = 2V2iml3(—F Fy — G1Gy) (
= =27 = — K193 = 2V2inl2(FLFy — G5Gy) (5.23
= —2€; = —Kops = 2V 2iml?(G1Gy — Fo ) (

From the above relations, we have:

= —pi (5.25)
p1=—p (5.26)
m o= +7] (5.27)
The table (5.15) is modified as follows:
b
, @O 00 | orer1o | 11
(©)(d)
00’ K —n1/2 +
L)@ = ) - 0= pif SCRaL (5.28)
10 po+p1 | g — /2 Ao
01’ 0o Bo—11/2 | po+
1 o+ T | Yo — p1/2 20

Next, we formulate ECD theory in the NP formalism. There are three equations in this
theory - the Dirac equation on Uy (known as the Hehl-Datta equation), the gravitation field
equation on Uy, and an algebraic equation relating torsion and spin. The algebraic equation is
given in 5.17. In the next two sections, we formulate the Dirac equation and the gravitation

field equations explicitly on Uy respectively.

5.2.3 The Dirac equation with torsion in the NP formalism

The Dirac equation on Uy (also known as the Hehl-Datta equation) is:

, mc Y
NV o = —9p = — 5.29
where V here denotes covariant derivative on Uy. Iy = % for standard theory. It can be written

in the following matrix form:

{0 @Gy prY 1 [pA
’<<a~>* 0 )V“ (%)‘zﬂzg (QB) 530

This can be written as a pair of matrix equations:

B Po : Al
0/(10 ‘7;0 A ! %/ =0 (5.31)
oby Oy P 221, \ Q

H , _ M , N . PO
‘712 ilo v, —Cg/ Lot =0 (5.32)
—001 Oy Q 2v/2ly \ P




Working out explicitly, the first equation is:

QY = ol V, P’ 4 ¢% .V Pt = (9o P° + Ty P*) + (D10 Pt 4 T, PY)

7
2v/2l5

= 2\/%[2 G1=(D+e—po)F1+ (6" +m — )2 + ;(Wlﬁé — k)

where we have used the gamma matrices as defined in (??), computed the covariant derivatives
using (5.13), (5.14) and the spin connections in terms of contorsion spin coefficients as given in
(5.28). Using this procedure (a full treatment given in Appendix B), the four Dirac equations

are obtained as:

(D + € — po) Fi + (6% + 7o — ) Fs + g(mFg — B = ib(l)Ch (5.34)
(A + 1o — 70) Fs + (5 + fo — 70) Fy + ;(ule L nE) = ib(l)Ga (5.35)
(D+ € — p2)Ga — (6 + 75 — al) Gy — ;ﬁgl — 1G) = ib(ly) (5.36)
(At = )Ch = (0" 4 5~ 7)Co = S(uGr —mC) = B()F (537

Substituting in the spinorial form of the contorsion spin coefficients in (5.21) - (5.24), we

obtain:
(D + €0 — pO)F]_ + ((S* + o — ao)F2 + i(l(ll)[(—Flpg — G]_G2)F2 + (F2F2 G Gl)Fl] = Zb( 2)G]_
(5.38)
(A + Mo — ")/O)FQ + (5 + 50 — To)Fl + Za(ll)[(Flpl GQGQ)FQ — (FQFl + GQGl)Fl] = Zb( Q)GQ
(5.39)
(D + 63 - pS)GQ - (5 + 7'['(3)k - CKS)Gl — ZCL(h)[(FQFQ — Glél)GQ + (F2F11 + GQG ) ] = Zb( Q)FQ
(5.40)
(A —+ [LS — ’}/S)Gl - (5* + BS - TE;)GQ — ’la(ll)[(F1F1 — GQGQ)Gl — (—F1F2 G GQ)GQ] = Zb( 2)F1
(5.41)
where a(ly) = 3v/27l? and b(ly) = 2%/51
These equations can be condensed into the following form:
(D + €y — p[))Fl + (5* + T — CY())FQ = Z[b(lQ) -+ a(ll)f]Gl (542)
(A + [o — ’Yo)FQ + (5 + 60 — T())F1 = Z[b(lg) + a(ll)f]Gg (543)
(A+pg —7)Gr — (67 + By — 70)G2 = ib(l2) + a(l)E"]FA (5.45)
where £ = F1G + F2Gs and €* = F1G1 + F5Gs.
5.2.4 The gravitation equation on U, in NP formalsim
The equation of interest here is (?7), reproduced here:
8ml? 1/8x2\* .
Gl () = T~ 5 (52 5500 (5.46)
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On the left hand side, we have G, ({}), which has been completely evaluated in the NP
formalism in [6]. There are two terms on right hand side — the first of these is the metric energy-
momentum tensor (7),,) formulated on Uy and is given by equation 2.57. In what follows, we
will give a prescription to compute the various components of 7, under the definition:

ther - - - -
T = = |09V + 62,V = Vo = Vim0 (5.47)

First, we choose a tetrad basis and construct Van der Waarden symbols as defined in (77).
using these, we construct Dirac gamma matrices in the complex Weyl representation as defined
n (?7?). Now, the expression for the covariant derivatives of spinors — see (5.13),(5.14),(??) —
can be expressed in terms of the gamma matrices, yielding:

T/w = 1/}'7u8u¢ + Zw(%ﬂ/ Vv, 'Va)qvb + ¢7Vau¢ + 11/}('%'7 v,u %)Ib

4
) 1 ) ) ) 1 ) ) (5.48)
- Mw’}/uw - ZWO‘V,{L}%W%w - azﬂ/”hﬂ/’ - Z(ﬁ_}/avi}ﬁa)w’)/uw

Here, the gamma matrices and other variables are expressed in the basis of null vectors
[,n,m and m. For the generic metric energy-momentum tensor 7, no further simplification
is possible. The expression for 7}, in the NP formalism will however simplify under certain
symmetries or specific conditions that the system in question is subjected to. For example, if
the background metric is 7,,, then (for illustration purposes) the 771, component of metric EM

tensor is given by:

_— _ ) )
TP — 42—\/% (z’Fg(é £ ONVFy — iF (5 + 8% Fy — iGa(6 + 6%)Gy + G (5 + 6)Ga

— iy (8 — 6)Fy — iF1 (6 — 0%) Fy 4 iGa (8 — 6*)Gy +iGy (6 — 5*)G2> (5.19)
— (6 + 0 )yl + (8 + 6%)iFL Fy + (0 + 6%)iGoGy — (6 + 6%)iG1 Gy

+ (6 — 6)iFy Py + (0 — 0%)iF1 Fy — (6 — 0%)iGaGy — (6 — 6*)i(_¥1G2>

With this prescription, we are able to evaluate all the components of 7}, achieving a
particularly simple form in the case of a Minkowskian background metric.

In (77?), we also have an additional term in terms of the spin density tensor, given as
47rl%

L S 2BAS sr. Using our expression for the spin density, we can evaluate this term:

4rl? —7l?he / - .
—— S A Sapr = — <W[“75 VA]@D) (@W{a’Yﬁ’YAW) (5.50)
hc 4
—wl2he /- oy s -

=— <wv[(”’y(”v(’“”¢) (WY[(i)’Y(j)’Y(k)W)) (5.51)
= 67ThCl%gHV(F1C?1 + FQGQ)(FlGl + F2G2> (5 52)
= 6mhcl}g,, 6 (5.53)
= 127?710[%([(,/1,,) - m(#my))&’* (554)

i.e., we find it turns out to be proportional to the £ parameter introduced.
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5.3 Summary of important results

e Dirac equation has been modified on Uy [5.42 - 5.45]

e Contorsion spin coefficients are expressed completely in terms of Dirac Spinor in section
(5.2.2).

e Prescription for formulating dynamic EM tensor and Spin density tensor in NP formalism

has been presented.

This work is based on the paper titled “The non-relativistic limit of the Einstein-

Cartan-Dirac equations” which is "under preparation" [17]
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Chapter 6

Conjecture: Curvature-Torsion Duality

6.1 Curvature-Torsion duality

In chapter (3), the idea of L is introduced. It asserts a symmetry between small mass
(m) and large mass (M), which give the same value of L.;. Both the masses enter the ECD
equations through the same L.;. The solution to the large mass M (for which mass density
and correspondingly the ‘curvature’ is dominant) is dual to the solution of small mass m (for
which spin density and correspondingly the ‘torsion’ is dominant). Both the solutions are
labeled by L.s; since it is the only coupling constant in the theory. Qualitatively, we call this
the ‘Curvature-Torsion’ duality. We want to establish this duality in the context of ECD

system of equations with L., and make this duality, mathematically more evident.

8mL? 1 8mL2g\> e
Gl () = T, G0 (TS ) S (6.)

. 3, - )
" = +gLestr 1 Y + g9 =0 (6.2)

This is the system of equations which we have to understand in details, find possible solutions,
put bounds etc. By ’a solution’, we mean 3 quantities - (¢, g, K) where g and K are metric
tensor and Contorsion tensor respectively. These quantities are the 3 independent fields in our
theory.

We know that affine connection is made up of Christoffel symbols and Contorsion tensor.
With this affine connection, we construct The total curvature tensor 'R’. It is composed of two
terms R? and Q. This notation, we adopt from [32]. It can be written as R = R° + Q. R°
is the usual Riemann curvature tensor expressible completely in terms of Christoffel symbols
and their derivatives and Q is expressible completely in terms of Contorsion tensor K. The full

equation is:

Raﬁuu(r) = Raﬁul/({}) + V;E}Kayﬁ - vi}KOé B + KauprulB - Kal/prpﬁ (63)

m

R=R'+Q--——-"—-—-——-——-——— Symbolic equation (6.4)
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Note that, in the symbolic equation, we have dropped the Indices here. The symbols shouldn’t
be confused with curvature scalar. Also, Curvature and torsion should be thought of as in-
dependent here. Q) has information about ‘torsion” and R has information about ‘curvature’.
In a completely torsion dominated theory (e.g. teleparallel gravity), R = 0; R® = —Q and
in curvature dominated theory (e.g. Einstein’s GR), Q=0; R = R". We know from chapter
(3), large masses contribute to gravity which is described by the curvature; determined by
levi-civita connection (that is R°). Torsion is negligible for large masses. Whereas, for small

masses, the total curvature is zero.

6.2 Establishing this duality through a conjecture

We know that, for a given L., a solution (if it exists) is valid for both LM (large mass
M) and its dual SM (small mass, m,). This leads to an apparent contradiction because ’one
solution” which fixes (1,g,K) can’t physically describe both, SM and LM. It will be physically
valid either for LM or SM as we expect the large mass solution to be gravity dominated, and
the small mass solution to be torsion dominated. This is possible only if for a given L., there
are two solutions, one that is curvature dominated, and another that is torsion dominated. To
account this, we propose the following conjecture: Assuming that a solution exists for a given
Les, we call it solution (1) [S1]; characterized by three curvature parameters [R(1),R°(1),Q(1)].
It is governed by equation R = R?l) + Q). Without loss of generality, we assume it to
be curvature dominated. Conjecture is that, given a solution(1), there exists a solution(2)
[S2] by construction; characterized by curvature parameters [R(2),R"(2),Q(2)] and governed
by R = R(é) + Q(2); such that

R — Q) = —[Rn) — Qu)l = Ry = —RY) (6.5)

This conjecture forces solution(2) to be torsion dominated. The properties of solution(1)
and solution(2) are summarized in the table below. In the large mass limit, Q(1) is zero and
we have the pure curvature solution R(1)= R°(1) (This is general relativity). In the small
mass limit, R(2) is zero, and we have the solution Q(2) = - R°(2) (This is teleparallel gravity).
Duality map implies that R(1) = Q(2). These ideas are discussed in details in [18].

Solution Governing eqn | Valid for | Dominated Physical for
by

Solution(1) Ry = R?l) +Qu | Mand m | 1) Curvature. | Large mass (M)

— 2) Ry = R?l)

Solution(2) R = Rl + Q@ | Mand m | 1) Torsion. 2) | Small mass (m)

- Rl = —Q)

This conjecture automatically provides a natural duality between curvature and
torsion for Large mass and small mass respectively. In terms of above vocabulary, we
summarize the curvature-torsion duality in figure below (6.2).

Here, we have plotted “R-Q” Vs. z =In [mﬂpl} ‘M’ and ‘m’ have same L,. For M, R° (or

equivalently ‘R-Q’) is positive and dominates as mass goes high. It is shown as “solution 1”
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Figure 6.1: Curvature-Torsion duality

[S1] in the first quadrant. In the limit of very high masses, curvature is fully given by Riemann
curvature tensor R°. For small mass m, R° (or equivalently ‘R-Q’) is negative and goes on
becoming more negative as as mass goes further low. As mass tends to zero, the total curvature
also tends to zero and torsion balances Reimann curvature tensor R°. Its solution is solution-2
[S2] in third quadrant. At m = m,, we have R-Q = 0 or R° = 0; where the total curvature
is sourced only by torsion. There also exists a unphysical “mirror universe” in which torsion
is sourced by torsion and curvature by large masses. It is shown by dotted graph which rolls

down from second quadrant to fourth quadrant.

6.3 Attempting Solution(s) for this conjecture to sup-

port the curvature-torsion duality

We proposed the Curvature-torsion duality conjecture in the previous section. At m = my,,
R-Q = 0 or R® = 0. One of the allowed solution to this is on Minkowski space with torsion.
So, we next attempt to find the solutions to ECD equations on Minkowski space with torsion
and test the duality conjecture. We also propose a ‘test’” which can make our claims falsifiable.
First we establish the ingredients of ECD equations on Minkowski space with torsion in this

section

6.3.1 Dirac equation (Hehl-Datta Equation) on Minkowski Space

with Torsion

Dirac equation on Uy; called as Hehl datta (HD) equations are written explicitly in equations

[5.42 - 5.45]. On Minkowski space with torsion, they are as follows (In NP formalism):
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In a Cartesian coordinate system (ct, z,y, z)' we have:
(Do + 03) F1 + (01 +1i05) Fy = iv/2[b(lo) + a(l1)€] G, (6.10)
(Do — D3) Fy + (1 — i02) Fy = iV2[b(l2) + a(h )]G (6.11)
(D + D5)Ga — (9 — i02)Gy = iV2[b(l) + a(ly)E*| Fy (6.12)
(80 — 83)G1 — (81 -+ ’lag)GQ = Z\/i[b(lg) + a(l1>£*]F1 (613)
In cylindrical polar coordinates (ct,r, ¢, z), we have:
r@tFl + €i¢’r’8rF2 + i6i¢8¢FQ + T’@zFl == ZT\/i[b(lg) + a(ll)S]Gl (614)
rO Fy + e rd, Fy — ie P04 Fy — 10, Fy = irv/2[b(ly) + a(l1)€] G (6.15)
r@tGQ — 6_i¢7“8 Gl + ie_i¢a¢G1 + cro GQ = \/E[b(lg) + (I(ll)g*]Fg (616)
T’atGl — 6 T'a G2 — Z€Z¢8¢G2 — 7“8 Gl ZT\/i[b(lQ) + a(ll)f*]Fl (617)
Likewise, in spherical polar coordinates (ct,r, 8, ¢):
ol ) i¢
O0iF + cos 00, Fy — SlneagFl + ie'¢ 68¢F2 + €' sin 00, Fy + ¢ COSG@@FQ = Z\[[ (12) + a(ll)f]Cﬁ
(6.18)
sin 0 ie~ , e~ cos
O Fo — cos 00, Fy — Oy Fo + 98¢F1 + e sin 00, F; — Ea— OgFy1 = iﬁ[b(lg) + a(l1)€]Ga
(6.19)
sin 6 e~ o e cos 6 . .
atGQ -+ cos 08TG2 — 89G2 — 08¢G1 —e —i¢ S11 68TG1 + T({%Gl = Zﬁ[b(lQ) + a(ll)f ]F2
(6.20)
8,G1 — cos 00,G — SlneagGl ie"? ——0yGa — €' 5in 00, G — ¢ CoseagGg = iv2[b(l2) + a(l1)€] Fy

(6.21)

6.3.2 The Dynamical EM tensor (7,,) on Minkowski space with

torsion

The dynamical EM tensor given in equation (2.57). On Minkowski space, it assumes the

following form:

T;W = Z(ul’)<{}> = ZT [w7u O + wﬁ)/z/ M 8u7;7u¢ - au&’)/ﬂw (6‘22)

!Setting ¢ = 1 by convention
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Its 10 components are given by following 10 equations:

T21 =

Tn =

Tys =

Tll =

T/ ) i . _ ) ) )
% (F131F1 + 0. Fy + G10,Gy + G201Gy — FY00Fy — FL0oFy + G90yG1 + G100Go

— 81F1F1 - 81F2F2 - 81@’1G1 — 81G2G2 + 80F2F1 —+ 80F1F2 — aOG2G1 _ 60G102>
(6.23)

ihe

= (F132F1 + F505Fy 4+ G105Gy + G202Go + i FY00Fy — iF100Fs — iG200G1 + 1G10yGa

— 0o F\ By — 05 F5 Fy — G105,Gh — 05GoGy — 100 Fo Fy + 100 Fy Fy + i00G2G1 — iaoGle)

(6.24)
e [ ) . ) ) ) ) )
% (F133F1 + F505F5 + G105G + G905Go — F100F + Fo00Fs + G10yGh — G20yGa
— P\ F) — 05 FyFy — 05G1Gy — 05G2Go + O FLFy — 0o FoFy — 9,G1 G + 30G2G2>
(6.25)
ithe

= (1F231F1 — B 01 Fy — iGe01Gy + iG101Gy — FyOoFy — F10oFy + Go0yG1 + G10Go

_ i81F2F1 + i&lplFQ + i81é201 — i@léng + 82F2F1 —+ 82F1F2 — 82G2G1 _ 82G1G2>

(6.26)
7 . ) . _ ) ) ) )
_ %( — FLOFy + Fy00 Fy + G101G — Go01Gy — Fy03F) — F105Fy + G203G1 + G103Go
+ OV Fy — O FyFy — 0,G1Gy + 01GoGy + O3 Fo Fy + 05 Fy Fy — 03GoGy — 33G1G2)
(6.27)
%( — FL\0yF) + Fy00Fy + G102G1 — Go0sGo + i Fh05 ) — iF 05 F — iGo05G + 1G105G5
+ OV Fy — OBy Fy — 0,G1GY + 05GoGy — 1035 Fy + 105 FL Fy + 105G Gy — i83G1G2>
(6.28)
T/ ) i 7 ) ) ) )
% (G1(90G1 + G900Gy — 00G1G — 0yGoGy + FLO0F) + Fy00Fy — Oy F) — 80F2F2>

(6.29)
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(6.30)
Ts3 = %C (z‘FZaQFl — i F105Fy — iG205Gy + iG105Gy — 102 Fy Fy + 105 Fy Fy + 10:Go Gy — zagélag)
(6.31)
- ) ) ) ) ) ) ) )
(6.32)
6.3.3 Calculation of the Spin density part which acts as a correction
to ,Tij

The second term on RHS of equation (A.11) on Minkowski space is given as 4”(253)2 175 Sape

which can be written as

Ar]2 . o _
%musams&m — Grhel?n,, (FiGy + FoGo)(FiGy + FyGa) = 6mhelg,,£€° (6.33)

6.4 Solutions to HD equation on M, with torsion and

testing duality conjecture

6.4.1 Attempting a non-static solution by working in 1+1 dimen-
sions

In the following analysis, we will assume an ansatz of the form F; = Gy and F; = G, and

further assume that the Dirac states are a function of only ¢t and z. The four equations — in

Cartesian (6.10) - (6.13) as well as cylindrical polar coordinates (6.14) - (6.17)) — reduce to the
following two independent equations?

1a

by + O:1py — iV2bhy + —=(|0a]* — [¢1*)er = 0
\f (6.34)
Ohs + O + V200 + —=(|tn]” — [¢a]*)th2 = 0
V2
where 1y = Fy + Fy and ¢y = Fy — F,. Writing v/2b = —m and a = 2v/2), we have:
Oy + 0,009 + i + 20\ 2P =0
)y o + imapy ? (W2| Wl\ Wl (6.35)

Oz + O:tp1 — itz + 20N ([r]” — [a*) 12 = 0

2We note that & = 2Re(F| ), thus ¢ = ¢*. Furthermore, a and b are henceforth shorthand for a(l) and

b(l).
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These equations are identical to those studied in [48], which investigates the convergence
and stability of the difference scheme for the non-linear Dirac equation in 1 + 1 dimensions.

Proceeding as in [48], we use the following solitary wave ansatz:

() A(z) it
v (w) - (z‘B(z)) (630

where A(z) and B(z) are real functions. Substituting in, we have:

B — (Vab+ NA— (A2 - BHYA=0

\? (6.37)
A'— (V2b—A)B — E(A2 — B)B =0
which admits the following solutions:
Alz) = —i23/4(\/2b — A) \/ (v/2b 4 A) cosh(zy/202 — A2) (6.38)
v Ja (A cosh(22v/20% — A%) — /20 '
B(:) = —i23/4(\/2b + A) \/ (v/2b — A) sinh(zv/20% — A?) (6.30)

Va [A cosh(221/2b% — A?) — \/20]
It can be seen upon the substitutions A = 0.5 (equivalently a = v/2) and m = 1 (equivalently
mo = —1), that this is a generalisation of the equations for A(z) and B(z) in [48](see section
IIT). A similar solution is found in [39], with a(l1) = a(L,;) and b(l2) = b(\.).
In terms of the spinor components:

G (202 — AZ) [—i23/4 (v2b — A) cosh(2v/2b2 — AZ)  93/4 1/ (v/2b + A) sinh(2v/202 — A2)
=Gy = +
' 2 2 [ va  [Acosh(2zv/2b% — AZ) — \/2b] va [Acosh(22v/202 — A2) — \/20]
(6.40)
b G (202 — A2) [—i23/4 (v/2b — A) cosh(zv/2b% — A2)  93/44/(v/2b+ A)sinh(z/2b% — A2)
2o 2 [ va  [Acosh(22v/202 — A?) — \/20]  Va [A cosh(22v/202 — A2) — /20
(6.41
and the parameter ¢ characterising torsion takes the form:
¢ = —2v/2(20* — A?)(v/2b — A cosh(221/20% — A?) (6.42)

a[A cosh(22v/202 — A2) — /2b]?

The probability density is given by the zeroth component of the four-vector fermion current
G0 = Py = ey = 2(|F1|2 + ]F2|2> = (|A|2 + |B|2) For the subsequent analysis, we define
the following dimensionless variables:

p:\/ibz
L A
V2
Alp) = Xrac) (6.43)
. Ja
0 =)
=" =0

B
B



With these definitions, we have [p] = [w] = [A(p)] = [B(p)] = [}°] = 0; ie., all these
quantities are now dimensionless. Scaled thusly, A(p) and B(p) take the form:
21(1 + w) 4/b(1 — w) cosh(pv1 — w?
Alp) = ( ) VI ) coshy ) (6.44)
va  (wcosh(2pv/1 — w?) + 1)
2i(1 — w) \/b(1 + w) sinh(pv1 — w?)

Bly) = va  (wcosh(2pyv1 —w?) + 1) (6.45)

There are six unique cases (corresponding to values of w) which give different solutions. In

each case, we will consider torsion-less limit (the linear Dirac equation) in order to compare and

contrast the behaviour. The equations and plots for the linear case can be found in Appendix D.

Case I: w € (—o0, —1)

The equations reduce to:

T Deosp/ )

Alp) =il +w) (1 — |w| cos(2pvw? — 1))

o — it Y T Dsinpya 1

Blo) =il =) v = 1) (6.47)
0 (w + 1)2(Jw| + 1) cos?(pv/w? — 1) + (w — 1)?(Jw| — 1) sin®*(pv/w? — 1)

;= (1 — |w|cos(2pvw? — 1))? (6.48)

(6.46)

(6.49)

Comments: This solution has an infinite number of singularities placed periodically at non-zero
values of p, and is clearly unphysical. An example of this case (with w = —2) can be seen in
the left column of Fig. 6.3.

Comparison with torsionless case: For w € (—oo,—1), the linear Dirac equation gives plane
waves solutions, which are physically meaningful, and the probability density fluctuates sinu-
soidally. It is the addition of torsion that makes this case unphysical. A plot has been made
(for w = —2) in Fig. C.1.

Case II: w = +£1 (trivial case)
The equations reduce to:
A(p)=0  Bp)=0 j°=0 (6.50)

Case III: w € (—1,0)

The equations reduce to:

. . " V(1 + |w|) cosh(pv1 — w?) (6.51)
(1 — |w|cosh(2pv/1 — w?))

5 (o) — i1 — (1 — |w|) sinh(py/1 — w?)

B(p) = i(1 —w) (1 Tolcosh oy —o7) (6.52)
0 (w4 1)*(Jw| + 1) cosh?(pv/1 — w?) + (1 — w)?(1 — |w]|) sinh?(pv/1 — w?)

7= (1 — Jw|cosh(2pv1 — w?))? (6.53)
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Comments: This solution has two singularities placed symmetrically around the origin at two
finite (non-zero) values of p. In the infinite limit, it decays to zero. However, owing to the
presence of singularities, we may still conider it an unphysical solution. An example (with
w = —0.5) can be seen in the left column of Figure. 6.4

Comparison with torsionless case: For w € (—1,0) the linear Dirac equation has unphysical
solutions. The solutions grow exponentially to infinity as p — +o0o. For w = —0.5, this so-
lution is plotted in Fig. C.1. As can be seen, for this case, both the linear (torsionless) and

non-linear (with torsion) Dirac equations give unphysical solutions.

Case IV: w =0

The equations reduce to:

A(p) = icosh(p) (6.54)
B(p) = isinh(p) (6.55)
7° = [cosh?(p) + sinh?(p)] (6.56)

Comments: This solution blows up exponentially as p — +o00. Thus, it is clearly unphysical.
This case (with w = 0 has been plotted in the right column of Fig. 6.4

Comparison with torsionless case: For w = 0, the linear Dirac equation is unphysical. The
solutions exponentially increase to infinity as p — +00. A plot of the solutions (for w = 0) is
available in Fig. C.1. Thus, for this case, both the linear and non-linear Dirac equations give

unphysical solutions.

Case V: w € (0,1)
The equations reduce to:

. V(1 —w) cosh(py1 — w?)

Alp) =il +w) (1 + wcosh(2pyv/1 — w?)) (6.57)
Bp) = i(1 — w) (1 + w) sinh(pyv1 — w?) (6.58)

(1 +wcosh(2pv1 — w?))

50 (1 +w)?(1 — w) cosh?(pv/T — w?) + (1 — w)?(1 + w) sinh?(pv/1 — w?) (6.50)

(1 4+ wcosh(2pv1 — w?))?

Comments: In this case, we have no singularities anywhere. All the functions (including the
probability density) asymptotically vanish. Therefore, this case represents a physically viable
solution. Depending on the exact nature of solution, we can consider two sub-cases: (a) with
w € (0,3) and (b) with w € [3,1).

We see that (a) has a local minimum at the origin and two global maxima symmetric around
the origin at non-zero p. A plot is provided in Fig. 6.2 (in blue). On the other hand, (b) has
global maximum at the origin and monotonically decays to zero at infinity. Two examples of
this can be seen in Fig. 6.2 (in orange and green). The solution for case (b) resembles a ‘blob’;
further analysis of this can be found in the discussion.

Comparison with torsionless case: For w € (0,1) the linear Dirac equation gives unphysical
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solutions. The solutions increase exponentially to infinity as p — 4+o00. A plot of this solution
(with w = 0.5) can be seen in Fig. C.1. The addition of torsion, as seen, makes the solutions

physically meaningful.

Case VI: w € (1,00)
The equations reduce to:

~ V(w — 1) cos(pvw? — 1)

Alp) = =1 +w) (1 + w cos(2pvw? — 1) (6.60)

B — (1 — v (w+ 1) sin(pv/w? — 1)

Blp) =~ ) (1 4 w cos(2pvw? — 1) (6.61)
50 (14 w)?(w — 1) cos?(pvVw? — 1) + (1 — w)*(w + 1) + sin*(pv/w? — 1) (6.62)

(1 + wcos(2pvw? — 1))?

Comments: This solution has an infinite number of singularities placed periodically over non-
zero values of p, and is thus clearly unphysical. A plot (with w = 2) is given in the left column
of Fig. 6.3

Comparison with torsionless case: For w € (1,00) the linear Dirac equation gives (physically
meaningful) plane waves solutions. The probability density fluctuates sinusoidally. The addi-

tion of torsion makes this solution ultimately unphysical. A plot (with w = 2) is available in

Fig. C.1.

The following table summarises the various cases:

Cases | Solution(s) of the linear | Solution(s) of the Dirac
Dirac equation equation with torsion
Case I | Physical (Plane wave) Unphysical (infinite singu-
larities)
Case II || Trivial solution Trivial solution
Case III || Unphysical (blows up expo- | Unphysical, (two singulari-
nentially at infinity) ties)
Case IV || Unphysical (blows up expo- | Unphysical (blows up expo-
nentially at infinity) nentially at infinity)
Case V| Unphysical (blows up expo- | Physical (No singularity)
nentially at infinity)
Case VI || Physical (Plane wave) Unphysical (infinite singu-
larities)
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[5-B] Case V:Plotof A{p)Vs.p

[£-J] Case V: Plot of ’(p) Vs.p

0.8

=
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Probability Desnsity J°{p)

ey

0.0

Figure 6.2: Case V. In all plots: Green: Case V(a) with w=0.75], Orange: Case V(a) with
w = 0.5, Blue: Case V(b) with w = 0.25. Case V(a) has global maxima at origin. Case V(b)
has local minima at origin and two maximas at two symmetrically opposite sides of origin at

non-zero p. Both cases V(a) and V(b) are asymptotically vanishing.
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Figure 6.3: Case I and Case VI. The left column shows plots for Case 1 with w = —2. The

right column shows plots for Case 6 with w = +2. Both the cases have unphysical solutions.
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Figure 6.4: Case III and Case IV. Case III on the left, with w = —0.5.
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right, with w = 0. Both the cases have unphysical solutions.
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(I' — S),, for non-static solutions in 1+ 1 dim (¢, 2)

[ 2 2 a[AE_BE]Q
(A[A + B%] — NG ) 0 —AAB 0
a[A2—B?]?
0 (T) 0 0
(T_S)MV = he a[A2—B?)2
AQ 32]2
0 0 0 ([AB’ BA'] + T
) (6.63)
A is a free parameter in the solution.
6.4.2 Attempting plane wave solutions
We begin by substituting the following plane wave ansatz in (6.10 - 6.13) as follows:
F1 UO
F. v
= | et (6.64)
G1 Vo
Gy U1/
With this ansatz, ¢ and &* are as follows:
¢ =ulty (6.65)
& =u"vy (6.66)
We assume £ to be a real constant such that
+1
§ =& = ——=; For some constant length [, (6.67)
12703
Putting the above ansatz in (6.10 - 6.13), we obtain (with u(¢) = v/2[b(ls) + a(l1)€]):
(k?() —f- k’g)uo —I— (k?l —I— Zk?g)ul — ,u(f) 70/ = O (668)
(ko — k3)u' + (k1 — iko)u® — pu(&)vy =0 (6.69)
(ko + kg) 1 — (kl — ikz)?_]o/ — M(E)ul =0 (670)
(k’o — k’g) o — (kl + ’L.k’g)?jll — ,u(f)uo =0 (671)

Note that u here is a function of £, which remains a undetermined quantity until a complete
solution is obtained. Ensuring £ is a real constant however restricts us to a small and rather
specific class of solutions.

We can write the equations in matrix form:

(/{70 + kg) (k’l + Zkz) —/J(f) 0 UO 0

(]{71 - Zk?g) (]{70 - ]{?3) 0 —,u(f) Ul . 0
0 w® it otk ||a] [0 O

—,u(f) 0 (k‘o — ]{33) —(k’l + Zk’g) V1 0
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The first assumption we make is that k; = ko = k3 = 0; this is equivalent to working in a

rest frame. The matrix equation then reduces to:

ko 0  —ul&) 0 u® 0
0 k 0 — ! 0
0 —,U/(f) 0 ko Vo 0
—/L(f) 0 /{30 0 Uy 0
For a solution to this system, we need a null determinant. In other words,
(kg — 1(§)*)* = 0= ko = £p(¢) (6.74)

By considering Sign(§) and Sign(u(§)), we have four broad cases:

Case I: ¢ = L and ko = +pu(§)

12713

In this case, the most general solution is given by

SRS S (K RS P
¢(I) \/Tﬂ'l% <¢> € (675)

1 0
where ¢ = &% (()) —l—% <1> such that | |4 |5;|* = 1. For all finite [y, only positive frequency

solutions exist. We can explicitly write:

ko — () — (Q‘*@b) (6.76)

2030,
Case II: ¢ = =L and ko = —pu(€)

12713
1 .
Yan = (¢> e iH©)lwo (6.77)

The general solution is:
V12ri3 \ ¢

1 0
with ¢ = <& (0) + \% <1> such that |a;|?+|8;1|* = 1. For all finite Iy, only negative frequency

solutions exist. We can explicitly write:

Amz—ma:—<@+ﬁh> (6.78)

2031,
Case III: ¢ = =212 and ko = +u(€)

127l
We will first evaluate kg, given as:

. (B .
0

For I3 > 21, (case I1I(a)), we have a positive frequency solution, whereas for I3 < ?l5 (case

ITI(b)), we have negative frequency solution. The generic wavefunctions can be written as:

Yri(a) = N (—p) ellu(®lao 3> Il (6.80)
1 P —1 T
Yy = N (—p) eIk ®)leo I3 < Il (6.81)
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1 0
where p = 2 (O) + \'% (1) such that |as|* + |5e]* = 1.

Case IV: ¢ = =L and ko = —p(€)

12713

First evaluating kq:

T O R
ko = —p(§) = 20, (6.82)

For I3 > 21, (case IV(a)), we have a negative frequency solution and for I < I3l (Case

IV(b)), we have a positive frequency solution. The generic wave functions in this case are:

1 P —1 x
Yrv(a) = N (_p) e~ il 13> 121, (6.83)
brv(s) = N (_p) eflu@lzo 13 < 12l (6.84)

1 0
where p = % <0> v <1> such that |ag|? +[fa[* = 1.

Now, in the case of vanishing torsion (i.e., in the limit of a(l;) — 0, we are left with two
cases for kg, viz. ko = £u(€) = £v/2b(ly), with corresponding positive and negative frequency
solutions.

This analysis was done in the rest frame of the plane wave (where the velocity of wave

propagation is zero). However, it can be generalized by boosting the 4-momentum vector as

follows:
ko E
0 k
= =k (6.85)
0 ks
0 ks

where ko, £ > 0 and E? — k} — k3 — k3 = k2.

Similarly, the generic spinor, represented in the rest frame, transforms as follows in the

[cbl] pikomo 1 [\/R%] otk (6.86)

s N

This scheme can be applied to all the four cases to obtain generic results; the general nature

boosted frame:

and properties of the solution do not change significantly.
Ultimately, we find that the spatial behavior of the Dirac state, probability current and the

tensor (1" — S),, is either sinusoidal or constant over all of space.

6.4.3 Solution by reduction to (24+1) Dim in cylindrical coordinates
(t7r,¢)

We put z-dependence to zero in the equations [6.14 - 6.17] and get the following equations:
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rOF) 4 crd, Fae' 4 icOyFoe® Fy = ierv2(b + a&)Gy (
ro Fy + cro, Fie @ — ic@¢Fle_i¢ = icrx/i(b + a&)Gs (6.88

rd,Go — crd,Gre” " + z'c@d)Gle’M’ = z'cr\/é(b + al")Fy (

10;G1 — crd,Gae'® — icOyGae' = icr\/i(b +al")Fy (

We take the ansatz, Fy = G5 and F} = -G,

r@tFl + T@TFQGM + i@¢F2€i¢ = —ZT’\/E(b + a§)F1 (691)
ro Fy + 1o, Fie ™ — z'8¢Fle’i¢ = z"r\/i(b + a&)Fy (6.92)

We choose following ansatz in the above equation

Fy

n (6.93)

Putting this ansatz in above equations, we obtain the 2 differential equations as follows:

—rBw + 1o, A+ é = rV2[b+a(B*— A?)B (6.94)
B
rAw + ro.B + 5= rvV2[b+ a(B? — A%)]A (6.95)

We add and subtract above 2 equations and put following in it:

Y1 = B(r) + A(r) 6.96)
Yy = B(r) — A(r) 6.97)
And we obtain:
—rwipy + rp) + % —rvV2(b+ aipe)th; =0 (6.98)
rwipy + Pl + % +rV2(b + atiha)hy = 0 (6.99)

We aim to solve this system of equations. With w = 0, We get

’ [ coeV20 ] ’ ey, (Z757) (6.100)
1= T 1—2v3ac | 2 = .
r(%) C2

This is clearly unphysical because v; blows up V non-zero cs; and making ¢, zero blows up ,.
So, we conclude that, static solution to the above system of equation is unphysical.

So w can’t be zero. Some further attempts to solve it numerically are given in Appendix.
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6.4.4 Solution by reduction to (3+1) Dim in spherical coordinates

(t7r’9’¢)

We begin by putting following ansatz in HD equations with spherical coordinates:

F R_ %(T)S %(9)6+Z¢/2
B| | Ra®)Sa@)e?|
Gi|  |Ry1(r)S s (0)er
Co]  [Ry(1)S 3 0)

With this ansatz, equations [6.18 - 6.21] take the following form:

sin 8

2rsin @

( —iwR_15_1 + cos HR’_lS,% —

=iV2(b+al)R,1 S

2

IO\H

0 1
(—inJréSJr; —COSHRQF%SJF% + Sli RJF;S:L 27’81n9R 1S 1 +sinOR" S L
= iV2(b+ af)R_1(r)S,1(0)
sin 6

—3+1

. /
(_ZWR—§S+§ —|—COS¢9R7%SJ’_% — gt

= iV2(b+ a&") Ry 1 (r)S,1(6)

1
RS +—R .S 1 SiIlQR;lS_;—
T P} 2

(6.101)

(6.102)

0
cos R .S

T 2

(6.103)

0
cos RS

(6.104)
WR. 1 (r)S_1 (0 or S, + 2R L _p.s, OR S, cosf
— W +%<7") 7%( )—COS _,'_% 7%4— , +% _% m 1 1—sm 1—7

:Z'\/E(b-f-af*)R_%S_%
(6.105)

Where

ng_%S_%R_,,_%S_%+R+%S+%R_%S_% (6.106)
f*:R,%SL%RJF%SL%—|—R+%S+%R7%57% (6.107)

6.5 Summary

e Curvature-Torsion duality conjecture presented.
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Formulated the ECD theory on Minkowski space with torsion.

Solution to Dirac equation on M, with torsion by reducing the problem to (141)- Dim

found. However, it cannot make T-S vanish for any values of free parameters.

Plane wave solutions to Dirac equation on M, with torsion exist. Explicit expression of
plane wave solutions with only time dependence found. However, it cannot make T-S

vanish for any values of free parameters.

Solution by reducing the problem to (2+41)-Dim attempted. Equations are presented.

However solution is not found yet. More has been discussed in chapter (7)

Solution by reducing the problem to (341)-Dim attempted. Equations are presented.

However solution is not found yet. More has been discussed in chapter (7)
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Chapter 7

Discussion

7.1 Conclusions and outlook

# As discussed in (1.2.1), we found the non-relativistic limit of Einstein-Dirac system [That
is self-gravitating Dirac field on V| with generic metric and found that it indeed reproduces
the results of [19] viz. at leading order, the NR limit is Schrodinger-Newton equation. In short,
We generalized their work (by considering generic metric). Next, we found the NR limit for
Einatein-Cartan-Dirac system [That is self-gravitating Dirac field on Uy]. At leading order,
it also turns out to be Schrodinger-Newton equation. This suggests that, at leading order,
there is NO effect of torsion in the non-relativistic limit. So in order to experimentally probe
the effects of torsion, we will have to go higher orders. Our method of finding NR limit also
provides a prescription for finding the correction terms due to torsion. When we compare
it with Einstein-Dirac system, we can analyze the orders of the coupled equations which are
altered due to torsion through this prescription. This has huge implications for anyone who
would like to design experiments to detect torsion in future. This was all w.r.t standard ECD
theory (as in, ECD with standard length scales as couplings). We also have some interesting
results after we take the NR limit of ECD equations modified with L.,. In high mass limit,
we obtain Poisson equation with delta function source. We showed that, this result is valid
for all energy levels; not only in Non-relativistic limit. This has interesting implications. We
know from [15] that very large masses are highly localized (In terms of their wave-function, it
is already in a collapsed state). So it behaves classically. Hence, we obtain Poisson equation
with delta function source (localized source for point particles) even for relativistic case. This
is consistent with ordinary GR and Newton’s law. It proves that, the modification of theory
with L. is consistent with the known theories in large mass limit. In the small mass limit
however, since L., goes as 1/c as opposed to 1/c¢? (which was the case with large mass limit),
we find that Poisson equation is V¢ = 0. So for m < my;, we find that, gravitational field
as well as quantum state vanishes at 1/c?. This gives a falsifiable test for the idea of L.
Gravity between very small masses would be weaker than the predictions of GR if one does an
experiment to test the inverse square law between the pair of very small masses.

# In chapter (5), we formulated ECD theory in NP formalism. Dirac equation is modified on
U, and presented in NP formalism in equations [5.42 - 5.45]. We also provided the prescription
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for finding the expression of EM tensor in NP formalism and also calculated the spin density
term which acts as a correction to the dynamic (and symmetrical) EM tensor; together which
contribute to the Einstein’s tensor made up from Christoffel connection. Contorsion spin
coefficients in NP formalism are also expressed in terms of Dirac state.

# Chapter (6) discusses the curvature-torsion duality. As we have mentioned in chapter
(3), the idea of L.s naturally hints towards a symmetry between higher and lower masses. In
this chapter, we have made this duality mathematically more evident through a conjecture.
One way to test the conjecture is to find the solutions on Minkowski space with torsion and
test the components of tensor “T-S”. This tensor doesn’t vanish for the 2 solutions which are
presented in section (??) and section (?7). So these solutions do not support our conjecture.
Solutions by reducing the problem to (241)-Dim and (3+1)-Dim are under investigation. The
big picture which Curvature-torsion duality presents, has been discussed in details in an essay
submitted to Gravity research foundation. It can be looked up in [18].

# Solutions to linear Dirac equation on Minkowski space has been studied extensively. In
this work, we attempted finding solutions to HD equations on Minkowski space with torsion.
We wanted to see whether presence of torsion induce any non-trivial (and physically relevant)
modifications to the solutions for linear (non-torsional) case. Solutions after reducing the
problem to (1+1) dimension in the variables (¢, z) were found. We found a finite parameter
range w € (0,1), where this solution vanishes at infinity in the non-static case and has finite
maxima (or finite local minima) at orgin. For w € (1/3,1), the solution (and the probability
density) decreases monotonically from a finite value at center and asymptotically reaches zero
at infinity. This is the sought after finite solution - the ‘blob’.

7.2 Future plans

e Continue the self-study of gravitational theories with torsion from both theoretical and

experimental perspectives.

e To find the non-relativistic limit of ECD equations with new length scale L.s for the
masses which are comparable to plank mass. We speculate that it will be something

different from Schrodinger-Newton equation.

e To understand the implications of the idea of L. (in its low mass limit) in the known
theories of particle physics. In its low mass limit, Dirac equation has cubic non-linear
term with \. as coupling constant. It can be tested against known experimental data and
also to make quantitative predictions for the new experiments. Another plan is to work

on the falsifiable test for the idea of L., presented in the first paragraph of discussions.

e To find a solution to Hehl-Datta equation on Minkowski space with torsion (either by
continuing the study of reducing the equations to 241 Dim and 3+1 Dim as mentioned in
sections (6.4.3) and (6.4.4) or by some other method) such that the tensor “T-S” becomes

zero. The aim is testing the hypothesis of curvature-torsion duality.
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Appendix A

Results of Long calculations used in
Chapter 4 - Non-relativistic limit of
ECD equations

A.1 Form of Einstein’s tensor evaluated from the generic

metric upto second order

We have used the ansatz for metric [defined in equation (4.3)]

(@ 77;w+2( )

The metric and its inverse, up to second order, can be written as following;:

G = T + (@)g[” +< )gw+20< ) (A1)
g = — (@)Quum _ ( h ) " [1]9,61/[1] + ] 4 Z O<Cn> (A.2)

We evaluate Christoffel symbols, Riemann curvature tensor, Ricci tensor and scalar curvature
up to second order using above 2 equations and obtain Einstein tensor at the end. Einstein’s

tensor G, is then given by

7 A
G = <\/__> Gl + ( )G[2 (A.3)
C
Where
1 1
Gl = QDQW where gl —ngi—Qmwg” g = (" gll)) (A4)
1 1 )
Gl = QDQW +f(glY)  where g = gP — 277,“/9[2]; g% = (" gl2)) (A.5)

1]

f is a function of g, and is given by following equation:
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|
flghl) = 1[2@9[”8”9[” — 20" gWa\glll — 89,900, g5" — 0,90 Drgn 1+

09007 g5, + 0,900, 08" + 0,90 Drg — 8”92[1]8/)9[;/1]

[ 29" mang 2,0 gy g — 0,020,951 — 0,921 0y g1

+0,00007g) + 0,918,651 + 9,9 W g2l — ayg,i[”f?pgmm]

A.2 Constraints imposed on metric due to asymptotic

flatness condition

1]

A.2.1 Constraint on g,

). Off-diagonal components of G,[},], is zero.

First we analyze the off-diagonal form of g[
This implies (for off-diagonal components alone), from equation (A.4), Ogy,, = Dgﬂ, = 0.
Non-trivial solution to this equation (which is a gravitational wave solution) doesn’t respect
asymptotic flatness. So the only solution allowed is trivial solution viz. g;[}z]/ = 0. Now, for

diagonal components, we assume the metric form to be the most generic:

Moo 0 o0
w0 A0 o
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Jw = 0 0 ?Eu 0 (A.6)
o o0 o f&
gy = IR a7
gl = SR ;fsm — i (A.8)
VLS MR o
gl — M ;fzgl] — 13 (A.10)
And the fact that Einstein’s tensor is zero for all the components implies,
o~ oL oot ot =0 (A
Ogl = 02 R . s i Mot =oit+ o (A.12)
Ogl) = 02 R . 2 -1 —0=0OfM + o = o + oflt (A.13)
oo - oA oo ool



One should note that individually, [ fi[l] = 0 only implies fim = 0 (no wave solution allowed)
Even fi[l] = constant is NOT allowed as constant solution also contradicts asymptotic flatness.
Equations (A.12), (A.13) and (A.14) imply that

o0f =0 = A1 =" +a (A.15)
O =0 = M= 4, (A.16)
ofl! =g = M = /M4 ¢ (A.17)

However, all the constants ¢, ¢o, ¢35 should be zero [As constant + asymptotic flat function can’t
give overall asymptotic flat function]. Now, equation (A.11) implies, 40 flm 0= f; =
Hence all the functions fim =0V i HENCE

g/[}i =0V u,v (A.18)

A.2.2 Constraint on g,[ﬁ

Here also, first we analyze the off-diagonal form of g;[?l}, Off-diagonal components of GEI],

[

is zero. This implies, from equation (A.5), ng = Dg,fyl = 0. Non-trivial solution to this

equation (which is a gravitational wave solution) doesn’t respect asymptotic flatness. So the
(2]

only solution allowed is trivial solution viz. gu, = 0. Now, for diagonal components, we again

assume the metric form to be the most generic:

Moo 0 o0
2
o £ 0 o
g (A.19)
o o f& o

o 0o o fP

gl =

2] P P P

Joo = 5 (A.20)
i - l[Q”fQ[m;f?]— & a2
g - MBI (A2
g2 = 1[2}+f4[2};f2[2]— 5 (A.23)

And the fact that Einstein’s tensor is zero for all the components except ‘00’ component implies,

[2] + f22] + f[2] ff}

Odts = O > — O+ O + O + Of2 # 0 (A.24)
[2] 2] 2]
0% =o =t G N 0P + o = o + Of? (A.25)
2
[2] 2] 2]
0g =o =t S 0 o+ o = o+ off (A.26)
2
[2] 2] 2
Ogl = Ot + 1) 2f2 s oo = op + og (A.27)
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Equations (A.25), (A.26) and (A.27) imply that

07 =087 = 7 = 7 (A.28)
0" =0 = 1 = 17 (A.29)
0 =07 = i = 1 (A.30)

[we have already seen why addition of constant to above solution contradicts our claim of
asymptotic flatness.] With equations (A.28), (A.29) and (A.30), we find that f[Q] [2] =
(2] _ g2 _ F(r,1t)

3 — J4 » ).

F(r,t) 0 0 0
0 F(rt) 0 0
2 _ ) A31
T 0  F(r,t) 0 (A.31)
0 0 0  F(r,t)
A.3 Metric and Christoffel symbol components
The form of metric defined in equation (4.42) is as follows:
14 2EGD 0 0 0
0 —1+4 2D 0 0 < 1
, = ¢ + O<—> A.32
M 0 0 14 hF(r t) 0 HZ:?) cn ( )
0 0 0 14+ fF(r hE(r,t)
1 — M) 0 0 0
0 —1 - 2ECH 0 0 = 1
w ¢ O(—) A.33
9 0 0 1 ﬁFc(Qr,t) 0 + ; cn ( )
0 0 0 —1 — M)

Christoffel Connection:

The non-zero Christoffel connection components (the first term; which is second order in 1/c)

corresponding to metric g,, defined above are as follows:

ho,F(r,t) 1
oy = Hzcgr )+ZO<C7)
n=3
ho, F
e = “zc(zr’t) ZO(C%) (A.34)
n=3
RO, F(r,t) 1
Pl = gc2(r )+ZO<C_")
n=3

[Here = 1,2,3 i.e., it refers to the spatial coordinates.]

Other non zero Christoffel connection components have all orders of terms from order 3 viz.

¥ 0(%)
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A.4 Tetrad components

Tetrads are introduced in the section “Preliminaries: Einstein-Cartan-Dirac equations”.

The metric and corresponding tetrad field on the whole manifold is defined below:

c? c?

- hF(r,t)]cQ e [ | hE(Y)

dr?

1. mR\'. . 2 REN
6(0) = E <1 —+ §> ata 6(1) = (]. - ?) axa 6(2) = (1 - C_2) 81/’ 6(3) =

With this, the transformation matrix which relates the world components with anholonomic

components (defined in equation 2.47)

1+ 26D 0 0 0
" 0 e 0 0
e (2 — C
’ 0 0 1 - M) 0
0 0 0 1 - M)
1 — MO 0 0 0
. 0 1 4 2El) 0 0
€\ =
® 0 0 1+MEY 0
0 0 0 14 20
1+ 1D 0 0 0
0 —1 4 0 0
(k) = r
“ 0 0 —1 4 20 0
0 0 0 —1 4 M0
1 — Ml 0 0 0
hF(r,t)
b _ 0 -1 - 2 0 0
0 0 —1- G 0
0 0 0 —1 - AEed
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A.5 Components of the Riemann part of Spin Connec-

tion () 4

The form of spin connections are defined in equations (2.48), (2.49). We use the relation

between Christoffel connection and tetrad transformation matrix (defined in Eqn. (2.50)) to

calculate Vb)) B follows:

hF
. —hdyF (1 + ?) > /1 . —hOF\ hF/22 X /1
Tooo = 52 s ZO(CTJ Yoo = ( 5.2 ) s ZO(C_n)
(1 - 2_2> n=3 (1 + 2_2) "=
. _noyr (1+45) ) io 1 . ROF 1
TO)@0) T T2 (7) 1)@ = 52
2¢ (1 _ gTF> " \c 2¢ (1 I 262)
) ho;F hE/2c? = 1 .
@0 T e +ZO<c—n> Vi) = Vi) +ZO(0n>
(1 + 202> n=>»5 n=3
. e A~ 1 . . . = 1
Tomn = "Ha T > 0(5) Yoy = Vs = o=+ O<C_n)
n=3 _
naor (1-55) & 1 > 1
o _ ¢ o __ 0 __ 0 _
TN = e (1 N hF) + ZO(C_n> o6k = Y66 = Y066 = +ZO<C—n>
22 n=3 n=3

(A.41)

The contorsion spin coefficients (which when gets added to Riemann spin coefficient, gives
total spin connection) gets manifested as a non-linear term in Hehl-Datta equation. It is
completely expressible in terms of Dirac spinor. So it can be calculated with spinor ansatz.
We have done this while calculating the Non-relativistic limit of ECD system of equations.
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A.6 Components for Einstein’s tensor

In this appendix, we aim to calculate the components of Einstein’s tensor. GLI,], has been

proved to be zero. GLQ,], has been defined in Eqn. (A.5). We found the form of g,[f,l in appendix

section (A.2.2). Since ng,l is zero, f[gﬂll] defined in Eqn. (A.5) is also zero. With this, we

compute GEI},:

1 _ 1 a
Gl = —50gswhere gl = g — (0 has) (A.42)
1 0 0 0 MERD g 0 0
wyp [0 000 0 MED g 0 _ DY) ey
Ry = 0 0 -1 0 0 0 h,Fc(2r,t) 0 = 2 .
00 0 -1 0 0 0  hED

It can easily be seen that G, for pn # v is equal to 0.

We now calculate the diagonal components,

1 —[2] h haZF(I‘, t) FLVQF(I', t)
Goo = —55900 = —C—QDF(r,t) =|-= = + Z (A.44)
Gaa =0;  because G2 =0; a€(1,2,3) (A.45)
Thus,
V2F(r,t) 0 0 0
i 0 000 - 1
G, = + O<—> A46
e 0 000 ; cn (A.46)
0 000

A.7 Generic components of 7,

T,, has been defined in equation Eqn. (2.57). With the spin coefficients in above sections,

we get the following metric energy-momentum tensor, whose components are given on the next

page.
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Appendix B

Tetrad formalism/ NP formalism and
formulating ECD equations in NP

formalism

B.1 Tetrad formalism and formulating Covariant deriva-

tive for Spinors

The usual method in approaching the solution to the problems in General Relativity was
to use a local coordinate basis ¢/ such that é* = 0,. This coordinate basis field is covariant
under General coordinate transformation. However, it has been found useful to employ non-
coordinate basis techniques in problems involving Spinors. This is the tetrad formalism which
consists of setting up four linearly independent basis vectors called a ‘tetrad basis’ at each
point of a region of spacetime; which are covariant under local Lorentz transformations. [One
of the reason of using tetrad formalism for spinors is essentially this fact that transformation
properties of spinors can be easily defined in flat space-time|. The tetrad basis is given by
é®(z). These are 4 vectors (one for each j) et every point. This tetrad field is governed by a
relation é'(x) = ¢/ (z)é" where trasformation matrix €, is such that,

eff)ez(/k)ﬁ(i)(k) = Guv; (B.1)

Any ‘object’ now can be expressed in coordinate or tetrad basis as follows:

V=V — ——— ——— Tetrad basis (B.2)
V=V, - ——————- Coordinate basis (B.3)

Trasformation matrix eff) allows us to convert the components of any world tensor (ten-
sor which transforms according to general coordinate transformation) to the corresponding

components in local Minkowskian space (These latter components being covariant under local
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Lorentz transformation). [Ex. T}, = e,(f)

e(yk)T(i)(k)]. Greek indices are raised or lowered using
the metric g,,, while the Latin 