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Abstract

Schwinger pair production is a non-perturbative and non-linear phenomenon in Quan-
tum Electroynamics. It is equally interesting to theoretical and experimental physics be-
cause of the necessity of strong electric field required to study it. Many theoretical models
have been developed to explain and extend the result for number of pair produced from
Scalar QED and QED vacuum. We use Worldline Instanton method to find vacuum decay
rate for scalar QED and QED vacuum in presence of constant Electric field and constant
Electric field parallel to Magnetic field at zero temperature in weak field aprroximation
and weak coupling limit. We thus verify results obtained by other theoretical methods for
these field configurations. We extend the result to finite temperature case i.e. we give an
analytical expression for Scalar QED and QED vacuum decay rate in presence of constant
Electric field and constant Electric field parallel to magnetic field at some non-zero tem-

perature in weak field approximation and weak coupling limit.

Schwinger pair production of electron-positron pairs requires constant electric field of the
order of 10'8V /m. This huge electric field is not achieved in laboratory till now. Some of
the astronomical objects like Magnetars do produce electric field of the order of 1014V /m.
Many extensions of the standard model generically give rise to hypothetical Millicharged
particles. These are particles with fractional electric charges. Millicharged particles are
intersting from the viewpoint of charge quantization and they are viable dark matter can-
didate too.

Schwinger pair production of Millicharged particle is possible in the Magnetar environment
and affect the magnetic field evolution of magnetar. We provide novel, model independent
constraints on these hypothetical particles based on Energy loss argument and Magnetic
field evolution argument. We also show the effect of millicharged particles on the braking

index of the magnetar.
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Chapter 1

Introduction

1.1 Introduction to Schwinger Pair Production

The Phenomenon of pair production from vacuum in presence of constant Electric field
(termed as ”Schwinger Pair Production”) was first proposed by Euler and Heisenberg [1]
and later formulated in the modern language of Quantum Field theory by Schwinger [2]
(see [3] about related historical facts). The rate at zero temperature had the O(exp(—nm?/eE))
behavior showing the non-perturbative nature of the process and necessity of Strong Elec-
tric field O(10'®)V /m for the observation of Phenomenon. Because of both theoretical (re-
lating to non-perturbative character) and Phenomenological (probing at strong fields) in-
terest it has applications in many areas of physics [4][5][6][7]. Reaching such a high electric
field is an experimental challenge. Therefore there have been several studies regarding the
experimental verification of Schwinger effect (see [8][9] for reviews). Although the strength
of electric field required is still not reached, but it will be accessible to some of the up-
coming laser facilities like Extreme Light Infrastructure (ELI) and European X-ray Free
Electron Laser (European XFEL).

In order to study pair production in external field various theoretical methods have been
developed - Schwinger’s proper time method [2], WKB technique[10], Schrodinger-Functional
approach[[11], functional techniques[12][13], kinetic equations[L4][15], various instanton
techniques|[16][[L7], Borel summation [[18], Worldline numerics[19], and evolution operator
method [20].



The result of vacuum decay rate in presence of constant Electromagnetic field has been ex-
tended to Finite Temperature as well. QED effective action at finite temperature in pres-
ence of constant Magnetic field has been found first by Dittrich[21]. Since then this has
motivated the study of QED and SQED at finite temperature under various configurations
of electromagnetic fields and thereby the Schwinger pair production at finite temperature,
which has been an issue of debate depending on formalisms employed [22][23][24] [L1}[25].

The issue was resolved by evolution operator formalism by finding non-zero thermal cor-
rection to zero temperature vacuum decay rate at one-loop level in constant Electric field[26].
Recently, Worldline Instanton formalism has been used to calculate analytical expression

for the vacuum decay rate in constant Electric field for Scalar particles at finite tempera-

ture which is also extended to arbitrary coupling in weak external fields[27][2§].

The Worldline formalism has been very powerful tool for quantum field theory both at
one-loop and higher loop which was used in [29][B0] to calculate gauge theory amplitudes.
Naturally, the Worldline formalism has been used to reproduce and extend Schwinger’s
result both at zero temperature[31][16][32] for scalar particles in presence of constant Elec-
tric background and finite temperature for scalars in constant electric background[27] and
also at arbitrary coupling [28]. We extend the Worldline formalism method to calculate
Vacuum decay rate for both Scalar and Spinor in presence of constant Electric field par-
allel to Magnetic Field at zero temperature thus deriving results already known in the
literature [[17]. We extend the result to finite temperature for both Scalars and Spinor in
presence constant E and constant E 11 B field thus verifying the result of [27] for scalar pure

E case.

1.2 Introduction to Dark Matter Physics

The standard model of particle physics has been a most successful theory whose predic-
tions have been tested experimentally with good precision. Nevertheless, it is incomplete
as it can not explain presence of dark energy, dark matter, neutrino masses and matter-
antimatter asymmetry. A good amount of observational data from astrophysics and cos-
mology suggests gravitational interaction between Baryonic matter and non-luminous mat-
ter. Nature of this "Dark Matter” is unknown. It is natural to believe that the new parti-

cles that could account for dark matter appear in various theories beyond standard model
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of particle physics. The identification of the nature of the dark matter would answer one
of the most important open question in physics and would help to better understand uni-

verse and its evolution.

The first hint for presence of dark matter came from Fritz Zwicky[33]. He observed unex-
pectedly high velocities of nebulae in the coma cluster which brought him to the idea of
dark matter. In 1978, Rubin et al.[34] found that rotation velocities of stars in galaxies
stay constant with increasing distance from galactic centers. This was contradictory to the
expectation from Newtonian dynamics, according to which rotation velocities should fall as
distance increases from galactic center. This problem was resolved by the work of Ostriker
and Peebles [35] who suggested the presence of Dark Matter halo to explain instabilities
in the models of galactic disk. In recent times, x-ray spectroscopy of hot gas in elliptical
galaxies[36] and gravitational lensing [37] provides the confirmation of dark matter hy-
pothesis. Further evidence for the dark matter comes from cosmology as it is required to
generate density perturbations that led to large scale structures [38] and to account for

big-bang nucleosynthesis [39].

In order to account for above astrophysical observations, modified Newtonian dynamics
model (MOND) [40] and its relativistic extension TeVes [41] were proposed. Though these
solutions correctly described the rotational velocities measured in galaxies but failed to de-
scribe large scale structure and CMB structure correctly[42]. Massive astrophysical com-
pact halo object (MACHOSs) - an astrophysical objects that would emit very less or no
radiation were also thought of as possible explanation of dark matter. Searches for these
objects using gravitational micro-lensing have been performed[43] showing they could ac-
count for at most 20 percent of dark matter in our galaxy. A model with MACHOs ac-
counting for all the dark matter were also ruled out [44]. Primordial black holes as an ex-

planation for dark matter abundance was also considered[45][46].

It was also thought that dark matter is made out of massive neutral particle with weak
self interaction. Sterile neutrinos were thought to be such a viable dark matter candi-
date [47][48]. This particles were constrained by x-ray measurements and viable only in
the keV range. Because of their low mass and interaction strength they can not be probed
by direct detection experiment. Models beyond standard model of particle physics sug-
gested a viable dark matter candidate which is stable, neutral and have mass in the range

from GeV to several TeV. This particles are termed as Weakly Interacting Massive Par-



ticle (WIMP). These particles could account for right relic abundance of dark matter in
universe[49]. Despite their experimental searches no unambiguous signal of their presence
has been confirmed. The neutralino from Supersymmetry models and ’light Kaluza parti-
cles” from models in extra dimension are particles fulfilling properties of WIMP (see [50] for
review on WIMP and current bounds). ’Superheavy dark matter’ are possible 'non-WIMP’
dark matter candidate proposed in order to explain the origin of ultra-high energy cosmic
rays[51][52].

Weakly interacting sub-eV particles (WISP) are the viable dark matter candidates with
mass ranging from sub-femto-eV to hundreds of GeV. Axions, Axion like Particles (ALPs),
Milli-charged particles, hidden sector photons, chameleons, and other related particles are
particles under WISP category[53]. Axions are pseudo-scalar particles that solve strong
CP problem. They are pseudo-nambu goldstone bosons of Pecci-Quinn symmetry. They
are light and have possible couplings with photon, gluons and standard model fermions.
Hidden sector photons A’ photons are massive vector bosons coupled to ordinary photon
with kinetic mixing. Sub-eV dark photon could be viable dark matter candidate (See [b4]
for current bounds and experimental probes). It is possible to have dark matter to be part
of hidden sector and couple to an A’. A hidden sector coupled to massless A’ will give rise

to millicharged particle which can be a viable dark matter candidate[53].

In chapter @ we will review one-para-photon model, along with some of the present con-
straints on millicharged particles. We will also review how some of the stringent constraints
can be evaded with Two para-photon model. Milli-charged particles arise in the large class
of standard model extension[p5][56][57][58][59]. They have been studied in the context of
observational anomalies[60]. Since millicharged particles can have fractional charges hence
they are intriguing from the viewpoint of charge quantization. In chapter H we'll give a
brief introduction to Neutron stars and Magnetars and will provide novel constraints based
on energy-loss argument and magnetic field evolution argument. We will also show the ef-

fect of Millicharged particles on the braking index of neutron star.



Chapter 2

Schwinger Pair Production in Scalar

Electrodynamics

2.1  Zero Temperature Case

2.1.1 One Loop Effective Action

We want to calculate the pair production rate from vacuum made unstable by presence
of external fields. Probability for vacuum to vacuum transition is given by |<00m|0m> |2.
In absence of external fields, this is unity. But, adiabatically turning on electric field will
give rise to false vacuum. Thus making probability for production of particles non-zero,
this will be characterized in the imaginary part of ground state energy of false vacuum.
In presence of external field sourced by potential A, the probability of vacuum to vacuum

transition is given by
A
<Oom\0m> — exp(iW"(A)) (2.1)
then,

Probability of vacuum decay =1 — W (A) =W (4)

2ImWw(A) M (2.2)
=1—e" =2Im(W"(A))
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Probability of vacuum decay is number so independent of whether we calculate RHS in

Minkowaskain or Euclidean co-ordinate We have in Minkowaskian time

M = <0\e*"HT\0> - / DoD@* ¢St (2.3)
converting to Fuclidean time we get
eVt = / D¢D¢*e 5% (2.4)
Hence,
Probability of vacuum decay = 2Im(W"'(4)) = 2Re(WE(A)) (2.5)

Quantity of interest is probability of vacuum decay per unit space-time volume (I')

W[(A)] (2.6)

VE

Re(W"(4))
ViT

=2 =2Im

where we have assumed that external fields as well as false vacuum state is homogeneous.
In presence of finite temperature, V4[E will be replaced by V3B where B is equal to inverse
temperature. In Euclidean metric, the relation between WE and Scalar QED action § (where

we have dropped subscript E) is given by [61]

exp(~WE(4)) = [ DDG" exp|--3 (2.7)

and

S= [dtx(o" (-0 +)0) + 1R,
is the Euclidean action. Where Dy, = (dy +ieAy) and Ay = (A1,A2,A3,A4) such that A4 =
—iAp (where on the Minkowaskian side we have used (1,—1,—1,—1) metric convention)
and other components are same as Minkowaskian A;. The Electromagnetic field tensor is

Fyv = dyAy — dyAy. In order to arrive at given expression of Euclidean Action we have

used following Lagrangian density on the Minkowaskian side:

LM = (Iy —ieAy) T (O* +ieAM)p —mP9* P — %FWF“V (2.8)



where u runs from 0 to 3, when converted to Euclidean signature will look like

. * . k 1
LY = (9 —ieAy) 9" (I +ieAy)d +m* ¢+ZF§V (2.9)
where u runs from 1 to 4, such that Ay = —iAg. We use steepest decent approximation in
RHS of eq.(@)
* * 62S * 4 4
S[9.¢ ]:S[¢cl,¢cz]+/mn(?€)n (v)d"xd"y (2.10)

We have used multidimensional taylor series expansion. The factors like §25/8¢8¢ and
525/8¢*8¢* are zero. The (¢, 9) is the solution which make §S/8¢ and 8S/8¢* vanish.

The n and n* are fluctuations about classical path, vanishing at the end points of path.

Using eq.(@) and (), we get

exp(—WE(4)) = [ DYDY exp[—s]

= exp(=S(0u)) [ DnDN" exp (= [ dsay nx)(~D* ") 51,
= (det(~D? +m?)) " exp(~S(6u))-N
= exp(~Trln(~D? + 1)) exp(~S(9ur))

where .4 is normalization constant. We have discretized the integral in the exponent of
eq.(R.11), then using the multidimensional version of Gaussian integral over complex vari-

ables
/ dz1dz} - dzadzyexp (—z'Az) = (27)? exp(—trlnA) (2.12)

which assumes that A is a Hermitian operator and can be normalized by some unitary ma-

trix. This assumption is valid for operator (—D?+m?). From eq.(R.11]) and (@), we write
2Im(WE(A) /VE) = 2Im(Trln(—D? +m?) /V) (2.13)

we have dropped the normalization constant .4 and S(¢.) as both of these do not give

any Imaginary contribution.



We use mathematical identity (Frullani’s Integral) to simplify further

Tr(In(P)) = — /O wdTTTr(exp(—PT) —exp(~T)) (2.14)

Identifying P in the above expression by —D?+4m?. We neglect second term in the eq.()

since it does not contribute to the imaginary part. Since,

_ /O : dTT Tr(exp(—PT)) = — /O ) dTT / dx({x|exp (—PT)|x)) (2.15)
we can convert eq.() to [16]
whA) = — OwdTTexp [—m?T] y{[dxﬂ]exp [— /()Td’t[%xz—i—ieAux“H (2.16)

Considering —D?+4m? = —(d +ieA)?+m? as Hamiltonian, then the Lagrangian can be com-
puted as follows: replace d with ip then treat p as momentum variable, the Lagrangian

then can be obtained by Legendre transform in terms of x; replacing ¢t with —it, we get

x2
- (Z +ieAx+m2) (2.17)

Hence we get eq.() as the final expression for 1-loop effective action for SQED case.
Where x,(7) path should satisfy the periodic boundary condition x(0) = x(T').

We substitute T =T u,and T — T /m? in eq.()

WE(A) = —/Owd%exp[—ﬂ]{[dxu]exp [— (g/olduxz—kie/olduA.x)] (2.18)

where x (1) path should satisfy the periodic boundary condition x(0) = x(1).

We evaluate T integral first which gives Modified Bessel function of second kind Ky(z) re-

ducing above expression to[L6]

WE(A) = —2/[dxu]K0 (m(/olxzdr) ") exp (- ie/ol duA 5 (2.19)
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Since in the limit z >> 1 the Modified second Bessel function behaves as
Ko(2) ~ 1| 2= exp(~2) (2.20)
0827~ 2m pi—z '

hence for the approximation m 01 %2 >> 1 (which corresponds to weak field limit m? >>

¢E) eq.() reduces to

\/E/ xzdu A exp [ my | xzdu—le/ Axdu] (2.21)

Another way to reach above equation from eq.() is to perform saddle point approxima-
tion to T integral. The saddle point is given by

AN
To = 5(/0 % du> (2.22)

thus in the weak field limit we get eq.(). As, according to saddle point approximation:

21
h(x)eM8W dx o | —— h(xg)eM8™0) as M — o 2.23
[ )M | s Rso)e ) as (229

where xq is the saddle point.

We consider terms in the exponent of eq.() as —S.¢, the Euler-Lagrange equation is

1
miy = iey // dux? Fyyxy (2.24)
0

Because of the antisymmetric property of Fy, we get x> = constant = a®>. Where a =

given by[62]

2mpr/eE, as we will see later, is obtained by imposing periodic boundary condition on

11



solution of eq.(). The derivation of eq.() is presented below

8Sw  om 8([y dux?) o [0 S ()
6xa<p>_zW iy ey sy i [ it

m v 1 n
P 3x (u) / . f;l; (x(u)) Ox (u)x“—ie/ duaAu x(u)) 6xH (u)
0

X
ﬁ — f; e V) 5x(p) o) ox(p) "
X, +ieFxY
\/ Jo dui?
(2.25)
Putting this equal to zero gives EOM.
So final expression for one loop effective action would be of the form
21N\ 1/2 828 -1/2
WEA) = — (=) Tdet | (——L —S.a(x 2.26
(4) (ma> ¢ [(va(u’)(qu(u)) x] eXp|—Sen(F)] (2.26)

but as is well-known in an Instanton calculation, integration over zero modes will be re-
placed by integration over collective co-ordinated thus giving some extra factor as we’ll
show in section R.1.3. In the above equation ¥ is solution to Euler-Lagrange equation with
action S.;. The det factor will be evaluated separately in the section@.

2.1.2 Instanton Solution

e Electric Field :-

Consider a EM background corresponding to the time-dependent Electric field point-
ing in x3 direction. In Euclidean space choosing a gauge in which non-zero compo-

nent is only A3z which is function of x4. Implying
Fui=Fp=0 F3y = —F;3=IiFE (2.27)
hence EOM for component 1 and 2 then gives
X1 =%=0 (2.28)
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which from the periodic constraints x;(0) = x, (1) implies
¥ = =0 (2.29)

hence from condition x> = a® we get x% +x§ =a’.

On the other hand for components 3 and 4, we get
miz = iea F34x4 miy = iea Fy3X3 (2.30)

After Integrating first equation w.r.t u we get mxs = —ieaAs putting this in x% +x§ =

i = \/(a2+ (“Zj3>2) (2.31)

So given Az one can find x4 and also x3.

a? gives

Action S.4 can be simplified further to give
1 m [l
S = ma+ic / dut As(xg) iy = / dui (2.32)
0 a Jo

For the case of constant electric field (E) background we take gauge A3 = —iEx4 cor-

responding to the Electric field in x3 direction. After substituting this gauge choice

in eq.() gives x4 and using i3 + %3 = a® we can find x3.
m eEau m eEau
- = —gj 2.
3 ek cos ( m ) 4 ek Sm( m ) (2.33)

by imposing periodic boundary condition x3(u) = x3(u+ 1) we find

2pm
a:27rpR:m P

Thus the trajectory for particles is given by[62][16]
x3 = Rcos(2pmu) x4 = Rsin(2pmu) (2.34)

This represents circle in x3 — x4 plane with radius R = m/eE. Action S.;(X) can easily

be calculated from eq.():
m?prw

Sen(¥) = eE

(2.35)
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o Electric field parallel to Magnetic field :-

For the case of E 11 B where E and B are in x3 direc’cionE , the components of Field

tensor will be
Fio=—-F1=B; Fy=-F3=IiE (2.36)

Substituting this in eq.() we get

mi; = ieaBx, miy = —ieaBx (2.37)

mis = —eaExy mi4 = eaEXx3

We note from above that the equations for x1,x, and x3,x4 are decoupled and the set
of equations for x3,x4 are same as that for constant electric field case eq.(). The
set of equations for xy,x, case give rise to hyperbolic solution which fails to satisfy
periodic boundary conditions x,(0) = x4 (1) hence the only solution for x; and x; is

trivial solution. This suggest that the X(u) is same as that for the case of constant

electric field eq.(). Hence S.¢ remains same as given by eq.().

2.1.3 One-loop Pre-factor

o FElectric case:-

We define operator My as [62][27]

_ 828.q méyy d*> d o iy (u)iy (u')
Muv = W = — WW —leFuv% 6(14—1/[ ) — W (238)

LA very important point to note is that the quantity of interest- the vacuum decay rate per unit space-
time volume (I') is relativistically invariant while on the other hand as we’ll see in section@pour final
expression will not. The reason for this is because we have already chosen a frame in which E and B are
parallel-which is so called the center of field frame[63]. For a general E and B one can always go to a such
that frame E and B in that frame is parallel. Given a general E and B such frame moves with velocity
vector . L.

\%4 ExB

L+ V]2 |E+[BP?

The E and B in this new frame can now be found by Lorentz transforming to the given frame.

14



Derivation is as presented below:

82| my/ [} #2du+ie [} Aidu
/d4q 52S.an(q) :/d4q [ " "
8x4(p)dx,(q) 6xa(p)dxs(q)
. 4 0 _mXb(Q) iFo %
- [ #i5 [m* |
—m 2 miq(p)x
= [t 5l pimi) - [ atg P g

q
] dqg?
\ f()1 2du®l (\/ lezdu)

d
+ [ [0 5(a = p) i 80— 0)| (0

n(q)

(2.39)

For the case of constant fields this, after relabeling indices, we get My as given in
eq.(). For the case of electric field only, substituting Instanton solution eq.()7

we get:

eE d?

M., =
WL 2pmdu?

d
Ouv "HeFqu = xu(u)xy (1) (2.40)

Where we denoted X to be the solution found in eq.(). We want to calculate
det’[M] where ’ overhead represents barring zero modes. We use matrix determinant

lemma which states:

det(A+PQ") = det(A)(1+Q7A'P) (2.41)
Hence determinant eq.() reduces to[27]
det'[M] = det'[ ] 1— 2p77: //dudu Ty (u 1)“va(u')} (—2pmeE) (2.42)

The last factor of —2pmeE has been factored out since it is the only negative eigen-
value of matrix M with eigenvector &, (u')/R corresponding to changing the loop ra-

dius.

There are in total five zero modes for Lyy : Four of which corresponds to translation

15



of loop with Eigenvectors

[1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1] (2.43)

There is 1 zero mode corresponding to u-translation with Eigenvector of %%. These
zero modes must be accounted for by replacing integration over dc; to du and d*x.

While doing this Jacobian factors must be taken into account. For the case of proper
time translation this gives a factor of 2R /(27)!/?
tegration over deo/(27)'/? with Jdu/(2m)'/? the Jacobian J turns out to be 27R. For

the case of loop translations the integration over dcideadcsdes/(27)? with V. (Four

, which is obtained by replacing in-

Volume).

Next, we need to find the eigenvalues and eigenvectors corresponding to matrix L

which are as given below [62]

E d°
_Zep_nm 0 i 0 0
0 _¢E d” 0 0
L= prde J (2.44)
d E d
0 0 eEﬁ —;}—nm
The eigenvalues are 27meE (n?/p —n) with corresponding eigenvector of
(0,0,cos(2nmu),sin(2nmu)) (0,0,sin(2nmwu), —cos(2nmu)) (2.45)
and 2meE (n* /p +n) with corresponding eigenvector of
(0,0,sin(2nmu),cos(2nmu)) (0,0,cos(2nmu), —sin(2nmu)) (2.46)

where n runs from 1 to oo. There are eigenvalues and eigenvectors corresponding to

trivial parts of matrix (1-2) which are given by
(cos(2mnu),0,0,0), (sin(27wnu),0,0,0), (0,cos(2mnu),0,0), (0,sin(2wnu),0,0) (2.47)

with eigenvalue of 2mweEn?/p where n runs from 1,2,--- .
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Since we want to calculate det/[L] which is given by

det'[L] =N H (2meE (n/p — n) 2H (2meEn®/p)? (2.48)
n#0,p n#0

where both eigenvalues are taken care of by taking product over —eo to co. The nor-
malization factor N comes from converting Feynman path integral eq.() to deter-
minant eq.() and can be fixed by using the following identity[27]

2 52 _ 2
/X(O)_x DxeXp /Ex du :N‘l/z(det’[<—2m—7bj7)]) V2 (4’77;—]"0)2 (2.49)

obtained by comparing it with the free particle propagator

i (m, m im(xs —x;)?
Josten[; [ 5] = (sr—rs) Cen [T ] e

Using eq.() we get

det'[L] _ ((4”TO)2> ? Hn;éO,p (27[6E(n2/p - n))znn#O(zn-eEnz/p)z

4 272
det/[_ 2";0[?”2]

- (2.51)

denominator in the last term is just like the trivial part of matrix L, hence we get

2

47TH)?\2 1 ((nz/p—n))
det/[L] = ( 2.52
et L] ( m* ) (2pmeE)? n};)lp n*/ p? (2.52)

The infinite product can be written as
((*/p—m)* P
H 47,2 - H (1==) (2.53)
n#0,n#p n /p n#0,n#p n

We use following identity [64] to get infinite product

sin[7 pz] <1 B Z_l;) (2.54)

PRz




which could be rewritten in the following way

sin[7pz] _ ﬁ (1 B zn_2>

prz

(2.55)

I
—
/N
p—
|
N
N~——r~
3
Jemp
/N
[—
|
N
SN—

Then we can reduce

tim S0P T (1-2)

—1(l—z)pmz =l n

(=TT (1-2)

n
nFp

(2.56)

Using this and Ty = m*pr/eE we get

8pm3(—1)P+! )2

det'[L] = ( S

(2.57)

The only part remaining to calculate is the non-local part:

1- 2pn;—§ / / dudd 5y (1) (L) 5o ()| (2.58)

which as we’ll show comes out be 1[27]. Where L' is only the non-trivial part of ma-
trix (3 —4). The Green’s function (L’*l)u

sentation according to which L'~! = QA~1Q~! where Q is the matrix with column as

, can be obtained from the spectral repre-

eigenvectors of L' and A is the diagonal matrix with eigenvalues as diagonal entries

(L'_l): i — 1 (COS(27l'n(u—u')) —Sin(2ﬂ:n(u—u’))> (2.59)

A0 (n?/p—n) \ sin(2an(u—u")) cos(2mn(u—u'))
n#p

n——oo
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It can be checked easily that L' acting on L'~! indeed gives lp28(u —u’). As, when
L' acts on L'~ the eigenvalue 27meE (n?/p —n) pops out canceling the same factor in
the denominator. The sum over n from —oo to oo gives zero in the off-diagonal parts

and the identity times delta function in the diagonal part. And thus using x3 and x4

as found in () we get

1 1
/0 du | du' %y (u) (L'_])uviv (u') =0. (2.60)

Taking into account all the pieces (contribution from zero eigenvalues, det’(L), nega-
tive eigenvalue, factor of 4+ 1/2 [65], —(271?/ma)1/2 in eq.()) into account we get

P —vE - (2m)2 " (27:)1/2 —i 1 SE3(—1)PH!
O.5c = 74 eE ma 2 (2mpeE)Y/? 8m3p 961
V[E 2E2 ( 1)p+l ( ’ )
1673 p?

Where & . is the pre-exponential factor for vacuum decay rate of Scalars at zero

temperature in constant E background. Then the expression for WE[A] is given by

m’pm

eE

W] = i iVy(—1)PH1e?E?
= 1673 p?

(2.62)

Hence for scalar case decay rate per unit space-time volume, given by eq.(@)7 is [66]

o0 )p-i-l ZEZ
1—‘0 sc Z 87[3

(2.63)

Electric field parallel to Magnetic field

The only change from electric field case is that L picks up some off diagonal term in
U,V € 1,2 because those components from Fy, are non-zero. It is easy to see that,
which is also evident from eom, that the 1,2 part of matrix L is decoupled from 3,4
part. So the eigenvalues and eigenvectors for 3,4 part which we found in the electric
case remains same, the only change will be the new eigenvalues and eigenvectors for
1,2 part.
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cE & .pd 0 0

T 2pmdu? du2
. d E d
_ —leBE _2617_7Tm 0 . 0 (2 64)
E d d ’
d E d
The additional eigenvalues are 2mweE ( — ’% + ”72) with corresponding eigenvector of
(1,7,0,0) exp[2minu], (i,—1,0,0)exp[2xinu] (2.65)

and 2meE (’B% + ’;72) with corresponding eigenvector of

(1,—i,0,0) exp[2minu], (i,1,0,0)exp[2mwinu] (2.66)
In both the cases n € 1,2,--- oo,
Following the same procedure as in the previous section
iBn

det'[L] =N [ @reE(n?/p* —n))? [] 2reE(n?/p? - 5))° (2.67)
n#0,p n#0 E

while taking care of N as in the constant E case, we get

(2.68)

I
det/[L] ((4”T0)2>2 1 T ((n?/p—n))’ ﬁ [2ﬂeE<n7_ %)}
e = A
m* (2pmeE)* o,  nY/P* g e (27eE)2nt/p?
first three terms in the above expression are calculated in the constant E case eq.(),

the last term containing infinite product can be evaluated as follows

2neE n? iBn 2
ptlm= o (2TeE)*n*/p? ptn=—on En

- B B

~[10-2270+22)
i En En (2.69)
oo BZ 2

= H (1 + E2p2)2
n=1 n

B <Esinh(p7rB/E)>2

B pnB
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since [64]

sinh(km) &5 k?
— = 1+— 2.70
then using eq.() and eq.() we get
8pm3(—1)P+1\2 /Esinh(pnB/E)\2
Ny —
det L] = ( eAE3 ) ( pTB > (271)

The non-local part in eq.() is still 1, since as we saw x; and x; are trivial hence
making the the corresponding part of product in the non-local part vanish. And as
though x3 and x4 factors are non-trivial, they are already shown to give trivial re-
sult in just Electric field case. The decoupling between 1,2 and 3,4 components play

crucial role while doing this.

So the final expression of Pre-exponential factors after taking into account (det’[L],

negative eigenvalue, contribution from zero eigenvalues, factor of £ i/2, factor of

— (27 /ma)'/? from eq.() ):

27r> 12 —j 1 SE3(—1)Pt! pnB

ep _yE omy1/27 . : :
4 (27) < 2 (2mpeE)!/2 873p E sinh(pnB/E)

0,sc eE
VE(—1)PH1e2E? prB
1673 p? Esinh(pnB/E)

ma

(2.72)

Where &5 is the pre-exponential factor for vacuum decay rate of Scalars at zero

temperature in constant E background. Then the expression for WE[A] is given by
m*pm
ek

iV4(—1)PT1e’EB

WwhA] =
4] ,92::1 1672 psinh(pnB/E) exP

(2.73)

Hence decay rate per unit space-time volume for scalar in E 11 B case, according to

eq.(@), is [17]

> (—1)P*1e’EB [_ mzpn} (2.74)

FEB — /
0,se p; 872 psinh(pnB/E) ¢E

which reduces to eq.() in the limit B — 0.
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2.2 Finite Temperature Case

2.2.1 Instanton solution and exponential factors T # 0

e FElectric Field

For calculating finite temperature vacuum decay rate for scalar particles in pres-
ence of constant electromagnetic field, we need to calculate Imaginary part of Eu-
clidean scalar QED Effective action per unit four volume. Same as in the case of
zero temperature one can write (2.21]), but with an additional condition that x4(0) =
x4(0) +np for n € Z[67], where B! is identified with temperature. The one-loop eu-
clidean effective action for finite temperature in the case of scalar QED is then given

by

wh) = - Z /OwdTT/dx<x| exp(—T(—Dz))}x+nﬁé4>e_m2T

nez
21 1 1 1
= —/ — _ dxy|——exp | —m /x2du—ie/ A.xdu
I Jaoa i g o[y :
(2.75)

We have taken weak field approximation to arrive at step 2 of above equation. Com-
paring above equation with eq.(R.21)) we see that in addition to satisfy x,(0) = x,(1)
as in the case of zero temperature case, x; should satisfy an additional constraint of
periodicity in x4 direction. This comes from a standard argument in the Instanton
calculation in the context of quantum tunneling, where B is the total time taken by

a particle to come back to initial position in an inverted potential[68].

Considering the exponent in the eq.() as —S.q¢, then equation of motion will be
similar to eq.(). A point to note is that in eq.(), the case of n = 0 has al-
ready been evaluated in the zero temperature case. Hence only remaining part is
that of n # 0 which would contribute to finite temperature correction to the vacuum
decay rate expression. For finding finite temperature Instanton solution, we need to
find solution of equation of motion eq.() where solution is periodic in x4 direc-
tion with period nf3. That is we have to find sections of zero temperature Instanton
which are separated in time direction by nf3. But for solution to exist 2R > nf3, im-

plying npua = |2R/B] (where |x| is integer less than or equal to x). Hence no one-
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Figure 2.1:

tion (@

Finite temperature Instanton solutions satisfying periodic boundary condi-

) are shown. A sector of circle subtending angle 6, (Fig. I7) contribute to free
energy, while the one with 2w — 6, (Fig. II7) to the Schwinger pair production. In both
figures nf is separation along x4 between endpoints of the path. R is the radius of circle
which forms the solution at zero temperature.

loop thermal effects for T < eE /2m(=T).[27]

1.

For n € 7~ i.e. solution satisfying periodic boundary condition
x4(1) =x4(0) +np; nez” (2.76)

There are two solutions satisfying the boundary condition as shown in Fig.@.
For the smaller path (path I7), subtending angle 6, at the center, ¥ =2np+ 6,
is the total angle subtended where p are the number of windings. The explicit

solution (¥™/") is given by
x3 = Rcos(V'u+m—6,/2) x4=Rsin(du+n-6,/2) (2.77)

we substitute this solution in S.q(x),

1 1
Sua(x) = my /0 2du+ie /O du Ay (x).iy (2.78)

For the gauge A3 = —iEx4, which corresponds to configuration where constant E

23



is in x3 direction, we get

3 19_/ 2
S.a(®) = mRY —mRY- + 2 sin(8,)
) 2 2eE _ (2.79)
m . nT; nm n-T
— 26—E[27tp+2arcsm (T)} +ﬁ 1-— Tzc

where T, = eE /2m. From eq.() and eq.(), we get relation between 6,

and Temperature (T) as follows

. (6n np _ nl _
L L 7 2.
sm<2> R 7 ne (2.80)

For the longer path (path II7), subtending angle 2w — 6, at the center, ¥ =
2n(p+1)— 6, is the total angle subtended where p are the number of windings.

This solution will contribute to the pair production rate. Equation for the this

solution (¥%") is given by:
x3(u) = Rcos(Bu+6,/2) x4(u) = Rsin(Bu+6,/2) (2.81)
we substitute this solution in S.¢(x), for gauge Az = —iEx4, which corresponds

to configuration where constant E is in x3 direction, we get

Yy m?

S (x0T ) = mR® — mR— — ——sin(0
(X )=m m > " %E sin(6,) 252
2 272 ’
m . nT; nm n-T
=—2 1)-2 — ]—— 1— c
SoE m(p+1)—2arcsin ( 7 ) 7 =

where T, = eE /2m and R is the radius of circular Instanton. The relation be-

tween 6, and n for this solution is same as eq.().

. For n € Z case i.e. solution satisfying periodic boundary condition
x4(1) =x4(0) +np; nezt (2.83)

There are two solutions satisfying the boundary condition as shown in Fig.@.
For the smaller path (path 1), subtending angle 6, at the center, ¥ =27p+ 6,

is the total angle subtended where p are the number of windings. The explicit
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iT,I+)

solution ( is given by

x3 = Rcos(®'u—6,/2) x4 =Rsin(d'u—6,/2) (2.84)

we substitute this solution in S.g(x),

Ser(x) = my| /lezdu—l—ie/oldu Ap(x).xy (2.85)

For the gauge A3 = —iEx4, which corresponds to configuration where constant E
is in x3 direction, we get
/ m2

O
Soa(F1) = mRo — MR- + - sin(6))

2 272
m . 1 nm n=T;
= g | 20 2avesin (59) |+ 1= 5

where T, = eE /2m. From eq,() and eq.() we get relation between 6, and
n as follows

(2.86)

. (6, nB  nT. n

For the longer path (path II™), subtending angle 27 — 6, at the center, ¥ =
2n(p+1)— 6, is the total angle subtended where p are the number of windings.

This solution will contribute to the pair production rate. Equation for the this

solution (11" is given by:
x3(u) = Rcos(Qu+m+6,/2) x4(u) =Rsin(Su+m+6,/2) (2.88)
we substitute this solution in S.¢(x), for gauge Az = —iEx4, which corresponds

to configuration where constant E is in x3 direction, we get

oh) 2

m? nT, nm n’T?

(2.89)

where T, = eE /2m and R is the radius of circular Instanton. The relation be-

tween 6, and n for this solution is same as eq.().
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Figure 2.2: Finite temperature Instanton solutions satisfying periodic boundary condi-
tion eq.(@) are shown. A sector of circle subtending angle 6, (Fig. I'") contribute to free
energy, while the one with 27 — 6, (Fig. II"") to the Schwinger pair production. In both
figures nf is separation along x4 between endpoints of the path. R is the radius of circle
which forms the solution at zero temperature.

T TJI"

The solutions x and X contributing to the vacuum decay rate gave same ex-
pression for exponential factor. We will see in the later section that the contribu-
tion to pre-exponential factor of vacuum decay rate expression will also be same for
both solutions. Hence, sum over n € Z in eq.() will be replaced by twice sum over
n € Z*. Hence from now on we will consider solution 7" in the eq.() for the

T~

calculation purpose. Similarly, the solutions X and ¥4 contributing to the free

energy of the created pair will contribute same. Hence from now on we will consider
solution ¥™" in the eq.() for the calculation purpose.

o Electric Field parallel to Magnetic Field

Clearly for constant Electric field parallel to constant Magnetic field case the Seﬁ(fT’I+)
and S, (¥ +) remains same, as there are no non-trivial solution for x; and x, satis-
fying periodic boundary condition. Hence, exponential factor of correction to the
scalar decay rate expression at finite temperature in the background of constant E

and constant E||B is exp(—S..(x11")).
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2.2.2 Pre-exponential factor at finite temperature

o Electric case:-

Similar to the case of zero-temperature, pre-exponential factor can be calculated us-
ing eq.(). For finite temperature case, we substitute solution () in eq.(2.38)

HY S Sy () Sy () Lo o dur TR gul oV R?
(2.90)
using the matrix determinant lemma eq., we get
E
det/[M) = det'[L] [1- 0 / / dudid 2 (1) (L) 50 () (2.91)
where matrix L (using eq.()) is given by:
_eE d” 0 0 0
Y du v
0 e 0 0
L= e 0,0 0 292)
2
0 0 ecEL 44
For calculating det[L], we use trick given in [69], according to which
det/[L]| |TIA«| |detnP(1) (2.93)
det'[L]|  |TTAa| |detnh (1) '

where L is the matrix made out of L excluding all the non-diagonal terms. Aq and
A are the eigenvalues of L and L respectively. Since the eigen-spectrum for L is un-
known; we use second equality in the above equation to calculate det/[L]. The matrix
nf (u) and 7P (u) satisty following set of equations:

0 2.94
0 (2.94)

b

; 11y (0) =85
19(0) =80

=i

For constant E case, the n matrix with appropriate boundary condition turns out to
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u 0 0 0
n 0 u 0 0 (2.95)
= in ® (—14cos Du) .
0 0 (1 sm19 Z; ) ;OS u
—cosvu in®
00 i sml9 u

the det[n(1)] = 2(1 — cos¥) /92, which is always positive. The f matrix turns out
to be ulsxg4, hence the det[fj(1)] = 1. We calculate (Ndet'[L])~'/2 by substituting
To = mRY /2 in eq.(). So we get,

52

(Ndet/[L]) /% = (Ndet/[L])~!/? 2(1—cos[d])

(2.96)

e 2
:(_”p(zfﬁ) 2(1—1?:05[19])

factor of (—1)? is the Morse index corresponding to the solution eq.() as will be
shown in appendix [27][32].

We still need to account for non-local part of eq.()

E
[1_’9;_2/ / dudid ™" (u) (L ) 50" ()] / / dudi' 5" (1) Gy " (i)

where Gy is green function satisfying following equation with Dirichlet boundary
condition

because of L3z = Lyq and L4z = —L3q, we'll get G33 = Gyq and Gy3 = —G34. Exact

expression for Gs3 and Gg3 as given in [27] is

4sin(

[SI[SH

u) sin (%

tan (

\_/

cos (2 (u—u'
G33:ﬁ [—sin (O|u—u']) +sin (Su') + sin (Gu) — (5 ))]

(N1

Gas = 5 | sem (i) (cos (Blu—ul]) — 1) +-cos () —cos(ﬁu)]
1 psin(9 (u—u')) +sin (94) —sin (Vu)
2eE tan (%)

(2.98)
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the non-local part gives

[1-= vek / / dudil 55" Gy (1~ )55 ()] zgcot<g> (2.99)

This quantity is negative for 0 < 6, < & thus giving extra negative mode for longer

paths (path II'") hence contributing to decay rate. Substituting #UM in the place of

I will give same answer thus contributing to decay rate expression. Substituting

#0I in the place of &1 " in above equation will replace ¥ in the place of ¥ in the
answer.
veE Y [l
1 — L //dudu e Guv(u—u ))Z:,F I+(u’)} = ?cot <7> (2.100)

This will be positive for 0 < 8, < & thus contribute to free energy of produced pairs.

=TI~

The same holds true for solution x which will contribute to free energy of created

pair.

Using eq.() we get

. . 5 1/2
o) Va2 2

1/2
eE o 92 2
=07 (505) 2(1—cos[®]) (ﬁcot(ﬁ/2)> (2.101)
eE \2 )
B (_1)1?(27“9) sin()

We take into account all the terms in the eq.() except the exponential factor.
The pre-exponential factor is given by (Extra factor of +i/2 should also included as

we are integrating over only one half of the Gaussian peak in the imaginary direc-
tion where the overall sign depends on the direction in which analytic continuation
is performed[65]. Extra factor [d*x = V3B should also be included, owing to transla-

tional invariance.)

i 1/2 (2.102)

271?19 sin(




using eq.() we get

sin(8) = sin(—6,) = —% [1 - (”g;E)z] (2.103)

we will remove the negative sign, since it has already been taken care by multiplica-
tion by +i/2 factor. Hence

. iV3B eE)? nPeEN27-1/4
Phse= (=1 ; (27:)3/2((”,,2[3)1/2192 [1_( 2m ) } (2.104)

E parallel B:-

Similar to the case of zero-temperature, pre-exponential factor can be calculated us-

ing eq.(). For finite temperature case, we substitute solution () in eq.()

M L 625 |:eE6”V F d :|5( /) ﬁeEXE,I]JF (M)X":F,I]Jr (u/)
BV Sy () Sy (u) |mrt O du? te Y ) OV R?
(2.105)
using the matrix determinant lemma, we get
/ ek ) T Ny
det/[M] = det/[L][1 - 9% //dudu W) (L) 7 () (2.106)
where matrix L (using eq.()) is given by:
Ed> . pd
_%W ZEBEZ 0 0
. d E d
- | 7B e 0 0 (2.107)
0 0 4L gl
2
0 0 eEL L4,
For calculating det/[L], we use trick given in [69], according to which
det'[L]|  |TTAa| |detnd (1) (2.108)
det’[L] T2 det 79 (1) '

where L is the matrix made out of L excluding all the non-diagonal terms. Aq and
Ao are the eigenvalues of L and L respectively. Since the eigen-spectrum for L is un-

known we use second equality in the above equation to calculate det’[L]. The matrix
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p

nf (u) and 7P (u) satisty following set of equations:

(2.109)

For constant E 11 B case, the n matrix with appropriate boundary condition turns out
to be

[ Geinn(B2) (o (B)-1) 0 0 |
E B E oion (BO
0= ﬁ(l—cosh T”)) 55 sinh (224) 0 0 (2.110)
0 0 sin Yu (—14cos Bu)
(1 o5t ) ‘1919
—cos Vu u
I O O 19 Sln‘l9 |

the det[n(1)] = %(cosh(Bﬁ/E) —1)(1 — cos ), which is always positive. The 7
matrix turns out to be ulyyy, hence the det[fj(1)] = 1. We calculate (Ndet/[L])~!/2 by

substituting 7o = mRY /2 in eq.(). So we get,

/ 52 5282
(Ndet'[L]) ™12 = (Ndlet/[L])~ 1/2\/ z<1_cosm>\/2E2<cosh<B€9/E>—1>

eE \2 B2 OB
= (—1)’7(27“9) \/2(1 —COS[ﬂ])\/ZEz(COSh(Bﬁ/E) -

factor of (—1)? is the Morse index corresponding to the solution eq.() which will

be shown in the appendix.

(2.111)

We still need to account for non-local part of eq.()
G’uv v

1—19€E//dud T () (L () 1—196E//dud gLt
(2.112)

Since x; and x does not have a non-trivial solution satisfying the boundary condi-
tion, the combination containing Gi1,G12,G21,Gy; are all trivial. The only remaining
terms G33,G34,Gy3,Gyq remains same as in the case of constant E eq. () Hence,
the contribution for non-local part, in the constant E 11 B case, remains unaffected

compared to constant E case. The contribution from non-local part is [27]

zeoi(3)
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As mentioned in the earlier case. this quantity is manifestly negative thus giving
extra negative mode for longer paths (path II*) hence contributing to decay rate.
Substituting %' in the place of ¥ gives non-local part for shorter paths (path I%)

in ﬁg.@, which will be always positive thus contribute to free energy of produced
pairs. The only additional modification in comparison to constant electric field case
is the last term in eq.(). By taking that term into account, we get the pre-

exponential factor for E 11 B case for finite temperature

e 9282
T,sc — < T,sc 2E2(COSh(B7~9/E> - 1)

_ V33 (eE)? nBekEN2)~1/4 0282
=S gy () '\/2E2(Cosh<3’9/E>‘”

B iVsp ¢’EB nfeEN21-1/4
= (=1) 4 (2%)3/2(nm[3)1/2198inh(%) [1_< 2m ) ]

(2.114)

2.3  Final Result

2.3.1 Zero Temperature

As already mentioned in section 1, the Schwinger pair production rate of scalar in constant
electric background is () as already found in [66], and derived using Worldline Instan-
ton method in [62]

o0 )p+1 2p2 mpr
I = Z:: ST - (2.115)
and for the background of constant electric field parallel to magnetic field is ()
> (—1)P*1e’EB m?pm
I, = Z T [— } (2.116)
— 8n*psinh(prB/E) eE

This result was derived in [17] which we derived here using worldline Instanton formalism[16].
This reduces to I'j . in the B — 0 limit.
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2.3.2 Finite Temperature

Schwinger pair production rate at finite temperature T in the background of constant elec-
tric field E is given by [27]

F;:c = Fg,sc_i_r’]f‘ sc (2'117)
where '} . (using eq.(),() and (@))18 given by:
= (eE)? nPeEN21-1/4
Tsc l;onz: 275 3/2(nmﬁ)1/2ﬁ2 |:1 ( 2m ) :|
. __ (2.118)
m .l nm n-T,
exp —?[2n(p+l)—2arcsm(7)] +ﬁ — T2C ]
where nyqx = [2R/B] and
T,
Y =2n(p+1)—6,=2m(p+1)—2arcsin (%) (2.119)

_FE

0,sc

This result was first derived by [27]. It is easy to note that I

T < T, there are no thermal corrections as Instanton solution does not exist.

for T =0, since for

Schwinger pair production rate at finite temperature T in the background of constant elec-

tric field E parallel to magnetic field B is

F?B = 1—‘0 ,s¢ +F?Bsc (2'12())
where I'T5, (using (),() and(@)) is given by:
0 Nipgx eZEB nﬁeE 2 —1/4
) (%)
e I,Z:Onz: 27r )3/2(nmfB)'/29 sinh (32)
(2.121)

2
m

nm /1 _ n’T?
T T?
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where nyqy = |2R/B ] and
. (nT;
Y =2n(p+1)—6,=2m(p+1)—2arcsin (T) (2.122)
In the limit of B — 0, I';? reduces to I',.. Since in the B — 0 limit

OB\ OB
i h(—) vo 2.12
sin 5 — >E ( 3)

thus I't, — I'} ;.. This is the new result we derived using Worldline Instanton formalism.
It is easy to note that I'yY = I'g%. for T = 0, since for T < T;. there are no thermal correc-

tions.
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Chapter 3

Schwinger Pair Production in Spinor

Electrodynamics

3.1 Zero Temperature Case

3.1.1 One Loop Effective Action

In Euclidean metric, the relation between WE(A) and QED action S is given by

exp(~WE(4)) = [ DyDpexp|-$) (3.1)
Where .
S /a’4x P+ m)y -+ FR, (3.2)
with D = ¥ Dy = ¥ (du +ieAy), and ¥ = y . We have defined A, = (A1,A2,A3,A4) such
that A4 = —iAp and other components are same as Minkowaskian Ay,. The Electromag-

netic field tensor is Fyy = dyAy — dvAy,. The }/['IEL are Euclidean gamma matrices satisfying

following algebra

(. Hr=28" B=-%8nd RBAH}=0 (3.3)
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We choose following set of gamma matrices

"=m %= (3.4)

where y,% and y’ﬁ are gamma matrices satisfying Clifford algebra. For the sake of simplicity

we will drop subscript E from the Euclidean gamma matrices.

We use steepest decent approximation in RHS of eq.(@)

2
STy, W] = S[Wu, W] + / Wﬁ (x)n(y)d*xd*y (3.5)

we have used multidimensional taylor expansion over Grassman variables 1 and 7]. The
(Wer, Wer) s a solution which make 6S/dy and 6S/8y vanish. using eq.(@) and (@), we
get

exp(~WE(4)) = [ DyDFexp|-3

(3.6)
— exp(—S(Y)). N (det (B -+m))
As argued in scalar QED case, the factor of 4" and exp(—S(,;)) can be dropped. We
have used the formula path integral over Grassman variable
I / d6;d6e % B% = detB (3.7)
i
We can write
det[D + m] = det(ys5)det[p +m]det(y5) = det(—P +m) (3.8)
thus we get,
1
det(ID +m) = det'/2(—F* + m?) = det'/?(—D* + 7€0uvFuv+ m?) (3.9)
where D* = (9 +ieA)? and ouy = —4[yu, W] where ¥, are Euclidean gamma matrices de-

fined above.
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Using above mathematical identities, we get

1 1
~WwEh@A) = ETrln[—Dz—sz—}— EeG.uVFlJV] (3.10)
we use Frullani’s integral
*dT
Tr(In(P)) = — - Tr(exp(—PT) —exp(—T)) (3.11)
0

to simplify further (dropping the second term as it will not contribute to imaginary part)

1 [~dT 1
whA) = 5, — T | exp {— T l—DZ +5e0uvFuy +m2} H (3.12)
which could be written as
1 [~dT L | 1
whA) = 5 Texp[—sz] %[a’xﬂ]exp [—/0 dr[zxz —|—ieAux“H tr [exp [— ETeG“VI(TMVH)
3.13

For the case of E 11 B, the last term can be written as 4cos[eET|cosh[eBT] thus we get (af-
ter substituting T =T u, and T — T /m?)

wt(A) :2/OwdTTexp [—T]%[dxu]exp [— (g/olduxz%—ie/olduA.xﬂ cos[eET /m*] cosh[eBT /m?]
(3.14)

We perform T integral using saddle point approximation. Since the cos term in the expo-
nential form gives imaginary part, hence it does not modify the saddle point[16]. Under
the limit of eB << m? the cosh term does not modify the saddle point compared to scalar

case. Hence the saddle point for the T integral turns out to be

Cmy o, NI
To = 5(/0 i du) (3.15)

Hence, in the weak field limit-eE << m?, the one-loop effective action for Spinor is given
by

E . 27 1 1 0 . 1 . eET, eBT),
w (A)—Z\/;/[dxu]Wexp[—m /0 x*du — ze/o A.xdu] cos[ ) }cosh[ " ]

(3.16)
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Considering terms in the exponential as —S.4(x) with Euler-Lagrange equation same as
Scalar case eq.() (only in the weak field limit)

1
v 0

So final expression for one-loop effective action for Spinor will look like

Wh(A) = 2(%) 1/2det [(#ﬁ%) U —1/2eXp[—SeH()z)] oS (eizTO) cosh (efgo)

(3.18)

but as is well-known in an Instanton calculation, integration over zero modes will be re-

placed by integration over collective co-ordinates thus giving some extra factor as we’ve
shown in section E.l.?). Where X is solution to Euler-Lagrange equation with action S,g.

The det factor will be evaluated separately in the following sections.

3.1.2 Instanton Solution

e FElectric Field :-

The solution to eq.() are already found in the sectionE.lQ. The solution is given
by
x3 = Rcos(2pmu) x4 = Rsin(2pmu) (3.19)

This represents circle in x3 —x4 plane with radius R =m/eE. Action S.(X) as already

evaluated in eq. ()

S = 3.20
eff eE ( )

Given the solution, we also get a = 2p7iR and Ty = ma/2 = m*pr/eE. The extra

factor in Spinor One-loop effective action which is

cos(eETy/m?) cosh(eBTy /m?*) 2= (—1)P (3.21)

o FElectric field parallel to Magnetic field :-

For the case of E 11 B where E and B are in x3 direction, the components of Field ten-
sor will be Fjp = —F,; = B and F34 = —Fy3 = iE. As we argued in the case of scalar

in sectionR.1.2, there are no non-trivial solution in x; — x, direction. This suggest

38



that the x(u) is same as that for the case of constant electric field eq. () Hence
S.¢ remains same as given by eq.(). The extra factor in Spinor One-loop effective

action which is
cos(eETy/m?) cosh(eBTy/m?) — (—1)P cosh(pnB/E) (3.22)

since Ty = ma/2 = m*prw/eE.

3.1.3 One-loop Pre-factor

e FElectric case

As we argued in section@, under the weak field approximation (eE << m?, eB <<
m?) the S.;(x) does not change as compared to scalar case. Hence, in this approxima-
tion the operator M in () also does not change nor does the detM as compared to
the scalar case. Hence using eq.(),

@(}isp =-2- gz(]isc
VERE2i(—1)rt! (3.23)
1673 p2

The only extra factor -2 need to be taken into account in the pre-exponential factor
compared to scalar case (comparing eq.() and ())

Then, one-loop effective action is given by

W[E_Z‘@Os[) 1)” exp(—S.«(¥))

p=
oo V[E 2E2
=2 +exp(—S.a(¥)) 3.24
p; 6737 (3.24)
B Z VE 2E2 m2pm
877:3 eE
Hence using eq.(@),
o 2p2 2
e’E m-pw
o=y S [— ] 3.25
0,sp pzl 47[3}72 exp ¢E ( )

o Electric field parallel to magnetic field case
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As argued above the detM does not change as compared to scalar case, hence using

2.72)

‘-@0 Ssp =—2- gZOsc
VE(—1)Pt12E% prB (3.26)
1673 p? E sinh(pnB/E)

Then, one-loop effective action is given by

Wi = Z%sp 1) xp(—S..(x) cosh(pB/E)
p=

i (—1)%PeE?i pnB

167r3’p2 Esinh(pnB/E)

exp(—S.(¥)) cosh(prB/E)  (3.27)

2

Vie 2EB T
Pae B2 ””Ep ]coth[pﬂB/E]

_Z 87752

Hence using eq.(@), for the Spinor case in the background of constant electric field

parallel to constant magnetic field the decay rate expression is given by [[17]

(3.28)

e“EBcoth(pnB/E) mepx
i = L 4n? xp [_ E }

p=1 p ¢
which we re-derived here using Worldline Instanton method. This reduces to eq.()
in the limit B — 0.

3.2 Finite Temperature Case

3.2.1 Instanton solution and exponential factors T # 0

o Electric Field For calculating finite temperature vacuum decay rate for Spinor QED
particles in presence of constant electromagnetic field, we need to calculate Imagi-
nary part of Euclidean effective action of QED per unit four volume. Same as in the
case of zero temperature one can Write() , but with an additional condition that
x4(0) = x4(0) + nPB[67]. The one-loop effective action for Spinor at finite temperature
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is given by

dT 1
2/ /dx<x exp(— D2+§eGquuv))‘x+nﬁé4>e_m T
nEZ

27 1
_nézwl / _M? gl — T2l exp [ my| xzdu—te/ A.du
eBT()
cos [ comn [

(3.29)

where in addition to satisfy x,,(0) = x,(1) as in the case of zero temperature, x,

should satisfy an additional constraint of periodicity in x4 direction.

As argued in zero temperature case, taking exponent in the eq.() as —Seg(x),
then in the weak field limit we get equation of motion as () A point to note
that in eq.(), the case of n = 0 has already been evaluated in the zero temper-
ature case. Hence only remaining part is that of n # 0 which would contribute to fi-
nite temperature correction to vacuum decay rate expression. For finding finite tem-
perature Instanton solution, we need to find solution of equation of motion eq.()
where solution is periodic in x4 direction with period nf3. Such solution to given

equation of motion, we have found in the case of scalar.

There are two solutions for n € Z* - Path I'™ and Path II'™ as represented in @ The
path It given by solution eq.() contribute to free energy of the created pair. The
path II'" given by solution eq.() contributes to the vacuum decay rate expres-
sion. There are two solutions for n € Z~ - Path I~ and Path II~ as represented in
Ell. The path I~ given by solution eq.() contribute to free energy of the created
pair. The path II™ given by solution eq.() contributes to the vacuum decay rate
expression. As mentioned in the scalar case contribution from /1™ and II~ is same in
the vacuum decay rate expression. Hence sum over n € Z in eq.() will be replaced

by twice sum over n € Z*.

The contribution from exponential terms for the case of constant E case is given by

exp(—Su(X")) cos(eETy/m?) (3.30)
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substituting S.(x"") from eq.() and using Tp = ma/2 = mRY /2 we get

2

T 272 v
exp (— 2’:_E [2717(p+ 1) — 2arcsin (%)} + % 1— nTZC ) cos <5> (3.31)

o Electric field parallel to magnetic field:-

For the case of E 11 B the equation of motion does not change and hence nor the
S.a(xbH +). The contribution from exponential terms for the case of constant E 11 B

case is given by
exp(—S..(x""")) cos(eETy /m*) cosh(eBTy /m?) (3.32)

substituting S.(x7") from eq.() and using Top = ma/2 = mRY /2 we get

2

exp (— 2’72_E [27r(p+ 1) — 2arcsin (nTTC)] + g\/ 1— %) cos (g) cosh (g—g) (3.33)

3.2.2 Pre-exponential factor at finite temperature

o FElectric case:-

As argued in zero temperature Spinor case, since S.g does not change hence in the
weak field limit (eE << m?,eB << m?*) we get det’M same as in the case of scalar

case. Hence using eq.()
'@%,sp = _2’@%.;0

——2:(-1)

i3 (eE)? nPeE\27-1/4 (3.34)
’ ; (27)3/2 (nmpB)! /22 [“( 2m ) ]

We just need to take into account the extra factor of —2 as that is the only extra
factor arises in the pre-exponential factor of spinor as compared to scalar.

o Electric field parallel to magnetic field:-
For the similar reasons mentioned in E case, the det’M for spinor E 11 B case does not

42



change as compared to scalar E 11 B case. Using eq.(),

EB  __ EB
Tsp — _2‘@T7sc

=—2:(-1)

»iV3P ¢’EB [1_<nﬁeE>2]1/4 (3.35)
4 (2%)3/2(nmﬁ)1/2195inh(%) 2m

3.3  Final Result

3.3.1 Zero Temperature

As already mentioned in section 2.1, the Schwinger pair production rate of Spinor in con-
stant electric background is ()

- e’k [ m pir]
=) — — 3.36
O,Sp pgl 471_31)2 exp eE ( )
This result was derived in [[70], we derived it using Worldline Instanton formalism.
And for the background of constant electric field parallel to magnetic field is ()
) 2
o5 e“EBcoth(pnB/E) [ m pﬂ?]
= - 3.37
0,sp 1;] 47172]7 Xp eE ( )

which reduces to I, in the B — 0 limit. This result was derived in [17], we derived it

using Worldline Instanton formalism.

3.3.2 Finite Temperature

Schwinger pair production rate at finite temperature T in the background of constant elec-
tric field E is
I, =T0,,+I: (3.38)

T,5p
where '}, (using eq.(.31),eq.() and eq.(@))is given by:
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Fosp = i nﬁx4 Tas. 27[)3/2((6'5’12;)1/2192 [1 B (néi;E)Z]IM

p=0n=
2 T, 272 0
exp | — % [27[(p+ 1) —2arcsin (%)] + g 1— ”Tzc cos <5>
(3.39)
where ny. = |2R/B ] and
. /nT;
8 =21(p+1)— 6, =27(p+1) —2arcsin (7> (3.40)

It is easy to note that I';, =17

0.5p for T =0, since for T < T, there are no thermal correc-

tions. Schwinger pair production rate at finite temperature 7T in the background of con-

stant electric field E parallel to magnetic field B is

Iy, =105, +17 (3.41)
where TE8 (using cq.(B.32).cq.(8.33) and eq.(2.6))is given by:
= N ’EB nfeEN21-1/4
es 2 p+1 ¢ . [1 _ < > }
P pz’onz’ 2%)3/2(nm[3)1/219smh(%) 2m
2 T. 272 ) VB
exp | — Z_E [271'(194— 1) — 2arcsin (nT)] + Z—m 1— nT—ZC cos ( 5 ) cosh ( 2E)
(3.42)
where nyqy = |2R/B ] and
. (nT;
Y =2n(p+1)—6,=2m(p+1)—2arcsin (7> (3.43)
In the limit of B — 0, I'; reduces to I'y,. Since in the B — 0 limit
UB UB
sinh ( 2E) - (3.44)

thus I'T%, — I'7 . It is easy to note that I'g; =155, for T =0, since for T < T; there are

no thermal corrections.
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Chapter 4

Millicharged particle

4.1 One Para-photon Model

Millicharged particles can be accommodated in the SM itself, or through kinetic mixing
with SM singlet dark sector (henceforth denoted by D). In the simplest model, single U(1)p
massless gauge field Aﬁ is kinetically mixed with U(1)y gauge field B, the Lagrangian
density for this model is [b5]

1

25 2 (V9 — eV Al —my ) 20— JAepA” P — %AzﬁBaﬁ (4.1)

where Xy, is a Dirac fermion in the dark sector, of mass m,, charged under Ay, with a cou-
pling —ep. Bg is the hypercharge U(1)y gauge field. & is kinetic mixing parameter. Field
strengths are defined in the usual way X,p = doXg — dpXa.

We make field redefinition Aﬁ — Aﬁ —&By

_ /. 1
YA (l’}’”a’u — enAD + Een By — mx) 1o — 7AGpA" (4.2)
We have dropped the terms containing quadratic order of . As a consequence of field re-
definition, the kinetic mixing term has been eliminated and yx, get effectively coupled to

Bg with coupling ep. Since & can be fractional, the coupling can have arbitrary small
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Figure 4.1: This figure summarizes some of the bounds on parameter space of Milli-
charged particle

values. After Electro-Weak symmetry breaking, x, get coupled to U(1)qep photon with
small, fractional electromagnetic charge of magnitude ey cos(6,,) where 6, is the Stan-

dard Model weak mixing angle. Hence € in units of electric charge becomes

€= é%cos Ow (4.3)

4.2 Existing Constraints

Many experimental and phenomenological arguments have been proposed in order to put
constraints on the parameter space of Milli-charged particles. Direct laboratory searches
have been performed in accelerators[71], beam dump experiment at SLACI[72] and Ortho-
positronium decays [73]. For (m, < keV) mass range of Millicharged particles the most
relevant constraints come from stellar cooling arguments (see Fig.@). The stellar energy

loss due to the emission of MCP pairs by Plasmon (photon in plasma) decay can put con-
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straints on these particles. For instance, emission of MCP pairs by Plasmon can delay he-
lium flash in red-giants, accelerate the helium-burning stage and cooling of white dwarfs.
These constraints exclude &€ < 10~'* MCPs [74][75]. But, these constraints are model de-
pendent and can be evaded [76].

4.3 Two Para-photon Model

The two para-photon model can evade the constraints from Red giants and White Dwarfs[76].
The Lagrangian density for the photon part can be written succinctly in the matrix nota-

tion as follows:

1 1 .
L= —ZFT///FF + 5AT///AA + e; JiA; (4.4)

where A = (Ag,A1,42)7 and F = (Fy, F1,F)T. The Ag,A;,A; are interacting fields because
interaction term is diagonal in above equation, since only the interaction photon is coupled

directly to SM particles. The kinetic matrix .#F and mass matrix .#y is given by

1 € ¢ my 0 0
Mp=|e 1 0 Mp=10 mi 0
e 01 0 0 mj

The currents jo =0, j1 = XoYuXp and jo» = —XoYuXn- We have set unit of para-charge equal
to unit electric charge e, we also have assigned opposite para-charges w.r.t A; and Aj i.e.
coupling with A is taken to be e and that with A, be —e. We need to make .#F diagonal
such that first term of Lagrangian density will be of form —F” F /4. After this, one needs
to diagonalize mass matrix with an unitary transformation that maintains the kinetic part

canonical in the propagating field basis A. The whole results in A = UA with

m2_m2 m2_m2
1 0 2
m2
U - € > 0 1) 1 0
my—my
m2
£—>" 0 1
msy—nig

A point to note that we are working at first order in €. Now adopting special case of this
general model where only one para-photon has mass m; = u # 0, and my = 0. We observe

that under the transformation from interacting fields basis (A) to propagating field basis
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(A). The last term in equation(@) becomes

2

_ _ ~ _ ~ m
X Wudo (AT —A2) = el Yuo(Ur0 = Un)Ay = el YutoAy ——— (4.5)
1 0

In plasma the dispersion relation for photon is

22— 4rwon,
=Wy =

me

where n, and m, are density and mass of electrons. The mass of photon is my = w), in
plasma. If mg=w, >>m; = u then [76]

2

u
qy (K = wf,) 2y (k* =0) (4.6)
P

for low energy scale of the order of keV i.e. w, ~ keV, we get a strong decrease in charge of
x in plasma. Thus in vacuum, constraint on € coming from Red Giants and White Dwarfs

are given by € < 107[77].
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Chapter 5

Astrophysical Probes on Millicharged Particles

from Neutron Stars

5.1 Neutron Stars and Magnetars

Neutron stars are end products of supernova collapse of very massive stars [[78, 79]. Radio
pulsars and X-ray pulsars are Isolated neutron stars. The latter consists of two groups -
soft gamma repeaters (SGR) and anomalous x-ray pulsar (AXP). Radio pulsars are rota-
tionally powered while SGR and AXPs are Magnetically powered. This comes from the
observation of short-lived burst activities and persistence emission from the X-ray pulsars,
and they are explained under the Magnetar Model[80]. Thus in Magnetar, burst activities

and persistence emission is powered by super-strong magnetic field ( 0(10%)).

Neutron stars (NS) are rotating objects with high magnetic field which lead to generation
of high electric field outside NS. If Lorentz force on particles present on surface exceed the
gravitational force, these particles get extracted out and form NS magnetosphere (NSM).
NSM rotates with NS upto a distance defined by imaginary surface known as ‘Light cylin-
der’. Inside neutron star magnetosphere, charges reconfigure themselves to nullify electric
field induced by Magnetic field, and Lorentz force free condition is maintained. This is the

Goldreich-Julian model[81]. The various regions of typical Neutron star are illustrated in

Fig.l5:1!
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Figure 5.1: A schematic representation of the various relevant NS regions.

The force free state is not maintained throughout the magnetosphere and many model
predict the existence of vacuum gap region where the plasma density is low or vanishing.
Two vacuum gaps are thought to be present-one just above poles, termed as Polar Gap
(PG) and another near the light cylinder, a region between open field lines and closed field
lines, termed as Outer gap. In these regions force-free condition is not maintained. In the
PG region large electric fields (Epg) parallel to magnetic fields are present, and is given by
expression [82]:

Epc = %QNSBNSRNS cos’[6] (5.1)
Here, Bys is the polar magnetic field on the NS surface, Ry is the NS radius and 0 is the
star-centered polar angle. Taking representative Magnetar parameter values (denoted ‘M’)
rotation period 1,, = 10sec, radius R,; = 10Km, and B,; = 1015(}, one gets in the MG case

Eype = 10"V /m.
The Polar gap radius is approximately given by

Rog ~ 150m (s /s) 2 (5.2)
where Tys is the NS rotation period. Specializing to MGs, with 7,; = 10s, one obtains
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Rypc >~ 50m. The pair formation front determines the Polar gap slot width and height.
Above the pair formation front region electric fields are shortened out because of the sec-
ondary pair plasma gets formed. The typical pair formation front height (distance between
pole of NS and starting point of pair formation front see ﬁg.@) and polar gap slot width
for Magnetar is taken to be 10m [83]. With these dimensions and assuming |Eyp| is sig-
nificant in the slot-gap at least all the way upto a height '(2Rys), we may estimate a rele-

vant PG volume (74¢); where electric fields are large.

Yo = 1.46x10m> (5.3)

5.2 New Constraints on Millicharged Particle

Schwinger pair production (SPP) is a non-perturbative process, i.e. SPP can not be seen
at any order in perturbation theory. The signature of non-perturbative behavior can be

seen in the decay rate expression for SPP given by Schwinger [2].

g (eE)? m’n
FSPP - 473 exp [_ eE ] (5.4)

This equation gives average rate of electron-positron pairs produced per unit volume when
external electric field of magnitude E is applied. If the coupling constant (e) is taken to be
small, though each term in Taylor expansion of decay rate expression diverges, the expres-

sion as a whole converges, signifying non-perturbative behavior.

When the exponent is O(1), the electric field gives the expression for critical electric field
strength (E.,), which is the minimum electric field required to produce significant number
of pairs. In case of eTe™, the E,, = 1018V/m. At the time of pair production, electron-

positron pair are produced at a distance lp = 2m/eE as given by energy conservation.

When electric field is accompanied by parallel magnetic field (B), the decay rate expression

modifies. For Spinor electron-positron pair production [84],[85] it is given as

[EB (e’EB) m*n

= oy o [ e [ 53)

For scalars, apart from overall factor of 1/2, the coth(zB/E) factor is replaced by (sinh(zB/E))~!
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factor. Hence, for the values By = 10'>G and induced |Empc| = 10'*Vm~! the pair produc-
tion of scalar particles is suppressed. Hence, the bounds we will derive are only valid for

Spinor particles.

5.2.1 Energy-Loss Argument

The rate of energy loss from Magnetar averaged over lifetime of Magnetar .7, is given by

d*&ry d258’£% B | €0ED e
d — | .
/7/ dtd”// dtdyv /7/ 2#0 2 (56)

where first term on the LHS is the radiation loss powered by Magnetic field energy. The
second term on the LHS quantifies the energy loss due to y,-SPP. This term is given by

28

v =TipeelEupallo+ T3z elEl gl (1—lo) (5.7)

Here, Eypg and E“l(“,G are the average electric field values over the respective distance
ranges. The first term in Eq. (@) is the energy extracted per unit volume per unit time
from the E)M,pc field for SPP. [y is the inter-mCP distance at the instant of SPP. The sec-
ond term in Eq. (@) is the subsequent work that may be done by EY, ., in accelerating
one of the xp, particles out by a distance [ — Iy.

In (my,€) regions where inter-mCP dark Coulombic attraction (F$°" ~ €2 /I2) exceeds
external Lorentz force (F, ~ €e|Eypc|), no mCPs accelerate the pairs would instead an-
nihilate soon after SPP. Thus, the second term in Eq. (@) gives no contribution in these
regions and the only energy extracted from the EM field is to initiate ),-SPP. In other
regions where Fy, > FS°" energy is extracted from the EM field both for SPP and to sub-

sequently accelerate mCPs out of the Magnetars polar gap region.

For the Electromagnetic energy stored in the Magnetar, we assume that most of it is within
a distance of Rys of neutron star Magnetosphere. The [d? can be taken to be %;¢, as

discussed earlier.

As an estimate of the radiation loss component, we take the average of the persistent qui-

escent X-ray emissions (PQXR) from the MG catalog [86] for all currently known MG can-
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didates. This gives

</d”f/d2£’RL/dtd7/>;QXR = 43 x 10 ergss™! (5.8)

In regions where Fy > F$°" and x,-SPP occurs, one gets from Eq. (@) a bound
g < 10712 (for regions with F, > FSo) . (5.9)

This is obtained taking typical MG values 7, = 10s, Ry = 10Km, %, = 10* yrs and By, =
101G and assuming I = 20Km. In regions where F, < FS°"", the only energy extracted
from the EM field is to achieve SPP. In this situation bound is obtained by putting [ = [
in Eq. (@) The inter-mCP distance [y at the instant of SPP is given by [31]
2my

lo=

£e|EM,PG|

This is valid for both strong coupling and large fields by energy conservation and symme-
try. With these considerations, Eq. (@) for Fy, < F$**" gives a bound

e? (%) < 10-16 (for regions with F < Fy") (5.11)

in regions where Y,-SPP is unsuppressed.

Note that these limits only depend on the fact that fermion mCPs have an effective cou-
pling with the U(1)qgp photon. Any model dependent charge screening mechanism in
plasma is also irrelevant in the the Magnetar vacuum gap regions. We have neglected any
inhomogeneities present, which supported by the fact that the mCP de-Broglie wavelength
is small and well within the Polar Gap region[87]. In addition we also have Iy << 10m
putting it well within the polar gap region at the time of SPP.

5.2.2 Magnetic Field Evolution Argument

In this subsection we will show how does the y,-SPP affect the magnetic field evolution
and spin down rate of Magnetar. We include Ohmic and Hall drift contribution in the de-
cay of magnetic field [88][89], along with potential y,-SPP contribution one has for mag-
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Figure 5.2: Gray and Dark gray region is the excluded region. mCP-SPP suppressed is the
region where E., > 104V /m hence production of mCP pairs is exponentially suppressed.

netic field evolution

dBu(r) — Bul) By() 38SQ%(1)B(1)! "
e To  By(0)1y 8T2R,, re
27T 27'L'm72(
coth| ———|exp |[— . 5.12
[QM@)RM] P SeQM(t)RMBM(t)] (5.12)

contribution from neutron star dynamo, responsible for evolution of magnetic field in the
early stages of proto-neutron star formation is assumed to be absent [@] We have also
neglected the Ambipolar diffusion[@]. By;(0) is the initial magnetic field, which we take
as 10 G. Q,, (¢) is the MG angular velocity. 74 as before is the relevant PG volume.

For the Ohmic and Hall drift time constants, we take T, = 10%yrs and 7, = 10*yrs fol-
lowing typical values from literature [@, @] The time constants T, and Ty are complex
function of temperature and density, but the relevant behavior has been shown to be cap-
tured in these values. Similarly, the By(r) of the above form qualitatively reproduce the
results from more complex magneto-thermal evolution[@]. We will also neglect the effects

of toroidal fields, glitches, burst and flare events.

Since for viable (my, €) values, the x,-SPP should not overwhelm the conventional By, (r)

evolution in the MG. Based on this argument we can out constraint using Eq. (5.12) as
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follows:

B,,(0) N B,,(0) - 3e3e30Q2,(0)B2,(0)1 coth n
T T 87T2R,, Q. (0)Ry
27rm% v 5.13
P T e, (0)R By (0) | "¢ (5.13)
This gives a constraint
g < 3.4x107'2 (for regions with F, > FSo) (5.14)

in regions where F; dominates and ),-SPP occurs. In regions where F5°* dominates, we
set as before [ = lo(my, €,B\(0),2(0)) in (5.13), where Iy is given by in Eq() For

these regions, we have

g2 (1”1—7{]> < 6.4 %107V (for regions with Fy < FS") . (5.15)
e

A point to note that bounds coming from Egs. (@) and () are comparable. This makes
sense since without mCP SPP, the Ohmic and Hall terms lead to By, dissipation, which
subsequently power persistent emissions. Thus, our arguments based on MG energetics are
related to those based on By(t) evolution. The complete exclusion regions based on these
arguments from Egs. (@) and () are shown in Fig. @ We have assumed ey, ~ e for

the calculation of /.

5.2.3 Effect on Braking Index

The effect of y,-SPP can be seen in Qyg(f) which will be encapsulated in the ‘braking-

index’ of Neutron star. For a relation Qys(t) = —A (1) Q2 (¢), the true braking-index (b,..)

is given by

Qu()Be(t) _,  A0Q(0)
(1) A(1)Qns (1)

If A(¢) is a constant, one obtains b, = b. For instance, a rotating, constant magnetic

Do (t) = (5.16)

dipole has b,,,. = 3. In general, b,,,. is time dependent as seen from Eq. ()
Assuming a predominantly dipolar magnetic field in the neutron star exterior, the spin-
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Figure 5.3: The ratio AbS*T/AbSTF for My = 10~2eV and € = 10~!! (solid), 10712 (dashed)
and 1071 (dotted).

down due to magnetic-braking torque is given by

Lys Qus = —1/6Q3 B2 RS _sin’ a (5.17)
where Iys is moment of inertia of neutron star and « is the angle between neutron star
rotation and magnetic axes. Without loss of generality we take a = 7/4 and neglect the
time dependence Iys might have. Specializing to a Magnetar and approximating it to a

spinning rigid sphere with I, = %MMR%I, we get

Q ——iR—;‘IBz Q3 5.18
u(t) = AU (1) (1) . (5.18)

We solve the coupled differential equations, Eqs. (m) and (m), for By (t) and Qy(7)

over a time-scale [1.0, 1 x 105] yrs. Based on the solution we may calculate b,,,.(t) for vari-

ous (my,€) values.

Define the deviation of b, (t) from the pure magnetic dipole braking index as Ab,,..(t) =
boue(t) —3. The ratio of this quantity, without y,-SPP (AbS*T) to that with yp-SPP (AbST),

true

is shown in Fig. 5.2.2. The curves are for parametric values € = {107!1,10712,10713} and
my = 1072eV. For these values F, > F$°". The ratios Ab$T /AbST" differ from unity and

ue

for large € values show appreciable time evolution. This therefore provides a further av-

enue where y,-SPP effects may be probed.

o6



Chapter 6

Conclusion and Outlook

Millicharged particles, a viable dark matter candidate, are intriguing because of their frac-
tional charges. The most stringent condition till now was from stellar cooling arguments.
But these constraints as was shown are model dependent and constraints in vacuum on €

can be brought down to 1077 in sub-KeV mass range.

In this thesis, we have obtained a novel, model-independent constraints from the non-
perturbative production of the Millicharged particles in Magnetar environment. The con-
straint from the energy-loss argument for the region of my, — € parameter space where

Fg > Fgoul are € < 10712 and &2 (%) < 10716 for Fy < Fgo"l region. Approximately
similar bounds are obtained from the magnetic field evolution argument. This is expected
as Schwinger pair production of Millicharged particle was absent, the Ohmic and Hall term
led to the By dissipation which power the persistent emission. We have shown that de-
pending on the € values a significant change is seen in the braking index of Magnetar. We
have neglected the Magneto-thermal evolution of time constants. We also neglected the
effects of toroidal components, glitches, flares which would be necessary for the more com-

plete modeling. The basic principle is that of adding y,-SPP term in the By (¢) evolution.

The idea of SPP of Millicharged particles can be extended to Milli-magnetically charged
particles (mMCP). We are trying to find the effect of SPP of mMCPs on the braking in-

dex of Magnetar and on the continuous gravitational waves produced from Neutron star.

In this thesis we have shown using the Worldline Instanton formalism the previously ob-
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tained results for vacuum decay rate for Scalar QED and QED vacuum. We verified the
results for zero temperature, constant Electric case and constant Electric Field parallel to

Magnetic Field case for both scalar and Spinor.

Worldline formalism has an easy generalization to finite temperature case. We verified the
previously obtained result for scalar QED vacuum decay rate in constant Electric field at
finite temperature . We obtained a new result for scalar QED in constant Electric field
parallel to Magnetic field background. This result indeed reduced to pure electric field
result under B = 0 limit. We obtained an analytical expression for Spinor QED vacuum

decay rate at non-zero temperature in pure Electric and E n B field.

We have assumed a constant Electric field and constant E 11 B field configuration. There
are many ways one can extend this result to make them practically relevant. It was shown
at zero temperature that inhomogeneities in Electric and Magnetic field can enhance pair
production rate. Analytical formula for the inhomogeneous field configuration at finite
temperature would be a test of whether this enhancement holds at non-zero temperature.
Calculating pair production rates for spatial and temporal inhomogeneous electric and
magnetic field would give us a way to test this non-perturbative phenomenon at future
laser facilities. In our calculation we have made an assumption of weak field and weak cou-
pling. It would be a theoretical challenge to see whether this formula holds true for strong
field like in the case of zero temperature and how can one account for strong coupling in

the formalism.
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Appendices
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6.1 Morse Analysis

In this section, we will show how the factor of (—1)? also termed as Morse index of the
classical path appears in the pre-exponential factors. The caustic is defines as a envelope
of trajectories obtained by fixing x,(0) and varying x,(0). A focal point of the classical
path is defined as contact point between path and caustic surface. The crux of Morse
theory is that the number of negative eigenvalues of the second variation operator about
the given classical path equals the number of focal points strictly between the end points
counted with their multiplicity. This number assigns Morse Index to path. In reverse, if
we can find the Morse index of the path the number of negative eigenvalues can be evalu-
ated. This information is crucial as it will be determining point to distinguish between two

finite temperature Instanton solution.

In practice, the Morse index is determined by calculating the number of times eigenval-
ues of matrix n vanishes strictly between the endpoints. This would give the number of
negative eigenvalues of operator L. In order, to calculate total number of negative eigen-
values of M, we need to take into account the extra negative eigenvalue coming from the
non-local part of eq.(). As we found in finite temperature case the non-local part gave

extra negative eigenvalue only for the case of larger paths and not for the smaller path.

The n matrix we found for the case constant Electric field case has following Eigenvalues:

[u,u,i(—1+cos(Vu) —isin(Vu)), —i(—1+ cos(du) +isin(du))] (6.1)

The first two eigenvalues will not vanish for 0 < u < 1. Whenever the third eigenvalue
vanish, fourth one will too. Since for the third eigenvalue to be zero both real and imag-
inary part must vanish simultaneously, hence making fourth eigenvalue to vanish. The
third eigenvalue is zero for following u values strictly between 0 and 1.

2nm

- €1,2,-- 6.2
u 27r<p+1)_9n n =D 7p ( )

Hence, the number of negative eigenvalues for L are 2p. Hence, for the larger paths total
number of negative eigenvalues are 2p + 1. It can easily be seen that for small paths total

number of negative eigenvalues will be 2p only the coming from matrix L. Hence, for the
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both paths the factor of e=27/2 = (—1)? must be taken into account[32],[69]. One must
note that even if the Morse index for the longer path is 2p + 1, the contribution for the
extra negative eigenvalue coming from non-local part is already accounted for by i factor
in the pre-exponential factor. For the case of constant E 11 B case the conclusions, as men-
tioned above, will not change. As the extra eigenvalues appearing for this case will not be

zero except at the endpoints of the path.
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