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Abstract

The first part of the thesis is on right splitting, Galois correspondence, Galois representa-
tions and Inverse Galois problem. The famous ‘Inverse Galois problem’ IGP asks whether
every finite group appears as the Galois group of some finite Galois extension of Q. Using
Galois representations attached to elliptic curves, Arias-de-Reyna and König in [1] have
proved the IGP for GL2(Fp) over Q for all primes p ≥ 5. Through Galois correspondence
and right splitting of some exact sequences of groups, we obtain some general results and
apply these to the case in König and obtain interesting occurrences of IGP. The IGP for
PSL2(Fp) over Q for all primes p ≥ 5 was established by Zywina in [23] using the results of
Ribet in [19] about the Deligne’s Galois representations associated to certain newforms.
Using algebraic operations on Galois representations and right splitting of some exact se-
quences of groups, we obtain the main results and then apply these to the case in Zywina
and obtain equally interesting occurrences of IGP.

The second part of the thesis is on Root Clusters, Magnification, Capacity, Unique
chains, Base change and Ascending Index. Inspired from the the work of M Krithika and
P Vanchinathan in [13] on Cluster Magnification and the work of Alexander Perlis in [18]
on Cluster Size, we establish the existence of polynomials for given degree and cluster
size over number fields which generalises a result of Perlis. We state the Strong cluster
magnification problem and establish an equivalent criterion for that. We also discuss the
notion of weak cluster magnification and prove some properties. We provide an impor-
tant example answering a question about Cluster Towers. We introduce the concept of
Root capacity and prove some of its properties. We also introduce the concept of unique
descending and ascending chains for extensions and establish some properties and ex-
plicitly compute some interesting examples. Finally we establish results about all these
phenomena under a particular type of base change. The thesis concludes with results
about strong cluster magnification and unique chains and some properties of the ascend-
ing index for a field extension.
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Chapter 1

Introduction

Inverse Problems in Mathematics especially Algebra tend to intrigue me more than often.
Like the Inverse problem in Galois theory or Inverse problems in Root Cluster Theory.
This thesis deals with such Inverse Problems and attempts to bring to light aesthetically
interesting new results and organically develops the theories further.

1.1 Right Splitting, Galois Correspondence, Galois Rep-
resentations and Inverse Galois Problem

The famous ‘Inverse Galois problem’ asks whether every finite group appears as the Galois
group of some finite Galois extension of Q. Many families of simple groups are known
instances of this problem but the general question is still open.

Using Galois representations attached to elliptic curves, Arias-de-Reyna and König
have proved the following ( Thm 1.1 in [1])

Theorem 1.1.1. (Arias-de-Reyna, König)

For a prime p ≥ 5, there are infinitely many locally cyclic Galois extensions of Q with Galois
group GL2(Fp), which are pairwise linearly disjoint over Q(

√
p∗) where p∗ = (−1)(p−1)/2 p.
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Using the results of Ribet [19] about the Deligne’s Galois representations associated
to certain newforms, Zywina established the following (Thm 1.4 in [23]),

Theorem 1.1.2. (Zywina)

PSL2(Fp) can be realized as a Galois group over Q for all primes p ≥ 5.

1.1.1 Our Contribution

We establish some instances of Inverse Galois problem. These results are a part of the
manuscript [4] by Bhagwat and Jaiswal. In Chapter 2, through Galois correspondence and
right splitting of some exact sequences of groups, we obtain the main results Thm. 2.2.1,
Thm. 2.4.1. We then apply these general results to the case in [1] and obtain interesting
consequences as corollaries which are as follows.

Theorem 1.1.3. (Bhagwat, Jaiswal)

1. For a prime p ≥ 5, (SL2(Fp) × SL2(Fp)) ⋊ Z/(p − 1)Z (with semidirect product group
law as in Thm 2.4.1) is realizable as Galois group over Q.

2. For a prime p ≥ 5with p ≡ 3mod 4, letH be the unique index-2 (hence normal) subgroup
of GL2(Fp). Then (H ×H)⋊GL2(Fp)/H (with semidirect product group law as in Thm
2.4.1) is realizable as Galois group over Q.

3. For a prime p ≥ 5, (PSL2(Fp) × PSL2(Fp)) ⋊ Z/2Z (with semidirect product group law
as in Thm 2.2.1) is realizable as Galois group over Q.

In Chapter 3, using the algebraic operation induction on Galois representations and
right splitting of some exact sequences of groups, we obtain Thm. 3.1.7, Thm. 3.1.8 as the
main results. We then apply these general results to the case in [23] and obtain following
interesting consequence as Thm. 3.4.3.

Theorem 1.1.4. (Bhagwat, Jaiswal)

1. For p ≥ 5,PSL2(Fp)⋊Z/2Z is realizable as Galois Group over Q (for semidirect product
group law in Thm 3.1.7).

2



2. This semidirect product in part (1) is direct ⇐⇒ π̃(s) = I.

3. Automorphism ϕρ̃(s) of ρ̃(H), by conjugation by ρ̃(s), is inner.

4. The group obtained here is not isomorphic to PGL2(Fp).

Remark 1.1.4.1. In Sections 4 and 5 of the undergraduate Thesis [16] by Joris Nieuwveld, they
have constructed explicit algorithm that computes polynomials over any hilbertian base field
of characteristic 0 (in particular over rationals) with Galois group isomorphic to a semidirect
product with abelian kernel (that is the normal subgroup being abelian).

Note that all the families of groups that we have proved to be realizable as Galois groups
over rationals in Thm 1.1.3 and Thm 1.1.4 are semidirect products with non-abelian kernels
(that is the normal subgroup being non-abelian).

Then for the algebraic operations direct sum and tensor products on Galois represen-
tations we obtain an unanticipated and interersting result Prop 3.2.2.

Then by using the algebraic operations direct sum and tensor products on Galois rep-
resentations and right splitting of some exact sequences of groups, we obtain Thm. 3.2.7
as the main result. We then apply this general result to the case in [23] and obtain that
PSL2(Fp)× Z/2Z is realizable as Galois Group over Q for p ≥ 5.

Right Splitting of exact sequences of groups is the common thread that runs through
Chapter 2 and Chapter 3.

1.2 Root Clusters, Magnification, Capacity, Unique Chains,
Base Change and Ascending Index

For an irreducible polynomial over a perfect field, we have the notion of root clusters
with combinatorial relation between degree of the polynomial, cluster size and number
of clusters. For notations refer to Sec. 4.1.

Perlis has proved in [17] and [18] the following.

3



Theorem 1.2.1. (Perlis)

1. The cluster size rK(f) is independent of the choice of α.

2. rK(f) sK(f) = deg(f). In particular, rK(f) | deg(f).

3. rK(f) = number of roots of f fixed by H = |Aut(K(α)/K)| = [NG(H) : H].

All these notions carry forward to field extensions over the perfect field.

Krithika and Vanchinathan proved the Cluster Magnification theorem (Thm 1 in [13]).

Cluster Magnification Theorem

Theorem 1.2.2. (Krithika, Vanchinathan)

Let deg(f) = n > 2 over K with cluster size rK(f) = r. Assume that there is a Galois
extension F of K, say of degree d, which is linearly disjoint with Kf over K. Then there exists
an irreducible polynomial g over K of degree nd with cluster size rd.

They reformulate the theorem for field extensions as well.

1.2.1 Our Contribution

The results discussed here are a part of the manuscript [3] by Bhagwat and Jaiswal. In
Chapter 4, after setting up some notations and reviewing the results by Perlis in [17] [18]
and Krithika-Vanchinathan in [13] in Sec. 4.1, we generalise a result of Perlis for number
fields that also improves on the generalisation proved previously by Krithika and Vanchi-
nathan in [13]. The generalisation Thm. 4.3.1 is as follows.

Inverse Cluster Size Problem for Number Fields

Theorem 1.2.3. (Perlis, Krithika and Vanchinathan, A generalisation by Bhagwat, Jaiswal)

Let K be a number field. Let n > 2 and r|n. Then there exists an irreducible polynomial
over K of degree n with cluster size r.

4



In the same chapter, we also present a simple lemma about number of clusters, Lemma
4.4.1, which is very useful in giving alternate proofs of results by Perlis and Krithika-
Vanchinathan as well as in proving further results.

In Chapter 5, we state the Strong cluster magnification problem and establish the fol-
lowing equivalent criterion for that in Thm. 5.2.3 in terms of Galois groups. For all nota-
tions, see Chapter 5.

Theorem 1.2.4. (Bhagwat, Jaiswal)

An extensionM/K is obtained by nontrivial strong cluster magnification from some subex-
tension L/K if and only if

Gal(M̃/K) ∼= A×B

for nontrivial groups A and B and

Gal(M̃/M) ∼= A′ × 1

(under the same isomorphism) for a subgroup A′ ⊂ A with [A : A′] > 2.

We also reformulate the Strong cluster magnification problem for irreducible polyno-
mials. We then state the Weak cluster magnification problem and demonstrate how the
notions for strong cluster magnification and weak cluster magnification are actually dif-
ferent.

In Chapter 6, we provide an important example, Example 6.1.3, answering a question
in [13] about Cluster Towers. We also give a group theoretic formulation for cluster towers.

In Chapter 7, we introduce the concept of Root capacity as a generalisation of clus-
ter size. We begin the chapter with some observations about group of automorphisms of
finite extensions in Prop. 7.1.1 & Prop. 7.1.2 & its corollaries. Then we prove some prop-
erties of root capacity in Propositions 7.2.1, 7.2.2, 7.2.4, 7.2.7 and 7.2.9. We conclude the
chapter with Thm. 7.2.10 which is as follows. For notations, see Sec 4.1 and Chapter 7.

Theorem 1.2.5. (Bhagwat, Jaiswal)

Consider extensions M/L/K and let L̃ be Galois closure of L/K. If M ∩ L̃ = L and
[M : L] = rK(M)/rK(L), then M/L is Galois.
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In Chapter 8, we introduce the concept of unique descending and ascending chains for
extensions. Thm. 8.1.1 and Thm. 8.2.1 encapsulate the important properties of unique
chains. Prop. 8.2.2 links unique ascending and descending chain under certain conditions.
We prove an interesting result Prop. 8.1.2 that describes the fieldN1 in unique descending
chain in terms of the sums of elementary symmetric functions. In Sec. 8.3, we compute
unique ascending/ descending chains for some interesting examples (see Example 8.3.1,
Thm. 8.3.3 and Thm. 8.3.4).

In Chapter 9, we establish Theorems 9.1.1, 9.1.5, 9.2.2 and 9.3.1 about strong cluster
magnification, weak cluster magnification, root capacity and unique chains respectively
under a particular type of base change.

Then we prove results Thm. 9.4.1 and Thm. 9.4.2 about strong cluster magnification
and unique chains which are as follows.

Theorem 1.2.6. (Bhagwat, Jaiswal)

• Let M/K be obtained by strong cluster magnification from L/K with rK(L) ̸= 1. Then
we have that M ⊋ N1 ⊋ · · · ⊋ Nk is the unique descending chain for M/K ⇐⇒
L ⊋ N1 ⊋ · · · ⊋ Nk is the unique descending chain for L/K.

• Let M/K be obtained by strong cluster magnification from L/K through F/K as in Def
5.2.0.1 with tK(L) ̸= 1. Then we have

1. F ′ is unique intermediate field for M/K as in Thm. 8.2.1 ⇐⇒ F ′ = F1F where
F1 is unique intermediate field for L/K.

2. K ⊊ F1 ⊊ · · · ⊊ Fk is the unique ascending chain for L/K ⇐⇒
K ⊊ F1F ⊊ · · · ⊊ FkF is the unique ascending chain for M/K for Fi ⊂ L for all i.

The thesis concludes with Chapter 10 with some properties of the ascending index
tK(L) defined in Thm. 8.2.1 in the context of unique ascending chain for an extension
L/K. The ascending index has many properties similar to the cluster size rK(L) but has
no immediate description in terms of roots of the minimal polynomial of α over K when
L = K(α). In Chapter 10, Prop. 10.1.2 establishes a base change property for tK(L).

Thm. 10.1.3 establishes an analogue of Cluster Magnification Theorem (Thm. 5.1.2)
for tK(L) which is as follows. For notations, see Chapter 8.

6



Ascending Index Magnification Theorem

Theorem 1.2.7. (Bhagwat, Jaiswal)

Let M/K be obtained by strong cluster magnification with magnification factor d. Then

tK(M) = d tK(L) and uK(M) = uK(L).

Finally, Thm. 10.1.4 is an analogue of Thm. 4.3.1 and is as follows.

Inverse Ascending Index Problem for Number Fields

Theorem 1.2.8. (Bhagwat, Jaiswal)

Let K be a number field. Let n > 2 and t|n. Then there exists an extension L/K of degree
n with ascending index tK(L) = t.

In the last section of the thesis, we talk about future directions.

1.3 Research Articles

The following two research articles of ours have resulted as part of the work carried out
for this PhD thesis.

1. Chandrasheel Bhagwat and Shubham Jaiswal. Right Splitting, Galois Correspon-
dence, Galois Representations and Inverse Galois Problem. Accepted for publication
in Journal of the Ramanujan Mathematical Society (2025).

https://arxiv.org/abs/2403.14316, 2024.

2. Chandrasheel Bhagwat and Shubham Jaiswal. Cluster Magnification, Root Capac-
ity, Unique Chains, Base Change and Ascending Index. Accepted for publication in
Proceedings Mathematical Sciences (2025).

https://arxiv.org/abs/2405.06825, 2024
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Chapter 2

Galois Correspondence, Right Splitting
& Inverse Galois Problem

In this chapter, we describe some group theoretic results and then through these results
as well as Galois correspondence and right splitting of some exact sequences, we obtain
some general Galois theoretic results. Then we apply these general results to the cases
described in [1] and obtain interesting consequences.

2.1 Right Splitting and Group Theoretic Preliminaries

Proposition 2.1.1. Let G be a finite group. Then the condition G/[G,G] is cyclic of order
m is equivalent to the condition that for any n|m, G has a unique index-n normal subgroup
such that the quotient is abelian (the quotient with that subgroup is in fact cyclic). This unique
subgroup is given by

H = {x ∈ G | π(x) is an n-th power in G/[G,G]}

where π is the quotient homomorphism G→ G/[G,G].

Proof. Suppose G/[G,G] is a cyclic group of order m and n | m. Hence G/[G,G] has a

9



unique index-n cyclic subgroup, call it H ′, which is precisely given by H ′ = {zn | z ∈
G/[G,G]}, which is generated by yn, where y is a generator of G/[G,G].

Sinceπ is surjective, we have one to one correspondence between subgroups ofG/[G,G]
and subgroups of G containing [G,G]. Let H = π−1(H ′) = {x ∈ G|π(x) is an n-th power
in G/[G,G]}. Hence it is the unique index-n normal subgroup of G containing [G,G].

LetK be any index-n normal subgroup ofG such that the quotient is abelian. Consider
the quotient map ρ : G → G/K. Since Image(ρ) is abelian, hence [G,G] ⊂ Ker(ρ) = K.
Hence K = H.

Also we have that G/H is isomorphic to (G/[G,G])/H ′. Hence it is cyclic.

Conversely, suppose G/[G,G] is not cyclic. Hence, by structure theorem for abelian
groups (Thm 14.7.3 in [2]),

G/[G,G] ∼= Z/a1Z× Z/a2Z×G′

for some group G′, a1 | a2 and a1 > 1. Since Z/a2Z is cyclic and a1 | a2, we get a unique
index-a1 subgroupG′′ ofZ/a2Z. HenceZ/a2Z×G′ andZ/a1Z×G′′×G′ are distinct index-a1
subgroups of G/[G,G]. Hence we don’t get a unique index-a1 subgroup H ′ of G/[G,G]. By
the one to one correspondence between subgroups of G/[G,G] and subgroups of G con-
taining [G,G], we get two distinct index-a1 subgroups such that the quotients are abelian.

Corollary 2.1.1.1. Let n, r ∈ N and p be an odd prime. For a prime power q = pr, if q ≡ 1

mod n, then GL2(Fq) has a unique index-n normal subgroup such that the quotient is abelian.
(The quotient with that subgroup is in fact cyclic). This unique subgroup is given by

H = {x ∈ GL2(Fq) | det(x) is an n-th power in F×
q }.

Proof. Let G = GL2(Fq). Then [G,G] = SL2(Fq) and G/[G,G] ∼= F×
q (isomorphism being

through the surjective determinant map) which is cyclic of order m = q − 1. Now since
q ≡ 1mod n, we have n | m. Now consider the determinant map det : G → F×

q (which is a
homomorphism) with kernel SL2(Fq). By applying similar argument to detmap as applied

10



to π map in previous proposition, we are done.

Remark 2.1.1.1. Above corollary holds for GLk(Fq) as well for any k ∈ N.

Corollary 2.1.1.2. Let G be a group. If [G,G] has index m in G, then [G,G] is the unique
index-m subgroup of G such that the quotient is abelian.

Corollary 2.1.1.3. Let r ∈ N and p be an odd prime. For a prime power q = pr, SL2(Fq) is
the unique index-(q − 1) subgroup of GL2(Fq) such that the quotient is abelian.

Proposition 2.1.2. (Bhagwat, Jaiswal) (Prop 2.2 in [4])

Let n ∈ N and let G be a group such that G/[G,G] is cyclic of order m. Let n|m and let
H be the unique index-n normal subgroup of G such that the quotient is abelian. Then the
following holds.

1. If there exists x ∈ G such that xn = 1 and {1, x, x2, ..., xn−1} is a set of representatives
for H-cosets in G, then

(n,m/n) = gcd(n,m/n) = 1.

2. If (n,m/n) = 1 and the exact sequence

1 → [G,G] → G→ G/[G,G] → 1

is right split, then there exists x ∈ G such that xn = 1 and {1, x, x2, ..., xn−1} is a set of
representatives for H-cosets in G.

3. Let n = m (hence [G,G] is the unique index-m subgroup of G such that quotient is
abelian). Then the above exact sequence is right split if and only if there exists x ∈ G

such that xm = 1 and {1, x, x2, ..., xm−1} is a set of representatives for [G,G]-cosets in
G.

Proof.

1. Suppose we have a set of representatives forH-cosets inGof the form {1, x, x2, ..., xn−1}
with x ∈ G such that xn = 1. Let y be a generator of cyclic group G/[G,G] and let
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0 ≤ l ≤ m− 1 be such that π(x) = yl. As xn = 1, we have 1 = π(x)n = yln and hence
m | ln. Thus we have

j = ln/m ∈ Z and 1 ≤ j ≤ (n− 1).

Now assume on the contrary that (n,m/n) ̸= 1. Then for k = n/(n,m/n) ≤ n− 1, we
have n | km/n, hence n | kl, and therefore π(xk) = ylk is an n-th power in G/[G,G],
hence xk ∈ H. Hence we get a contradiction. Furthermore, if (j, n) ̸= 1 then for
k = n/(j, n) we have n | lk, which gives a contradiction. Hence (j, n) = 1.

2. If (n,m/n) = 1, then we clearly have that n ∤ km/n for all 1 ≤ k ≤ (n− 1). Consider
the quotient map π : G → G/[G,G]. Since given exact sequence is right split, we
have an injective homomorphism ι : G/[G,G] → G such that π ◦ ι = idG/[G,G]. Let
x = ι(yjm/n) ∈ G where 1 ≤ j ≤ (n− 1) and (j, n) = 1. Hence π(x) = yjm/n. Since ι is
injective, x will be an element of order n. Now since n ∤ km/n for all 1 ≤ k ≤ (n− 1)

and since (j, n) = 1, we have n ∤ jkm/n for all 1 ≤ k ≤ (n− 1). Hence for all 1 ≤ k ≤
(n − 1), π(xk) = yjkm/n is not an n-th power in G/[G,G]. Hence xk ̸∈ H. Therefore
we get a set of representatives for H-cosets in G of the form {1, x, x2, ..., xn−1} with
x ∈ G such that xn = 1.

3. Let us assume that the exact sequence is right split. Since n = m, we have (n,m/n) =

(m, 1) = 1. Hence from (2), we get the required set of representatives for [G,G]-
cosets in G.

Conversely, if there exists a set of representatives for [G,G]-cosets in G of the form
{1, x, x2, ..., xm−1} with x ∈ G such that xm = 1. Then clearly π(x) = x[G,G] is a
generator of cyclic group G/[G,G]. Define ι : G/[G,G] → G by

ι(π(g)) := xr if π(g) ∈ G/[G,G] is of the form π(x)r, r ≥ 0.

Hence ι is an injective homomorphism satisfying π ◦ ι = idG/[G,G] and consequently
the exact sequence is right split.

Remark 2.1.2.1. If G is abelian, then it satisfies the hypothesis of above proposition if and
only if it is cyclic.
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Remark 2.1.2.2. The condition that G/[G,G] is cyclic is important in statement (3) above. If
G is a non-cyclic abelian group, then [G,G] = 1 and so exact sequence 1 → 1 → G→ G→ 1

is clearly right split, but we can never have required representatives for [G,G]-cosets because
of non-cyclicity of G.

Corollary 2.1.2.1. (Bhagwat, Jaiswal) (Corollary 2.2.1 in [4])

Let n, r ∈ N. Consider a prime power q = pr such that q ≡ 1 mod n. Let H be the
unique index-n subgroup of GL2(Fq) such that the quotient is abelian. Then the following are
equivalent.

• (n, (q − 1)/n) = 1.

• There exists a set of representatives forH-cosets inGL2(Fq) of the form {1, x, x2, ..., xn−1}
with x ∈ GL2(Fq) such that xn = I.

Proof. LetG = GL2(Fq) then [G,G] = SL2(Fq) andG/[G,G] ∼= F×
q (isomorphism is defined

through the determinant map) is cyclic of order m = q − 1. Since q ≡ 1 mod n, we have
n | m. Consider the exact sequence given by the determinant map

1 → [G,G] → G
det−→ F×

q → 1.

Let ι : F×
q → G be the map defined by

ι(a) =

(
1 0

0 a

)
for all a ∈ F×

q .

This is a homomorphism satisfying det ◦ ι = idF×
q

. Hence we conclude that the exact
sequence is right split.

By applying similar argument to det map as applied to π map in previous proposition,
we are done.
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Remark 2.1.2.3. Above corollary holds for GLk(Fq) as well for any k ∈ N. This can be proved
using the map

ι(a) =

(
Ik−1×k−1 0

0 a

)
k×k

for all a ∈ F×
q .

Proposition 2.1.3. For given n, r ∈ N such that (r, n) = 1, there are infinitely many primes
satisfying the two conditions

pr ≡ 1mod n,

(n, (pr − 1)/n) = 1.

Proof. Suppose a prime p satisfies the given conditions. Let q = pr. Choose 0 ≤ k ≤ (n−1)

such that
q − 1

n
≡ k mod n.

Observe that (k, n) = 1 since (n, (q − 1)/n) = 1. Hence q ≡ kn+ 1mod n2.

Conversely, each p satisfying pr ≡ kn+1modn2 for some 0 ≤ k ≤ (n−1)with (k, n) = 1,
satisfies given conditions.

Now for each 0 ≤ k ≤ (n − 1) with (k, n) = 1, we have (kn + 1, n2) = 1. Hence by
Dirichlet’s theorem on primes in arithmetic progression, we conclude that for each such
k, there are infinitely many primes such that

p ≡ kn+ 1mod n2,

and hence pr ≡ (kn+ 1)r mod n2.

Now for each such k, (rk, n) = 1, because (k, n) = (r, n) = 1. Hence there are infinitely
many primes satisfying given conditions.
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2.2 Galois correspondence, Right splitting and Galois the-
oretic results

We discuss a result here that establishes the occurrence of certain semidirect product of
groups as a Galois group.

Theorem 2.2.1. (Bhagwat, Jaiswal) (Thm 2.4 in [4]).

Let l ≥ 2. Let K be a finite extension of Q and let E1, E2, ..., El be finite Galois extensions
of Q contained in Q̄. Let Gi be the Galois group of Ei over Q for all i. Suppose

1. E1 · · ·Ek ∩ Ek+1 = K for all 1 ≤ k ≤ l − 1,

2. for every i, there exists a set of representatives ofHi-cosets in respectiveGi that is closed
under multiplication, where Hi is Galois group of Ei over K.

Then for each 1 ≤ i ≤ l, Hi is a normal subgroup of respective Gi and the group (H1 ×
H2 × · · · × Hl) ⋊ G1/H1 (for some semidirect product group law) is realizable as the Galois
Group of E1 · · ·El over Q.

Proof. We will prove by induction that Gal(E1E2 · · ·Ek/K) ∼= (H1 × H2 × · · · × Hk) and
Gal(E1E2 · · ·Ek/Q) ∼= (H1 ×H2 × · · · ×Hk)⋊G1/H1 (for some semidirect product group
law) for all 2 ≤ k ≤ l.

For base case k = 2, see the following diagram.

Since, E1, E2 are Galois over Q and are contained in Q̄, E1E2 and E1 ∩ E2 are defined
and are Galois over Q and K = E1 ∩E2. We have Gal(Ei/Q) = Gi and Gal(Ei/K) = Hi for
i = 1, 2. Since K is Galois over Q,His are normal in respective Gis. Gal(K/Q) ∼= G1/H1

∼=
G2/H2. Fix an isomorphism θ from G2/H2 to G1/H1.
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Q

E1 ∩ E2

E2

E1E2

E1

H2H1

H2 H1

H1 ×H2

G1/H1

G1 G2

M

Let Gal(K/Q) = {xiH1|1 ≤ i ≤ n} where xiH1 = θ(yiH2) for all i. Here {xi ∈ G1|1 ≤
i ≤ n} and {yi ∈ G2|1 ≤ i ≤ n} are sets of representatives of H1 and H2 cosets in G1 and
G2 respectively, which are closed under multiplication.

By Galois Correspondence Theorems 2.1 and 2.6 in [5], we have Gal(E1E2/E1) ∼= H2,
Gal(E1E2/E2) ∼= H1 and Gal(E1E2/K) ∼= H1 ×H2.

Let Gal(E1E2/Q) =M . We have

|M | = [E1E2 : K] [K : Q] = |H1 ×H2| |G1/H1|
= |H1 ×H2| |G2/H2| = |G1| |H2| = |G2| |H1|.

Consider map σ : M → G1 × G2 given by σ(g) = (g1, g2), where gi = g|Ei
for i = 1, 2.

The map σ is clearly a well defined injective group homomorphism (see Thm 1.1 [5]).

If g ∈ M and g|K = xiH1 = g1|K , then (x−1
i g1)|K = idK . Hence x−1

i g1 ∈ H1, thus
g1 ∈ xiH1. Similarly, by g|K = xiH1 = θ(g2|K) = θ(yiH2), g2 ∈ yiH2.

Hence Image(σ) ⊂
n⊔

i=1

(xiH1×yiH2). Since |
n⊔

i=1

(xiH1×yiH2)| = |H1×H2||G1/H1| = |M |

and σ is injective, we get Image(σ) =
n⊔

i=1

(xiH1 × yiH2). Hence,M ∼=
n⊔

i=1

(xiH1 × yiH2).

Consider a map ψ :
n⊔

i=1

(xiH1 × yiH2) → (H1 ×H2) ⋊ G1/H1 given by ψ((xih1, yih2)) =

16



((h1, h2), xiH1) where we define a semidirect product group law for (H1 ×H2)⋊G1/H1 by

((h1, h2), xiH1).((k1, k2), xjH1) = ((x−1
j h1xjk1, y

−1
j h2yjk2), xixjH1).

This group law is well defined and associative sinceHi are normal inGi for i = 1, 2 and
sets of their respective coset representatives are closed under multiplication. We observe
that

(xih1, yih2).(xjk1, yjk2) = (xih1xjk1, yih2yjk2) = ((xixj)(x
−1
j h1xjk1), (yiyj)(y

−1
j h2yjk2)).

Hence we conclude that ψ is a group isomorphism and henceM ∼= (H1×H2)⋊G1/H1.

Alternatively, consider the sequence

1 → (H1 ×H2)
i−→

n⊔
i=1

(xiH1 × yiH2)
π−→ G1/H1 → 1

where i(h1, h2) = (x1h1, y1h2) (x1 ∈ H1, y1 ∈ H2) and π(xih1, yih2) = xiH1. Because of
our multiplicatively closed assumption, x1 and y1 are identities of G1 and G2 respectively.
Hence i is injective. Also π is surjective and π ◦ i is trivial homomorphism. Thus the
sequence is exact.

Now consider ι : G1/H1 →
n⊔

i=1

(xiH1 × yiH2) with ι(xiH1) = (xi, yi). The map ι is

clearly a group homomorphism because of our multiplicatively closed assumption and
also π ◦ ι = idG1/H1. Hence the sequence is right split. Thus M ∼= (H1 ×H2)⋊G1/H1.

Now assume that the statement is true for k = m, where 2 ≤ m ≤ l − 1, that is,

Gal(E1E2 · · ·Em/K) ∼= (H1 ×H2 × · · · ×Hm),

and,Gal(E1E2 · · ·Em/Q) ∼= (H1 ×H2 × · · · ×Hm)⋊G1/H1,

we will prove the statement for k = m+ 1.
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Let F1 = E1 · · ·Em and F2 = Em+1. Hence

Gal(F1/Q) = Gal(E1E2 · · ·Em/Q) ∼= (H1 ×H2 × · · · ×Hm)⋊G1/H1,

Gal(F2/Q) = Gal(Em+1/Q) ∼= Gm+1,

Gal(F1/K) = Gal(E1E2 · · ·Em/K) ∼= (H1 ×H2 × · · · ×Hm),

Gal(F2/K) = Gal(Em+1/K) ∼= Hm+1 sinceF1 ∩ F2 = E1 · · ·Em ∩ Em+1 = K.

Hence F1 and F2 satisfy conditions of base case and thus we have

Gal(E1E2 · · ·Em+1/K) = Gal(F1F2/K) ∼= Gal(F1/K)×Gal(F2/K)

∼= (H1 ×H2 × · · · ×Hm)×Hm+1 = H1 ×H2 × · · · ×Hm+1

and,

Gal(E1E2 · · ·Em+1/Q) = Gal(F1F2/Q) ∼= Gal(F1F2/K)⋊G1/H1

∼= (H1 ×H2 × · · · ×Hm+1)⋊G1/H1.

Remark 2.2.1.1.

1. If [G : H] is finite, then a set of representatives for H-cosets in G satisfies the condition
of closed under multiplication if and only if it is a subgroup of G.

In particular, A set of representatives {1, x, x2, ..., xn−1} for H-cosets in G which forms
a cyclic subgroup of G, satisfies the condition. We get a criterion for existence of such a
set of representatives in Prop 2.1.2.

2. The second condition assumed in the theorem is equivalent to exact sequences

1 → Hi → Gi → Gi/Hi → 1

being right split, that is Gi
∼= Hi ⋊Gi/Hi for some semidirect product group law.

Remark 2.2.1.2. Let di be distinct primes for i = 1, 2 and d3 = d1d2. LetK = Q and consider
quadratic extensions Ei = Q

√
di for 1 ≤ i ≤ 3.

18



Clearly Ei ∩ Ej = K for all i ̸= j, but we have EiEj ∩ Ek = Ek ̸= K where i, j, k are a
permutation of 1, 2, 3. So the assumed condition in the above theorem is not always satisfied
and hence it is important.

Remark 2.2.1.3. In the above theorem, we could have assumed a symmetric but stronger
condition E1...Ei−1Ei+1...En ∩ Ei = K for all 1 ≤ i ≤ n which implies the condition that
we have assumed E1...Ek ∩ Ek+1 = K for all 1 ≤ k ≤ n − 1 since E1...Ek ∩ Ek+1 ⊂
E1...EkEk+2...En ∩Ek+1 = K. But it would have made our theorem weaker. (Note: Condition
for i = 1 is not required, it is written for symmetry).

Remark 2.2.1.4.

1. Under the conditions of above theorem, we have (H1 × H2 × · · · × Hl) ⋊ G1/H1 ↪−→
G1 ×G2 × · · · ×Gl from Thm 1.1 [5].

2. If all Gis are abelian in above theorem that is each Ei is an abelian extension of Q,
then the compositum is an abelian extension over Q and the semidirect product that we
defined is in fact the direct product.

3. However to the best of our knowledge, one doesn’t know in general whether (H1 ×H2 ×
· · · ×Hl)×G1/H1 is realizable as a Galois group over Q.

We now describe an independently interesting consequence of the Galois Correspon-
dence (see Theorems 2.1 and 2.6 in [5].)

Proposition 2.2.2. (Bhagwat, Jaiswal) (Prop 2.5 in [4])

Let finite groups H1, H2, ..., Hn be Galois groups over K of extensions E1, E2, ..., En re-
spectively which are contained in Q̄. Fix k ≤ n− 1 and suppose Ei1 · · ·Eij ∩Eij+1

= K for all
1 ≤ j ≤ k − 1 where il are distinct elements from 1 to k. Then the following statements are
equivalent.

1. E1 · · ·Ek ∩ Ek+1 = K.

2. Ei1 · · ·Eik ∩ Eik+1
= K where il are distinct elements from 1 to k + 1.

3. E1 · · ·Ei−1Ei+1 · · ·Ek+1∩E1 · · ·Ej−1Ej+1 · · ·Ek+1 = E1 · · ·Ei−1Ei+1 · · ·Ej−1Ej+1 · · ·Ek+1

for any 1 ≤ i < j ≤ k + 1.
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Proof. Because of given conditions and induction we get,

Gal(Ei1 · · ·Eij/K) ∼= Hi1 × ...×Hij

for all j ≤ k where il are distinct elements from 1 to k and

Gal(Ei1 · · ·Eij/Ei1 · · ·Eim−1Eim+1 · · ·Eij)
∼= Him

for all j ≤ k and 1 ≤ m ≤ j where il are distinct elements from 1 to k.

Equivalence of (1) and (2): For il distinct elements from 1 to k + 1,

E1...Ek ∩ Ek+1 = K.
⇐⇒ Gal(E1 · · ·Ek+1/K) ∼= H1 × · · · ×Hk+1.
⇐⇒ Ei1 · · ·Eik ∩ Eik+1

= K.

Equivalence of (1) and (3): For any 1 ≤ i < j ≤ k + 1, let

D = E1 · · ·Ek+1,

Di = E1 · · ·Ei−1Ei+1 · · ·Ek+1,

Dj = E1 · · ·Ej−1Ej+1 · · ·Ek+1,

Dij = E1...Ei−1Ei+1...Ej−1Ej+1...Ek+1.

Now since Gal(Di/Dij) ∼= Hj and Gal(Dj/Dij) ∼= Hi, we have by Thm 1.1 [5],

Gal(D/Dij) ↪−→ Hi ×Hj.

We also have

Gal(D/K)/Gal(D/Dij) ∼= Gal(Dij/K)

∼= H1 × · · · ×Hi−1 ×Hi+1 × · · · ×Hj−1 ×Hj+1 × · · · ×Hk+1.
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Hence,

Gal(D/K) ∼= H1 × · · · ×Hk+1

=⇒ Gal(D/Dij) ∼= Hi ×Hj

=⇒ Di ∩Dj = Dij.

Conversely,

Di ∩Dj = Dij

=⇒ Di ∩ Ei ⊂ Di ∩Dj = Dij

=⇒ Di ∩ Ei ⊂ Dij ∩ Ei = K

=⇒ Di ∩ Ei = K

=⇒ Gal(D/K) ∼= H1 × · · · ×Hk+1.

2.3 Cases of IGP in work of Arias-de-Reyna & König

We begin with definition of linear disjointness.

Definition 2.3.1. LetE1 andE2 be extensions of a fieldsK contained in an algebraic closure
K̄ ofK. Then E1 and E2 are linearly disjoint overK if everyK-linearly independent subset of
E1 is also linearly independent over E2.

We note the following basic fact from Galois theory.

Remark 2.3.1.1. Let E1 and E2 be finite extensions over K contained in K̄ and suppose one
of them is Galois. Then E1 and E2 are linearly disjoint over K ⇐⇒ E1 ∩ E2 = K (see [15,
Def 20.1 and Example 20.6]).

Definition 2.3.2. Let K ′/K be a Galois extension of number fields. We say that K ′/K is
locally cyclic, if its decomposition group at every prime is cyclic.
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Using Galois representations attached to elliptic curves, Arias-de-Reyna and König
have proved the following ( Thm 1.1 in [1])

Theorem 2.3.3. (Arias-de-Reyna, König)

For a prime p ≥ 5, there are infinitely many locally cyclic Galois extensions of Q with Galois
group GL2(Fp), which are pairwise linearly disjoint over Q(

√
p∗) where p∗ = (−1)(p−1)/2 p.

Consequently one also has the following.

Corollary 2.3.3.1. For a prime p ≥ 5, there are infinitely many locally cyclic Galois extensions
of Q with Galois group PGL2(Fp), which are pairwise linearly disjoint over Q(

√
p∗).

One also has the following from Remark 4.4 and Corollary 4.3 of [1].

Proposition 2.3.4. There are two Galois extensions L1, L2 over Q with Galois group GL2(Fp)

which are linearly disjoint over Q(ζp).

2.4 New Cases of IGP through the Cases in work of Arias-
de-Reyna & König

Theorem 2.4.1. (Bhagwat, Jaiswal) (Thm 2.6 in [4]).

Let n, r ∈ N. For a prime power q = pr, suppose the following hold.

1. q ≡ 1mod n and (n, (q − 1)/n) = 1.

2. GL2(Fq) is realizable as Galois group over Q of extensions E1, E2 which are contained
in Q̄ such that E1 ∩ E2 = K is a degree n abelian extension of Q.

Then (H ×H)⋊GL2(Fq)/H (with semidirect product group law as in Thm 2.2.1) is real-
izable as Galois group over Q where H is the unique index-n subgroup of GL2(Fq) such that
the quotient is abelian.
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Proof. We have for l = 2, E1, E2 satisfying conditions of Thm 2.2.1 with G1 = G2 =

GL2(Fq), and [G1 : H1] = n and G1/H1 is abelian group and q ≡ 1 mod n. Therefore
H1 = H2 = H. Since q ≡ 1mod n and (n, (q − 1)/n) = 1, from Corollary 2.1.2.1, we get the
required set of representatives for H-cosets in GL2(Fq).

Remark 2.4.1.1. Because of the conditions on p and n in above theorem, we actually get that
K is a cyclic extension (not just abelian).

Corollary 2.4.1.1. (Bhagwat, Jaiswal) (Corollary 2.6.1 in [4])

For a prime p ≥ 5, (SL2(Fp)× SL2(Fp))⋊ Z/(p− 1)Z (with semidirect product group law
as in above theorem) is realizable as Galois group over Q.

Proof. From Prop 2.3.4, we get E1, E2 satisfying conditions of previous theorem with n =

p − 1, K = Q(ζp) and GL2(Fp)/H is cyclic group of order p − 1. Moreover from Corollary
2.1.1.3, we have H = SL2(Fp).

Corollary 2.4.1.2. (Bhagwat, Jaiswal) (Corollary 2.6.2 in [4])

For a prime p ≥ 5 with p ≡ 3mod 4, let H be the unique index-2 (hence normal) subgroup
of GL2(Fp). Then (H × H) ⋊ GL2(Fp)/H (with semidirect product group law as in above
theorem) is realizable as Galois group over Q.

Proof. From Thm 2.3.3, we get E1, E2 satisfying conditions of previous theorem with n =

2. Since p ≡ 1 mod 2, the conditions p ≡ 3 mod 4 and (2, (p − 1)/2) = 1 are equivalent.
Hence we are done.

Remark 2.4.1.2. If p ≡ 1 mod 4 then (2, (p − 1)/2) = 2. Hence by Corollary 2.1.2.1 there is
no x ∈ GL2(Fp) such that x ∈ H and order(x) = 2.

Corollary 2.4.1.3. For a prime p ≥ 5 with p ≡ 3mod 4, letH be the unique index-2 subgroup
of GL2(Fp). Then H and H ×H are realizable as Galois groups over Q

√
−p.

Proof. From previous corollary and proof of Thm 2.2.1, we have thatH×H is realizable as
Galois group over Q

√
p∗ = Q

√
−p (since p ≡ 3mod 4). Since H is normal in H ×H (where

embedding is given by h 7→ (h, 1)), the quotient H is also realizable as Galois group over
Q
√
−p.
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Proposition 2.4.2. (Bhagwat, Jaiswal) (Prop 2.7 in [4])

For a prime p ≥ 5, (PSL2(Fp)× PSL2(Fp))⋊ Z/2Z (with semidirect product group law as
in Thm 2.2.1) is realizable as Galois group over Q.

Proof. Consider H = {x ∈ GL2(Fp) | det(x) is a square in F×
p }, which is the unique index-2

subgroup of GL2(Fq) by Corollary 2.1.1.1. We have SL2(Fp) ⊂ H ⊂ GL2(Fp). Let h ∈ H

and det(h) = ∆2
h. Then h = ∆hI∆

−1
h h where ∆hI ∈ Z(GL2(Fp)) and ∆−1

h h ∈ SL2(Fp).
Hence PH ∼= PSL2(Fp) where isomorphism is given by the map sending hZ(GL2(Fp)) to
(∆−1

h h)Z(SL2(Fp)). SinceH is the unique index-2 subgroup ofGL2(Fp) containingZ(GL2(Fp)),
we have that PH ∼= PSL2(Fp) is the unique index-2 subgroup of PGL2(Fp) by one to one
correspondence between subgroups of GL2(Fp) containing Z(GL2(Fp)) and subgroups of
PGL2(Fp).

We have p > 3. Let r ̸= p−1be a non-square element inFp. Considerx =

(
1 r + 1

−1 −1

)
̸∈

H with x2 = 1 (Z(GL2(Fp))).

From Corollary 2.3.3.1 of Thm 2.3.3 for PGL2(Fp), we get E1, E2 satisfying conditions
of Thm 2.2.1 for l = 2 with G1 = G2 = PGL2(Fp), and [G1 : H1] = 2. Therefore H1 =

H2 = PSL2(Fp). We observe that {1, xZ(GL2(Fp))} is required set of representatives of
PSL2(Fp)-coset in PGL2(Fp).

Corollary 2.4.2.1. For a prime p ≥ 5, PSL2(Fp) and PSL2(Fp)× PSL2(Fp) are realizable as
Galois groups over Q

√
p∗.

Proof. Proof is similar to proof of Corollary 2.4.1.3.
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Chapter 3

Galois Representations, Right Splitting
& Inverse Galois Problem

In this chapter, by using the algebraic operations induction, direct sums and tensor prod-
ucts on Galois representations and right splitting of some exact sequences of groups, we
establish occurrence of some groups as Galois groups over Q.

3.1 Induced Galois Representations and Galois groups

Definition 3.1.1. Let G = Gal(Q̄/Q) with Krull topology. Let E be a number field and Λ be
a prime in its ring of integers O. Let EΛ be the completion of E with respect to Λ and OΛ be
its ring of integers. Let FΛ = OΛ/ΛOΛ. (π, V ) is called a Galois Representation if

1. V is a finite dimensional vector space over EΛ and

2. π : G→ GL(V ) is a continuous homomorphism where GL(V) has the topology inherited
from the topology of the topological field EΛ which has the Λ-adic topology.

Remark 3.1.1.1. In place of Q, we can have a similar definition for any number field K with
G = Gal(K̄/K).
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Remark 3.1.1.2. Let dimEΛ
(V ) = m. Now from Prop 9.3.5 in [6], there is a basis of V such

that π(G) ⊂ GLm(OΛ) for all g ∈ G. Let us consider the maps π′ : G → GLm(FΛ) and
π̃ : G → PGLm(FΛ) obtained from π through the quotients maps OΛ → FΛ and GLm(FΛ) →
PGLm(FΛ).

Definition 3.1.2. A finite group C is said to be realizable as Galois group over Q through a
Galois Representation (π, V ) if C ∼= Image(π̃).

Remark 3.1.2.1. We have a similar definition for π′ in place of π̃.

LetK be a finite extension of Q contained in Q̄. Then K̄ = Q̄. LetH = Gal(K̄/K) ⊂ G.
Let (π,W ) be a Galois representation with dimEΛ

(W ) = m.

Let σ = π|H : H → GL(W ). Then σ′ : H → GLm(FΛ) and σ̃ : H → PGLm(FΛ) and
Image(σ̃) = π̃(H). Also, [π̃(G) : π̃(H)] ≤ [G : H].

Let us consider the induced representation ρ = IndGH(σ) on the induced space overEΛ,
defined by

V = {f : G→ W | f(hg) = σ(h)f(g) for all h ∈ H, g ∈ G}

and ρ : G → GL(V ) is given by ρ(g)f(x) = f(xg), for all g, x ∈ G, f ∈ V . Thus (ρ, V ) is a
Galois representation.

Let {si}1≤i≤n be a set of representatives of right cosets inH\G and {wj}1≤j≤m be a basis
of W . Then we know that {ϕsi,wj

}1≤i≤n,1≤j≤m is a basis for V where

ϕs,w(g) =

σ(gs−1)w, if gs−1 ∈ H

0 otherwise.

and dim(V ) = dim(W )[G : H].

Let H be a normal subgroup of G (i.e.,K is Galois over Q) such that [G : H] = n. Since
dim(W ) = m, we have dim(V ) = mn. Without loss of generality, let s1 = 1. We label the
basis of V as

f1 = ϕ1,w1 , f2 = ϕ1,w2 , . . . , fm = ϕ1,wm ,

fm+1 = ϕs2,w1 , . . . , f2m = ϕs2,wm , . . . ,

f(n−1)m+1 = ϕsn,w1 , . . . , fnm = ϕsn,wm .
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We write down the matrix of ρ(g) with respect to the above basis. Observe that

ρ(g)fi(x) = fi(xg) =
mn∑
j=1

ajifj(x)

By taking x = sk, we get that

ρ(g) =


(f1(g)) (f2(g)) . . . (fnm(g))

(f1(s2g)) (f2(s2g)) . . . (fnm(s2g))

. . . . . . . . . . . .

(f1(sng)) (f2(sng)) . . . (fnm(sng))


nm×nm

where (fi(skg)) are treated asm×1 column matrices (matrices with respect to given basis
{wj : 1 ≤ j ≤ m} of W ).

The nm × nm matrix for ρ(hsi): The p, q-th m × m block where 1 ≤ p, q ≤ n and q is
such that spsi ∈ sqH is π(sphsis−1

q ), since ϕsq ,w(sphsi) = π(sphsis
−1
q )w, since sphsi ∈ sqH.

Since π(G) ⊂ GLm(OΛ), we conclude that ρ(G) ⊂ GLnm(Oλ) and ρ′ : G → GLnm(FΛ)

and ρ̃ : G→ PGLnm(FΛ) can be defined.

Remark 3.1.2.2. All the following results for ρ and π in this section also hold for ρ′ and π′ as
well as ρ̃ and π̃.

Lemma 3.1.3. Images ρ(H) and π(H) are isomorphic.

Proof. If g = h ∈ H, then

ρ(h) =


π(h) 0 . . .

0 π(s2hs
−1
2 )

... ...
π(snhs

−1
n )


nm×nm

.

Define a map from ρ(H) to π(H) by first block projection sending ρ(h) to π(h). This
is clearly a surjective group homomorphism onto π(H). If π(h) = 1, then π(skhs

−1
k ) =

π(sk)π(h)π(sk)
−1 = 1 for all k. Hence, this map is injective too.
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Lemma 3.1.4. We get an exact sequence

1 → ρ(H) → ρ(G) → G/H → 1.

Proof. If g = hsj ∈ Hsj, (f(j−1)m+1(g)) = π(h)w1, (f(j−1)m+2(g)) = π(h)w2, . . . , (fjm(g)) =

π(h)wm and for other k, (fk(g)) = 0. We have

ρ(G) = ρ(H)
⊔

ρ(Hs2)
⊔

· · ·
⊔

ρ(Hsn) = ρ(H)
⊔

ρ(H)ρ(s2)
⊔

· · ·
⊔

ρ(H)ρ(sn)

hence [ρ(G) : ρ(H)] = n.

Now, since H is normal in G, its left and right cosets coincide. Hence we can define a
map γ : ρ(G) → G/H with γ(ρ(hsk)) = skH for any h, sk. Now γ is well defined surjective
homomorphism because ρ(Hsi) for 1 ≤ i ≤ n are disjoint. The kernel of γ is precisely
ρ(H).

Remark 3.1.4.1. We do not necessarily get a similar exact sequence involving π(H), π(G)
and G/H a similar well defined surjective map from π(G) to G/H may not exist since π(Hsi)
need not be disjoint.

Example 3.1.5. LetG/H be cyclic with representatives ofH-cosets inG of the form {1, s, s2, . . . , sn−1}.
If g = hsi ∈ H for 0 ≤ i ≤ n− 1, the matrix ρ(hsi) is given by



0 . . . 0 π(h) 0 . . .
... 0 π(shs−1) 0 . . .

... ... ...
π(sn−1−ihs−(n−1−i))

π(sn−ihsi) 0

0 π(sn−(i−1)hs(i−1))
...

... 0
...
0 π(sn−1hs)


.
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In particular,

ρ(s) =


0 I2 0 . . .

0 0 I2 0 . . .
...

... ...
I2

π(sn) 0

 .

Lemma 3.1.6. Suppose we have a set of representatives ofH-cosets inG, {s1, s2, . . . , sn}with
s1 ∈ H, then ρ(si)ρ(sj) = ρ(sk) ⇐⇒ (π(si)π(sj) = π(sk) and sisj ∈ skH).

Proof. We compute matrices ρ(si), ρ(sj), ρ(sk) nd ρ(si)ρ(sj).

The p, q-th m × m block of ρ(si) is π(spsis−1
q ), where 1 ≤ p, q ≤ n and q is such that

spsi ∈ sqH.

The q, r-th m × m block of ρ(sj) is π(sqsjs−1
r ), where 1 ≤ q, r ≤ n and r is such that

sqsj ∈ srH.

The p, l-th m × m block of ρ(sk) is π(spsks−1
l ), where 1 ≤ l ≤ n and l is such that

spsk ∈ slH.

The p, r-th m×m block of ρ(si)ρ(sj) is π(spsis−1
q )π(sqsjs

−1
r ) = π(spsisjs

−1
r ).

Since spsi ∈ sqH, sqsj ∈ srH, we get spsisj ∈ srH.

Hence ρ(si)ρ(sj) = ρ(sk) ⇐⇒ (π(spsisjs
−1
r ) = π(spsks

−1
l ) and r = l) ⇐⇒ (π(si)π(sj) =

π(sk) and sisj ∈ skH).

Remark 3.1.6.1. π(si) need not be distinct even though ρ(si) are distinct. In fact even if all
π(si) are same, ρ(si) will be distinct.

Corollary 3.1.6.1. LetG/H be cyclic with representatives ofH-cosets inG of the form {1, s, s2, . . . , sn−1}.
Then ρ(s)n = 1 if and only if π(s)n = 1.

29



Theorem 3.1.7. (Bhagwat, Jaiswal) (Thm 3.7 in [4])

Let G and H be as above, then the exact sequence

1 → ρ(H) → ρ(G) → G/H → 1

is right split (that is ρ(G) ∼= ρ(H)⋊G/H for some semidirect product group law) if and only
if there exists a set of representatives of H-cosets in G, {s1, s2, . . . , sn} with s1 ∈ H such that
{ρ(si)}i forms a multiplicatively closed subset of ρ(G). (In fact it is a subgroup with same
group structure as {siH}i = G/H)

Proof. Let {r1, r2, ..., rn} be a set of representatives ofH-cosets inG. If the exact sequence
is right split, let ι be splitting with γ ◦ ι = idG/H . Hence γ ◦ ι(riH) = riH for each i. Thus
for each i, ι(riH) = ρ(hiri) for some hi ∈ H. Let si = hiri for each i. Hence {s1, s2, ..., sn}
also forms a set of representatives for H-cosets in G with siH = riH and ι(siH) = ρ(si)

for each i. Since ι is a homomorphism, we have ι(siH)ι(sjH) = ι(sisjH) for any i, j. Let
sisjH = skH for some k. Hence ι(siH)ι(sjH) = ι(skH) that is ρ(si)ρ(sj) = ρ(sk). Hence
{ρ(si)}i forms a multiplicatively closed subset of ρ(G).

Conversely, suppose there exists a set of representatives ofH-cosets inG,{s1, s2, . . . , sn}
with s1 ∈ H and {ρ(si)}i forming a multiplicatively closed subset of ρ(G). Let i ̸= 1. Then
ρ(s1)ρ(si) = ρ(sk) for some k. Hence, ρ(s1si) = ρ(sk). Since s1 ∈ H, we have s1si ∈ siH.
Hence by matrix calculation done above, ρ(s1si) = ρ(sk) is not true unless k = i. Hence
ρ(s1)ρ(si) = ρ(si). Thus ρ(s1) = 1. For any i, consider the set {ρ(sj)ρ(si)}j which is a per-
mutation of the set {ρ(sj)}j. Hence there is a j such that ρ(sj)ρ(si) = 1. Hence {ρ(si)}i
forms a subgroup of ρ(G).

Now by assumption ρ(si)ρ(sj) = ρ(sl) for some l. Hence ρ(sisj) = ρ(sl). Suppose
siHsjH = sisjH = skH. Then by matrix calculation done above, ρ(sisj) = ρ(sl) is not
true unless l = k. Hence ρ(sisj) = ρ(sk). Hence {ρ(si)}i is a group with the same group
structure as {siH}i = G/H.

Then we can define ι(siH) = ρ(si). Hence, ι(siH)ι(sjH) = ρ(si)ρ(sj) = ρ(sk) =

ι(skH) = ι(siHsjH). Hence ι is a homomorphism. Also, γ(ι(siH)) = γ(ρ(si)) = siH

hence γ ◦ ι = idG/H . Hence the exact sequence is right split.
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Remark 3.1.7.1. We can similarly prove Remark 2.2.1.1 in previous section.

Corollary 3.1.7.1. If there exists a set of coset representatives of H in G which forms a mul-
tiplicatively closed set, then the above exact sequence is right split.

Corollary 3.1.7.2. Let K be a cyclic extension of Q and let G and H be as above. Then the
above exact sequence is right split if and only if there exists a set of representatives of H-
cosets in G of the form {1, s, s2, . . . , sn−1} with ρ(s)n = 1. Also, if these statements are true
then order(ρ(s)) = n and sn ∈ H.

Proof. From the above theorem, we get coset representatives ofH,{si}i with {ρ(si)}i form-
ing a subgroup with same group structure as {siH}i = G/H =< sH > for some s ∈ G

with s1 ∈ H. Hence without loss of generality, let siH = si−1H for all i. Now let ri = si−1
2 .

Hence riH = siH. Now since sn2H = (s2H)n = H, we have ρ̃(s2)n = 1. Hence we are done.
Other assertions are clear.

Applying above discussion to ρ̃ and π̃ we have the following.

Theorem 3.1.8. (Bhagwat, Jaiswal) (Thm 3.8 in [4])

Let H be a finite index normal subgroup of G = Gal(Q̄/Q). Suppose there exists a set of
coset representatives ofH inGwhich form a multiplicatively closed subset ofG. Then if a finite
group M is realizable as a Galois group over Q through a Galois Representation (π,W ) such
that M ∼= π̃(G) = π̃(H), then M ⋊G/H is realizable as a Galois group over Q (for semidirect
product group law as in Thm 3.1.7).

Observation : G = H ⇐⇒ ker(π) ⊂ H and π(G) = π(H).

We can generalize Lemma 3.1.4 and Thm 3.1.7. Consider a closed subgroup H ′ of G.
We have H ′/(H ′ ∩H) ↪−→ G/H.

Theorem 3.1.9.

1. We get an exact sequence

1 → ρ(H ′ ∩H) → ρ(H ′) → H ′/(H ′ ∩H) → 1.
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2. This exact sequence is right split (that is ρ(H ′) ∼= ρ(H ′ ∩ H) ⋊ H ′/(H ′ ∩ H) for some
semidirect product group law) if and only if there exists a set of representatives of (H ′ ∩
H)-cosets in H ′, {s1, s2, . . . , sl} with s1 ∈ H ′ ∩H such that {ρ(si)}i forms a multiplica-
tively closed subset of ρ(H ′).

3. H ⊂ H ′ if and only if ρ(H) ⊂ ρ(H ′) and ker(π) ∩H ⊂ H ′

4. Let H ⊂ H ′. Then the exact sequence is

1 → ρ(H) → ρ(H ′) → H ′/H → 1.

If there exists a set of representatives ofH-cosets inG, {s1, s2, . . . , sn} with s1 ∈ H such
that {ρ(si)}i forms a multiplicatively closed subset of ρ(G), then this exact sequence is
right split. That is ρ(H ′) ∼= ρ(H)⋊H ′/H for some semidirect product group law.

3.2 Direct Sum / Tensor Product of Representations and
Galois Groups

Consider Galois representations (πi, Vi) : 1 ≤ i ≤ n and their direct sum Galois represen-
tation π =

⊕
1≤i≤n

πi : G→ GL(
⊕

1≤i≤n

Vi).

Lemma 3.2.1. If for each 1 ≤ i ≤ n, finite group Hi is realizable as a Galois group over
Q through Galois representation (πi, Vi) for mi-dimensional vector spaces Vi over EΛ, then
{(π̃1(g), . . . , π̃n(g)) | g ∈ G} ⊂ H1 ×H2 × · · · ×Hn is realizable as Galois group over Q.

Proof. We have πi : G → GL(Vi) with πi(G) ⊂ GLmi
(OΛ) and π̃i : G → PGLmi

(FΛ) such
that Hi

∼= Image(π̃i).

Now the direct sum Galois representation, π(g) = diag(π1(g), . . . , πn(g))m×m where
m = m1 +m2 + ...+mn. Hence π(G) ⊂ GLm(OΛ) and π̃ : G→ PGLm(FΛ) with Image(π̃) ∼=
{(π̃1(g), . . . , π̃n(g)) | g ∈ G} ⊂ H1 ×H2 × · · · ×Hn.
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We consider the tensor product Galois representation Π =
⊗

1≤i≤n

πi of G on
⊗

1≤i≤n

Vi.

Proposition 3.2.2. (Bhagwat, Jaiswal) (Prop 3.15 in [4])

The groups realized as Galois groups over Q through Galois representations π and Π are
isomorphic, i.e.,

Image(π̃) ∼= Image(Π̃).

Proof. Let V1 and V2 be finite dimensional vector spaces over a field F with dimensionsm1

and m2 respectively. Given Ti ∈ GL(Vi) for each i = 1, 2, we consider the natural F-linear
map (T1 ⊗ T2) : V1 ⊗ V2 → V1 ⊗ V2 that is also invertible.

Fix bases of V1 and V2 and the corresponding basis of V1 ⊗ V2. Let A1, A2, A be the
matrices representing T1, T2, T1 ⊗ T2, respectively with respect to these bases. Then

A = A1 ⊗ A2 =


a11A2 . . . a1m1A2

... ... ...
am11A2 . . . am1m1A2


m1m2

,

where A1 =


a11 . . . a1m1

... ... ...
am11 . . . am1m1

 and A2 =


a′11 . . . a′1m2

... ... ...
a′m21

. . . a′m2m2

.

If the map T1 ⊗ T2 is given by the scalar multiplication by λ ∈ F×, then it follows that
Ai = µiI for some scalars µ1, µ2 ∈ F× such that λ = µ1µ2. Thus the map T1 ⊗ T2 descends
to a injective group homomorphism

τ̃ : PGL(V1)× PGL(V2) → PGL(V1 ⊗ V2).

Let F = EΛ. Then Π(g) = π1(g) ⊗ π2(g) ⊗ · · · ⊗ πn(g). Hence Π(G) ⊂ GLm(OΛ) where
m = m1m2 · · ·mn and Π̃ : G→ PGLm(FΛ).

Let F = FΛ. We observe that τ̃((π̃1(g), π̃2(g))) = ˜π1(g)⊗ π2(g) = ( ˜π1 ⊗ π2)(g). Hence,
τ̃({(π̃1(g), π̃2(g)) | g ∈ G}) = Image( ˜π1 ⊗ π2). Since τ̃ is injective, we get {(π̃1(g), π̃2(g)) | g ∈
G} ∼= Image( ˜(π1 ⊗ π2)).
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By induction on n, we get a well defined injective homomorphism from PGL(V1) ×
PGL(V2) × · · · × PGL(Vn) to PGL(

⊗
1≤i≤n

Vi) such that Image(Π̃) ∼= {(π̃1(g), . . . , π̃n(g)) | g ∈

G}. By Lemma 3.2.1 we are done.

Proposition 3.2.3. Suppose for each 1 ≤ i ≤ n, finite groupHi is realizable as a Galois group
over Q through Galois representation (πi, Vi). Let |Hi| = ri. Suppose we have gi1, . . . , giri ∈ G

for each i, such that for all i,Hi = {π̃i(gi1), . . . , π̃i(giri)} and such that for each i, π̃i(gjk) = 1

for all 1 ≤ k ≤ rj and for all j ̸= i. ThenH1×H2×· · ·×Hn is realizable as Galois group over
Q.

Proof. Any element of H1 × H2 × · · · × Hn is of the form (π̃1(g1l1), . . . , π̃n(gnln)) for some
1 ≤ li ≤ ri for each 1 ≤ i ≤ n.

Now, (π̃1(g1l1), . . . , π̃n(gnln)) = (π̃1(g1l1), 1, . . . , 1)(1, π̃2(g2l2), . . . , 1) · · · (1, . . . , 1, π̃n(gnln))

= (π̃1(g1l1), . . . , π̃n(g1l1))(π̃1(g2l2), . . . , π̃n(g2l2)) · · · (π̃1(gnln), . . . , π̃n(gnln))

= (π̃1(g1l1g2l2 . . . gnln), . . . , π̃n(g1l1g2l2 . . . gnln)) ∈ {(π̃1(g), . . . , π̃n(g)) | g ∈ G}.

Hence {(π̃1(g), ..., π̃n(g)) | g ∈ G} = H1 ×H2 × · · · ×Hn. By Lemma 3.2.1 we are done.

Let L = {(π(g), ρ(g))|g ∈ G}. Thus L̃ = {(π̃(g), ρ̃(g))|g ∈ G} is realizable as a Ga-
lois group over Q through the Galois representation (π ⊕ ρ,W ⊕ V ) where ρ is induced
representation as before.

Remark 3.2.3.1. All following results for ρ and π also hold for ρ′ and π′ as well as ρ̃ and π̃.

Lemma 3.2.4.

1. The projection Ψ : L→ ρ(G) is an isomorphism.

2. The kernel ker(Φ) of the projection Φ : L→ π(G) is isomorphic to ker(π)/(ker(π)∩H)

and isomorphic to a subgroup of G/H.
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Proof. (1) If ρ(g) = I, then g ∈ H. By matrix of ρ(g), we get π(g) = I since g ∈ H. Hence Ψ

is also injective.

(2) Suppose π(hisi) = π(hjsj) = Im for some hi, hj ∈ H. Then in the matrix of ρ(hisi),
the p, q-thm×m block matrix, where 1 ≤ p, q ≤ n and q is such that spsi ∈ sqH, is π(sps−1

q ).
Hence it is independent of hi ∈ H. Let ρ(hisi) = θi. Similarly, ρ(hjsj) = θj.

Let sisjH = skH for some k, that is sisj = hsk for some h ∈ H. Now, π(hisi)π(hjsj) =
π(hisihjsj) = π(hih

′
jsisj) where sihj = h′jsi sinceH is normal inG. Hence π(hisi)π(hjsj) =

π(hih
′
jhsk). Let hk = hih

′
jh. Hence π(hisi)π(hjsj) = π(hksk). Similarly, ρ(hisi)ρ(hjsj) =

ρ(hksk).

Hence π(hksk) = Im for above hk. Let ρ(hksk) = θk. Then θiθj = θk. Hence {θi}1≤i≤n

form a group with same group law as {(siH)}1≤i≤n. Also, for any i, ρ(hisi) = θi if and only
if π(hisi) = Im. Let J = {i ∈ {1, 2, ..., n} | ker(π) ∩Hsi ̸= ∅}. Hence ker(Φ) = {(I, θi)}i∈J .
Thus we have Ω : ker(Φ) ↪−→ G/H sending (I, θi) to siH.

Now, since H �G, we have (ker(π) ∩H)� ker(π). We also have usual maps ker(π) ↪−→
G → G/H. Hence ker(π)/(ker(π) ∩H) ↪−→ G/H. Since G =

⊔
1≤i≤nHsi, we have ker(π) =⊔

i∈J(ker(π) ∩ Hsi). Now for i ∈ J there exists an hi ∈ H such that π(hisi) = Im. Hence
for i ∈ J , it is easy to see that, (ker(π) ∩ Hsi) = (ker(π) ∩ H)(hisi). Hence ker(π) =⊔

i∈J(ker(π) ∩H)hisi. Thus ker(π)/(ker(π) ∩H) ∼= {(siH)}i∈J ∼= ker(Φ).

Example 3.2.5. LetG/H be cyclic with representatives ofH-cosets inG of the form {1, s, s2, . . . , sn−1}.
Suppose π(hsi) = Im. Then,

ρ(hsi) =



0 . . . 0 π(s−i) 0 . . .
... 0 π(s−i) 0 . . .

... ... ...
π(s−i)

π(sn−i) 0

0 π(sn−i)
...

... 0
...
0 π(sn−i)


= θi.
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Corollary 3.2.5.1. L̃ ∼= π̃(G) ⇐⇒ ker(π̃) ⊂ H.

Proof. Now L̃/ker(Φ̃) ∼= π̃(G) where Φ̃ : L̃ → π̃(G) is the projection map. Since L̃ is finite
group, we have L̃ ∼= π̃(G) ⇐⇒ ker(Φ̃) is trivial ⇐⇒ ker(π̃) = (ker(π̃) ∩ H) ⇐⇒
ker(π̃) ⊂ H.

We have remarked earlier (Lemma 3.2.4) that ker(Φ) ↪−→ G/H via an injective ho-
momorphism say Ω. Let G′ be the unique subgroup of G such that H ⊂ G′ ⊂ G and
ker(Φ) = G′/H.

In fact, we have a more precise statement.

Lemma 3.2.6. Let H ⊂ G′ ⊂ G. Then

ker(Φ) = G′/H under Ω ⇐⇒ G′ is the largest subgroup of G such that π(G′) = π(H).

In particular, ker(Φ) = G/H under Ω ⇐⇒ π(G) = π(H).

Proof. Now H ⊂ G′ ⊂ G. Since G =
⊔

1≤i≤nHsi, we have G′ =
⊔

i∈I(G
′ ∩ Hsi) where

I = {i ∈ {1, 2, ..., n} | G′ ∩Hsi ̸= ∅}. Since H ⊂ G′, we have (G′ ∩Hsi) ̸= ∅ ⇐⇒ si ∈ G′.
Hence I = {i ∈ {1, 2, ..., n} | si ∈ G′}. Now for i ∈ I, it is easy to see that, (G′ ∩ Hsi) =

(G′ ∩ H)(si) = Hsi. Hence G′ =
⊔

i∈I Hsi and G′/H = {siH}i∈I . Now the following
argument completes the proof.

ker(Φ) = G′/H under Ω

⇐⇒ {siH}i∈J = {siH}i∈I , that is I = J

⇐⇒ si ∈ G′ iff ker(π) ∩Hsi ̸= ∅.
⇐⇒ si ∈ G′ iff there is hi ∈ H such that π(hisi) = I.

⇐⇒ si ∈ G′ iff π(si) ∈ π(H)

⇐⇒ g ∈ G′ iff π(g) ∈ π(H)

⇐⇒ G′ is the largest subgroup of G such that π(G′) = π(H).
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Theorem 3.2.7. (Bhagwat, Jaiswal) (Thm 3.19 in [4])

Suppose π(G) = π(H). Then the exact sequence

1 → ker(Φ) ↪−→ L→ π(G) → 1

is right split. L ∼= π(G)⋉G/H for some semidirect product group law.

Proof. Since π(G) = π(H), ker(Φ) = G/H under Ω.

Consider ι : π(G) → L given by ι(x) = (π(h), ρ(h)) where x = π(h) for some h ∈ H.

If x = π(h) = π(h′) for some h, h′ ∈ H then π(hh′−1) = I. Hence by matrix calculation
above, ρ(hh′−1) = I. Hence ρ(h) = ρ(h′). Thus ι is well defined.

Now, for x, y ∈ π(G), let h, h′ ∈ H such that x = π(h), y = π(h′). Then

ι(x)ι(y) = (π(h), ρ(h))(π(h′), ρ(h′)) = (π(hh′), ρ(hh′)) = ι(π(hh′)) = ι(π(h)π(h′)) = ι(xy).

Hence ι is a homomorphism. Also since, Φ ◦ ι = idπ̃(G), the exact sequence splits.

Corollary 3.2.7.1. Let G/H be cyclic< sH >. Then if ker(π)∩Hs ̸= ∅ then the above exact
sequence is right split.

Proof. Since ker(π) ∩Hs ̸= ∅, there is an h1 ∈ H such that π(h1s) = 1. Since H is normal
in G, (h1s)i = his

i for some hi ∈ H. Hence π(hisi) = π(h1s)
i = 1. Hence for all i, ker(π) ∩

Hsi ̸= ∅. Thus ker(Φ) ∼= G/H.

Corollary 3.2.7.2. Let {ρ(si)}i form a multiplicatively closed subset of ρ(G) and let (n, |π(G)|) =
1. Then above exact sequence is right split.
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Proof. Since |G/H| = n, for any i, (siH)n = H. Thus ρ(si)n = I. Hence π(si)n = I. Since
π(si) ∈ π(G), we have π(si)|π(G)| = I. Now (n, |π(G)|) = 1. Hence, π(si) = 1 for all i. Thus
π(H) = π(G).

We can generalize Lemma 3.2.4, Corollary 3.2.5.1, Lemma 3.2.6 and Thm 3.2.7. Con-
sider a closed subgroup H ′ of G. We have H ′/(H ′ ∩H) ↪−→ G/H.

Theorem 3.2.8. Let N = {(π(h′), ρ(h′))|h′ ∈ H ′} and Ñ = {(π̃(h′), ρ̃(h′))|h′ ∈ H ′}.

1. The surjective projection N → ρ(H ′) is an isomorphism.

2. Consider the surjective projection ξ : N → π(H ′). We have ω : ker(ξ) ↪−→ H ′/(H ′ ∩H)

and ker(ξ) ∼= (ker(π) ∩H ′)/(ker(π) ∩H ′ ∩H).

3. Ñ ∼= π̃(H ′) ⇐⇒ ker(π̃) ∩H ′ ⊂ H.

4. Let (H ′ ∩H) ⊂ G′ ⊂ H ′ then
ker(ξ) = G′/(H ′ ∩ H) under ω ⇐⇒ G′ is largest subgroup of H ′ such that π(G′) =

π(H ′ ∩H).

In particular, ker(ξ) = H ′/(H ′ ∩H) under ω ⇐⇒ π(H ′) = π(H ′ ∩H).

5. Suppose π(H ′) = π(H ′ ∩H). Then the exact sequence

1 → ker(ξ) → N → π(H ′) → 1

is right split. N ∼= π(H ′)⋉H ′/(H ′ ∩H) for some semidirect product group law.

6. Let H ⊂ H ′. Suppose π(G) = π(H). Then the above exact sequence is right split.
N ∼= π(H ′)⋉H ′/H for some semidirect product group law.

3.3 Cases of IGP in work of Zywina

Using the results of Ribet [19] about the Deligne’s Galois representations associated to
certain newforms, Zywina established the IGP for PSL2(Fp) over Q for all primes p ≥ 5.
(For a discussion on newforms refer to 16.8 in [21]).
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It is easy to prove IGP directly for the group PSL2(F5) ∼= A5 over Q. So for the other
cases, Zywina considered a non-CM newform f =

∑∞
n=1 anq

n on Γ1(N) of weight k =

3, level N = 27 and nebentypus ε : (Z/NZ)× → C× with ε(a) =
(−3

a

)
where the an are

complex numbers and q = e2πiτ with τ a variable of the complex upper-half plane. He
chose f so that

f = q + 3iq2 − 5q4 − 3iq5 + 5q7 − 3iq8 + 9q10 − 15iq11 − 10q13 + · · · ;

the other possibility for f is its complex conjugate
∑

n ānq
n.

The subfield E of C generated by the coefficients an is Q(ι). All the an are known to
lie in E’s ring of integers O which is Z[ι]. The subfield K of E generated by the algebraic
integers rp := a2p/ε(p) for primes p ∤ N is Q; and its ring of integer R is Z and we also have
L = Q where L ⊆ C is the extension of K generated by the square roots of the values
rp = a2p/ε(p) with p ∤ N .

Take any non-zero prime ideal Λ of O and denote by ℓ = ℓ(Λ) the rational prime lying
under Λ. Let EΛ and OΛ be the completions of E and O, respectively, at Λ. There is a con-
tinuous representation πΛ : G → GL2(OΛ) such that for each prime p ∤ Nℓ, the represen-
tation πΛ is unramified at p and satisfies tr(πΛ(Frobp)) = ap & det(πΛ(Frobp)) = ε(p)pk−1.

The representation πΛ is uniquely determined by the above conditions up to conjuga-
tion by an element of GL2(EΛ). By composing ρΛ with the natural projection arising from
the reduction map OΛ → FΛ := O/Λ, we obtain representation π′

Λ : G → GL2(FΛ). Com-
posing π′

Λ with the natural quotient map GL2(FΛ) → PGL2(FΛ), we obtain a homomor-
phism π̃Λ : G → PGL2(FΛ). Define the field Fλ := R/λ, where λ := Λ ∩ R. The natural in-
jective homomorphisms PSL2(Fλ) ↪→ PGL2(Fλ) ↪→ PGL2(FΛ) and PSL2(FΛ) ↪→ PGL2(FΛ)

are viewed as inclusions.

The following is a general result of Ribet [19].

Theorem 3.3.1. (Ribet)

There is a finite set S of non-zero prime ideals ofR such that if Λ is a non-zero prime ideal
of O with λ := R ∩Λ /∈ S, then the group π̃Λ(G) is conjugate in PGL2(FΛ) to either PSL2(Fλ)

or PGL2(Fλ).
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Zywina verified that above general theorem holds with S = {2, 3, 5} for the case he has
considered. The following is a part of a general result Thm 1.2 of Zywina [23].

Theorem 3.3.2. (Zywina)

Let Λ be a non-zero prime ideal of O such that π̃Λ is conjugate to PSL2(Fλ) or PGL2(Fλ),
where λ = Λ ∩R. After conjugating π′

Λ, we may assume that π̃Λ(G) ⊆ PGL2(Fλ). Let ℓ be the
rational prime lying under Λ. If weight k is odd, then π̃Λ(G) = PSL2(Fλ) if and only if λ splits
completely in L.

By taking any prime ℓ ≥ 7 and prime Λ ⊆ Z[i] dividing ℓ. Since in the case that Zywina
has considered,L = K = Q and λ splits completely in L, π̃Λ(G) is isomorphic to PSL2(Fℓ).

The following is Thm 1.4 in [23].

Theorem 3.3.3. (Zywina)

PSL2(Fp) can be realized as a Galois group over Q for all primes p ≥ 5.

3.4 New Cases of IGP through the Cases in work of Zy-
wina and Galois Representations for Newforms

Consider the case in previous section with π = πΛ, p = l ≥ 5 and W = E2
Λ and π : G →

GL(W ) with π(G) ⊂ GL2(OΛ) and π̃ : G→ PGL2(FΛ). Then Image(π̃) = π̃(G) = PSL2(Fp).
The representations σ = π|H : H → GL(W ) and σ̃ : H → PGL2(FΛ) are defined, and
Image(σ̃) = π̃(H) ⊂ π̃(G).

Lemma 3.4.1. Let p ≥ 5 and H be normal in G (K is Galois) and [G : H] = n < |PSL2(Fp)|.
Then π̃(H) = PSL2(Fp).

Proof. Now, [PSL2(Fp) : π̃(H)] = [π̃(G) : π̃(H)] ≤ [G : H] = n < |PSL2(Fp)|. Hence π̃(H) is
not trivial. Since H is normal in G, π̃(H) is normal in π̃(G). Now since PSL2(Fp) is simple
we have that PSL2(Fp) = π̃(H) otherwise π̃(H) will become non-trivial normal subgroup
in PSL2(Fp).
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Remark 3.4.1.1. If n ≥ |PSL2(Fp)| then either π̃(H) = PSL2(Fp) or π̃(H) is trivial. If latter
case happens, then ρ̃(H) is also trivial. Hence ρ̃(G) ∼= G/H in that case.

Proposition 3.4.2.

1. For p ≥ 5, PGL2(Fp) ∼= PSL2(Fp) ⋊ Z/2Z for some semidirect product group law and
the semidirect product is not direct product.

2. Let p ≥ 5. For any semidirect product group law such that PGL2(Fp) ∼= PSL2(Fp) ⋊
Z/2Z, the semidirect product is not direct product. Furthermore, the automorphism of
PSL2(Fp), given by conjugation by image of generator of Z/2Z in PGL2(Fp), is not inner.

Proof. (1) From proof of Prop 2.4.2, we have an exact sequence

1 → PSL2(Fp) → PGL2(Fp) → Z/2Z → 1.

Let ι : Z/2Z → PGL2(Fp) be given by ι(1̄) = xZ(GL2(Fp))where x is as in Prop 2.4.2. ι is
a right splitting. Hence above exact sequence is right split. Hence PGL2(Fp) ∼= PSL2(Fp)⋊

Z/2Z for some semidirect product group law. Now since,

[
1 0

1 1

]
Z(GL2(Fp)) ∈ PH doesn’t

commute with xZ(GL2(Fp)), the semidirect product is not direct product.

(2) Let xZ(GL2(Fp)) be the image of generator of Z/2Z in PGL2(Fq) for x ∈ GL2(Fp).
Then x ̸∈ H, xZ(GL2(Fp)) ̸∈ PH and x2 ∈ Z(GL2(Fp)). Suppose the semidirect product
was direct product. Then for some νh ∈ Z(GL2(Fp)), xhx−1 = hνh for all h ∈ H. Now,
PGL2(Fp) = PH

⊔
(xZ(GL2(Fp)))PH. Hence, xZ(GL2(Fp)) ∈ Z(PGL2(Fp)) = {1}. Hence

x ∈ H, which gives a contradiction.

Now, suppose automorphism of PSL2(Fp), given by conjugation by xZ(GL2(Fp)), is in-
ner. Then for some h′ ∈ H and µh ∈ Z(GL2(Fp)), xhx−1 = h′hh′−1µh for all h ∈ H. Hence
(h′−1x)h(h′−1x)−1 = hµh for all h ∈ H. Now, PGL2(Fp) = PH

⊔
((h′−1x)Z(GL2(Fp)))PH.

Hence, (h′−1x)Z(GL2(Fp)) ∈ Z(PGL2(Fp)) = {1}. Hence x ∈ H, which gives a contradic-
tion.
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Theorem 3.4.3. (Bhagwat, Jaiswal) (Thm 3.12 in [4])

1. For p ≥ 5,PSL2(Fp)⋊Z/2Z is realizable as Galois Group over Q (for semidirect product
group law in Thm 3.1.7).

2. This semidirect product in part (1) is direct ⇐⇒ π̃(s) = I.

3. Automorphism ϕρ̃(s) of ρ̃(H), by conjugation by ρ̃(s), is inner.

4. The group obtained here is not isomorphic to PGL2(Fp).

Proof. (1) Let [G : H] = 2. ThenH is normal inG (K is Galois). Also 2 < |PSL2(Fp)|. Hence
by previous lemma, π̃(H) = PSL2(Fp).

We could have chosen K = Q(i) and s ∈ G as complex conjugation so that s2 = 1 and
{1, s} become representatives of right cosets of H in G. Then by Thm 3.1.8 we are done.

(2) Now, π̃(G) = π̃(H) = PSL2(Fp).

Above semidirect product is direct.

⇐⇒ ρ̃(s)=

[
0 I2

I2 0

]
commutes with every ρ̃(h) =

[
π̃(h) 0

0 π̃(shs−1)

]
.

⇐⇒ π̃(s) commutes with every π̃(h).

⇐⇒ π̃(s) ∈ Z(PSL2(Fp)).

⇐⇒ π̃(s) = I.

Since Z(PSL2(Fp)) is trivial as PSL2(Fp) is non-abelian and simple.

(3) Now π̃(G) = π̃(H). Hence π̃(s) = π̃(h′) for some h′ ∈ H.

So, ϕρ̃(s)(ρ̃(h)) = ρ̃(s)ρ̃(h)ρ̃(s)−1 =

[
π̃(shs−1) 0

0 π̃(h)

]
= ρ̃(h′)ρ̃(h)ρ̃(h′)−1.

(4) This follows from (3) and Prop 3.4.2.
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We have results similar to (1), (2) and (3) of Thm 3.4.3 for certain simple groups of the
form PSL2(Fq).

Theorem 3.4.4. PSL2(Fq)⋊Z/2Z is realizable as Galois Group overQ (for semidirect product
group law in Thm 3.1.7) for following q.

1. q = p for p ≥ 5 (From 1.2 [23]).

2. q = p2 for p ≡ ±2mod 5, p ≥ 7 (From Corollary 3.6 [7]).

3. q = p2 for p ≡ ±3mod 8, p ≥ 5 (From Corollary 3.8 [7]).

4. q = p3 for odd prime p ≡ ±2,±3,±4,±6mod 13 (From 1.3 [23]).

5. q = 53, 35, 34 (From 2.2, 2.5, 3 [8] respectively).

Remark 3.4.4.1. One has even more general conditions for q = p2 (See Thm 3.1 [9]) and
q = p4 (See 3.3 [9]).

Recall the results from [23] that we discussed earlier. In this case, we have

Proposition 3.4.5. (Corollary 3.19.3 in [4]). For p ≥ 5, PSL2(Fp) × Z/2Z is realizable as
Galois Group over Q.

Proof. Since π̃(H) = π̃(G) as in Thm 3.4.3, we have from Thm 3.2.7 that PSL2(Fp)⋉Z/2Z
is realizable as Galois Group over Q (for semidirect product group law as in 3.2.7). Since
Aut(Z/2Z) is trivial, we have that semidirect product is indeed direct.
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Chapter 4

Root Cluster Size

Perlis proved some properties of cluster size in [17] and [18]. In this chapter, we gener-
alise a result of Perlis for number fields that also improves on the generalisation proved
previously by Krithika and Vanchinathan in [13]. We also present a simple lemma about
number of clusters which is very useful in giving alternate proofs of results by Perlis and
Krithika-Vanchinathan as well as in proving further results.

4.1 Root Clusters in work of Perlis

A perfect field is such that every irreducible polynomial over that field is separable (Equiv-
alently every finite extension of that field is separable). In particular, number fields are
perfect.

Let K be a perfect field. We fix an algebraic closure K̄ once and for all and work with
finite extensions of K contained in K̄. All the fields henceforth will be finite extensions
of K contained in K̄.

Let f ∈ K[t] be an irreducible polynomial and let α be a root of f in K̄. Since K is
perfect, it follows that f has deg(f) distinct roots in K̄. The cluster of α is defined as the
set of roots of f in the field K(α) and its cardinality rK(f) is called the cluster size of α
over K.

45



LetKf be the splitting field of f overK and letG := Gal(Kf/K). LetH = Gal(Kf/K(α))

be the subgroup of G such that K(α) is the fixed field of H.

Let sK(f) be the number of distinct fields of the form K(αj), with αj a root of f in Kf

for all 1 ≤ j ≤ deg(f).

The following result is proved in [17] and [18].

Theorem 4.1.1. (Perlis)

1. rK(f) is independent of the choice of α.

2. rK(f) sK(f) = deg(f). In particular, rK(f) | deg(f).

3. rK(f) = number of roots of f fixed by H = |Aut(K(α)/K)| = [NG(H) : H].

Proof. 1. Let αi’s for 1 ≤ i ≤ n be roots of f in K̄. Consider fields K(αi) for all i.
Each of this field is K-isomorphic to K[x]/(f(x)). Hence they are K-isomorphic
to each other. Since roots map to roots under isomorphism, we have that rK(f) is
independent of the choice of α.

2. Now any root αj lies in exactly one of the above fields which is preciselyK(αj). This
is because, suppose αj ∈ K(αi) then K(αj) ⊂ K(αi). Since both these fields have
same degree over K, we have K(αj) = K(αi).

Thus one observes that αi’s are partitioned by corresponding fields K(αi)’s into
sK(f) collections with rK(f) many in each collection. Therefore rK(f) sK(f) =

deg(f). In particular, rK(f) | deg(f).

3. Since H = Gal(Kf/K(α)), the roots of f fixed by H are precisely the roots of f
contained in K(α). Hence rK(f) = number of roots of f fixed by H.

Now any K-automorphism of K(α) maps α to one of the roots of f contained in
K(α). Conversely mapping α to one of the roots of f contained in K(α) gives us a
K-automorphism of K(α). Thus rK(f) = |Aut(K(α)/K)|.

One can show that the group Aut(K(α)/K) is isomorphic to NG(H)/H (See Corol-
lary 7.1.0.2). Thus rK(f) = [NG(H) : H].
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Remark 4.1.1.1. By the proof of part (2) in above theorem it can be seen that sK(f) is the
number of clusters of roots of f in Kf .

Let L/K be a finite extension of degree n contained in K̄ and L̃ be its Galois closure
inside K̄. Since K is perfect, by primitive element theorem, L = K(α) with f over K a
degree n irreducible polynomial with α as a root in K̄. The cluster size of L/K is defined
as rK(L) := rK(f) which is well defined because of part (3) of Thm. 4.1.1 (Corollary 1 in
[13]). Similarly one can define sK(L) := sK(f). Thus we have

rK(L) sK(L) = [L : K].

Remark 4.1.1.2. The cluster size is preserved under isomorphism overK. IfM/K andM ′/K

contained in K̄ are isomorphic over K, then rK(M) = rK(M
′).

4.2 Hilbertian Fields

We will state some important results about hilbertian fields in this section. For a detailed
discussion one can refer to Völklein [22].

Definition 4.2.1. If K ′ is a field with subfield K, we say K ′ is regular over K if K is alge-
braically closed in K ′.

Definition 4.2.2. (Def 1.9 in [22]). A field K is called hilbertian if for each irreducible poly-
nomial f(x, y) in two variables overK, of degree ≥ 1 in y, there are infinitely many b ∈ K such
that the specialised polynomial f(b, y) (in one variable) is irreducible.

Remark 4.2.2.1. For equivalent definitions of hilbertian fields see Corollary 1.8 in [22].

Proposition 4.2.3. (Corollary 1.11 in [22]). If K is hilbertian then so is every finitely gener-
ated extension field of K.

Definition 4.2.4. (Def 1.14 in [22]). Let G be a finite group. We say G occurs regularly over
K if for some m ≥ 1 there is a Galois extension of K(x1, . . . , xm), regular over K, with Galois
group isomorphic to G.
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Proposition 4.2.5. (Corollary 1.15 in [22]). Suppose G occurs regularly over K. Then G

occurs regularly over every extension field K ′ of K. Thus G is a Galois group over K ′ if K ′ is
hilbertian.

Proposition 4.2.6. (Example 1.17 in [22]). The symmetric group Sn occurs regularly over
every field K.

Theorem 4.2.7. (Hilbert’s irreducibility theorem) (Thm 1.23 in [22]). The fieldQ is hilbertian.

4.3 Existence of Polynomials for given Degree and Clus-
ter Size over Number Fields

We present the following theorem which is generalisation of a result in an unpub-
lished note of Perlis [17, Exercise 4], which was for K = Q. This theorem includes even
the excluded cases in generalisation done by Krithika and Vanchinathan (without using
Shafarevich’s theorem) in [13, Thm. 2] namely n = 2r where r is odd for Q and n = 2r for
any number field K ̸= Q.

Inverse Cluster Size Problem for Number Fields

Theorem 4.3.1. (Perlis, Krithika and Vanchinathan, A generalisation by Bhagwat, Jaiswal)
(Thm 3.1.1 in [3])

Let K be a number field. Let n > 2 and r|n. Then there exists an irreducible polynomial
over K of degree n with cluster size r.

Before proving Thm. 4.3.1, we state some results which we will use in the proof of the
theorem.

Lemma 4.3.2. The group Sn is realizable as Galois group over any number field.

Proof. The field Q is hilbertian by Thm 4.2.7. Furthermore, every finitely generated ex-
tension of a hilbertian field is hilbertian by Prop 4.2.3, and thus we conclude that every
number field is hilbertian.
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Let K be a number field. We know that the group Sn occurs regularly over every field
by Prop 4.2.6. In particular, Sn occurs regularly over K. The result Prop 4.2.5 says that if
a group occurs regularly over a hilbertian field, then it is realizable as a Galois group over
that field. Hence finally we conclude that Sn is realizable as Galois group over K.

The following lemma is the final proposition in Perlis [17]. We write the proof given
by Perlis for the sake of completion.

Lemma 4.3.3. Let G be a transitive subgroup of Sn for some n. If there exists a finite Ga-
lois extension of a field K with Galois group isomorphic to G, then there exists an irreducible
polynomial f over K of degree n and a labelling of the roots of f so that the Galois group of f ,
viewed as a group permuting roots of f , is precisely G.

Proof. Let G act transitively on n symbols {1, 2, . . . , n}. Let H ⊂ G be the stabiliser of the
symbol 1. Then there is a canonical labelling of the n cosets in G/H so that G acts on
G/H exactly the same way G acts on the original n symbols that is {x1H, x2H, . . . , xnH}
with xj · 1 = j and g · (xjH) = xg·jH for all g ∈ G and all 1 ≤ j ≤ n. The action is faithful
and transitive. We have Stab(xjH) = xjHx

−1
j . Since the action is faithful, it follows that⋂

1≤j≤n

(xjHx
−1
j ) =

⋂
1≤j≤n

(Stab(xjH)) = {1}.

Let KG/K be finite Galois extension with Galois group isomorphic to G. We identify
it with G. Let L be the subfield of KG fixed by H. The Galois closure of L/K in KG is
the subfield of KG corresponding to the intersection of the conjugates of H in G and that
intersection is trivial because of argument in previous paragraph. Hence KG is the Galois
closure ofL/K. Let f overK be the minimal (hence irreducible) polynomial for a primitive
element of L/K. We can identify the n roots of f with the n cosets in G/H. This is the
required polynomial f .

Lemma 4.3.4. LetK be a perfect field andK ′/K be a finite extension. If for a groupG, direct
products Gn are realizable as Galois group over K for each n ∈ N then they are realizable as
Galois groups over K ′.

As a corollary, we get arbitrarily large finite families of Galois extensions of K inside a
fixed K̄ which are pairwise non-isomorphic over K and are pairwise linearly disjoint over K
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with each having Galois groupG overK. This corollary also holds forGn in place ofG for any
n ∈ N as well as for K ′.

Proof. We will mimic the proof of Thm. 4.2 in [5] which states that if every finite group
can be realized as a Galois group over Q then every finite group can be realized as a Galois
group over any finite extension of Q.

Since K is perfect and K ′/K is finite, we have that K ′/K is separable. Hence, K ′/K

has finitely many intermediate fields. Let n be the number of these intermediate fields
(including K ′ and K). Now Gn is realizable over K by assumption, say for E/K Galois,
we have Gal(E/K) ∼= Gn. We have normal subgroups Ni = G × G × · · · × 1 × · · · × G of
Gn for 1 ≤ i ≤ n where the ith coordinate is trivial and there is no restriction in other
coordinates. So Ni

∼= Gn−1. Let Ei be the subfield of E corresponding to Ni, so Ei/K is
Galois with Gal(Ei/K) ∼= Gn/Ni

∼= G.

Now for i ̸= j, Ei ∩ Ej corresponds to subgroup generated by Ni and Nj which is Gn.
HenceEi∩Ej = K. Suppose for some i ̸= j we have Ei∩K ′ = Ej ∩K ′. SinceEi∩Ej = K,
we get Ei ∩K ′ = Ej ∩K ′ = K. Now suppose that all Ei ∩K ′ are distinct. Since we have n
intermediate fields of K ′/K, Ei ∩K ′ = K for some i. In either case we get an i such that
Ei ∩ K ′ = K. Hence Gal(EiK

′/K ′) ∼= Gal(Ei/K) ∼= G. This realizes G as a Galois group
over K ′. By replacing G with Gm for any m ∈ N in the above argument, we can realize Gm

over K ′ for any m.

For the proof of the corollary, we observe that for any nwe have someE/K Galois with
Galois groupGn andNi normal subgroups ofGn andEi subfield ofE corresponding toNi.
We observe that Ni are not conjugate to each other in Gn and they pairwise generate Gn.
Hence Ei are not isomorphic to each other over K and are pairwise linearly disjoint over
K with G as Galois group of each Ei/K.

Now we prove Thm. 4.3.1.

Proof. Suppose r = 1. By Lemmas 4.3.2 and 4.3.3, there exists an irreducible polynomial
f over K of degree n with Galois group Sn. This f satisfies rK(f) = 1.

Now suppose r > 1. In solutions of Exercises 3 and 4 in [17], a solvable group G ⊆ Sn
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is constructed with the properties that its action is transitive on n points, and a point sta-
biliser fixes precisely r points. The construction is as follows: We divide the n points into
n/r = s packets of size r. LetG be the group of permutations on these n points generated
by independent cyclic permutations on each packet, together with a cyclic permutation
on the overall set of packets. HenceG is transitive. This construction ofG has the explicit
description of a semidirect product of an s-fold direct product of cyclic groups Z/rZ and
a cyclic group Z/sZ. A semidirect product group law on G is given by

((a1, . . . , as), b) · ((c1, . . . , cs), d) = ((a1, . . . , as) + (b · (c1, . . . , cs)), b+ d),

where b · (c1, . . . , cs) = (cb+1, . . . , cs, c1, . . . , cb) for b ̸= 0 & 0 · (c1, . . . , cs) = (c1, . . . , cs).

Thus,G = (Z/rZ)s ⋊ Z/sZ.

Suppose the n points are {1, 2, . . . , n} and the s many packets are
{1, 2, . . . , r}, {r + 1, r + 2, . . . , 2r}, ..., {(s− 1)r + 1, (s− 1)r + 2, . . . , sr}. The above group
G has the following action on the set of these points. For 1 ≤ j ≤ s and 1 ≤ k ≤ r,

((a1, . . . , as), b) · ((j − 1)r + k) := ((j′ − 1)r + k′)

where j′ ≡ j − b (mod s) and 1 ≤ j′ ≤ s and k′ ≡ k + aj′ (mod r) and 1 ≤ k′ ≤ r.
Thus we can see that each Z/rZ permutes points in a packet and action of Z/sZ permutes
s copies of Z/rZ.

It is easy to see that any point stabiliser is isomorphic to (Z/rZ)s−1. The group G is
solvable since the following chain has successive cyclic quotients (See definition on Page
105 in [10]).

1 ⊆ Z/rZ ⊆ (Z/rZ)2 ⊆ · · · ⊆ (Z/rZ)s ⊆ G.

Since direct product of solvable groups is solvable, direct products Gi for i ∈ N are
solvable. By Shafarevich’s theorem ([20]),Gi for i ∈ N are realizable as Galois groups over
Q. Hence by Lemma 4.3.4,G is realizable as Galois group over number fieldK. By Lemma
4.3.3, there exists an irreducible polynomial f over K of degree n and a labelling of the
roots so that the Galois group of f , viewed as a group permuting roots of f , is preciselyG.
This f satisfies rK(f) = r.
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4.4 A Simple Lemma about sK(L)

We begin this section by giving an alternate proof for last equality in (3) of Thm.4.1.1,
which is stated in [18] and proved in first Proposition in unpublished note of Perlis [17].
The equality states: rK(f) = [NG(H) : H].

Proof. We observe that a field is isomorphic to K(α) over K if and only if it is of the form
K(α′) for some rootα′ of f . All these fields are contained inKf . By Galois correspondence,
K-isomorphic subfields of a Galois extension over K correspond to conjugate subgroups
of its Galois group.

Hence, sK(f) = number of distinct K(α′) = number of distinct subgroups of G that
are conjugate to H in G = [G : NG(H)]. The last equality follows from orbit-stabiliser
theorem for the conjugation action of G on the set of its subgroups. By Thm. 4.1.1 (2), we
are done.

We state the simple observation used above, as a lemma.

Lemma 4.4.1. Let K be perfect field. For finite L/K, sK(L) (as defined in Sec. 4.1) is the
number of distinct fields inside K̄ isomorphic to L over K.

Proof. By primitive element theorem, L = K(α) with α root of some irreducible polyno-
mial f over K. Now, L′ is isomorphic with L over K ⇐⇒ L′ = K(α′) for some root α′ of
f . Thus sK(L) = sK(f) = number of distinct K(α′) for α′ root of f= number of distinct
fields isomorphic to L over K.

Remark 4.4.1.1. Let L1, L2, . . . , LsK(L) be the distinct fields as in above Lemma 4.4.1. Hence
we have L̃ = L1L2 . . . LsK(L), that is the Galois closure of L/K is compositum of distinct fields
isomorphic to L over K.
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Using Lem. 4.4.1, we will give an alternate proof for Cluster Magnification theorem
Thm. 5.1.2, Thm. 1 in [13] in Sec. 9.

Remark 4.4.1.2. Let K be a number field. Note that nPk and nCk are integers with nPk = k!
nCk. By Thm. 4.3.1, we get irreducible polynomial over the field with degree nPk and cluster
size k!. The following theorem says that this is also true under some condition for a general
perfect field.

By using the above Lemma 4.4.1, we give an alternate proof for Thm. 3 in [13].

Theorem 4.4.2. Let K be a perfect field. Let f over K be irreducible of degree n with Galois
group Sn (For a number field K, such f always exists. See r = 1 case in Proof of Thm. 4.3.1).

For 1 ≤ k ≤ n − 2, let Lk be an extension of K obtained by adjoining any k roots of f in
K̄. Let g be the irreducible polynomial over K for a primitive element of Lk. This polynomial
has degree nPk and cluster size k!.

Proof. Let α1, α2, . . . , αn be roots of f in K̄. Let Lk = K(α1, α2, . . . , αk). We have that
degree of Lk/K is n(n− 1) . . . (n− k + 1) =nPk. Since Galois group of f is Sn, we have L′

is isomorphic to Lk over K ⇐⇒ L′ = K(αi1 , αi2 , . . . , αik) for k roots αij : 1 ≤ j ≤ k of
f . By Lemma 4.4.1, sK(Lk) is number of distinct fields inside K̄ isomorphic to Lk over K
which is precisely the number of ways of choosing k roots from n roots which is nCk. By
Thm. 4.1.1 (2), rK(Lk) = k!.
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Chapter 5

Cluster Magnification

Krithika and Vanchinathan proved the Cluster Magnification theorem in [13]. In this chap-
ter we state the Strong cluster magnification problem and establish an equivalent crite-
rion for that in terms of Galois groups. We also reformulate the Strong cluster magnifica-
tion problem for irreducible polynomials. We then state the Weak cluster magnification
problem and demonstrate how the notions for strong cluster magnification and weak clus-
ter magnification are actually different.

5.1 Cluster Magnification Theorem in work of Krithika
& Vanchinathan

Recall the notion of two extensions of a field being linearly disjoint over that field from
Def 2.3.1 and Rem 2.3.1.1. The following lemma can be deduced from [12, Lem. 1, Chap.
8.15] in combination with Remark 2.3.1.1.

Lemma 5.1.1. LetE/K be any extension and F/K be Galois extension and letE ′ ⊂ E. Then

E ∩ F = K ⇐⇒ E ∩ E ′F = E ′ and E ′ ∩ F = K.

The following result proved in [13, Sec. 3.1] is referred to as the Cluster Magnification
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theorem. The theorem is reformulated in [13, Sec. 4].

Cluster Magnification Theorem

Theorem 5.1.2. [Krithika, Vanchinathan] Let K, f and α be as above. Let deg(f) = n > 2

over K with cluster size rK(f) = r. Assume that there is a Galois extension F of K, say of
degree d, which is linearly disjoint withKf overK. Then there exists an irreducible polynomial
g over K of degree nd with cluster size rd. (F can be chosen to be K(β) for some β in K̄ so
that K(α, β) = K(α+ β) and the irreducible polynomial of α+ β over K, has degree nd with
cluster size rd; d is the magnification factor).

Reformulation : LetK be a perfect field as above and L/K be an extension of degree n > 2

contained in K̄ with cluster size rK(L) = r. Let F/K be any finite Galois extension of degree
d contained in K̄, which is linearly disjoint with L̃ over K. Then the compositum LF/K has
degree nd with cluster size rK(LF ) = rd. (d is the magnification factor).

Proof. Let α = α1, α2, . . . , αn be the roots of f in K̄. By relabeling we can assume that
{α1, α2, . . . , αr} is the cluster of α. We have a Galois extension K(β)/K such that K(β)

and Kf are linearly disjoint over K that is Kf ∩K(β) = K. Hence by Lemma 5.1.1,
Kf∩K(α, β) = K(α) andK(α)∩K(β) = K. SinceK(β)/K is Galois andK(α)∩K(β) = K.
Hence K(α, β)/K(α) is Galois of degree [K(β) : K] = d. Hence degree of K(α, β)/K is nd.

Since K is perfect, we have that K(α, β) is a simple extension of K generated by a
primitive element of the form α + cβ for a suitable c ∈ K. By using cβ as primitive ele-
ment of K(β) over K we can assume α + β is a primitive element over K for K(α, β). Let
conjugates of β over K be β = β1, β2, . . . , βd all of which lie in K(β).

Consider the minimal polynomial g(x) of α+ β. Since degree of g over K is nd. Hence
the conjugates of α + β over K are αi + βj for i = 1, 2, . . . , n and j = 1, 2, . . . , d. Since αi

for 1 ≤ i ≤ r are in K(α), we have that αi + βj ∈ K(α+ β) = K(α, β) for i = 1, 2, . . . , r and
j = 1, 2, . . . , d. The cluster of α + β has at least rd.

Suppose that the cluster has more than these rd roots. Thus we have αi+βj ∈ K(α+β)

for some i ̸= 1, 2, . . . , r and for some j. As βj ∈ K(β) ⊂ K(α + β), we have αi ∈ K(α + β).
Now αi ∈ Kf as well. So αi ∈ K(α + β) ∩ Kf = K(α). This is a contradiction. Thus the
cluster size of g(x) is rd.
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5.2 Strong Cluster Magnification

A natural question arises: When is the hypothesis of Cluster Magnification Theorem Thm
5.1.2 true? This leads us to defining the following. One would appreciate the usage of
‘strong’ in Sec 5.4.

Let M/K be a finite extension of degree m with rK(M) = k.

Definition 5.2.0.1. (Bhagwat, Jaiswal) (Def 4.1.1 in [3])

M/K is said to be obtained by strong cluster magnification from a subextension L/K
if we have the following:

1. [L : K] = n > 2,

2. there exists a finite Galois extension F/K such that the Galois closure L̃ of L in K̄

and F are linearly disjoint over K.

3. LF =M .

The number [F : K] is called the magnification factor and denoted by d. The magnifi-
cation is called trivial if F = K and nontrivial otherwise.

Remark 5.2.0.1. Suppose we have an extension L/K,and a Galois extension F/K such that
L̃∩F = L∩F . Then LF/(L∩F ) is obtained by strong cluster magnification from L/(L∩F ).

Remark 5.2.0.2. Let LF/K be obtained by strong cluster magnification from L/K through
F/K. If K ⊂ L′ ⊂ L. Then L′F/K is obtained by strong cluster magnification from L′/K

through F/K.

We prove the following hereditary property for strong cluster magnification.

Proposition 5.2.1. LetM/K be obtained by strong cluster magnification from L/K through
F/K as in Def 5.2.0.1. Then for any K ⊂ K ′ ⊂ L the extension M/K ′ is obtained by strong
cluster magnification from L/K ′ through K ′F/K ′ with same magnification factor.
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Proof. We check that the conditions in Def. 5.2.0.1 hold.

Let L1 be Galois closure of L/K ′. So L1 ⊂ L̃. Since L̃ and F are linearly disjoint over
K, we conclude that L1 and F are linearly disjoint overK. Hence by Lemma 5.1.1 we have

L1 ∩ F = K ⇐⇒ L1 ∩K ′F = K ′ and K ′ ∩ F = K.

Hence K ′F/K ′ is Galois and L1 and K ′F are linearly disjoint over K ′. Also M = LF =

LK ′F and hence we are done. The magnification factor is same since [F : K] = [K ′F : K ′].

Let M̃ be Galois closure of M/K inside K̄. Let G′ = Gal(M̃/K). Let H ′ = Gal(M̃/M)

be the subgroup of G′ with fixed field M . Hence H ′ is normal in G′ if and only if H ′ is
trivial.

Proposition 5.2.2. Suppose M/K is obtained by strong cluster magnification from L/K.
Let L̃ and F/K be as in the Def. 5.2.0.1 and let R := Gal(F/K). Let G = Gal(L̃/K) and
H = Gal(L̃/L). Then the following hold.

1. rK(M) = rK(L) [F : K], sK(M) = sK(L) = [G : NG(H)].

2. L̃F = M̃ .

3. G′ ∼= G×R where isomorphism is given by λ ∈ G′ 7→ (λ|L̃, λ|F ).

4. Furthermore H ′ ∼= H × {e} ⊂ G×R under the above isomorphism.

5. F is uniquely determined by L and M .

Proof.

1. From (2) and (3) in Thm. 4.1.1, we have sK(L) = [G : NG(H)]. Now from Thm. 5.1.2,
[M : K] = [L : K] [F : K] and rK(M) = rK(L) [F : K].

Also from Thm. 4.1.1, [M : K] = rK(M) sK(M) and [L : K] = rK(L) sK(L). Hence
sK(M) = sK(L).
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2. Since M = LF , we have L̃F ⊂ M̃ . Since L̃/K and F/K are Galois it follows that
L̃F/K is Galois. Thus, L̃F = M̃ .

3. L̃ and F are linearly disjoint over K. Since F/K is Galois, it follows that L̃∩F = K.
Therefore, by (2) and [5, Thm. 2.1], we conclude that G′ ∼= G × R under the given
isomorphism.

4. Let λ ∈ G′. We have

λ ∈ H ′ ⇐⇒ λ|M = idM ⇐⇒ λ|L = idL and λ|F = idF

⇐⇒ λ|L̃ ∈ H ⊂ G and λ|F = 1 ∈ R.

5. We have isomorphism G′ ∼= G × R. Hence G′ = G0R0 where G0, R0 ⊂ G′ with G0
∼=

G × 1 and R0
∼= 1 × R under above isomorphism. Furthermore, L̃ = M̃R0 and F =

M̃G0. Now if a subextension L of M is given, then L̃ is uniquely determined inside
M̃ . Thus R0 is uniquely determined inside G′ which implies that G0 is uniquely
determined inside G′. Hence F is uniquely determined from L and M .

In view of property (1) in Prop. 5.2.2, we see that rK(L)|rK(M) and the ratio rK(M)/rK(L)

is indeed same as the degree d = [F : K], which is the magnification factor for M/L over
K as defined earlier.

A criterion for strong cluster magnification: We now establish an equivalent criterion
for strong cluster magnification for a field extension in terms of Galois groups.

Theorem 5.2.3. (Bhagwat, Jaiswal) (Thm 4.1.6 in [3])

An extensionM/K is obtained by nontrivial strong cluster magnification from some subex-
tension L/K if and only if

Gal(M̃/K) ∼= A×B

for nontrivial groups A and B and

Gal(M̃/M) ∼= A′ × 1
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(under the same isomorphism) for a subgroup A′ ⊂ A with [A : A′] > 2.

Proof. SupposeM/K is obtained by nontrivial strong cluster magnification from a subex-
tension L/K. From Prop. 5.2.2 (3) and (4), we get A = G,B = R and A′ = H with the
required conditions since, d = |R| > 1, n = [G : H] > 2.

Conversely, suppose G′ ∼= A× B for nontrivial subgroups A and B and H ′ ∼= A′ × {e}
(under the same isomorphism) for a subgroup A′ ⊂ A with [A : A′] > 2. We identify G′

and H ′ with their images under the isomorphism. Now we check the three conditions of
Def. 5.2.0.1 for M/K.

1. Since 1 × B is normal in G′, we conclude that M̃B := M̃1×B is Galois over K with
Galois group A. Let L := M̃A′×B. Hence L/K has degree n = [A : A′] > 2.

2. SinceA×1 is normal inG′, we conclude that F := M̃A×1 is Galois overK with Galois
group B and degree d = |B|. Let L̃ be Galois closure of L in K̄. Since, L ⊂ M̃B,
we have L̃ ⊂ M̃B. The intersection of fields M̃B ∩ F corresponds to the subgroup
generated by A× 1 and 1×B which is G′. Hence M̃B ∩ F = K. Thus L̃ ∩ F = K. So
L̃ and F are linearly disjoint over K.

3. Now, M = M̃A′×1. Hence L, F ⊂ M , thus LF ⊂ M . Since L̃ ∩ F = K, we conclude
L ∩ F = K. Hence [LF : K] = [L : K] [F : K] = nd. Also, [M : K] = [G′ : H ′] = [A :

A′] |B| = nd. Hence LF =M .

The magnification is nontrivial since B is nontrivial subgroup.

Remark 5.2.3.1. In the above proof of the converse part, we can additionally conclude M̃B =

L̃. Since, M̃B ∩ F = L̃ ∩ F = K we get [F : K] = [M̃BF : M̃B] = [L̃F : F ]. Now, M̃BF ⊂ M̃

corresponds to intersection of the groups A× 1 and 1×B which is trivial. Hence M̃BF = M̃ .
From prop. 5.2.2 (2), M̃ = L̃F . Hence, [M̃B : K] = [L̃ : K]. Thus, M̃B = L̃.

Corollary 5.2.0.2. Let M/K be Galois. Then M/K is obtained by nontrivial strong clus-
ter magnification from some subextension L/K if and only if Gal(M/K) ∼= A × B for
nontrivial groups A and B with |A| > 2. If this happens then, L/K is also Galois.

Proof. Since M/K is Galois, M̃ =M ,G′ = Gal(M/K) and H ′ is trivial. So A′ is trivial and
[A : A′] = |A|. Also L̃ = M̃B = L. Hence, L/K is Galois.
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We end this section with a result that the strong cluster magnification behaves well
with respect to K-isomorphisms.

Proposition 5.2.4. Let M ′/K be contained in K̄ and σ : M → M ′ be an isomorphism over
K. If M/K is obtained by strong cluster magnification from L/K, then M ′/K is obtained by
strong cluster magnification from σ(L)/K.

Proof. SupposeM/K is obtained by strong cluster magnification fromL/K. We haveL/K,
n, r, F/K, d as above. Now we check the three conditions of Def. 5.2.0.1 for M ′/K.

1. σ(L) ∼= L has degree n > 2 over K with rK(σ(L)) = rK(L) = r.

2. F = σ(F ) since F/K is Galois. It is easy to prove that L̃ is Galois closure of σ(L) in
K̄. L̃ and F are linearly disjoint over K.

3. σ(L)F = σ(M) =M ′.

Alternatively, we can use the criterion in Thm. 5.2.3. The isomorphism between M

and M ′ extends to isomorphism between their Galois closures. Hence we also get an iso-
morphism between G′, H ′ and corresponding groups of M ′.

Remark 5.2.4.1. From the proof of Thm. 5.2.3, we get the following way to construct all fields
M/K which are obtained by nontrivial strong cluster magnification from some subextension
L/K.

SupposeA×B is realizable as a Galois group overK for nontrivial groupsA andB with a
subgroup A′ ⊂ A with [A : A′] > 2 such that

⋂
a∈A

aA′a−1 = 1. Let P be such that Gal(P/K) =

A×B. Then our required fields are M = PA′×1 and L = PA′×B.
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5.3 Strong Cluster Magnification Problem for Irreducible
Polynomials

Let g be an irreducible polynomial over K with degree m and rK(g) = k.

Definition 5.3.0.1. We have the following equivalent definitions:

1. The polynomial g is said to be obtained by strong cluster magnification from a poly-
nomial f over K if we have the following:

(a) an extension K(α)/K of degree n > 2 with f as the minimal polynomial of α
over K and rK(f) = r,

(b) there exists a Galois extension F/K of degree d such thatKf and F are linearly
disjoint over K, and

(c) K(α)F = K(γ) where γ is some root of g in K̄.

The magnification is called trivial if d = 1 and nontrivial otherwise. (d is the magni-
fication factor).

2. The polynomial g overK is said to be obtained by strong cluster magnification from
a polynomial f over K, if for some root γ of g in K̄, the field extension M = K(γ)

over K is obtained by strong cluster magnification from L/K with L = K(α), where
α is a root of the irreducible polynomial f .

Remark 5.3.0.1. Let sK(g) = s. Let {γ1, γ2, . . . , γs} be a complete set of representatives of
the clusters of roots of g in K̄. Let Mi = K(γi) for 1 ≤ i ≤ s.

1. All Mi’s are mutually isomorphic by mapping γi’s to each other. For every i,Mi/K is an
extension of degree m contained in K̄ with rK(Mi) = rK(g) = k.

2. By Prop. 5.2.4, if for some i,Mi/K is obtained by strong cluster magnification fromLi/K

then for each 1 ≤ j ≤ s, Mj/K is obtained by strong cluster magnification from some
subextension Lj/K.

3. More precisely, if Li = K(αi) for a root αi of the irreducible polynomial f then, by
isomorphism of Mi and Mj, we get Lj = K(αj) where αj is a root of f .
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Because of the above remark, if strong cluster magnification holds for some root of
g, then it holds for every root of g. Hence we can work with any root γ of g in K̄. Let
M = K(γ). Let Kg be splitting field of g over K inside K̄. Let G′ = Gal(Kg/K). Let
H ′ ⊂ G′ be subgroup with K(γ) as the fixed field that is H ′ = Gal(Kg/K(γ)).

By Thm. 5.2.3, we get an equivalent criterion for strong cluster magnification of an
irreducible polynomial.

Theorem 5.3.1. g over K is obtained by nontrivial cluster magnification from an f over K if
and only if

Gal(Kg/K) ∼= A×B

for nontrivial groups A and B and (for γ as above)

Gal(Kg/K(γ)) ∼= A′ × 1

(under the same isomorphism) for a subgroup A′ ⊂ A with [A : A′] > 2 and f is the minimal
polynomial for a primitive element of (Kg)

A′×B over K.

Definition 5.3.0.2. An irreducible polynomial g over K is called primitive if it is not ob-
tained by a nontrivial strong cluster magnification over K. (this notion occurs in [13] as
well).

Example 5.3.2. Some simple examples / cases of primitive polynomials g over K follow from
Thm. 5.1.2 and Thm. 5.3.1.

1. deg g = 4 or a prime p > 2.

2. |Gal(Kg/K)| = 4.

3. Gal(Kg/K) is not a direct product of two nontrivial groups. In particular, the case when
Gal(Kg/K) is simple. In particular, the case |Gal(Kg/K)| is a prime p > 2.
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5.4 Weak Cluster Magnification

Another natural question arises: Is the hypothesis of Cluster Magnification Theorem Thm
5.1.2 necessary for cluster size to magnify? Example 5.4.1 and other examples in this
section answer this negatively. This leads us to defining the following. The definition is
not vacuous which will be demonstrated later in Remark 8.3.3.1.

Definition 5.4.0.1. (Bhagwat, Jaiswal) (Def 4.3.1 in [3])

M/K is said to be obtained by weak cluster magnification from a subextension L/K if
rK(L)|rK(M).

We call d = rK(M)/rK(L) as the magnification factor. The magnification is called
trivial if d = 1 and nontrivial otherwise.

Remark 5.4.0.1. From Def 5.2.0.1 and Thm. 5.1.2, ifM/K is obtained by strong cluster mag-
nification from L/K then M/K is obtained by weak cluster magnification from L/K. This
together with the following example justify the usage of ‘weak’ in above definition and ‘strong’
in Sec 5.2.

Example 5.4.1. Consider M/L/K where M/K is Galois and L/K is not Galois (a particular
case is M = L̃ for L/K not Galois). So rK(L) ̸= [L : K] and rK(M) = [M : K]. Now
rK(L) | [L : K] and [L : K] | [M : K]. Hence rK(L) | rK(M) and rK(L) ̸= rK(M). Thus M/K

is obtained by nontrivial weak cluster magnification from L/K.

We claim that M/K is not obtained by strong cluster magnification from L/K. Assume
the contrary. Then we must have by Def. 5.2.0.1 and Lem. 5.1.1 that M ∩ L̃ = L which is
a contradiction since L/K is not Galois. Moreover M/K is not obtained by strong cluster
magnification of L1/K for any L̃ ⊋ L1 ⊃ L.

Example 5.4.2. Let Lk be as in proof of Thm. 4.4.2. Then for j < k, Lk/K is obtained
by nontrivial weak cluster magnification from Lj/K but is not obtained by nontrivial strong
cluster magnification from Lj/K since L̃j ∩ Lk = Lk ̸= Lj.

One can also verify that [Lk : Lj] = rK(Lk)/rK(Lj) ⇐⇒ k > n/2 and j = n− k.

Example 5.4.3. Let K = Q and ξn be n-th primitive root of unity.
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1. Let M = Q(ξ2k) and L = Q(ξ2k−1) for k ≥ 4. Now M/K, L/K and M/L are Galois.
Hence M/K is obtained by nontrivial weak cluster magnification from L/K with mag-
nification factor [M : L] = 2. Also Gal(M/K) ∼= Z/2Z× Z/(2k−2)Z and
Gal(L/K) ∼= Z/2Z × Z/(2k−3)Z. By uniqueness in structure theorem for finite abelian
groups Gal(M/K) ̸∼= Z/2Z × Gal(L/K). Hence by Corollary 5.2.0.2, we conclude that
M/K is not obtained by nontrivial strong cluster magnification from L/K.

We can use a similar argument as above to conclude that for integers k > j ≥ 3 for
prime p = 2 and integers k > j ≥ 2 for prime p ̸= 2, M = Q(ξpk) is not obtained by
nontrivial strong cluster magnification from L = Q(ξpj).

2. Let n, l be integers such that 6 < l < n, l|n such that n = lm and gcd(l,m) = 1. Let
M = Q(ξn) and L = Q(ξl). We have

Gal(M/K) ∼=
∏
p|n

(Z/pvp(n)Z)× =
∏
p|l

(Z/pvp(n)Z)× ×
∏
p|m

(Z/pvp(n)Z)×

∼= Gal(L/K) ×
∏
p|m

(Z/pvp(n)Z)×.

Hence by Corollary 5.2.0.2,M/K is obtained by nontrivial strong cluster magnification
from L/K through F/K where F = Q(ξm) = Q(ξn/l).
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Chapter 6

Cluster Towers

In this chapter, we provide an important example answering a question in [13] about Clus-
ter Towers. We also give a group theoretic formulation for cluster towers.

6.1 Cluster Tower of a Polynomial

Let f be an irreducible polynomial over K. Consider a complete set of representatives of
clusters of roots of f in K̄. Let (β1, β2, . . . , βs) be an ordering of this set where s = sK(f).
Now consider the following cluster tower of fields terminating at the splitting field Kf .

Write the tower as

K ⊆ K(β1) ⊆ K(β1, β2) ⊆ · · · ⊆ K(β1, β2, . . . , βs) = Kf .

In [13], the notions of degree sequence and length of such tower are defined as follows.

The length of tower is number of distinct fields in the tower and the degrees of these
distinct fields over K form the degree sequence.

Example 6.1.1. As noted in [13], if the Galois group of f over K is Sn for n > 2, we have

67



s = n and the cluster tower is given by

K ⊊ K(β1) ⊊ K(β1, β2) ⊊ · · · ⊊ K(β1, β2, . . . , βn−1) = K(β1, β2, . . . , βn) = Kf ,

with degree sequence (n, n(n − 1), n(n − 1)(n − 2), . . . , n!/2, n!) = (nP1,
n P2, . . . ,

n Pn−1). So
in this case the degree sequence is independent of ordering of βi ’s. The length of the tower is
n.

An important example: A question was asked by Krithika and Vanchinathan in [13]: Is
the degree sequence in general independent of the ordering of the representatives of the
clusters of roots? We describe the following example that answers this question nega-
tively.

First we mention some easy to verify properties of Euler’s totient function ϕ.

Proposition 6.1.2. Suppose l and n are positive integers such that l|n with n = lm. Consider
their prime factorisations n =

∏
p

pvp(n) and l =
∏
p

pvp(l) with vp(l) ≤ vp(n) for every prime p

(here vp is usual p-adic valuation). Then

1. ϕ(n)/ϕ(l) = mϕ(k)/k where k =
∏
p∤l
pvp(n).

2. k|m and hence, ϕ(l)|ϕ(n).

3. ϕ(n) = ϕ(l) if and only if n = l, or l is odd and n = 2l.

4. ϕ(n)/ϕ(l) = m if and only if n and l have same prime factors.

Example 6.1.3. (Bhagwat, Jaiswal) (Example 5.1.3 in [3])

Let n ≥ 6. Fix Q̄ to be an algebraic closure of Q. Fix b to be a primitive n-th root of unity
in Q̄. Let c be a positive rational number such that f = xn − c is an irreducible polynomial
over Q. (In particular, c = p, a prime works for any n by Eisenstein criterion). Let a = c1/n be
the positive real root of f . Hence the roots of f are given by a, ab, . . . , abj, abj+1, . . . , abn−1. We
observe that, when n is odd, r = 1, s = n. When n is even, the roots appear in pairs {α,−α}
and thus r = 2, s = n/2.
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By [11, Prop. 1 and Thm. A ], the Galois group G of splitting field of f is isomorphic to
Z/nZ ⋊ (Z/nZ)× if and only if n is odd or, n is even with

√
c ̸∈ Q(b) if and only if Q(c1/n) ∩

Q(b) = Q. Assume n to satisfy these conditions. Hence, in particular the order of G is nϕ(n).

Further, assume that n is composite and l|n with n = ml, where for the cases n odd or
n ≡ 0 (mod 4), we assume 2 < l < n; and for the case n ≡ 2 (mod 4) we assume 2 < l < n/2.
Because of our assumptions, abm ̸= ±a,±ab and 1 < ϕ(l) < ϕ(n) by (3) of Prop. 6.1.2. Also,
ϕ(l)|ϕ(n) by (2) of Prop. 6.1.2. Since Q(b)/Q is Galois, by Thm. 2.6 in [5], we get

Gal(Q(a, bm)/Q(a)) ∼= Gal(Q(bm)/Q) ∼= (Z/lZ)×.

(For example, c = 2, n = 9, l = 3 and c = 3, n = 8, l = 4 work.)

Because of our assumptions, we havem+1 ≤ s. Let the representatives of clusters of roots
of f be given by

β3 = abm, βm+1 = ab2, βi = abi−1 for other 1 ≤ i ≤ s.

Consider the following cluster towers:

Q ⊊ Q(β1) ⊊ Q(β1, β2) = Qf ,

with degrees n and nϕ(n) and length of tower = 3 and

Q ⊊ Q(β1) ⊊ Q(β1, β3) ⊊ Q(β1, β3, β2) = Qf ,

with degrees n, nϕ(l) and nϕ(n) and length of tower = 4.

This example shows us that not only the degree sequence is not independent of the ordering
of the βi’s but length of tower is also not independent of the ordering of the βi’s.
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6.2 Group Theoretic Formulation of Cluster Towers

Let the notations be as earlier in Sec. 5.2. Let (β1, β2, . . . , βs) be a fixed ordering of a com-
plete set of representatives of the clusters of roots of an irreducible polynomial f over K
in K̄, where s = sK(f). We have the cluster tower:

K ⊂ K(β1) ⊂ K(β1, β2) ⊂ · · · ⊂ Kf .

Let G = Gal(Kf/K). For each 1 ≤ i ≤ s, let Hi be the subgroup of G that fixes K(βi).
Let β1 = β andH1 = H. Let σi be isomorphism fromK(β) toK(βi) mapping β to βi (hence
σ1 = id). Then Hi = σiHσ

−1
i .

Let Km = K(β1, β2, . . . , βm) and Jm := (
⋂

1≤i≤m

Hi) be the subgroup of G that fixes Km.

Let m1 < m2 < · · · < ml be all the indices i > 1 such that Ji ̸= Ji−1. The length of
above cluster tower is l + 2. Here,ml is smallest index i such that Ki = Kf .

The degree sequence is a0 = n, a1, a2, . . . , al = |G| with ai = [G : Jmi
] for all i ≥ 1.

Since
ai
ai−1

≤ (n− (mi − 1)r), for all i ≥ 1 (where r = rK(f)), we have

|G| ≤ n
∏
1≤i≤l

(n− (mi − 1)r) .

Remark 6.2.0.1. We have a1 = n(n− 1) =⇒ rK(f) = 1. The converse is not true. Consider
Example 6.1.3 for n odd and composite. Then rK(f) = 1 and a1 ≤ nϕ(n) < n(n− 1).

Now sinceHi = σiHσ
−1
i for all i, we have thatNG(Hi) = σiNG(H)σ−1

i . From Thm. 4.1.1
(3), we have rK(Km) = [NG(Jm) : Jm].

Example 6.2.1. Let f be an irreducible polynomial such that |G| = np and |H| = p where
p ∤ n. Then length of cluster tower is 3 and degree sequence is n, np. Both degree sequence
and length of cluster tower are independent of the ordering of the βi’s. As a particular case,
G = A4 for a degree-4 irreducible polynomial f .
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Chapter 7

Root Capacity

In this chapter, we introduce the concept of Root capacity as a generalisation of cluster
size. We begin the chapter with some observations about the group of automorphisms
of finite extensions. Then we prove some properties of root capacity. We conclude the
chapter with an interesting theorem.

7.1 The Group of Automorphisms of Finite Extensions

LetF1/F2 be a finite extension of fields. LetAut(F1/F2)denote the group ofF2-automorphisms
of F1. In this section, we describe some of the facts about this group and later use it to
prove some results about root clusters.

Proposition 7.1.1. (Bhagwat, Jaiswal) (Prop 6.1.1 in [3])

Let L/K and M/L be extensions. Then

1. Aut(M/L) is a subgroup of Aut(M/K). Hence, rL(M) | rK(M).

2. Suppose σ|L ∈ Aut(L/K) for any σ ∈ Aut(M/K). Then Aut(M/L) � Aut(M/K) and
rK(M) | (rL(M) rK(L)).
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3. Suppose σ|L ∈ Aut(L/K) for any σ ∈ Aut(M/K). Then any λ ∈ Aut(L/K) can be
extended to λ̃ ∈ Aut(M/K) ⇐⇒ rK(M) = rL(M)rK(L). In this caseM/K is obtained
by weak cluster magnification of L/K with magnification factor rL(M).

Proof. From Thm. 4.1.1 (3), rK(L) = |Aut(L/K)|. Now (1) is easy to see.

Proof of (2): Suppose we have σ|L ∈ Aut(L/K) for any σ ∈ Aut(M/K). Then we can
define the a homomorphism Φ : Aut(M/K) → Aut(L/K) by mapping σ to σ|L. Hence,
ker(Φ) = Aut(M/L) and so Aut(M/L) � Aut(M/K). Also, Aut(M/K)/Aut(M/L) ↪−→
Aut(L/K). Thus rK(M) | (rL(M) rK(L)).

Proof of (3): This corresponds to the homomorphism Φ being surjective.

Remark 7.1.1.1. The homomorphism Φ in above proof is not surjective in general. For exam-
ple, when K = Q, L = Q(

√
2),M = Q( 4

√
2), then Φ is not surjective.

Proposition 7.1.2. (Bhagwat, Jaiswal) (Prop 6.1.3 in [3])

Consider extensions L/K and M/L. Then for σ ∈ Aut(M/K) we have

σ ∈ NAut(M/K)(Aut(M/L)) ⇐⇒ σ|MAut(M/L) ∈ Aut(MAut(M/L)/K).

Hence also
NAut(M/K)(Aut(M/L))/Aut(M/L) ↪−→ Aut(MAut(M/L)/K).

Proof. We will mimic Perlis’ proof of Thm. 4.1.1 (3) (see [17, first proposition]).

For notational simplicity, (just for this proof) let G1,G2 denote the groups Aut(M/K)

and Aut(M/L), respectively.

If σ ∈ NG1(G2), then σ G2 σ
−1 = G2. Let x ∈ MG2. Since σ G2x = G2σx, we have

σx = G2σx. Hence σx ∈MG2.

Conversely, suppose σ ̸∈ NG1(G2). Then there exists λ ∈ G2 such that σ−1λσ ̸∈ G2. We
know Aut(M/L) = Aut(M/MG2). Hence there exists x ∈MG2 such that σ−1λσx ̸= x. That
is λσx ̸= σx. Hence σx ̸∈MG2. Thus σ|MG2 ̸∈ Aut(MG2/K).
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Then we can define the map Φ : NG1(G2) → Aut(MG2/K) by mapping σ to σ|MG2 .
Hence, ker(Φ) = G2 and also we have

NG1(G2)/G2 ↪−→ Aut(MG2/K).

Corollary 7.1.0.1. Suppose M/L is Galois. Then we can replace MAut(M/L) by L in above
Prop. 7.1.2. If additionally we have Aut(M/L)� Aut(M/K), then σ|L ∈ Aut(L/K) for any
σ ∈ Aut(M/K). This is converse to Prop. 7.1.1 (2) under the condition M/L is Galois.

We will also give a direct proof of second part of this corollary without referring to
above Prop. 7.1.2.

Proof. Let σ ∈ Aut(M/K). Now Aut(M/σ(L)) = σAut(M/L)σ−1. Since Aut(M/L) �

Aut(M/K), we have Aut(M/σ(L)) = Aut(M/L). Also |Aut(M/σ(L))| = |Aut(M/L)| =
[M : L] since M/L is Galois. Since σ(L) is isomorphic to L, [M : L] = [M : σ(L)].
Hence, M/σ(L) is also Galois. Thus L = MAut(M/L) = MAut(M/σ(L)) = σ(L). Therefore
σ|L ∈ Aut(L/K).

By letting M = L̃ we have the following corollary, i.e., [17, first Prop.].

Corollary 7.1.0.2. Let G = Gal(L̃/K) and H = Gal(L̃/L). Then we have σ ∈ NG(H) ⇐⇒
σ|L ∈ Aut(L/K). Hence σH 7→ σ|L defines an isomorphism NG(H)/H → Aut(L/K).

Proof. Now L̃H = L and the injective map NG(H)/H ↪−→ Aut(L/K) is surjective because
any automorphism of L/K extends to an automorphism of L̃/K.

Remark 7.1.2.1. There is an interesting result about automorphism groups. Although the
Inverse Galois Problem is still not solved for every finite group over rationals, the Inverse Au-
tomorphism Group Problem is solved for every group not just over rationals but also over a
bigger class of fields.

Recall Def 4.2.2 of Hilbertian fields. In a recent work in 2018, Francois Legrand and Elad
Paran have proved in Thm 1.1 [14] that, every finite group G occurs as the automorphism
group of infinitely many distinct finite extensions of any given Hilbertian field K.
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7.2 Root Capacity

We saw that the cluster size counts the number of roots appearing in the root cluster of
α that is the number of roots of minimal polynomial of α over K which are contained in
K(α). We can ask for an analogous quantity associated to an extension M/K. We intro-
duce the following concept as a generalisation of cluster size. One can easily appreciate
the usage of ‘capacity’.

Definition 7.2.0.1. (Bhagwat, Jaiswal) (Def 6.2.1 in [3])

Let α ∈ K̄ and let f be minimal polynomial of α over K. For an extension M/K, let
ρK(M,α) be the number of roots of f that are contained inM . We call this quantity as the
root capacity of M with respect to α (with base field K fixed).

Let L/K be an extension. By primitive element theorem L = K(α) for some α ∈ K̄.
We define ρK(M,L) := ρK(M,α) which is well defined by the following proposition. We
call this quantity as the root capacity of M with respect to L (with base field K fixed).

Proposition 7.2.1. (Bhagwat, Jaiswal) (Prop 6.2.2 in [3])

Let α, β ∈ K̄ and let K(α) = K(β). Then for any M/K, we have ρK(M,α) = ρK(M,β).

Proof. Let the degree-n minimal polynomials of α and β over K be f and g respectively.
Let {αi}1≤i≤n and {βi}1≤i≤n be all the roots of f and g in K̄ with α1 = α, β1 = β. Since
K(α) = K(β), we have polynomials µ and λ over K with degrees ≤ (n − 1) such that
α = λ(β) and β = µ(α). Now, g(β) = 0. Hence g(µ(α)) = 0. Thus f |g◦µ. Hence g(µ(αi)) = 0

for all i. Hence each µ(αi) = βj for some j.

We also have α = λ◦µ(α). Hence f(x)|(λ◦µ(x)−x). Thus λ◦µ(αi) = αi for all i. Hence
µ is a bijection from the set of roots of f to set of roots of g. By relabelling we can assume
µ(αi) = βi for all i. Thus λ(βi) = αi for all i. Hence for any i, we have αi ∈M ⇐⇒ βi ∈M .

Remark 7.2.1.1. Letα and f be as in Def. 7.2.0.1. Now, ρK(K(α), α) = rK(f). Thus the above
proposition proves that given an extension L/K, the cluster size is the same for all irreducible
polynomials that are the minimal polynomials of primitive elements of L over K (Corollary 1
in [13]). This proof is independent of Thm. 4.1.1 (3).
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We prove some properties of root capacity.

Proposition 7.2.2. (Bhagwat, Jaiswal) (Prop 6.2.4 in [3])

Let M/K be extension of L/K. Then the following hold.

1. ρK(L,K) = 1 and ρK(L,L) = rK(L) and ρK(M,L) ≥ rK(L) and ρK(L̃, L) = [L : K].

2. ρK(M,L) = rK(L) =⇒ σ|L ∈ Aut(L/K) for any σ ∈ Aut(M/K).

Proof. The property (1) is easy to see.

Proof of (2): Let L = K(α) for α ∈ K̄ with f as the minimal polynomial of α over
K with roots {αi}1≤i≤n. Then ρK(M,L) = rK(L) is equivalent to the statement αi ∈
M ⇐⇒ αi ∈ L. If σ ∈ Aut(M/K), then σ|L maps α to an αi ∈ M . Hence, σ|L(α) ∈ L.
Thus σ|L ∈ Aut(L/K).

The following lemma is reformulation of [18, Thm. 2] for a perfect base field K.

Lemma 7.2.3. Let α ∈ K̄. Then for any M/K we have rK(f)|ρK(M,α). Hence for any L/K,
we have rK(L)|ρK(M,L). That is ρK(M,L) = a.rK(L) where 0 ≤ a ≤ sK(L).

Proof. The proof of Theorem 4.1.1 (2) gives a partition of the set of roots of f into sK(f)
many subsets of equal size rK(f), where each subset satisfies the property that in any
extension of K, one of the roots being present implies the presence of the remaining
ones.

The integer a obtained in Lem. 7.2.3 can be described as follows.

Proposition 7.2.4. (Bhagwat, Jaiswal) (Prop 6.2.6 in [3]). We have

1. a is number of distinct fields inside M ∩ L̃ isomorphic to L over K.

2. a = |Z| with Z = {1 ≤ i ≤ s | there exists σ ∈ σiNG(H) with σ(L) ⊆ M ∩ L̃} where σi
are coset representatives of NG(H) in G.
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Proof.

1. In Lemma 7.2.3, we have that the set of roots of f inM is union of a clusters of roots
of f . From proof of Lemma 4.4.1, we are done.

2. From the proof at the beginning of Sec. 4.4, we have that sK(L) is number of distinct
subgroups conjugate toH = Gal(L̃/L) inG = Gal(L̃/K) which is [G : NG(H)]. From
(1), we are done.

Example 7.2.5. Let Lk be as in proof of Thm. 4.4.2. Let L = L1. So rK(L) = 1, sK(L) = n

and L̃ = Ln−1. Also ρK(Lk, L) = k for 1 ≤ k ≤ (n− 2). Also ρK(L2, L) = rK(L2) = 2.

Example 7.2.6. Let notation be as in section 6.2. Let L = K1 andm0 = 1. Then for i ≥ 0 and
mi ≤ m < mi+1, we have ρ(Km, L) = ρ(Kmi

, L) ≥ (mi+1 − 1)rK(L).

Proposition 7.2.7. (Bhagwat, Jaiswal) (Prop 6.2.9 in [3]) LetM1/K andM2/K be extensions
of L/K contained in K̄. Then

ρK(M1M2, L) ≥ ρK(M1, L) + ρK(M2, L)− ρK(M1 ∩M2, L).

Proof. Consider the set of s many representatives of clusters of minimal polynomial of
a primitive element of L/K. Consider the subsets of representatives contained in M1

and M2 and let a and b be their respective cardinalities. Hence ρK(M1) = a.rK(L) and
ρK(M2) = b.rK(L). Let i be cardinality of intersection of these two sets. Hence ρK(M1 ∩
M2, L) ≥ i.rK(L). Also since cardinality of union of these two sets is a + b − i. Hence
ρK(M1M2, L) ≥ (a+ b− i).rK(L). Hence we are done.

Example 7.2.8. Let p be a prime and let a = 12
√
p and b = ξ12. Let L = Q(a) and M1 =

Q(a, ab2) and M2 = Q(a, ab3). Thus M1M2 = L̃. So ρK(M1M2, L) = 12, ρK(M1, L) =

6, ρK(M2, L) = 4. Hence ρK(M1M2, L) > ρK(M1, L) + ρK(M2, L) − ρK(M1 ∩M2, L). The
inequality is strict here.
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Let M/K be an extension of L/K and ρK(M,L) = a.rK(L) for some 0 ≤ a ≤ sK(L).
Let L = K(α) for some α ∈ K̄ with f as the minimal polynomial overK. Relabel the roots
{αi}1≤i≤n such that α1 = α, α2, . . . , αs forms a set of representatives of the clusters of roots
of f such that αi ∈ M ⇐⇒ 1 ≤ i ≤ a. Let LM := K(α1, α2, . . . , αa). The roots of f in LM

and M are same. We can observe that LM = L̃T where T =
⋂
i∈Z

σiHσ
−1
i with notations as

in Prop. 7.2.4.

Proposition 7.2.9. (Bhagwat, Jaiswal) (Prop 6.2.11 in [3])

Let M/K be extension of L/K. Let LM be as above. Then the following hold.

1. LM is independent of choice of primitive root for L/K that is LM is well defined for a
given M and L.

2. LM ⊆M ∩ L̃.

3. ρK(LM , L) = ρK(M,L). For K ⊂ P ⊂ M , we have ρK(M,L) = ρK(P,L) if and only if
LM ⊂ P .

4. ρK(M,L) = rK(L) ⇐⇒ L = LM .

5. ρK(M,LM) = rK(LM). Thus we have σ|LM
∈ Aut(LM/K) for any σ ∈ Aut(M/K).

6. M ∩ L̃ = L =⇒ ρK(M,L) = rK(L). Also M ∩ L̃ = K =⇒ ρK(M,L) = 0.

7. If M/K is obtained by strong cluster magnification from L/K then ρK(M,L) = rK(L).

Proof. Proof of (1): From the proof of Prop. 7.2.1 it follows that ifK(α) = K(β) then there
is a relabelling of {βi}1≤i≤n such that K(αi) = K(βi). Hence, for the above labelling of
{βi}1≤i≤n, we have K(α1, α2, . . . , αa) = K(β1, β2, . . . , βa).

Proofs of (2), (3), (4) follow from definition of LM .

Proof of (5): From Lem. 7.2.3, ρ(M,LM) = a.rK(LM) for a ≤ sK(LM). From Prop. 7.2.4
(1), a is number of distinct fields inside M ∩ L̃ isomorphic to LM over K. By definition of
LM , we have a = 1. The second assertion follows from Prop. 7.2.2 (2).

Proof of (6): Since M ∩ L̃ = L, we use (2) to conclude that L = LM . Hence by (4), we
are done.
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Proof of (7): If the extension M/K is obtained by strong cluster magnification from
L/K, then we have M ∩ L̃ = L (see Def. 5.2.0.1 and Lem. 5.1.1 ).

Remark 7.2.9.1. The statementLM =M∩L̃ and the statement ρK(M,L) = 0 =⇒ M∩L̃ =

K are not true in general. Let K = Q, L = Q( 4
√
2) and M = Q( 6

√
2). Hence L̃ = Q( 4

√
2, ι) and

M ∩ L̃ = Q(
√
2) and LM = Q.

Theorem 7.2.10. (Bhagwat, Jaiswal) (Thm 6.2.13 in [3])

If M ∩ L̃ = L and [M : L] = rK(M)/rK(L), then M/L is Galois.

Proof. Suppose M ∩ L̃ = L. Hence from Prop. 7.2.9 (6), Prop. 7.2.2 (2) and Prop. 7.1.1 (2),
we have rK(M)|(rL(M)rK(L)). Since rK(M) = [M : L]rK(L), we conclude that rL(M) =

[M : L] and M/L is Galois.
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Chapter 8

Unique Chains for Extensions

In this chapter, we introduce the concept of unique descending and ascending chains for
extensions and prove the important properties of unique chains. We also compute unique
ascending/ descending chains for some interesting examples.

8.1 Unique Descending Chains

Theorem 8.1.1. (Bhagwat, Jaiswal) (Thm 7.1.1 in [3])

Let L/K be a nontrivial finite extension. Let G = Gal(L̃/K) and H = Gal(L̃/L).

1. The extension N = L̃NG(H) is the unique intermediate extension N/K such that L/N is
Galois with degree [L : N ] = rK(L). Hence the degree [N : L] = sK(L).

2. There is a unique strictly descending chain of subextensions

L = N0 ⊋ N1 ⊋ N2 ⊋ · · · ⊋ Nk

such that for all i ≥ 1, Ni−1/Ni is Galois extension with degree [Ni−1 : Ni] = rK(Ni−1),
with the chain terminating at Nk for which rK(Nk) = 1. Hence the degree [Ni : K] =

sK(Ni−1) for all i ≥ 1 and sK(Nk−1) = sK(Nk).
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This unique strictly descending chain of subextensions corresponds to the unique strictly
ascending chains of subgroups of G

H = H0 ⪇� NG(H0) = H1 ⪇� NG(H1) = H2 ⪇� · · · ⪇� NG(Hk−1) = Hk

such that NG(Hk) = Hk. Hence rK(Ni) = [Hi+1 : Hi] and sK(Ni) = [G : Hi+1].

3. L/K is obtained by weak cluster magnification from Nk/K with magnification factor
rK(L).

4. Nk = K ⇐⇒ Nk−1/K is Galois.

5. rK(L) = 1 ⇐⇒ NG(H) = H ⇐⇒ the unique descending chain is singleton L.

6. L/K is Galois ⇐⇒ NG(H) = G ⇐⇒ the unique descending chain is L ⊋ K.

7. NG(H) ⪇� G ⇐⇒ the unique descending chain is L ⊋ N ⊋ K.

Proof.

Proof of (1): Let N = L̃NG(H). Thus L/N is Galois as H � NG(H). We have [L : N ] =

[NG(H) : H]. Hence by Thm. 4.1.1 (3), [L : N ] = rK(L). Suppose N ′/K is another in-
termediate extension such that L/N ′ is Galois and [L : N ′] = rK(L). Since L/N ′ is Ga-
lois, we have H � Gal(L̃/N ′) ⊆ G. Thus Gal(L̃/N ′) ⊆ NG(H). Hence N ⊆ N ′. Since
[L : N ] = [L : N ′], we have N = N ′.

Proof of (2): Let N0 = L, From (1), we can inductively choose Ni for each i ≥ 1. Let
Ni/K be the unique intermediate extension of Ni−1/K such that Ni−1/Ni is Galois with
degree [Ni−1 : Ni] = rK(Ni−1). The chain terminates since L/K is finite.

Proofs of (3)-(6) are easy to see.

Proof of (7): We have NG(H) = G ⇐⇒ H � G ⇐⇒ H = 1. We also have NG(H) ⪇�
G =⇒ NG(H) ̸= H. Since if NG(H) = H, then by assumption, H ⪇� G. Hence H = 1, so
NG(H) = Gwhich contradicts the assumption. Hence,NG(H) ⪇� G ⇐⇒ NG(H) ̸= H and
H ̸= 1 and NG(H) � G ⇐⇒ rK(L) ̸= 1 and L/K is not Galois and N/K is Galois ⇐⇒
the unique descending chain is L ⊋ N ⊋ K.
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Remark 8.1.1.1. Alternate proof for Thm. 8.1.1 (1).

Let N = LAut(L/K). Hence L/N is Galois and [L : N ] = |Aut(L/K)|. Hence by Thm. 4.1.1
(3), [L : N ] = rK(L). Suppose N ′/K is another intermediate extension such that L/N ′ is
Galois and [L : N ′] = rK(L). Since L/N ′ is Galois, we have N ′ = LAut(L/N ′) and [L : N ′] =

|Aut(L/N ′)|. Hence |Aut(L/N ′)| = |Aut(L/K)|. By Prop. 7.1.1 (1), Aut(L/N ′) ⊂ Aut(L/K).
Thus Aut(L/N ′) = Aut(L/K). Hence N ′ = N .

Because of uniqueness, L̃NG(H) = LAut(L/K). This can also be seen in this way. Since
L̃NG(H) ⊂ L̃H = L and LAut(L/K) ⊂ L, by identifying NG(H)/H and Aut(L/K) through
the map in Cor. 7.1.0.2, we have L̃NG(H) = LAut(L/K).

Remark 8.1.1.2. Equivalently we can state Thm. 8.1.1 (1) as follows: There exists a unique
intermediate extension N/K such that L/N is Galois of maximum possible degree. This is
because, since L/N is Galois, we have [L : N ] = |Aut(L/N)| and we also have Aut(L/N) ⊂
Aut(L/K). Hence [L : N ] is bounded by rK(L).

This also gives an equivalent definition of rK(L) as the maximum possible degree of L/N
where N is intermediate field of L/K such that L/N is Galois.

Proposition 8.1.2. (Bhagwat, Jaiswal) (Prop 7.1.4 in [3])

Let L/K be a nontrivial finite extension and N be the unique intermediate extension for
L/K as in Thm. 8.1.1 (1). Suppose L = K(α) for a primitive element α ∈ K̄ with minimal
polynomial f over K such that rK(f) = r and let α = α1, α2, . . . , αr be the roots of f contained
in L. Then

N = K(t1, t2, . . . , tr)

where ti are elementary symmetric sums of αi for 1 ≤ i ≤ r.

Proof. Let h be the minimal polynomial of α over N . The degree of h is r = |Aut(L/N)|.
SinceAut(L/N) = Aut(L/K), it follows that h = Π1≤i≤r(x−αi) = xr−t1xr−1+· · ·+(−1)rtr.
Now K(t1, t2, . . . , tr) ⊂ N . Since h is a polynomial over K(t1, t2, . . . , tr) which α satis-
fies. we conclude that h is the minimal polynomial of α over K(t1, t2, . . . , tr). Thus N =

K(t1, t2, . . . , tr).
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8.2 Unique Ascending Chains

We mention an analogue of Thm. 8.1.1 in this section. The proof is similar.

First some notations: For any subgroup H of a group G, we denote by HG, the normal
closure of H in G, i.e., the intersection of all normal subgroups of G that contain H.

Theorem 8.2.1. (Bhagwat, Jaiswal) (Thm 7.2.1 in [3])

Let L/K be a nontrivial finite extension. Let G = Gal(L̃/K) and H = Gal(L̃/L) be as
earlier.

1. The extension F = L̃HG is the unique intermediate extension F/K such that F/K is
Galois with maximum possible degree.

2. We define the ascending index tK(L) of L/K by tK(L) := [F : K]. Let uK(L) := [L : F ].
Thus tK(L) uK(L) = [L : K]. We have tK(L) = [G : HG] and uK(L) = [HG : H]. We
also have rK(L) | tK(L) rF (L).

3. There exists a unique strictly ascending chain inside L, i.e.,

K = F0 ⊊ F1 ⊊ F2 ⊊ · · · ⊊ Fk

such that for all i ≥ 1, we have Fi/Fi−1 is Galois with maximum possible degree with the
chain terminating at Fk where tFk

(L) = 1.

This unique strictly ascending chain of subextensions corresponds to the unique strictly
descending chains of subgroups of G

G = G0 ⪈� HG0 = G1 ⪈� HG1 = G2 ⪈� · · · ⪈� HGk−1 = Gk

such that HGk = Gk. Hence tFi
(L) = [Gi : Gi+1] and uFi

(L) = [Gi+1 : H].

4. Fk = L ⇐⇒ L/Fk−1 is Galois.

5. tK(L) = 1 ⇐⇒ HG = G ⇐⇒ the unique ascending chain is singleton K.

6. L/K is Galois ⇐⇒ HG = 1 ⇐⇒ HG = H ⇐⇒ the unique ascending chain is
K ⊊ L.
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7. H ⪇� HG ⇐⇒ HG ̸= G and HG ̸= H and H �HG ⇐⇒ the unique ascending chain
is K ⊊ F ⊊ L.

The following result connects the unique descending chain and unique ascending chain
for a nontrivial finite extension L/K.

Proposition 8.2.2. (Bhagwat, Jaiswal) (Prop 7.2.2 in [3])

Let L/K be a nontrivial finite extension. Let N be as in Thm. 8.1.1 and F be as in Thm.
8.2.1.

1. NG(H) = G ⇐⇒ rK(L) = [L : K] ⇐⇒ tK(L) = [L : K] ⇐⇒ HG = H.

2. H �HG ⇐⇒ HG ⊂ NG(H) ⇐⇒ N ⊂ F .

3. NG(H)�G =⇒ HG ⊂ NG(H).

4. HG = NG(H) =⇒ NG(H) ⪇� G and H ⪇� HG.

5. HG = NG(H) ⇐⇒ N = F ⇐⇒ the unique descending chain is L ⊋ N ⊋ K and
the unique ascending chain is K ⊊ F ⊊ L and they both coincide. In this case we have
rK(L) tK(L) = [L : K] and tK(L) = sK(L).

Example 8.2.3. For a degree 4 non-Galois extension L/K, we have N = F . In particular,
K = Q, L = Q( 4

√
2) and hence N = F = Q(

√
2).

8.3 Interesting Examples

In this section, we will compute the unique ascending /descending chains for some exam-
ples.

Example 8.3.1. (Bhagwat, Jaiswal) (Prop 7.3.1 in [3])

Let the notation and conditions be as in Example 6.1.3. Let L = Q(a) and K = Q and let
v2 be the standard 2-adic valuation.
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1. Let Ni = Q(a2
i
). Then the unique descending chain is L = N0 ⊋ N1 ⊋ · · · ⊋ Nv2(n).

2. Let Fi = Q(an/2
i
). Then the unique ascending chain is K = F0 ⊊ F1 ⊊ · · · ⊊ Fv2(n).

Proof. IdentifyingG = Gal(Qf/Q) with Z/nZ⋊(Z/nZ)× we haveH = {0}×(Z/nZ)× ⊆ G.
Now G has the semidirect product group law

(α, u) · (β, v) = (α + u · β, uv)

as in [11] whereu·β is usual multiplicationuβ in the ringZ/nZ. Thus (α, u)−1 = (−u−1α, u−1)

and
(α, u) · (0, v) · (α, u)−1 = (α− vα, v)

Proof of (1):

If (α, u) ∈ NG(H) then α = vα for all v ∈ (Z/nZ)×.

If n is odd then 2 ∈ (Z/nZ)× and in particular 2α = α. Thus α = 0 and NG(H) = H.
Hence rK(L) = 1. Hence by Thm. 8.1.1(5), the unique descending chain is singleton L.

If n is even, then (n/2)(1 − v) = 0 for all v ∈ (Z/nZ)× as all these v are given by odd
integers mod n. Since −1 ∈ (Z/nZ)×, we get 2α = 0. Hence α = 0 or n/2. Thus NG(H)

can be identified with the set Z/2Z × (Z/nZ)× where Z/2Z is generated by the element
(n/2, 1) of G mapping a to −a and b to b. Also rK(L) = 2. Hence L̃NG(H) = Q(a2) = N1.

Let Ñ1 be Galois closure of N1/K. Hence Ñ1 = Q(a2, b2). Also since Q(a) ∩ Q(b) = Q.
HenceQ(a2)∩Q(b2) = Q. HenceGal(Ñ1/K) can be identified withZ/(n/2)Z⋊(Z/(n/2)Z)×.
If n/2 is even, we can repeat the process for N1 and get N2. The process will terminate at
Nv2(n) as n/v2(n) is odd.

Proof of (2):

Now HG is generated by elements of the form (α− vα, v) with α ∈ Z/nZ, v ∈ (Z/nZ)×.

If n is odd then 2 ∈ (Z/nZ)×. Thus (α− 2α, v) = (−α, v) ∈ HG for any α, v. Thus HG =

G. Hence tK(L) = 1. Hence by Thm. 8.2.1(5), the unique ascending chain is singleton K.

If n is even then all v ∈ (Z/nZ)× are given by odd integers mod n. Thus all α − vα
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are even mod n. Since −1 ∈ (Z/nZ)×, we get (2α, v) ∈ HG for any α, v. Thus HG =

Z/(n/2)Z⋊ (Z/nZ)× where Z/(n/2)Z is generated by the element (2, 1) ofGmapping a to
ab2 and b to b. Also tK(L) = 2. Hence L̃HG

= Q(an/2) = F1.

Let L1 be Galois closure of L/F1. Hence L1 = Q(a, b2). Also since Q(a) ∩ Q(b) = Q.
HenceL∩Q(b2) = Q. By Lemma 5.1.1,L∩F1(b

2) = F1. Hence Gal(L1/F1) can be identified
with Z/(n/2)Z ⋊ (Z/(n/2)Z)×. If n/2 is even, we can repeat the process for F1 and get F2.
The process will terminate at Fv2(n) as n/v2(n) is odd.

Remark 8.3.1.1. The Part (1) above is also true for the case not covered, that is n is even and
√
c ∈ Q(b). The following proof works in general. We know that N1 = LAut(L/K). Since n is

even, Aut(L/K) has 2 elements mapping a to a and a to −a. Hence Q(a2) ⊂ LAut(L/K). Now
since xn− c is minimal polynomial for a over Q. Hence a2 satisfies xn/2− c. We claim that it is
indeed the minimal polynomial for a2 over Q. If not, then let f(x) be minimal polynomial for
a2 with degree < n/2. Then a satisfies the polynomial f(x2) which has degree < n which gives
a contradiction. Hence [Q(a2) : Q] = n/2. Thus N1 = Q(a2). Proceeding similarly we get the
unique descending chain.

Example 8.3.2. Consider the case in Example 8.3.1 with n ≡ 2 mod 4. Hence for L = Q(a)

and K = Q, we have L ⊋ N to be the unique descending chain with N = Q(a2) and K ⊊ F

to be the unique descending chain with F = Q(an/2). We can show that L/K is obtained by
strong cluster magnification from N/K through F/K.

Now F/K is clearly Galois. Since (n/2, 2) = 1. Hence NF = L. Thus N ∩ F = K. Since
Q(a)∩Q(b) = K. Hence Q(a)∩Q(b2) = K. Thus by Lemma 5.1.1, Q(a)∩Q(a2, b2) = Q(a2).
That is Ñ ∩ L = N . Hence Ñ ∩ F = K.

Theorem 8.3.3. (Bhagwat, Jaiswal) (Thm 7.3.4 in [3])

Let f be an irreducible polynomial over number field K with given n > 2 and 1 < r < n

with r|n as in proof of Thm. 4.3.1 and s = n/r. Let L/K be extension formed by adjoining a
root of f to K. Then the unique descending chain is L ⊋ N ⊋ K and the unique ascending
chain is K ⊊ F ⊊ L and they both coincide.

85



Proof. Let G = Gal(L̃/K) and H = Gal(L̃/L). By construction, G = (Z/rZ)s ⋊ Z/sZ and
H = (Z/rZ)s−1 × {0} × {0}. Now G has the semidirect product group law given by

((a1, . . . , as), b) · ((c1, . . . , cs), d) = ((a1, . . . , as) + (b · (c1, . . . , cs)), b+ d),

where b · (c1, . . . , cs) = (cb+1, . . . , cs, c1, . . . , cb) for b ̸= 0 & 0 · (c1, . . . , cs) = (c1, . . . , cs).

Also ((a1, . . . , as), b)
−1 = ((−as−b+1, . . . ,−as,−a1, . . . ,−as−b),−b) for b ̸= 0 &

((a1, . . . , as), 0)
−1 = ((−a1, . . . ,−as), 0). One can verify that

((a1, . . . , as), b) · ((c1, . . . , cs−1, 0), 0) · ((a1, . . . , as), b)−1 = ((cb+1, . . . , cs−1, 0, c1, . . . , cb), 0).

Thus for r < n (that is s > 1), one can compute and show that NG(H) = HG =

(Z/rZ)s × {0}. Hence by Prop. 8.2.2 (5), we are done.

Remark 8.3.3.1. For M/L/K, the statements rK(M) ≥ rK(L) and rK(L)|rK(M) (weak
cluster magnification) are not true in general. Consider L/N/K as in Thm. 8.3.3. Here,
rK(L) ≥ rK(N) ⇐⇒ r2 ≥ n and rK(N)|rK(L) ⇐⇒ n|r2. Thus in particular n = 6, r = 2

and n = 6, r = 3 give us counterexamples for the two statements.

Theorem 8.3.4. (Bhagwat, Jaiswal) (Thm 7.3.6 in [3])

Let f over K be irreducible of deg n with Galois group Sn with roots αi ∈ K̄ for 1 ≤ i ≤ n.
For 1 ≤ k ≤ n− 2, let Lk = K(α1, . . . , αk).

• Let Nk be the unique intermediate extension for Lk/K as in Thm. 8.1.1 (1). Then we
have the following.

1. Nk = K(t1, t2, . . . , tk) where ti are elementary symmetric sums of αi for 1 ≤ i ≤ k.

2. Case (a): Characteristic of K ̸= 2. For k < n− 1, we have

Nk = K(t1) = K(α1 + α2 · · ·+ αk).
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Case (b) Characteristic of K = 2. For k < n− 1 but k ̸= n/2, we have

Nk = K(t1) = K(α1 + α2 · · ·+ αk).

3. for k ̸= 1, n/2, the unique descending chain is Lk ⊋ Nk. Also rK(L1) = 1.

4. for k = n/2 and for fieldK with characteristic ̸= 2, the cluster size rK(Nk) = 2. The
unique intermediate field for Nk/K is K(t1(a− t1)) where α1 + α2 + · · ·+ αn = a.

• The unique ascending chain is singleton K. And tK(Lk) = 1.

Proof.

• 1. Now, L̃k = Ln−1 = Ln. As noted in proof of Thm 4.4.2 in [13], the subgroup
Hk ⊆ Sn fixingLk is isomorphic toSn−k as it consists of all permutations of the
remaining n− k roots. We have that NSn(Hk) ∼= Sn−k ×Sk where Sk permutes
the k roots α1, α2, . . . , αk and Sn−k permutes the other n − k roots as we have
that NSn(Hk) is a subgroup of Sn which preserves the set of first k roots and
hence also preserves the set of other n − k roots. (Also follows from Lemma 3
in [13]). Now Nk = L̃n

NSn (Hk). Hence Gal(Lk/Nk) ∼= Sk and [Lk : Nk] = k! and
[Nk : K] = nCk.

Now K(t1, t2, . . . , tk) ⊆ Nk. Also Lk is splitting field of polynomial xk − t1x
k−1+

· · · + (−1)ktk over K(t1, t2, . . . , tk). Hence [Lk : K(t1, t2, . . . , tk)] ≤ k!. Thus
K(t1, t2, . . . , tk) = Nk.

2. We give a proof for case (a) only. The proof in the other case follows similarly.
Now for any l < n − 1, we have αil+1

̸∈ K(αi1 , αi2 , . . . , αil) and we also have
αin ∈ K(αi1 , αi2 , . . . , αin−1) for distinct im ≤ n. Since t1 = α1 + α2 + · · · + αk.
Hence t1 has at most nCk conjugates inside L̃k of the form αi1 + αi2 + · · ·+ αik

for distinct im ≤ n.

We claim that number of conjugates is exactly nCk that is, if {i1, i2, . . . , ik} and
{j1, j2, . . . , jk} are distinct sets of k numbers ≤ n then αi1+αi2+· · ·+αik ̸= αj1+

αj2 + · · ·+αjk . Assume on the contrary αi1 +αi2 + · · ·+αik = αj1 +αj2 + · · ·+αjk .

Case 1 : Let k < n/2. Hence number of distinct αi in the equation is at most
n− 1. After cancelling the common terms on both sides and then by taking all
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αi on one side except say αil, we get αil lies in field generated over K by other
≤ n− 2 many αi. This gives a contradiction.

Case 2 : Let k > n/2. Now before cancelling we have ≤ n − k terms on RHS
distinct than terms on LHS. Hence we have ≥ 2k − n common terms on both
sides. Cancelling these common terms out leaves us with ≤ n−k terms on both
sides. Since k > n/2, we have n− k < n/2. So we are back to Case 1.

Case 3 : Letn be even and k = n/2. We assume characteristic is not 2 in this case.
If we can cancel out even one term from both sides then we are back to Case 1.
So assume that αi1 +αi2 + · · ·+αin/2

= αj1 +αj2 + · · ·+αjn/2
where all im, jm are

distinct. We know that α1+α2+ · · ·+αn = a ∈ K. Hence αi1 +αi2 + · · ·+αin/2
+

αj1 +αj2 + · · ·+αjn/2
= a. Thus 2(αi1 +αi2 + · · ·+αin/2

) = a. Since characteristic
is not 2, we have αi1 + αi2 + · · ·+ αin/2

∈ K. Thus αin/2
∈ K(αi1 , αi2 , . . . , αin/2−1

)

which is a contradiction.

Hence [K(t1) : K] = nCk. Now K(t1) ⊂ Nk. Hence K(t1) = Nk.

3. Case 1 : Let k < n/2. We claim that rK(Nk) = 1. Suppose αi1 + αi2 + · · ·+ αik ∈
K(t1) for at least one ij ≥ k + 1. By similar argument as in Case 1 of (2), we get
a contradiction. Hence the unique descending chain is Lk ⊋ Nk.

Case 2 : Let k > n/2. Thus n − k < n/2. So rK(Nn−k) = 1. Hence NSn(Sk ×
Sn−k) = Sk×Sn−k. By symmetryNSn(Sn−k×Sk) = Sn−k×Sk. Thus rK(Nk) =

1.

4. Suppose k = n/2 and characteristic of K ̸= 2. Clearly

(αn/2+1 + αn/2+2 + · · ·+ αn) ∈ K(α1 + α2 + · · ·+ αn/2).

Suppose any other αi1 + αi2 + · · · + αik ∈ K(t1). Thus at least one il satisfies
1 ≤ il ≤ k. Hence we get that at least one of the αi lies in field generated
over K by other ≤ n− 2 many αj, which is a contradiction. Hence rK(Nk) = 2.
By Prop. 8.1.2, unique intermediate field for Nk/K as in Thm. 8.1.1 (1) will be
K((t1 + a− t1), t1(a− t1)) = K(t1(a− t1)).

• Proof of last assertion: We have that the smallest normal subgroup of Sn containing
Sn−k is Sn itself. This is because k ≤ n− 2 that is n− k ≥ 2. We know that for n = 3

and n ≥ 5, the only proper non trivial normal subgroup of Sn is An and An cannot
contain Sn−k for any k ≤ n − 2. We also know that for n = 4, the only proper non
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trivial normal subgroups of S4 are A4 and V4 (Klein four-subgroup) and A4 and V4
cannot contain S4−k for both k = 1, 2.

Hence by Thm. 8.2.1 (5), we are done.

Remark 8.3.4.1. From the above theorem, in the case k ̸= 1, n/2, the unique descending
chain is Lk ⊋ Nk. Hence Lk/K is obtained by nontrivial weak cluster magnification from
Nk/K with magnification factor [Lk : Nk]. But Lk/K is not obtained by nontrivial strong
cluster magnification from Nk/K, since the last assertion of above theorem implies that there
doesn’t exist a Galois F/K contained in Lk as in Def 5.2.0.1 with [F : K] = [Lk : Nk].

Remark 8.3.4.2. In view of the examples discussed in Sec. 8.3, we can see that the converse
of Thm. 7.2.10 is not true.

1. Let M = L̃ where L/K is not a Galois extension. Then M/L is Galois but M ∩ L̃ ̸= L

and [M : L] ̸= rK(M)/rK(L).

2. Consider the case in Thm. 8.3.3. We have L/N is Galois and L ∩ Ñ = N but [L : N ] ̸=
rK(L)/rK(N).

3. Consider the case in Thm. 8.3.4 for n ≥ 5 and k = 2 and Characteristic of K ̸= 2. Since
Nk = K(α1+α2). Thus α1+α3, α2+α3 ∈ Ñk. Hence α1−α2 ∈ Ñk and thus α1, α2 ∈ Ñk.
That is Lk ⊂ Ñk. So Lk/Nk is Galois and [Lk : Nk] = rK(Lk)/rK(Nk) but Ñk ∩Lk ̸= Nk.

On a similar note, the conclusion of Thm. 7.2.10 does not hold if we remove any one of the
two conditions in its hypothesis.

1. Let M/K be a nontrivial non Galois extension. Let L = K. Then M ∩ L̃ = L but
[M : L] ̸= rK(M)/rK(L) and M/L is not Galois.

2. Consider the case in Ex 5.4.2 for odd n ≥ 5 and k = (n + 1)/2 and j = n − k. Hence
j = (n− 1)/2 = k − 1. Thus Lk = Lj(αk). One can verify that the minimal polynomial
of αk over Lj has degree n − k + 1 and has the roots αk, αk+1, . . . , αn. Also αi ̸∈ Lk for
i > k. Thus [Lk : Lj] = rK(Lk)/rK(Lj) but L̃j ∩ Lk ̸= Lj and Lk/Lj is not Galois.
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Chapter 9

Base Change Theorems

In this chapter, we establish theorems about strong cluster magnification, weak cluster
magnification, root capacity and unique chains under a particular type of base change.
Then we prove results about strong cluster magnification and unique chains.

First we see a result about field extensions. The following lemma is a special case of
Prop. 2.2.2 [4, Prop. 2.5].

Lemma 9.0.1. Let E1, E2, E3 be Galois over K contained in K̄. Suppose each pairwise inter-
sections of Eis is K, i.e.,

E1 ∩ E2 = E2 ∩ E3 = E3 ∩ E1 = K.

Then
E1E2 ∩ E3 = K ⇐⇒ E1E3 ∩ E2E3 = E3.

Throughout this chapter, let L/K be a finite extension and let K ′/K be a finite Galois
extension such that L̃ and K ′ are linearly disjoint over K. We consider base change by
such extensions K ′.
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9.1 A Base Change Theorem for Strong and Weak Cluster
Magnification

Theorem 9.1.1. (Bhagwat, Jaiswal) (Thm 8.1.1 in [3])

Suppose M/K is obtained by nontrivial strong cluster magnification from an L/K with
magnification factor d. Let M̃ and K ′ be also linearly disjoint over K. Then MK ′/K ′ is ob-
tained by nontrivial strong cluster magnification from LK ′/K ′ with the same magnification
factor d.

Furthermore,MK ′/K is obtained by strong cluster magnification from M/K and LK ′/K

is obtained by strong cluster magnification from L/K and these are non trivial if [K ′ : K] > 1.

Proof. Proof of second assertion essentially follows from definition of cluster magnifica-
tion. We prove the first assertion. Suppose M/K is obtained by strong cluster magnifica-
tion from an L/K. We have L/K and F/K as in Def. 5.2.0.1. LetM ′ :=MK ′. Since M̃ and
K ′ are linearly disjoint overK, we have M̃ ∩K ′ = K. Since M̃ = L̃F , we have L̃∩K ′ = K,
L ∩K ′ = K and F ∩K ′ = K.

Now we check the three conditions of Def. 5.2.0.1 for M ′/K ′.

1. Let L′ := LK ′. Since K ′/K Galois and L∩K ′ = K, we have [L′ : K ′] = [L : K] = n >

2.

2. Let F ′ := FK ′. Since, F/K is Galois, F ′/K ′ is Galois. Also, [F ′ : K ′] = [F : K] = d >

1. Let L̃′ be Galois closure of L′ over K ′ in K̄. Now, N := L̃K ′ is Galois over K ′ and
L′ ⊂ N . Hence, L̃′ ⊂ N . SinceF is linearly disjoint with L̃ overK, we have L̃∩F = K.
Also L̃ ∩K ′ = K and F ∩K ′ = K. Since L̃, F and K ′ are Galois over K. From Lem.
9.0.1 for E1 = L̃, E2 = F,E3 = K ′, we have L̃F ∩K ′ = K ⇐⇒ L̃K ′ ∩ FK ′ = K ′. So
we have N ∩ F ′ = K ′. Thus, L̃′ ∩ F = K ′. Hence L̃′ and F ′ are linearly disjoint over
K ′.

3. L′F ′ = (LK ′)(FK ′) = (LF )K ′ =MK ′ =M ′.
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Remark 9.1.1.1. The above theorem can be reformulated in this way: If M/K is obtained by
strong cluster magnification from L/K through F/K and M ′/K is obtained by strong cluster
magnification fromM/K throughK ′/K, thenM ′/K ′ is obtained by strong cluster magnifica-
tion from LK ′/K ′ through FK ′/K ′.

We also have ρK(M ′, L) = rK(L). This is because M ′ ∩ M̃ = M and M ∩ L̃ = L which
imply M ′ ∩ L̃ = L.

Lemma 9.1.2. The extension M/K ′ is K ′-isomorphic to LK ′/K ′ ⇐⇒ M = L1K
′ where

L1/K isK-isomorphic to L/K. Further in this case, the extension L1 is unique and is given by
L1 =M ∩ L̃.

Proof. Suppose M/K ′ is isomorphic to LK ′/K ′. Let σ : LK ′ → M be the isomorphism
such that σ|K′ = idK′. Let σ(L) = L1. Hence M = L1K. Since σ|K = idK , it follows that
L1/K is isomorphic to L/K.

Conversely, suppose L1/K is isomorphic to L/K. Let λ : L → L1 be the isomorphism
such that λ|K = idK . Let λ̃ : LK ′ → L1K

′ be such that λ̃(l) = λ(l) for all l ∈ L and
λ̃(k′) = k′ for all k′ ∈ K ′. Let {li}1≤i≤[L:K] be a K-basis for L. Hence any element of LK ′ is
of the form

∑
i

lik
′
i for k′i ∈ K ′.

Suppose
∑

i lik
′
i = 0. Since li ∈ L ⊂ L̃ are linearly independent over K, and L̃ and

K ′ are linearly disjoint over K; it follows by [15, Def. 20.1], we have that {li}1≤i≤[L:K] are
linearly independent overK ′. Thus k′i = 0 for all i. Now λ̃(

∑
i lik

′
i) =

∑
i λ(li)k

′
i = 0. Hence

λ̃ is well defined field isomorphism with λ̃|K′ = idK′.

As L1 ⊂ L̃ and by Lemma 5.1.1, we have L̃ ∩ L1K
′ = L1. Thus the uniqueness of L1

follows.

Corollary 9.1.0.1. M/K is K-isomorphic to LK ′/K ⇐⇒ M = L1K
′ where L1/K is

K-isomorphic to L/K. (In this case such L1 is unique).

(In particular,M/K is isomorphic to LK ′/K ⇐⇒ M/K ′ is isomorphic to LK ′/K ′.)

Proof. SupposeM/K is isomorphic toLK ′/K. Let σ : LK ′ →M be the isomorphism such
that σ|K = idK . Since K ′/K is Galois, it follows that σ(K ′) = K ′. Let σ(L) = L1. Hence
M = L1K and L1/K is isomorphic to L/K.
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Conversely, suppose L1/K is isomorphic to L/K. Hence by Lemma 9.1.2, L1K
′/K ′ is

isomorphic to LK ′/K ′. Thus L1K
′/K is isomorphic to LK ′/K.

An alternate proof for Cluster Magnification theorem Thm. 5.1.2 [13, Thm. 1]:

Proof. By Lemma 5.1.1, since F/K is Galois, we have

L̃ ∩ F = K ⇐⇒ L̃ ∩ LF = L and L ∩ F = K.

So [LF : K] = [L : K][F : K] = nd. Since F/K is Galois, we have by Corollary 9.1.0.1,

M is isomorphic to LF over K ⇐⇒ M = L′F where L′ is isomorphic to L over K.

Since such L′ is unique. Hence by Lemma 4.4.1, sK(LF ) = sK(L). Hence by Thm. 4.1.1
(2), we have

[LF : K]/rK(LF ) = [L : K]/rK(L).

Thus we get rK(LF ) = rK(L)[F : K] = rd.

Corollary 9.1.0.2. The extension L̃K ′ is the Galois closure of LK ′/K ′.

Proof. By Lemma 9.1.2, the fields isomorphic to LK ′/K ′ are LiK
′/K ′ where Li/K are dis-

tinct fields isomorphic toL/K. From remark 4.4.1.1, L̃ = L1L2 . . . LsK(L). Hence the Galois
Closure of LK ′/K ′ is L1K

′L2K
′ . . . LsK(L)K

′ = L̃K ′.

Lemma 9.1.3. The degrees and Galois groups are preserved under base change. Hence the
cluster sizes satisfy

rK(L) = rK′(LK ′).

Proof. By Lemma 5.1.1, since K ′/K is Galois, we have

L̃ ∩K ′ = K ⇐⇒ L̃ ∩ LK ′ = L and L ∩K ′ = K.
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Since, L ∩ K ′ = K, we have [L : K] = [LK ′ : K ′]. Also [L̃ : K] = [L̃K ′ : K ′]. Hence also
[L̃ : L] = [L̃K ′ : LK ′].

Let G1 = Gal(L̃K ′/K ′). Let H1 ⊂ G1 be subgroup with LK ′ as the fixed field that is
H1 = Gal(L̃K ′/LK ′). By [5, Thm. 2.6], since L̃ ∩ K ′ = K, we have G1 is isomorphic to
G by restriction. And since L̃ ∩ LK ′ = L, we have H1 is isomorphic to H under same
isomorphism.

Now the last assertion follows from Thm. 4.1.1 (3).

Remark 9.1.3.1. Lem. 9.1.3 gives an alternate proof for Thm. 9.1.1 by using the criterion in
Thm. 5.2.3.

We conclude the following result for the strong cluster magnification of polynomials
from Thm. 9.1.1.

Theorem 9.1.4. (Bhagwat, Jaiswal) Suppose g overK is obtained by nontrivial strong cluster
magnification from an f over K with magnification factor d. Let K ′/K, contained in K̄, be
Galois and linearly disjoint with Kg over K. Then g over K ′ is obtained by nontrivial strong
cluster magnification from f over K ′ with same magnification factor d.

Now we state a base change theorem for weak cluster magnification.

Theorem 9.1.5. (Bhagwat, Jaiswal) (Thm 8.1.9 in [3])

Suppose M/K is obtained by weak cluster magnification from an L/K with magnification
factor d. Let K ′/K, contained in K̄, be Galois and let M̃ and K ′ be linearly disjoint over
K. Then MK ′/K ′ is obtained by weak cluster magnification from LK ′/K ′ with the same
magnification factor d.

Proof. Follows from last assertion in Lemma 9.1.3.
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9.2 Base Change and Root Capacity

Lemma 9.2.1. K ′ ⊂ M ⊂ LK ′ ⇐⇒ M = NK ′ for a field K ⊂ N ⊂ L. This N is unique
and given by N = L̃ ∩M .

Proof. From Lemma 9.1.3, number of subgroups ofGal(L̃/K) containingGal(L̃/L) =num-
ber of intermediate extensions forL/K = number of intermediate extensions forLK ′/K ′.
The uniqueness follows from Lemma 5.1.1.

Theorem 9.2.2. (Bhagwat, Jaiswal) (Thm 8.2.2 in [3])

Let M/K be extension of L/K such that M̃ and K ′ are also linearly disjoint over K. Then
ρK(M,L) = ρK′(MK ′, LK ′).

Proof. Let ρK(M,L) = aK · rK(L) and ρK′(MK ′, LK ′) = aK′ · rK′(LK ′) where aK , aK′ are
as in Lem. 7.2.3. From Lem. 9.1.3, we have rK(L) = rK′(LK ′).

By Prop. 7.2.4 (1), aK is number of distinct fields inside M ∩ L̃ isomorphic to L over K
and aK′ is number of distinct fields insideMK ′∩ L̃K ′ isomorphic to LK ′ overK ′. By Lem.
9.2.1,K ′ ⊂ P ⊂ L̃K ′ ⇐⇒ P = L1K

′ for a unique field K ⊂ L1 ⊂ L̃.

Now for L1 ⊂ L̃, we claim L1 ⊂ M ∩ L̃ ⇐⇒ L1K
′ ⊂ MK ′ ∩ L̃K ′. Suppose L1K

′ ⊂
MK ′∩L̃K ′. ThusL1K

′∩M̃ ⊂ (MK ′∩M̃)∩(L̃K ′∩M̃). By Lemma 5.1.1, we haveL1 ⊂M∩L̃.
The other implication is clear. Hence by Lem. 9.1.2, we are done.

9.3 Base Change and Unique Chains

We study how the unique chains are related to the base change to K ′.

Theorem 9.3.1. (Bhagwat, Jaiswal) (Thm 8.3.1 in [3])

1. L ⊋ N1 ⊋ · · · ⊋ Nk is unique descending chain for L/K ⇐⇒
LK ′ ⊋ N1K

′ ⊋ · · · ⊋ NkK
′ is unique descending chain for LK ′/K ′ for Ni ⊂ L for all i.
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2. K ⊊ F1 ⊊ · · · ⊊ Fl is unique ascending chain for L/K ⇐⇒ K ′ ⊊ F1K
′ ⊊ · · · ⊊ FlK

′

is unique ascending chain for LK ′/K ′ for Fi ⊂ L for all i.

Proof. We use Lemma 9.1.3 here.

Proof of (1): Since L̃ and K ′ are linearly disjoint over K and Ni ⊂ L for all i, we have
that Ñi and K ′ are linearly disjoint over K for all i. It is enough to show that the unique
N for LK ′/K ′ is N1K

′.

SinceGal(L̃K ′/K ′) ∼= Gal(L̃/K) = G through restriction andGal(L̃K ′/LK ′) ∼= Gal(L̃/L) =

H under same map. Hence by identifying the groups, we have

L̃NG(H) = N1 ⇐⇒ (L̃K ′)NG(H) = N1K
′.

Proof of (2): Let Li/Fi be the Galois closure of L/Fi for all i ≥ 1. Since L̃ and K ′ are
linearly disjoint over K, we have that Li and K ′ are linearly disjoint over K. Hence by
Lemma 5.1.1, Li and FiK

′ are linearly disjoint over Fi for all i.

It is enough to show that the unique F for LK ′/K ′ is F1K
′. Similar to proof of part (1),

we have
L̃HG

= F1 ⇐⇒ (L̃K ′)H
G
= F1K

′.

9.4 Strong Cluster Magnification and Unique Chains

Theorem 9.4.1. (Bhagwat, Jaiswal) (Thm 8.4.1 in [3])

Let M/K be obtained by strong cluster magnification from L/K with rK(L) ̸= 1. Then we
have that M ⊋ N1 ⊋ · · · ⊋ Nk is the unique descending chain for M/K ⇐⇒
L ⊋ N1 ⊋ · · · ⊋ Nk is the unique descending chain for L/K.

Proof. It is enough to show that M̃NG′ (H′) = L̃NG(H) where G′ = Gal(M̃/K) and
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H ′ = Gal(M̃/M). After identifying the groups in Prop. 5.2.2, we have G′ = G× R and
H ′ = H × 1. Hence NG′(H ′) = NG(H) × R. Now L̃ = M̃1×R. Hence M̃NG(H)×R ⊆ L̃ and
Gal(L̃/M̃NG′ (H′)) = NG(H). Thus we are done.

We could also see the last fact in the following way. By Lemma 5.1.1, L̃ ∩ F = K ⇐⇒
N ∩ F = K and L̃ ∩ NF = N . We also have (L̃)(NF ) = L̃F = M̃ . Hence Gal(NF/N) ∼=
Gal(F/K) and Gal(M̃/N) = Gal(L̃/N)×Gal(NF/N) = NG(H)×R.

Remark 9.4.1.1. If rK(L) = 1 in above theorem. Then the unique descending chain forM/K

is M ⊋ L.

Theorem 9.4.2. (Bhagwat, Jaiswal) (Thm 8.4.3 in [3])

Let M/K be obtained by strong cluster magnification from L/K through F/K as in Def
5.2.0.1 with tK(L) ̸= 1. Then we have

1. F ′ is unique intermediate field for M/K as in Thm. 8.2.1 ⇐⇒ F ′ = F1F where F1 is
unique intermediate field for L/K.

2. K ⊊ F1 ⊊ · · · ⊊ Fk is the unique ascending chain forL/K ⇐⇒ K ⊊ F1F ⊊ · · · ⊊ FkF

is the unique ascending chain for M/K for Fi ⊂ L for all i.

Proof. (1) Let G′ = Gal(M̃/K) and H ′ = Gal(M̃/M). After identifying the groups in Prop.
5.2.2, we have G′ = G × R and H ′ = H × 1. Hence H ′G′

= HG × 1. Now F = M̃G×1. Let
F1 = L̃HG. Hence F1 = M̃HG×R. Since (G×1)∩(HG×R) = (HG×1), we get M̃HG×1 = F1F .

(2) Since L̃ = M̃1×R. Thus L̃ ∩ F1F = F1. Since M = LF , by Thm. 9.3.1 (2), we have
F1 ⊊ F2 ⊊ · · · ⊊ Fk is unique ascending chain for L/F1 ⇐⇒ F1F ⊊ F2F ⊊ · · · ⊊ FkF is
unique ascending chain for M/F1F for Fi ⊂ L for all i ≥ 2.

Remark 9.4.2.1. If tK(L) = 1 in the above theorem. Then the unique ascending chain for
M/K is K ⊊ F .
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Chapter 10

Ascending Index and Future Directions

The thesis concludes with this chapter with some properties of the ascending index. The
ascending index has many properties similar to the cluster size. In the last section we talk
about future directions.

10.1 Properties of Ascending Index

Recall that the ascending index tK(L) ofL/K was defined to be the degree [F : K] in Thm.
8.2.1.

Proposition 10.1.1. (Bhagwat, Jaiswal) (Prop 9.0.1 in [3])

If M/L/K are extensions, then tK(L)|tK(M).

Proof. Let F/K and F ′/K be the unique intermediate extensions as in Thm. 8.2.1 forL/K
and M/K respectively. Since F ′/K is Galois with maximum possible degree contained in
M , we conclude that F ⊂ F ′. Thus [F : K] | [F ′ : K].

Remark 10.1.1.1. The above proposition tells that the analogue of the notion of weak mag-
nification always holds for ascending index.

From Lemma 9.1.3, we have the following base change result for ascending index.
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Proposition 10.1.2. (Bhagwat, Jaiswal) (Prop 9.0.3 in [3])

Let L/K be a finite extension and letK ′/K be a finite Galois extension such that L̃ andK ′

are linearly disjoint over K. Then

tK(L) = tK′(LK ′).

By proof of Thm. 9.4.2 (1) and Thm. 8.2.1 (2), we have the following analogue of the
Cluster Magnification Theorem Thm. 5.1.2.

Ascending Index Magnification Theorem

Theorem 10.1.3. (Bhagwat, Jaiswal) (Thm 9.0.4 in [3])

Let M/K be obtained by strong cluster magnification with magnification factor d. Then

tK(M) = d tK(L) and uK(M) = uK(L).

The following theorem is an analogue of Thm. 4.3.1.

Inverse Ascending Index Problem for Number Fields

Theorem 10.1.4. (Bhagwat, Jaiswal) (Thm 9.0.5 in [3])

Let K be a number field. Let n > 2 and t|n. Then there exists an extension L/K of degree
n with ascending index tK(L) = t.

Proof. Suppose t = 1. By Lemmas 4.3.2 and 4.3.3 and Thm. 4.4.2 and Thm. 8.3.4 we have
L = L1 which satisfies tK(L) = 1.

Now suppose t = n. By Thm. 4.3.1 for r = n, there exists an L/K of degree n with
rK(L) = n. For that L/K we have tK(L) = n.

Now suppose 1 < t < n. Hence 1 < n/t < n. By Thm. 4.3.1 for r = n/t and Thm. 8.3.3,
there exists an L/K of degree n with rK(L) = n/t and tK(L) = t.
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Remark 10.1.4.1. Since we have Thm. 10.1.3, we could have approached Thm. 10.1.4 in a
similar way as Thm. 4.3.1 was approached in [13] using Thm. 5.1.2. This approach would
have left us with some cases not covered as in Thm. 2 in [13].

The following result is Lemma 2 in [13].

Lemma 10.1.5. Given a finite extension of algebraic number field L/K and a positive integer
d ≥ 2, there exist infintely many Galois extensions of F/K of degree d such that L and F are
linearly disjoint over K.

Proof. Case 1 : K = Q : Let ∆L ∈ Z be the discriminant of the number field L. For a prime
p not dividing ∆L, consider the cyclotomic extensionM = Q(ξp) where ξp is primitive p-th
root of unity. Now p is the only prime ramified inM but it remains unramified in L. Hence
discriminant of L ∩M has absolute value 1. So L ∩M = Q. As M is Galois over Q, L and
M are linearly disjoint over Q.

Now for a given d ≥ 2 we can find infinitely many primes p such that p > ∆L and p ≡ 1

(mod d) by Dirichlet’s theorem on arithmetic progressions. For such p the cyclotomic
fields M will have a cyclic Galois extension of degree d as a subfield F such that L and F
are linearly disjoint over Q.

Case 2 : For any number field K : For given extension L/K, we get extensions F1/Q
by Case 1 such that L and F1 are linearly disjoint over Q. Now by the Lemma 5.1.1, the
extensions L and F = KF1 will be linearly disjoint over K. Also F/K is Galois and has
the same degree as F1/Q.

The following theorem is an analogue of Thm. 2 in [13].

Theorem 10.1.6. (Bhagwat, Jaiswal) (Thm 9.0.7 in [3])

1. Let K be a number field. For any integers u ≥ 3, t ≥ 1 there exists L/K of degree ut and
tK(L) = t.

2. Let K = Q. For t an even number, there exists L/K of degree 2t and tK(L) = t.
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Proof. (1) For n = u, we have L1/K with degree u and satisfying tK(L1) = 1 as in first case
of Thm. 10.1.4. By Lemma 10.1.5, there exists F/K Galois of degree t such that L̃1 and
F are linearly disjoint over K. Hence by Thm. 10.1.3, L = L1F has degree ut over K and
tK(L) = t.

(2) Consider P = Q( 4
√
2) which has degree 4 over K = Q and tK(P ) = 2. For t an

even number, by Lemma 10.1.5, there exists F/K Galois of degree t/2 such that P̃ and
F are linearly disjoint over K. Hence by Thm. 10.1.3, L = PF has degree 2t over K and
tK(L) = t.

10.2 Future Directions

The following are certain problems which are some of the future directions that we plan
to explore.

10.2.1 Problems based on Chapters 2 and 3.

Problem 10.2.1. Can we apply Theorems 2.2.1, 2.4.1, 3.1.7, 3.1.8 and 3.2.7 to more special
cases to get new cases of IGP?

Problem 10.2.2. Can we realize the group SL2(Fp) as a Galois group over Q for all primes
p ≥ 5 through the methods discussed in Chapters 2 and 3?

Problem 10.2.3. Can we find special cases satisfying hypothesis of Prop 3.2.3 and thus realize
over Q, some direct products of groups which are realizable as a Galois group over Q through
Galois representation?

Can we have some general approach to realize over Q, direct products of groups which are
realizable as a Galois group over Q?
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10.2.2 Problems based on Chapters 4 to 10.

Problem 10.2.4. Can we generalise the Inverse cluster size problem for number fields (Thm
4.3.1) and the Inverse ascending index problem for number fields (Thm 10.1.4) from number
fields to a bigger class of fields?

Problem 10.2.5. GivenK, can we classify all L/K with cluster size rK(L) = 1 & rK(L) = 2?

Problem 10.2.6. Let M/K be obtained by nontrivial strong cluster magnification from some
L/K (see Def 5.2.0.1).

1. Let K ⊂ K ′ ⊂ M . Is M/K ′ obtained by nontrivial strong cluster magnification from
some subextension over K ′?

2. Let K ⊂ M ′ ⊂ M . Is M ′/K obtained by nontrivial strong cluster magnification from
some subextension over K?

Similar questions can be asked forM/K obtained by nontrivial weak cluster magnification
from some L/K (see Def 5.4.0.1).

Problem 10.2.7. Is the hereditary property, which is true for strong cluster magnification
(Prop 5.2.1), also true for weak cluster magnification? Let M/K be obtained by weak cluster
magnification from L/K. Let K ⊂ K ′ ⊂ L. Is the extension M/K ′ obtained by weak cluster
magnification from L/K ′?

Problem 10.2.8. What are the minimal additional conditions that we require so that M/K

which is obtained by nontrivial weak cluster magnification from some L/K is also obtained by
nontrivial strong cluster magnification from L/K?

Problem 10.2.9. (Refer to Sections 6.1 and 6.2). What are the necessary and sufficient con-
ditions on an irreducible polynomial over K, for degree sequence of cluster tower of the poly-
nomial to be independent of the ordering of the representatives of the clusters of roots? Can
we get the conditions in terms of Galois group of splitting field of the polynomial?

Under the above conditions, can we find general formula for the length of cluster tower in
terms of other invariants of the irreducible polynomial?
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Problem 10.2.10. Is the Inverse degree sequence problem true for number fields? Suppose
we have a number field and positive integers a0, a1, a2, . . . , al. What are the necessary and
sufficient conditions (if they exist) on these ai’s so that there exists an irreducible polynomial
over the given number field such that, for an ordering of the representatives of clusters of its
roots, we have the cluster tower having degree sequence a0, a1, a2, . . . , al?

Problem 10.2.11. Given L/K, we define the descending dimension of L/K as the length of
the unique descending chain in Thm 8.1.1 (similarly ascending dimension ofL/K as the length
of the unique ascending chain in Thm 8.2.1) which is the number of distinct fields in the chain
except the first field.

Can we find general formula for the descending and ascending dimensions in terms of other
invariants of the extension L/K?

Problem 10.2.12. (Refer to Thm 8.2.1 (2)). Given L/K, can the ascending index tK(L) have
a description in terms of roots of the minimal polynomial of α over K where α is a primitive
element for L/K?

Can we have an analogous result to Prop 8.1.2 for the unique intermediate extension F/K
for L/K as in Thm. 8.2.1 (1)? That is, can we describe F in terms of the roots of the minimal
polynomial of α?

Problem 10.2.13. Consider L/K.

1. We define the cluster size sequence of L/K as

rK(N0), rK(N1), . . . , rK(Nk−1)

where Ni’s are the fields in the unique descending chain as in Thm 8.1.1.

Is the Inverse cluster size sequence problem true for number fields? Suppose we have a
number field K and positive integers n, r1, r2, . . . , rk. What are the necessary and suffi-
cient conditions (if they exist) on these positive integers so that there exists an extension
L/K such that [L : K] = n and the cluster size sequence of L/K is r1, r2, . . . , rk?
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2. We define the ascending index sequence of L/K as

tF0(L), tF1(L), . . . , tFk−1
(L)

where Fi’s are the fields in the unique ascending chain as in Thm 8.2.1.

Is the Inverse ascending index sequence problem true for number fields? Suppose we have
a number fieldK and positive integers n, t1, t2, . . . , tk. What are the necessary and suffi-
cient conditions (if they exist) on these positive integers so that there exists an extension
L/K such that [L : K] = n and the ascending index sequence of L/K is t1, t2, . . . , tk?

Problem 10.2.14. Can we find the unique descending chains in the remaining cases of Thm
8.3.4?
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