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Abstract
The Planck space mission, along with confirming the several predictions of the stan-
dard model of Cosmology, has also constrained the six parameters of the Flat ΛCDM
model better than ever before. Two of these six parameters model the primordial den-
sity fluctuations of the inflaton field while the rest four fix the background cosmology.
Several inflationary theories suggest a nearly scale-invariant power-law form for the pri-
mordial power spectrum(PPS). However, equipped with the rich data from recent CMB
missions, in particular, Planck, it has become possible to reconstruct the PPS in a model-
independent non-parametric manner allowing us to relax the theoretically motivated as-
sumptions on the form of PPS. This project can broadly be divided into two parts. In
the first part, we demonstrate the efficacy of the Richardson Lucy method in reconstruct-
ing the Primordial power spectrum directly from the Planck 2015 temperature data. As-
suming the best-fit values for the remaining four background parameters viz. baryonic
matter density(Ωbh2), cold dark matter density(Ωch2), optical depth(τ) and acoustic scale
parameter(θ), we are able to recover the form of PPS by applying Improved Richard-
son Lucy Deconvolution method. Our results show features that are absent in the scale-
invariant power-law form and were consistent with results from WMAP data. We analyze
the reliability of these features and the artifacts of the iRLD method by using smoothing
methods. In the latter part of this project, we relax the best-fit values for the background
parameters. We explore the 4-dimensional parameter space using a Monte-Carlo sampler
called CosmoMC while simultaneously doing the iRLD reconstruction at each point. We
obtain new distributions for the background parameters and compared them with the
distributions given by Planck collaboration where the Power law model was assumed for
the PPS. The results of our analysis indicate changes to the best-fit values of some of the
important parameters such as a higher preferred value for the value of Baryon density
and the acoustic scale parameter, while the other two parameters, the cold dark mat-
ter density and optical depth at reionization tend to prefer a value lower than expected.
Our method removes any bias introduced by the assumptions of the model for PPS and
thereby allowing us to take an important step in testing predictions of several cosmolog-
ical models against observations without extraneous theoretical bias. Further extension
to this approach that incorporates weak lensing effects and the CMB polarization spectra
will lead to final conclusive results.
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Chapter 1

Introduction

The field of Astrophysics has witnessed a truly metamorphic transformation in the last
fifty years. Bolstered by the rapid progress in science and technology, this field has es-
caped the realm of of armchair philosophy and has become a rigorous and meticulous
science. Although we live in the age of Large Hadron Colliders, they are still a long, long
way to go in terms of reaching energies as high as those in the early universe. Hence
our cosmos provides us with a vast laboratory to make observations that will not just
confirm the existing theories but also reveal new physics that was untouched so far. The
discovery of CMB[24] brought along with it a plethora of information about the history
and evolution and eventual fate of the universe. However, it is a challenge to develop ap-
propriate statistical tools and techniques to capture all this information from a CMB map
portraying the temperature and polarization anisotropies in the sky. Tremendous tech-
nological advancements have led to highly accurate measurements of these anisotropies
by satellites such as COBE, WMAP and PLANCK[2, 1]. This has liberated us from the
need to rely on a priori assumptions and models and base our knowledge on concrete
observational evidence.

In this thesis we use data from the full sky CMB anisotropy maps provided by the
Planck spacecraft to successfully reconstruct the spectrum of density perturbations in the
early universe in model-independent, parameter-free manner. This approach has been ex-
plored by several groups before, with techniques such as Tikhonov regularisation(Hunt
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et al. 2013)[8] , Maximum Entropy deconvolution (Goswami et al. 2013)[25]. We employ
the technique of Richardson-Lucy Deconvolution[3] to reconstruct the Primordial Power
Spectrum from the Planck 2015 temperature data. We assume the standard model of cos-
mology with a cosmological constant and the spatial geometry to be Euclidean. We study
the features that were missing in our assumptions before and relieve any sort of bias those
assumptions had in our estimates of the cosmological parameters to draw intriguing con-
clusions about the theories that operated the inflationary mechanism.

1.1 Hot Big Bang Cosmology

The success of the Big Bang hypothesis is attributed mainly to the observational confir-
mation of its predictions of light element abundances, Hubble expansion and the Cosmic
Microwave Background radiation. We have information from a myriad of astronomical
messengers that our universe is expanding with time. It is often represented by a scale
factor a, which is set to have a value of unity at the present epoch(a0 = 1). The evolu-
tion of the scale factor with time depends on the composition or the energy density of
the universe. We define another quantity called the Hubble parameter H to quantify the
evolution of scale factor. It is defined as,

H(t) =
da/dt

a
. (1.1)

At this juncture it is relevant to introduce the Hubble’s law describing the expanding
universe that quantifies how the physical distance between astronomical bodies changes
with time depending on the distance between them.

1.1.1 Hubble’s law of the expanding universe

One of the crucial discoveries in Cosmology was the observation that all distant galaxies
in our universe around us are moving away from us. Galaxies have characteristic spectral
lines that are well known. The observation of redshift in these lines is an indication that
the body is moving with some velocity. Edwin Hubble classified the galaxies into groups
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and studied their velocities. He found that the galaxies that were farther away from us
had higher recessional velocities than the ones closer to us. This came to be known as the
Hubble’s law and the constant of proportionality is called the Hubble’s constant.

�v = H0�r. (1.2)

where�r is their separation and�v is their relative velocity.

1.2 Friedmann equation

Einstein laid the foundations for our current understanding of Standard Model of cos-
mology through his general theory of relativity. With the introduction of concepts from
mathematics like metrics and geodesics, and relating it to physical concepts like energy
density, it became possible to formalize the primitive theories about the creation, evolu-
tion and fate of universe into more rigorous terms and cosmology took the shape it has
today. The most convenient metric to describe our universe was the 4-dimensional metric
with a 3-dimensional maximally symmetric subspace called the Friedmann-Robertson-
Walker metric, defined as:

ds2 = dt2 − a(t)2
�

dr2

1 − kr2 + r2(dθ2 + sin2 θdφ2)

�
. (1.3)

Here, k is called the curvature constant. It describes the spatial geometry of the universe
we live in. It can take values -1,0,+1 corresponding to hyperbolic, Euclidean and spher-
ical(closed) universes respectively. The Einstein’s field equation allows us to relate the
geometry of our universe to its energy content through this equation:

Rµν −
�

1
2

R − Λ
�

gµν =
8πG

c4 Tµν. (1.4)

where, Rµν/R, the Ricci tensor/scalar and the metric tensor g describe the structure of
space-time, T, the stress energy tensor describes the energy and momentum density, G
and c are the usual fundamental constants of gravitation and the universal speed of light,
and Λ represents the cosmological constant. By assuming the universe to be composed of
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a perfect fluid with isotropic pressure p and energy density ρ with u(i) being the velocity
vector, we can write the energy-momentum tensor as

T(i)
µν = −pigµν + (pi + ρi)u

(i)
µ u(i)

ν . (1.5)

This leads to the Friedmann equation:

�
ȧ
a

�2

=
8πρG

3
− kc2

a2 . (1.6)

This describes the evolution of the scale factor in terms of the energy density and spatial
curvature of the universe.

1.3 Fluid equation

The fluid equation describes how the density of the fluid in the universe evolves with
time depending on the kind of the fluid. From the first law of thermodynamics we have,

dE + pdV = TdS. (1.7)

This equation is applied to a fluid of expanding volume V. We assume the co-moving
distance to be unity. So the physical radius will be just a. Using E = mc2,

E =
4π

3
a3ρc2. (1.8)

Differentiating with respect to time,

dE
dt

= 4πρc2a2 da
dt

+
4π

3
a3 dρ

dt
c2. (1.9)
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Differentiating volume with respect to time,

dV
dt

= 4πa2 da
dt

. (1.10)

We assume the expansion to be reversible. Therefore, dS = 0 or dE = −pdV

4πρc2a2 ȧ +
4π

3
a3ρ̇c2 = −p4πa2 ȧ. (1.11)

By appropriate cancellation and rearrangement we get,

ρ̇ + 3
ȧ
a

�
ρ +

p
c2

�
= 0. (1.12)

This is akin to the first law of thermodynamics eqn.(1.7) in the special case of isentropic
processes. Equation (1.12) is called the fluid equation. The density changes due to two
sources. The decrease in the density due to the increase in the volume, and the other
arises from energy loss owing to the work done as the Universe’s volume increased.

1.4 Acceleration equation

We can use the previous two equations to derive a new equation that describes the accel-
eration of the scale factor.

Differentiating eqn.(1.6) with respect to time we obtain,

2
ȧ
a

aä − ȧ2

a2 =
8πG

3
ρ̇ + 2

kc2 ȧ
a3 . (1.13)

and substituting for ρ̇ from 1.12 we obtain,

ä
a
−

� ȧ
a
�2

= −4πG
�
ρ +

p
c2

�
+

kc2

a2 . (1.14)
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Substituting equation 1.6 again, we get,

ä
a
= −4πG

3
�
ρ +

3p
c2

�
. (1.15)

Note that the constant k cancels out and doesn’t appear in the acceleration equation. If
the fluid has any pressure it increases the gravitational force and further decelerates the
expansion of the universe.

1.5 Solving the Friedmann equation

The solutions of the Friedmann equation gives us an idea about how the universe will
evolve with time. However, as we have seen before, this equation contains a density term
in it. We need to know what the universe is made up of. Consider two cases in a model of
the universe with vanishing spatial curvature (k = 0) ; one in which the universe is made
up of matter (non-relativistic only), another universe that is made of radiation.

1.5.1 Matter

In cosmology, matter is understood to be non-relativistic matter only. From the equation
of state we have pressure p=0 for matter.

ρ̇ + 3
ȧ
a

ρ = 0. (1.16)

=⇒ 1
a3

d
dt
(ρa3) = 0. =⇒ d

dt
(ρa3) = 0 (1.17)

=⇒ ρ ∝ a−3. (1.18)

This is not very surprising. Density falls as the cube of volume. The advantage of
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choosing k=0 in our equations is that we can rescale a(t) as we want since ȧ/a occurs in
the equation. We can very conveniently choose a = 1 at the current time. If ρ = ρ0 at
current time, we have,

ρ =
ρ0

a3 . (1.19)

Substituting for ρ with k=0 in the Friedmann equation we get

ȧ2 =
8πGρ0

3
1
a

. (1.20)

Solving this separable equation, we get,

a(t) ∝ t2/3. (1.21)

Taking a = 1 at current time t = t0

a(t) =
� t

t0

�2/3. ; ρ(t) =
ρ0

a3 =
ρ0t2

0
t2 . ; H ≡ ȧ

a
=

2
3t

. (1.22)

Such an universe expands forever. However, as time progresses the rate of expansion
becomes slower.

1.5.2 Radiation

The equation of state tells us that p = ρc2/3 for radiation.

ρ̇ + 4
ȧ
a

ρ = 0. (1.23)

Following the same steps as the previous case, we get,

ρ ∝ a−4. (1.24)
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a(t) =
� t

t0

�1/2. ; ρ(t) =
ρ0

a4 =
ρ0t2

0
t2 . ; H ≡ ȧ

a
=

1
2t

. (1.25)

Such an universe expands slower than one dominated by matter. The extra power that
further causes the drop in density is due to the stretching of wavelength of light.

Having found out the evolution of rate of expansion for two kinds of universes, we
have to apply it to our universe which is composed of a mixture of matter and radiation.
By assuming one of the component to be dominant we solve the equations and obtain
solutions.

For the radiation dominated universe:

a(t) ∝ t1/2 ; ρrad ∝
1
t2 ; ρmat ∝

1
a3 ∝

1
t3/2 . (1.26)

The density in matter falls off slower than the density in radiation. Eventually the
radiation domination will end and matter will begin to dominate.

a(t) ∝ t2/3 ; ρmat ∝
1
t2 ; ρrad ∝

1
a4 ∝

1
t8/3 . (1.27)

In this case the matter will continue to dominate over radiation. Therefore, whatever
be the case, after long enough time, matter will dominate. The transition between radia-
tion to matter domination will be characterized by an increase in the expansion rate from
a(t) ∝ t1/2 to the a(t) ∝ t2/3 law.

1.6 Cosmic Microwave Background

According to the Big Bang theory, the early universe was a hot and dense plasma of pro-
tons, electrons and photons. Any atom formed would be instantly annihilated by a high
energy photon. Due to a large number of events of scattering of photons by the free elec-
trons, the mean free path of photons was so short that the medium was practically opaque
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to electromagnetic radiations. Matter and radiation were at a thermal equilibrium due to
these scattering events. Gradually as the universe expanded and cooled down, the con-
ditions became feasible for the formation of the hydrogen atom. Electrons were bound
to the nucleon core and neutral atoms were formed. This event is called Recombination.
The photons decoupled from these electrons and started moving freely without interact-
ing with baryons, an event known as photon decoupling. We see these photons today
as the Cosmic Microwave Background. The surface where the photons and electron de-
coupled is called the surface of last scattering. Whatever imperfections existed from a
homogeneous universe on this surface, leaves their signatures on the photons that were
decoupled at that time. They manifest as anisotropies and inhomogeneities in the CMB
that we observe today and hence it is a window into the past.

The Cosmic Microwave Background is the relic radiation of the Big Bang that hap-
pened about 13.8 billion years ago. It was initially predicted by George Gamov and Ralph
Alpher in 1948. They speculated that there has to be a uniform background temperature
around 5K. In 1965, Penzias and Wilson[24] published their findings of the unaccounted
excess of the temperature measured by their radiometer that was immediately identified
as the CMB radiation. Given the huge cosmological significance of the CMB signal, it
launched a great push to analyze this microwave background and this ushered in an era
of observational cosmology.

COsmic Background Explorer (COBE) was the first space mission that measured the
map of the intensity(temperature) of the CMB on the full sky. COBE was a successful
mission that confirmed two important predictions of the Big Bang theory: that the CMB
has a almost perfect black-body spectrum, and that it has small inhomogeneities. George
Smoot and John Mather, who led this mission, won the Nobel prize in Physics in 2006.
The advent of satellites like WMAP and Planck further advanced our understanding of
our universe by providing increasingly accurate measurements of CMB temperature and
linear polarization. Today there are also several ground based experiments like BICEP
and KECK that are using cutting edge technology to make increasingly accurate mea-
surements of CMB.
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1.7 A perfect black-body

As discussed earlier the matter and radiation were in thermal equilibrium before the
event of decoupling thanks to the scattering processes. According to Planck’s law, a black-
body spectrum is a characteristic of its temperature and the energy density of photons
between frequencies ν and ν + dν at a temperature T is given by,

�(ν)dν =
8πh
c3

ν3dν

exp(hν/kBT)− 1
. (1.28)

where kB is the Boltzmann constant h is the Planck’s constant and c is the speed of light in
vacuum. The total energy density of the spectrum can be found by integrating the above
equation over all frequencies. Set x = hν/kBT,

� =
8πk4

B
h3c3 T4 ×

� ∞

0

x3dx
ex − 1

. (1.29)

The integral gives π4/15
� = αT4. (1.30)

where α = 7.56 × 10−16Jm−3K−4. This is the Stefan-Boltzmann constant.

We have seen earlier that for radiation, the following relation holds between tempera-
ture T and scale factor a

T ∝
1
a

. (1.31)

After the decoupling, the blackbody energy distribution was retained in isentropic expan-
sion. This can be easily seen through an heuristic argument about a special property of
the equation for energy density. Let us assume that the photons went from being in ther-
mal equilibrium with matter to free streaming. As the universe expands, the frequency
of a photon falls as 1/a, just like the temperature. Since the quantity in the denominator
is a function of ν/T it stays invariant. The quantity in the numerator however scales as
the inverse cube of the scale factor. But this is taken care by the increased volume which
is proportional to the cube of the scale factor. Therefore as the universe expands it pre-
serves its spectrum, however at a temperature scaled down by the expansion factor of the
universe.
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We can estimate when the CMB formed, i.e., the time of decoupling by some simple
calculations. From thermodynamics, we know that the mean energy of a photon in a
black-body distribution is 3kBT. The ionization energy of hydrogen atom is about 13.6eV.
Therefore, the temperature at decoupling is,

T ≈ 13.6
3kB

= 50, 000K. (1.32)

But this estimate is very crude since there are far more photons in our universe than elec-
trons, about a factor of 109. Hence, even if the mean energy was less than 13.6eV, we
would still have enough photons towards the tail of the spectrum to ionize the hydro-
gen atoms and a chemical balance equation, better known as the Saha ionization formula
needs to be used. Taking this into consideration and by integrating over the photon distri-
bution, it has been concluded that the temperature at the time of decoupling was around
3000K.

������ ���� This figure represents the intensity of the CMB radiation as a function of frequency
from the data obtained by FIRAS instrument on the COBE satellite. The error bars are too small
to be even visible. The CMB radiation is the nature’s most perfect realization of a black-body
radiation.
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Chapter 2

Preliminaries

2.1 Statistics of CMB

2.1.1 The cosmological principle

The cosmological principle is of fundamental importance in modern cosmology. It tells
us that the universe looks same to you no matter there you are in it, when statistically
averaged on a sufficiently large scale. We believe that at large scales above a few hundred
mega parsecs, our universe is homogeneous and isotropic which means that it is the same
at all points and same in all directions respectively. The photons that started their jour-
ney of free streaming post-recombination were subjected to several physical phenomena
that left imprints on their distribution. This information can be captured in the form of
anisotropies in the CMB temperature and a pattern of linear polarization.

2.1.2 Spherical harmonic basis

We express the temperature anisotropies as ΔT(n̂) = T(n̂)− T0, where T0 is the average
temperature of the CMB = 2.725K, a distribution which has an expectation value equal to

13
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zero and some non-zero variance. n̂ = (θ, φ) is a general direction in the sky. Cosmolo-
gists frequently employ the spherical harmonics basis to represent these anisotropies as a
function of multipole l since it is a 2d field measured on the sky.

ΔT
T

(n̂) = ∑
l

almYlm(θ, φ). (2.1)

A predicate of the Cosmological principle is that CMB anisotropy is expected to be
statistically isotropic and Gaussian. Therefore the two point correlation function must
contain all the information encoded in the field.

Cij ≡ C(n̂i, n̂j) =
�
ΔT(n̂i)ΔT(n̂j)

�
. (2.2)

Since CMB is statistically isotropic, we have

C(n̂i, n̂j) = C(µ), µ = arccos(n̂i · n̂j). (2.3)

Since the two-point function is a function of just the angular separation θ it would be
convenient to express it in terms of Legendre polynomials.

C(θ) =
1

4π

∞

∑
l=2

(2l + 1)ClPl(cos θ). (2.4)

The quantity CAB
l , where A,B=T-Temperature, E-Gradient mode of polarization, B-Curl

mode of polarization, is known as angular power spectrum. Since this is a complete basis,
it describes the whole of CMB anisotropy under the aforementioned assumptions. The
monopole term l = 0 corresponds to the mean temperature of CMB. There is a contribu-
tion to the temperature of the order of mK which is due to the local motion of the observer
through the universe corresponding to l = 1. Both these terms are not of cosmological
significance and are subtracted while studying CMB anisotropies. Since we are dealing
with only temperature maps in this project, we shall henceforth drop the superscript in-
dicating temperature. We define another quantity related to the angular power spectrum
Dl = l(l + 1)Cl/2π that corresponds to the power per log interval of the multipole and
plot it against l as shown in the figure 2.1.
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������ ���� Temperature power spectrum from the Planck 2015 data. The theoretical curve from
the best-fit ΛCDM cosmology is plotted against the Planck TT + low P data. (Figure is from [1])

The predicted angular power spectra that I have used in this project are numerically
computed by a publicly available program called CAMB(Code for Anisotropies in the
Microwave Background) which generates a set of Cl’s for a given set of cosmological
parameters.

2.2 Cosmic Variance

From equation (2.4) we have
�alma∗l�m� � = Clδll�δmm� .

However, the ensemble average can not be performed in practice, from our single vantage
point of observation. The best we can do is write an estimator for Cl as follows:

Cest
l =

1
2l + 1

l

∑
m=−l

|alm|2. (2.5)
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with an inherent unsurmountable bound on how well can we recover the angular power
spectrum at different angular scales from our observations.

σC.V. ≡
�
(Cl − Cest

l )(Cl� − Cest
l� )

�
=

2
2l + 1

C2
l δll� . (2.6)

There is an inherent lack of information for large angular separations due to smaller sam-
ple size. If there is instrument noise also present, the revised variance in Cl becomes,

σC.V.+noise ≡
�
(Cl − Cest

l )(Cl� − Cest
l� )

�
=

2
2l + 1

[Cs
l + CN

l B−2
l ]2δll� . (2.7)

where Bl is the beam function that describes how the detector beam response function is
spread out around the pointing direction.



Chapter 3

Theory

3.1 Obtaining the integral equation for Cl

Angular surveys are the most fundamental probes of inhomogeneities and anisotropies
in cosmology. The basic measure used is the two point correlation function. In real space
it is the angular correlation function and in Fourier space it becomes the 2-dimensional
power spectrum. The measurements of the temperature anisotropies are converted to
more tractable angular correlation function in the following manner. Let the anisotropy
in temperature at a location (x = 0) be denoted by

Δ(x = 0, n̂, τ0) = ΔT/T0 = ∑
lm

almYlm. (3.1)

In terms of Fourier space,

Δ(x, n̂, τ) =
� d3k

(2π)3 eik·xΔ(k, n̂, τ). (3.2)

The dependence on n̂ comes only in the form of k.n̂ [9]. Separating the radiative transfer
function and gravitational potential terms,

Δ(k, n̂, τ) = Φ(k, τ)�Δ(k, k̂ · n̂, τ).

17
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Expanding the second term on RHS using Legendre polynomials, we get,

Δ(x, n̂, τ) =
� d3k

(2π)3 eik·xΦ(�k)
∞

∑
l=0

(−i)l(2l + 1)Δl(k, η0)Pl(k · n). (3.3)

Using the relation between Legendre polynomials and Spherical harmonics, we can write
(7) as,

Δ(x, n̂, τ) =
� d3k

(2π)3 eik·�xΦ(�k)4π ∑
lm
(−i)l�Δ(k, τ)Y∗

lm(k̂)Ylm(n̂). (3.4)

Therefore, from eq. 2.5 and 2.8, we have

alm = (−i)l4π
� d3k

(2π)3 Φ(k)�Δ(k, τ0)Y∗
lm(k̂). (3.5)

We define the power spectrum of the potential fluctuations as

�
Φ(k)Φ(k�)

�
= (2π)3PΦ(k)δ(k − k�). (3.6)

We obtain the two point correlation function as,

Cl = �alma∗l�m� � = e−i π
2 (l−l�)(4π)2

� d3k
(2π)3

� d3k�

(2π)3

�
Φ(k)Φ∗(k�)

�
Δl(k, τ0)Δ∗

l�(k
�, τ0)Y∗

lm(k̂)Yl�m�(k̂�)

. Substituting from eq. 2.10

= e−i π
2 (l−l�)(4π)2

� d3k
(2π)3 PΦ(k)Δl(k, τ0)Δ∗

l�(k, τ0)Y∗
lm(k̂)Yl�m�(k̂)

= e−i π
2 (l−l�)(4π)2

� dk
(2π)3 k2PΦ(k)Δl(k, τ0)Δ∗

l�(k, τ0)
�

dΩY∗
lm(k̂)Yl�m�(k̂)

Using the fact that
�

dΩY∗
lm(k̂)Yl�m�(k̂) = δll�δmm�

= 4π
� dk

k
k3PΦ(k)

2π2 |Δl(k, τ0)|2

We define a dimensionless quantity, P(k) = k3PΦ(k)/2π2, corresponding to power per
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log interval of wavenumber.

Cl = 4π
� dk

k
P(k)|Δl(k, τ0)|2. (3.7)

Henceforth, for the simplicity of notation and making it suitable for numerical integra-
tion, we shall use this equation.[4, 5]

Cl = ∑
k

GlkPk. (3.8)

where, Glk = 4π dk
k |Δl(k, τ0)|2. In the equation above, the term Glk is fixed by the back-

ground parameters of the assumed cosmology. It also contains information about the pro-
jection from a 3D wavenumber space to the multipole space. The other term Pk contains
information about the primordial density fluctuations. However, the observable quantity
we will be dealing with is the two point correlation function, Cl which the Planck satellite
has measured to a high accuracy upto l = 2500. The functional form of primordial part
Pk is dictated by the underlying theory which is at best an educated guess. However,
equipped with the rich data made available by satellites like Planck and WMAP, given
the matrix Glk, it is a matter of deconvolution to reconstruct the form of PPS.

3.2 Boltzmann equations

The radiative transfer kernel encodes how the anisotropies evolve over time. Our aim
is to get Δ̃l(k, τ0) from Δ̃l(k, τ < τrec). The solution to the Boltzmann equation describe
how it happens. We simplify things by assuming only two distinct regimes with a rea-
sonably sharp boundary. One, before the recombination where there are strong collisions,
and second when there is free streaming of photons, or the collisions are negligible. The
Boltzmann equation looks like this.

d f
dt

= c[ f ]. (3.9)

where, c[ f ] is the collision term and f denotes the phase space distribution function for
photons. We expand f to a linear order as f = f 0 + δ f . As discussed above, we consider
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two regimes,
τ < τrec; c[ f ] is strong

τ > τrec; c[ f ] = 0

.

We are now in a position to evolve the radiative kernel part of the angular power
spectrum from the time of recombination to today. Using fluid approximation, we have
need to consider Δ0 and Δ1 terms in the Taylor expansion. Δ0 is called the monopole term
which describes the density fluctuations and Δ1 is the dipole term which describes the
velocity of baryons.

3.2.1 Free streaming region

Consider Δ̃l(k, τs) going to Δ̃l(k, τ0), where τs is well inside the free streaming region. Let
τ any instance of time in between τs and τ0.

Δ̃(�k, n̂, τ) = ein̂·�k(τ−τs)Δ̃(�k, n̂, τs). (3.10)

In the absence of the collision term, Boltzmann equation is just a plane wave propagation.
We can write the overall equation as,

Δ̃(|�k|, k̂ · n̂, τ) = ∑
l
(−i)l(2l + 1)Δ̃(k, τ)Pl(k̂ · n̂). (3.11)

Δ̃l(k, τ) =
1

2(−i)l

+1�

−1

dµΔ̃(k, µ, τ)Pl(µ). (3.12)

Using the Bessel function expansion for exponential function,

ein̂·k̂(τ−τs) = ∑
L
(−i)l(2L + 1)jL(kΔτ)PL(k̂ · n̂). (3.13)

where Δτ = τ − τs. Substituting this in the previous equation we get,
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Δ̃l(k, τ) =
1

2(−i)l

+1�

−1

dµ

�
∑
Ll�
(−i)l�+L(2l� + 1)(2L + 1)jL(kΔτ)Δ̃l�(kΔτs)Pl�(µ)PL(µ)

�
Pl(µ).

(3.14)

=
1
2 ∑

Ll�
(−i)l�+L−l(2l� + 1)(2L + 1)jL(kΔτ)Δ̃l�(kΔτs)

+1�

−1

dµPl�(µ)PL(µ)Pl(µ). (3.15)

We use a standard result to replace the integral,

+1�

−1

dµPl�(µ)PL(µ)Pl(µ) =
2

2L + 1

�
CL0

l0l�0

�2
. (3.16)

where, C is called the Clebsch Gordan coefficient.

Δl(kΔτ) = ∑
l�L
(−i)l�+L−l(2l� + 1)jL(kΔτ)Δ̃l�(kΔτs)

�
CL0

l0l�0

�2
. (3.17)

Δl = ∑
l�

All�(Δτ)Δ̃l�(kΔτs); All� = ∑
L
(−i)l+l�+LjL(kΔτ)

�
CL0

l0l�0

�2
. (3.18)

Now, we use the approximation where there is only the monopole term present.

Δ̃l�(kΔτs) = Δ̃0(kΔτs)δl�0. (3.19)

=⇒ Δ̃l(kΔτ) = ∑
L
(−i)l−LjL(kΔτ)Δ̃0(kΔτs)

�
CL0

l000

�2
. (3.20)

Using another standard result [11],

CLM
lm00 = δlLδmM =⇒ CL0

l000 = δlL. (3.21)

Δ̃l(kΔτ) = jl(kΔτ)Δ̃0(kΔτs). (3.22)
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Going back to the expression for angular power spectrum,

=⇒ Cl = 4π
� dk

k
(k3Pφ)

2π2 j2l (kΔτ)|Δ0(kΔτ)|2. (3.23)

From Sache-Wolfe effect, we have Δ0 = 1/3.

Cl =
4π

9

� dk
k

�
k3Pφ

2π2

�
j2l (kΔτ). (3.24)

For Harrison-Zeldovich Spectrum (
k3Pφ

2π2 ) = A and the integral evaluates to 4/π. There-
fore,

Cl =
4π

9
A

� dk
k

j2l (kΔτ) =
16/9

l(l + 1)
A. (3.25)

For a general case,

Cl =
4π

9

� dk
k2 |δk|2 j2l (kΔτ). (3.26)

For a power-law, |δk|2 = Akn.

Cl =
4πA

9
Γ(3 − n)Γ((2l + n − 1)/2)

Γ2((4 − n)/2)Γ((2l + 5 − n)/2)
. (3.27)

We have only considered the first term in the expansion. We could add the second term,
the dipole, and then solve it in a similar way although it gets slightly more complicated.
It is left as an exercise to the math romantics.

3.3 Inflation models and primordial spectrum

3.3.1 Scale invariant power law model

Most of the inflationary models that we have at our disposal, suggest an almost scale
invariant power law for the primordial power spectrum. The functional form is usually
written as

Pk = As(k/k∗)ns−1. (3.28)
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If ns = 1, it becomes a scale invariant spectrum, also known as Harrison-Zeldovich-
Peebles spectrum. For this special case, Pk = As = constant. We have, Cl = constant

� ∞
0

dk
k Δl(k)2 =

1
2(l)(l+1) · constant. This is why we plot Dl =

l(l+1)
2π Cl. For a scale invariant spectrum, we

get a flat Sache-Wolfe part of Cl. The current data are pretty much consistent with a nearly
scale invariant spectrum. They suggest a small tilt(ns < 1). We are interested to look for
other scale dependent features that can match the observations with tighter constrains.
Although most of the inflation models predict a scale invariant power law form for the
primordial power spectrum, it is possible to incorporate certain scale dependent features
by making small modifications to the power law. The current observations tell us that
the form of PPS very closely resembles the power law. However some anomalies in the
angular power spectrum such as the low power at lower multipoles motivate us to look
towards other inflation models specifically those that tend to have a low l cutoff. will
discuss some simple models below.

3.3.2 Exponential cutoff model (EC)

[15] One of the simplest modification that we can do to the power law, by addition of
a minimal number of extra parameters is to add a exponentially decaying function to
represent the low l cutoff. The functional form looks something like this.

P(k) = Askns−1[1 − e−(k/k∗)α
] (3.29)

Here, α is the additional parameter that determines the sharpness of the cutoff.

3.3.3 Starobinsky Model (SB)

[14] Starobinsky has discussed the possibility of broken scale-invariant models for infla-
tion with localised spikes and steps which can create cutoffs in the primordial power
spectrum. The modification to the PPS is expressed as a multiplicative factor to the regu-
lar PPS as follows.

P(k) = P0(k)D2(y, R∗). (3.30)
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and,

D2(y, R∗) = [1− 3(R∗ − 1)
1
y
((1− 1

y2 ) sin 2y+
2
y

cos 2y)+
9
2
(R∗ − 1)2 1

y2 (1+
1
y2 )× (1+

1
y2 +(1− 1

y2 ) cos 2

(3.31)
where, y = k/k∗, and R∗ is a new parameter that determines the slope of the power spec-
trum. There are other models such as the Pre-inflationary Kinetic Domination model(KD)
and Pre-inflationary Radiation domination model(VF) which we shall not be discussing
here. However the figure below demonstrates the form of the PPS these models suggest.

������ ���� This figure represents PPS generated by several different inflation models. There is
also the PPS recovered directly from the WMAP data for comparision. ( figure is from [13]).



Chapter 4

Method of reconstruction

4.1 Introduction

Based on the discussion in Chapter 2, we conclude that in order to obtain P(k), given
Cl and Glk, what we have at hand is essentially a problem of deconvolution. There are
several techniques developed particularly in the field of signal processing and image pro-
cessing that are used to find a solution of a convolved equation. Since we know the trans-
fer function well for any given cosmological model, we can apply one such algorithm
that has been extensively used in Astronomy and other areas to recover pure images that
have been blurred by some point spread function. This is the Richardson Lucy Decon-
volution Algorithm(RLD)[3]. It was introduced by William Richardson and Leon Lucy,
independently, in 1972.

4.2 RLD method: An application of the Bayes theorem

The Bayesian approach to inference makes use of prior knowledge about conditions re-
lated to events to make comments about the probability of a particular event and how on
the basis of availability of new data, one should logically update one’s assessment about

25
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these probabilities. We use Bayes theorem to update out priors using data to get posterior
beliefs using Bayes theorem. The statement of the theorem is as follows:

P(θ|X) =
P(X|θ)P(θ)

∑
θ

P(X|θ)P(θ)
. (4.1)

where P(X) �= 0

P(θ) is interpreted as our prior knowledge about the probability of event θ, which in
our case is the parameter we are interested in estimating,
P(X|θ) is called the likelihood, that is the probability of observing data X, given the pa-
rameter is θ,
P(θ|X) is called the posterior belief, that is how we update our prior based of availability
of new information X.

4.2.1 In the language of cosmology...

We are interested in obtaining the primordial power spectrum Pk, from the observed an-
gular power spectrum Cls. The angular power spectrum is a convolution of primordial
power spectrum with an evolution kernel Glk and is given by

Cl = ∑
k

GlkPk (4.2)

If the kernel Glk were invertible this would be a simple problem of matrix inversion. How-
ever, we have a Cl each for l values raging from 2-2508, 2897 k values between 7.10e-06
and 0.47. This is an ill-conditioned system of linear equations. The observed angular
power spectrum is a convolution of a cosmological radiative transport kernel with an
assumed primordial power spectrum. The fact that Pk, Cl and Glk are strictly positive
quantities is just icing on the cake, making RLD algorithm a much-suited method to de-
project the primordial power spectrum from the 2D angular power spectrum. We make
the best possible guess for our prior P(i)

k , and iteratively update it until get C(i)
l s that match

closely with the observed C(D)
l [6, 7, 8]. The derivation stems from probability theory and

is as follows. To make our case, we construct the following one-dimensional probability
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distributions:

∑
k

P̃k = 1; ∑
l

C̃l = 1; (4.3)

We can view the radiative kernel as a conditional probability distribution.

∑
l

G̃lk = 1; (4.4)

Doing this normalization allows us to jump between the language of probability and cos-
mology without loss of rigor. Let Lkl be the last remaining piece required for completing
the Bayes theorem. We are now in a position to state the Bayes theorem in the language
of cosmology.

P̃kG̃lk = C̃l Lkl. (4.5)

Or,

Lkl =
P̃k

C̃l
G̃lk. (4.6)

Integrating equation 3.5 with dl, we have

P̃k =
�

C̃l Lkldl. (4.7)

For convenience of numerical analysis, we discretize it in the form,

P̃k = ∑
l

C̃l Lkl. (4.8)

We begin with a uniform prior P(0)
k . This corresponds to a power spectrum C(0)

l . Sub-
stituting from equation 3.6 and with the aim of ultimately matching C(i)

l with the data
C(D)

l , we update our prior as follows,

P(i+1)
k = P(i)

k ∑
l

�Glk
C(D)

l

C(i)
l

. (4.9)

We recast this formula slightly[6], to explicitly highlight the numerical deviation from the
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target at each iteration as follows:

P(i+1)
k = P(i)

k

�
1 + ∑

l

�Glk
C(D)

l − C(i)
l

C(i)
l

�
. (4.10)

One can verify that by using normalized radiative kernel, G̃lk, the overall normalization
of both Cl and Pk is preserved.

4.3 Integral equation in action

������ ���� This figure represents the radiative transfer kernel for a few particular multipoles.
Note how the function is non-zero only in a small region. This region is slightly displaced as the
multipole changes however the function is zero-valued in a large section. Hence, the efficiency of
the recovery of the PPS is different at different scales as we will see later.

At this point we are well equipped to go ahead and do some actual computations of
angular power spectrum using CAMB. CAMB essentially calculates the integral defined
in the previous section to compute the angular power spectrum. We make suitable mod-
ifications to the code to implement the improved Richardson Lucy deconvolution in in
CAMB itself. By default CAMB assumes the scale invariant power law model for the
PPS. We use the temperature data from Planck 2015 release to do the iRLD and obtain a
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free-form PPS that is subsequently convolved with the radiative transfer kernel to calcu-
late Cl.

We then did a preliminary check to see if our RLD method could be applied success-
fully in its most basic form and scrutinize how the Cl corresponding to the recovered PPS
compares with the Cl corresponding to the Power law PPS.

������ ���� This figure represents a preliminary comparision between the two angular power
spectra obtained from CAMB with different forms for PPS.

������ ���� This figure represents the same curve above in a log-log scale to focus on the low l
values.
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4.4 Toy models

As a sanity check we ran the algorithm on known quantities. Consider a system of linear
equations Y = AX, where X and Y are vectors and A is matrix. We begin with a sine curve
that is represented by black in the plot below and try to recover it using RLD algorithm.

������ ���� This figure represents the recovery of a peak of a sine wave using RLD algorithm in
a toy model. The black line is the expected recovery, the blue line represents the curve recovered
after about 100 iterations. The yellow line represents the initial guess.

4.5 Regularization term

We had earlier discussed about how our data is limited by Cosmic Variance at low mul-
tipole values ls and systematics at high multipole values l. We can not rely on the ob-
servations beyond these error bars. However, the standard Richardson Lucy Algorithm
has no provisions for incorporating the information regarding errors. Hence we need to
modify the existing algorithm appropriately to include a regularization term that ensures
that this method does not start fitting features from the noise especially at large iterations.

As suggested by Souradeep et al. [6], the addition of a hyperbolic tangent (tanh)
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term can be used to diminish the contributions from those l values where there is high
noise present. Consequently, the method will assign lesser weights to such l values, and
thereby converge faster. This prescribed regularization term is by no means unique, but
works adequately well and also results do not depend much on the specific form of the
regularization term. Now our equation looks like,

P(i+1)
k = P(i)

k

�
1 + ∑

l

�Glk
C(D)

l − C(i)
l

C(i)
l

tanh2� (C
(D)
l − C(i)

l )2

σ2
l

��
(4.11)

We demonstrate the impact of the inclusion of the regularisation terms below.

������ ���� This figure demonstrates the PPS recovered after 100 iterations of the standard RLD.
Due to the large fluctuations at small l values, the lower part of PPS keeps falling with iterations.

������ ���� Here we have included the regularization term which is a tan hyperbolic function of
a value that quantifies the error. This function has a range between 0 to 1.
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4.6 Prior bias

Iterative methods are generally dependent on the initial conditions we choose. Therefore
we need to be careful about our initial guess biasing our results. In our analysis, we use
a uniform prior with no features so as to have a minimal bias on our results. In Bayesian
analysis we obtain new posterior distribution based on availability of new data. The
posterior distribution has input from both our prior assumption and the data in different
weights. In our case we do not have much information present in our prior since it is
a guess. We would therefore want it to have a minimal weight with data having more
weight. This is exactly the case in RLD. We show that the method is prior independent.
We use three different priors to demonstrate this.

������ ���� We demonstrate the prior independence by recovery of PPS using three different
priors. The first uses a uniform prior, the second goes as ek and the third goes as exp(sin(log(k))).
Note that for the range between 5 × 10−4 and 10−1 and the PPS is recovered successfully in all the
three cases.
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������ ���� This figure shows the residuals from the plot above to highlight the efficiency of
reconstruction at different l values.

4.7 Post processing

The iRLD method can leave some signatures on the recovered PPS due to residual fluctu-
ations present in the data due to noise and discrete sampling. These features show up in
the PPS as high frequency fluctuations that need to be smoothened out. There are several
corrective measures that have been tested before like wavelet analysis, singular value de-
composition and transforms using various filters. We implement a Gaussian filter with
a suitable window to reduce the fluctuations. The filter is implemented by the following
formula[7],

PSmooth
k =

∑kmax
k�=kmin

PRaw
k� × exp

�
−(

log k�−log k
Δ )2

�

∑kmax
k�=kmin

exp
�
−(

log k�−log k
Δ )2

� . (4.12)
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������ ���� Without Gaussian smoothing

������ ����� With Gaussian smoothing with a window size of 0.001 units

4.8 Convergence criteria

The RLD method being an iterative one we need to specify the criteria to stop the it-
erations. We would like to strike a balance between achieving sufficient accuracy and
keeping the computation time minimal. As a convenient measure, we calculate the χ2

value after each iteration. As expected, this value starts falling down, and when it almost
saturates we terminate the iterations. Here, L represents the total multipole values we
have, i.e., 2508.

χ2
i =

1
L ∑

l

(CD
l − Ci

l)
2

σ2
l

(4.13)
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������ ����� This figure depicts how χ2 saturates after sufficient iterations.

4.9 Results

After having set the machinery for the iRLD algorithm, we test it on some simulated data.
We first test the efficacy of this method by using it on a power spectrum that was injected
by a power law PPS. The Power spectrum was generated by a code called CAMB[10].
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������ ����� This figure compares the Cl corresponding to the recovered Pk (shown by the blue
line) with the simulated Cl shown by the black dots. The error bars represent the cosmic variance
at different l values. They are not shown for every l value to avoid cluttering.

������ ����� The recovered Pk is shown by the blue line. The yellow line represents the uniform
prior, while the red line is the expected scale invariant power law Pk. Note that the reconstruction
is not uniformly robust over the entire wavenumber range. This is consistent given the support of
Glk over the wavenumber.

It is apparent that iRLD method is not uniformly robust at all scales. We inject power
law with two different features at three different k ranges and study the efficiency of this
method.

We arrive at a conclusion that this method recovers the PPS fairly well in the range
between 10−1 and 10−4. This is due to lack of support of Glk at the extreme ends and our
recovery fails to capture features present in those regions.
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������ ����� The efficiency of reconstruction is not uniform across the entire k range. We demon-
strate this by introducing two kinds of features at three different k ranges as shown. Note that the
method is insensitive to features at lower k values

Finally, we apply the RLD method on Planck binned and unbinned data from the
Planck release of 2015. The advantage of using binned data is that since the l values are
fairly wide apart, we have smoother looking curves and hence we will have lesser aber-
rations while the drawback being some amount of information loss. Note the reduction
in the oscillations at larger l values in the case of unbinned data. The unbinned data, on
the other hand, has lesser loss of information but it is very noisy. We use cubic spline
interpolation to obtain data points for every l value in the case of binned angular power
spectrum. We use both these datasets and look for common features.
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������ ����� This figure shows the unbinned angular power spectrum from Planck 2015 data
depicted in red and the reconstructed angular power spectrum depicted in blue. The in-plot shows
the same curve in logarithmic scale to highlight the features in low l part.

������ ����� This figure shows the binned angular power spectrum from Planck 2015 data[1]
depicted in red and the reconstructed angular power spectrum depicted in blue. The inplot shows
the same curve in logarithmic scale to highlight the features in low l part.
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������ ����� This figure compares PPS from binned and unbinned data Planck data. The un-
binned data has data for larger number of multipole l sampled but also comes with high noise.
On the other hand, we have lower noise in case of binned data but with limited l samples. How-
ever, the significant features like infrared cut-off and oscillations are apparent in both.
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Chapter 5

Cosmological parameter estimation

In the last section we had assumed the best-fit values from the Planck 2015[20] for the
background cosmological parameters and then proceeded with the iRLD. However, it is
well known that there is no preferred model for inflation and hence what model we use
strongly biases our estimates of the background parameters inferred from CMB spectrum
[16]. This calls for a more general approach, preferably a model independent technique
to complement a parameter estimation. With the iRLD method, we aim to obtain revised
estimates of the cosmological background parameters without the bias arising from the
assumption of a model for the Primordial Power Spectrum(PPS). However, the compu-
tation of the radiative kernel for a given cosmology is a computationally expensive task.
Therefore, we need to use smart, computationally efficient ways of sampling the param-
eter space such as using Markov Chain Monte-Carlo sampling methods.

5.1 Markov Chain Monte-Carlo techniques

Markov Chain Monte-Carlo methods are frequently used in Cosmology to obtain a fair
sample of the posterior probability distribution in the multi-dimensional space of cosmo-
logical parameters. In situations where the exact analytical distribution is not known or
it is computationally expensive to compute, we can estimate the distributions and its sta-
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tistical properties by drawing a large number of random fair samples. Continuing in the
Bayesian perspective as described in Chap. 3, we use the data obtained by observations
to update our a prior knowledge about parameters to obtain a posterior state of beliefs
by examining the likelihood of data given the parameters. Typically one runs multiple
chains simultaneously. While constructing Markov chains is a straight forward process,
care must be taken to set proper convergence criteria for all the chains. Typically one
sets the convergence criteria while running several chains as the step at which the ratio of
inter-chain to the intra-chain variance for all the parameters is less than unity. This criteria
is also known as the Gelman-Rubin criteria[27]. There are several Monte-Carlo methods
with different levels of sophistication and different range of applications, ex. Metropolis-
Hastings algorithm, Gibbs sampling etc. In our analysis, the publicly available CosmoMC
code makes use of the Metropolis-Hastings algorithm with modifications appropriate to
our approach. [21].

5.2 Metropolis-Hasting algorithm

Metropolis-Hastings algorithm[26] is one of the simplest MCMC technique that is used to
draw a sequence of random samples from a probability distribution P(x) to estimate its
statistics provided one can find another function f (x) that is proportional to the density
of P. At each iteration of the sampling, the next candidate is chosen based only on the
current sampled point. The new candidate is accepted or rejected based on comparing
the function f (x) of the new and the currently accepted sample. If the current position is
x and the new sample point under consideration is x�, then the acceptance ratio is

α =
f (x�)
f (x)

(5.1)

Then we generate a random number n on [0, 1]. If u ≤ α, only then we accept the new
candidate sample point. This method ensures that if the new candidate is more likely than
the previous point than it is always accepted. Otherwise it is accepted with a probability
that depends on how much drop in likelihood the newer point corresponds to. Thus we
tend to stay in high density regions while not getting stuck in local minima.
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5.3 Likelihood surfaces

We run the sampling algorithm on the 4-dimensional parameter space while doing an
iRLD step at each point of the parameter space. We report significant deviations in the
best-fit values for all the four parameters compared to those obtained by assuming the
Power law model for the PPS. The preferred value of Baryon density and the acoustic
scale parameter are higher than the previously reported values, while the other two pa-
rameters, the cold dark matter density and optical depth at reionization tend to prefer a
value lower than expected as can be seen in the graphs below. The revised best fit values
for Ωbh2, Ωch2, τ and 100θ are 0.0259, 0.0733, 0.0345 and 1.0440 respectively. We ob-
tain angular power spectrum that have significantly higher values of likelihood when we
assume free-form PPS. In our analysis, we have used the hi_l_TT and low_l_TT (comman-
der) likelihood data sets provided by Planck[23]. Since free-form PPS has higher degrees
of freedom, we expect a larger area of parameter space to be acceptable and our results
are consistent with this expectation.

������ ���� The figure represents the one dimensional marginalized likelihood of all the four
background parameters obtained using free form of primordial spectrum (in red line) and using
power law (in black line) using only the CMB temperature data from Planck 2015. The Y-axis
shows the normalized marginalized 1-D probability of the cosmological parameter and runs from
zero to unity at the peak of the distributions.
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������ ���� Reconstructed power spectrum corresponding to the revised best-fit values for the
four background parameters are shown here. The recovered PPS has been smoothed with two
different smoothing widths (red and green). The Power law PPS has also been plotted (in teal) for
reference.

Parameter Power law Free form Difference
Ωbh2 0.02204 ± 0.00017 0.0259+0.0028

−0.0023 0.00386
Ωch2 0.1214 ± 0.0011 0.0733 ± 0.0045 0.0481
100θMC 1.04067 ± 0.00041 1.0440 ± 0.0017 0.00333
τ 0.0801 ± 0.0010 < 0.0345 > 0.0456

����� ���� Here we have tabulated the best-fit values for the background parameters along with
1-σ spread around it obtained using both the Power law model and the free-form PPS.

χ2 = −2 logL Power law Free form Difference
Hi l TT 6062.38693227 5104.66223714 957.72469513
Low l TT 16.84863547 14.46326366 2.38537181
Total 6079.23556774 5119.1255008 960.11006694

����� ���� Here we have tabulated the effective χ2 values for the angular power spectra obtained
using both the Power law model and the free-form PPS. Note that the free form PPS has significant
improvement in Likelihood compared to the Power law PPS.
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������ ���� This figure compares the best-fit distributions for the background parameters. The
results obtained using the Free-form PPS are represented by red and that obtained using Power
law PPS are represented by blue. We obtain larger areas of accepted parameter space when we
assume the free-form PPS as expected.
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Chapter 6

Discussions and Conclusions

The period of last 50 years has witnessed a dawn of an era of precision cosmology. In-
creasingly sophisticated satellites like WMAP, Planck have provided us a rich set of CMB
data to work with. This provides us with an invaluable means to test theories about early
universe and particularly reach a consensus on what inflationary mechanism was under
operation. The Primordial Power Spectrum(PPS) is not directly observable, however, the
angular power spectrum of CMB is a convolution of PPS with a radiative transfer ker-
nel. This is an observable that is measured with great accuracy on a wide range of scales.
Therefore we are motivated to reconstruct the PPS directly from the data without any bias
from the theoretical model.

In the first part of the project, we apply a model-independent method, namely the im-
proved Richardson-Lucy Deconvolution algorithm to reconstruct the Primordial Power
Spectrum using the Planck 2015 temperature data with cosmological parameters fixed to
the best fit values obtained assuming the Power law PPS. We have assumed a spatially
flat universe with ΛCDM model of Cosmology. We observe that the iRLD method is in-
dependent of the initial guess for PPS. We also note that the recovery is efficient at scales
between 10−1 and 10−4. This was explained by observing that the support of the radia-
tive kernel, Glk was restricted to this regime. We smoothen the rapid fluctuations since
they are due to the noise present in the data and are not physically significant by running
a Gaussian smoothing filter. We compare the reconstructions from Planck binned and
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unbinned data and look for matching features. The recovered spectrum has several sig-
nificant deviations from the previously assumed power law model for PPS, particularly
the infrared cut-off and some oscillatory features consistent with results obtained earlier
[19, 17]. This motivates us to revise our best-fit estimates of the cosmological background
parameters with the free form power spectrum.

In the second half of this project we relax the assumptions of the best fit values for
the background parameters and instead explore a 4-dimensional parameter space, doing
a iRLD at each randomly chosen point. Since this is a computationally taxing job, we
employ techniques of Markov Chain Monte Carlo to sample the parameter space. We de-
velop our own MCMC code. However, we use a publicly available code called CosmoMC
that uses the Metropolis Hastings algorithm to do the sampling since it is more efficient.
We obtain new landscapes of the posterior distributions for the background cosmological
parameters given the Planck temperature data and parameters.

The features we obtained in the reconstructed PPS can be used in inflationary model
building such as the punctuated inflation etc., to look for new theories whose predictions
match with the data more accurately. We also showed that the previously assumed form
of the PPS biases the constraints obtained on the cosmological background parameters.
With the power law model, it was not possible to achieve suitably low value of χ2 in cer-
tain regions of the parameter space. But with the free-form PPS, we achieve a significant
improvement in the χ2. It opens up a larger space of viable cosmological parameters and
hence motivates us to revisit our theories of early universe scenarios.

We conclude by suggesting some future prospects of this work. In our analysis, we
have only used the temperature data. We could, in principle, include the polarization data
sets (TE, EE, BB etc) as well to improve our reconstruction of PPS. This involves includ-
ing theoretically computable radiative kernels for these additional angular power spectra.
The PPS should stay the same theoretically. Working with a larger data set will certainly
improve the signal to noise ratio and improve our parameter estimates. However, we
defer the inclusion of polarization data till the Planck collaboration publicly releases the
final CMB polarization data. We have ignored the effects of lensing on CMB. We could
achieve more reliable estimates by taking the lensing spectra into consideration. Another
potential improvement that could be done is to reduce the computational time required
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to do the sampling. The iRLD method used data from all the multipoles to do the decon-
volution. It takes about four days to do a 4-dimensional parameter sampling with iRLD
at each point. We could apply techniques of Single Value Decomposition (SVD) to reduce
the number of calculations required without losing much information and thereby reduce
the computational time.
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